CN114586240A - 龙伯透镜 - Google Patents
龙伯透镜 Download PDFInfo
- Publication number
- CN114586240A CN114586240A CN202080073471.9A CN202080073471A CN114586240A CN 114586240 A CN114586240 A CN 114586240A CN 202080073471 A CN202080073471 A CN 202080073471A CN 114586240 A CN114586240 A CN 114586240A
- Authority
- CN
- China
- Prior art keywords
- luneberg lens
- circularly polarized
- lens
- triangular
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/08—Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
龙伯透镜包括多个同中布置的球对称层,每个层由多个三角形区域形成。每个层的多个三角形区域形成短程线性多面体,例如正二十面体。每个三角形区域包括一个或多个孔隙,且每个孔隙可以是三角形的。
Description
技术领域
本公开涉及龙伯(Luneburg)透镜,并涉及包括龙伯透镜的天线设备。
背景技术
龙伯透镜(Luneburg lens,LL)天线具有若干已知的优点,例如在本质上是宽带的,并且具有高增益和多波束能力,这在诸如5G通信系统等应用中尤为重要。由于电磁波在5G设备工作的高频段会遭受较高的大气传播损耗和阻断,因此点对点无线应用(即移动回程传输网络)需要具有高增益性能和宽扫描范围的天线,以实现较高的空间覆盖。
与其他多波束天线(如相控阵天线)相比,龙伯透镜天线不受扫描损耗的影响,也不需要复杂且昂贵的馈电网络,这些优势使其成为毫米波通信的理想选项。
龙伯透镜的径向介电常数变化遵循以下关系:
其中,εr是相对介电常数,R是透镜的半径,r是距中心的距离。通过这种材料分布,所有焦点都位于表面上,这使得龙伯透镜能够通过将柱面或球面入射波转换为平面波来产生准直波束。此外,透镜外表面的折射率(其中r=R)为1,因此与自由空间自然实现了完美的折射率匹配。
到目前为止,由于缺乏可用的可变介电常数材料,龙伯透镜的发展一直受制于其制造上的困难。以前制造龙伯透镜尝试使用了聚苯乙烯、石英或聚四氟乙烯的双层或多层外壳,指数倒角,钻孔,切片的球形板,和定制的泡沫。虽然这些方法有效,但它们需要复杂且昂贵的制造工艺。此外,由于已知制造技术和材料的限制,使用这种龙伯透镜的天线在较高频率,例如在毫米波(mm-W)段,变得不那么有效。
也有人尝试使用增材制造技术制造龙伯透镜。在这些先前的方法中,透镜被离散化为立方体或环形的单元晶胞,并且每个单元晶胞都填充有预先计算量的材料以改变折射率。然而,在增材制造过程完成后,尤其是在去除增材制造过程中使用的支撑之后,这些提议的结构变得脆弱,这很容易导致变形和透镜的性能下降。
发明内容
本发明涉及一种龙伯透镜,包括多个同心布置的球对称层,每个层由多个三角形区域形成。
通过对透镜采用球对称配置,可以确保无论馈送位置如何,指向透镜中心的入射电磁波都会经历几乎相同的材料环境,这对于圆极化入射辐射是尤其有利的。
每个层的多个三角形区域可以形成短程线性多面体(geodesic polyhedron),例如正二十面体。
在一些实施例中,每个层由基本上相等数量的三角形区域组成。
每个层的三角形区域与每个相邻的所述同心布置的层的三角形区域基本径向对齐。这样,在透镜的增材制造过程中,多余材料被固化的趋势大大降低。
在一些实施例中,每个三角形区域定义具有法线的平面,该法线与龙伯透镜的中心对齐。
在一些实施例中,每个三角形区域包括至少一个孔隙。孔隙可以是三角形的。通过形成具有包含孔隙的三角形区域的透镜,可以使用单一材料形成龙伯透镜,同时仍然能够根据半径改变折射率。
在一些实施例中,多个三角形区域中的三角形区域的数量N由下式确定:N=20*n2,其中n是二十面体的阶数。例如,二十面体的阶数n可以为1。
在一些实施例中,每个三角形是等边的,且具有在λ/10到λ/4的范围之内的边长L,其中λ为龙伯透镜接收的电磁波的预期波长。
在一些实施例中,每个同心布置的层的厚度相等。
本发明还涉及一种天线,包括:如本文所公开的龙伯透镜;以及,一个或多个天线馈电结构,所述一个或多个天线馈电结构被布置成向龙伯透镜发射电磁辐射,或从龙伯透镜接收电磁辐射。
在一些实施例中,一个或多个天线馈电结构中的至少一个包括圆极化天线馈电元件。
在一些实施例中,圆极化天线馈电元件包括:波导腔;以及,至少一个隔膜;至少一个隔膜将波导腔分成两个区域,并为每个区域形成各自的端口,该隔膜同时产生用于从圆极化天线馈电元件辐射的右旋圆极化波和左旋圆极化波。
在一些实施例中,至少一个隔膜是阶梯状的。例如,至少一个隔膜可以是阶梯状的以使得它在由圆极化天线馈电元件产生的圆极化电磁波的传播方向上逐渐变窄。
