WO2018008876A1 - 인덕션 히터 및 인덕션 히터의 과열 제어 방법 - Google Patents

인덕션 히터 및 인덕션 히터의 과열 제어 방법 Download PDF

Info

Publication number
WO2018008876A1
WO2018008876A1 PCT/KR2017/006541 KR2017006541W WO2018008876A1 WO 2018008876 A1 WO2018008876 A1 WO 2018008876A1 KR 2017006541 W KR2017006541 W KR 2017006541W WO 2018008876 A1 WO2018008876 A1 WO 2018008876A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
induction
induction heater
temperature
current
Prior art date
Application number
PCT/KR2017/006541
Other languages
English (en)
French (fr)
Inventor
김준수
오동훈
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160085463A external-priority patent/KR102494363B1/ko
Priority claimed from KR1020160085496A external-priority patent/KR102544509B1/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to CN201780014288.XA priority Critical patent/CN108698474B/zh
Priority to US16/066,908 priority patent/US11040598B2/en
Publication of WO2018008876A1 publication Critical patent/WO2018008876A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2221Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters arrangements of electric heaters for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • B60H1/2226Electric heaters using radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/42Cooling of coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an induction heater and an overheating control method of an induction heater that can improve bubble discharge of cooling water in an induction heater in which a heating element is heated by an induction heating method, and prevent overheating of the heating element and the induction coil. .
  • Vehicles powered by engines using gasoline, diesel, etc. as the energy source are the most common types of vehicles at present.However, such energy sources for automobiles are not only needed for environmental pollution but also for various reasons such as the reduction of oil reserves. Increasingly, electric vehicles, hybrid cars and fuel cell vehicles are being put into practical use or under development.
  • electric vehicles, hybrid cars, and fuel cell vehicles unlike vehicles using engines using petroleum as a source of energy, cannot use or apply a heating system using cooling water. That is, in the case of a vehicle driven by an petroleum-based energy source, a large amount of heat is generated in the engine, and a coolant circulation system for cooling the engine is provided, and the heat absorbed by the coolant from the engine is heated indoors. I am going to use it. However, since much of the heat generated by the engine does not occur in the driving source of electric vehicles, hybrid cars and fuel cell vehicles, there is a limit to using such a conventional heating method.
  • the electric heater includes an air heating heater in the form of directly heating the air blown into the vehicle interior, and a coolant heating heater (or the coolant heater) in the form of heating the cooling water.
  • the high frequency generator 30 is electrically connected to the fuel cell stack 10 that generates electric power as shown in FIGS. 1 and 2, and a high frequency generator. 30 is formed in the form of a coil wound around the outer side of the coolant flow pipe 2 made of a metal material, which is a magnetic material, and is changed by a magnetic field that changes when an AC current flows through the induction coil 31 using the power of the fuel cell stack 10. An eddy current is generated in the coolant flow pipe 2, whereby the coolant flow pipe 2 can be heated in the joule heat, so that the coolant flowing through the inside of the coolant flow pipe 2 can be heated.
  • an object of the present invention is to improve the bubble discharge of the cooling water in the induction heater for heating the heating element using the induction heating method to prevent overheating of the heating element.
  • the present invention provides an induction heater and an overheating control method of the induction heater that can detect the induction heater when it is overheated and control the induction heater not to be overheated.
  • the body 100 A housing 200 coupled to the side of the body 100; It is provided in the inner space formed by the combination of the body 100 and the housing 200, spaced apart from the top and bottom of the inner space and spaced apart from each other in the height direction, the body 100 and the housing 200
  • An upper header 400 and a lower header 500 coupled to any one or more of the above
  • a bobbin 600 formed in a cylindrical shape and coupled to both ends thereof to be supported by the upper header 400 and the lower header 500
  • An induction coil 300 wound around the bobbin 600
  • a heating element 310 formed in a cylindrical shape and coupled to both ends thereof to be supported by the upper header 400 and the lower header 500, and spaced apart from the inside of the bobbin 600.
  • the body 100 has a guide groove 110 is formed in a horizontal concave on the concave inner surface, the upper header 400 and the lower header 500 is inserted along the guide groove 110 to be coupled. Can be.
  • the housing 200 has a fixing groove 230 is formed in the concave inner surface in a horizontal concave, the upper header 400 and the lower header 500 may be inserted into the fixing groove 230 to be coupled. have.
  • the coolant discharge hole 410 formed in the upper header 400 and the coolant inlet hole 510 formed in the lower header 500 are formed inside the bobbin 600 when viewed from the upper side or the lower side. Based on the position spaced apart from the bobbin 600 may be formed in the radially inner side up to the outer peripheral surface of the heating element 310 or more.
  • the coolant discharge hole 410 formed in the upper header 400 and the coolant inlet hole 510 formed in the lower header 500 are formed in the inner region and the outer region of the heating element 310 when viewed from the upper side or the lower side. Can be formed over.
  • the upper header 400 and the lower header 500 may be provided with a flow control unit 530 blocking a portion of the inner region of the heating element 310 when viewed from the top or bottom.
  • the bobbin 600 may have a coil support 620 formed radially outward from the outer circumferential surface of the cylindrical portion 610 at upper and lower ends thereof.
  • the bobbin 600 has a protrusion 630 protruding in the height direction from the coil support 620, the protrusion 630 in the bobbin coupling holes (440, 540) formed in the header (400, 500) It can be inserted and combined.
  • the upper header 400 and the lower header 500 may be formed with bobbin settling grooves 450 and 550 in which coil support portions 620 of the bobbin 600 are inserted and placed on surfaces facing each other.
  • the upper header 400 and the lower header 500 may be formed with heating element coupling grooves 460 and 560 in which end portions of the heating element 310 are inserted into and coupled to the surfaces facing each other.
  • the induction heater 1000 of the present invention for achieving the above object, the induction coil 300; A heating element 310 induction heated by the induction coil 300; And an induction heater control means connected to the induction coil 300 and the vehicle power source 830 to connect or cut off the power supplied to the induction coil 300 and to control the heating element 310 to induction heating. 800);
  • the induction heater control means 800 includes a current sensing means 810 for sensing a current flowing in the induction coil 300 and a switching element 730 for controlling the current supplied to the heating element 310. Characterized in that it comprises any one or more of the temperature sensing means 820 for detecting the temperature of the).
  • the heating element 310 is characterized in that formed of a ferritic metal having a Curie temperature.
  • the temperature sensing means 820 is mounted adjacent to the switching element disposed on the upper side on the substrate 720 provided in the induction heater control means 800 or the switching element near the center of the heating element 310. It is done.
  • the induction heater control means 800 may further include an overcurrent blocking fuse 860 mounted on a high voltage line connecting the vehicle power source 830 and the induction coil 300.
  • the induction heater control means 800 may further include: a temperature blocking fuse 870 mounted on a low voltage line connected to an operating power source of a controller for controlling the heating element 310 to induction heating; And a temperature sensing unit 871 connected to the temperature blocking fuse 870 and sensing a water temperature of the coolant that is heat-exchanged with the heating element 310. Characterized in that further comprises.
  • the overheat control method of the induction heater of the present invention in the method of controlling the overheating of the induction heater for heating the cooling water in the induction method, the current flowing through the induction coil 300 and the current supplied to the induction coil 300 Determining whether the heating element 310 is overheated by detecting any one or more temperatures of the switching elements 730 and IGBT (S10); Controlling to connect or cut off the power supplied to the induction coil 300 according to whether the heating element 310 is overheated (S20); Characterized in that comprises a.
  • the heating element 310 is formed of a ferritic metal having a Curie temperature.
  • the current current Ic which is the current consumption current flowing in the induction coil 300
  • the normal current In which is a normal current consumption supplied to the induction coil 300
  • the heating element 310 is overheated, characterized in that to cut off the power supplied to the induction coil (300).
  • the present temperature Tc which is the current temperature relative to the normal temperature Tn, which is the normal temperature of the switching element 730, is higher than a preset value, or the present temperature Tc is compared to the normal temperature Tn.
  • a predetermined ratio it is determined that the heating element 310 is overheated to cut off the power supplied to the induction coil (300).
  • the overcurrent blocking fuse 860 mounted on the high voltage line connecting the vehicle power source 830 and the induction coil 300 is It is cut off, characterized in that the power supplied to the induction coil 300 is cut off.
  • the temperature blocking is mounted on a low voltage line connected to the operating power of the controller for controlling the heating element 310 to induction heating.
  • the fuse 870 is blocked, so that the heating element 310 is not induction heating.
  • the induction heater of this invention can improve the bubble discharge
  • the distance between the bobbin and the heating element can be sufficiently spaced and the cooling water can be smoothly adjusted to prevent overheating of the heating element and the surrounding components.
  • the induction heater and the overheat control method of the induction heater of the present invention can be controlled so as not to overheat the induction heater by using a current sensing means or a temperature sensing means capable of detecting overheating of the heating element, failure of the induction heater due to overheating And there is an advantage to prevent fire.
  • 1 and 2 are a schematic view and a cross-sectional view showing a conventional induction heater.
  • 3 and 4 are assembled and exploded perspective view showing an induction heater of the present invention.
  • 5 and 6 are an exploded perspective view and an assembled perspective view showing a coupling structure of the upper header, the lower header, the bobbin, the induction coil and the heating element according to the present invention.
  • FIG. 7 is a cross-sectional view showing an induction heater of the present invention.
  • FIG. 8 is a partial sectional view showing a flow area of the coolant according to the present invention.
  • Figure 9 is a block diagram showing an induction heater with induction heater control means according to the invention.
  • FIG 10 is a graph showing a change in physical properties according to the temperature of the heating element according to the present invention.
  • Figure 11 is a block diagram showing an induction heater with a current sensing means according to the present invention.
  • FIG. 12 is a block diagram showing an induction heater provided with an overcurrent blocking fuse according to the present invention.
  • Figure 13 is a block diagram showing an induction heater with a thermal cut-off fuse in accordance with the present invention.
  • 14 is a control algorithm illustrating an overheating control method of an induction heater of the present invention.
  • FIG. 3 and 4 are assembled and exploded perspective view showing an induction heater of the present invention
  • Figures 5 and 6 are exploded perspective view showing a coupling structure of the upper header, lower header, bobbin, induction coil and the heating element according to the present invention and It is an assembled perspective view
  • FIG. 7 is sectional drawing which shows the induction heater of this invention.
  • the body 100 As shown induction heater 1000 according to an embodiment of the present invention, the body 100; A housing 200 coupled to the side of the body 100; It is provided in the inner space formed by the combination of the body 100 and the housing 200, spaced apart from the top and bottom of the inner space and spaced apart from each other in the height direction, the body 100 and the housing 200 An upper header 400 and a lower header 500 coupled to any one or more of the above; A bobbin 600 formed in a cylindrical shape and coupled to both ends thereof to be supported by the upper header 400 and the lower header 500; An induction coil 300 wound around the bobbin 600; And a heating element 310 formed in a cylindrical shape and coupled to both ends thereof to be supported by the upper header 400 and the lower header 500, and spaced apart from the inside of the bobbin 600.
  • the body 100 forms an inner space so that the induction coil 300 and the heating element 310 may be provided therein, and forms a space through which the coolant can flow. It can be formed concave inward.
  • the housing 200 may be coupled to the body 100, and may be coupled to the body 100 so that the edge portion contacting the body 100 is sealed.
  • the housing 200 may be formed in a container shape in which a side facing the body 100 is open, and one side may be concave inward.
  • an inlet pipe 210 may be formed at a lower side thereof, and an outlet pipe 220 may be formed at an upper side thereof.
  • the induction coil 300 and the heating element 310 may be provided inside the space formed therein. Thus, a portion of the induction coil 300 and the heating element 310 may be disposed in the space toward the body 100 and the remaining portion of the induction coil 300 and the heating element 310 may be disposed in the space toward the housing 200. .
  • the upper header 400 and the lower header 500 are for fixing the bobbin 600 and the heating element 310 in which the induction coil 300 is wound, and the upper header 400 and the lower header 500 are in the height direction of each other. Spaced apart to be coupled to the body 100 or the housing 200 or may be fixed to both the body 100 and the housing 200 is coupled.
  • the upper header 400 is formed with a cooling water discharge hole 410 penetrating the upper and lower surfaces so that the cooling water can pass
  • the lower header 500 has a cooling water inlet hole 510 penetrating the upper and lower surfaces so that the cooling water can pass. This can be formed.
  • the upper header 400 is disposed at a position spaced downward from the top of the inner space formed by the combination of the body 100 and the housing 200
  • the lower header 500 is the body 100 and the housing 200 ) May be disposed at a position spaced upwardly from the lower end of the inner space formed by the combination of.
  • the upper header 400 may be disposed below the outlet pipe 220 in the height direction
  • the lower header 500 may be disposed above the inlet pipe 210 in the height direction.
  • the upper header 400 and the lower header 500 may be formed in a plate shape and disposed in a horizontal direction, and may be disposed in parallel with each other.
  • the bobbin 600 is for fixing the induction coil 300, the bobbin 600 is disposed so that the open both ends of the cylindrical portion 610 formed in a cylindrical shape of the electrically insulating material facing in the height direction so that both ends are the upper header 400 may be coupled to the lower header 500. Thus, the bobbin 600 may be interposed between the upper header 400 and the lower header 500 to be in close contact with each other.
  • the bobbin 600 may be supported by the upper header 400 and the lower header 500. It can be combined to be fixed so that the bobbin does not move up and down.
  • the induction coil 300 may be formed in a form wound on the outside of the bobbin 600, and may be formed in a coil spring shape wound and wound in a plurality of times.
  • the induction coil 300 may be formed such that extension lines extending from the wound portion of the coil pass through the body 100 and are drawn out to the outside, and the extended extension lines are formed on the controller 700 formed at one side of the body 100. Can be electrically connected.
  • a portion through which the extension lines penetrate may be sealed in a portion through which the extension lines of the induction coil 300 penetrate the body 100 by using a sealing member such as wire sealing.
  • the heating element 310 is a part that can be induction heated by the induction coil 300, may be formed of a cylindrical metal or magnetic material, and configured to heat the heating element 310 when an alternating current flows through the induction coil 300. Can be. Both ends of the heating element 310 may be coupled to the upper header 400 and the lower header 500 like the bobbin 600. In addition, the heating element 310 may also be formed in a cylindrical shape so that both open ends thereof may face the height direction. In addition, the heating element 310 may be spaced apart from the inside of the bobbin 600. At this time, the coolant discharge hole 410 and the coolant inlet hole 510 formed in the upper header 400 and the lower header 500 may be formed to communicate with the inside and the outside of the heating element 310.
  • control unit 700 may be formed in the body 100, and as an example, the control unit 700 may be formed on the opposite side of the body 100 to which the housing 200 is coupled.
  • the control unit 700 may be formed as a part of the body 100 to be concave and formed as the control unit case 710 so that the substrate 720 is placed inside the control unit case 710 to be fixed and the substrate 720.
  • Switching elements 730 may be coupled thereto.
  • the controller cover 740 may be coupled to cover and seal the open side of the controller case 710.
  • an extension line of the induction coil 300 may be connected to and controlled by the controller 700.
  • the coolant flowing through the inlet pipe 210 formed at the lower side of the housing 200 is a coolant inlet hole 510 formed in the lower header 500 through the inlet tank part A1, which is a lower space of the lower header 500.
  • Heat flow between the heating element 310 and the cooling water flows upward through the outer side of the heating element 310 and between the bobbin 600 and the heating element 310, the cooling water discharge hole 410 formed in the upper header 400 Through the outlet) through the outlet side tank portion (A2) of the upper space of the upper header 400 may be discharged to the outside through the outlet pipe 220 formed on the upper side of the housing 200.
  • the induction heater of the present invention since the coolant flows from the lower side and flows upward while contacting the heating element, and is discharged from the upper side, bubbles generated by the heating element are generated in the direction in which buoyancy acts along the flow of the cooling water. Since the flow can be discharged together with the cooling water, the bubble discharge of the cooling water can be improved and thus the heat exchange between the cooling water and the heating element can be smoothed to prevent overheating of the heating element.
  • the body 100 has a guide groove 110 is formed in a horizontal concave on the concave inner surface, the upper header 400 and the lower header 500 is inserted along the guide groove 110 to be coupled. Can be.
  • the upper header 400 may be inserted into the inner space concave formed in the body 100 along the guide groove 110 formed in the body 100, the length of the upper header 400 in the guide groove 110 Both sides of the direction may be inserted into the guide groove 110 to fix the movement in the height direction of the upper header 400.
  • the guide groove 110 may be formed concave on both sides of the longitudinal direction forming the concave inner surface of the body 100, it may be formed in the width direction of the inner surface.
  • the guide groove 110 may be formed concave on the inner surface, but may also be formed between the guide portion by forming a pair of guide portions protruding spaced up and down.
  • the guide groove to which the upper header 400 is coupled may be formed at a position spaced downward from the upper surface of the concave inner surface of the body.
  • the lower header 500 may be inserted into the inner space concavely formed in the body 100 along the guide groove 110 formed in the body 100, and in the longitudinal direction of the lower header 400 in the guide groove 110. Both sides may be inserted into the guide groove 110 to fix the movement in the height direction of the lower header 500.
  • the guide groove into which the lower header 500 is inserted and coupled may be formed at a position spaced upward from a lower surface of the concave inner surface of the body.
  • the upper header 400 and the lower header 500 can be easily coupled and fixed to the body 100.
  • the induction coil 300 is assembled between the upper header 400 and the lower header 500 via the bobbin 600 wound and the heating element 310 to form an assembly, and then the upper header in the assembly.
  • the assembly may be coupled to the body 100 by allowing the 400 and the lower header 500 to be inserted and coupled along the guide groove 110 of the body 100.
  • the housing 200 has a fixing groove 230 is formed in the concave inner surface in a horizontal concave, the upper header 400 and the lower header 500 may be inserted into the fixing groove 230 to be coupled. have.
