WO2018010503A1 - 刚度可控关节蛇形机构、单孔手术器械及单孔机器人 - Google Patents

刚度可控关节蛇形机构、单孔手术器械及单孔机器人 Download PDF

Info

Publication number
WO2018010503A1
WO2018010503A1 PCT/CN2017/087260 CN2017087260W WO2018010503A1 WO 2018010503 A1 WO2018010503 A1 WO 2018010503A1 CN 2017087260 W CN2017087260 W CN 2017087260W WO 2018010503 A1 WO2018010503 A1 WO 2018010503A1
Authority
WO
WIPO (PCT)
Prior art keywords
serpentine
energy exchange
surgical instrument
stiffness
skeleton
Prior art date
Application number
PCT/CN2017/087260
Other languages
English (en)
French (fr)
Inventor
王树新
王建辰
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2018010503A1 publication Critical patent/WO2018010503A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/0069Aspects not otherwise provided for with universal joint, cardan joint

Definitions

  • the invention relates to a minimally invasive surgical instrument joint mechanism, in particular to a stiffness controllable joint serpentine mechanism for a single-hole surgical instrument.
  • Single-hole surgery refers to the placement of multiple puncture devices or multi-channel puncture devices on a small incision of 15mm-40mm, and then placement of surgical instruments for surgical operations.
  • the instruments are mostly hard-rod tools and are accessed by one channel, it is easy to produce a "chopstick effect" which causes the device to collide in the body, affecting the operation time and the quality of the operation.
  • the single-hole robotic surgery system represented by Da Vinci (Patent No. US 8771180 B2) and Titan (Patent No. US 20110230894 A1) solves this problem by using a serpentine structure, it also brings about a decrease in rigidity of the instrument and insufficient lifting force. The problem.
  • the serpentine stiffness controllable joint mechanism for single-hole instruments proposed in this patent can not only solve the original collision problem of the instrument, but also can control the rigidity of the snake-shaped flexible mechanism to reduce the insufficient lifting force.
  • the problem is of great significance to the development of single-hole robotic surgery.
  • the present invention provides a stiffness controllable joint serpentine mechanism for a single-hole surgical instrument, which can effectively avoid the collision problem of the tool during the operation, and makes the operation operation more precise and flexible, and has a larger Lifting power.
  • the invention discloses a stiffness for a single-hole surgical instrument Controllable joint serpentine mechanism, including:
  • An energy exchange device coiled on the elastic support frame
  • the energy exchange device controls the phase change of the liquid metal by thermal energy exchange, thereby realizing the rigid-state transition of the serpentine mechanism.
  • the liquid metal when the energy exchange device does not conduct heat to the liquid metal, the liquid metal is a solid phase, and the serpentine skeleton is in a rigid state; when the energy exchange device conducts heat to the liquid metal, the liquid metal absorbs heat It becomes a liquid phase, and the serpentine skeleton is in a flexible state, thereby achieving controllable rigidity.
  • the energy exchange device is coupled to an external energy control source to effect a change in temperature of the energy exchange device itself by conduction.
  • the energy exchange device achieves a change in its own temperature by means of water heat exchange or electric heat exchange.
  • the energy exchange device comprises a double helix energy exchange tube or a double helix resistance wire.
  • the liquid metal is an alloy of gallium indium bismuth copper or a gallium indium alloy.
  • the elastic support frame and the serpentine skeleton are made of an elastic rubber or an elastic organic polymer.
  • the serpentine skeleton comprises a plurality of unit joints, and adjacent two unit joints are connected by a rotating pair.
  • the serpentine skeleton is provided with a wire tunnel in which a driving wire is bored for controlling left and right deflection degrees of freedom and up and down deflection degrees of the serpentine skeleton.
  • the present invention also discloses a stiffness controllable single hole surgical instrument comprising: a jaw assembly and the stiffness controllable joint serpentine mechanism; wherein the jaw assembly is The stiffness controllable joint serpentine mechanism is connected by gluing or tight fit.
  • the present invention also discloses a single-hole robot comprising: An endoscope; and one or more of said stiffness controllable single hole surgical instruments.
  • the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument introduces a rigidly controllable joint into a surgical instrument for the first time, filling a blank in this aspect of the single-hole surgical instrument;
  • the stiffness controllable joint serpentine mechanism for the single-hole surgical instrument can more effectively avoid the collision problem of the tool during the surgical operation
  • the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument can achieve a 0-1 change from a rigid state to a soft state of the serpentine skeleton structure due to the controllability of the stiffness, so that the surgical operation is more precise and flexible;
  • the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument controls the stiffness by the phase change of the liquid metal, and has a greater lifting force while maintaining flexibility;
  • the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument is designed for a single-hole surgical instrument, but the joint mechanism has high portability and can be directly used in other surgical tools. Has the potential to expand into other medical fields.
  • FIG. 1 is a schematic view showing the overall structure of a stiffness controllable joint serpentine mechanism for a single-hole surgical instrument according to the present invention
  • FIG. 2 is a schematic view showing the explosion of the overall structure of the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument according to the present invention