在一些实施例中,圆极化天线馈电元件为于将圆极化电磁波辐射到龙伯透镜的多个圆极化天线馈电元件中的一个。例如,每个圆极化天线馈电元件可以围绕龙伯透镜的外表面布置,以向龙伯透镜的中心,径向地引入各自的圆极化电磁波。
附图说明
现在将参考附图,仅以非限制性示例的方式描述根据本教导的龙伯透镜和龙伯透镜天线的一些实施例,其中:
图1示出了根据一些实施例的龙伯透镜;
图2示意性地描绘了图1的龙伯透镜的同心层结构;
图3为龙伯透镜的层结构的进一步示意图;
图4示出了龙伯透镜的层中的单元晶胞的进一步细节;
图5为在28GHz下由偶极子馈电的拟议LL结构的电场分布;
图6示出了具有环形成分的龙伯透镜的仿真的辐射模式,其与根据本公开实施例的龙伯透镜的仿真的辐射模式进行了比较;
图6示出了现有技术的具有环形成分的龙伯透镜的仿真的辐射模式;
图7示出了根据本公开实施例的龙伯透镜的仿真的辐射模式;
图8示出了根据一些实施例的龙伯透镜的冲击测试结果;
图9为根据一些实施例的天线的俯视图;
图10为图9的天线的前视图;
图11为图9的天线的后视图;
图12示出了图9的天线的电场分布;
图13(a)为根据一些实施例的用于天线的天线馈电元件的波导的透视图;
图13(b)为图13(a)的波导的前视图;
图13(c)为图13(a)的波导的剖面侧视图;
图14为图13(a)的波导的另一个透视图,其显示了波导的隔膜结构的标记尺寸;
图15为与功率合成器结合的波导的透视图;
图16示出了根据一些实施例的天线的仿真结果;
图17示出了根据一些实施例的双圆极化馈电的仿真结果;
图18示出了根据一些实施例的双圆极化馈电的仿真的辐射模式;
图19示出了根据一些实施例的多波束天线端口的仿真和测量的反射系数;
图20示出了多波束天线的测量和仿真的隔离度;
图21示出了多波束天线的仿真和测量的增益和轴比,以及仿真的方向性;和
图22示出了LHCP和RHCP的多波束天线在不同端口被激发时的仿真和测量的辐射模式。
具体实施方式
本公开实施例大体上涉及一种龙伯透镜,包括多个同心布置的层,每个层由多个三角形区域形成。龙伯透镜可以用作具有用于毫米波无线通信应用的多波束辐射目标的高增益透镜天线的一部分。根据一些实施例的天线具有宽工作宽带、宽扫描角度以及灵活的极化匹配能力。
现在将参考图1至图4描述龙伯透镜的实施例。龙伯透镜10包括多个同心布置的层,这些层在图2中被标记为12.1至12.N。图2示出了从左(最内)至右(最外)的一系列此类层。
每个层12.1至12.N由多个三角形区域14形成。三角形区域14形成近似球形表面的铺嵌。例如,每层的多个三角形区域14可以形成短程线性多面体,例如正二十面体。该N个同心层可包括(N-1)个围绕实心核12.1布置的壳12.2至12.N,该实心核12.1本身是与层12.2至12.N相同类型的短程线性多面体。
在至少一些实施例中,每个三角形区域14定义了具有法线的平面,该法线与透镜10的中心对齐。当入射波从不同的偏振角度入射时,这种设计有助于缓解辐射模式的退化。
在本文中所使用的“多面体”可以是实心或空心图形,其表面由具有多边形边界的元素组成。组成表面的元素可以是简单的多边形,也可以是具有一个或多个孔隙的多边形。
层12.1到12.N可每个具有相同的厚度,并且每个层12.1到12.N可以具有相同数量的三角形区域14。
如图4的插图所示,每个三角形区域14可以包括至少一个孔隙18,其本身可以是三角形的,也可以是其他形状的。在一些实施例中,三角形区域14可包括具有与三角形区域14构成其一部分的层的剩余材料不同的折射率的材料,而不是孔隙18。然而,通常存在孔隙18对简化制造工艺是有益的,因为可以使用单一材料来形成龙伯透镜10。
可以通过将所需形状离散成多个层12(12.1至12.N)并应用有效介质理论(Effective Medium Theory,EMT)来设计龙伯透镜10。对于半径为R且包括N个具有相同厚度的同心层的透镜,第i层的介电常数εi可以表示为:
其中,ri+1-ri=R/N。
在将每一层划分为所需数量的三角形区域后,可以使用EMT来近似介电常数。通过控制填充材料在主体材料中的填充率,就可以获得所需的介电常数。应用非对称布鲁格曼理论(asymmetric Bruggeman,A-BG)(参见下面的等式3),其中εin和εho是填充材料和主体材料的介电常数;εeff为复合材料的有效介电常数;p代表恒定体积分数(或者填充比)。这里通过控制每个三角形单元晶胞14的壁厚(例如,图4中的单元晶胞14的壁16的壁厚d/2)来应用A-BG理论。
在本公开中,用于A-BG理论的主体材料是空气(εho=1),因此在获得各个壳的近似介电常数εi和填充材料的介电常数εin之后,每层中的每个三角形区域14所需的填充率p可以基于方程式(3)确定。
龙伯透镜10可以通过增材制造工艺形成。为此,龙伯透镜10的3D模型可以在合适的软件中生成(例如CAD软件),然后以适合输入到增材制造设备的格式(例如STL格式)导出为文件。可以通过以下步骤生成3D模型:首先设计实心核12.1,随之涂覆下一层12.2,再下一层12.3,等等,直到最外层12.N。每一层的三角形区域14可以与每个相邻的同心布置的层的三角形区域14基本径向对齐,这样,当所得的STL文件用作输入时,在印制(print)过程中,该结构将是自支撑的,即不需要印制单独的支撑结构。具体而言,每个三角形区域14的壁16可以与下层中的三角形区域14的壁16对齐。