  • the fixing groove 230 may be formed concave on the inner surface formed concave in the housing 200, and similarly, one fixing groove 230 is also formed at a position spaced downward from the upper surface of the inner surface to the upper side from the lower surface. The other may be formed at a spaced position.
  • the upper header 400 and the lower header 500 may be inserted into the fixing groove 230 to be combined.
  • the housing 200 is coupled to the body 100 in an assembled state.
  • the other sides of the upper header 400 and the lower header 500 may be fitted into the fixing groove 230 of the housing 200, and thus the upper header 400 and the lower header 500 may be horizontally aligned. It can be firmly fixed so that there is no movement and movement in the vertical direction.
  • the coolant discharge hole 410 formed in the upper header 400 and the coolant inlet hole 510 formed in the lower header 500 are formed inside the bobbin 600 when viewed from the upper side or the lower side. Based on the position spaced apart from the bobbin 600 may be formed in the radially inner side up to the outer peripheral surface of the heating element 310 or more.
  • the cooling water introduced here passes through the cooling water inlet hole 510 of the lower header 500 and simultaneously passes through the inside and the outside of the heating element 310, wherein the cooling water passing through the outside of the heating element 310 is the bobbin 600. Passing between the inner circumferential surface and the outer circumferential surface of the heating element 310 is to be discharged through the cooling water discharge hole 510 formed in the upper header (400). However, as the distance between the bobbin 600 and the heating element 310 increases, the induction coil 300 wound around the bobbin 600 and the bobbin may be heated less, thereby ensuring the safety of the induction coil 300, and thus, the heating element 310. And the distance between the bobbin 600 and enough.
  • the coolant inlet 410 and the coolant outlet 510 are formed from the spaced apart from the bobbin 600 as described above, and the heating element 310 is radially inwardly based on this.
  • the coolant flowing through the coolant inlet 410 passes quickly through the coolant flow area B1 and is discharged through the coolant discharge hole 510, in particular, the coolant outside the heating element 310. It can pass quickly through the flow zone B1.
  • the coolant stagnant region B2 formed adjacent to the coolant flow region B1 outside the heating element 310 becomes a form in which the upper and lower sides are blocked, a separate rotational flow is performed while the coolant rotates in the coolant stagnant region B2. Formed or stagnant areas are formed.
  • the distance between the bobbin 600 and the heating element 310 may be formed to be far, and at the same time, the flow rate of the cooling water that is exchanged while passing through the outer surface of the heating element 310 may be increased, thereby providing the bobbin 600, the induction coil 300, and the like. All of the overheating of the heating element 310 can be prevented.
  • the coolant discharge hole 410 formed in the upper header 400 and the coolant inlet hole 510 formed in the lower header 500 are formed in the inner region and the outer region of the heating element 310 when viewed from the upper side or the lower side. Can be formed over.
  • the upper header 400 and the lower header 500 may be provided with a flow control unit 530 blocking a portion of the inner region of the heating element 310 when viewed from the top or bottom.
  • the flow controller 530 may be formed to block a part of the inner region of the heating element 310 so as to adjust the flow rate of the cooling water passing through the inside and the outside of the heating element 310.
  • the flow control unit 530 may be formed in the inner central portion of the heating element 310 in a circular plate shape, for example, and may be formed in various sizes.
  • the bobbin 600 may have a coil support 620 formed radially outward from the outer circumferential surface of the cylindrical portion 610 at upper and lower ends thereof.
  • the bobbin 600 has a cylindrical cylindrical portion 610 which is vertically penetrated, and a coil support 620 having a plate shape protruding radially outward from the outer circumferential surface at both upper and lower ends of the cylindrical portion 610. ) May be formed.
  • the coil support part 620 may be formed in plurality in a circumferential direction.
  • the induction coil 300 may be disposed between the coil support parts 620 formed at both upper and lower ends, so that the induction coil 300 may be prevented from being moved or moved.
  • the bobbin 600 has a protrusion 630 protruding in the height direction from the coil support 620, the protrusion 630 in the bobbin coupling holes (440, 540) formed in the header (400, 500) It can be inserted and combined.
  • the protrusion 630 formed in the bobbin 600 may be inserted into and coupled to the bobbin coupling holes 440 and 540 formed in the headers 400 and 500 so that the bobbin 600 can be firmly fixed to the header and the bobbin This is to prevent the rotation of the induction coil 300 by preventing the 600 from being rotated based on the vertical axis.
  • the protrusion 630 may be formed at the top and bottom of the bobbin 600, it may be formed in a shape protruding from the coil support (620).
  • an auxiliary discharge hole 420 and an auxiliary inlet hole 520 may be formed to cool the induction coil 300, and do not form separate auxiliary inlet holes and auxiliary discharge holes.
  • the auxiliary discharge hole 420 and the auxiliary inlet hole 520 is a bobbin coupling hole (440, 540) It can also be substituted.
  • the upper header 400 and the lower header 500 may be formed with bobbin settling grooves 450 and 550 in which coil support portions 620 of the bobbin 600 are inserted and placed on surfaces facing each other.
  • the bobbin settling grooves 450 and 550 are formed concave in the headers 400 and 500, so that the coil support unit ( 620 may be inserted and placed therein.
  • the upper header 400 and the lower header 500 may be formed with heating element coupling grooves 460 and 560 in which end portions of the heating element 310 are inserted into and coupled to the surfaces facing each other.
  • the heating element coupling grooves 460 and 560 are formed concave in the headers 400 and 500 so that the horizontal position of the heating element 310 is fixed, so that the heating element 310 is formed in the heating element coupling grooves 460 and 560. It can be inserted and combined.
  • the body 100 may protrude from the width direction of the concave inner surface to support the induction coil 300, the support 120 may be formed, the housing 200 is formed long in the height direction up and down
  • An inlet pipe and an outlet pipe may be formed by vertically cutting the shape of a pipe in which both ends are blocked.
  • the inlet pipe and the outlet pipe may be formed in the body.
  • the heating element 310 may be formed of a ferrite-based material having a very high permeability so that heat can be generated by an induction method, and the ferrite-based material may be, for example, STS430 in stainless steel.
  • the heating element 310 may be formed of a material having a higher electrical resistance than the induction coil 300.
  • the direction in which the coolant heat exchanged with the heating element 310 flows may be formed to face upward, and may be inclined within an angle range smaller than 90 degrees based on the vertical upward direction. It may be formed.
  • the heating element 310 and the bobbin 600 are formed side by side and the angles of the heating element 310 and the bobbin 600 are arranged to be smaller than 90 degrees with respect to the vertical direction, so that the coolant flows from the lower side to be discharged upward. Can be formed.
  • the heating element 310 and the bobbin 600 may be arranged to form a concentric circle so that the cooling water passing between the heating element 310 and the bobbin is uniformly distributed and flows.
  • FIG 9 is a configuration diagram showing an induction heater having an induction heater control means according to the present invention
  • Figure 10 is a graph showing the properties of the physical properties of the heating element according to the present invention.
  • the induction coil 300 As shown in the induction heater 1000 according to another embodiment of the present invention, the induction coil 300; A heating element 310 induction heated by the induction coil 300; And an induction heater control means connected to the induction coil 300 and the vehicle power source 830 to connect or cut off the power supplied to the induction coil 300 and to control the heating element 310 to induction heating. 800);
  • the induction heater control means 800 includes a current sensing means 810 for sensing a current flowing in the induction coil 300 and a switching element 730 for controlling the current supplied to the heating element 310. It may comprise any one or more of the temperature sensing means 820 for detecting the temperature of the).
  • the induction heater 1000 may be formed in various forms in which the heating element 310 may be inductively heated when AC power is supplied to the induction coil 300, and as an example, the body 100 as shown in FIGS. 3 to 7. And an induction coil 300 and a heating element 310 may be disposed in an inner space formed by the coupling of the housing 200, and the inlet pipe 210 through which the coolant is introduced and the outlet pipe 220 through which the coolant is introduced. ) May be formed, and the coolant may flow inside the housing 200.
  • the induction coil 300 may be wound and fixed to the cylindrical bobbin 600, and the upper header 400 is coupled to the upper side of the bobbin 600 in which the induction coil 300 is wound and the lower header ( 500 may be coupled to form the headers 400 and 500 to be coupled to the body 100 and the housing 200.
  • the body 100 is provided with a controller to switch the power supplied to the induction coil 300 to control the heating element 310 to induction heating.
  • the controller may be a substrate 720, and switching elements 730 and IGBTs capable of switching power supplied to the induction coil 300 may be formed in the substrate 720, and the switching element 730.
  • the microprocessor may be formed to be connected to and control the same.
  • the induction heater control means 800 is connected to the induction coil 300 and the vehicle power source 830 which is the heater power, the heater power supplied to the induction coil 300 by the induction heater control means 800 is connected or cut off
  • the heating element 310 may be controlled to induction heating accordingly.
  • the induction heater control means 800 detects the temperature of the current sensing means 810 for sensing the current flowing in the induction coil 300 and the switching elements 730 and IGBT for controlling the current supplied to the heating element 310. It may include any one or more of the temperature sensing means 820. That is, the current sensing means 810 is a means for sensing the current flowing in the induction coil 300, for example, a hall sensor may be used, and the vehicle power source 830 and the induction coil 300 are connected. May be installed on a power line or mounted on a high voltage circuit of the substrate 720.
  • the temperature sensing means 820 is a means for sensing the temperature of the switching element 730 to control the current supplied to the heating element 310 to the induction heating of the heating element 310, the switching element 730 It may be installed in or adjacent to the switching element 730.
  • the heating element when the flow rate of the cooling water passing through the induction heater is too small or the cooling water does not flow, and the heating element is overheated, the current flowing through the induction coil 300 is changed, and the current is changed by the current sensing means. It can be detected whether the heating element is overheated.
  • the temperature of the body, the housing, and the substrate provided on one side of the heating element is increased.
  • the temperature of the switching element may be relatively high. have. Therefore, it is possible to know whether the heating element is overheated by sensing the temperature of the switching element by the temperature sensing means. That is, when the heating element is not overheated in the situation where the cooling water flows normally, the switching element is also cooled so that the temperature may not rise or the temperature may rise sharply above a certain temperature.
  • the induction heater of the present invention uses the current sensing means capable of detecting overheating of the heating element, the temperature sensing means instead of the current sensing means, or the induction using both the current sensing means and the temperature sensing means.
  • the heater can be controlled so as not to overheat, thereby preventing failure of the induction heater and fire due to overheating.
  • the heating element 310 may be formed of a ferritic metal having a Curie temperature.
  • the heating element 310 may be formed of a ferritic metal having a very high permeability so that heat can be generated by an induction heating method.
  • STS400-based metals of stainless steel may be used, and preferably STS430.
  • the heating element 310 may be formed of a material.
  • the heating element 310 may be formed of a material having a higher electrical resistance than the induction coil 300.
  • the heating element 310 of a ferrite-based metal having a Curie temperature, it is possible to detect whether the current consumption is suddenly changed at the Curie temperature to determine whether the heating element is overheated.
  • the temperature sensing means 820 may be mounted adjacent to a switching element disposed on the upper side on the substrate 720 provided in the induction heater control means 800 or a switching element near the center of the heating element 310. .
  • a plurality of switching elements 730 may be provided on the substrate 720, and the upper portion of the substrate 720 or the central portion of the heating element 310 in the height direction may have the highest temperature.
  • the temperature sensing means 820 may be mounted to be adjacent to the switching element that may have the highest temperature.
  • the temperature sensing means 820 may be directly mounted to the switching element coupled to the substrate 720, and may be mounted to the collector side having the highest temperature in the switching element, and to the substrate 720 to which the switching element is coupled. It may be mounted or mounted to the portion of the substrate to which the collector of the switching element is coupled.
  • the temperature sensing means 820 may be mounted on the body 100 adjacent to the portion where the switching element is in close contact with the body 100.
  • the heating element 310 is formed in the form of a pipe penetrated in the vertical direction, so that the coolant is introduced from the lower side of the heating element and discharged upward, the upper part of the substrate or the central portion of the heating element may have the highest temperature.
  • the temperature sensing means may be mounted adjacent to the switching element disposed in the.
  • the induction heater control means 800 may further include an overcurrent blocking fuse 860 mounted on a high voltage line connecting the vehicle power source 830 and the induction coil 300.
  • the overcurrent blocking fuse 860 is supplied to the induction coil 300.
  • the power can be physically cut off.
  • the over-current blocking fuse 860 may be used a variety of fuses that can be disconnected when a current of more than a specific current flows. 12
  • the overcurrent blocking fuse 860 may be mounted on a high voltage line connecting the vehicle power source 830 and the induction coil 300, and mounted on the high voltage circuit of the substrate 720 on which the high voltage line is formed. Or may be mounted on the vehicle power source 830 side.
  • the induction heater control means 800 may further include: a temperature blocking fuse 870 mounted on a low voltage line connected to an operating power source of a controller for controlling the heating element 310 to induction heating; And a temperature sensing unit 871 connected to the temperature blocking fuse 870 and sensing a water temperature of the coolant that is heat-exchanged with the heating element 310. It may be made to include more.
  • the temperature detecting unit 871 may be connected to the temperature blocking fuse 870, and the temperature detecting unit 871 may detect the water temperature of the coolant that is heat-exchanged with the heating element 310. It can be mounted in thermal contact with various locations. Thus, when the temperature sensing unit 871 detects a temperature higher than a specific temperature, the temperature blocking fuse 870 may be cut off and cut off.
  • the temperature blocking fuse 870 may be connected to a low voltage line connected to an operating power supply of a controller that controls induction heating.
  • the low voltage circuit of the substrate 720 in which the low voltage line is formed may be opened when the abnormal temperature is detected.
  • the controller itself which controls the heating element to induction heating is not operated, thereby preventing the heating element from induction heating and preventing a fire due to overheating of the heating element.
  • the overheat control method of the induction heater of the present invention in the method of controlling the overheating of the induction heater for heating the cooling water in the induction method, the current flowing through the induction coil 300 and the current supplied to the induction coil 300 Determining whether the heating element 31 is overheated by sensing at least one of the temperatures of the switching elements 730 and IGBT (S10); Controlling to connect or cut off the power supplied to the induction coil 300 according to whether the heating element 310 is overheated (S20); It may be made, including.
  • the induction heater 1000 using the current sensing means 810 or the temperature sensing means 820 that can detect the overheat of the heating element 310 or both By using both, it is possible to determine whether the induction heater is overheated and control the power supplied to the induction coil 300 accordingly, thereby preventing a failure and fire of the induction heater due to overheating.
  • the heating element 310 formed of a ferrite metal having a Curie temperature may be controlled to prevent overheating of the induction heater.
  • the current consumption is rapidly changed near the Curie temperature to detect the induction heater. It can be controlled to prevent overheating.
  • the current current Ic which is the current consumption current flowing in the induction coil 300
  • the normal current In which is a normal current consumption supplied to the induction coil 300
  • the current current (Ic) compared to the current (In) is significantly reduced than the predetermined ratio, it can be determined that the heating element 310 is overheated to cut off the power supplied to the induction coil (300).
  • the consumption current decreases as the temperature of the heating element rises.
  • the current current Ic which is the current consumption current flowing in the induction coil 300
  • the current current (Ic) compared to the normal current (In) is significantly reduced than the predetermined ratio, it is determined that the overheating is generated can cut off the power supplied to the induction coil (300).
  • the steady current In may be an average current.
  • the induction heater may be turned off after outputting an overheating error message to the air conditioning controller 840 of the vehicle.
  • the present temperature Tc which is the current temperature relative to the normal temperature Tn, which is the normal temperature of the switching element 730, is higher than a preset value, or the present temperature Tc is compared to the normal temperature Tn.
  • a predetermined ratio it is determined that the heating element 310 is overheated to cut off the power supplied to the induction coil (300).
  • the power supply to the induction coil 300 may be cut off when it is determined that overheating is occurring.
  • the normal temperature Tn may be an average temperature.
  • the absolute value obtained by dividing the difference between the normal temperature and the present temperature by the present temperature is greater than the third preset value e3 or the present temperature is greater than the product of the normal temperature and the fourth preset value e4. If it is high, the overheat error message may be output to the air conditioning controller 840 of the vehicle, and then the induction heater may be turned off.
  • the overcurrent blocking fuse 860 mounted on the high voltage line connecting the vehicle power source 830 and the induction coil 300 is Blocked, the power supplied to the induction coil 300 can be cut off.
  • the heating element 310 cannot be controlled so as not to overheat.
  • the power supplied to the induction coil 300 by the overcurrent blocking fuse 860 may be physically blocked.
  • the overcurrent blocking fuse 860 is cut off by the consumption current rapidly rising near the Curie temperature, or when the limit current Is is reached, the overcurrent blocking fuse 860 is cut off to overheat the heating element. You can prevent it.
  • the temperature blocking is mounted on the low voltage line connected to the operating power of the controller for controlling the heating element 3100 to induction heating.
  • a fuse 870 may be blocked to prevent the heating element 310 from induction heating.
  • the thermal cut-off fuse 870 may allow the operating power of the controller for controlling the heating element to be induction heated physically. At this time, when the temperature cut-off fuse 870 senses the temperature and reaches the limit temperature Ts, the temperature cut-off fuse 870 cuts off the low voltage circuit connected to the operating power source to prevent the heating element from induction heating, thereby preventing the heating element from being overheated. When the specific temperature is lower than) the temperature blocking fuse 870 can be connected again to enable the controller to operate.
  • the power is physically cut off or the controller is physically turned off so that induction heating does not occur. It is possible to prevent the failure of the induction heater and fire due to overheating even in the event of failure of the sensing means or the controller.
  • control unit 700 control unit
  • switching element (IGBT) switching element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Induction Heating (AREA)