  • FIG. 3 is a schematic view showing the principle of a water-heat exchange operation mode of a stiffness controllable joint serpentine mechanism for a single-hole surgical instrument according to the present invention
  • FIG. 4 is a schematic view showing the principle of the electric heat exchange working mode of the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument according to the present invention
  • FIG. 5 is a schematic view showing the rigid working state of the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument according to the present invention
  • FIG. 6 is a schematic view showing the flexible working state of the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument according to the present invention.
  • 3-1 serpentine skeleton unit 3-2 drive wire; 3-3 loop pipeline; 3-4 storage tank; 3-5 peristaltic pump; 3-6 passage; 3-7 heat source;
  • 4-2 double spiral resistance wire; 4-3 positive electrode; 4-4 negative electrode;
  • 6-1 is the body surface
  • 6-2 is the endoscope
  • 6-3 is the diseased tissue.
  • the stiffness controllable single-hole surgical instrument includes a forceps head assembly 1-1 and a stiffness controllable joint serpentine mechanism.
  • the stiffness controllable joint serpentine mechanism 1-2 for a single-hole surgical instrument of the present invention can be coupled to the jaw assembly 1-1 by bonding or tight fitting.
  • the stiffness controllable joint serpentine mechanism for a single-hole surgical instrument of the present invention has two stiffness driving methods, a hydrothermal energy exchange method and an electrothermal energy exchange method, respectively.
  • the gap between the energy exchange device 2-4 and the serpentine skeleton 2-2, the energy exchange device 2-4 is connected to an external energy control source to effect a change in the temperature of the energy exchange device itself by conduction.
  • the serpentine skeleton 2-2 of the preferred embodiment includes a plurality of unit joints, and the adjacent two unit joints are connected together in a form-locking manner to articulate each unit in the serpentine skeleton. together.
  • the liquid metal 2-3 may be an alloy of gallium indium bismuth copper or a gallium indium alloy, and both materials are commercially available.
  • the metal can be solidified at room temperature or heat-dissipated by an energy exchange device, and can be liquefied when heated by an energy exchange device.
  • the insulating and heat insulating sleeve 2-1 wraps the serpentine skeleton 2-2 to form the form of FIG.
  • a wire hole for driving the wire is disposed on the serpentine skeleton 2-2, and the driving wire passes through the wire hole and is fixed on the jaw assembly 1-1, and the driving wire is used to control the serpentine skeleton 2-2.
  • the driving wire can be arranged in a manner as it is disclosed in the prior art, such as the structures disclosed in Chinese Patent Application Nos. 201510665781.0 and 201510669801.1.
  • the elastic support frame 2-5 and the serpentine frame 2-2 are made of an elastic material, and the elastic material used may be an elastic rubber or other elastic organic polymer.
  • the energy exchange device adopts a double-spiral energy exchange tube
  • the external energy control source uses a heat source
  • the inlet of the double-spiral energy exchange tube is connected to a heat source through an injection channel 3-6 equipped with a double-channel peristaltic pump.
  • the water outlet of the double spiral energy exchange tube is connected to the storage tank 3-4 through the return line 3-3.
  • the peristaltic pump 3-5 introduces the hot water in the heat source 3-7 from the injection channel 3-6 into the double-spiral energy exchange tube, so that the heat energy is sufficiently absorbed by the liquid metal 2-3, and the heat flow is introduced.
  • the liquid metal is subjected to phase change control, and then from the loop line 3-3 to the storage tank 3-4, the liquid metal 2-3 is liquidified by heat exchange, so that the liquid metal 2-3 can be in the snake
  • the free flow between the shaped skeleton units 3-1 releases the locked degrees of freedom of the locked R1 and R2, and the tool becomes a soft state, which can be brought into operation as shown in FIG. 5 by controlling the driving wire 3-2.
  • the serpentine skeleton 2-2 is moved to the position shown at 5-1 in Fig. 5 in the flexible state, and then the stiffness lifting control is performed, the snake bone can be maintained in a rigid state in Fig. 5 Position shown in 5-1, so that the serpentine skeleton 2-2 is reached in any state
  • the lower stiffness is controllable, making it not only highly flexible but also compensates for the lack of flexibility of the flexible joint.
  • the energy exchange device uses a double spiral resistance wire 4-2, the external energy control source uses a power source, and the double spiral resistance wire 4-2 is connected to the power source through the positive electrode 4-3 and the negative electrode 4-4.
  • the heat is generated, and the liquid metal 2-3 absorbs heat and liquidizes, and unlocks the locked R1 and R2 degrees of freedom, and is in a flexible state, and the rigidity is controllable.
  • Fig. 5 is a view showing a method of using the stiffness controllable joint serpentine mechanism of the present invention.
  • the stiffness controllable joint serpentine mechanism overall structure 1-2 is arranged in front of the variable stiffness single hole device, and 5-2 is a common serpentine mechanism.
  • the stiffness controllable joint serpentine mechanism 1-2 is assembled into a complete variable stiffness single hole surgical tool by tight fitting or bonding or card slotting to the conventional serpentine mechanism 5-2.
  • Fig. 6 is a schematic view showing the application of the stiffness controllable joint serpentine mechanism in the whole of a single hole robot according to the present invention.
  • the stiffness controllable joint serpentine mechanism is applied to the front of the variable stiffness single hole device 6-4, and the variable stiffness single hole device 6-4 is deployed in a flexible state, and the single hole device can be in a rigid state according to the operation needs.