通过基于短程线性多面体模型,例如二十面体模型,形成透镜结构10,基本上避免了增材制造过程之后的翘曲或变形,从而确保了龙伯透镜10在用作天线的一部分时的高性能。
在一些实施例中,每一层具有至少20个等边三角形区域14以形成二十面体。每个这样的三角形区域14可以被细分为更多的等边三角形区域。例如,每个三角形区域14可以具有n2个细分,其中n在本文中被称为短程线性多面体的阶数。相应地,二十面体透镜的每一层12.1至12.N将具有20*n2个三角形区域14。
在一些实施例中,对于每个层12.1至12.N,二十面体层的阶数相同或几乎相同。这基本上避免了这些层的三角形区域之间的错位,从而防止在模型中形成可能在增材制造过程中捕获外来材料的额外腔室。这些外来材料将被包含在腔室内并与透镜一起固化,这将导致透镜具有偏离预期行为介电常数分布。另一方面,在所有三角形区域14都对齐的情况下,未固化的材料更容易从零件中排出。
如上所述,龙伯透镜10的每个壳12.1至12.N的每个三角形区域可以细分为n个单元晶胞。对于给定的半径r,由于几何形状的原因,n对应于特定的单元晶胞14的边长L。在实践中,为了确保最佳性能,边长L以及阶数n可能会受到一些约束。例如,已知A-BG理论仅在成分分布均匀且单元晶胞长度(L)在λ/10~λ/4范围内时有效;此外,边长L也受材料填充率p的影响。对于每个壁厚为d/2、边长为L的单元晶胞(三角形),存在以下关系:
可能的壁厚d的范围受增材制造工艺的印刷能力的限制。对于每个同心层12.1至12.N,一旦p的范围由方程式(3)确定,L也会有一个范围。满足这些约束后,目标L将再次转换回阶数n。对于不同的层,阶数n可能会略有不同。因此,当为所有层选择阶数n的一个特定值时,会有一个折衷。在一些实施例中,从中间层导出的阶数n可以用作所有层的n。
每个单元晶胞是具有孔隙的三角形,孔隙本身是三角形的,从而定义了一个壁厚为d/2的空心三角形。应了解,在成品形式中,透镜10在相邻三角形单元晶胞14之间不具有硬边界,因此,相邻单元晶胞将会有共享的壁。
孔隙不一定非得是三角形,可以是圆形、方形、六边形或其他形状。在一些变体中,可以形成多于一个的孔隙。重要的是,为每一层选择填充材料(用于形成透镜的材料,主材料为空气)的体积分数p应以使得为该层产生的有效介电常数符合龙伯关系(1)的方式。形成只有一个孔隙的三角形区域将是有利的,这样更容易确保相邻层的孔隙径向对齐,例如,在增材制造过程后,残余材料更容易从结构中排出。
图5示出了一个示例龙伯透镜在28GHz下被偶极子(线极化源)照射时的电场分布。图5中用于产生电场的透镜直径为48mm,层厚为2.4mm,并且由光敏聚合物树脂FLGPCL02(εr=2.85,tanδ=0.02)形成。
如图5所示,可以看到来自偶极子的球面波已成功转换为平面波,由此可见制造的龙伯透镜是有效的。
与现有的具有基于笛卡尔坐标中的离散化的棒状、立方体或环状的单元晶胞的龙伯透镜相比,根据实施例的龙伯透镜基于球坐标中的离散化。使用中心对称设计的优点在于确保无论馈送位置如何,指向中心的波都将经历几乎相同的材料环境。这种结构的优点对于圆极化辐射来说更加明显,原因是根据笛卡尔坐标模型设计的龙伯透镜可能会破坏此类光源的光路。
例如,从图6和图7可以明显看出本龙伯透镜的实施例相对于具有立方体的单元晶胞的环形透镜的优点。图6示出了x极化馈电偶极子(左)和y极化馈电偶极子(右)的环形龙伯透镜的仿真的辐射模式。图7示出了根据本发明实施例的龙伯透镜的仿真的辐射模式。如图6所示,当x极化馈电变为y极化时,环形LL的辐射模式急剧恶化。与之相反,如图7所示,根据实施例的龙伯透镜则表现出稳定的与馈电偏振角度无关的辐射模式性能。因此,无需考虑馈电对齐。此外,稳定的辐射模式意味着本发明实施例的透镜能够传输圆极化波,因为正交模式不会被透镜结构扭曲。
透镜10的结构的另一个优点是,其在外力作用下耐用,这使得透镜10更坚固并提供更长的使用时间。为了验证这一点,进行了冲击测试,将龙伯透镜10放入通用测试机以检查在一定的力时的结构移位。图8示出了力与结构移位的关系图。对于直径D≈50mm的龙伯透镜10,引起2%、4%、6%和8%形变的力分别为1.19kN、2.17kN、3.21kN和4.50kN,且在龙伯透镜10中未观察到裂纹。将4.5kN作为最大外力,可以计算出该透镜所能承受的最大重量为459.18kg,大约是一头成年公牛的重量。由于层叠的壳12.1至12.N可以一层一层地抵消力,该结构可以承受这种重量。
如上所述,龙伯透镜10包括相互支撑的三角形区域14。这种几何形状使龙伯透镜10能够自支撑,因此在3D印制龙伯透镜10时不需要额外的结构。通过这种方式,不仅使支撑结构对估计介电常数的影响最小化,而且由于不涉及后续处理,也提高了制造成功率。对于先前已知的基于立方体单元晶胞的龙伯透镜,支撑物移除通常是不可避免的,这可能会损坏透镜结构。
现在将参照图9至图15来描述龙伯透镜天线的实施例。
首先参考图9至图11,龙伯透镜天线100的示例包括龙伯透镜10和一个或多个天线馈电结构,一个或多个天线馈电结构被布置成向龙伯透镜10发射电磁辐射,或从龙伯透镜10接收电磁辐射。在该示例中,提供了五个天线馈电结构,并标记为110、120、130、140和150。
