WO2018010443A1 - 介质透镜以及劈裂天线 - Google Patents

介质透镜以及劈裂天线 Download PDF

Info

Publication number
WO2018010443A1
WO2018010443A1 PCT/CN2017/075958 CN2017075958W WO2018010443A1 WO 2018010443 A1 WO2018010443 A1 WO 2018010443A1 CN 2017075958 W CN2017075958 W CN 2017075958W WO 2018010443 A1 WO2018010443 A1 WO 2018010443A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
polygon
represented
ellipse
polyhedron
Prior art date
Application number
PCT/CN2017/075958
Other languages
English (en)
French (fr)
Inventor
胡邦红
黎良元
戴作杏
李磊
章园红
张润孝
张跃江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17826782.9A priority Critical patent/EP3471202B1/en
Publication of WO2018010443A1 publication Critical patent/WO2018010443A1/zh
Priority to US16/245,676 priority patent/US11139583B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials

Definitions

  • Embodiments of the present application relate to the field of communications, and, more particularly, to a dielectric lens and a split antenna.
  • the traditional antenna used in the communications industry is usually composed of three main components: (1) radome; (2) feed network, reflector and vibrator array; (3) enclosure and module (with source). With the rapid increase in the number of users, the current network is facing the problem of tight system capacity.
  • Splitting antenna technology is committed to improving the system capacity of mobile communication systems and improving the communication quality of the system. It is a technical solution with good application prospects.
  • One possible solution is to provide an electromagnetic lens in the split antenna to increase the system capacity. How to design an electromagnetic lens becomes a technical bottleneck.
  • Embodiments of the present application provide a dielectric lens that can be used to split a antenna to improve system capacity of a communication system.
  • a dielectric lens is provided, the dielectric lens being a lenticular lens, the lenticular lens having a cross-sectional profile of a quasi-ellipse, the lenticular lens being stacked by a plurality of unit cells, the plurality of columnar units a dielectric constant distribution in the dielectric lens such that a non-planar wave along a minor axis direction of the quasi-ellipse becomes a plane wave through the lens; wherein a length of each of the columnar unit bodies is equal to that of the lenticular lens length.
  • the cross section of the dielectric lens in the embodiment of the present application is a quasi-ellipse, and the non-planar wave from the short-axis direction of the quasi-ellipse is changed into a plane wave through the dielectric lens.
  • the system capacity of the communication system can be improved.
  • the long axis direction of the quasi-ellipse is along the width direction of the antenna
  • the short axis direction of the quasi-ellipse is along the thickness direction of the antenna. Since the short axis of the quasi-ellipse is smaller than the long axis, the application is applied to the dielectric lens.
  • the increased size in the thickness direction of the split antenna can satisfy the size requirement of the split antenna.
  • the increased size in the direction of the thickness and width of the antenna is substantially uniform.
  • the dielectric lens in the embodiment of the present application since the short axis of the quasi-ellipse is smaller than the long axis, the thickness of the antenna can be greatly reduced in the case of ensuring the performance of the antenna. That is to say, the dielectric lens in the embodiment of the present application can make the antenna greatly reduced in the thickness direction compared to the prior art Longber lens.
  • the dielectric constant distribution therein is based on Fermat's principle and Snell's law numerical fit.
  • the length of the dielectric lens is expressed as L, and 100 mm ⁇ L ⁇ 3500 mm.
  • the long axis of the quasi-ellipse of the cross section of the dielectric lens is represented by Da, and the short axis represents It is Db, and 1 mm ⁇ Db ⁇ Da ⁇ 450 mm.
  • connection between the plurality of columnar unit bodies is any one of the following: Soldering, gluing, structural snapping, print connection by 3D printing technology.
  • the preparation process of the plurality of columnar unit bodies is any one of the following: extrusion, injection molding, molding, computer numerical control (CNC) processing, and 3D printing process technology.
  • the unit body is a solid body.
  • the cross section of the unit body is a first polygon.
  • the first polygon may be a regular polygon.
  • the first polygon is an inscribed polygon of the first circle, and the diameter of the first circle is represented as D1, wherein 1 mm ⁇ D1 ⁇ 450 mm.
  • the first polygon is an inscribed polygon of the first ellipse
  • the long axis of the first ellipse is represented as D1a
  • the short axis is represented as D1b, wherein 1mm ⁇ D1b ⁇ D1a ⁇ 450mm.
  • the unit body has a cross section of a fourth circle or a fourth ellipse, and a diameter of the fourth circle Expressed as D4, the long axis of the fourth ellipse is represented as D4a, and the short axis is represented as D4b, where 1 mm ⁇ D4 ⁇ 450 mm, and 1 mm ⁇ D4b ⁇ D4a ⁇ 450 mm.
  • each of the unit bodies is a hollow body.
  • the outer contour of the cross section of the unit body is a second polygon
  • the inner contour is a third polygon
  • the number of sides of the second polygon is equal to or different from the number of sides of the third polygon.
  • the second polygon is a regular polygon
  • the third polygon is a regular polygon
  • the second polygon is an inscribed polygon of a second circle
  • the third polygon is an inscribed polygon of a third circle
  • a diameter of the second circle is represented as D2
  • the first The diameter of the three circles is expressed as D3, where 1 mm ⁇ D3 ⁇ D2 ⁇ 450 mm.
  • the second polygon is an inscribed polygon of a second ellipse
  • the third polygon is an inscribed polygon of a third ellipse
  • a long axis of the second ellipse is represented as D2a
  • the long axis of the third ellipse is represented as D3a
  • the short axis is represented as D3b, where 1 mm ⁇ D3a ⁇ D2a ⁇ 450 mm, 1 mm ⁇ D3b ⁇ D2b ⁇ 450 mm, and D2a > D2b
  • D3a > D3b.
  • the outer contour of the cross section of the unit body is a fifth ellipse
  • the inner contour is a sixth ellipse.
  • the long axis of the fifth ellipse is represented as D5a
  • the short axis is represented as D5b
  • the long axis of the sixth ellipse is represented as D6a
  • the short axis is represented as D6b, where 1 mm ⁇ D6a ⁇ D5a ⁇ 450 mm, 1 mm ⁇ D6b ⁇ D5b ⁇ 450 mm, and D5a>D5b; D6a>D6b.
  • a dielectric lens is provided, wherein the dielectric lens is a quasi-ellipsoidal lens, and a maximum cross section of the quasi-ellipsoidal lens is a quasi-ellipse, and the quasi-ellipsoidal lens is closely packed by a plurality of unit bodies. a dielectric constant distribution of the plurality of unit bodies in the dielectric lens such that non-planar waves along a minor axis direction of the quasi-ellipse become plane waves through the lens; wherein each unit body is a solid body or a hollow body .
  • the dielectric lens in the embodiment of the present application is a quasi-ellipsoidal lens, and the largest cross section is a quasi-ellipse, and the non-planar wave from the short-axis direction of the quasi-ellipse is changed into a plane wave through the dielectric lens.
  • the system capacity of the communication system can be improved.
  • the long axis direction of the quasi-ellipse is used as the width direction of the antenna, and the short axis direction of the quasi-ellipse is used as the thickness direction of the antenna.
  • the dielectric lens is applied to the lens.
  • the increased size in the thickness direction of the split antenna can satisfy the size requirement of the split antenna.
  • reach ⁇ Split antennas reduce the thickness of the lens.
  • connection between the plurality of unit bodies is any one of the following: soldering, bonding, structural snapping, and printing by 3D printing technology connection.
  • the preparation process of the plurality of unit bodies is any one of the following: extrusion, injection molding, molding, CNC processing, and 3D printing process technology.
  • the unit body is a solid first polyhedron.
  • the first polyhedron is a regular polyhedron.
  • the first polyhedron is a regular tetrahedron or a regular octahedron.
  • the first polyhedron is an inscribed polyhedron of the first ball, and the diameter of the first ball is represented by d1, wherein 1 mm ⁇ d1 ⁇ 450 mm.
  • the first polyhedron is an inscribed polyhedron of a first spheroid
  • the long axis of the first spheroid is represented by d1a
  • the short axis is represented by d1b, wherein 1mm ⁇ d1b ⁇ d1a ⁇ 450mm.
  • the unit body is a hollow body, and the outer contour of the unit body is the second largest
  • the plane body has a third polyhedron inside.
  • the second polyhedron is a regular polyhedron
  • the third polyhedron is a regular polyhedron
  • the number of faces of the second polyhedron and the number of faces of the third polyhedron may be equal or unequal.
  • the second polyhedron is an inscribed polyhedron of the second ball
  • the third polyhedron is an inscribed polyhedron of the third ball
  • the diameter of the second ball is represented by d2
  • the first The diameter of the three balls is expressed as d3, where 1 mm ⁇ d3 ⁇ d2 ⁇ 450 mm.
  • the second polyhedron is an inscribed polyhedron of a second spheroid
  • the third polyhedron is an inscribed polyhedron of a third spheroid
  • the long axis of the second spheroid Expressed as d2a
  • the short axis is represented as d2b
  • the long axis of the third spheroid is represented as d3a
  • the short axis is represented as d3b, where 1mm ⁇ d3a ⁇ d2a ⁇ 450mm, 1mm ⁇ d3b ⁇ d2b ⁇ 450mm, and d2a >d2b;d3a>d3b.
  • the unit body is a solid body, and the unit body is a fourth ball or a fourth Rotating an ellipsoid, the diameter of the fourth ball is represented as d4, the long axis of the fourth spheroid is represented as d4a, and the short axis is represented as d4b, wherein 1 mm ⁇ d4 ⁇ 100 mm, 1 mm ⁇ d4b ⁇ d4a ⁇ 450 mm .
  • the unit body is a hollow body, and the outer contour of the unit body is a fifth rotation An ellipsoid, the inner contour is a sixth spheroid; the long axis of the fifth ellipsoid is represented as d5a, the short axis is represented as d5b, the long axis of the sixth ellipsoid is represented as d6a, and the short axis is represented as D6b, wherein 1 mm ⁇ d6a ⁇ d5a ⁇ 450 mm, 1 mm ⁇ d6b ⁇ d5b ⁇ 450 mm, and d5a > d5b; d6a > d6b.
  • a split antenna including: a radome, a dielectric lens, a reflector, and an array of vibrators;
  • the dielectric lens is disposed between the radome and the array of vibrators, and the array of vibrators serves as a feed for the dielectric lens.
  • the array of vibrators is disposed between the dielectric lens and the reflector, and a feeding network required for the array of vibrators is placed on the back of the reflector or integrated with the reflector.
  • the dielectric lens has a first size along a thickness direction of the split antenna, the dielectric lens has a second size along a width direction of the split antenna, and the first size is smaller than the first size Two sizes.
  • the dielectric lens is the first aspect or the A dielectric lens in any one of the possible implementations of the invention, or the dielectric lens is the dielectric lens of any of the foregoing possible implementations of the second aspect or the second aspect.
  • Figure 1 is a schematic illustration of a conventional antenna.
  • FIG. 2 is a schematic view of a splitting antenna using a Longber lens.
  • Figure 3 is a schematic illustration of the dielectric constant distribution of the Lombor lens of Figure 2.
  • FIG. 4 is another schematic view of a split antenna using a Longber lens.
  • Figure 5 is a schematic diagram of a Longber lens converting a non-planar wave into a plane wave.
  • FIG. 6 is a schematic diagram of the principle of the dielectric lens of the embodiment of the present application.
  • Fig. 7 is a schematic view showing the geometric relationship of the electromagnetic radiation transmission path of the elliptical lens in cross section.
  • Figure 8 is a schematic illustration of a dielectric lens of one embodiment of the present application.
  • FIG. 9 is a schematic view showing a cross section of a unit body of a lenticular lens according to an embodiment of the present application.
  • Fig. 10 is a schematic view showing a cross section of a unit body of a lenticular lens according to another embodiment of the present application.
  • Figure 11 is a schematic view showing a cross section of a unit body of a lenticular lens according to still another embodiment of the present application.
  • Fig. 12 is a schematic view showing a cross section of a unit body of a lenticular lens according to still another embodiment of the present application.
  • Fig. 13 is a schematic view showing a cross section of a unit body of a lenticular lens according to still another embodiment of the present application.
  • Fig. 14 is a schematic view showing a cross section of a unit body of a lenticular lens according to still another embodiment of the present application.
  • Fig. 15 is a schematic view showing a cross-sectional dielectric constant distribution of a lenticular lens according to still another embodiment of the present application.
  • Figure 16 is a schematic illustration of a dielectric lens of another embodiment of the present application.
  • Figure 17 is a schematic view showing the formation of a spheroidal lens according to an embodiment of the present application.
  • FIG 1 is a schematic illustration of a conventional antenna.
  • the conventional antenna in Fig. 1 includes: (1) a radome; (2) a feed network, a reflector and an array of vibrators; (3) a frame and a module (active).
  • the dimensions of the antenna are also shown in Figure 1, which are width (W), thickness (H) and length (L).
  • the design method of the split antenna is mainly to feed the multi-column antenna by using a Butler matrix, and form multiple beams in the horizontal direction, which can solve the problem of resource limitation.
  • the horizontal direction here is the width direction of the antenna.
  • the more beams that require splitting the more antenna counts are required, resulting in a wide antenna width.
  • the width is too wide (for example, greater than 450 mm), which may cause difficulties in actual installation and layout.
  • the width of the antenna is reduced, as shown in FIG. 2, in the (1) radome and (2) feed network, reflection shown in FIG.
  • An electromagnetic lens the "Longbo lens”
  • the non-planar waves respectively emitted by the plurality of feeds can be converted into plane waves by using the change in the relative dielectric constant of the lens material, thereby forming a plurality of beams. It can be seen that the use of an electromagnetic lens can form a plurality of beams in the horizontal direction without increasing the width of the antenna.
  • the cylindrical lens described in Fig. 2 is a Longbo lens.
  • FIG. 3 it is a schematic diagram of the cross-sectional dielectric constant distribution of the cylindrical lens in FIG. 2, in which different gradations represent different dielectric constants, and the same color or gradation represents a dielectric constant value.
  • this circular cross-section of the Lombor lens can achieve good multi-beam performance.
  • the width of this antenna can be within 450mm.
  • the cylindrical lens has a circular cross section, the use of the cylindrical lens tends to increase the thickness of the split antenna.
  • the cylindrical lens plus the feed system makes the thickness of the antenna very thick, and the thickness is usually greater than 400 mm.
  • such an electromagnetic lens is also designed to be spherical, and the spherical lens can be placed inside a spherical radome, as shown in Fig. 4.
  • the spherical lens material is composed of several layers of concentric spherical shell materials having different dielectric constants, each layer having the same dielectric constant, but the antenna using the spherical lens is large, and the diameter of the currently known spherical lens is larger than or Equal to 800mm.
  • the current scheme relies on a circular cross-section of the Longbo lens, which can convert a non-planar wave radiated by the feed into a plane wave, that is, a plurality of radiation beams can be formed by irradiation of a plurality of columns of feeds.
  • a schematic diagram of this principle is shown in Figure 5.
  • the current solution has the disadvantage that the antenna profile is high and the material satisfying a certain dielectric constant distribution is difficult to manufacture.
  • the Longbo lens adopts a cylindrical shape, the width can be effectively reduced in the width dimension when the multi-crack beam is realized, but in terms of thickness, there are a radome, a lens, a feed, a reflector, and a feed network.
  • the rear cover and the like greatly increase the thickness of the antenna as a whole, and it is difficult for the customer to accept under certain circumstances.
  • the lens material of the prior art adopts the method of doping metal particles in the polymer, so that the spatial distribution of the dielectric constant of the material satisfies the requirements of the lens, and the method is formed by one-time foaming according to a certain ratio of the polymer and the metal particles. The accuracy of the dielectric constant distribution is difficult to control. When changing the dielectric constant distribution of the lens, it is necessary to re-compare the material for fabrication.
  • the high-gain splitting multi-sector is a key solution for the W3 market Universal Mobile Telecommunication System (UMTS)/Long Term Evolution (LTE), and is also an important direction for building enterprise antenna competitiveness;
  • UMTS Universal Mobile Telecommunication System
  • LTE Long Term Evolution
  • the site capacity is an important issue that lays the foundation for the development of wireless air separation technology.
  • the lightweight and miniaturization of the antenna design is an urgent problem to be solved.
  • the embodiment of the present application is directed to a multi-cleft lens antenna, and a dielectric lens is proposed.
  • the dielectric lens can be used as an electromagnetic lens applied to a splitting antenna.
  • the dielectric lens has an elliptical cross section, and can achieve the same performance as the circular cross-sectional lens. As shown in FIG. 6, the dielectric lens can cause a non-planar wave emitted from a feed along a short-axis direction of the ellipse to become a plane wave through the dielectric lens. .
  • Figure 7 is a schematic diagram showing the geometric relationship of the elliptical lens cross-section electromagnetic ray transmission path.
  • the lens section is an ellipse.
  • the long axis of the ellipse is 2a
  • the short axis is 2b
  • the refractive index distribution of the lens material is n(x, y).
  • the center of the feed phase is located at the focal position F of the lens.
  • the AB plane must be an isophase, that is, the electric length of each ray FP 1 P 2 Q from point F. Satisfy the equation
  • the long axis direction of the ellipse is along the width direction of the antenna
  • the short axis direction of the ellipse is along the thickness direction of the antenna. Since the short axis of the ellipse is smaller than the long axis, The antenna satisfies the width requirement while satisfying the width requirement, and realizes the weight reduction and miniaturization of the split antenna.
  • the dielectric lens will be described in detail below.
  • the dielectric lens of the embodiment of the present application may be a lenticular lens or an ellipsoidal lens, and can be applied to an antenna of a corresponding shape. It can be understood that the dielectric lens can also be other shapes, such as a circular-like lens, etc., which are not listed here.
  • Figure 8 is a schematic illustration of a dielectric lens of one embodiment of the present application.
  • the dielectric lens shown in Fig. 8 is a lenticular lens having a cross-sectional profile of a quasi-ellipse.
  • the quasi-elliptic is an approximate ellipse, which may also be called an approximate ellipse or a pseudo ellipse or an ellipse or an ellipse.