Abstract

一种用于单孔手术器械的刚度可控关节蛇形机构(1-2),可更有效的避免工具在手术操作时的碰撞问题,使得手术操作更加精确和灵活,具有更大的提升力。刚度可控关节蛇形机构(1-2)包括:弹性支撑架(2-5);能量交换装置(2-4),盘绕在弹性支撑架(2-5)上;蛇形骨架(2-2),套在能量交换装置(2-4)上;绝缘隔热套(2-1),套在蛇形骨架(2-2)上;以及液态金属(2-3),填充在弹性支撑架(2-5)、能量交换装置(2-4)和蛇形骨架(2-2)之间的空隙;其中,能量交换装置(2-4)通过热能交换控制液态金属(2-3)的相变,从而实现蛇形机构(1-2)的刚态-柔态变换。

Description

刚度可控关节蛇形机构、单孔手术器械及单孔机器人 技术领域
本发明涉及一种微创手术器械关节机构,特别涉及一种用于单孔手术器械的刚度可控关节蛇形机构。
背景技术
随着科学技术的发展,现代医学领域已进入了微创外科时代。虽然,早年已有人提出了经人体自然腔道的内窥镜手术(natural orificetrans-luminal endoscopic surgery,NOTES)的无创外科手术,但是由于该技术难度高,且需要在一个狭长的空间进行夹持缝合等手术操作,且操作精度无法满足医生的需求,因而该技术在临床上并未得到广泛的应用。而被称为过渡技术的单孔手术,因其美容效果较一般微创手术技术更好,且技术相对成熟,反而得到了广泛的应用。
单孔手术是指在一个15mm-40mm的小切口上置入多个穿刺器或多孔道穿刺器,再置入手术器械进行手术操作。在现有的单孔手术操作中,由于器械多为硬杆工具且都由一个通道进入,容易产生“筷子效应”而导致器械在体内碰撞,影响手术时间和手术质量。虽然以Da Vinci(专利号US 8771180 B2)和Titan(专利号US 20110230894 A1)为代表的单孔机器人手术系统利用蛇形结构解决了这一问题,但同时带来了器械刚性下降,提升力不足的问题。而本专利提出的用于单孔器械的蛇形刚度可控关节机构,不仅能解决原有的器械碰撞问题,更能通过刚度的控制,以弥补蛇形柔性机构引入带来的提升力不足的问题,对单孔机器人手术的发展具有重要意义。
发明内容
(一)要解决的技术问题
针对上述问题,本发明提供了一种用于单孔手术器械的刚度可控关节蛇形机构,可有效的避免工具在手术操作时的碰撞问题,使得手术操作更加精确和灵活,具有更大的提升力。
(二)技术方案
根据本发明的一个方面,本发明公开了一种用于单孔手术器械的刚度 可控关节蛇形机构,包括:
弹性支撑架;
能量交换装置,盘绕在所述弹性支撑架上;
蛇形骨架,套在所述能量交换装置上;
绝缘隔热套,套在所述蛇形骨架上;以及
液态金属,填充在所述的弹性支撑架、能量交换装置和蛇形骨架之间的空隙;
其中,该能量交换装置通过热能交换控制液态金属的相变,从而实现所述蛇形机构的刚态-柔态变换。
在一些实施例中,在能量交换装置未向液态金属传导热量时,所述液态金属为固相,蛇形骨架为刚性状态;在能量交换装置向液态金属传导热量时,所述液态金属吸热变为液相,蛇形骨架为柔性状态,从而实现刚度可控。
在一些实施例中,所述能量交换装置与外部能量控制源相连以通过传导的方式实现能量交换装置自身温度的变化。
在一些实施例中,所述能量交换装置通过水热交换或电热交换方式实现自身温度的变化。
在一些实施例中,所述的能量交换装置包括双螺旋能量交换管或双螺旋电阻丝。
在一些实施例中,所述液态金属采用镓铟铋铜的合金或镓铟合金。