天线馈电结构110-150中的至少一个,以及在一些实施例中天线馈电结构110-150的全部,为圆极化天线馈电元件。龙伯透镜10和馈电结构110-150各自支撑在支撑结构102上,使得馈电结构110-150与在使用中的透镜10保持固定对准。在一些实施例中,龙伯透镜10和/或馈电结构110-150可以永久地固定到支撑结构102。馈电结构110-150可以通过安装支架或类似物附接,例如,如图15所示的从馈电结构110末端延伸的安装支架118。
馈电元件110-150每个包括波导(例如,馈电元件110的波导112或馈电元件150的波导152)。该波导具有一个端部,该端部布置得非常靠近龙伯透镜10的表面,使得电磁辐射可以从波导(112,152)耦合到透镜10,或者从透镜10耦合到波导(112,152)。应当理解,在一些实施例中,可以使用非基于波导的馈电元件,例如喇叭天线、贴片天线等。
图13和14中描绘了馈电元件110的示例性波导112。波导具有外壳202,其包围方形横截面的波导腔。腔体中具有一个脊状隔膜204,该隔膜204将腔体纵向分为两个区域,并为每个区域形成各自的端口(在图14中标记为端口1和端口2)。例如,脊状隔膜204可以是插入方形波导202中的四阶隔膜(具有台阶206.1、206.2、206.3、206.4),以便将进入端口1或端口2的TE01模式的一部分转换为TE10模式。如本领域技术人员所理解的,通过选择适当的阶梯尺寸,简并模(degenerate mode)TE01和TE10之间的相位差可以达到90度,因此可以实现圆极化(CP)波。端口1和端口2激发的输出CP波分别为左旋圆极化的(left-handcircularly polarized,LHCP)和右旋圆极化的(right-hand circularly polarized,RHCP)。
波导112具有输出210,该输出210位于使用中的透镜10附近,如图9所示。输出210与输入208相对,输入208接收用于产生输出CP波的输入电磁辐射。应当理解,在一些情况下,输出210和输入208的角色可以互换。
在图13和图14的示例中,隔膜204是阶梯状的,使得该隔膜204在由圆极化天线馈电元件110产生的圆极化电磁波的传播方向上逐渐变窄。即,阶梯206.4、206.3、206.2和206.1在从输入208到输出210的方向上“下降”(descend)。
脊状隔膜204的一组示例尺寸,其标记a1到a5(沿波导轴延伸的阶梯长度)和b1到b5(阶梯高度)对应于图14中所示的标记,如下所示:
a<sub>1</sub> | a<sub>2</sub> | a<sub>3</sub> | a<sub>4</sub> | a<sub>5</sub> |
3.69 | 3.39 | 2.80 | 0.95 | 7.14 |
b<sub>1</sub> | b<sub>2</sub> | b<sub>3</sub> | b<sub>4</sub> | b<sub>5</sub> |
0.48 | 1.53 | 2.65 | 4.23 | 6.2 |
脊状波导112的仿真结果如图16所示。可以看出,脊状波导112具有高达35%(27GHz-38.5GHz)的宽带,其中反射系数低于-10dB,耦合低于-20dB,轴比低于3dB。通过合理延长脊状波导112可以实现更宽的带宽。
在一些实施例中,可以提供功率合成器111作为馈电结构110的一部分,功率合成器111包括两个弯曲波导115a、115b,它们连接到脊状波导偏振器112的各端口,以便于脊状波导偏振器112和波导馈电之间的连接。在一些实施例中,功率合成器111可通过诸如直接金属激光烧结(Direct Metal Laser Sintering,DMLS)等增材制造工艺来制造。与需要组装且可能导致气隙的CNC相比,由DMLS制造的功率合成器111由于避免了功率泄漏而具有更低的插入损耗。在一些实施例中,从功率合成器111的下端延伸的安装支架118也可以用DMLS制造,其工艺与用于制造功率合成器111的工艺相同。脊状波导偏振器112的弯曲波导115a、115b和方形波导202可以作为单个部件一起印制。
在图9至图11所示的示例中,龙伯透镜天线100包括五个结构基本相同的馈电结构110-150(即,每个馈电结构与图13至图15的馈电结构110一致)。然而,应当理解,馈电结构110-150可以变化。例如,一些馈电结构可提供线极化辐射源,而诸如馈电结构110的其他馈电结构可提供如上所述的圆极化辐射源。
圆极化(Circularly Polarized,CP)LL天线,例如示例天线100,具有多个优点,在于它们能够最小化极化失配、抑制多径干扰和扩大通信容量。此外,对于天线100,专用CP源不需要放置在具有特定方向的特定位置,具有相对较小的占地面积,并且是宽带源。
图17中描绘了带有和不带有透镜10的双CP馈电结构110的仿真的反射系数和增益。在这种情况下,端口1(LHCP)被激发。可以观察到,在添加透镜10后,增益增加了约12dB,而不影响反射系数。因此,由于增益显著提高,透镜10的设计被证明是有效的;并且,当|S11|在覆盖整个Ka频段的26.5GHz至40GHz的频率范围内低于-10dB时,仍保持阻抗匹配。