Abstract

본 발명은 인덕션 히터 및 인덕션 히터의 과열 제어 방법에 관한 것으로, 인덕션 히팅 방식을 이용해 발열체를 가열하는 인덕션 히터에 있어서 냉각수가 하측에서 유입되어 발열체와 접촉되면서 상측방향으로 유동되어 상측으로 배출되도록 형서되어 냉각수의 기포 배출성을 향상시켜 발열체의 과열을 방지할 수 있는 인덕션 히터에 관한 것이다. 또한, 발열체의 과열을 감지할 수 있는 전류 감지수단 및 온도 감지수단 중 어느 하나 이상이 구비되어 이를 이용해 발열체의 과열 여부를 판단하고 이에 따른 인덕션 코일에 연결된 전원 연결하거나 차단하도록 제어할 수 있어, 과열로 인한 인덕션 히터의 고장 및 화재를 방지할 수 있는 인덕션 히터 및 인덕션 히터의 과열 제어 방법에 관한 것이다.

Description

인덕션 히터 및 인덕션 히터의 과열 제어 방법
본 발명은 인덕션 히팅 방식으로 발열체가 가열되는 인덕션 히터에 있어서 냉각수의 기포 배출성을 향상시킬 수 있으며, 발열체 및 인덕션 코일 등의 과열을 방지할 수 있는 인덕션 히터 및 인덕션 히터의 과열 제어 방법에 관한 것이다.
휘발유, 경유 등을 에너지원으로 하는 엔진을 구동원으로 하는 차량이 현재 가장 일반적인 차량의 형태이나, 이러한 차량용 에너지원은 환경오염 문제 뿐 아니라 석유 매장량의 감소 등과 같은 다양한 원인으로 인해 새로운 에너지원의 필요성이 점점 대두되고 있는 바, 현재 전기자동차, 하이브리드카 및 연료전지 차량 등이 실용화되거나 개발중에 있다.
그런데 전기자동차, 하이브리드카 및 연료전지 차량에서는 종래의 석유를 에너지원으로 하는 엔진을 사용하는 차량과는 달리 냉각수를 이용한 히팅 시스템을 적용할 수 없거나 적용하기 어렵다. 즉, 종래의 석유를 에너지원으로 하는 엔진을 구동원으로 하는 차량의 경우 엔진에서 매우 많은 열이 발생하게 되고, 엔진을 냉각하기 위한 냉각수 순환 시스템이 구비되며, 냉각수가 엔진으로부터 흡수한 열을 실내 난방에 이용하도록 하고 있다. 그러나 엔진에서 발생하는 것과 같은 많은 열이 전기자동차, 하이브리드카 및 연료전지 차량의 구동원에서는 발생하지 않기 때문에, 이러한 종래의 난방 방식을 사용하기에는 한계가 있었다.
이에 따라 전기자동차, 하이브리드카 및 연료전지 차량 등에는, 공조 시스템에 히트펌프(heat pump)를 추가하여 이를 열원으로서 사용할 수 있게 하거나, 전기 히터와 같은 별도의 열원을 구비하는 등 여러 연구가 이루어지고 있다. 이 중 전기 히터는 공조 시스템에 크게 영향을 주지 않고 보다 용이하게 냉각수를 가열할 수 있어 현재 광범위하게 사용이 이루어지고 있다.
여기에서 전기 히터는 차량의 실내로 송풍되는 공기를 직접 가열하는 형태의 공기 가열식 히터와, 냉각수를 가열하는 형태의 냉각수 가열식 히터(또는 냉각수 히터)가 있다.
이중 연료전지 차량에 사용되어 냉각수를 가열하는 종래의 인덕션 방식의 냉각수 히터는, 도 1 및 2와 같이 전력을 생산하는 연료전지스택(10)에 고주파발생기(30)가 전기적으로 연결되고, 고주파 발생기(30)는 자성체인 금속재질의 냉각수 유동배관(2)의 외측에 감긴 코일 형태로 형성되어, 연료전지스택(10)의 전력을 이용해 인덕션 코일(31)에 교류전류가 흐르면 변화되는 자기장에 의해 냉각수 유동배관(2)에 와전류가 발생하고 이로 인해 줄열에 냉각수 유동배관(2)이 가열될 수 있으며, 그리하여 냉각수 유동배관(2)의 내부를 통과하는 냉각수가 가열될 수 있도록 구성된다.
그런데 이와 같은 종래의 인덕션 방식의 냉각수 히터는 입구로 유입된 냉각수가 발열체와 접촉되면서 기포가 발생하게 되고, 이에 따라 기포가 위로 떠오르면서 유입되는 냉각수의 흐름을 막아 냉각수의 유동 저항이 커지며 열교환 효율이 저하된다. 그리고 냉각수의 유동 분배 저하로 인해 발열체의 냉각에 불리하며, 발열체 또는 발열체 주변의 부품들이 과열될 수 있어 안전에 취약한 문제점이 있다.
또한, 인덕션 히터가 과열되는 경우 이를 감지하여 제어할 수 있는 별도의 감지 수단이 마련되어 있지 않아, 냉각수가 없을 경우 발열체가 급속도로 과열되어 인덕션 히터의 고장을 초래하거나 화재가 발생할 수 있는 위험이 있다.
[선행기술문헌]
[특허문헌]
KR 2011-0075118 A1 (2011.07.06)
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 인덕션 히팅 방식을 이용해 발열체를 가열하는 인덕션 히터에 있어서 냉각수의 기포 배출성을 향상시켜 발열체의 과열을 방지할 수 있으며, 인덕션 코일이 권취되어 고정되도록 하는 구조물인 보빈과 발열체 간의 거리를 충분히 두면서 동시에 냉각수의 유동 분배를 조절하여, 발열체 및 주변 구성품들의 과열을 방지할 수 있는 인덕션 히터를 제공하는 것이다.
또한, 인덕션 히터가 과열되는 경우 이를 감지하여 인덕션 히터가 과열되지 않도록 제어할 수 있는 인덕션 히터 및 인덕션 히터의 과열 제어 방법을 제공하는 것이다.
또한, 인덕션 히터가 과열되는 것을 감지하는 감지수단들 또는 발열체가 유도가열되도록 제어하는 제어기의 고장이 발생한 경우, 물리적으로 전원이 차단되도록 하거나 물리적으로 제어기의 전원이 꺼지도록 하여 유도가열이 일어나지 않도록 할 수 있는 인덕션 히터 및 인덕션 히터의 과열 제어 방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 인덕션 히터(1000)는, 몸체(100); 상기 몸체(100)의 측면에 결합된 하우징(200); 상기 몸체(100)와 하우징(200)의 결합에 의해 형성된 내부 공간에 구비되며, 상기 내부 공간의 상단과 하단에서 이격되고 높이방향으로 서로 이격되어 배치되며, 상기 몸체(100) 및 하우징(200) 중 어느 하나 이상에 결합된 상부 헤더(400) 및 하부 헤더(500); 원통형으로 형성되어 개방된 양단이 상기 상부 헤더(400)와 하부 헤더(500)에 의해 지지되도록 결합된 보빈(600); 상기 보빈(600)의 외측에 권취된 인덕션 코일(300); 및 원통형으로 형성되어 개방된 양단이 상기 상부 헤더(400)와 하부 헤더(500)에 의해 지지되도록 결합되며, 상기 보빈(600)의 내측에 이격되어 배치된 발열체(310); 를 포함하여 이루어져, 상기 하우징(200)의 하측에 형성된 입구 파이프(210)로 유입된 냉각수가 하부 헤더(500)의 하측, 하부 헤더(500)의 냉각수 유입공(510), 발열체(310)와 보빈(600) 사이, 상부 헤더(400)의 냉각수 배출공(410), 및 상부 헤더(400)의 상측을 차례로 통과하여 상기 하우징(200)의 상측에 형성된 출구 파이프(220)를 통해 배출되도록 형성될 수 있다.
또한, 상기 몸체(100)에는 오목한 내측면에 수평방향으로 오목하게 가이드 홈(110)이 형성되어, 상기 상부 헤더(400) 및 하부 헤더(500)가 가이드 홈(110)을 따라 삽입되어 결합될 수 있다.
또한, 상기 하우징(200)에는 오목한 내측면에 수평방향으로 오목하게 고정 홈(230)이 형성되어, 상기 상부 헤더(400) 및 하부 헤더(500)가 고정 홈(230)에 삽입되어 결합될 수 있다.
또한, 상기 상부 헤더(400)에 형성된 냉각수 배출공(410)과 하부 헤더(500)에 형성된 냉각수 유입공(510)은, 상측 또는 하측에서 바라보았을 때 보빈(600)의 내측에 형성되되, 상기 보빈(600)에서 이격된 위치를 기준으로 하여 반경방향 내측으로 발열체(310)의 외주면까지 또는 그 이상의 범위에 형성될 수 있다.
또한, 상기 상부 헤더(400)에 형성된 냉각수 배출공(410)과 하부 헤더(500)에 형성된 냉각수 유입공(510)은, 상측 또는 하측에서 바라보았을 때 발열체(310)의 내측 영역과 외측 영역에 걸쳐 형성될 수 있다.
또한, 상기 상부 헤더(400)와 하부 헤더(500)에는 상측 또는 하측에서 바라보았을 때 상기 발열체(310)의 내측 영역의 일부를 막는 유동 조절부(530)가 형성될 수 있다.
또한, 상기 보빈(600)은 상하 양단에 원통부(610)의 외주면에서 반경방향 외측으로 코일 지지부(620)가 형성될 수 있다.
또한, 상기 보빈(600)은 코일 지지부(620)에서 높이방향으로 돌출부(630)가 돌출 형성되어, 상기 돌출부(630)가 헤더(400, 500)들에 형성된 보빈 결합공(440, 540)에 삽입되어 결합될 수 있다.
또한, 상기 상부 헤더(400) 및 하부 헤더(500)에는 서로 마주보는 면에 상기 보빈(600)의 코일 지지부(620)가 삽입되어 안치되는 보빈 안치홈(450, 550)이 형성될 수 있다.
또한, 상기 상부 헤더(400) 및 하부 헤더(500)에는 서로 마주보는 면에 상기 발열체(310)의 단부가 삽입되어 결합되는 발열체 결합홈(460, 560)이 형성될 수 있다.
그리고 상기한 바와 같은 목적을 달성하기 위한 본 발명의 인덕션 히터(1000)는, 인덕션 코일(300); 상기 인덕션 코일(300)에 의해 유도가열되는 발열체(310); 및 상기 인덕션 코일(300) 및 차량 전원(830)에 연결되어, 인덕션 코일(300)로 공급되는 전원을 연결하거나 차단시킬 수 있으며 발열체(310)가 유도가열되도록 제어할 수 있는 인덕션 히터 제어수단(800); 을 포함하여 이루어지며, 상기 인덕션 히터 제어수단(800)은 인덕션 코일(300)에 흐르는 전류를 감지하는 전류 감지수단(810) 및 발열체(310)로 공급되는 전류를 제어하는 스위칭 소자(730, IGBT)의 온도를 감지하는 온도 감지수단(820) 중 어느 하나 이상을 포함하여 이루어지는 것을 특징으로 한다.
또한, 상기 발열체(310)는 큐리 온도를 갖는 페라이트계 금속으로 형성되는 것을 특징으로 한다.
또한, 상기 온도 감지수단(820)은 인덕션 히터 제어수단(800)에 구비된 기판(720)상의 상부측에 배치된 스위칭 소자 또는 발열체(310)의 중앙부에 가까운 스위칭 소자에 인접되어 장착되는 것을 특징으로 한다.
또한, 상기 인덕션 히터 제어수단(800)은, 차량 전원(830)과 인덕션 코일(300)을 연결하는 고전압 라인 상에 장착되는 과전류 차단 휴즈(860)를 더 포함하여 이루어지는 것을 특징으로 한다.
또한, 상기 인덕션 히터 제어수단(800)은, 상기 발열체(310)가 유도가열되도록 제어하는 제어기의 작동 전원과 연결된 저전압 라인 상에 장착되는 온도 차단 휴즈(870); 및 상기 온도 차단 휴즈(870)에 연결되며 발열체(310)와 열교환되는 냉각수의 수온을 감지하는 온도 감지부(871); 를 더 포함하여 이루어지는 것을 특징으로 한다.
그리고 본 발명의 인덕션 히터의 과열 제어 방법은, 인덕션 방식으로 냉각수를 가열하는 인덕션 히터의 과열을 제어하는 방법에 있어서, 인덕션 코일(300)에 흐르는 전류 및 인덕션 코일(300)로 공급되는 전류를 제어하는 스위칭 소자(730, IGBT)의 온도 중 어느 하나 이상을 감지하여 발열체(310)의 과열 여부를 판단하는 단계(S10); 상기 발열체(310)의 과열 여부에 따라 인덕션 코일(300)로 공급되는 전원을 연결하거나 차단하도록 제어하는 단계(S20); 를 포함하여 이루어지는 것을 특징으로 한다.
또한, 큐리 온도를 갖는 페라이트계 금속으로 형성되는 발열체(310)를 이용하는 것을 특징으로 한다.
또한, 상기 인덕션 코일(300)로 공급되는 정상상태의 소비전류인 정상전류(In) 대비 인덕션 코일(300)에 흐르는 현재의 소비전류인 현재전류(Ic)가 미리 설정된 값보다 작아지거나, 상기 정상전류(In) 대비 현재전류(Ic)가 미리 정해진 비율보다 크게 감소될 시 발열체(310)가 과열된 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단하는 것을 특징으로 한다.
또한, 상기 스위칭 소자(730)의 정상상태의 온도인 정상온도(Tn) 대비 현재의 온도인 현재온도(Tc)가 미리 설정된 값보다 높아지거나, 상기 정상온도(Tn) 대비 현재온도(Tc)가 미리 정해진 비율보다 크게 증가될 시 발열체(310)가 과열된 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단하는 것을 특징으로 한다.
또한, 상기 인덕션 코일(300)에 흐르는 전류가 미리 설정된 한계전류(Is)에 도달하면, 차량 전원(830)과 인덕션 코일(300)을 연결하는 고전압 라인 상에 장착되는 과전류 차단 휴즈(860)가 차단되어, 상기 인덕션 코일(300)로 공급되는 전원이 차단되는 것을 특징으로 한다.
또한, 상기 발열체(310)와 열교환되는 냉각수의 수온이 미리 설정된 한계온도(Ts)에 도달하면, 상기 발열체(310)가 유도가열되도록 제어하는 제어기의 작동 전원과 연결된 저전압 라인 상에 장착되는 온도 차단 휴즈(870)가 차단되어, 상기 발열체(310)가 유도가열되지 않도록 하는 것을 특징으로 한다.
본 발명의 인덕션 히터는, 냉각수의 기포 배출성이 향상되어 발열체의 과열을 방지할 수 있다. 또한, 보빈과 발열체 간의 거리를 충분히 이격시킬 수 있으며 냉각수의 유동이 원활하도록 조절될 수 있어 발열체 및 주변 구성품들의 과열을 방지할 수 있다.