在一些实施例中,所述的弹性支撑架及蛇形骨架的材质为弹性橡胶或弹性有机聚合物。
在一些实施例中,所述的蛇形骨架包括多个单元关节,相邻的两个单元关节之间采用转动副的方式连接。
在一些实施例中,所述的蛇形骨架上设有丝孔道,在所述丝孔道中穿设有驱动丝,用于控制蛇形骨架的左右偏转自由度和上下偏转自由度。
根据本发明的另一个方面,本发明还公开了一种刚度可控单孔手术器械,包括:钳头组件以及所述的刚度可控关节蛇形机构;其中,所述钳头组件与所述刚度可控关节蛇形机构通过粘贴或紧配合方式连接。
根据本发明的另一个方面,本发明还公开了一种单孔机器人,包括: 内窥镜;以及一个或多个所述的刚度可控单孔手术器械。
(三)有益效果
从以上技术方案可以看出,本发明用于单孔手术器械的刚度可控关节蛇形机构具有下列有益效果:
1)本发明中,用于单孔手术器械的刚度可控关节蛇形机构首次将刚度可控关节引入手术器械中,填补了单孔手术器械在该方面空白;
2)本发明中,用于单孔手术器械的刚度可控关节蛇形机构可更有效的避免工具在手术操作时的碰撞问题;
3)本发明中,用于单孔手术器械的刚度可控关节蛇形机构由于刚度的可控性可以实现蛇形骨架结构从刚态到柔态的0-1变化,使得手术操作更加精确和灵活;
4)本发明中,用于单孔手术器械的刚度可控关节蛇形机构通过液态金属的相变控制刚度,在保持灵活性的同时使其具有了更大的提升力;
5)本发明中,用于单孔手术器械的刚度可控关节蛇形机构虽然是针对单孔手术器械设计,但该关节机构具有较高的可移植性,可直接用于其他手术工具中,具有向其它医疗领域扩展的潜力。
附图说明
图1为本发明用于单孔手术器械的刚度可控关节蛇形机构整体结构示意图;
图2为本发明用于单孔手术器械的刚度可控关节蛇形机构整体结构爆炸示意图;
图3为本发明用于单孔手术器械的刚度可控关节蛇形机构水热交换工作方式原理示意图;
图4为本发明用于单孔手术器械的刚度可控关节蛇形机构电热交换工作方式原理示意图;
图5为本发明用于单孔手术器械的刚度可控关节蛇形机构刚性工作状态示意图;
图6为本发明用于单孔手术器械的刚度可控关节蛇形机构柔性工作状态示意图。
<符号说明>
1-1钳头组件;1-2刚度可控关节蛇形机构;
2-1绝缘隔热套;2-2蛇形骨架;2-3液态金属;2-4能量交换装置;2-5弹性支撑架;
3-1蛇形骨架单元;3-2驱动丝;3-3回路管道;3-4储存罐;3-5蠕动泵;3-6通道;3-7热源;
4-2双螺旋电阻丝;4-3正电极;4-4负电极;
5-1位置;5-2普通蛇形机构;
6-1为人体体表,6-2为内窥镜,6-3为病变组织。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
需要说明的是,在附图或说明书描述中,相似或相同的部分都使用相同的图号。且在附图中,实施例的形状或是厚度可扩大,并以简化或是方便标示。再者,附图中未绘示或描述的元件或实现方式,为所属技术领域中普通技术人员所知的形式。另外,虽然本文可提供包含特定值的参数的示范,但应了解,参数无需确切等于相应的值,而是可在可接受的误差容限或设计约束内近似于相应的值。
下面结合附图,对本发明的具体实施方式进行详细说明。
图1为本发明的用于单孔手术器械的刚度可控关节蛇形机构示意图,如图1所示,刚度可控单孔手术器械包括钳头组件1-1及刚度可控关节蛇形机构1-2两部分,本发明的用于单孔手术器械的刚度可控关节蛇形机构1-2可通过粘接或者紧配合方式与所述钳头组件1-1连接。
本发明的用于单孔手术器械的刚度可控关节蛇形机构具有两种刚度驱动方法,分别水热能量交换法和电热能量交换法。