26.5GHz、32GHz和36GHz的辐射模式如图18所示,其中图18(a)显示了E平面上的模式,图18(b)显示了H平面上的模式。可以看出,E平面和H平面上的辐射模式几乎相同;因此,馈源结构110产生对称的辐射束。
通过使用上述光敏聚合物树脂FLGPCL02对龙伯透镜10进行3D印制,并通过五个双CP馈电结构110-150的DMLS制造,制造了符合龙伯透镜天线100的原型。支撑结构102使用ABS材料进行3D印制。多波束天线100是在一个紧凑范围的消声室中测量的。
由于测量系统的限制,增益和辐射模式的测量频率上限为37.5GHz。所有未使用的端口均与WR-28波导负载相连。考虑到阵列的对称性,以及便于解释起见,本文仅给出端口1-6(如图11中标记的)的结果。所有仿真均在CST Studio Suite 2019中进行。
A.反射和隔离
天线100的测量和仿真反射系数如图19所示。可以看出,测量结果与仿真结果吻合良好。反射系数低于-10dB的阻抗带宽覆盖整个Ka频段,即40.6%(26.5GHz-40 GHz)。
参考图20,可以看到端口5和端口6在仿真中具有预期的最强互耦,并且在考虑隔离大于20dB时,导致重叠带宽为34.6%(27GHz-38.3GHz)。
B.CP增益和AR
仿真和测量的CP增益和轴比(axial ratio,AR)以及端口1-6顺序激励时的仿真的方向性如图21所示。由于端口对(端口3、端口4)和端口对(端口5、端口6)的结果与端口对(端口1、端口2)的结果几乎相同,因此仅显示端口1和端口2的结果。可以看出,测量的增益与仿真结果吻合良好,且范围从19dBic到21.2dBic,在26.5GHz到37GHz(带宽的33.1%)的3dB AR工作频带上变化2.2dB。
C.辐射模式
由于天线100的对称性,仅激励和测量了端口1-6,因为根据仿真结果,预计端口7-10的行为类似。xoz平面在26.5GHz、32GHz和36GHz的仿真和测量的辐射模式如图22所示,可以观察到高度一致性。当波束偏离主波束方向±44度时,几乎不会出现扫描损失。双CP辐射,即LHCP和RHCP波束,分别通过激励端口1、3、5、7、9和端口2、4、6、8、10实现。
本发明的一些示例性实施例的描述包含在以下一个或多个编号的声明中。
声明1:一种龙伯透镜,包括:多个同心布置的球对称层,每个层由多个三角形区域形成。
声明2:根据声明1所述的龙伯透镜,其中,每个层的所述多个三角形区域形成短程线性多面体。
声明3:根据声明2所述的龙伯透镜,其中,所述短程线性多面体是正二十面体。
声明4:根据声明1-3中任一项所述的龙伯透镜,其中,每个层由基本上相等数量的三角形区域组成。
声明5:根据声明1-4中任一项所述的龙伯透镜,其中,每个层的三角形区域与每个相邻的所述同心布置的层的三角形区域基本径向对齐。
声明6:根据声明1-5中任一项所述的龙伯透镜,其中,每个三角形区域定义具有法线的平面,所述法线与所述龙伯透镜的中心对齐。
声明7:根据声明1-6中任一项所述的龙伯透镜,其中,每个三角形区域包括至少一个孔隙。
声明8:根据声明7所述的龙伯透镜,其中,所述孔隙为三角形。
声明9:根据声明3-8中任一项所述的龙伯透镜,其中,所述多个三角形区域中的三角形区域的数量N由下式确定:N=20*n2,其中,n是所述二十面体的阶数。
声明10:根据声明9所述的龙伯透镜,其中,所述二十面体的所述阶数n为1。
声明11:根据声明1-10中任一项所述的龙伯透镜,其中,每个三角形是等边的,且具有在λ/10至λ/4的范围之内的边长L,其中λ为所述龙伯透镜接收的电磁波的预期波长。
声明12:根据声明1-11中任一项所述的龙伯透镜,其中,每个同心布置的层的厚度相等。
声明13:一种用于产生圆极化电磁波的圆极化源,包括:波导腔;以及,至少一个隔膜,所述至少一个隔膜将所述波导腔分成两个区域,并为每个区域形成各自的端口,所述隔膜同时产生用于从所述圆极化源辐射的右旋圆极化波和左旋圆极化波。
声明14:根据声明13所述的圆极化源,其中,所述至少一个隔膜是阶梯状的。
声明15:根据声明14所述的圆极化源,所述至少一个隔膜是阶梯状的,使得所述至少一个隔膜在圆极化电磁波的传播方向上逐渐变窄。
声明16:一种龙伯透镜组件,包括:根据声明1至12中任一项所述的龙伯透镜组件;以及,圆极化(CP)源,用于将圆极化电磁波辐射到所述龙伯透镜中。
声明17:根据声明16所述的龙伯透镜组件,其中,所述CP源包括:波导腔;以及,至少一个隔膜,所述至少一个隔膜将所述波导腔分成两个区域,并为每个区域形成各自的端口,所述隔膜同时产生用于从所述CP源辐射的右旋圆极化波和左旋圆极化波。
声明18:根据声明17所述的龙伯透镜组件,其中,所述CP源其中所述至少一个隔膜是阶梯状的。
声明19:根据声明18所述的龙伯透镜组件,其中,所述至少一个隔膜是阶梯状的,使得所述至少一个隔膜在圆极化电磁波的传播方向上逐渐变窄。
声明20:根据声明16-18中任一项所述的龙伯透镜组件,所述CP源为多个CP源中的一个,所述多个CP源用于将圆极化电磁波辐射到所述龙伯透镜中。
声明21:根据声明20所述的龙伯透镜组件,其中,每个CP源围绕所述龙伯透镜的外表面布置,以向所述龙伯透镜的中心径向地引入各自的圆极化电磁波。