그리고 본 발명의 인덕션 히터 및 인덕션 히터의 과열 제어 방법은, 발열체의 과열을 감지할 수 있는 전류 감지수단 또는 온도 감지수단을 이용해 인덕션 히터가 과열되지 않도록 제어할 수 있어, 과열로 인한 인덕션 히터의 고장 및 화재를 방지할 수 있는 장점이 있다.
또한, 인덕션 히터가 과열되는 것을 감지하는 감지수단들 또는 발열체가 유도가열되도록 제어하는 제어기의 고장이 발생한 경우, 물리적으로 전원이 차단되도록 하거나 물리적으로 제어기의 전원이 꺼지도록 하여 유도가열이 일어나지 않도록 할 수 있어, 감지수단들 또는 제어기의 고장 시에도 과열로 인한 인덕션 히터의 고장 및 화재를 방지할 수 있는 장점이 있다.
도 1 및 도 2는 종래의 인덕션 히터를 나타낸 개략도 및 단면도.
도 3 및 도 4는 본 발명의 인덕션 히터를 나타낸 조립사시도 및 분해사시도.
도 5 및 도 6은 본 발명에 따른 상부 헤더, 하부 헤더, 보빈, 인덕션 코일 및 발열체의 결합구조를 나타낸 분해사시도 및 조립사시도.
도 7은 본 발명의 인덕션 히터를 나타낸 단면도.
도 8은 본 발명에 따른 냉각수의 유동 영역을 나타낸 부분 단면도.
도 9는 본 발명에 따른 인덕션 히터 제어수단이 구비된 인덕션 히터를 나타낸 구성도.
도 10은 본 발명에 따른 발열체의 온도에 따른 물성 변화 특성을 나타낸 그래프.
도 11은 본 발명에 따른 전류 감지수단이 구비된 인덕션 히터를 나타낸 구성도.
도 12는 본 발명에 따른 과전류 차단 휴즈가 구비된 인덕션 히터를 나타낸 구성도.
도 13은 본 발명에 따른 온도 차단 휴즈가 구비된 인덕션 히터를 나타낸 구성도.
도 14는 본 발명의 인덕션 히터의 과열 제어 방법을 나타낸 제어 알고리즘.
이하, 상기한 바와 같은 구성을 갖는 본 발명의 인덕션 히터를 첨부된 도면을 참고하여 상세하게 설명한다.
도 3 및 도 4는 본 발명의 인덕션 히터를 나타낸 조립사시도 및 분해사시도이고, 도 5 및 도 6은 본 발명에 따른 상부 헤더, 하부 헤더, 보빈, 인덕션 코일 및 발열체의 결합구조를 나타낸 분해사시도 및 조립사시도이며, 도 7은 본 발명의 인덕션 히터를 나타낸 단면도이다.
도시된 바와 같이 본 발명의 일 실시예에 따른 인덕션 히터(1000)는, 몸체(100); 상기 몸체(100)의 측면에 결합된 하우징(200); 상기 몸체(100)와 하우징(200)의 결합에 의해 형성된 내부 공간에 구비되며, 상기 내부 공간의 상단과 하단에서 이격되고 높이방향으로 서로 이격되어 배치되며, 상기 몸체(100) 및 하우징(200) 중 어느 하나 이상에 결합된 상부 헤더(400) 및 하부 헤더(500); 원통형으로 형성되어 개방된 양단이 상기 상부 헤더(400)와 하부 헤더(500)에 의해 지지되도록 결합된 보빈(600); 상기 보빈(600)의 외측에 권취된 인덕션 코일(300); 및 원통형으로 형성되어 개방된 양단이 상기 상부 헤더(400)와 하부 헤더(500)에 의해 지지되도록 결합되며, 상기 보빈(600)의 내측에 이격되어 배치된 발열체(310); 를 포함하여 이루어져, 상기 하우징(200)의 하측에 형성된 입구 파이프(210)로 유입된 냉각수가 하부 헤더(500)의 하측, 하부 헤더(500)의 냉각수 유입공(510), 발열체(310)와 보빈(600) 사이, 상부 헤더(400)의 냉각수 배출공(410), 및 상부 헤더(400)의 상측을 차례로 통과하여 상기 하우징(200)의 상측에 형성된 출구 파이프(220)를 통해 배출되도록 형성될 수 있다.
우선, 몸체(100)는 인덕션 코일(300) 및 발열체(310)가 내부에 구비될 수 있도록 내부 공간을 형성하며 냉각수가 유동될 수 있는 공간을 형성하는 일부분으로써, 일례로 도시된 바와 같이 일측 측면이 안쪽으로 오목하게 형성될 수 있다.
하우징(200)은 몸체(100)에 결합되어, 몸체(100)에 접하는 테두리 부분이 밀폐되도록 몸체(100)에 결합될 수 있다. 이때, 하우징(200)은 몸체(100)와 마주보는 측면이 개방된 용기 형태로 형성되어 일측 측면이 안쪽으로 오목하게 형성될 수 있다. 그리고 하우징(200)에는 하측에 입구 파이프(210)가 형성되고 상측에 출구 파이프(220)가 형성될 수 있다. 또한, 내부에 형성된 공간에는 상기한 바와 같이 인덕션 코일(300) 및 발열체(310)가 내부에 구비될 수 있다. 그리하여 몸체(100)쪽의 공간에 인덕션 코일(300) 및 발열체(310)의 일부가 배치되고 하우징(200)쪽의 공간에 인덕션 코일(300) 및 발열체(310)의 나머지 부분이 배치될 수 있다.
상부 헤더(400) 및 하부 헤더(500)는 인덕션 코일(300)이 권취되는 보빈(600) 및 발열체(310)를 고정하기 위한 것으로, 상부 헤더(400)와 하부 헤더(500)는 서로 높이방향으로 이격되어 배치되어 몸체(100) 또는 하우징(200)에 결합되거나 몸체(100) 및 하우징(200)에 모두 결합되어 고정될 수 있다. 이때, 상부 헤더(400)에는 냉각수가 통과될 수 있도록 상하면을 관통하는 냉각수 배출공(410)이 형성되고, 하부 헤더(500)에는 냉각수가 통과될 수 있도록 상하면을 관통하는 냉각수 유입공(510)이 형성될 수 있다. 또한, 상부 헤더(400)는 몸체(100)와 하우징(200)의 결합에 의해 형성된 내부 공간의 상단에서 하측으로 이격된 위치에 배치되며, 하부 헤더(500)는 몸체(100)와 하우징(200)의 결합에 의해 형성된 내부 공간의 하단에서 상측으로 이격된 위치에 배치될 수 있다. 또한, 상부 헤더(400)는 높이방향으로 출구 파이프(220)의 하측에 배치될 수 있으며, 하부 헤더(500)는 높이방향으로 입구 파이프(210)의 상측에 배치될 수 있다. 또한, 상부 헤더(400)와 하부 헤더(500)는 판형으로 형성되어 수평방향으로 배치될 수 있으며, 서로 나란하게 배치될 수 있다.
보빈(600)은 인덕션 코일(300)을 고정하기 위한 것으로, 보빈(600)은 전기적인 절연 재질의 원통형으로 형성된 원통부(610)의 개방된 양단이 높이방향을 향하도록 배치되어 양단이 상부 헤더(400)와 하부 헤더(500)에 결합될 수 있다. 그리하여 상부 헤더(400)와 하부 헤더(500) 사이에 보빈(600)이 개재되어 상하로 밀착되도록 결합될 수 있으며, 상부 헤더(400)와 하부 헤더(500)에 의해 보빈(600)이 지지되도록 결합되어 보빈이 상하로 움직이지 않도록 고정될 수 있다.
인덕션 코일(300)은 보빈(600)의 외측에 감긴 형태로 형성될 수 있으며, 복수회 권취되어 밀착된 코일스프링 형태로 형성될 수 있다. 그리고 인덕션 코일(300)은 코일의 권취된 부분에서 연장 형성된 연장선들이 몸체(100)를 관통해 외부로 인출되도록 형성될 수 있으며, 인출된 연장선들은 몸체(100)의 일측에 형성된 제어부(700)에 전기적으로 연결될 수 있다. 또한, 인덕션 코일(300)의 연장선들이 몸체(100)를 관통하는 부분에는 와이어 씰링과 같은 실링부재를 이용해 연장선들이 관통되는 부분이 밀폐되도록 할 수 있다.
발열체(310)는 인덕션 코일(300)에 의해 유도가열 될 수 있는 부분으로, 원통형의 금속이나 자성체 등으로 형성될 수 있으며, 인덕션 코일(300)에 교류전류가 흐르면 발열체(310)가 가열되도록 구성될 수 있다. 그리고 발열체(310)는 상기 보빈(600)과 마찬가지로 상부 헤더(400)와 하부 헤더(500)에 양단이 결합되어 지지될 수 있다. 그리고 발열체(310)도 원통형으로 형성되어 개방된 양단이 높이방향을 향하도록 배치될 수 있다. 또한, 발열체(310)는 보빈(600)의 내측에 이격되어 배치될 수 있다. 이때, 상부 헤더(400) 및 하부 헤더(500)에 형성된 냉각수 배출공(410) 및 냉각수 유입공(510)이 발열체(310)의 내측 및 외측과 연통되도록 형성될 수 있다.
또한, 몸체(100)에는 제어부(700)가 형성될 수 있으며, 일례로 도시된 바와 같이 하우징(200)이 결합되는 몸체(100)의 반대측에 제어부(700)가 형성될 수 있다. 이때, 제어부(700)는 몸체(100)의 일부가 오목하게 형성되어 제어부 케이스(710)로 형성되어 제어부 케이스(710)의 내부에 기판(720)이 안치되어 고정될 수 있으며, 기판(720)에는 스위칭 소자(730)들이 결합될 수 있다. 그리고 제어부 케이스(710)의 개방된 측면을 덮어 밀폐할 수 있도록 제어부 커버(740)가 결합될 수 있다. 그리고 인덕션 코일(300)의 연장선이 제어부(700)에 연결되어 제어될 수 있다.
그리하여 하우징(200)의 하측에 형성된 입구 파이프(210)를 통해 유입되는 냉각수는 하부 헤더(500)의 하측 공간인 입구측 탱크부(A1)를 통해 하부 헤더(500)에 형성된 냉각수 유입공(510)을 통과하여 상측으로 유동되고 발열체(310)의 외측과 보빈(600)의 사이를 통해 상측으로 유동되면서 발열체(310)와 냉각수 간에 열교환이 일어나고, 상부 헤더(400)에 형성된 냉각수 배출공(410)을 통과하여 상부 헤더(400)의 상측 공간인 출구측 탱크부(A2)를 통해 하우징(200)의 상측에 형성된 출구 파이프(220)를 통해 외부로 배출될 수 있다.
이에 따라 본 발명의 인덕션 히터는, 냉각수가 하측에서 유입되어 발열체와 접촉되면서 상측방향으로 유동된 후 상측에서 배출되므로 발열체에 의해 가열되어 발생할 수 있는 기포가 냉각수의 흐름을 따라 부력이 작용하는 방향으로 유동되어 냉각수와 함께 배출될 수 있어, 냉각수의 기포 배출성이 향상될 수 있으며 이에 따라 냉각수와 발열체 간의 열교환이 원활해져 발열체의 과열을 방지할 수 있다.
또한, 상기 몸체(100)에는 오목한 내측면에 수평방향으로 오목하게 가이드 홈(110)이 형성되어, 상기 상부 헤더(400) 및 하부 헤더(500)가 가이드 홈(110)을 따라 삽입되어 결합될 수 있다.
즉, 상부 헤더(400)가 몸체(100)에 형성된 가이드 홈(110)을 따라 몸체(100)에 오목하게 형성된 내측 공간으로 삽입될 수 있으며, 가이드 홈(110)에 상부 헤더(400)의 길이방향 양측이 가이드 홈(110)에 삽입되어 상부 헤더(400)의 높이방향으로의 움직임이 고정될 수 있다. 그리고 가이드 홈(110)은 몸체(100)의 오목한 내면을 형성하는 길이방향 양면에 오목하게 형성될 수 있으며, 내면 중 폭방향 면에도 형성될 수 있다. 또한, 가이드 홈(110)은 내면에서 오목하게 형성될 수도 있으나 상하로 이격되어 돌출된 한 쌍의 가이드부를 형성하여 가이드부 사이에 가이드 홈이 형성되도록 할 수도 있다. 또한, 상부 헤더(400)가 결합되는 가이드 홈은 몸체의 오목한 내면 중 상면에서 하측으로 이격된 위치에 형성될 수 있다. 마찬가지로 하부 헤더(500)가 몸체(100)에 형성된 가이드 홈(110)을 따라 몸체(100)에 오목하게 형성된 내측 공간으로 삽입될 수 있으며, 가이드 홈(110)에 하부 헤더(400)의 길이방향 양측이 가이드 홈(110)에 삽입되어 하부 헤더(500)의 높이방향으로의 움직임이 고정될 수 있다. 또한, 하부 헤더(500)가 삽입되어 결합되는 가이드 홈은 몸체의 오목한 내면 중 하면에서 상측으로 이격된 위치에 형성될 수 있다.
그리하여 상부 헤더(400) 및 하부 헤더(500)를 몸체(100)에 용이하게 결합하여 고정되도록 할 수 있다. 이때, 상부 헤더(400)와 하부 헤더(500)의 사이에 인덕션 코일(300)이 권취된 보빈(600)과 발열체(310)를 개재하여 결합되도록 조립하여 조립체를 형성한 후 이 조립체에서 상부 헤더(400)와 하부 헤더(500)가 몸체(100)의 가이드 홈(110)을 따라 삽입되어 결합되도록 함으로써 조립체가 몸체(100)에 결합될 수 있다.
또한, 상기 하우징(200)에는 오목한 내측면에 수평방향으로 오목하게 고정 홈(230)이 형성되어, 상기 상부 헤더(400) 및 하부 헤더(500)가 고정 홈(230)에 삽입되어 결합될 수 있다.
즉, 하우징(200)에 오목하게 형성된 내면에 오목하게 고정홈(230)이 형성될 수 있으며, 마찬가지로 고정홈(230)도 내면 중 상면에서 하측으로 이격된 위치에 하나가 형성되고 하면에서 상측으로 이격된 위치에 다른 하나가 형성될 수 있다. 그리하여 상부 헤더(400) 및 하부 헤더(500)가 고정홈(230)에 삽입되어 결합될 수 있다. 이때, 상기한 바와 같이 몸체(100)의 가이드 홈(110)에 상부 헤더(400) 및 하부 헤더(500)의 일측이 끼워져 조립체가 조립된 상태에서 하우징(200)을 몸체(100)에 결합하면, 상부 헤더(400) 및 하부 헤더(500)의 타측이 하우징(200)의 고정홈(230)에 끼워져 결합될 수 있으며, 이에 따라 상부 헤더(400)와 하부 헤더(500)가 수평방향으로의 움직임 및 상하방향으로의 움직임이 없도록 견고하게 고정될 수 있다.
또한, 상기 상부 헤더(400)에 형성된 냉각수 배출공(410)과 하부 헤더(500)에 형성된 냉각수 유입공(510)은, 상측 또는 하측에서 바라보았을 때 보빈(600)의 내측에 형성되되, 상기 보빈(600)에서 이격된 위치를 기준으로 하여 반경방향 내측으로 발열체(310)의 외주면까지 또는 그 이상의 범위에 형성될 수 있다.
여기에서 유입된 냉각수는 하부 헤더(500)의 냉각수 유입공(510)을 통과하여 발열체(310)의 내측과 외측을 동시에 통과하는데, 이때 발열체(310)의 외측을 통과하는 냉각수는 보빈(600)의 내주면과 발열체(310)의 외주면 사이를 통과하여 상부 헤더(400)에 형성된 냉각수 배출공(510)을 통해 배출되게 된다. 그런데 보빈(600)과 발열체(310)와의 거리가 멀수록 보빈(600) 및 보빈에 권취된 인덕션 코일(300)이 덜 가열되어 인덕션 코일(300)의 안전성을 확보할 수 있으므로, 발열체(310)와 보빈(600)과의 거리를 충분히 두게 된다. 이때, 발열체(310)와 보빈(600) 사이의 거리가 멀어지면 통과하는 냉각수의 유속이 느려져 발열체(310)의 온도가 상승하여 과열될 수 있다. 그러므로 발열체(310)와 보빈(600)과의 거리를 충분히 두면서 동시에 통과하는 냉각수의 유속을 빠르게 하여 보빈(600), 인덕션 코일(300) 및 발열체(310)의 과열을 모두 방지할 수 있도록 상측 또는 하측에서 헤더(400,500)를 바라보았을 때 냉각수 유입공(410)과 냉각수 배출공(510)이 상기한 바와 같이 보빈(600)에서 이격된 위치에서부터 형성되어 이를 기준으로 반경방향 내측으로 발열체(310)의 외주면까지 형성되거나 그 이상의 범위에 형성될 수 있다. 그리하여 도 도 7 및 도 8과 같이 냉각수 유입공(410)을 통해 유입된 냉각수가 냉각수 유동 영역(B1)을 빠르게 통과하여 냉각수 배출공(510)을 통해 배출되며, 특히 발열체(310) 외측의 냉각수 유동 영역(B1)을 빠르게 통과할 수 있다. 이때, 발열체(310) 외측의 냉각수 유동 영역(B1)에 인접하여 형성된 냉각수 정체 영역(B2)은 상측과 하측이 막혀있는 형태가 되므로 냉각수 정체 영역(B2)에서 냉각수가 회전되면서 별도의 회전유동이 형성되거나 정체된 영역이 형성되게 된다. 이에 따라 보빈(600)과 발열체(310) 간의 거리를 멀게 형성하면서 동시에 발열체(310)의 외측면을 통과하면서 열교환되는 냉각수의 유속을 빠르게 할 수 있어, 보빈(600), 인덕션 코일(300) 및 발열체(310)의 과열을 모두 방지할 수 있다.
또한, 상기 상부 헤더(400)에 형성된 냉각수 배출공(410)과 하부 헤더(500)에 형성된 냉각수 유입공(510)은, 상측 또는 하측에서 바라보았을 때 발열체(310)의 내측 영역과 외측 영역에 걸쳐 형성될 수 있다.
즉, 도시된 바와 같이 상측 또는 하측에서 바라보았을 때 헤더(400, 500)에 형성된 냉각수 유입공(410) 및 배출공(510)은 냉각수가 발열체(310)의 내측 및 외측을 함께 통과할 수 있도록 발열체(310)의 내측 및 외측에 걸쳐 형성될 수 있다.
또한, 상기 상부 헤더(400)와 하부 헤더(500)에는 상측 또는 하측에서 바라보았을 때 상기 발열체(310)의 내측 영역의 일부를 막는 유동 조절부(530)가 형성될 수 있다.
즉, 발열체(310)의 내측과 외측을 통과하는 냉각수의 유량을 조절할 수 있도록, 발열체(310)의 내측 영역의 일부를 막도록 유동 조절부(530)가 형성될 수 있다. 이때, 유동 조절부(530)는 일례로 원형의 판 형상으로 발열체(310)의 내측 중앙부에 형성될 수 있으며, 다양한 크기로 형성될 수 있다.
또한, 상기 보빈(600)은 상하 양단에 원통부(610)의 외주면에서 반경방향 외측으로 코일 지지부(620)가 형성될 수 있다.
즉, 도시된 바와 같이 보빈(600)은 상하로 관통된 원통형의 원통부(610)가 형성되고, 원통부(610)의 상하 양단에 외주면에서 반경방향 외측으로 돌출된 판 형태의 코일 지지부(620)가 형성될 수 있다. 그리고 코일 지지부(620)는 원주방향으로 이격되어 복수개로 형성될 수 있다. 그리하여 상하 양단에 형성된 코일 지지부(620)의 사이에 인덕션 코일(300)이 배치될 수 있어, 인덕션 코일(300)이 이탈되거나 움직이는 것이 방지될 수 있다.
또한, 상기 보빈(600)은 코일 지지부(620)에서 높이방향으로 돌출부(630)가 돌출 형성되어, 상기 돌출부(630)가 헤더(400, 500)들에 형성된 보빈 결합공(440, 540)에 삽입되어 결합될 수 있다.
이는 보빈(600)에 형성된 돌출부(630)가 헤더(400, 500)들에 형성된 보빈 결합공(440, 540)에 삽입되어 결합되도록 함으로써, 보빈(600)이 견고하게 헤더에 고정될 수 있으며 보빈(600)이 상하방향 중심축을 기준으로 회전되지 않도록 하여 인덕션 코일(300)도 회전이 방지될 수 있도록 하기 위함이다. 이때, 돌출부(630)는 보빈(600)의 상단 및 하단에 형성될 수도 있으며, 코일 지지부(620)에서 돌출된 형태로 형성될 수 있다. 또한, 헤더(400, 500)들에는 인덕션 코일(300)을 냉각시키기 위해 보조 배출공(420) 및 보조 유입공(520)이 형성될 수 있으며, 별도의 보조 유입공 및 보조 배출공을 형성하지 않고 돌출부(630)를 보조 배출공(420) 및 보조 유입공(520)에 대응되는 형태로 형성하여 상기 보조 배출공(420) 및 보조 유입공(520)이 보빈 결합공(440, 540)을 대신할 수도 있다.
또한, 상기 상부 헤더(400) 및 하부 헤더(500)에는 서로 마주보는 면에 상기 보빈(600)의 코일 지지부(620)가 삽입되어 안치되는 보빈 안치홈(450, 550)이 형성될 수 있다.
즉, 수평방향으로 보빈(600)의 위치가 고정되도록 하기 위해 헤더(400, 500)들에 오목하게 보빈 안치홈(450, 550)을 형성하여, 보빈 안치홈(450, 550)에 코일 지지부(620)가 삽입되어 안치될 수 있다.
또한, 상기 상부 헤더(400) 및 하부 헤더(500)에는 서로 마주보는 면에 상기 발열체(310)의 단부가 삽입되어 결합되는 발열체 결합홈(460, 560)이 형성될 수 있다.
마찬가지로 발열체(310)의 수평방향 위치가 고정되도록 하기 위해 헤더(400, 500)들에 오목하게 발열체 결합홈(460, 560)을 형성하여, 발열체 결합홈(460, 560)에 발열체(310)가 삽입되어 결합될 수 있다.
또한, 몸체(100)는 오목하게 형성된 내면 중 폭방향 면에서 돌출되어 인덕션 코일(300)을 지지할 수 있도록 지지부(120)가 형성될 수 있으며, 하우징(200)은 높이방향으로 길게 형성되어 상하 양단이 막힌 관 형태를 수직으로 반으로 자른 형태로 형성되어 입구 파이프와 출구 파이프가 형성될 수 있다. 또는 입구 파이프와 출구 파이프는 몸체에 형성될 수도 있다.
또한, 발열체(310)는 인덕션 방식에 의해 발열이 잘 될 수 있도록 투자율이 매우 큰 페라이트계 물질로 형성될 수 있으며, 페라이트계 물질로는 일례로 스테인레스 스틸 중 STS430이 될 수 있다. 그리고 발열체(310)는 인덕션 코일(300)보다 전기 저항력이 높은 물질로 형성될 수 있다. 또한, 냉각수에서 기포의 배출이 용이하도록 하기 위해서는 발열체(310)와 열교환되는 냉각수가 유동되는 방향은 수직상측을 향하도록 형성될 수 있으며, 수직상측방향을 기준으로 90도보다 작은 각도 범위 내에서 경사지게 형성될 수도 있다. 즉, 발열체(310)와 보빈(600)을 나란하게 형성하고 발열체(310)와 보빈(600)의 각도를 수직방향을 기준으로 90도보다 작게 배치되도록 하며, 냉각수 하측에서 유입되어 상측으로 배출되도록 형성할 수 있다. 또한, 발열체(310)와 보빈(600)은 동심원을 이루도록 배치되어 발열체(310)와 보빈 사이를 통과하는 냉각수가 균일하게 분배되어 유동되도록 할 수 있다.
도 9는 본 발명에 따른 인덕션 히터 제어수단을 구비한 인덕션 히터를 나타낸 구성도이며, 도 10은 본 발명에 따른 발열체의 온도에 따른 물성 변화 특성을 나타낸 그래프이다.
도시된 바와 같이 본 발명의 다른 실시예에 따른 인덕션 히터(1000)는, 인덕션 코일(300); 상기 인덕션 코일(300)에 의해 유도가열되는 발열체(310); 및 상기 인덕션 코일(300) 및 차량 전원(830)에 연결되어, 인덕션 코일(300)로 공급되는 전원을 연결하거나 차단시킬 수 있으며 발열체(310)가 유도가열되도록 제어할 수 있는 인덕션 히터 제어수단(800); 을 포함하여 이루어지며, 상기 인덕션 히터 제어수단(800)은 인덕션 코일(300)에 흐르는 전류를 감지하는 전류 감지수단(810) 및 발열체(310)로 공급되는 전류를 제어하는 스위칭 소자(730, IGBT)의 온도를 감지하는 온도 감지수단(820) 중 어느 하나 이상을 포함하여 이루어질 수 있다.
우선, 인덕션 히터(1000)는 인덕션 코일(300)에 교류전원이 공급되면 발열체(310)가 유도가열될 수 있는 다양한 형태로 형성될 수 있으며, 일례로 도 3 내지 도 7과 같이 몸체(100) 및 하우징(200)의 결합에 의해 형성된 내부 공간에 인덕션 코일(300) 및 발열체(310)가 배치될 수 있고, 하우징(200)에는 냉각수가 유입되는 입구 파이프(210) 및 배출되는 출구 파이프(220)가 형성될 수 있으며, 하우징(200)의 내부에서 냉각수가 유동될 수 있다. 또한, 인덕션 코일(300)은 원통형의 보빈(600)에 권취되어 고정될 수 있으며, 인덕션 코일(300)이 권취된 보빈(600)의 상측에 상부 헤더(400)가 결합되고 하측에 하부 헤더(500)가 결합되어 헤더(400, 500)들이 몸체(100) 및 하우징(200)에 결합되도록 형성될 수 있다. 그리고 몸체(100)에는 제어기가 구비되어 인덕션 코일(300)로 공급되는 전원을 스위칭하여 제어함으로써 발열체(310)가 유도가열되도록 할 수 있다. 이때, 제어기는 기판(720)이 될 수 있으며, 기판(720)에는 인덕션 코일(300)로 공급되는 전원을 스위칭 할 수 있는 스위칭 소자(730, IGBT)들이 형성될 수 있으며, 스위칭 소자(730)들과 연결되어 이를 제어할 수 있는 마이크로 프로세서가 형성될 수 있다.
그리고 인덕션 히터 제어수단(800)은 히터 전원인 인덕션 코일(300) 및 차량 전원(830)에 연결되어, 인덕션 히터 제어수단(800)에 의해 인덕션 코일(300)로 공급되는 히터 전원이 연결되거나 차단될 수 있으며 이에 따라 발열체(310)가 유도가열되도록 제어할 수 있다.
여기에서 인덕션 히터 제어수단(800)은 인덕션 코일(300)에 흐르는 전류를 감지하는 전류 감지수단(810) 및 발열체(310)로 공급되는 전류를 제어하는 스위칭 소자(730, IGBT)의 온도를 감지하는 온도 감지수단(820) 중 어느 하나 이상을 포함 수 있다. 즉, 전류 감지수단(810)은 인덕션 코일(300)에 흐르는 전류를 감지할 수 있도록 하는 수단으로써, 일례로 홀 센서 등이 이용될 수 있으며, 차량 전원(830)과 인덕션 코일(300)을 연결하는 전원 라인에 설치되거나 기판(720)의 고전압 회로 상에 장착될 수 있다. 또한, 온도 감지수단(820)은 발열체(310)로 공급되는 전류를 스위칭 제어하여 발열체(310)가 유도가열될 수 있도록 하는 스위칭 소자(730)의 온도를 감지하는 수단으로써, 스위칭 소자(730)에 설치되거나 스위칭 소자(730)에 인접하여 설치될 수 있다.
그리하여 인덕션 히터를 통과하며 열교환되는 냉각수의 유량이 너무 적거나 냉각수가 흐르지 않는 상황이 발생하여 발열체가 과열되면, 이로 인해 인덕션 코일(300)에 흐르는 전류가 변하게 되며, 이때 전류 감지수단으로 전류의 변화를 감지하여 발열체가 과열되었는지 여부를 알 수 있다. 또한, 발열체가 과열되면, 발열체가 수용된 몸체, 하우징 및 몸체의 일측에 구비되는 기판의 온도가 상승하게 되는데, 이때 기판에 형성된 스위칭 소자에서 많은 열이 발생하므로 스위칭 소자의 온도가 상대적으로 가장 높아질 수 있다. 그러므로 온도 감지수단으로 스위칭 소자의 온도를 감지하여 발열체가 과열되었는지 여부를 알 수 있다. 즉, 냉각수가 정상적으로 흐르고 있는 상황에서 발열체가 과열되지 않았을 때에는 스위칭 소자도 냉각되어 특정한 온도 이상으로 온도가 상승하거나 급격하게 온도가 상승되지 않을 수 있다.
이와 같이 본 발명의 인덕션 히터는, 도 11과 같이 발열체의 과열을 감지할 수 있는 전류 감지수단을 이용하거나, 전류 감지수단 대신 온도 감지수단을 이용하거나 또는 전류 감지수단과 온도 감지수단을 모두 이용해 인덕션 히터가 과열되지 않도록 제어할 수 있어, 과열로 인한 인덕션 히터의 고장 및 화재를 방지할 수 있다.
또한, 상기 발열체(310)는 큐리 온도를 갖는 페라이트계 금속으로 형성될 수 있다.
즉, 발열체(310)는 인덕션 히팅 방식에 의해 발열이 잘 될 수 있도록 투자율이 매우 큰 페라이트계 금속으로 형성될 수 있고, 일례로 스테인레스 스틸 중 STS400계열의 금속이 이용될 수 있으며, 바람직하게는 STS430 재질로 발열체(310)가 형성될 수 있다. 그리고 발열체(310)는 인덕션 코일(300)보다 전기 저항력이 높은 물질로 형성될 수 있다. 이때, 큐리 온도를 갖는 페라이트계 금속으로 형성된 발열체(310)는 가열되어 온도가 상승하게 되면, 특정한 온도인 큐리 온도에서 물성이 급격하게 변하게 된다. 즉, 도 10에 도시된 그래프와 같이 온도가 상승함에 따라 점차 인덕션 코일(300)로 공급되는 출력 듀티에 따른 소비전류가 선형적으로 감소하다가 큐리 온도를 기준으로 소비전류가 급격히 상승하는 것을 알 수 있으며, 교류저항은 소비전류의 반대로 그래프가 형성됨을 알 수 있다.
이에 따라 큐리 온도를 갖는 페라이트계 금속으로 발열체(310)를 형성함으로써, 큐리 온도에서 소비전류가 급격하게 변화되는 것을 감지하도록 하여 발열체가 과열되는지를 알 수 있다.
또한, 상기 온도 감지수단(820)은 인덕션 히터 제어수단(800)에 구비된 기판(720)상의 상부측에 배치된 스위칭 소자 또는 발열체(310)의 중앙부에 가까운 스위칭 소자에 인접되어 장착될 수 있다.
즉, 도 5를 참조하면 복수개의 스위칭 소자(730)가 기판(720) 상에 구비될 수 있으며, 높이방향으로 기판(720)의 상부 또는 발열체(310)의 중앙부 부분이 가장 온도가 높을 수 있으므로, 가장 온도가 높아질 수 있는 스위칭 소자에 인접하도록 온도 감지수단(820)이 장착될 수 있다. 일례로 온도 감지수단(820)은 기판(720)에 결합된 스위칭 소자에 직접 장착될 수 있고, 스위칭 소자에서도 온도가 가장 높은 콜렉터 측에 장착될 수도 있으며, 스위칭 소자가 결합된 기판(720)에 장착되거나 스위칭 소자의 콜렉터가 결합된 기판 부분에 장착될 수도 있다. 또는 스위칭 소자가 몸체(100)에 밀착된 경우 스위칭 소자가 몸체(100)에 밀착된 부분에 인접하여 몸체(100)에 온도 감지수단(820)이 장착될 수도 있다. 특히, 발열체(310)가 상하 방향으로 관통된 파이프 형태로 형성되어 냉각수가 발열체의 하측에서 유입되어 상측으로 배출되도록 구성되는 경우 기판의 상부측이나 발열체의 중앙부 부분이 온도가 가장 높을 수 있으므로 이 부분에 배치된 스위칭 소자에 인접하여 온도 감지수단이 장착될 수 있다.
또한, 상기 인덕션 히터 제어수단(800)은, 차량 전원(830)과 인덕션 코일(300)을 연결하는 고전압 라인 상에 장착되는 과전류 차단 휴즈(860)를 더 포함하여 이루어질 수 있다.
즉, 전류 감지수단(810)이나 온도 감지수단(820)에 고장이 발생하거나 제어기에 고장이 발생하여 발열체(310)가 과열되면, 과전류 차단 휴즈(860)에 의해 인덕션 코일(300)로 공급되는 전원이 물리적으로 차단되도록 할 수 있다. 이때, 과전류 차단 휴즈(860)는 특정한 전류 이상의 전류가 흐르게 되면 연결이 끊어져 차단되도록 할 수 있는 다양한 휴즈가 사용될 수 있다. 그리고 도 12를 참조하면 과전류 차단 휴즈(860)는 차량 전원(830)과 인덕션 코일(300)을 연결하는 고전압 라인 상에 장착될 수 있으며, 고전압 라인이 형성된 기판(720)의 고전압 회로 상에 장착되거나 차량 전원(830)측에 장착될 수도 있다.
또한, 상기 인덕션 히터 제어수단(800)은, 상기 발열체(310)가 유도가열되도록 제어하는 제어기의 작동 전원과 연결된 저전압 라인 상에 장착되는 온도 차단 휴즈(870); 및 상기 온도 차단 휴즈(870)에 연결되며 발열체(310)와 열교환되는 냉각수의 수온을 감지하는 온도 감지부(871); 를 더 포함하여 이루어질 수 있다.
즉, 전류 감지수단(810)이나 온도 감지수단(820)에 고장이 발생하거나 제어기에 고장이 발생하여 발열체(310)가 과열되면, 온도 차단 휴즈(860)에 의해 제어기의 작동 전원이 물리적으로 차단되도록 할 수 있다. 이때, 도 13과 같이 온도 차단 휴즈(870)에는 온도를 감지하는 온도 감지부(871)가 연결될 수 있으며, 온도 감지부(871)는 발열체(310)와 열교환되는 냉각수의 수온을 감지할 수 있도록 다양한 위치에 열적으로 접촉되도록 장착될 수 있다. 그리하여 온도 감지부(871)에 특정한 온도 이상의 온도가 감지되면 온도 차단 휴즈(870)가 끊어져 차단되도록 할 수 있으며, 온도 차단 휴즈(870)는 유도가열되도록 제어하는 제어기의 작동 전원과 연결된 저전압 라인 상에 직렬로 연결되도록 장착되어, 이상 온도가 감지되면 저전압 라인이 형성된 기판(720)의 저전압 회로가 개방되도록 할 수 있다. 그리하여 발열체가 과열된 경우, 발열체가 유도가열되도록 제어하는 제어기 자체가 작동되지 않도록 함으로써 발열체가 유도가열되지 않도록 하여 발열체의 과열로 인한 화재를 방지할 수 있다.
그리고 본 발명의 인덕션 히터의 과열 제어 방법은, 인덕션 방식으로 냉각수를 가열하는 인덕션 히터의 과열을 제어하는 방법에 있어서, 인덕션 코일(300)에 흐르는 전류 및 인덕션 코일(300)로 공급되는 전류를 제어하는 스위칭 소자(730, IGBT)의 온도 중 어느 하나 이상을 감지하여 발열체(31)의 과열 여부를 판단하는 단계(S10); 상기 발열체(310)의 과열 여부에 따라 인덕션 코일(300)로 공급되는 전원을 연결하거나 차단하도록 제어하는 단계(S20); 를 포함하여 이루어질 수 있다.
즉, 상기한 본 발명의 일 실시예에 따른 인덕션 히터(1000)에서 설명한 바와 같이, 발열체(310)의 과열을 감지할 수 있는 전류 감지수단(810) 또는 온도 감지수단(820)을 이용하거나 둘 모두를 이용해 인덕션 히터의 과열 여부를 판단하고 이에 따른 인덕션 코일(300)로 공급되는 전원을 제어할 수 있어, 과열로 인한 인덕션 히터의 고장 및 화재를 방지할 수 있다.
또한, 큐리 온도를 갖는 페라이트계 금속으로 형성되는 발열체(310)를 이용하여 인덕션 히터의 과열이 방지되도록 제어될 수 있다.
즉, 상기한 바와 같이 특정한 온도에서 물성이 급격하게 변하는 큐리 온도를 갖는 페라이트계 금속으로 형성된 발열체(310)의 특성을 이용하여, 큐리 온도 부근에서 소비전류가 급격하게 변화되는 것을 감지하여 인덕션 히터의 과열이 방지되도록 제어될 수 있다.
또한, 상기 인덕션 코일(300)로 공급되는 정상상태의 소비전류인 정상전류(In) 대비 인덕션 코일(300)에 흐르는 현재의 소비전류인 현재전류(Ic)가 미리 설정된 값보다 작아지거나, 상기 정상전류(In) 대비 현재전류(Ic)가 미리 정해진 비율보다 크게 감소될 시 발열체(310)가 과열된 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단하도록 제어될 수 있다.
즉, 도 10에 도시된 그래프와 같이 정상작동 상태에서 과열이 발생중인 발열체의 온도범위에서는 발열체의 온도가 상승할수록 소비전류가 작아지므로, 도 14와 같이 정상상태의 소비전류인 정상전류(In)에 비해 인덕션 코일(300)에 흐르는 현재의 소비전류인 현재전류(Ic)가 미리 설정된 값보다 작아는 경우에 과열이 발생중인 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단함으로써 발열체가 과열되는 것을 방지할 수 있다. 또는 정상전류(In) 대비 현재전류(Ic)가 미리 정해진 비율보다 크게 감소될 시 과열이 발생중인 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단할 수 있다. 이때, 정상전류(In)는 평균전류가 될 수 있다. 그리고 도시된 바와 같이 정상전류와 현재전류의 차를 현재전류로 나눈 절대값이 미리 설정된 제1설정값(e1)보다 크거나 정상전류와 미리 설정된 제2설정값(e2)의 곱보다 현재전류가 작은 경우 과열로 판단하여 차량의 공조 컨트롤러(840)에 과열 에러 메시지를 출력한 후 인덕션 히터의 전원이 꺼지도록 할 수 있다.
또한, 상기 스위칭 소자(730)의 정상상태의 온도인 정상온도(Tn) 대비 현재의 온도인 현재온도(Tc)가 미리 설정된 값보다 높아지거나, 상기 정상온도(Tn) 대비 현재온도(Tc)가 미리 정해진 비율보다 크게 증가될 시 발열체(310)가 과열된 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단하는 것을 특징으로 한다.
즉, 도시된 바와 같이 정상온도(Tn) 대비 현재의 온도인 현재온도(Tc)가 미리 설정된 값보다 높아지는 경우 과열이 발생중인 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단함으로써 발열체가 과열되는 것을 방지할 수 있다.
또는 정상온도(Tn) 대비 현재온도(Tc)가 미리 정해진 비율보다 크게 증가될 시 과열이 발생중인 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단할 수 있다. 이때, 정상온도(Tn)는 평균온도가 될 수 있다. 그리고 도시된 바와 같이 정상온도와 현재온도의 차를 현재온도로 나눈 절대값이 미리 설정된 제3설정값(e3)보다 크거나 정상온도와 미리 설정된 제4설정값(e4)의 곱보다 현재온도가 높은 경우 과열로 판단하여 차량의 공조 컨트롤러(840)에 과열 에러 메시지를 출력한 후 인덕션 히터의 전원이 꺼지도록 할 수 있다.
또한, 상기 인덕션 코일(300)에 흐르는 전류가 미리 설정된 한계전류(Is)에 도달하면, 차량 전원(830)과 인덕션 코일(300)을 연결하는 고전압 라인 상에 장착되는 과전류 차단 휴즈(860)가 차단되어, 상기 인덕션 코일(300)로 공급되는 전원이 차단되도록 할 수 있다.
즉, 발열체의 과열이 발생중인 상태에서 전류 감지수단(810)이나 온도 감지수단(820)에 고장이 발생하거나 제어기에 고장이 발생하여 발열체(310)가 과열되지 않도록 제어될 수 없는 상태가 되면, 과전류 차단 휴즈(860)에 의해 인덕션 코일(300)로 공급되는 전원이 물리적으로 차단되도록 할 수 있다. 이때, 그래프에 도시된 바와 같이 큐리온도 부근에서 급상승되는 소비전류에 의해 과전류 차단 휴즈(860)가 끊어지도록 하거나 한계전류(Is)에 도달하면 과전류 차단 휴즈(860)가 끊어지도록 하여 발열체의 과열을 방지할 수 있다.
또한, 상기 발열체(3100)와 열교환되는 냉각수의 수온이 미리 설정된 한계온도(Ts)에 도달하면, 상기 발열체(3100)가 유도가열되도록 제어하는 제어기의 작동 전원과 연결된 저전압 라인 상에 장착되는 온도 차단 휴즈(870)가 차단되어, 상기 발열체(310)가 유도가열되지 않도록 할 수 있다.
즉, 발열체의 과열이 발생중인 상태에서 전류 감지수단(810)이나 온도 감지수단(820)에 고장이 발생하거나 제어기에 고장이 발생하여 발열체(3100)가 과열되지 않도록 제어될 수 없는 상태가 되면, 온도 차단 휴즈(870)에 의해 발열체가 유도가열되도록 제어하는 제어기의 작동 전원이 물리적으로 차단되도록 할 수 있다. 이때, 온도 차단 휴즈(870)는 온도를 감지하여 한계온도(Ts)에 도달하면 작동 전원과 연결된 저전압 회로를 끊어 발열체가 유도가열되지 않도록 하여 발열체가 과열되는 것을 방지할 수 있으며, 한계온도(Ts)보다 낮은 특정온도가 되면 온도 차단 휴즈(870)가 다시 연결되어 제어기가 작동되도록 할 수 있다.
이와 같이 인덕션 히터가 과열되는 것을 감지하는 감지수단들 또는 발열체가 유도가열되도록 제어하는 제어기의 고장이 발생한 경우, 물리적으로 전원이 차단되도록 하거나 물리적으로 제어기의 전원이 꺼지도록 하여 유도가열이 일어나지 않도록 할 수 있어, 감지수단들 또는 제어기의 고장 시에도 과열로 인한 인덕션 히터의 고장 및 화재를 방지할 수 있다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
[부호의 설명]
1000 : 인덕션 히터
100 : 몸체
110 : 가이드 홈
120 : 지지부
200 : 하우징
210 : 입구 파이프
220 : 출구 파이프
230 : 고정 홈
300 : 인덕션 코일
310 : 발열체
400 : 상부 헤더
410 : 냉각수 배출공
420 : 보조 배출공
430 : 유동 조절부
440 : 보빈 결합공
450 : 보빈 안치홈
460 : 발열체 결합홈
500 : 하부 헤더
510 : 냉각수 유입공
520 : 보조 유입공
530 : 유동 조절부
540 : 보빈 결합공
550 : 보빈 안치홈
560 : 발열체 결합홈
600 : 보빈
610 : 원통부
620 : 코일 지지부
630 : 돌출부
700 : 제어부
710 : 제어부 케이스
720 : 기판
730 : 스위칭 소자(IGBT)
740 : 제어부 커버
A1 : 입구측 탱크부
A2 : 출구측 탱크부
B1 : 냉각수 유동 영역
B2 : 냉각수 정체 영역
B3 : 코일 냉각 영역
800 : 인덕션 히터 제어수단
810 : 전류 감지수단
820 : 온도 감지수단
830 : 차량 전원
840 : 공조 컨트롤러
860 : 과전류 차단 휴즈
870 : 온도 차단 휴즈

Claims (21)

  1. 몸체(100);
    상기 몸체(100)의 측면에 결합된 하우징(200);
    상기 몸체(100)와 하우징(200)의 결합에 의해 형성된 내부 공간에 구비되며, 상기 내부 공간의 상단과 하단에서 이격되고 높이방향으로 서로 이격되어 배치되며, 상기 몸체(100) 및 하우징(200) 중 어느 하나 이상에 결합된 상부 헤더(400) 및 하부 헤더(500);
    원통형으로 형성되어 개방된 양단이 상기 상부 헤더(400)와 하부 헤더(500)에 의해 지지되도록 결합된 보빈(600);
    상기 보빈(600)의 외측에 권취된 인덕션 코일(300); 및
    원통형으로 형성되어 개방된 양단이 상기 상부 헤더(400)와 하부 헤더(500)에 의해 지지되도록 결합되며, 상기 보빈(600)의 내측에 이격되어 배치된 발열체(310); 를 포함하여 이루어져,
    상기 하우징(200)의 하측에 형성된 입구 파이프(210)로 유입된 냉각수가 하부 헤더(500)의 하측, 하부 헤더(500)의 냉각수 유입공(510), 발열체(310)와 보빈(600) 사이, 상부 헤더(400)의 냉각수 배출공(410), 및 상부 헤더(400)의 상측을 차례로 통과하여 상기 하우징(200)의 상측에 형성된 출구 파이프(220)를 통해 배출되도록 형성된 것을 특징으로 하는 인덕션 히터.
  2. 제1항에 있어서,
    상기 몸체(100)에는 오목한 내측면에 수평방향으로 오목하게 가이드 홈(110)이 형성되어, 상기 상부 헤더(400) 및 하부 헤더(500)가 가이드 홈(110)을 따라 삽입되어 결합되는 것을 특징으로 하는 인덕션 히터.
  3. 제1항에 있어서,
    상기 하우징(200)에는 오목한 내측면에 수평방향으로 오목하게 고정 홈(230)이 형성되어, 상기 상부 헤더(400) 및 하부 헤더(500)가 고정 홈(230)에 삽입되어 결합되는 것을 특징으로 하는 인덕션 히터.
  4. 제1항에 있어서,
    상기 상부 헤더(400)에 형성된 냉각수 배출공(410)과 하부 헤더(500)에 형성된 냉각수 유입공(510)은, 상측 또는 하측에서 바라보았을 때 보빈(600)의 내측에 형성되되, 상기 보빈(600)에서 이격된 위치를 기준으로 하여 반경방향 내측으로 발열체(310)의 외주면까지 또는 그 이상의 범위에 형성되는 것을 특징으로 하는 인덕션 히터.
  5. 제1항에 있어서,
    상기 상부 헤더(400)에 형성된 냉각수 배출공(410)과 하부 헤더(500)에 형성된 냉각수 유입공(510)은, 상측 또는 하측에서 바라보았을 때 발열체(310)의 내측 영역과 외측 영역에 걸쳐 형성된 것을 특징으로 하는 인덕션 히터.
  6. 제1항에 있어서,
    상기 상부 헤더(400)와 하부 헤더(500)에는 상측 또는 하측에서 바라보았을 때 상기 발열체(310)의 내측 영역의 일부를 막는 유동 조절부(530)가 형성된 것을 특징으로 하는 인덕션 히터.
  7. 제1항에 있어서,
    상기 보빈(600)은 상하 양단에 원통부(610)의 외주면에서 반경방향 외측으로 코일 지지부(620)가 형성되는 것을 특징으로 하는 인덕션 히터.
  8. 제7항에 있어서,
    상기 보빈(600)은 코일 지지부(620)에서 높이방향으로 돌출부(630)가 돌출 형성되어, 상기 돌출부(630)가 헤더(400, 500)들에 형성된 보빈 결합공(440, 540)에 삽입되어 결합되는 것을 특징으로 하는 인덕션 히터.
  9. 제7항에 있어서,
    상기 상부 헤더(400) 및 하부 헤더(500)에는 서로 마주보는 면에 상기 보빈(600)의 코일 지지부(620)가 삽입되어 안치되는 보빈 안치홈(450, 550)이 형성된 것을 특징으로 하는 인덕션 히터.
  10. 제1항에 있어서,
    상기 상부 헤더(400) 및 하부 헤더(500)에는 서로 마주보는 면에 상기 발열체(310)의 단부가 삽입되어 결합되는 발열체 결합홈(460, 560)이 형성된 것을 특징으로 하는 인덕션 히터.
  11. 인덕션 코일(300);
    상기 인덕션 코일(300)에 의해 유도가열되는 발열체(310); 및
    상기 인덕션 코일(300) 및 차량 전원(830)에 연결되어, 인덕션 코일(300)로 공급되는 전원을 연결하거나 차단시킬 수 있으며 발열체(310)가 유도가열되도록 제어할 수 있는 인덕션 히터 제어수단(800); 을 포함하여 이루어지며,
    상기 인덕션 히터 제어수단(800)은 인덕션 코일(300)에 흐르는 전류를 감지하는 전류 감지수단(810) 및 발열체(310)로 공급되는 전류를 제어하는 스위칭 소자(730, IGBT)의 온도를 감지하는 온도 감지수단(820) 중 어느 하나 이상을 포함하여 이루어지는 것을 특징으로 하는 인덕션 히터.
  12. 제11항에 있어서,
    상기 발열체(310)는 큐리 온도를 갖는 페라이트계 금속으로 형성되는 것을 특징으로 하는 인덕션 히터.
  13. 제11항에 있어서,
    상기 온도 감지수단(820)은 인덕션 히터 제어수단(800)에 구비된 기판(720)상의 상부측에 배치된 스위칭 소자 또는 발열체(310)의 중앙부에 가까운 스위칭 소자에 인접되어 장착되는 것을 특징으로 하는 인덕션 히터.
  14. 제11항에 있어서,
    상기 인덕션 히터 제어수단(800)은,
    차량 전원(830)과 인덕션 코일(300)을 연결하는 고전압 라인 상에 장착되는 과전류 차단 휴즈(860)를 더 포함하여 이루어지는 것을 특징으로 하는 인덕션 히터.
  15. 제11항에 있어서,
    상기 인덕션 히터 제어수단(800)은,
    상기 발열체(310)가 유도가열되도록 제어하는 제어기의 작동 전원과 연결된 저전압 라인 상에 장착되는 온도 차단 휴즈(870); 및 상기 온도 차단 휴즈(870)에 연결되며 발열체(310)와 열교환되는 냉각수의 수온을 감지하는 온도 감지부(871); 를 더 포함하여 이루어지는 것을 특징으로 하는 인덕션 히터.
  16. 인덕션 방식으로 냉각수를 가열하는 인덕션 히터의 과열을 제어하는 방법에 있어서,
    인덕션 코일(300)에 흐르는 전류 및 인덕션 코일(300)로 공급되는 전류를 제어하는 스위칭 소자(730, IGBT)의 온도 중 어느 하나 이상을 감지하여 발열체(310)의 과열 여부를 판단하는 단계(S10);
    상기 발열체(310)의 과열 여부에 따라 인덕션 코일(300)로 공급되는 전원을 연결하거나 차단하도록 제어하는 단계(S20); 를 포함하여 이루어지는 것을 특징으로 하는 인덕션 히터의 과열 제어 방법.
  17. 제16항에 있어서,
    큐리 온도를 갖는 페라이트계 금속으로 형성되는 발열체(310)를 이용하는 것을 특징으로 하는 인덕션 히터의 과열 제어 방법.
  18. 제16항에 있어서,
    상기 인덕션 코일(300)로 공급되는 정상상태의 소비전류인 정상전류(In) 대비 인덕션 코일(300)에 흐르는 현재의 소비전류인 현재전류(Ic)가 미리 설정된 값보다 작아지거나, 상기 정상전류(In) 대비 현재전류(Ic)가 미리 정해진 비율보다 크게 감소될 시 발열체(310)가 과열된 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단하는 것을 특징으로 하는 인덕션 히터의 과열 제어 방법.
  19. 제16항에 있어서,
    상기 스위칭 소자(730)의 정상상태의 온도인 정상온도(Tn) 대비 현재의 온도인 현재온도(Tc)가 미리 설정된 값보다 높아지거나, 상기 정상온도(Tn) 대비 현재온도(Tc)가 미리 정해진 비율보다 크게 증가될 시 발열체(310)가 과열된 것으로 판단하여 인덕션 코일(300)로 공급되는 전원을 차단하는 것을 특징으로 하는 인덕션 히터의 과열 제어 방법.
  20. 제16항에 있어서,
    상기 인덕션 코일(300)에 흐르는 전류가 미리 설정된 한계전류(Is)에 도달하면, 차량 전원(830)과 인덕션 코일(300)을 연결하는 고전압 라인 상에 장착되는 과전류 차단 휴즈(860)가 차단되어, 상기 인덕션 코일(300)로 공급되는 전원이 차단되는 것을 특징으로 하는 인덕션 히터의 과열 제어 방법.
  21. 제16항에 있어서,
    상기 발열체(310)와 열교환되는 냉각수의 수온이 미리 설정된 한계온도(Ts)에 도달하면, 상기 발열체(310)가 유도가열되도록 제어하는 제어기의 작동 전원과 연결된 저전압 라인 상에 장착되는 온도 차단 휴즈(870)가 차단되어, 상기 발열체(310)가 유도가열되지 않도록 하는 것을 특징으로 하는 인덕션 히터.
PCT/KR2017/006541 2016-07-06 2017-06-21 인덕션 히터 및 인덕션 히터의 과열 제어 방법 WO2018008876A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780014288.XA CN108698474B (zh) 2016-07-06 2017-06-21 感应加热器和用于控制感应加热器的过热的方法
US16/066,908 US11040598B2 (en) 2016-07-06 2017-06-21 Induction heater and method for controlling overheating of induction heater

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160085463A KR102494363B1 (ko) 2016-07-06 2016-07-06 인덕션 히터 및 인덕션 히터의 과열 제어 방법
KR10-2016-0085496 2016-07-06
KR1020160085496A KR102544509B1 (ko) 2016-07-06 2016-07-06 냉각수 히터
KR10-2016-0085463 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018008876A1 true WO2018008876A1 (ko) 2018-01-11

Family

ID=60901614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006541 WO2018008876A1 (ko) 2016-07-06 2017-06-21 인덕션 히터 및 인덕션 히터의 과열 제어 방법

Country Status (3)

Country Link
US (1) US11040598B2 (ko)
CN (1) CN108698474B (ko)
WO (1) WO2018008876A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11628706B2 (en) * 2017-08-31 2023-04-18 Hanon Systems Coolant heater
US10981296B2 (en) * 2019-05-22 2021-04-20 The Boeing Company System and method for preheating a thermoplastic charge
CN112874267A (zh) * 2021-01-22 2021-06-01 凯龙高科技股份有限公司 一种水电加热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104041A (ja) * 2001-09-28 2003-04-09 Japan Climate Systems Corp 流体加熱装置および該流体加熱装置を用いた車両用空調装置
KR100693305B1 (ko) * 2005-11-28 2007-03-13 세타기켄가부시키가이샤 전자유도 가열장치와 그 온도제어 방법
KR200463799Y1 (ko) * 2012-07-20 2012-11-26 왕한기 증기 생산용 고주파 유도가열 보일러
KR101578671B1 (ko) * 2014-04-30 2015-12-18 김주영 인덕션 스팀 보일러
KR20160009962A (ko) * 2014-07-17 2016-01-27 한온시스템 주식회사 자동차의 인덕션 히터

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318553B2 (en) * 2003-07-03 2008-01-15 Christian Helmut Thoma Apparatus and method for heating fluids
US8047451B2 (en) * 2004-04-16 2011-11-01 Mcnaughton Incorporated Windshield heat and clean
US7059537B2 (en) * 2004-06-21 2006-06-13 Parker Randall D Engine pre-heater system
JP2008226720A (ja) * 2007-03-14 2008-09-25 Omron Corp 熱交換装置
KR100974717B1 (ko) * 2007-12-04 2010-08-06 현대자동차주식회사 연료전지차량용 cod 겸용 가열장치
JP2009225602A (ja) * 2008-03-18 2009-10-01 Mazda Motor Corp 車両用誘導加熱装置
DE102009000204A1 (de) * 2009-01-14 2010-07-15 Robert Bosch Gmbh Elektroantrieb und Heizung für ein Fahrzeug, und Verfahren zum Heizen eines Fahrzeugs
KR20110075118A (ko) 2009-12-28 2011-07-06 한라공조주식회사 차량용 잉여전력 소진장치
US20130015173A1 (en) * 2011-07-13 2013-01-17 Airxcel, Inc. Lockout circuit with manual reset for recreational vehicle heater
US10063047B2 (en) * 2011-09-28 2018-08-28 Ppg Industries Ohio, Inc. Intelligent window heat control system
EP2629583B1 (en) * 2012-02-16 2017-01-11 Mahle Behr France Rouffach S.A.S Electric heater
JP2013220708A (ja) * 2012-04-16 2013-10-28 Mitsubishi Heavy Ind Ltd 熱媒体加熱装置およびそれを備えた車両用空調装置
JP5851930B2 (ja) * 2012-05-10 2016-02-03 サンデンホールディングス株式会社 加熱装置
JP6058466B2 (ja) * 2012-06-07 2017-01-11 カルソニックカンセイ株式会社 車両用電気ヒータ装置
US10973368B2 (en) * 2012-12-12 2021-04-13 The Vollrath Company, L.L.C. Three dimensional induction rethermalizing stations and control systems
FR3014542B1 (fr) * 2013-12-05 2019-09-13 Valeo Systemes Thermiques Dispositif electrique de conditionnement thermique de fluide pour vehicule automobile, et appareil de chauffage et/ou de climatisation associe
JP6396041B2 (ja) * 2014-03-11 2018-09-26 三菱重工サーマルシステムズ株式会社 車両及び故障検知方法
KR20160001614A (ko) * 2014-06-26 2016-01-06 엘지전자 주식회사 가전제품
US10228398B2 (en) * 2015-04-02 2019-03-12 Rosemount Aerospace Inc. System and method for minimizing magnetic field effect on an isolated magnetometer
JP6653601B2 (ja) * 2016-03-14 2020-02-26 マレリ株式会社 液体加熱装置
KR102476376B1 (ko) * 2017-08-31 2022-12-12 현대자동차주식회사 전기차량의 냉각수 가열장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104041A (ja) * 2001-09-28 2003-04-09 Japan Climate Systems Corp 流体加熱装置および該流体加熱装置を用いた車両用空調装置
KR100693305B1 (ko) * 2005-11-28 2007-03-13 세타기켄가부시키가이샤 전자유도 가열장치와 그 온도제어 방법
KR200463799Y1 (ko) * 2012-07-20 2012-11-26 왕한기 증기 생산용 고주파 유도가열 보일러
KR101578671B1 (ko) * 2014-04-30 2015-12-18 김주영 인덕션 스팀 보일러
KR20160009962A (ko) * 2014-07-17 2016-01-27 한온시스템 주식회사 자동차의 인덕션 히터

Also Published As

Publication number Publication date
CN108698474B (zh) 2021-07-27
US11040598B2 (en) 2021-06-22
US20200269656A1 (en) 2020-08-27
CN108698474A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2018008876A1 (ko) 인덕션 히터 및 인덕션 히터의 과열 제어 방법
WO2012148189A2 (ko) 전동기 및 이를 구비한 전기차량
WO2017094968A1 (ko) 전기밥솥용 면상발열체의 고정구조
WO2019231070A1 (ko) 배터리셀 온도제어 시스템 및 이의 제어방법
AU2019224862B2 (en) Washing machine and control method of washing machine
WO2019151624A1 (en) Water dispensing device
WO2019164334A1 (en) Washing machine and control method of washing machine
WO2018199498A2 (en) Hot water generation module for water treatment apparatus
KR20180005414A (ko) 인덕션 히터 및 인덕션 히터의 과열 제어 방법
KR20000070026A (ko) 비접촉급전설비의 보호장치
WO2022114418A1 (ko) 전극 발열체 및 이를 포함하는 전극 발열 디바이스와, 이에 적용되는 누전 방지 제어 방법
KR19990044980A (ko) 열적 과부하를 방지하기 위한 수단을 갖는 전기 모터
WO2019045353A1 (ko) 냉각수 히터
KR20070117282A (ko) 동기신호 제어방식 무자계 온도조절기 및 온도조절방법
KR20190142978A (ko) 차량용 유도가열 히터
WO2023132416A1 (en) Induction heating type cooktop
JP2985412B2 (ja) 電気器具の安全装置
JPH10108465A (ja) 電力使用系の保護回路
KR20230039927A (ko) 차량용 냉각수 가열장치
JP2614693B2 (ja) トランス二次側配線や過熱防止スイッチ等の燃焼ハウジング接触検知装置
WO2022181876A1 (ko) 유도 가열 방식의 쿡탑
WO2022191354A1 (ko) 유도 가열 방식의 쿡탑
WO2023191170A1 (ko) 유도 가열 방식의 쿡탑
KR200374817Y1 (ko) 이동식 전기 예 & 후 열처리 기기
WO2015167140A1 (ko) 냉각수 가열식 히터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17824432

Country of ref document: EP

Kind code of ref document: A1