如附图2所示的本发明的用于单孔手术器械的刚度可控关节蛇形机构,包括:弹性支撑架2-5,在所述的弹性支撑架2-5上盘绕有能量交换装置2-4,在所述的能量交换装置2-4上从内到外依次套有蛇形骨架2-2和绝缘隔热套2-1,液态金属2-3填充在弹性支撑架2-5、能量交换装置2-4和蛇形骨架2-2之间的空隙,所述的能量交换装置2-4与外部能量控制源相连以通过传导的方式实现能量交换装置自身温度的变化。作为本发明的一种 优选的实施方式所述的蛇形骨架2-2包括多个单元关节,相邻的两个单元关节之间采用型锁合的方式连接在一起以使蛇形骨架中的每一个单元关节连接在一起。本领域技术人员可以理解的是,也可以采用其他形式的蛇形骨架2-2。如专利申请CN104490477A中公开的结构。所述的液态金属2-3可以采用镓铟铋铜的合金,也可以采用镓铟合金,两种材料均可在市场购得。这样该金属在室温下能够自然固化或者通过能量交换装置进行散热实现固化,通过能量交换装置加热时能够液化。
所述的绝缘隔热套2-1将蛇形骨架2-2包裹起来,形成图2的形式。
同时,在所述的蛇形骨架2-2上设置有驱动丝的丝孔道,驱动丝穿过丝孔道,固定在钳头组件1-1上,驱动丝用于控制蛇形骨架2-2的左右偏转自由度和上下偏转自由度。所述的驱动丝的设置方式可以采用现有的结构,如中国专利申请201510665781.0和201510669801.1中公开的结构。
所述的弹性支撑架2-5和蛇形骨架2-2由弹性材料制成,采用的弹性材料可以为弹性橡胶或者其它具有弹性的有机聚合物。
以下结合附图3详细介绍本发明的刚度可控关节蛇形机构采用水热交换工作原理。当没有进行热能交换时,液态金属2-3处于固相状态,使蛇形骨架单元3-1之间无相对运动,这就将蛇形骨架2-2完全锁死,使其失去了左右偏转自由度R1和上下偏转自由度R2,此时蛇形机构为刚性工作状态。所述的能量交换装置采用双螺旋能量交换管,所述的外部能量控制源采用热源,所述的双螺旋能量交换管的进口通过装有双路蠕动泵的注入通道3-6与热源相连,所述的双螺旋能量交换管的出水口通过回路管道3-3与储存罐3-4相连。当进行热能交换时,蠕动泵3-5将热源3-7中的热水从注入通道3-6中引入双螺旋能量交换管中,使热能充分的被液态金属2-3吸收,将热流引入双螺旋能量交换管中对液态金属进行相变控制,之后从回路管道3-3至储存罐3-4,通过热交换后液态金属2-3液相化,使液态金属2-3可以在蛇形骨架单元3-1之间自由流动,解开锁死的R1和R2偏转自由度,工具变为柔态,通过控制驱动丝3-2可使其达到如图5所示的工作状态。值得注意的是,如果在柔性状态下将蛇形骨架2-2运动至图5中5-1处所示的位置后,再进行刚度提升控制,则可以保证蛇骨以刚性状态维持在图5中5-1处所示的位置,这样就达到了蛇形骨架2-2在任意状态 下的刚度可控,使其不仅具有了很高的灵活性同时弥补柔性关节提升力不足的问题。
以下结合附图4详细介绍所述的刚度可控关节蛇形机构电热交换工作原理。所述的能量交换装置采用双螺旋电阻丝4-2,所述的外部能量控制源采用电源,所述的双螺旋电阻丝4-2通过正电极4-3和负电极4-4与电源相连产生热量,液态金属2-3吸热后液相化,解开锁死的R1和R2偏转自由度,呈柔性状态,达到刚度可控。
图5为本发明刚度可控关节蛇形机构的一种使用安装方法。刚度可控关节蛇形机构整体结构1-2布置在变刚度单孔器械的前部,5-2为普通蛇形机构。所述的刚度可控关节蛇形机构整体结构1-2通过紧配合或者粘接或者卡槽的方式与普通蛇形机构5-2连接从而组装成为完整的变刚度单孔手术工具。