声明22:一种用于形成龙伯透镜的增材制造工艺,包括:获得3D模型,所述3D模型包括球对称核心层和围绕所述核心层布置的一系列同心球对称层;以及,根据所述3D模型打印龙伯透镜;其中,所述核心层和每个同心布置的层由多个三角形区域形成;其中,各层的三角形区域彼此对齐。
声明23:根据声明22所述的工艺,其中,每个层的所述多个三角形区域形成短程线性多面体。
声明24:根据声明23所述的工艺,其中,所述短程线性多面体是正二十面体。
声明25:根据声明22-24中任一项所述的工艺,其中,每个层由基本上相等数量的三角形区域组成。
声明26:根据声明22-25中任一项所述的工艺,其中,每个三角形区域定义具有法线的平面,所述法线与所述龙伯透镜的中心对齐。
声明27:根据声明22-26中任一项所述的工艺,其中,每个三角形区域包括至少一个孔隙。
声明28:根据声明27所述的工艺,其中,所述孔隙为三角形的。
声明29:根据声明22-28中任一项所述的工艺,其中,所述多个三角形区域中的三角形区域的数量N由下式确定:N=20*n2,其中,n是所述二十面体的阶数。
声明30:根据声明29所述的工艺,其中,所述二十面体的所述阶数n为1。
声明31:根据声明22-30中任一项所述的工艺,其中,每个三角形是等边的,且具有在λ/10至λ/4的范围之内的边长L,其中λ为所述龙伯透镜接收的电磁波的预期波长。
声明32:根据声明22-31中任一项所述的工艺,其中,每个同心布置的层的厚度相等。
在不脱离本发明范围的情况下,许多修改对于本领域技术人员来说是显而易见的。
在本说明书中,除非上下文另有要求,否则“包括”一词以及“包含”等变体将被理解为包含所述整数或步骤或一组整数或步骤,但不排除任何其他整数或步骤或一组整数或步骤。
本说明书中对任何先前出版物(或其衍生信息)或任何已知事项的引用,不是且也不应被视为承认或任何形式的建议,之前的出版物(或其衍生信息)或已知事项构成本说明书所涉及领域的公共常识的一部分。
Claims (19)
1.一种龙伯透镜,包括:多个同心布置的球对称层,每个层由多个三角形区域形成。
2.根据权利要求1所述的龙伯透镜,其中,每个层的所述多个三角形区域形成短程线性多面体。
3.根据权利要求2所述的龙伯透镜,其中,所述短程线性多面体是正二十面体。
4.根据权利要求1所述的龙伯透镜,其中,每个层由基本上相等数量的三角形区域组成。
5.根据权利要求1所述的龙伯透镜,其中,每个层的三角形区域与每个相邻的所述同心布置的层的三角形区域基本径向对齐。
6.根据权利要求1所述的龙伯透镜,其中,每个三角形区域定义具有法线的平面,所述法线与所述龙伯透镜的中心对齐。
7.根据权利要求1所述的龙伯透镜,其中,每个三角形区域包括至少一个孔隙。
8.根据权利要求7所述的龙伯透镜,其中,所述孔隙为三角形的。
9.根据权利要求3所述的龙伯透镜,其中,所述多个三角形区域中的三角形区域的数量N由下式确定:
N=20*n2
其中,n是所述二十面体的阶数。
10.根据权利要求9所述的龙伯透镜,其中,所述二十面体的所述阶数n为1。
11.根据权利要求1所述的龙伯透镜,其中,每个三角形是等边的,且具有在λ/10至λ/4的范围之内的边长L,其中λ为所述龙伯透镜接收的电磁波的预期波长。
12.根据权利要求1所述的龙伯透镜,其中,每个同心布置的层的厚度相等。
13.一种天线,包括:根据权利要求1所述的龙伯透镜;以及,一个或多个天线馈电结构,所述一个或多个天线馈电结构被布置成向所述龙伯透镜发射电磁辐射,或从所述龙伯透镜接收电磁辐射。
14.根据权利要求13所述的天线,其中,所述一个或多个天线馈电结构中的至少一个包括圆极化天线馈电元件。
15.根据权利要求14所述的天线,其中,所述圆极化天线馈电元件包括:波导腔;以及,至少一个隔膜,所述至少一个隔膜将所述波导腔分成两个区域,并为每个区域形成各自的端口,所述隔膜同时产生用于从所述圆极化天线馈电元件辐射的右旋圆极化波和左旋圆极化波。
16.根据权利要求15所述的天线,其中,所述至少一个隔膜是阶梯状的。
17.根据权利要求16所述的天线,其中,所述至少一个隔膜为阶梯状的以使得所述至少一个隔膜在由所述圆极化天线馈电元件产生的圆极化电磁波的传播方向上逐渐变窄。
18.根据权利要求14所述的天线,其中,所述圆极化天线馈电元件为用于将圆极化电磁波辐射到所述龙伯透镜的多个圆极化天线馈电元件之一。
19.根据权利要求18所述的天线,其中,每个圆极化天线馈电元件围绕所述龙伯透镜的外表面布置,以向所述龙伯透镜的中心,径向地引入各自的圆极化电磁波。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG10201907555V | 2019-08-16 | ||
SG10201907555V | 2019-08-16 | ||
SG10201910568Y | 2019-11-12 | ||
SG10201910568Y | 2019-11-12 | ||
PCT/SG2020/050471 WO2021034269A1 (en) | 2019-08-16 | 2020-08-14 | Luneburg lens |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114586240A true CN114586240A (zh) | 2022-06-03 |