  • the length of the lenticular lens can be expressed as L, and it is understood that the cross section refers to a cross section perpendicular to the longitudinal direction.
  • the lenticular lens may have two end faces, which are a first end face and a second end face, respectively.
  • the first end surface and the second end surface are both planar, and the first end surface is parallel to the second end surface.
  • first end surface and the second end surface are the outermost two surfaces perpendicular to the longitudinal direction of the lenticular lens.
  • the cross section may be any surface parallel to the first end surface (or the second end surface), for example, the cross section may be the first end surface (or the second end surface).
  • the lenticular lens is composed of a plurality of columnar unit bodies, and a dielectric constant distribution of the plurality of columnar unit bodies in the dielectric lens is such that a non-planar wave along a short axis direction of the quasi-ellipse is changed by the lens It is a plane wave; wherein the length of each of the columnar unit bodies is equal to the length of the lenticular lens.
  • the lenticular lens is formed by a plurality of columnar unit bodies laterally closely packed.
  • the dielectric constant distribution may be based on Fermat's principle and Snell's law numerical fit.
  • each columnar unit body can also be expressed as L.
  • 100 mm ⁇ L ⁇ 3500 mm 100 mm ⁇ L ⁇ 3500 mm.
  • the value of L may be any value between 100 mm and 3500 mm, which is not limited in this application.
  • the columnar unit body may have two mutually parallel end faces, and the two mutually parallel end faces may be located at the first end face and the second end face, respectively.
  • connection manner between the plurality of columnar unit bodies is at least one of the following: soldering, gluing, structural snapping, and printing connection by 3D printing technology.
  • the welding may be ultrasonic welding or diffusion welding, or may be other forms of welding, which is not limited in this application.
  • connection manner between the plurality of columnar unit bodies in the same lenticular lens may be the same or different.
  • some of the columnar unit bodies are connected by welding, and some of the columnar unit bodies are connected by gluing.
  • some of the columnar unit bodies are connected by ultrasonic welding, and some of the columnar unit bodies are connected by diffusion welding.
  • each columnar unit body has two end faces, which are denoted as end face A and end face B. Then, the end faces A of each of the columnar unit bodies are aligned with each other, and the end faces B of each of the columnar unit bodies are aligned with each other.
  • the cross section of the lenticular lens is an ellipse, and the ellipse of the class here includes an ellipse. That is, the cross section of the lenticular lens may be an ellipse.
  • the length of the lenticular lens can be expressed as L
  • the long axis of the ellipse can be represented as Da
  • the short axis can be represented as Db.
  • Da and Db satisfy Db ⁇ Da
  • the values of Da and Db may each be any value between 1 mm and 450 mm, which is not limited in this application.
  • the embodiment of the present application does not limit the ratio between Da and Db.
  • the unit body may be a solid body or a hollow body. It can be understood that the plurality of columnar unit bodies constituting the dielectric lens may all be solid bodies, or may be entirely hollow bodies, or may be partially hollow bodies.
  • the unit body may be a solid body, and the unit body may have a first polygon in cross section.
  • the first polygon may be a regular polygon, or the first polygon may be a non-normal polygon.
  • the plurality of columnar unit bodies constituting the dielectric lens may all be solid bodies.
  • the cross sections of the plurality of columnar units ie, the first polygon
  • the cross sections of the plurality of columnar cells may all be non-normal polygons.
  • a part of the plurality of columnar cells has a regular polygonal cross section, and a partial cell body has a non-normal polygon. This application is not limited thereto.
  • the first polygon may be a polygon having a first circumscribed circle, that is, the first polygon may be an inscribed polygon of the first circle.
  • the diameter of the first circle can be expressed as D1, and 1 mm ⁇ D1 ⁇ 450 mm. It should be noted that the size of D1 may also be other values, which are not limited herein. Generally, it should be satisfied that: D1 ⁇ Db ⁇ Da.
  • 1 mm ⁇ D1 ⁇ 450 mm means that the value of D1 may be any value between 1 mm and 450 mm, which is not limited in this application.
  • the first polygon shown in FIG. 9 is a regular hexagon.
  • the first polygon is a regular polygon, and the number of sides of the first polygon is greater than a preset first threshold, the first polygon may be approximated as a circle.
  • the approximate circle is a circumcircle of the first polygon, that is, a first circle. That is to say, the unit body may have a circular cross section.
  • the first threshold can be equal to 12 or 20.
  • the first polygon may be a polygon having a first circumscribed ellipse, that is, the first polygon may be an inscribed polygon of the first ellipse.
  • the long axis of the first ellipse is represented as D1a
  • the short axis is represented as D1b
  • 1 mm ⁇ D1b ⁇ D1a ⁇ 450 mm is represented as D1a
  • the sizes of D1a and D1b may also be other values, which are not limited herein. Generally, it should be satisfied that: D1b ⁇ Db, and D1a ⁇ Da.
  • D1a and D1b satisfy D1b ⁇ D1a, and the values of D1a and D1b may each be any value between 1 mm and 450 mm, which is not limited in this application.
  • the first polygon shown in FIG. 10 is a hexagon, and the first polygon shown in FIG. 10 is a non-normal polygon.
  • the first polygon is a polygon having a first axis of symmetry and a second axis of symmetry, and the first axis of symmetry is the major axis of the first ellipse and the second axis of symmetry is the minor axis of the first ellipse
  • the first polygon may be approximated as an ellipse.
  • the approximate ellipse is the circumscribed ellipse of the first polygon, that is, the first ellipse. That is, the cross section of the unit body may be an ellipse.
  • the second threshold can be equal to 12 or 20.
  • the unit body may be a solid body having a cross section of a first circle or a first ellipse.
  • the diameter of the first circle is expressed as D1, and 1 mm ⁇ D1 ⁇ 450 mm.
  • the long axis of the first ellipse is represented as D1a
  • the short axis is represented as D1b
  • D4a and D4b satisfy D4b ⁇ D4a, and the values of D4a and D4b may be any value between 1 mm and 450 mm, which is not limited in this application.
  • D1b ⁇ Db, and D1a ⁇ Da it should be satisfied that: D1b ⁇ Db, and D1a ⁇ Da.
  • the unit body may be a hollow body having a cross-sectional outer contour of a second polygon and an inner contour of a third polygon.
  • the number of sides of the second polygon and the third polygon may be equal or unequal.
  • the second polygon may be a regular polygon, or the second polygon may be a non-normal polygon.
  • the third polygon may be a regular polygon, or the third polygon is a non-normal polygon
  • the second polygon is a regular polygon
  • the third polygon is a regular polygon, wherein the second polygon is equal or unequal to the third polygon, and the second polygon is The shape and the third polygon may have the same or different axes of symmetry.
  • the second polygon is a regular polygon
  • the third polygon is a non-normal polygon, wherein the second polygon is equal or unequal to the number of sides of the third polygon.
  • the second polygon is a non-normal polygon
  • the third polygon is a regular polygon, wherein the second polygon is equal or unequal to the number of sides of the third polygon.
  • the second polygon non-normal polygon third polygon is a non-normal polygon, wherein the second polygon is equal or unequal to the third polygon.
  • the second polygon may be an inscribed polygon of the second circle or the second ellipse
  • the third polygon may be an inscribed polygon of the third circle or the third ellipse
  • the second polygon may be a polygon having a second circumscribed circle, that is, the second polygon may be an inscribed polygon of the second circle.
  • the third polygon may be a polygon having a third circumscribed circle, that is, the third polygon may be an inscribed polygon of the third circle.
  • the second circle and the third circle may be concentric circles, or may not be concentric circles.
  • the diameter of the second circle may be represented as D2
  • the diameter of the third circle may be represented as D3, and 1 mm ⁇ D3 ⁇ D2 ⁇ 450 mm.
  • the sizes of D2 and D3 may also be other values, which are not limited herein. Generally, it should be satisfied that: D3 ⁇ D2 ⁇ Db ⁇ Da.
  • D3 and D2 satisfy D3 ⁇ D2, and the values of D3 and D2 may be any value between 1 mm and 450 mm, which is not limited in this application.
  • the second polygon shown in Fig. 11 is a regular octagon
  • the third polygon is a regular octagon
  • the number of sides of the second polygon and the third polygon are equal, and the respective sides of the second polygon and the corresponding sides of the third polygon are parallel to each other, 11 should not be regarded as a limitation on the positions of the second polygon and the third polygon.
  • the third polygon in FIG. 11 can be rotated by an arbitrary angle, such as 10° or 20°, and still belongs to the present. The scope of protection of the application examples.
  • the second polygon shown in FIG. 12 is a regular octagon, and the third polygon is a regular hexagon. It can be seen that in FIG. 12, the number of sides of the second polygon and the third polygon are not equal.
  • the second polygon and the third polygon are both regular polygons, and the number of sides of the second polygon and the third polygon are greater than a preset number
  • the three thresholds can approximate both the second polygon and the third polygon to a circle.
  • the number of sides of the second polygon and the number of sides of the third polygon may be equal or unequal.
  • the second polygon is approximately a second circle
  • the third polygon is approximately a third circle. That is, the cross section of the unit body Can be circular.
  • the third threshold can be equal to 12 or 20.
  • the second polygon may be a polygon having a second circumscribed ellipse, that is, the second polygon may be an inscribed polygon of the second ellipse.
  • the third polygon may be a polygon having a third circumscribed ellipse, that is, the third polygon may be an inscribed polygon of the third ellipse.
  • the long axis of the second ellipse is represented as D2a
  • the short axis is represented as D2b
  • the long axis of the third ellipse is denoted as D3a
  • the short axis is denoted as D3b.
  • the sizes of D2a, D2b, D3a, and D3b may also be other values, which are not limited herein. Generally, it should be satisfied that: D3b ⁇ D2b ⁇ Db, and D3a ⁇ D2a ⁇ Da.
  • D2a, D2b, D3a, D3b satisfy D3a ⁇ D2a, D3b ⁇ D2b, D2a>D2b, and D3a>D3b, and the values of D2a, D2b, D3a, and D3b may be any value between 1 mm and 450 mm.
  • This application is not limited thereto.
  • D2a 180 mm
  • D2b 100 mm
  • D3a 80 mm
  • D3b 40 mm, and the like.
  • the second polygon and the third polygon shown in FIG. 13 are both hexagonal.
  • the number of sides of the second polygon and the third polygon may also be unequal. It is not listed here one by one.
  • the long-axis direction of the second ellipse shown in FIG. 13 coincides with the long-axis direction of the third ellipse, FIG. 13 should not be considered as a limitation of the case.
  • the long axis direction of the second ellipse and the long axis direction of the third ellipse may have a certain angle therebetween, which is not limited in this application.
  • the second polygon and the third polygon both have the first axis of symmetry and the second A polygon of the axis of symmetry, and the first axis of symmetry is the major axis of the second ellipse (or the third ellipse) and the second axis of symmetry is the minor axis of the second ellipse (or third ellipse).
  • the second polygon may be approximated as a second ellipse
  • the third polygon is approximated as The third ellipse. That is to say, the cross section of the unit body may be an elliptical ring.
  • the fourth threshold can be equal to 12 or 20.
  • the second polygon may be a polygon having a second circumscribed ellipse, that is, the second polygon may be an inscribed polygon of the second ellipse.
  • the third polygon may be a polygon having a third circumscribed circle, that is, the third polygon may be an inscribed polygon of the third circle.
  • the long axis of the second ellipse is represented as D2a
  • the short axis is represented as D2b
  • the diameter of the third circle is expressed as D3. 1 mm ⁇ D3 ⁇ D2b ⁇ D2a ⁇ 450 mm. It should be noted that the sizes of D3, D2a, and D2b may also be other values, which are not limited herein. Generally, it should be satisfied that: D3 ⁇ D2b ⁇ Db, and D2a ⁇ Da.
  • D2a, D2b, and D3 satisfy D3 ⁇ D2b ⁇ D2a, and the values of D2a, D2b, and D3 may be any value between 1 mm and 450 mm, which is not limited in this application.
  • D2a 180 mm
  • D2b 100 mm
  • D3 80 mm, and the like.
  • the second polygon shown in Fig. 14 is a hexagon having a circumscribed ellipse
  • the third polygon is a regular hexagon having a circumscribed circle.
  • the second polygon may be a polygon having a second circumscribed circle, that is, the second polygon may be an inscribed polygon of the second circle.
  • the third polygon may be a polygon having a third circumscribed ellipse, that is, the third polygon may be an inscribed polygon of the third ellipse.
  • the diameter of the second circle is represented as D2
  • the long axis of the third ellipse is represented as D3a
  • the short axis is represented as D3b. 1 mm ⁇ D3b ⁇ D3a ⁇ D2 ⁇ 450 mm. It should be noted that the sizes of D2, D3a, and D3b may also be other values, which are not limited herein. Generally, it should be satisfied that: D2 ⁇ Db.
  • D2, D3a, and D3b satisfy D3b ⁇ D3a ⁇ D2, and the values of D2, D3a, and D3b may be any value between 1 mm and 450 mm, which is not limited in this application.
  • D2 150 mm
  • D3a 100 mm
  • D3b 80 mm, and the like.
  • the unit body may be a hollow body
  • the outer wall contour of the cross section of the unit body is a fifth circle or a fifth ellipse
  • the inner wall contour is a sixth circle or a sixth ellipse.
  • the diameter of the fifth circle is represented as D5
  • the diameter of the sixth circle is represented as D6
  • the long axis of the fifth ellipse is represented as D5a
  • the short axis is represented as D5b
  • the long axis of the sixth ellipse is represented by
  • D6a the short axis is represented as D6b, where 1 mm ⁇ D6 ⁇ D5 ⁇ 450 mm, 1 mm ⁇ D6a ⁇ D5a ⁇ 450 mm, 1 mm ⁇ D6b ⁇ D5b ⁇ 450 mm, and D5a > D5b; D6a > D6b.
  • the outer wall contour is a fifth circle and the inner wall contour is a sixth circle.
  • D6 ⁇ D5 ⁇ Db ⁇ Da.
  • the outer wall contour is a fifth circle and the inner wall contour is a sixth ellipse.
  • D6b D6a ⁇ D5 ⁇ Db ⁇ Da.
  • the outer wall contour is a fifth ellipse and the inner wall contour is a sixth circle.
  • the outer wall contour is a fifth ellipse and the inner wall contour is a sixth ellipse.
  • D1, D2, D3, D4, D5, D6, D1b, D1a, D2b, D2a, D3b, D3a, D4b, D4a, D5b, D5a, D6b The range of values of D6a, but the scope of the application is not limited.
  • the respective ranges may also be: 1 mm ⁇ D1 ⁇ 200 mm, 1 mm ⁇ D3 ⁇ D2 ⁇ 200 mm, 1 mm ⁇ D4 ⁇ 200 mm, 1 mm ⁇ D6 ⁇ D5 ⁇ 200 mm, 10 mm ⁇ D1b ⁇ D1a ⁇ 100 mm, 1 mm ⁇ D3a ⁇ D2a ⁇ 200 mm, 1 mm ⁇ D3b ⁇ D2b ⁇ 200 mm, 10 mm ⁇ D4b ⁇ D4a ⁇ 100 mm, 1 mm ⁇ D6a ⁇ D5a ⁇ 200 mm, 1 mm ⁇ D6b ⁇ D5b ⁇ 200 mm, and the like.
  • each value can be any value within its range, and is not listed here.
  • the cross section of the unit body may also be other irregular shaped polygons.
  • the unit body may have a fourth polygon in cross section, and the fourth polygon has neither The circumscribed circle does not have an external ellipse, and it is not listed here.
  • all of the plurality of unit bodies have the same cross section, or the unit units have the same or different cross sections.
  • a part of the plurality of unit bodies has a cross section of the first circle inscribed by the second polygon, and a part of the unit body has a cross section of the first ellipse that is the inscribed third polygon. This application does not limit this.
  • the lenticular lens is closely packed by a plurality of columnar unit bodies, as shown in FIG. 15, which shows a cross section of the lenticular lens, the cross section of the lenticular lens is an ellipse, and the long axis of the quasi-ellipse is shown. Da and short axis Db.
  • the cross section of the unit body may be a square (ie, a regular quadrilateral) or a circular shape (such as a first regular polygon having a side length greater than a first threshold). It can be understood that, since the cross section of the unit body is a polygon, those skilled in the art can understand that the ellipse of the type described in the embodiment of the present application is an approximate ellipse.
  • the embodiment described above with reference to FIGS. 9 to 14 mainly describes the cross-sectional shape of the unit body of the lenticular lens.
  • the dielectric constant distribution of the plurality of unit bodies in the lenticular lens should be such that the elliptical shape along the cross section of the lenticular lens is short.
  • a non-planar wave from a feed in the axial direction becomes a plane wave through the dielectric lens.
  • the dielectric constant of the unit body can be expressed as ⁇ xy (x, y). That is, the dielectric constant of the unit body is related to its position in the lenticular lens. Specifically, the dielectric constant of the unit body is ⁇ xy (x, y), which means that the dielectric constant ⁇ is related to the coordinate values x and y, wherein the coordinate values x and y may be coordinate values of the centroid of the unit body cross section.
  • the dielectric constant of each unit body is allowed within the error range.
  • the value of the dielectric constant at any point in the unit body can be within the error range around ⁇ 0 .
  • the value of the dielectric constant at any point in the cell may be, for example, in the range of ⁇ 0 - ⁇ 0 ⁇ 10% to ⁇ 0 + ⁇ 0 ⁇ 10%.
  • the embodiment of the present application further provides a method for manufacturing a dielectric lens.
  • the manufacturing method can include:
  • Printing powders or inks having different dielectric constants are obtained in a one-to-one correspondence with each unit body in the dielectric lens, the mixture satisfying the dielectric constant of the corresponding unit body, each unit body being
  • the dielectric constant distribution in the dielectric lens is determined by numerical fitting based on Fermat's principle and Snell's law, so that non-planar waves from the short-axis direction of the ellipse-like shape are changed into plane waves through the dielectric lens;
  • the dielectric lens is generated using the mixture.
  • the method may be: performing numerical fitting based on the Fermat principle and Snell's law to determine a dielectric constant distribution of each unit body in the dielectric lens in the dielectric lens, so as to a non-planar wave of a short-axis direction of the ellipse-like shape becomes a plane wave through the dielectric lens; further, using a printing powder or ink having a different dielectric constant, one-to-one correspondence with each unit body in the dielectric lens is obtained a mixture that satisfies a dielectric constant of a corresponding unit body; and the mixture is used to generate the dielectric lens.
  • the size of the dielectric lens may be first determined according to the actual needs of the split antenna, and the number, size, and shape of the unit body may be determined based on the size of the dielectric lens. Further, numerical fitting can be performed based on the Fermat principle and Snell's law to determine the dielectric constant distribution. For example, it can be modeled with COMSOL to obtain the dielectric constant of each unit body. It can be seen that the dielectric constant in the dielectric lens can be designed on demand, and the spatial distribution of the dielectric constant can be determined according to numerical simulation.