图6为本发明的刚度可控关节蛇形机构在单孔机器人整体上的应用示意图。刚度可控关节蛇形机构应用在变刚度单孔器械6-4的前部,变刚度单孔器械6-4在柔性状态下展开为工作态,并根据手术需要,单孔器械可以在刚态-柔态两种状态下切换。其中,6-1为人体体表,6-2为内窥镜,6-3为病变组织。
需要说明的是,上述对各元件的定义并不仅限于实施方式中提到的各种具体结构或形状,本领域的普通技术人员可对其进行简单地熟知地替换。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种用于单孔手术器械的刚度可控关节蛇形机构,包括:
    弹性支撑架;
    能量交换装置,盘绕在所述弹性支撑架上;
    蛇形骨架,套在所述能量交换装置上;
    绝缘隔热套,套在所述蛇形骨架上;以及
    液态金属,填充在所述的弹性支撑架、能量交换装置和蛇形骨架之间的空隙;
    其中,该能量交换装置通过热能交换控制液态金属的相变,从而实现所述蛇形机构的刚态-柔态变换。
  2. 根据权利要求1所述的用于单孔手术器械的刚度可控关节蛇形机构,其中,在能量交换装置未向液态金属传导热量时,所述液态金属为固相,蛇形骨架为刚性状态;在能量交换装置向液态金属传导热量时,所述液态金属吸热变为液相,蛇形骨架为柔性状态,从而实现刚度可控。
  3. 根据权利要求1所述的用于单孔手术器械的刚度可控关节蛇形机构,其中,所述能量交换装置与外部能量控制源相连以通过传导的方式实现能量交换装置自身温度的变化。
  4. 根据权利要求1所述的用于单孔手术器械的刚度可控关节蛇形机构,其中,所述能量交换装置通过水热交换或电热交换方式实现自身温度的变化。
  5. 根据权利要求4所述的用于单孔手术器械的刚度可控关节蛇形机构,其中,所述的能量交换装置包括双螺旋能量交换管或双螺旋电阻丝。
  6. 根据权利要求1所述的用于单孔手术器械的刚度可控关节蛇形机构,其中,所述液态金属采用镓铟铋铜合金或镓铟合金。
  7. 根据权利要求1所述的用于单孔手术器械的刚度可控关节蛇形机构,其中,所述的弹性支撑架及蛇形骨架的材质为弹性橡胶或弹性有机聚合物。
  8. 根据权利要求1所述的用于单孔手术器械的刚度可控关节蛇形机构,其中,所述蛇形骨架包括多个单元关节,相邻的两个单元关节之间采 用转动副的方式连接。
  9. 根据权利要求1所述的用于单孔手术器械的刚度可控关节蛇形机构,其中,所述的蛇形骨架上设有丝孔道,在所述丝孔道中穿设有驱动丝,用于控制蛇形骨架的左右偏转自由度和上下偏转自由度。
  10. 一种刚度可控单孔手术器械,包括:钳头组件以及权利要求1至9中任一项所述的刚度可控关节蛇形机构;其中,所述钳头组件与所述刚度可控关节蛇形机构通过粘贴或紧配合方式连接。
  11. 一种单孔机器人,包括:内窥镜;以及一个或多个如权利要求10所述的刚度可控单孔手术器械。
PCT/CN2017/087260 2016-07-12 2017-06-06 刚度可控关节蛇形机构、单孔手术器械及单孔机器人 WO2018010503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610547241.7A CN106214190A (zh) 2016-07-12 2016-07-12 用于单孔手术器械的刚度可控关节蛇形机构
CN201610547241.7 2016-07-12