Family
ID=74660763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080073471.9A Pending CN114586240A (zh) | 2019-08-16 | 2020-08-14 | 龙伯透镜 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114586240A (zh) |
WO (1) | WO2021034269A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832698A (zh) * | 2023-02-14 | 2023-03-21 | 中国人民武装警察部队工程大学 | 一种新型多波束球形龙伯透镜天线、控制方法及通信基站 |
CN117175220A (zh) * | 2023-11-01 | 2023-12-05 | 广东工业大学 | 一种连续渐变开孔的龙勃透镜天线 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210359744A1 (en) * | 2020-05-14 | 2021-11-18 | Atr Electronics, Llc | Mobile network architecture and method of use thereof |
US20220327251A1 (en) * | 2021-04-13 | 2022-10-13 | 3Dfortify Inc. | Systems and methods for designing and manufacturing radio frequency devices |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3618090A (en) * | 1960-04-05 | 1971-11-02 | Us Navy | Radar |
GB9928095D0 (en) * | 1999-11-26 | 2000-01-26 | Cambridge Ind Ltd | Dual circular polarity waveguide system |
FR2831997B1 (fr) * | 2001-11-07 | 2004-01-16 | Thomson Licensing Sa | Module guide d'ondes separateur en frequence a polarisation circulaire double et emetteur-recepteur le comportant |
CN205122779U (zh) * | 2015-02-16 | 2016-03-30 | 航天特种材料及工艺技术研究所 | 一种龙伯透镜天线 |
US9979459B2 (en) * | 2016-08-24 | 2018-05-22 | The Boeing Company | Steerable antenna assembly utilizing a dielectric lens |
US20210250481A1 (en) * | 2018-04-27 | 2021-08-12 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Rotationally Shift Invariant and Multi-Layered Microlens Array |
-
2020
- 2020-08-14 CN CN202080073471.9A patent/CN114586240A/zh active Pending
- 2020-08-14 WO PCT/SG2020/050471 patent/WO2021034269A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832698A (zh) * | 2023-02-14 | 2023-03-21 | 中国人民武装警察部队工程大学 | 一种新型多波束球形龙伯透镜天线、控制方法及通信基站 |
CN117175220A (zh) * | 2023-11-01 | 2023-12-05 | 广东工业大学 | 一种连续渐变开孔的龙勃透镜天线 |
CN117175220B (zh) * | 2023-11-01 | 2024-01-26 | 广东工业大学 | 一种连续渐变开孔的龙勃透镜天线 |
Also Published As
Publication number | Publication date |
---|---|
WO2021034269A1 (en) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liao et al. | Compact multibeam fully metallic geodesic Luneburg lens antenna based on non-Euclidean transformation optics | |