  • the gap between the unit bodies can be considered as air, and the air is interposed. Electric constant. That is to say, the gap between the unit bodies can be regarded as a "special unit body" having a dielectric constant of air.
  • the unit body is a hollow columnar body
  • the hollow portion is air and has a dielectric constant of air. That is to say, the hollow portion is "filled” with a “special unit body” having a dielectric constant of air.
  • the method may be: performing numerical fitting based on the Fermat principle and Snell's law to determine a dielectric constant distribution of each unit body in the dielectric lens in the dielectric lens, so as to a non-planar wave of a short-axis direction of the ellipse-like shape becomes a plane wave through the dielectric lens; further, a plurality of columns are prepared by extrusion or injection molding, or molding, or CNC machining, or 3D printing process technology based on a dielectric constant distribution
  • the unit body is connected and assembled by welding, or gluing, or structurally snapping the plurality of columnar unit bodies to obtain a lenticular lens.
  • the dielectric lens can be obtained by assembling 1) a dielectric lens from a plurality of columnar unit bodies and 2) using a 3D printing technique.
  • the first step is to prepare the columnar unit body required for the dielectric lens by extrusion or injection molding, or molding, or CNC processing, or 3D printing process technology.
  • the second step connecting and assembling a plurality of columnar unit bodies prepared in the first step by welding, or gluing, or structurally snapping to obtain a dielectric lens.
  • the size of the lens can be reduced as needed to achieve miniaturization of the lens.
  • the printing powder or ink used can be a low-density polymer material or a high-molecular polymer, and the weight of the lens can be reduced.
  • miniaturization and weight reduction of the split antenna can be achieved.
  • the embodiment of the present application further provides a splitting antenna, which includes the above-mentioned cylindrical lens.
  • the split antenna includes a radome, a dielectric lens, a reflector, and an array of vibrators;
  • the dielectric lens is disposed between the radome and the vibrator array, the vibrator array is used as a feed of the dielectric lens, and the vibrator array is disposed between the dielectric lens and the reflector.
  • the feed network required for the array of transducers is placed on the back of the reflector or integrated with the reflector.
  • the dielectric lens has a first size along a thickness direction of the split antenna, the dielectric lens has a second size along a width direction of the split antenna, and the first size is smaller than the first size Two sizes.
  • the cleaved antenna can also be understood to replace the cylindrical lens described in FIG. 2 with the lenticular lens in the embodiment, and the short axis of the ellipse of the cross section of the lenticular lens is along the thickness direction of the antenna.
  • the long axis is along the width of the antenna.
  • the size of the lenticular lens (such as the short axis and the long axis of the ellipse) can be determined according to the size requirements of the split antenna (such as the thickness requirement and the width requirement of the split antenna), and further simulation is performed to determine the reference of the lenticular lens. Electrical constant distribution. Thereby, an on-demand design of the lenticular lens is achieved. It can be seen that the short axis of the ellipse can be designed to be much smaller than the long axis, that is, the thickness of the lenticular lens is much smaller than the width.
  • the thickness of the lens can be greatly reduced, for example, the thickness can be ensured compared to other existing lenses that are not adjustable or undesignable (for example, a Longbo lens) while the antenna satisfies the performance.
  • the thickness of the antenna can be reduced to within 350 mm.
  • the thickness can even be within 250 mm.
  • the dielectric lens of the embodiment of the present application can be applied to a splitting antenna to realize capacity expansion of the communication system, and the dielectric lens can realize the dielectric constant design of the lens material as needed, and the spatial distribution of the dielectric constant is determined according to electromagnetic simulation.
  • the antenna satisfies the performance, its thickness is greatly reduced.
  • Figure 16 is a schematic illustration of a dielectric lens of another embodiment of the present application.
  • the dielectric lens shown in FIG. 16 is a quasi-ellipsoidal lens having a maximum cross section of a quasi-elliptical shape.
  • the quasi-ellipsoidal shape refers to an approximate ellipsoidal shape, and the quasi-ellipsoidal shape may also be referred to as an approximate ellipsoidal shape or an ellipsoidal or ellipsoidal shape. It should also be understood that the quasi-ellipsoidal shape includes an ellipsoidal shape, that is, the dielectric lens may be an ellipsoidal lens.
  • a quasi-ellipse refers to an approximate ellipse, which may also be referred to as an approximate ellipse or an ellipse or ellipse-like ellipse. It should also be understood that the quasi-ellipse includes an ellipse, that is, the largest section of the dielectric lens may be an ellipse.
  • a quasi-ellipsoid has a long axis and two short axes, and the largest cross section here refers to the cross section of the long axis and the larger short axis of the quasi-ellipsoid.
  • the dielectric lens may be a spheroidal shape, and the dielectric lens may be geometrically considered to be an ellipse (ie, an ellipse of a maximum cross section) rotated one year along its long axis, as shown in FIG. Show.
  • the ellipsoidal lens is closely packed by a plurality of unit bodies, and a dielectric constant distribution of the plurality of unit bodies in the dielectric lens is such that a non-planar wave along a short axis direction of the ellipse passes through the lens It becomes a plane wave, and the dielectric constant distribution is obtained based on Fermat's principle and Snell's law numerical fitting; wherein each unit body is a solid body or a hollow body.
  • the quasi-ellipsoidal lens may be closely packed by a plurality of unit bodies in a stacked wood manner.
  • connection between the plurality of unit bodies is any one of the following: soldering, gluing, structural snapping, and printing connection by 3D printing technology.
  • the welding may be ultrasonic welding or diffusion welding, or may be other forms of welding, which is not limited in this application.
  • connection manner between the plurality of unit bodies in the same type of ellipsoidal lens may be the same or different.
  • the connection between some unit bodies is soldering, and the connection between other unit bodies is glued.
  • some unit bodies are connected by ultrasonic welding, and some units are connected by diffusion welding.
  • the unit body is a solid first polyhedron.
  • the unit body may be a first polyhedron having a first circumscribed ball, that is, the first polyhedron is an inscribed polyhedron of the first ball.
  • the diameter of the first ball can be expressed as d1, 1 mm ⁇ d1 ⁇ 450 mm. It should be noted that the size of d1 may also be other values, which is not limited herein.
  • the first polyhedron may be a regular polyhedron. If the first polyhedron is a regular polygon and the number of faces of the first polyhedron is greater than a preset first threshold, the first polyhedron may be approximated as a ball. Wherein, the approximate ball is the circumscribed ball of the first polyhedron, that is, the first ball. That is to say, the unit body can be spherical. For example, if the first polyhedron is a regular dodecahedron or an icosahedron, the first polyhedron may be considered to be a ball.
  • the first polyhedron may be a polyhedron having a first circumscribed ellipsoid, that is, the first polyhedron may be an inscribed polyhedron of the first spheroid.
  • the long axis of the first spheroid is represented as d1a
  • the short axis is represented as d1b
  • the first polyhedron is a polyhedron having a first symmetry plane and a second symmetry plane, and the first symmetry plane and the second symmetry plane are two symmetry planes of the first spheroid, then the first multifaceted
  • the first polyhedron may be approximated as an ellipsoid.
  • the first polyhedron of the approximation is an circumscribed spheroid of the first polyhedron, that is, a first spheroid. That is to say, the unit body can be a rotating ellipsoid.
  • the second threshold can be equal to 12 or 20.
  • the unit body is a solid body, and the unit body is a fourth ball or a fourth spheroid.
  • the diameter of the fourth ball is expressed as d4, 1 mm ⁇ d4 ⁇ 450 mm.
  • the long axis of the fourth spheroid is represented by d4a
  • the short axis is represented by d4b
  • the unit body is a hollow body
  • the outer contour of the unit body is a second polyhedron
  • the inner contour is a third polyhedron.
  • the number of faces of the second polyhedron and the third polyhedron may be equal or unequal.
  • the faces of the second polyhedron and the faces of the corresponding third polyhedron may be parallel to each other, or the faces of the second polyhedron may not be parallel with any of the faces of the third polyhedron, This is not limited.
  • the second polyhedron may be an inscribed polyhedron of the second ball
  • the third polyhedron may be an inscribed polyhedron of the third ball.
  • the diameter of the second ball is represented by d2
  • the diameter of the third ball is represented by d3, 1 mm ⁇ d3 ⁇ d2 ⁇ 450 mm.
  • d2 and d3 satisfy d3 ⁇ d2, and the values of d2 and d3 may be any value between 1 mm and 450 mm.
  • the second polyhedron is a regular polyhedron
  • the third polyhedron is a regular polyhedron
  • the second polyhedron is a regular polyhedron
  • the third polyhedron is a regular polyhedron
  • the number of faces of the second polyhedron and the third polyhedron may be equal or unequal.
  • the body and the third polyhedron may have the same symmetry plane or different symmetry planes.
  • the second polyhedron is a regular polyhedron
  • the third polyhedron is a non-positive polyhedron
  • the number of faces of the second polyhedron and the third polyhedron may be equal or unequal.
  • the second polyhedron is a non-positive polyhedron
  • the third polyhedron is a regular polyhedron
  • the number of faces of the second polyhedron and the third polyhedron may be equal or unequal.
  • the second polyhedron is a non-regular polyhedron
  • the third polyhedron is a non-regular polyhedron
  • the number of faces of the second polyhedron and the third polyhedron may be equal or unequal.
  • the third polyhedron is a regular dodecahedron or an icosahedron, and the second polyhedron coincides with the center of the third polyhedron, It is considered that the unit body is a hollow spherical shell.
  • the second polyhedron is an inscribed polyhedron of the second spheroid
  • the third polyhedron is an inscribed polyhedron of the third spheroid.
  • the long axis of the second spheroid is represented as d2a
  • the short axis is represented as d2b
  • the long axis of the third ellipsoid is represented as d3a
  • the short axis is represented as d3b
  • the unit body may be hollow The spheroid.
  • the fourth threshold can be equal to 12 or 20.
  • the unit body is a hollow body, and the outer wall contour of the unit body is a fifth ball or a fifth spheroid, and the inner wall contour is a sixth ball or a sixth spheroid.
  • the diameter of the fifth ball is represented as d5
  • the diameter of the sixth ball is represented as d6
  • the long axis of the fifth spheroid is represented as d5a
  • the short axis is represented as d5b
  • the long axis of the sixth spheroid is represented as d6a
  • the short axis is denoted as d6b. 1 mm ⁇ d6 ⁇ d5 ⁇ 450 mm, 1 mm ⁇ d6a ⁇ d5a ⁇ 450 mm, 1 mm ⁇ d6b ⁇ d5b ⁇ 450 mm, and d5a > d5b; d6a > d6b.
  • the outer wall contour is a fifth ball and the inner wall contour is a sixth ball. And satisfied: 1mm ⁇ d6 ⁇ d5 ⁇ 450mm.
  • the outer wall contour is a fifth ball and the inner wall contour is a sixth ellipsoid. And satisfied: 1mm ⁇ d6b ⁇ d6a ⁇ d5 ⁇ 450mm.
  • the outer wall contour is a fifth ellipsoid and the inner wall contour is a sixth ball. And satisfied: 1mm ⁇ d6 ⁇ d5b ⁇ d5a ⁇ 450mm.
  • the outer wall contour is a fifth ellipsoid and the inner wall contour is a sixth ellipsoid. And satisfy: 1 mm ⁇ d6a ⁇ d5a ⁇ 450 mm, 1 mm ⁇ d6b ⁇ d5b ⁇ 450 mm, and d6b ⁇ d6a, and d5b ⁇ d5a.
  • the unit body may also be other irregular shaped polyhedrons.
  • the unit body may be an irregular shape polyhedron having neither a circumscribed ball nor an external ellipsoid.
  • the dielectric constant of the unit body in the ellipsoidal lens can be expressed as ⁇ xy (x, y, z). That is, the dielectric constant of the unit body is related to its position in the dielectric lens. Specifically, the dielectric constant of the unit body is ⁇ xy (x, y, z), which indicates that the dielectric constant ⁇ is related to the coordinate values x, y, and z, wherein the coordinate values x, y, and z may be the centroid of the unit body. The coordinate value.
  • the dielectric constant of each unit body is allowed within the error range.
  • the value of the dielectric constant at any point in the unit body can be within the error range around ⁇ 0 .
  • the value of the dielectric constant at any point in the cell may be in the range of ⁇ 0 - ⁇ 0 ⁇ 10% to ⁇ 0 + ⁇ 0 ⁇ 10%.
  • the embodiment of the present application further provides a method for manufacturing a dielectric lens.
  • the manufacturing method can include:
  • Printing powders or inks having different dielectric constants are obtained in a one-to-one correspondence with each unit body in the dielectric lens, the mixture satisfying the dielectric constant of the corresponding unit body, each unit body being
  • the dielectric constant distribution in the dielectric lens is determined by numerical fitting based on Fermat's principle and Snell's law, so that non-planar waves from the short-axis direction of the ellipse-like shape are changed into plane waves through the dielectric lens;
  • the dielectric lens is generated using the mixture.
  • the method may be: performing a numerical fitting based on the Fermat principle and Snell's law to determine a dielectric constant of each unit body in the dielectric lens (the ellipsoidal lens) in the dielectric lens Distributing such that non-planar waves from the short-axis direction of the ellipse-like shape become plane waves through the dielectric lens; further using each of the cells in the dielectric lens using printing powder or ink having different dielectric constants a one-to-one corresponding mixture, the mixture satisfying the dielectric constant of the corresponding unit body; and using the mixture, the dielectric lens is produced.
  • the size of the dielectric lens may be first determined according to the actual needs of the split antenna, and the number, size, and shape of the unit body may be determined based on the size of the dielectric lens. Further, numerical fitting can be performed based on the Fermat principle and Snell's law to determine the dielectric constant distribution. For example, it can be modeled with COMSOL to obtain the dielectric constant of each unit body. It can be seen that the dielectric constant in the dielectric lens can be designed on demand, and the spatial distribution of the dielectric constant can be determined according to numerical simulation.
  • the unit body is the first ball or the first spheroid; or, for example, the outer contour of the unit body is the second ball or the second spheroid, then the value is During the fitting process, it can be considered that the space between the unit bodies is air and has a dielectric constant of air. That is to say, the gap between the unit bodies can be regarded as a "special unit body" having a dielectric constant of air.
  • the unit body is a hollow body
  • the hollow portion is air and has a dielectric constant of air. That is to say, the hollow portion is "filled” with a “special unit body” having a dielectric constant of air.
  • the method may be: performing numerical fitting based on the Fermat principle and Snell's law to determine a dielectric constant distribution of each unit body in the dielectric lens in the dielectric lens, so as to a non-planar wave of a short-axis direction of the ellipse-like shape becomes a plane wave through the dielectric lens; further, a plurality of cells are prepared by extrusion or injection molding, or molding, or CNC machining, or 3D printing process technology based on a dielectric constant distribution The body is connected and assembled by welding, or gluing, or structurally snapping, thereby obtaining a quasi-ellipsoidal lens.
  • the dielectric lens can be obtained by assembling 1) a dielectric lens from a plurality of unit cells and 2) using a 3D printing technique.
  • the first step is to prepare the unit body required for the dielectric lens by extrusion or injection molding, or molding, or CNC processing, or 3D printing process technology.
  • Step 2 Take the first step The prepared plurality of unit bodies are connected and assembled by welding, or gluing, or structurally snapping to obtain a dielectric lens.
  • the size of the lens can be reduced as needed to achieve miniaturization of the lens.
  • the printing powder or ink used can be a low-density polymer material or a high-molecular polymer, and the weight of the lens can be reduced.
  • miniaturization and weight reduction of the split antenna can be achieved.
  • the embodiment of the present application further provides a splitting antenna, which includes the above ellipsoidal lens.
  • the split antenna includes a radome, a dielectric lens, a reflector, and an array of vibrators;
  • the dielectric lens is disposed between the radome and the vibrator array, the vibrator array is used as a feed of the dielectric lens, and the vibrator array is disposed between the dielectric lens and the reflector.
  • the feed network required for the array of transducers is placed on the back of the reflector or integrated with the reflector.
  • the dielectric lens has a first size along a thickness direction of the split antenna, the dielectric lens has a second size along a width direction of the split antenna, and the first size is smaller than the first size Two sizes.
  • the split antenna can also be understood to replace the spherical lens described in FIG. 4 with the ellipsoidal lens of the present embodiment, and the short axis of the ellipse of the largest 33 section of the ellipsoidal lens.
  • the size of the lenticular lens (such as the long axis of the ellipsoidal lens and the two short axes) can be determined according to the size requirements of the splitting antenna (such as the thickness requirement and the width requirement of the split antenna), and further simulation determines the ellipsoid The dielectric constant distribution of a spherical lens.
  • the short axis of the ellipse can be designed to be much smaller than the long axis, that is, the thickness of the ellipsoidal lens is much smaller than the width.
  • the thickness of the lens can be greatly reduced, for example, the thickness can be ensured compared to other existing lenses that are not adjustable or undesignable (for example, a Longbo lens) while the antenna satisfies the performance.
  • the thickness of the antenna can be reduced to within 350 mm.
  • the thickness can even be within 250 mm.
  • the dielectric lens of the embodiment of the present application can be applied to a splitting antenna to realize capacity expansion of the communication system, and the dielectric lens can realize the dielectric constant design of the lens material as needed, and the spatial distribution of the dielectric constant is determined according to electromagnetic simulation.
  • the antenna satisfies the performance, its thickness is greatly reduced.
  • the dielectric lens and the manufacturing method thereof are key technologies for realizing a high-gain UMTS/LTE miniaturized antenna, and the success of the technology can be extended to the future 5G stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

一种介质透镜,介质透镜为横截面轮廓为准椭圆的柱状透镜或椭球状透镜;该介质透镜由多个单元体堆砌而成。单元体在介质透镜中的介电常数分布使得沿准椭圆的短轴方向的非平面波经介质透镜变为平面波。介质透镜的单元体采用挤出、注塑、模压、CNC加工或3D打印工艺技术进行制备,并且单元体的组装方式可以采用胶接、焊接、结构卡接或由3D打印直接打印连接。该介质透镜应用于劈裂天线时,能够提高通信系统的系统容量。并且与传统圆柱状龙伯透镜天线相比,达到劈裂天线降低透镜厚度的目的。

Description

介质透镜以及劈裂天线 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种介质透镜以及劈裂天线。
背景技术
通讯行业所使用的传统天线,如图1所示,通常由三个主要部分组成:(1)天线罩;(2)馈电网络、反射板和振子阵列;(3)围框和模块(有源)。随着用户量的大幅度地增长,目前的网络正面临着系统容量紧张的问题。
劈裂天线技术致力于提高移动通信系统的系统容量,提高系统的通信质量,是一种具有良好的应用前景的技术方案。一种可行的方案是在劈裂天线中设置电磁透镜从而提高系统容量,如何设计电磁透镜成为技术瓶颈。
发明内容
本申请实施例提供一种介质透镜,能够用于劈裂天线,以提高通信系统的系统容量。
第一方面,提供了一种介质透镜,所述介质透镜为柱状透镜,所述柱状透镜的横截面轮廓为准椭圆,所述柱状透镜由多个单元体堆砌而成,所述多个柱状单元体在所述介质透镜中的介电常数分布使得沿所述准椭圆的短轴方向的非平面波经所述透镜变为平面波;其中,所述每个柱状单元体的长度等于所述柱状透镜的长度。
这样,本申请实施例中的介质透镜的横截面为准椭圆,且该使得从所述准椭圆的短轴方向的非平面波经所述介质透镜变为平面波。这样该介质透镜作为电磁透镜应用于劈裂天线时,能够提高通信系统的系统容量。并且,本申请实施例中,准椭圆的长轴方向沿着天线的宽度方向,准椭圆的短轴方向沿着天线的厚度方向,由于准椭圆的短轴小于长轴,因此在该介质透镜应用于劈裂天线时,在劈裂天线的厚度方向所增加的尺寸能够满足劈裂天线的尺寸需求。
具体地,现有技术的龙伯透镜应用与劈裂天线时,在天线的厚度和宽度的方向所增加的尺寸基本是一致的。然而,本申请实施例中的介质透镜,由于准椭圆的短轴小于长轴,能够保证天线性能的情况下,天线的厚度大大减小。也就是说,相比于现有技术中的龙伯透镜,本申请实施例中的介质透镜能够使得天线在厚度方向大大降低。
可选地,其中的介电常数分布是基于费马原理及斯奈尔定律数值拟合得出的。
结合第一方面,在第一方面的第一种可能的实现方式中,该介质透镜的长度表示为L,且100mm≤L≤3500mm。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该介质透镜的横截面的准椭圆的长轴表示为Da,短轴表示为Db,且1mm≤Db<Da≤450mm。
结合第一方面或第一方面的上述任意一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述多个柱状单元体之间的连接为以下的任意一种:焊接、胶接、结构卡接,由3D打印技术打印连接。所述多个柱状单元体的制备工艺为以下的任意一种:挤出、注塑、模压、数控机床(Computer Numerical Control,CNC)加工和3D打印工艺技术。
结合第一方面或第一方面的上述任意一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述每个单元体为实心体。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,单元体的横截面为第一多边形。
可选地,第一多边形可以为正多边形。
可选地,第一多边形为第一圆的内接多边形,所述第一圆的直径表示为D1,其中,1mm≤D1≤450mm。
可选地,第一多边形为第一椭圆的内接多边形,所述第一椭圆的长轴表示为D1a,短轴表示为D1b,其中,1mm≤D1b<D1a≤450mm。
结合第一方面的第四种可能的实现方式,在第一方面的第六种可能的实现方式中,所述单元体的横截面为第四圆或第四椭圆,所述第四圆的直径表示为D4,所述第四椭圆的长轴表示为D4a,短轴表示为D4b,其中,1mm≤D4≤450mm,1mm≤D4b<D4a≤450mm。
结合第一方面或第一方面的第一至第三的任意一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述每个单元体为空心体。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,单元体的横截面的外轮廓为第二多边形,内轮廓为第三多边形。
可选地,所述第二多边形的边数与所述第三多边形的边数相等或不相等。
可选地,所述第二多边形为正多边形,和/或,所述第三多边形为正多边形。
可选地,所述第二多边形为第二圆的内接多边形,所述第三多边形为第三圆的内接多边形,所述第二圆的直径表示为D2,所述第三圆的直径表示为D3,其中,1mm≤D3<D2≤450mm。
可选地,所述第二多边形为第二椭圆的内接多边形,所述第三多边形为第三椭圆的内接多边形,所述第二椭圆的长轴表示为D2a,短轴表示为D2b,所述第三椭圆的长轴表示为D3a,短轴表示为D3b,其中,1mm<D3a<D2a≤450mm,1mm≤D3b<D2b<450mm,且D2a>D2b;D3a>D3b。
结合第一方面的第七种可能的实现方式,在第一方面的第九种可能的实现方式中,所述单元体的横截面的外轮廓为第五椭圆,内轮廓为第六椭圆,所述第五椭圆的长轴表示为D5a,短轴表示为D5b,所述第六椭圆的长轴表示为D6a,短轴表示为D6b,其中,1mm<D6a<D5a≤450mm,1mm≤D6b<D5b<450mm,且D5a>D5b;D6a>D6b。
第二方面,提供了一种介质透镜,所述介质透镜为准椭球状透镜,所述准椭球状透镜的最大截面为准椭圆,所述准椭球状透镜由多个单元体紧密堆砌而成,所述多个单元体在所述介质透镜中的介电常数分布使得沿所述准椭圆的短轴方向的非平面波经所述透镜变为平面波;其中,每个单元体为实心体或空心体。
这样,本申请实施例中的介质透镜为准椭球状透镜,最大截面为准椭圆,且该使得从所述准椭圆的短轴方向的非平面波经所述介质透镜变为平面波。这样该介质透镜作为电磁透镜应用于劈裂天线时,能够提高通信系统的系统容量。并且,本申请实施例中,准椭圆的长轴方向作为天线的宽度方向,准椭圆的短轴方向作为天线的厚度方向,由于准椭圆的短轴小于长轴,因此在该介质透镜应用于劈裂天线时,在劈裂天线的厚度方向所增加的尺寸能够满足劈裂天线的尺寸需求。与传统圆柱状龙伯透镜天线相比,达到劈 裂天线降低透镜厚度的目的。
结合第二方面,在第二方面的第一种可能的实现方式中,所述多个单元体之间的连接为以下的任意一种:焊接、胶接、结构卡接,由3D打印技术打印连接。所述多个单元体的制备工艺为以下的任意一种:挤出、注塑、模压、CNC加工和3D打印工艺技术。
结合第二方面或第二方面的上述第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述单元体为实心的第一多面体。
可选地,所述第一多面体为正多面体。例如,第一多面体为正四面体或正八面体等。
可选地,所述第一多面体为第一球的内接多面体,所述第一球的直径表示为d1,其中,1mm≤d1≤450mm。
可选地,所述第一多面体为第一旋转椭球的内接多面体,所述第一旋转椭球的长轴表示为d1a,短轴表示为d1b,其中,1mm≤d1b<d1a≤450mm。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述单元体为空心体,所述单元体的外轮廓为第二多面体,内轮廓为第三多面体。
可选地,所述第二多面体为正多面体,和/或,所述第三多面体为正多面体。
可选地,第二多面体的面数与第三多面体的面数可以相等或不相等。
可选地,所述第二多面体为第二球的内接多面体,所述第三多面体为第三球的内接多面体,所述第二球的直径表示为d2,所述第三球的直径表示为d3,其中,1mm≤d3<d2≤450mm。
可选地,所述第二多面体为第二旋转椭球的内接多面体,所述第三多面体为第三旋转椭球的内接多面体,所述第二旋转椭球的长轴表示为d2a,短轴表示为d2b,所述第三旋转椭球的长轴表示为d3a,短轴表示为d3b,其中,1mm≤d3a<d2a≤450mm,1mm≤d3b<d2b≤450mm,且d2a>d2b;d3a>d3b。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述单元体为实心体,所述单元体为第四球或第四旋转椭球,所述第四球的直径表示为d4,所述第四旋转椭球的长轴表示为d4a,短轴表示为d4b,其中,1mm≤d4≤100mm,1mm≤d4b<d4a≤450mm。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第五种可能的实现方式中,所述单元体为空心体,所述单元体的外轮廓为第五旋转椭球,内轮廓为第六旋转椭球;所述第五旋转椭球的长轴表示为d5a,短轴表示为d5b,所述第六旋转椭球的长轴表示为d6a,短轴表示为d6b,其中,1mm≤d6a<d5a≤450mm,1mm≤d6b<d5b≤450mm,且d5a>d5b;d6a>d6b。
第三方面,提供了一种劈裂天线,包括:天线罩、介质透镜、反射板和振子阵列;
所述介质透镜置于所述天线罩与所述振子阵列之间,所述振子阵列作为所述介质透镜的馈源,
所述振子阵列置于所述介质透镜与所述反射板之间,所述振子阵列所需的馈电网络置于所述反射板的背面或与所述反射板集成为一体,
其中,所述介质透镜沿着所述劈裂天线的厚度方向具有第一尺寸,所述介质透镜沿着所述劈裂天线的宽度方向具有第二尺寸,且所述第一尺寸小于所述第二尺寸。
结合第三方面,在第三方面的一种实现方式中,该介质透镜为前述第一方面或者第 一方面的任一种可能的实现方式中的介质透镜,或者,该介质透镜为前述第二方面或者第二方面的任一种可能的实现方式中的介质透镜。
附图说明
图1是传统天线的示意图。
图2是使用龙伯透镜的劈裂天线的示意图。
图3是图2中的龙伯透镜的介电常数分布的示意图。
图4是使用龙伯透镜的劈裂天线的另一示意图。
图5是龙伯透镜将非平面波转化为平面波的一个示意图。
图6是本申请实施例的介质透镜原理的一个示意图。
图7是椭圆透镜横截面电磁射线传输路径几何关系的示意图。
图8是本申请一个实施例的介质透镜的示意图。
图9是本申请一个实施例的柱状透镜的单元体的横截面的示意图。
图10是本申请另一个实施例的柱状透镜的单元体的横截面的示意图。
图11是本申请再一个实施例的柱状透镜的单元体的横截面的示意图。
图12是本申请再一个实施例的柱状透镜的单元体的横截面的示意图。
图13是本申请再一个实施例的柱状透镜的单元体的横截面的示意图。
图14是本申请再一个实施例的柱状透镜的单元体的横截面的示意图。
图15是本申请再一个实施例的柱状透镜的横截面介电常数分布的示意图。
图16是本申请另一个实施例的介质透镜的示意图。
图17是本申请一个实施例的旋转椭球状透镜的形成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1是传统天线的示意图。图1中的传统天线包括:(1)天线罩;(2)馈电网络、反射板和振子阵列;(3)围框和模块(有源)。另外,图1中还示出了天线的维度,分别是宽度(W),厚度(H)和长度(L)。
随着用户量的大幅度增长,目前的网络正面临着频率资源限制、信道容量限制、站点资源获取难度加大、远近效应、系统干扰、部分小区严重拥塞等问题。劈裂天线技术致力于提高移动通信系统的系统容量,提高系统的通信质量,是一种具有良好的应用前景的技术方案。目前劈裂天线的设计方法主要是采用巴特勒(Butler)矩阵对多列天线进行馈电,在水平方向上形成多个波束,这样能够解决资源限制的问题。这里的水平方向即天线的宽度方向。然而,当要求劈裂的波束越多时,相应地也需要越多的天线列数,从而导致天线的宽度会很宽。但是宽度太宽(例如大于450mm),会给实际安装和布局带来困难。
为了能在满足天线在水平维上存在多个非相干波束的同时,减小天线的宽度,如图2所示,在图1所示的(1)天线罩和(2)馈电网络、反射板和振子阵列之间增加了一个电磁透镜,即“龙伯透镜”。这样可以利用透镜材料的相对介电常数的变化将多个馈源分别发出的非平面波转换为平面波,从而形成多个波束。可见,使用电磁透镜可以在不增加天线宽度的同时,在水平方向上形成多个波束。
图2中所述的圆柱透镜即龙伯透镜。如图3所示,为图2中的圆柱透镜的横截面介电常数分布示意图,其中不同的灰度表示不同的介电常数,相同颜色或灰度代表一种介电常数值。
结合适合的馈源系统,这种圆形截面的龙伯透镜可以实现性能良好的多波束性能,这种天线的宽度可做到450mm以内。然而,由于圆柱透镜的横截面为圆形,使用该圆柱透镜势必会增加劈裂天线的厚度,具体地,圆柱透镜加上馈源系统,使得天线的厚度很厚,通常该厚度大于400mm。
与图2中的圆柱透镜类似地,在实际应用中,也有人把此类电磁透镜设计为球形,该球形的透镜可以放置在球形的天线罩之内,如图4所示。该球形的透镜材料有几层不同的介电常数的同心圆球壳体材料组成,每层的介电常数相同,但是使用该球形透镜的天线很大,目前已知的球形透镜的直径大于或等于800mm。
可见,目前的方案是依靠圆形截面的龙伯透镜,能够实现由馈源辐射的非平面波转化为平面波,也就是说,通过多列馈源照射即可形成多个辐射波束。该原理的示意图如图5所示。然而,目前的方案存在天线剖面高、满足一定介电常数分布的材料制作困难的不足。
具体地,由于龙伯透镜采用圆柱形状,在实现多劈裂波束时,在宽度维度上可以有效的减少宽度,但在厚度上,由于存在天线罩、透镜、馈源、反射板、馈电网络及后盖板等,客观上大大增加了天线整体的厚度,在特定情况下,客户难以接受。另外,现有方案的透镜材料采用聚合物内掺杂金属颗粒的方式,使得材料的介电常数空间分布满足透镜要求,此种方法按照一定的聚合物和金属颗粒的配比一次发泡成型,其介电常数分布的精度难以控制,当改变透镜介电常数分布时,需要重新配比材料进行制作。
高增益劈裂式多扇区是W3市场通用移动通信系统(Universal Mobile Telecommunication System,UMTS)/长期演进(Long Term Evolution,LTE)关键解决方案,同时也是构筑企业天线竞争力的重要方向;是最大化站点容量,为无线空分技术发展奠定基础的重要课题。其中,天线设计的轻量化、小型化是一项亟待解决的问题。
本申请实施例针对多劈裂透镜天线,提出了一种介质透镜。该介质透镜能够作为应用于劈裂天线的电磁透镜。该介质透镜具有椭圆形截面,能够实现与圆形截面透镜相同的性能,如图6所示,该介质透镜可以使得沿椭圆的短轴方向的馈源发出的非平面波经该介质透镜变为平面波。
如图7所示为椭圆透镜横截面电磁射线传输路径几何关系的示意图,透镜截面为椭圆,该椭圆的长轴为2a,短轴为2b,透镜材料的折射率分布为n(x,y),馈源相位中心位于透镜焦点位置F,要使透镜辐射口面具有高效率,必须使AB平面为等相面,即从F点出发的每一根射线FP1P2Q等电长度。满足方程
Figure PCTCN2017075958-appb-000001
其中,δ为变分算子,const表示常数。
并且,更进一步地,该介质透镜应用于劈裂天线时,椭圆的长轴方向沿着天线的宽度方向,椭圆的短轴方向沿着天线的厚度方向。由于椭圆的短轴小于长轴,这样,劈裂 天线在满足宽度要求的同时,能够满足厚度方向的尺寸要求,实现劈裂天线的轻量化和小型化。下面将对该介质透镜进行详细的描述。
本申请实施例的介质透镜可以为柱状透镜或者类椭球状透镜,能够应用于相应形状的天线。可理解,该介质透镜也可以是其他的形状,例如类圆台状透镜等等,这里不再一一罗列。
图8是本申请一个实施例的介质透镜的示意图。图8所示的介质透镜为柱状透镜,该柱状透镜的横截面轮廓为准椭圆。
本申请实施例中,准椭圆(quasi-elliptic)为近似的椭圆,也可以称为近似椭圆或拟椭圆或类似椭圆或类椭圆。
其中,该柱状透镜的长度可以表示为L,可理解,横截面是指与长度方向垂直的截面。
该柱状透镜可以具有两个端面,分别为第一端面和第二端面。其中,该第一端面和第二端面均为平面,且第一端面与第二端面平行。
具体地,第一端面和第二端面为与柱状透镜的长度方向垂直的最外侧的两个表面。可选地,上述的横截面可以为与第一端面(或第二端面)平行的任一面,例如上述的横截面可以为第一端面(或第二端面)。
所述柱状透镜由多个柱状单元体堆砌而成,所述多个柱状单元体在所述介质透镜中的介电常数分布使得沿所述准椭圆的短轴方向的非平面波经所述透镜变为平面波;其中,所述每个柱状单元体的长度等于所述柱状透镜的长度。
可选地,所述柱状透镜由多个柱状单元体横向紧密堆砌而成。可选地,所述介电常数分布可以是基于费马原理及斯奈尔定律数值拟合得出的。
也就是说,每个柱状单元体的长度也可表示为L。可选地,100mm≤L≤3500mm。应注意,L的值可以为100mm与3500mm之间的任意一个值,本申请对此不限定。例如,L=2500mm或L=3000mm等等。
柱状单元体可以具有两个相互平行的端面,并且这两个相互平行的端面可以分别位于第一端面和第二端面。
其中,所述多个柱状单元体之间的连接方式为以下的至少一种:焊接、胶接、结构卡接、由3D打印技术打印连接。
其中,焊接可以为超声焊接或扩散焊接,也可以是其他形式的焊接,本申请对此不限定。
另外,同一柱状透镜中的多个柱状单元体之间的连接方式可以相同或不同。例如,某些柱状单元体之间的连接方式为焊接,另外一些柱状单元体之间的连接方式为胶接。例如,某些柱状单元体之间的连接方式为超声焊接,另外一些柱状单元体之间的连接方式为扩散焊接。
可理解,多个柱状单元体的端面可以是对齐的。举例来说,每个柱状单元体都具有两个端面,表示为端面A和端面B。那么,每个柱状单元体的端面A都彼此对齐,并且每个柱状单元体的端面B都彼此对齐。
柱状透镜的横截面为类椭圆,这里的类椭圆包括椭圆。也就是说,柱状透镜的横截面可以为椭圆。柱状透镜的长度可以表示为L,类椭圆的长轴可以表示为Da,短轴可以表示为Db。其中,100mm≤L≤3500mm,1mm≤Db<Da≤450mm,并且,一般地,Db<Da≤L。
应注意,Da和Db满足Db<Da,且Da和Db的值均可以为1mm与450mm之间的任意一个值,本申请对此不限定。例如,Da=400mm或Db=350mm等等。本申请实施例对Da和Db之间比值不作限定,例如,可以是Db=2×Da,或者也可以是Db=10×Da等等。
其中,单元体可以为实心体或空心体。可理解,组成该介质透镜的多个柱状单元体可以全部为实心体,或者,可以全部为空心体,或者,可以部分为实心体部分为空心体。
从一个单元体的角度来说,作为一个实施例,单元体可以为实心体,该单元体的横截面可以为第一多边形。
其中,第一多边形可以为正多边形,或,第一多边形为非正多边形。
可选地,组成该介质透镜的多个柱状单元体可以全部为实心体。其中,多个柱状单元的横截面(即第一多边形)可以都为正多边形。或者,多个柱状单元的横截面可以都为非正多边形。或者,多个柱状单元中的部分柱状单元体的横截面为正多边形,部分单元体的横截面为非正多边形。本申请对此不限定。
可选地,第一多边形可以是具有第一外接圆的多边形,也就是说,第一多边形可以是第一圆的内接多边形。其中,第一圆的直径可以表示为D1,且1mm≤D1≤450mm。应注意,D1的大小也可以是其他的数值,这里不作限定。一般地,应满足:D1<Db<Da。
应注意,1mm≤D1≤450mm表示D1的值可以为1mm与450mm之间的任意一个值,本申请对此不限定。例如,1mm≤D1≤100mm或D1=2mm或D1=150mm等等。
如图9所示,为单元体的横截面的一例,图9所示的第一多边形为正六边形。
若第一多边形为正多边形,且该第一多边形的边数大于预设的第一阈值时,可以将该第一多边形近似为圆形。其中,该近似的圆形为该第一多边形的外接圆,即为第一圆。也就是说,单元体的横截面可以为圆形。举例来说,第一阈值可以等于12或20。
可选地,第一多边形可以是具有第一外接椭圆的多边形,也就是说,第一多边形可以是第一椭圆的内接多边形。其中,第一椭圆的长轴表示为D1a,短轴表示为D1b,且,1mm≤D1b<D1a≤450mm。应注意,D1a和D1b的大小也可以是其他的数值,这里不作限定。一般地,应满足:D1b≤Db,且D1a≤Da。
应注意,D1a和D1b满足D1b<D1a,且D1a和D1b的值均可以为1mm与450mm之间的任意一个值,本申请对此不限定。例如,1mm≤D1b<D1a≤100mm或D1a=15mm,D1b=2mm等等。
如图10所示,为单元体的横截面的另一例,图10所示的第一多边形为六边形,且图10所示的第一多边形为非正多边形。
若第一多边形为具有第一对称轴和第二对称轴的多边形,且第一对称轴为该第一椭圆的长轴,第二对称轴为该第一椭圆的短轴,那么当该第一多边形的边数大于预设的第二阈值时,可以将该第一多边形近似为椭圆形。其中,该近似的椭圆形为该第一多边形的外接椭圆,即为第一椭圆。也就是说,单元体的横截面可以为椭圆。举例来说,第二阈值可以等于12或20。
从一个单元体的角度来说,作为另一个实施例,单元体可以为实心体,该单元体的横截面为第一圆或第一椭圆。
其中,第一圆的直径表示为D1,1mm≤D1≤450mm。或者,其中,第一椭圆的长轴表示为D1a,短轴表示为D1b,1mm≤D1b<D1a≤450mm。
应注意,D1的值可以为1mm与450mm之间的任意一个值,本申请对此不限定。例 如,1mm≤D1≤100mm或D1=5mm等等。一般地,应满足:D1<Db<Da。
应注意,D4a和D4b满足D4b<D4a,且D4a和D4b的值均可以为1mm与450mm之间的任意一个值,本申请对此不限定。例如,1mm≤D1b<D1a≤100mm或D4a=20mm,D4b=5mm等等。一般地,应满足:D1b≤Db,且D1a≤Da。
从一个单元体的角度来说,作为另一个实施例,单元体可以为空心体,该单元体的横截面的外轮廓为第二多边形,内轮廓为第三多边形。其中,第二多边形与第三多边形的边数可以相等或不相等。
其中,第二多边形可以为正多边形,或,第二多边形为非正多边形。其中,第三多边形可以为正多边形,或,第三多边形为非正多边形
可选地,第二多边形为正多边形,第三多边形为正多边形,其中,第二多边形与第三多边形的边数相等或不相等,此时,第二多边形与第三多边形可以具有相同的或者不同的对称轴。可选地,第二多边形为正多边形,第三多边形为非正多边形,其中,第二多边形与第三多边形的边数相等或不相等。可选地,第二多边形为非正多边形,第三多边形为正多边形,其中,第二多边形与第三多边形的边数相等或不相等。可选地,第二多边形非正多边形第三多边形为非正多边形,其中,第二多边形与第三多边形的边数相等或不相等。
本申请实施例中,第二多边形可以是第二圆或第二椭圆的内接多边形,第三多边形可以是第三圆或第三椭圆的内接多边形。
可选地,第二多边形可以是具有第二外接圆的多边形,也就是说,第二多边形可以是第二圆的内接多边形。第三多边形可以是具有第三外接圆的多边形,也就是说,第三多边形可以是第三圆的内接多边形。其中,第二圆与第三圆可以是同心圆,或者也可以不是同心圆。
其中,第二圆的直径可以表示为D2,第三圆的直径可以表示为D3,且1mm≤D3<D2≤450mm。应注意,D2和D3的大小也可以是其他的数值,这里不作限定。一般地,应满足:D3<D2<Db<Da。
应注意,D3和D2满足D3<D2,且D3和D2的值均可以为1mm与450mm之间的任意一个值,本申请对此不限定。例如,1mm≤D3<D2≤100mm;再例如,D2=180mm,D3=100mm等等。
如图11所示,为单元体的横截面的再一例,图11所示的第二多边形为正八边形,第三多边形为正八边形。
应注意,尽管图11中,第二多边形与第三多边形的边数相等,且第二多边形的各个边与第三多边形的相应的边是相互平行的,但是图11不应该视为对第二多边形和第三多边形的位置的限定,例如,可以将图11中的第三多边形旋转任意角度后,如10°或20°,依然属于本申请实施例的保护范围。
如图12所示,为单元体的横截面的再一例,图12所示的第二多边形为正八边形,第三多边形为正六边形。可见,在图12中,第二多边形与第三多边形的边数不相等。
若第二圆与第三圆为同心圆,第二多边形和第三多边形均为正多边形,且该第二多边形和第三多边形的边数均大于预设的第三阈值,可以将该第二多边形和第三多边形都近似为圆形。其中,第二多边形的边数与第三多边形的边数可以相等或不相等。此时,该第二多边形近似为第二圆,该第三多边形近似为第三圆。也就是说,单元体的横截面 可以为圆环形。举例来说,第三阈值可以等于12或20。
可选地,第二多边形可以是具有第二外接椭圆的多边形,也就是说,第二多边形可以是第二椭圆的内接多边形。第三多边形可以是具有第三外接椭圆的多边形,也就是说,第三多边形可以是第三椭圆的内接多边形。
其中,第二椭圆的长轴表示为D2a,短轴表示为D2b。第三椭圆的长轴表示为D3a,短轴表示为D3b。1mm<D3a<D2a≤450mm,1mm≤D3b<D2b<450mm,且D2a>D2b;D3a>D3b。应注意,D2a、D2b、D3a和D3b的大小也可以是其他的数值,这里不作限定。一般地,应满足:D3b<D2b≤Db,且D3a<D2a≤Da。
应注意,D2a、D2b、D3a、D3b满足D3a<D2a、D3b<D2b、D2a>D2b和D3a>D3b,且D2a、D2b、D3a、D3b的值均可以为1mm与450mm之间的任意一个值,本申请对此不限定。例如,D2a=180mm,D2b=100mm,D3a=80mm,D3b=40mm等等。
如图13所示,为单元体的横截面的再一例,图13所示的第二多边形和第三多边形均为六边形。
应注意,第二多边形与第三多边形的边数也可以不相等。这里不再一一罗列。另外,尽管图13所示的第二椭圆的长轴方向与第三椭圆的长轴方向一致,但图13不应该被认为是该种情形的限定。具体地,第二椭圆的长轴方向与第三椭圆的长轴方向,两者之间可以具有一定的角度,本申请对此不限定。
若第二椭圆与第三椭圆的长轴方向一致,且第二椭圆与第三椭圆的圆心为同一个点,第二多边形和第三多边形均为具有第一对称轴和第二对称轴的多边形,且第一对称轴为该第二椭圆(或第三椭圆)的长轴,第二对称轴为该第二椭圆(或第三椭圆)的短轴。那么当该第二多边形和第三多边形的边数均大于预设的第四阈值时,可以将该第二多边形近似为第二椭圆,将该第三多边形近似为第三椭圆。也就是说,单元体的横截面可以为椭圆圆环。举例来说,第四阈值可以等于12或20。
可选地,第二多边形可以是具有第二外接椭圆的多边形,也就是说,第二多边形可以是第二椭圆的内接多边形。第三多边形可以是具有第三外接圆的多边形,也就是说,第三多边形可以是第三圆的内接多边形。
其中,第二椭圆的长轴表示为D2a,短轴表示为D2b。第三圆的直径表示为D3。1mm<D3<D2b<D2a≤450mm。应注意,D3、D2a和D2b的大小也可以是其他的数值,这里不作限定。一般地,应满足:D3<D2b≤Db,且D2a≤Da。
应注意,D2a、D2b、D3满足D3<D2b<D2a,且D2a、D2b、D3的值均可以为1mm与450mm之间的任意一个值,本申请对此不限定。例如,D2a=180mm,D2b=100mm,D3=80mm等等。
如图14所示,为单元体的横截面的再一例,图14所示的第二多边形为具有外接椭圆的六边形,第三多边形为具有外接圆的正六边形。
可选地,第二多边形可以是具有第二外接圆的多边形,也就是说,第二多边形可以是第二圆的内接多边形。第三多边形可以是具有第三外接椭圆的多边形,也就是说,第三多边形可以是第三椭圆的内接多边形。
其中,第二圆的直径表示为D2,第三椭圆的长轴表示为D3a,短轴表示为D3b。1mm<D3b<D3a<D2≤450mm。应注意,D2、D3a和D3b的大小也可以是其他的数值,这里不作限定。一般地,应满足:D2≤Db。
应注意,D2、D3a、D3b满足D3b<D3a<D2,且D2、D3a、D3b的值均可以为1mm与450mm之间的任意一个值,本申请对此不限定。例如,D2=150mm,D3a=100mm,D3b=80mm等等。
从一个单元体的角度来说,作为另一个实施例,单元体可以为空心体,该单元体的横截面的外壁轮廓为第五圆或第五椭圆,内壁轮廓为第六圆或第六椭圆,所述第五圆的直径表示为D5,所述第六圆的直径表示为D6,所述第五椭圆的长轴表示为D5a,短轴表示为D5b,所述第六椭圆的长轴表示为D6a,短轴表示为D6b,其中,1mm≤D6<D5≤450mm,1mm<D6a<D5a≤450mm,1mm≤D6b<D5b<450mm,且D5a>D5b;D6a>D6b。
可选地,外壁轮廓为第五圆,内壁轮廓为第六圆。一般地,应满足:D6<D5<Db<Da。
可选地,外壁轮廓为第五圆,内壁轮廓为第六椭圆。一般地,应满足:D6b<D6a<D5<Db<Da。
可选地,外壁轮廓为第五椭圆,内壁轮廓为第六圆。一般地,应满足:D6<D5b≤Db,且D5a≤Da。
可选地,外壁轮廓为第五椭圆,内壁轮廓为第六椭圆。一般地,应满足:D6b<D5b≤Db,且D6a<D5a≤Da。
应注意,尽管在上述实施例中,示意性地给出了D1、D2、D3、D4、D5、D6、D1b、D1a、D2b、D2a、D3b、D3a、D4b、D4a、D5b、D5a、D6b、D6a的取值范围,但本申请对该范围不作限定。例如,各自的范围也可以是:1mm≤D1≤200mm,1mm≤D3<D2≤200mm,1mm≤D4≤200mm,1mm≤D6<D5≤200mm,10mm≤D1b<D1a≤100mm,1mm<D3a<D2a≤200mm,1mm≤D3b<D2b<200mm,10mm≤D4b<D4a≤100mm,1mm<D6a<D5a≤200mm,1mm≤D6b<D5b<200mm等等。并且,每个值都可以是其范围内的任一值,这里不再一一罗列。
可理解,本申请实施例中,单元体的横截面也可以是其他的非规则形状的多边形,例如,单元体的横截面可以为第四多边形,且该第四多边形既不具有外接圆也不具有外接椭圆,这里不再一一罗列。
另外,本申请实施例中,多个单元体中,全部单元体的横截面均是一样的,或者,部分单元体的横截面一样或不一样。例如,多个单元体中的部分单元体的横截面为第一圆的内接第二多边形,另外部分单元体的横截面为第一椭圆的内接第三多边形。本申请对此不作限定。
由此可见,柱状透镜是由多个柱状单元体紧密堆砌而成的,如图15所示表示柱状透镜的横截面,该柱状透镜的横截面为类椭圆,同时示出了准椭圆的长轴Da与短轴Db。其中的单元体的横截面可以为正方形(即正四边形)或圆形(如边长大于第一阈值的第一正多边形)。可理解,由于单元体的横截面为多边形,本领域技术人员可理解,本申请实施例中所说的类椭圆为近似的椭圆。
以上结合图9至图14的实施例主要描述了柱状透镜的单元体的截面形状,另外,多个单元体在柱状透镜中的介电常数分布应使得沿柱状透镜的横截面的类椭圆的短轴方向的馈源发出的非平面波经该介质透镜变为平面波。
假设具有坐标轴XY,如图15所示,该柱状透镜的横截面位于该坐标轴XY的平面,那么,单元体的介电常数可以表示为εxy(x,y)。即,单元体的介电常数与其在柱状透镜中 的位置有关。具体地,单元体的介电常数为εxy(x,y),表示介电常数ε与坐标值x和y有关,其中,坐标值x和y可以是单元体横截面的质心的坐标值。
具体实现时,每个单元体的介电常数在误差范围内都是允许的。举例来说,假设某单元体A的介电常数为ε0,那么,该单元体内任意一点处的介电常数的值可以在ε0附近的误差范围内。举例来说,若误差范围为10%,那么该单元体内任意一点的介电常数的值例如,可以是在ε00×10%至ε00×10%的范围。
进一步地,本申请实施例还提供了一种介质透镜的制造方法。该制造方法可以包括:
将具有不同介电常数的打印粉末或油墨,得到与所述介质透镜中的每个单元体一一对应的混合物,所述混合物满足对应的单元体的介电常数,所述每个单元体在所述介质透镜中的介电常数分布是基于费马原理及斯奈尔定律进行数值拟合确定的,以使得从所述类椭圆的短轴方向的非平面波经所述介质透镜变为平面波;利用所述混合物,生成所述介质透镜。
可选地,该方法可以是:基于费马原理及斯奈尔定律进行数值拟合,确定所述介质透镜中的每个单元体在所述介质透镜中的介电常数分布,以使得从所述类椭圆的短轴方向的非平面波经所述介质透镜变为平面波;进一步地,使用具有不同介电常数的打印粉末或油墨,获取与所述介质透镜中的每个单元体一一对应的混合物,所述混合物满足对应的单元体的介电常数;并利用所述混合物,生成所述介质透镜。
具体地,可以首先根据劈裂天线的实际需要确定介质透镜的尺寸,并基于介质透镜的尺寸确定单元体的数量、尺寸与形状等。进一步地,可以基于费马原理及斯奈尔定律进行数值拟合,从而确定介电常数分布。例如,可以用COMSOL建模,以得到每个单元体的介电常数。可见,介质透镜中的介电常数可以实现按需设计,介电常数的空间分布可以根据数值仿真确定。
可理解,若单元体与单元体之间存在空隙,例如单元体的横截面为圆形或椭圆形,那么在数值拟合过程中,可以考虑单元体之间的空隙为空气,具有空气的介电常数。也就是说,可以将单元体之间的空隙认为是具有空气的介电常数的“特殊的单元体”。
再例如,如果单元体为空心柱状体,可以认为空心部分为空气,具有空气的介电常数。也就是说,该空心部分“填充”的是具有空气的介电常数的“特殊的单元体”。
可选地,该方法可以是:基于费马原理及斯奈尔定律进行数值拟合,确定所述介质透镜中的每个单元体在所述介质透镜中的介电常数分布,以使得从所述类椭圆的短轴方向的非平面波经所述介质透镜变为平面波;进一步地,基于介电常数分布,采用挤出或注塑、或模压、或CNC加工、或3D打印工艺技术制备多个柱状单元体,并将多个柱状单元体采用焊接、或胶接、或结构卡接的方式进行连接和组装,从而得到柱状透镜。
可见,在得到介电常数分布之后,介质透镜可以用由1)介质透镜由多个柱状单元体组装得到和2)采用3D打印技术一次成型得到。其中介质透镜的单元体组装工艺的制备方法中,第一步:先采用挤出或注塑、或模压、或CNC加工、或3D打印工艺技术制备介质透镜需要的柱状单元体。第二步:将第一步制备的多个柱状单元体采用焊接、或胶接、或结构卡接的方式进行连接和组装得到介质透镜。
本申请实施例中,可以按需涉及介质透镜的尺寸以实现透镜的小型化,所使用的打印粉末或油墨可以是密度低的高分子材料或高分子聚合物等,可以实现透镜的轻量化。这样,该介质透镜应用于劈裂天线时,也能够实现劈裂天线的小型化和轻量化。
进一步,本申请实施例还提供了一种劈裂天线,该劈裂天线包括上述的柱状透镜。具体地,该劈裂天线包括天线罩、介质透镜、反射板和振子阵列;
所述介质透镜置于所述天线罩与所述振子阵列之间,所述振子阵列作为所述介质透镜的馈源,所述振子阵列置于所述介质透镜与所述反射板之间,所述振子阵列所需的馈电网络置于所述反射板的背面或与所述反射板集成为一体。其中,所述介质透镜沿着所述劈裂天线的厚度方向具有第一尺寸,所述介质透镜沿着所述劈裂天线的宽度方向具有第二尺寸,且所述第一尺寸小于所述第二尺寸。
换句话说,该劈裂天线也可以理解是将图2中所述的圆柱透镜替换为本实施例中的柱状透镜,并且该柱状透镜的横截面的类椭圆的短轴沿着天线的厚度方向,长轴沿着天线的宽度方向。
在具体实现时,可以根据劈裂天线的尺寸需求(例如劈裂天线的厚度要求和宽度要求)确定柱状透镜的尺寸(例如类椭圆的短轴和长轴),再进一步仿真确定柱状透镜的介电常数分布。从而,实现该柱状透镜的按需设计。可见,可以将类椭圆的短轴设计为远小于长轴,也就是说,柱状透镜的厚度远小于宽度。这样使得该介电透镜用于天线时,在天线满足性能的同时,相对于现有的介电不可调或不可设计的其它透镜(例如龙伯透镜),其厚度可以大大降低,例如厚度可以保证在300mm之内,相应的将该透镜用于天线后,天线的厚度可以降低到350mm以内。对应于某些更优化的方案,该厚度甚至可以做到250mm以内。
这样,本申请实施例的介质透镜能够应用于劈裂天线,以实现通信系统的容量扩充,并且该介质透镜能够实现透镜材料介电常数按需设计,介电常数的空间分布根据电磁仿真确定,使得天线满足性能的同时,其厚度大大降低。
图16是本申请另一个实施例的介质透镜的示意图。图16所示的介质透镜为准椭球状透镜,该准椭球状透镜的最大截面为准椭圆。
其中,准椭球状是指近似的椭球状,准椭球状也可以称为近似椭球状或类似椭球状或类椭球状。并且应理解,准椭球状包括椭球状,也就是说,介质透镜可以为椭球状透镜。准椭圆是指近似的椭圆,准椭圆也可以称为近似椭圆或类似椭圆或类椭圆。并且应理解,准椭圆包括椭圆,也就是说,介质透镜的最大截面可以为椭圆。
一般地,准椭球具有一个长轴和两个短轴,这里的最大截面是指准椭球的长轴与较大短轴所在的截面。
可选地,作为一个实施例,该介质透镜可以为旋转椭球状,该介质透镜可以在几何上认为是椭圆(即最大截面的椭圆)沿着其长轴旋转一周而成的,如图17所示。
所述类椭球状透镜由多个单元体紧密堆砌而成,所述多个单元体在所述介质透镜中的介电常数分布使得沿所述类椭圆的短轴方向的非平面波经所述透镜变为平面波,所述介电常数分布是基于费马原理及斯奈尔定律数值拟合得出的;其中,每个单元体为实心体或空心体。
其中,准椭球状透镜可以是由多个单元体以堆积木方式紧密堆砌而成的。
可选地,所述多个单元体之间的连接为以下的任意一种:焊接、胶接、结构卡接、由3D打印技术打印连接。
其中,焊接可以为超声焊接或扩散焊接,也可以是其他形式的焊接,本申请对此不限定。
另外,同一类椭球状透镜中的多个单元体之间的连接方式可以相同或不同。例如,某些单元体之间的连接方式为焊接,另外一些单元体之间的连接方式为胶接。例如,某些单元体之间的连接方式为超声焊接,另外一些单元体之间的连接方式为扩散焊接。
从一个单元体的角度来说,作为一个实施例,单元体为实心的第一多面体。
可选地,单元体可以为具有第一外接球的第一多面体,即,第一多面体为第一球的内接多面体。其中,第一球的直径可以表示为d1,1mm≤d1≤450mm。应注意,d1的大小也可以是其他的数值,这里不作限定。
应注意,d1的值可以为1mm至450mm之间的任一值,例如d1=1mm或d1=30mm等,本申请对此不限定。
其中,该第一多面体可以为正多面体。若第一多面体为正多边形,且该第一多面体的面数大于预设的第一阈值时,可以将该第一多面体近似为球。其中,该近似的球为该第一多面体的外接球,即为第一球。也就是说,单元体可以为球形。举例来说,若该第一多面体为正十二面体或正二十面体,可以认为该第一多面体为球。
可选地,第一多面体可以是具有第一外接旋转椭球的多面体,也就是说,第一多面体可以为第一旋转椭球的内接多面体。其中,所述第一旋转椭球的长轴表示为d1a,短轴表示为d1b,1mm≤d1b<d1a≤450mm。
应注意,d1a和d1b满足d1b<d1a,且d1a和d1b的值可以为1mm至450mm之间的任一值,例如d1a=20mm,d1b=5mm等,本申请对此不限定。
若第一多面体为具有第一对称面和第二对称面的多面体,且第一对称面和第二对称面为该第一旋转椭球的两个对称面,那么当该第一多面体的面数大于预设的第二阈值时,可以将该第一多面体近似为椭球。其中,该近似的第一多面体为该第一多面体的外接旋转椭球,即为第一旋转椭球。也就是说,单元体可以为旋转椭球。举例来说,第二阈值可以等于12或20。
从一个单元体的角度来说,作为另一个实施例,单元体为实心体,该单元体为第四球或第四旋转椭球。
其中,第四球的直径表示为d4,1mm≤d4≤450mm。或者,第四旋转椭球的长轴表示为d4a,短轴表示为d4b,1mm≤d4b<d4a≤450mm。
应注意,d4的值可以为1mm至450mm之间的任一值,例如d1=1mm等。d4a和d4b满足d4b<d4a,且d4a和d4b的值可以为1mm至450mm之间的任一值,例如d4a=10mm,d4b=3mm等,本申请对此不限定。
从一个单元体的角度来说,作为另一个实施例,单元体为空心体,所述单元体的外轮廓为第二多面体,内轮廓为第三多面体。其中,第二多面体与第三多面体的面数可以相等或不相等。
应注意,如果第二多面体的面数与第三多面体的面数相等。那么,第二多面体的面与对应的第三多面体的面可以是相互平行的,或者,第二多面体的面与第三多面体的任一面都不平行,本申请对此不限定。
可选地,所述第二多面体可以为第二球的内接多面体,所述第三多面体可以为第三球的内接多面体。其中,所述第二球的直径表示为d2,所述第三球的直径表示为d3,1mm≤d3<d2≤450mm。
应注意,d2和d3满足d3<d2,且d2和d3的值可以为1mm至450mm之间的任一值, 例如d2=100mm,d3=20mm等,本申请对此不限定。
作为一例,所述第二多面体为正多面体,和/或,所述第三多面体为正多面体。
可选地,第二多面体为正多面体,第三多面体为正多面体,且第二多面体与第三多面体的面数可以相等或不相等,此时,第二多面体与第三多面体可以具有相同的对称面或不相同的对称面。可选地,第二多面体为正多面体,第三多面体为非正多面体,且第二多面体与第三多面体的面数可以相等或不相等。可选地,第二多面体为非正多面体,第三多面体为正多面体,且第二多面体与第三多面体的面数可以相等或不相等。可选地,第二多面体为非正多面体,第三多面体为非正多面体,且第二多面体与第三多面体的面数可以相等或不相等。
若第二多面体为正十二面体或正二十面体,第三多面体为正十二面体或正二十面体,且第二多面体与第三多面体的中心重合,可以认为,该单元体为空心球壳。
可选地,第二多面体为第二旋转椭球的内接多面体,第三多面体为第三旋转椭球的内接多面体。其中,所述第二旋转椭球的长轴表示为d2a,短轴表示为d2b,所述第三旋转椭球的长轴表示为d3a,短轴表示为d3b,1mm≤d3a<d2a≤450mm,1mm≤d3b<d2b≤450mm,且d2a>D2b;d3a>d3b。
应注意,d2a、d2b、d3a和d3b满足d3a<d2a、d3b<d2b、d2a>d2b、d3a>d3b,且d2a、d2b、d3a和d3b的值可以为1mm至450mm之间的任一值,例如d2a=180mm,d2b=120mm,d3a=90mm,d3b=20mm等,本申请对此不限定。
若第二多面体具有第一对称面和第二对称面,第三多面体具有第一对称面和第二对称面,且第一对称面和第二对称面为该第二旋转椭球的两个对称面,那么当该第二多面体的面数大于预设的第四阈值且第三多面体的面数大于预设的第四阈值时,可以将该单元体可以为空心的旋转椭球。举例来说,第四阈值可以等于12或20。
从一个单元体的角度来说,作为另一个实施例,单元体为空心体,单元体的外壁轮廓为第五球或第五旋转椭球,内壁轮廓为第六球或第六旋转椭球。
其中,第五球的直径表示为d5,第六球的直径表示为d6,第五旋转椭球的长轴表示为d5a,短轴表示为d5b,第六旋转椭球的长轴表示为d6a,短轴表示为d6b。1mm≤d6<d5≤450mm,1mm≤d6a<d5a≤450mm,1mm≤d6b<d5b≤450mm,且d5a>d5b;d6a>d6b。
可选地,外壁轮廓为第五球,内壁轮廓为第六球。且满足:1mm≤d6<d5≤450mm。
可选地,外壁轮廓为第五球,内壁轮廓为第六椭球。且满足:1mm≤d6b<d6a<d5≤450mm。
可选地,外壁轮廓为第五椭球,内壁轮廓为第六球。且满足:1mm≤d6<d5b<d5a≤450mm。
可选地,外壁轮廓为第五椭球,内壁轮廓为第六椭球。且满足:1mm≤d6a<d5a≤450mm,1mm≤d6b<d5b≤450mm,且d6b<d6a,且d5b<d5a。
应注意,尽管在上述实施例中,示意性地给出了d1、d2、d3、d4、d5、d6、d1b、d1a、d2b、d2a、d3b、d3a、d4b、d4a、d5b、d5a、d6b、d6a的取值范围,但本申请对该范围不作限定。并且,每个值都可以是其范围内的任一值,这里不再一一罗列。
可理解,本申请实施例中,单元体也可以是其他的非规则形状的多面体,例如,单元体可以是既不具有外接球也不具有外接椭球的非规则形状的多面体,这里不再一一罗 列。
与上述柱状透镜类似地,该类椭球状透镜中的单元体的介电常数可以表示为εxy(x,y,z)。即,单元体的介电常数与其在介质透镜中的位置有关。具体地,单元体的介电常数为εxy(x,y,z),表示介电常数ε与坐标值x、y和z有关,其中,坐标值x、y和z可以是单元体的质心的坐标值。
具体实现时,每个单元体的介电常数在误差范围内都是允许的。举例来说,假设某单元体A的介电常数为ε0,那么,该单元体内任意一点处的介电常数的值可以在ε0附近的误差范围内。举例来说,若误差范围为10%,那么该单元体内任意一点的介电常数的值可以是在ε00×10%至ε00×10%的范围。
进一步地,本申请实施例还提供了一种介质透镜的制造方法。该制造方法可以包括:
将具有不同介电常数的打印粉末或油墨,得到与所述介质透镜中的每个单元体一一对应的混合物,所述混合物满足对应的单元体的介电常数,所述每个单元体在所述介质透镜中的介电常数分布是基于费马原理及斯奈尔定律进行数值拟合确定的,以使得从所述类椭圆的短轴方向的非平面波经所述介质透镜变为平面波;利用所述混合物,生成所述介质透镜。
可选地,该方法可以是:基于费马原理及斯奈尔定律进行数值拟合,确定所述介质透镜(类椭球状透镜)中的每个单元体在所述介质透镜中的介电常数分布,以使得从所述类椭圆的短轴方向的非平面波经所述介质透镜变为平面波;进一步地使用具有不同介电常数的打印粉末或油墨,获取与所述介质透镜中的每个单元体一一对应的混合物,所述混合物满足对应的单元体的介电常数;并利用所述混合物,生成所述介质透镜。
具体地,可以首先根据劈裂天线的实际需要确定介质透镜的尺寸,并基于介质透镜的尺寸确定单元体的数量、尺寸与形状等。进一步地,可以基于费马原理及斯奈尔定律进行数值拟合,从而确定介电常数分布。例如,可以用COMSOL建模,以得到每个单元体的介电常数。可见,介质透镜中的介电常数可以实现按需设计,介电常数的空间分布可以根据数值仿真确定。
可理解,若单元体与单元体之间存在空隙,例如单元体为第一球或第一旋转椭球;或者,例如单元体的外轮廓为第二球或第二旋转椭球,那么在数值拟合过程中,可以考虑单元体之间的空隙为空气,具有空气的介电常数。也就是说,可以将单元体之间的空隙认为是具有空气的介电常数的“特殊的单元体”。
再例如,如果单元体为空心体,可以认为空心部分为空气,具有空气的介电常数。也就是说,该空心部分“填充”的是具有空气的介电常数的“特殊的单元体”。
可选地,该方法可以是:基于费马原理及斯奈尔定律进行数值拟合,确定所述介质透镜中的每个单元体在所述介质透镜中的介电常数分布,以使得从所述类椭圆的短轴方向的非平面波经所述介质透镜变为平面波;进一步地,基于介电常数分布,采用挤出或注塑、或模压、或CNC加工、或3D打印工艺技术制备多个单元体,并将多个单元体采用焊接、或胶接、或结构卡接的方式进行连接和组装,从而得到准椭球状透镜。
可见,在得到介电常数分布之后,介质透镜可以用由1)介质透镜由多个单元体组装得到和2)采用3D打印技术一次成型得到。
其中介质透镜的单元体组装工艺的制备方法中,第一步:先采用挤出或注塑、或模压、或CNC加工、或3D打印工艺技术制备介质透镜需要的单元体。第二步:将第一步 制备的多个单元体采用焊接、或胶接、或结构卡接的方式进行连接和组装得到介质透镜。
本申请实施例中,可以按需涉及介质透镜的尺寸以实现透镜的小型化,所使用的打印粉末或油墨可以是密度低的高分子材料或高分子聚合物等,可以实现透镜的轻量化。这样,该介质透镜应用于劈裂天线时,也能够实现劈裂天线的小型化和轻量化。
进一步,本申请实施例还提供了一种劈裂天线,该劈裂天线包括上述的椭球状透镜。具体地,该劈裂天线包括天线罩、介质透镜、反射板和振子阵列;
所述介质透镜置于所述天线罩与所述振子阵列之间,所述振子阵列作为所述介质透镜的馈源,所述振子阵列置于所述介质透镜与所述反射板之间,所述振子阵列所需的馈电网络置于所述反射板的背面或与所述反射板集成为一体。其中,所述介质透镜沿着所述劈裂天线的厚度方向具有第一尺寸,所述介质透镜沿着所述劈裂天线的宽度方向具有第二尺寸,且所述第一尺寸小于所述第二尺寸。
换句话说,该劈裂天线也可以理解是将图4中所述的球状透镜替换为本实施例中的类椭球状透镜,并且该类椭球状透镜的最大33截面的类椭圆的短轴沿着天线的厚度方向,长轴沿着天线的宽度方向。
在具体实现时,可以根据劈裂天线的尺寸需求(例如劈裂天线的厚度要求和宽度要求)确定柱状透镜的尺寸(例如椭球状透镜的长轴和两个短轴),再进一步仿真确定椭球状透镜的介电常数分布。从而,实现该椭球状透镜的按需设计。可见,可以将椭圆的短轴设计为远小于长轴,也就是说,椭球状透镜的厚度远小于宽度。这样使得该介电透镜用于天线时,在天线满足性能的同时,相对于现有的介电不可调或不可设计的其它透镜(例如龙伯透镜),其厚度可以大大降低,例如厚度可以保证在300mm之内,相应的将该透镜用于天线后,天线的厚度可以降低到350mm以内。对应于某些更优化的方案,该厚度甚至可以做到250mm以内。
这样,本申请实施例的介质透镜能够应用于劈裂天线,以实现通信系统的容量扩充,并且该介质透镜能够实现透镜材料介电常数按需设计,介电常数的空间分布根据电磁仿真确定,使得天线满足性能的同时,其厚度大大降低。
本申请实施例中,介质透镜及其制造方法是是实现高增益UMTS/LTE小型化天线的关键技术,并且该技术的成功可延续至未来的5G阶段。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种介质透镜,其特征在于,所述介质透镜为柱状透镜,所述柱状透镜的横截面轮廓为准椭圆,所述柱状透镜由多个单元体堆砌而成,所述多个柱状单元体在所述介质透镜中的介电常数分布使得沿所述准椭圆的短轴方向的非平面波经所述透镜变为平面波;
    其中,所述每个柱状单元体的长度等于所述柱状透镜的长度。
  2. 根据权利要求1所述的透镜,其特征在于,所述单元体为实心体,所述单元体的横截面为第一多边形。
  3. 根据权利要求2所述的透镜,其特征在于,所述第一多边形为第一圆的内接多边形,所述第一圆的直径表示为D1,其中,1mm≤D1≤450mm。
  4. 根据权利要求2或3所述的透镜,其特征在于,所述第一多边形为正多边形。
  5. 根据权利要求2所述的透镜,其特征在于,所述第一多边形为第一椭圆的内接多边形,所述第一椭圆的长轴表示为D1a,短轴表示为D1b,其中,1mm≤D1b<D1a≤450mm。
  6. 根据权利要求1所述的透镜,其特征在于,所述单元体为空心体,所述单元体的横截面的外轮廓为第二多边形,内轮廓为第三多边形。
  7. 根据权利要求6所述的透镜,其特征在于,所述第二多边形为第二圆的内接多边形,所述第三多边形为第三圆的内接多边形,所述第二圆的直径表示为D2,所述第三圆的直径表示为D3,其中,1mm≤D3<D2≤450mm。
  8. 根据权利要求6或7所述的透镜,其特征在于,所述第二多边形为正多边形,和/或,所述第三多边形为正多边形。
  9. 根据权利要求6所述的透镜,其特征在于,所述第二多边形为第二椭圆的内接多边形,所述第三多边形为第三椭圆的内接多边形,所述第二椭圆的长轴表示为D2a,短轴表示为D2b,所述第三椭圆的长轴表示为D3a,短轴表示为D3b,其中,1mm<D3a<D2a≤450mm,1mm≤D3b<D2b<450mm,且D2a>D2b;D3a>D3b。
  10. 根据权利要求1所述的透镜,其特征在于,所述单元体为实心体,所述单元体的横截面为第四圆或第四椭圆,所述第四圆的直径表示为D4,所述第四椭圆的长轴表示为D4a,短轴表示为D4b,其中,1mm≤D4≤450mm,1mm≤D4b<D4a≤450mm。
  11. 根据权利要求1所述的透镜,其特征在于,所述单元体为空心体,所述单元体的横截面的外轮廓为第五椭圆,内轮廓为第六椭圆,所述第五椭圆的长轴表示为D5a,短轴表示为D5b,所述第六椭圆的长轴表示为D6a,短轴表示为D6b,其中,1mm<D6a<D5a≤450mm,1mm≤D6b<D5b<450mm,且D5a>D5b;D6a>D6b。
  12. 根据权利要求1至11任一项所述的透镜,其特征在于,所述长度表示为L,其中,100mm≤L≤3500mm。
  13. 根据权利要求1至12任一项所述的透镜,其特征在于,所述准椭圆的长轴表示为Da,短轴表示为Db,其中,1mm≤Db<Da≤450mm。
  14. 根据权利要求1至13任一项所述的透镜,其特征在于,所述多个柱状单元体之间的连接为以下的任意一种:焊接、胶接、结构卡接,由3D打印技术打印连接。
  15. 根据权利要求1至14任一项所述的透镜,其特征在于,所述多个柱状单元体的制备工艺为以下的任意一种:挤出、注塑、模压、数控机床CNC加工和3D打印工艺技 术。
  16. 一种介质透镜,其特征在于,所述介质透镜为准椭球状透镜,所述准椭球状透镜的最大截面为准椭圆,所述准椭球状透镜由多个单元体紧密堆砌而成,所述多个单元体在所述介质透镜中的介电常数分布使得沿所述准椭圆的短轴方向的非平面波经所述透镜变为平面波;
    其中,每个单元体为实心体或空心体。
  17. 根据权利要求16所述的透镜,其特征在于,所述单元体为实心的第一多面体。
  18. 根据权利要求17所述的透镜,其特征在于,所述第一多面体为第一球的内接多面体,所述第一球的直径表示为d1,其中,1mm≤d1≤450mm。
  19. 根据权利要求17或18所述的透镜,其特征在于,所述第一多面体为正多面体。
  20. 根据权利要求17所述的透镜,其特征在于,所述第一多面体为第一旋转椭球的内接多面体,所述第一旋转椭球的长轴表示为d1a,短轴表示为d1b,其中,1mm≤d1b<d1a≤450mm。
  21. 根据权利要求16所述的透镜,其特征在于,所述单元体为第四球或第四旋转椭球,所述第四球的直径表示为d4,所述第四旋转椭球的长轴表示为d4a,短轴表示为d4b,其中,1mm≤d4≤450mm,1mm≤d4b<d4a≤450mm。
  22. 根据权利要求16所述的透镜,其特征在于,所述单元体为空心体,所述单元体的外轮廓为第二多面体,内轮廓为第三多面体。
  23. 根据权利要求22所述的透镜,其特征在于,所述第二多面体为第二球的内接多面体,所述第三多面体为第三球的内接多面体,所述第二球的直径表示为d2,所述第三球的直径表示为d3,其中,1mm≤d3<d2≤450mm。
  24. 根据权利要求22或23所述的透镜,其特征在于,所述第二多面体为正多面体,和/或,所述第三多面体为正多面体。
  25. 根据权利要求22所述的透镜,其特征在于,所述第二多面体为第二旋转椭球的内接多面体,所述第三多面体为第三旋转椭球的内接多面体,所述第二旋转椭球的长轴表示为d2a,短轴表示为d2b,所述第三旋转椭球的长轴表示为d3a,短轴表示为d3b,其中,1mm≤d3a<d2a≤450mm,1mm≤d3b<d2b≤450mm,且d2a>d2b;d3a>d3b。
  26. 根据权利要求16所述的透镜,其特征在于,所述单元体为第四球或第四旋转椭球,所述第四球的直径表示为d4,所述第四旋转椭球的长轴表示为d4a,短轴表示为d4b,其中,1mm≤d4≤450mm,1mm≤d4b<d4a≤450mm。
  27. 根据权利要求16所述的透镜,其特征在于,其特征在于,所述单元体为空心体,所述单元体的外轮廓为第五旋转椭球,内轮廓为第六旋转椭球;所述第五旋转椭球的长轴表示为d5a,短轴表示为d5b,所述第六旋转椭球的长轴表示为d6a,短轴表示为d6b,其中,1mm≤d6a<d5a≤450mm,1mm≤d6b<d5b≤450mm,且d5a>d5b;d6a>d6b。
  28. 根据权利要求16至27任一项所述的透镜,其特征在于,所述多个单元体之间的连接为以下的任意一种:焊接、胶接、结构卡接,由3D打印技术打印连接。
  29. 根据权利要求16至28任一项所述的透镜,其特征在于,所述多个柱状单元体的制备工艺为以下的任意一种:挤出、注塑、模压、数控机床CNC加工和3D打印工艺技术。
  30. 一种劈裂天线,其特征在于,包括:天线罩、介质透镜、反射板和振子阵列;
    所述介质透镜置于所述天线罩与所述振子阵列之间,所述振子阵列作为所述介质透镜的馈源,
    所述振子阵列置于所述介质透镜与所述反射板之间,所述振子阵列所需的馈电网络置于所述反射板的背面或与所述反射板集成为一体,
    其中,所述介质透镜沿着所述劈裂天线的厚度方向具有第一尺寸,所述介质透镜沿着所述劈裂天线的宽度方向具有第二尺寸,且所述第一尺寸小于所述第二尺寸。
  31. 根据权利要求30所述的劈裂天线,其特征在于,所述介质透镜为权利要求1至15任一项所述的透镜,或者,所述介质透镜为权利要求16至29任一项所述的透镜。
PCT/CN2017/075958 2016-07-14 2017-03-08 介质透镜以及劈裂天线 WO2018010443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17826782.9A EP3471202B1 (en) 2016-07-14 2017-03-08 Dielectric lens and multi-beam antenna
US16/245,676 US11139583B2 (en) 2016-07-14 2019-01-11 Dielectric lens and multi-beam antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610555043.5 2016-07-14
CN201610555043.5A CN107623174B (zh) 2016-07-14 2016-07-14 介质透镜以及劈裂天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/245,676 Continuation US11139583B2 (en) 2016-07-14 2019-01-11 Dielectric lens and multi-beam antenna

Publications (1)

Publication Number Publication Date
WO2018010443A1 true WO2018010443A1 (zh) 2018-01-18

Family

ID=60952740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075958 WO2018010443A1 (zh) 2016-07-14 2017-03-08 介质透镜以及劈裂天线

Country Status (4)

Country Link
US (1) US11139583B2 (zh)
EP (1) EP3471202B1 (zh)
CN (1) CN107623174B (zh)
WO (1) WO2018010443A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546359A (zh) * 2018-12-06 2019-03-29 北京神舟博远科技有限公司 一种基于3d打印的方向图可重构相控阵天线系统
WO2021105326A1 (en) 2019-11-29 2021-06-03 Neste Oyj Two-step process for converting liquefied waste plastics into steam cracker feed
WO2021105327A1 (en) 2019-11-29 2021-06-03 Neste Oyj Method for upgrading liquefied waste plastics
CN114597667A (zh) * 2022-02-14 2022-06-07 西安科技大学 一种蜂窝状超宽带高增益涡旋波六边形介质柱阵列透镜
WO2022144495A1 (en) 2020-12-30 2022-07-07 Neste Oyj Co-processing route for hydrotreating polymer waste-based material
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11637377B2 (en) 2018-12-04 2023-04-25 Rogers Corporation Dielectric electromagnetic structure and method of making the same
EP4306620A1 (en) 2022-07-12 2024-01-17 Neste Oyj A method for purification of liquefied waste plastics using recycled aqueous stream
EP4306619A1 (en) 2022-07-12 2024-01-17 Neste Oyj Improved method for processing liquefied waste plastics
WO2024013429A1 (en) 2022-07-12 2024-01-18 Neste Oyj A method for purification of liquefied waste plastics using recycled aqueous stream
WO2024013430A1 (en) 2022-07-12 2024-01-18 Neste Oyj Improved method for processing liquefied waste plastics

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149122B (zh) * 2018-09-06 2020-10-16 西安电子科技大学 一种基于3d打印的透镜和透镜天线
CN109687158B (zh) * 2018-12-27 2020-04-21 北京理工大学 适于3d打印的全介质多波束扫描龙勃透镜结构及打印方法
GB201911130D0 (en) * 2019-08-05 2019-09-18 Qinetiq Ltd MAterials and methods
CN111106429B (zh) * 2019-11-08 2021-03-12 京信通信技术(广州)有限公司 通信装置、透镜天线及球透镜
CN111478053A (zh) * 2020-04-21 2020-07-31 合肥若森智能科技有限公司 一种变形龙伯透镜及天线
CN113381172A (zh) * 2021-05-27 2021-09-10 深圳市信维通信股份有限公司 一种集成透镜天线及通信设备
US11894612B2 (en) * 2022-02-25 2024-02-06 Qualcomm Incorporated Antenna array having a curved configuration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590544B1 (en) * 1998-09-01 2003-07-08 Qualcomm, Inc. Dielectric lens assembly for a feed antenna
US20080278394A1 (en) * 2007-04-30 2008-11-13 Smiths Specialty Engineering Low profile quasi-optic phased array antenna
CN101662076A (zh) * 2008-08-28 2010-03-03 阮树成 毫米波准光集成介质透镜天线及其阵列
CN101971423A (zh) * 2008-02-11 2011-02-09 克洛纳测量技术有限公司 介质天线
CN102176538A (zh) * 2011-01-26 2011-09-07 浙江大学 多波束介质柱透镜天线
CN102610926A (zh) * 2012-04-11 2012-07-25 哈尔滨工业大学 用于高空平台通信系统的介质透镜天线
US20140227966A1 (en) * 2011-10-20 2014-08-14 Limited Liability Company "Radio Gigabit" System and method of relay communication with electronic beam adjustment
CN105659434A (zh) * 2013-09-09 2016-06-08 康普北卡罗来纳州公司 带透镜基站天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047776A (en) * 1990-06-27 1991-09-10 Hughes Aircraft Company Multibeam optical and electromagnetic hemispherical/spherical sensor
CN1029058C (zh) * 1991-11-19 1995-06-21 汤姆森电子用品公司 天线用的介质材料
FR2888407B1 (fr) * 2005-07-05 2009-08-21 Univ Rennes I Etablissement Pu Lentille inhomogene a gradient d'indice de type oeil de poisson de maxwell, systeme d'antenne et applications correspondants.
DK2229710T3 (da) 2007-12-17 2013-04-22 Matsing Pte Ltd Kunstigt dielektrisk materiale og fremgangsmåde til fremstilling af dette
EP2523256B1 (en) * 2011-05-13 2013-07-24 Thomson Licensing Multibeam antenna system
WO2016061825A1 (zh) * 2014-10-24 2016-04-28 华为技术有限公司 天线系统和处理方法
CN105390824B (zh) * 2015-12-14 2018-06-19 华为技术有限公司 劈裂天线的馈电网络和劈裂天线
WO2017127378A1 (en) * 2016-01-19 2017-07-27 Commscope Technologies Llc Multi-beam antennas having lenses formed of a lightweight dielectric material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590544B1 (en) * 1998-09-01 2003-07-08 Qualcomm, Inc. Dielectric lens assembly for a feed antenna
US20080278394A1 (en) * 2007-04-30 2008-11-13 Smiths Specialty Engineering Low profile quasi-optic phased array antenna
CN101971423A (zh) * 2008-02-11 2011-02-09 克洛纳测量技术有限公司 介质天线
CN101662076A (zh) * 2008-08-28 2010-03-03 阮树成 毫米波准光集成介质透镜天线及其阵列
CN102176538A (zh) * 2011-01-26 2011-09-07 浙江大学 多波束介质柱透镜天线
US20140227966A1 (en) * 2011-10-20 2014-08-14 Limited Liability Company "Radio Gigabit" System and method of relay communication with electronic beam adjustment
CN102610926A (zh) * 2012-04-11 2012-07-25 哈尔滨工业大学 用于高空平台通信系统的介质透镜天线
CN105659434A (zh) * 2013-09-09 2016-06-08 康普北卡罗来纳州公司 带透镜基站天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3471202A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
GB2592490B (en) * 2018-09-11 2023-02-22 Rogers Corp Dielectric resonator antenna system
US11637377B2 (en) 2018-12-04 2023-04-25 Rogers Corporation Dielectric electromagnetic structure and method of making the same
CN109546359B (zh) * 2018-12-06 2023-08-22 北京神舟博远科技有限公司 一种基于3d打印的方向图可重构相控阵天线系统
CN109546359A (zh) * 2018-12-06 2019-03-29 北京神舟博远科技有限公司 一种基于3d打印的方向图可重构相控阵天线系统
WO2021105326A1 (en) 2019-11-29 2021-06-03 Neste Oyj Two-step process for converting liquefied waste plastics into steam cracker feed
WO2021105327A1 (en) 2019-11-29 2021-06-03 Neste Oyj Method for upgrading liquefied waste plastics
US11482790B2 (en) 2020-04-08 2022-10-25 Rogers Corporation Dielectric lens and electromagnetic device with same
WO2022144495A1 (en) 2020-12-30 2022-07-07 Neste Oyj Co-processing route for hydrotreating polymer waste-based material
WO2022144505A1 (en) 2020-12-30 2022-07-07 Neste Oyj Co-processing of polymer waste-based material for jet fuel production
CN114597667A (zh) * 2022-02-14 2022-06-07 西安科技大学 一种蜂窝状超宽带高增益涡旋波六边形介质柱阵列透镜
CN114597667B (zh) * 2022-02-14 2024-04-19 西安科技大学 一种蜂窝状超宽带高增益涡旋波六边形介质柱阵列透镜
EP4306620A1 (en) 2022-07-12 2024-01-17 Neste Oyj A method for purification of liquefied waste plastics using recycled aqueous stream
EP4306619A1 (en) 2022-07-12 2024-01-17 Neste Oyj Improved method for processing liquefied waste plastics
WO2024013429A1 (en) 2022-07-12 2024-01-18 Neste Oyj A method for purification of liquefied waste plastics using recycled aqueous stream
WO2024013430A1 (en) 2022-07-12 2024-01-18 Neste Oyj Improved method for processing liquefied waste plastics

Also Published As

Publication number Publication date
CN107623174B (zh) 2021-02-12
CN107623174A (zh) 2018-01-23
US20190148836A1 (en) 2019-05-16
EP3471202A1 (en) 2019-04-17
EP3471202A4 (en) 2019-07-03
EP3471202B1 (en) 2022-08-24
US11139583B2 (en) 2021-10-05

Similar Documents

Publication Publication Date Title
WO2018010443A1 (zh) 介质透镜以及劈裂天线
CN107623189B (zh) 一种半球龙伯透镜天线的制作方法
CN109378585B (zh) 半空间波束覆盖的圆极化龙伯透镜天线
WO2019034116A1 (zh) 基于人工介质圆柱透镜高楼覆盖多波束天线
CN205122780U (zh) 一种龙伯透镜反射器
CN114050418B (zh) 一种介质腔组成的透镜体及透镜天线
WO2021159878A1 (zh) 通信装置、透镜天线及球透镜
CN213660638U (zh) 一种变形龙伯透镜及天线
CN205122779U (zh) 一种龙伯透镜天线
CN113270724B (zh) 基于龙伯透镜的高增益宽角扫描多波束井盖天线
Liu et al. Phased hemispherical lens antenna for 1-D wide-angle beam scanning
CN111697349B (zh) 一种基于准保角变换光学的全金属多波束透镜天线
CN114586240A (zh) 龙伯透镜
CN104916918B (zh) 一种基于超材料加载的高增益喇叭天线
CN109546359A (zh) 一种基于3d打印的方向图可重构相控阵天线系统
TWI736448B (zh) 球形梯度折射率透鏡
CN205122778U (zh) 一种半球龙伯透镜天线
WO2023031731A1 (en) Antenna assembly and communication system
CN109786975B (zh) 一种oam涡旋电磁波轨道平面全向辐射的实现装置
CN107394375A (zh) 弧面馈源收发集成新月透镜天线
CN117175220B (zh) 一种连续渐变开孔的龙勃透镜天线
Whiting et al. Reflectarray Feeds Augmented With Size-Reducing GRIN Lenses for Improved Power Handling and Aperture Efficiency
CN110534917A (zh) 基于梯度折射率超材料的宽频带低副瓣龙伯透镜天线
CN114221138B (zh) 人工电磁超表面及其制作方法
CN111585036B (zh) 全金属波束扫描超透镜天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017826782

Country of ref document: EP

Effective date: 20190109