Publications (1)

Publication Number Publication Date
WO2018010503A1 true WO2018010503A1 (zh) 2018-01-18

Family

ID=57519623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087260 WO2018010503A1 (zh) 2016-07-12 2017-06-06 刚度可控关节蛇形机构、单孔手术器械及单孔机器人

Country Status (2)

Country Link
CN (1) CN106214190A (zh)
WO (1) WO2018010503A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113712666A (zh) * 2021-08-03 2021-11-30 复旦大学 一种柔性连续体手术机器人
EP3785642A4 (en) * 2018-04-24 2022-01-26 Tianjin University SPONGE-BASED SUPPORT STRUCTURE FOR NATURAL OPENING AND VARIABLE STIFFNESS SURGICAL INSTRUMENTS AND METHODS OF USE

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106214190A (zh) * 2016-07-12 2016-12-14 天津大学 用于单孔手术器械的刚度可控关节蛇形机构
CN106037935B (zh) * 2016-07-12 2018-09-25 天津大学 用于单孔手术器械的刚度可控工具机构
CN108524000B (zh) * 2017-03-06 2022-08-09 新加坡国立大学 外科手术操作臂及外科手术操作系统
CN107361727B (zh) * 2017-07-17 2019-06-04 天津大学 一种用于自然腔道手术的刚度可控器械及其应用方法
CN110269689B (zh) * 2018-03-14 2021-01-05 深圳市精锋医疗科技有限公司 连接组件、操作臂、从操作设备及手术机器人
CN110269692B (zh) * 2018-03-14 2021-01-05 深圳市精锋医疗科技有限公司 连接组件、操作臂、从操作设备及手术机器人
CN108814722B (zh) * 2018-04-20 2021-07-23 天津大学 变刚度自然腔道手术器械支撑结构及使用方法
CN109172130B (zh) * 2018-08-30 2023-06-13 上海西地众创空间管理有限公司 用于近视手术的医疗机器人
CN110584571B (zh) * 2019-10-21 2022-04-26 苏州中科先进技术研究院有限公司 一种双螺旋蛇骨和内窥镜
CN111603243B (zh) * 2020-06-30 2021-11-16 天津大学 微创手术机器人操作工具
CN112603394B (zh) * 2020-12-29 2022-03-22 极限人工智能有限公司 一种手术辅助器械
CN112890739B (zh) * 2021-02-26 2022-11-25 天津大学 一种医用内窥镜插入单元

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265320A (ja) * 1994-03-29 1995-10-17 Olympus Optical Co Ltd 生体内処置具
CN104490477A (zh) * 2014-12-29 2015-04-08 天津大学 一种用于腹腔镜手术的多自由度单孔手术机器人
CN104825229A (zh) * 2015-04-15 2015-08-12 上海交通大学 变刚度内镜手术器械外护套
CN105286999A (zh) * 2015-10-15 2016-02-03 天津大学 具有末端自转功能的微创手术器械
CN105286989A (zh) * 2015-10-15 2016-02-03 天津大学 一种微创手术机器人用双极能量工具
CN106214190A (zh) * 2016-07-12 2016-12-14 天津大学 用于单孔手术器械的刚度可控关节蛇形机构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060287584A1 (en) * 2005-06-16 2006-12-21 Javier Garcia-Bengochia Surgical retractor extensions
CN1810214A (zh) * 2005-12-16 2006-08-02 哈尔滨工业大学 用于血管介入式手术的形状记忆合金驱动的导向微型装置
US8517933B2 (en) * 2006-06-13 2013-08-27 Intuitive Surgical Operations, Inc. Retraction of tissue for single port entry, robotically assisted medical procedures
WO2010042611A1 (en) * 2008-10-07 2010-04-15 The Trustees Of Columbia University In The City Of New York Systems, devices, and method for providing insertable robotic sensory and manipulation platforms for single port surgery
CN102462517B (zh) * 2010-11-17 2014-01-29 康健生医科技股份有限公司 使用于腹腔镜手术的套管装置
CN102990676A (zh) * 2012-11-23 2013-03-27 中国航空工业集团公司北京航空制造工程研究所 一种蛇形机械臂
CN104887313A (zh) * 2015-04-07 2015-09-09 哈尔滨工业大学 单孔腹腔微创手术的多自由度柔性机器人用柔性臂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265320A (ja) * 1994-03-29 1995-10-17 Olympus Optical Co Ltd 生体内処置具
CN104490477A (zh) * 2014-12-29 2015-04-08 天津大学 一种用于腹腔镜手术的多自由度单孔手术机器人
CN104825229A (zh) * 2015-04-15 2015-08-12 上海交通大学 变刚度内镜手术器械外护套
CN105286999A (zh) * 2015-10-15 2016-02-03 天津大学 具有末端自转功能的微创手术器械
CN105286989A (zh) * 2015-10-15 2016-02-03 天津大学 一种微创手术机器人用双极能量工具
CN106214190A (zh) * 2016-07-12 2016-12-14 天津大学 用于单孔手术器械的刚度可控关节蛇形机构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3785642A4 (en) * 2018-04-24 2022-01-26 Tianjin University SPONGE-BASED SUPPORT STRUCTURE FOR NATURAL OPENING AND VARIABLE STIFFNESS SURGICAL INSTRUMENTS AND METHODS OF USE
CN113712666A (zh) * 2021-08-03 2021-11-30 复旦大学 一种柔性连续体手术机器人
CN113712666B (zh) * 2021-08-03 2023-10-27 复旦大学 一种柔性连续体手术机器人

Also Published As

Publication number Publication date
CN106214190A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
WO2018010503A1 (zh) 刚度可控关节蛇形机构、单孔手术器械及单孔机器人
CN106037935B (zh) 用于单孔手术器械的刚度可控工具机构
US11730927B2 (en) Base station, charging station, and/or server for robotic catheter systems and other uses, and improved articulated devices and systems
JP6290822B2 (ja) バイオセンシング及び外科的処置のための能動的カニューレ
Degani et al. Highly articulated robotic probe for minimally invasive surgery
JP4808964B2 (ja) 低侵襲的に虚血性僧帽弁閉鎖不全症を修復するための心臓デバイスおよび方法
US9259261B2 (en) Ablation catheter having temperature-controlled anchor and related methods
Degani et al. Percutaneous intrapericardial interventions using a highly articulated robotic probe
US20100069953A1 (en) Method of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument
US20090143639A1 (en) Trans-douglas endoscopical surgical device (ted) and methods thereof
JP2013516291A (ja) 改良カテーテル
CN108888347B (zh) 介入机器人力反馈型主操作手
US20130231682A1 (en) Instrument for a manipulator arm of an endoscopic robot
CN104146740B (zh) 肝门阻断装置
CN108742825A (zh) 用于微创复合治疗的设备及其多功能手术针组
CN103431888B (zh) 一种推进式膀胱憩室结石的取石装置
CN209392091U (zh) 射频加热探针装置及射频消融设备
CN104688329B (zh) 形状记忆合金驱动的微创手术腕式末端执行机构
CN202665691U (zh) 医用可控滴水电凝镊子
CN201426732Y (zh) B超探头支撑架
CN209360881U (zh) 用于微创复合治疗的设备及其多功能手术针组
CN207870952U (zh) 分体连接冷冻消融针及其针头组件和针尾组件
CN206007305U (zh) 胸腔镜下食管癌手术荷包钳
CN217338696U (zh) 一种消化内镜下微创手术的血管钳
CN203816063U (zh) 脑室腹腔分流术中头皮下软组织间隙扩张器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826842

Country of ref document: EP

Kind code of ref document: A1