Wang et al. | A 3-D-printed multibeam dual circularly polarized Luneburg lens antenna based on quasi-icosahedron models for Ka-band wireless applications | |
CN114586240A (zh) | 龙伯透镜 | |
US6011520A (en) | Geodesic slotted cylindrical antenna | |
US20170179596A1 (en) | Wideband reflectarray antenna for dual polarization applications | |
Marin et al. | Lens antenna with planar focal surface for wide-angle beam-steering application | |
Hoel et al. | 3-D printed monolithic GRIN dielectric-loaded double-ridged horn antennas | |
Vidarsson et al. | Conformal parallel plate waveguide polarizer integrated in a geodesic lens antenna | |
Qu et al. | 3-D printed cylindrical Luneburg lens for dual polarization | |
Chou et al. | Two-dimensional multi-ring dielectric lens antenna to radiate fan-shaped multi-beams with optimum adjacent-beam overlapping crossover by genetic algorithm | |
Zetterstrom et al. | Additively manufactured half-Gutman lens antenna for mobile satellite communications | |
Paraskevopoulos et al. | 3-d printed all-dielectric grin lens antenna with an integrated feeder | |
Kanso et al. | Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application | |
Ran et al. | Dual-polarized nonuniform Fabry–Pérot cavity antenna with flat-topped radiation pattern | |
Zhu et al. | Additively manufactured metal-only waveguide-based millimeter-wave broadband achromatic reflectarrays | |
CN113851856A (zh) | 一种基于四脊波导的宽带高增益金属透镜天线 | |
Fonseca et al. | The water drop lens: a modulated geodesic lens antenna based on parallel curves | |
Chen et al. | Metantennas: Flat Luneburg lens antennas using transformation optics method (TOM) | |
CN214254732U (zh) | 应用于2.5-3.8GHz波段通信覆盖的龙伯透镜天线 | |
Kaouach et al. | Design and demonstration of an X-band transmit-array | |
Nguyen et al. | X-band transmitarray using cut-ring patch | |
CN112216984A (zh) | 一种应用于2.5-3.8GHz波段通信覆盖的龙伯透镜天线 | |
WO2020218974A2 (en) | Antenna structure and method of fabricating the same | |
Yu et al. | 1-D Wide-Angle Beam-Scanning Linear Phased Array With Enhanced Gain by Using 3-D Printed Dielectric Slab Superstrate | |
Shao et al. | A Hybrid Antenna-Metasurface Architecture for mmWave and THz Massive MIMO |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |