WO2018008427A1 - 送信装置、送信方法、受信装置、及び、受信方法 - Google Patents

送信装置、送信方法、受信装置、及び、受信方法 Download PDF

Info

Publication number
WO2018008427A1
WO2018008427A1 PCT/JP2017/023147 JP2017023147W WO2018008427A1 WO 2018008427 A1 WO2018008427 A1 WO 2018008427A1 JP 2017023147 W JP2017023147 W JP 2017023147W WO 2018008427 A1 WO2018008427 A1 WO 2018008427A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm
additional
carriers
frame
signal
Prior art date
Application number
PCT/JP2017/023147
Other languages
English (en)
French (fr)
Inventor
ロックラン ブルース マイケル
高橋 和幸
諭志 岡田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to EP17824034.7A priority Critical patent/EP3484111B1/en
Priority to JP2018526032A priority patent/JP7046805B2/ja
Priority to US16/099,769 priority patent/US10917277B2/en
Priority to MX2018016211A priority patent/MX2018016211A/es
Priority to CN201780041216.4A priority patent/CN109417528B/zh
Priority to AU2017292436A priority patent/AU2017292436B2/en
Priority to CA3028937A priority patent/CA3028937A1/en
Publication of WO2018008427A1 publication Critical patent/WO2018008427A1/ja
Priority to JP2022046528A priority patent/JP7214910B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present technology relates to a transmitting device, a transmitting method, a receiving device, and a receiving method, and in particular, for example, a transmitting device, a transmitting method, and a receiving device which can ensure a sufficient amount of additional information of a physical layer. And the reception method.
  • ISDB-T Integrated Services Digital Broadcasting-Terrestrial
  • UHF Ultra High Frequency
  • ISDB-T three transmission modes of modes 1, 2 and 3 are defined, in which the carrier spacing (subcarrier spacing) of an orthogonal frequency division multiplexing (OFDM) signal is different.
  • carrier spacing subcarrier spacing
  • OFDM orthogonal frequency division multiplexing
  • 8K points (1K: 1024) are used as DFT sizes when performing IDFT (Inverse Discrete Fourier Transform) of OFDM signals, that is, FFT sizes when performing IFFT (Inverse Fast Fourier Transform) of OFDM signals. Will be adopted.
  • IDFT Inverse Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • advanced terrestrial digital broadcasting carrier spacing narrower than mode 3 of current terrestrial digital broadcasting is adopted, and as for the FFT size, for example, 16K or 32K points larger than the 8K point of current terrestrial digital broadcasting are adopted. It is expected to be done.
  • the IFFT of an OFDM signal is performed, for example, in units of OFDM symbols, but as the carrier spacing narrows (the number of carriers increases) and the FFT size increases, the symbol length (time) of the OFDM symbol increases. become.
  • an OFDM signal of one frame is composed of 204 OFDM symbols.
  • the FFT size is made large and an OFDM frame which is an OFDM signal of one frame is configured by 204 OFDM symbols as in the current terrestrial digital broadcasting, for example, the result is that the symbol length becomes large.
  • the frame length of the OFDM frame is larger than that of the current terrestrial digital broadcasting.
  • the OFDM frame is physically converted to the upper layer data of the upper layer above the physical layer (data link layer, network layer, transport layer, session layer, presentation layer, application layer of the Open Systems Interconnection (OSI) reference model).
  • Layer is configured by adding physical layer information.
  • TMCC Transmission and Multiplexing Configuration and Control
  • AC Advanced Channel
  • processing based on the TMCC signal can not be performed until all of the TMCC signals included in the OFDM frame have been acquired. The same applies to AC signals.
  • the OFDM frame is received when channel switching is performed, and the TMCC signal is received. It will take time to execute processing based on or AC signal. As a result, the time required for synchronization processing and the like becomes long, and the time of channel switching, that is, the time until the content is output after channel switching becomes long.
  • an OFDM frame is configured with a smaller number of OFDM symbols than the current terrestrial digital broadcasting, and the frame length is the current terrestrial digital. It is conceivable to make the same level as broadcasting.
  • the additional information of the physical layer that can be included in the OFDM frame that is, the amount of information (the number of bits) of the TMCC signal and the AC signal, for example, is proportional to the number of OFDM symbols constituting the OFDM frame.
  • the number of OFDM symbols constituting the OFDM frame is reduced, the amount of additional information that can be included in the OFDM frame becomes small, and a sufficient amount of additional information of the physical layer included in the OFDM frame is secured. Will be difficult.
  • the present technology has been made in view of such a situation, and is configured to be able to secure a sufficient amount of additional information of the physical layer.
  • a transmitting apparatus uses an additional carrier for transmitting additional information of a physical layer among carriers of one frame of OFDM (Orthogonal Frequency Division Multiplexing) signal as an IDFT (Inverse Discrete Fourier Transform) of the OFDM signal.
  • a generation unit configured to generate the OFDM signal in which the additional information is allocated to the additional carriers for each group, the additional carriers grouped into groups according to the DFT size when performing; and a transmission unit that transmits the OFDM signal And a transmitter.
  • an additional carrier used for transmission of additional information of the physical layer among carriers of one frame of OFDM is used as an IDFT (Inverse Discrete Fourier Transform) of the OFDM signal.
  • IDFT Inverse Discrete Fourier Transform
  • an additional carrier used to transmit additional information of the physical layer among carriers of one frame of an OFDM (Orthogonal Frequency Division Multiplexing) signal is an IDFT (Inverse Discrete) of the OFDM signal.
  • the OFDM signal to which the additional information is allocated is generated and transmitted to the additional carriers for each group grouped into groups of the number of groups according to the DFT size when performing Fourier Transform.
  • a receiver uses an additional carrier for transmitting additional information of the physical layer among carriers of one frame of OFDM (Orthogonal Frequency Division Multiplexing) as an IDFT (Inverse Discrete Fourier Transform) of the OFDM signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • IDFT Inverse Discrete Fourier Transform
  • an additional carrier used to transmit additional information of a physical layer among carriers of an OFDM (Orthogonal Frequency Division Multiplexing) signal of one frame is IDFT (Inverse Discrete Fourier Transform) of the OFDM signal.
  • IDFT Inverse Discrete Fourier Transform
  • an additional carrier used for transmitting additional information of the physical layer among carriers of one frame of an orthogonal frequency division multiplexing (OFDM) signal is an IDFT (Inverse Discrete) of the OFDM signal.
  • the additional information corresponding to the number of groups according to is acquired.
  • the transmitting device and the receiving device may be independent devices, or may be internal blocks constituting one device.
  • the transmission device and the reception device can be realized by causing a computer to execute a program.
  • the program for realizing the transmitting device and the receiving device can be provided by transmitting via a transmission medium or recording on a recording medium.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a transmission system to which the present technology is applied.
  • FIG. 2 is a block diagram showing a configuration example of a transmission device 11. It is a figure which shows the example of the grouping pattern of grouping of the additional carrier which an OFDM segment performed in the channel coding part 43 performed. It is a flow chart explaining transmission processing which transmitting device 11 performs.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a transmission system to which the present technology is applied.
  • FIG. 2 is a block diagram showing a configuration example of a transmission device 11. It is a figure which shows the example of the grouping pattern of grouping of the additional carrier which an OFDM segment performed in the channel coding part 43 performed. It is a flow chart explaining transmission processing which transmitting device 11 performs.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a transmission system to which the present technology is applied.
  • FIG. 2 is a block diagram showing a configuration example
  • FIG. 2 is a block diagram showing a configuration example of a receiving device 12; It is a flowchart explaining the reception process which the receiver 12 performs. It is a figure which shows the example of the grouping pattern of the addition carrier according to FFT size.
  • FIG. 5 illustrates an example of an OFDM frame without frame synchronization symbols.
  • FIG. 7 shows a first example of an OFDM frame with frame synchronization symbols.
  • FIG. 7 shows a second example of an OFDM frame with frame synchronization symbols.
  • FIG. 7 shows a third example of an OFDM frame with frame synchronization symbols.
  • Fig. 21 is a block diagram illustrating a configuration example of an embodiment of a computer to which the present technology is applied.
  • FIG. 1 is a diagram showing an outline of the configuration of an ISDB-T mode 3 OFDM frame.
  • the horizontal axis represents frequency
  • the vertical axis represents time
  • the OFDM frame is configured by arranging only 204 OFDM symbols each having a symbol length of 1008 us (micro second).
  • An OFDM symbol is composed of 13 extending in the frequency direction corresponding to 13 segments constituting 1 channel.
  • each of 13 parts corresponding to 13 segments constituting 1 channel of an OFDM symbol is called an OFDM segment.
  • An OFDM segment has 432 carriers (subcarriers).
  • QPSK Quadrature Phase Shift Keying
  • 16 QAM Quadrature Amplitude Modulation
  • 64 QAM Quadrature Amplitude Modulation
  • DQPSK Different QPSK
  • 384 carriers out of 432 carriers in the OFDM segment are used to transmit upper layer data, and 36 carriers are used for pilot signals (SP (Scattered Pilot)). Used for transmission. Also, four carriers are used for transmission of a TMCC signal as additional information of the physical layer, and eight carriers are used for transmission of an AC signal as additional information of the physical layer.
  • SP Systemcattered Pilot
  • a carrier used for transmission of upper layer data is also referred to as a data carrier
  • a carrier used for transmission of additional information of a physical layer such as a TMCC signal or an AC signal is also referred to as an additional carrier.
  • the TMCC signal is control information for assisting demodulation and the like
  • the AC signal is defined as the additional information related to broadcasting, but (the additional carrier of the TMCC signal and the AC signal)
  • the TMCC signal and the AC signal are referred to as additional information because each of the above is information on the physical layer to be added to the data carrier.
  • the additional information can include all information of the physical layer added to the data carrier, in addition to TMCC signals and AC signals.
  • TMCC carriers additional carriers
  • AC carriers additional carriers
  • the additional carrier is modulated with BPSK (DBPSK) by a TMCC signal or an AC signal.
  • BPSK BPSK
  • the TMCC signal and the AC signal transmitted by one additional carrier are one bit.
  • the same TMCC signal is transmitted on four TMCC carriers among the 12 additional carriers of the OFDM segment. That is, the four TMCC carriers of the OFDM segment are modulated by the same one bit of the TMCC signal. Therefore, the TMCC signal transmitted on the four TMCC carriers of the OFDM segment is one bit.
  • the same AC signal is transmitted on eight AC carriers among the twelve additional carriers of the OFDM segment.
  • the AC signal transmitted on the eight AC carriers of the OFDM segment is again one bit.
  • the TMCC signal transmitted by 4 ⁇ 13 TMCC carriers of 13 OFDM segments constituting one OFDM symbol and the AC signal transmitted by 8 ⁇ 13 AC carriers are all , 1 bit.
  • one bit of the TMCC signal is transmitted on 4 ⁇ 13 TMCC carriers of 13 OFDM segments constituting one OFDM symbol.
  • one bit of an AC signal is transmitted on 8 ⁇ 13 AC carriers of thirteen OFDM segments constituting one OFDM symbol.
  • TMCC signals and AC signals are transmitted with high redundancy, for example, even if one of the additional carriers (TMCC carrier, AC carrier) is collapsed due to multipath fading or the like, on the receiving side,
  • the additional carrier can be used to restore TMCC signals and AC signals, and highly robust transmission can be performed.
  • the amount of information of a TMCC signal that can be transmitted in an OFDM frame is 204 bits, which is equal to the number of 204 OFDM symbols that make up the OFDM frame. The same applies to the AC signal.
  • FIG. 2 is a diagram for explaining parameters of OFDM symbols constituting an OFDM frame.
  • the symbol length T of the OFDM symbol is equal to the reciprocal of the carrier interval f0 of the carrier that the OFDM symbol has.
  • the symbol length T is increased.
  • GI Guard Interval
  • an OFDM frame is composed of 204 OFDM symbols as in, for example, current terrestrial digital broadcasting
  • the symbol length becomes large, and as a result, the frame length of the OFDM frame becomes that of the current terrestrial digital broadcasting. It will be bigger than the case.
  • an OFDM frame adopting an FFT size larger than the 8K point of the current terrestrial digital broadcast for example, 16K point or 32K point
  • a new OFDM frame for example, 16K point or 32K point
  • an OFDM frame that employs the 8K-point FFT size of the current terrestrial digital broadcast (mode 3) is also referred to as a current OFDM frame.
  • the new OFDM frame it is possible to suppress interference from delayed waves up to the same delay time as in the case of the current OFDM frame by adding a GI having the same GI length as in the case of the current OFDM frame.
  • the new OFDM frame has a longer symbol length than the current OFDM frame, the GI length is relatively short with respect to the symbol length. Therefore, according to the new OFDM frame, transmission efficiency can be improved as compared to the current OFDM frame.
  • the frame length is long when the new OFDM frame is configured of 204 OFDM symbols similar to the current terrestrial digital broadcasting. Become.
  • the new OFDM frame includes (additional carriers of) additional information similar to that of the current OFDM frame
  • one new frame is added for the new OFDM frame having a long frame length. It takes longer time to acquire TMCC signals and AC signals and execute processing based on the TMCC signals and AC signals than in the case of the current OFDM frame.
  • a method of suppressing an increase in time required for channel switching for example, a method of configuring an OFDM frame with a smaller number of OFDM symbols than in current terrestrial digital broadcasting can be considered.
  • the additional information of the physical layer that can be included in the OFDM frame that is, the amount of information (the number of bits) of the TMCC signal and the AC signal, for example, is proportional to the number of OFDM symbols constituting the OFDM frame.
  • the number of OFDM symbols constituting the OFDM frame is reduced, the amount of additional information that can be included in the OFDM frame becomes small, and a sufficient amount of additional information of the physical layer included in the OFDM frame is secured. Will be difficult.
  • the present technology secures a sufficient amount of additional information that can be included in a new OFDM frame by sacrificing some robustness.
  • FIG. 3 shows a transmission system to which the present technology is applied (a system is a logical aggregation of a plurality of devices, regardless of whether devices of respective configurations are in the same case) It is a block diagram showing an example of composition of an embodiment.
  • the transmission system includes a transmitter 11, a receiver 12, and an output device 13.
  • the transmission device 11 transmits (broadcasts) (transmits), for example, a program of television broadcasting. That is, the transmission device 11 performs, for example, transmission processing necessary for the target data of the program such as image data and audio data as target data to be transmitted.
  • the transmission device 11 transmits transmission data obtained by performing transmission processing on target data via, for example, a transmission path such as a satellite line, a ground wave, a cable (wired line) or the like.
  • the transmission data transmitted by the transmission device 11 includes a pilot signal and additional information of the physical layer in addition to the content of the program.
  • the receiving device 12 receives the transmission data transmitted from the transmitting device 11 through the transmission path, restores the content of the program included in the transmission data, and supplies the restored content to the output device 13.
  • the output device 13 has a display for displaying an image and a speaker for outputting sound (sound), displays an image as content or the like from the receiving device 12, and outputs sound.
  • FIG. 4 is a block diagram showing a configuration example of the transmission apparatus 11 of FIG.
  • the transmitting device 11 is, for example, a transmitting device using an ISDB-T transmission method, and includes an upper layer processing unit 21 and a physical layer processing unit 22.
  • the upper layer processing unit 21 is supplied with images, sounds, etc. of the contents of the program.
  • the upper layer processing unit 21 performs upper layer processing for generating upper layer data of a format defined in the upper layer from images, sounds, and the like of the content of the program, and supplies the data to the physical layer processing unit 22.
  • the upper layer processing unit 21 performs, for example, encoding of the image and audio of the content of the program as upper layer processing, and generates upper layer data including the encoded image, audio, and the like.
  • the data is supplied to the processing unit 22.
  • a stream such as TS (Transport Stream) or TLV (Type Length Value) / MMT (MPEG Media Transport) can be adopted.
  • TS Transport Stream
  • TLV Type Length Value
  • MMT MPEG Media Transport
  • the physical layer processing unit 22 processes the upper layer data from the upper layer processing unit 21 in the physical layer, and transmits, for example, an OFDM signal as transmission data obtained as a result.
  • the physical layer processing unit 22 includes a size setting unit 41, an additional information generation unit 42, a transmission path coding unit 43, an inverse fast Fourier transform (IFFT) calculation unit 44, a guard interval (GI) addition unit 45, and transmission. It has a part 46.
  • IFFT inverse fast Fourier transform
  • GI guard interval
  • the size setting unit 41 sets the FFT size when performing IFFT of the OFDM signal, for example, according to the operation of the operator of the transmitter 11, etc., by selecting from among a plurality of predetermined FFT sizes, and additional information
  • the information is supplied to the generation unit 42, the transmission path encoding unit 43, and the IFFT operation unit 44.
  • the additional information generation unit 42 generates additional information which is physical layer data (data of the physical layer) and supplies the additional information to the transmission path coding unit 43.
  • additional information which is physical layer data (data of the physical layer) and supplies the additional information to the transmission path coding unit 43.
  • TMCC signals and AC signals are additional information that is physical layer data.
  • the additional information is included in the OFDM frame obtained by the channel coding unit 43, but the amount of additional information (hereinafter also referred to as allowable information amount) that can be included in one OFDM frame is FFT It depends on the size etc. Therefore, the additional information generation unit 42 obtains the allowable information amount using the FFT size supplied from the size setting unit 41, and generates additional information of the information amount within the range of the allowable information amount.
  • the transmission path coding unit 43 is supplied with the FFT size from the size setting unit 41, the additional information from the additional information generation unit 42, and the upper layer data from the upper layer processing unit 21.
  • the transmission path coding unit 43 performs predetermined transmission path coding on the upper layer data from the upper layer processing unit 21 and adds additional information from the additional information generation unit 42 to the upper layer data, and further, it is necessary. It generates an OFDM frame to which physical layer data such as a pilot signal is added.
  • the transmission path coding unit 43 functions as a generation unit that generates an OFDM frame.
  • ISDB-T channel coding for example, error correction coding of upper layer data or mapping as modulation of data carriers according to upper layer data (upper layer data on IQ constellation) Mapping, frequency interleaving, time interleaving, etc.
  • the transmission path coding unit 43 modulates according to the additional information corresponding to the additional information (carrier according to the additional information) onto the data carrier corresponding to the upper layer data (carrier modulated according to the upper layer data) obtained by the transmission path coding. And a carrier (carrier modulated according to the pilot signal) or the like corresponding to the pilot signal, to construct an OFDM segment.
  • the transmission path coding unit 43 constructs one OFDM symbol by Nseg OFDM segments, and one frame of OFDM signal, that is, one OFDM symbol by the number of OFDM symbols according to the FFT size from the size setting unit 41. , Constitute one OFDM frame.
  • Nseg represents the number of segments of an OFDM segment that constitutes an OFDM symbol. In ISDB-T, the number of segments Nseg is 13.
  • the number of additional carriers constituting the OFDM segment is predetermined to a fixed number.
  • the transmission path coding unit 43 groups the fixed number of additional carriers into groups of the number of groups according to the FFT size from the size setting unit 41, and allocates the additional information to the additional carriers for each group.
  • the additional carrier is modulated in accordance with the additional information assigned to the additional carrier.
  • a grouping pattern (pattern of grouping) of additional carriers according to the FFT size is determined in advance. There is.
  • the number of additional carriers constituting the OFDM segment is 12, as in the case of mode 3 of ISDB-T described with reference to FIG.
  • the transmission path coding unit 43 divides the 12 additional carriers into groups of the number of groups according to the FFT size set by the size setting unit 41.
  • the grouping pattern of additional carriers for the FFT size set by the size setting unit 41 is determined to group 12 additional carriers into four groups of three additional carriers. Then, the transmission path coding unit 43 divides the 12 additional carriers into 4 groups of 3 additional carriers.
  • the additional carrier for example, as in ISDB-T, when two signal points on the IQ constellation adopt BPSK (DBPSK), one bit may be transmitted by one additional carrier. it can. Further, as the modulation scheme of the additional carrier, for example, if the signal points on the IQ constellation employs two two QPSK etc., with one additional carrier, it is possible to transmit 2 bits.
  • DBPSK BPSK
  • the transmission path coding unit 43 assigns, to one additional carrier, one bit of additional information that can be transmitted by the one additional carrier.
  • the transmission path coding unit 43 assigns the same additional information to the additional carriers in the same group.
  • the 12 additional carriers of the OFDM segment are grouped into four groups of 3 additional carriers, as described above, for example, in the OFDM segment, the same three as the number of groups. Additional information of bits is transmitted.
  • Nseg the number of segments of an OFDM segment constituting an OFDM symbol
  • Nsym the number of OFDM symbols constituting an OFDM frame
  • the additional carriers possessed by the OFDM segment are grouped into Ng groups.
  • the allowable information amount which is the amount of additional information that can be included in one OFDM frame, is Nseg ⁇ Nsym ⁇ Ng bits.
  • the number of groups (number of groups) Ng is determined according to the FFT size, so Nseg ⁇ Nsym ⁇ Ng bits as the allowable information amount can be said to be determined according to the FFT size.
  • the same additional information is allocated to the additional carriers of the same group. Therefore, the more the additional carriers constituting the group, the greater the redundancy becomes. The robustness of the additional information assigned to the carrier can be improved.
  • the allowable information amount is Nseg ⁇ Nsym ⁇ Ng bits
  • the amount of additional information that can be transmitted in the OFDM frame can be improved as the number Ng of groups is larger.
  • the transmission path coding unit 43 is an OFDM signal in which additional information is allocated to additional carriers for each group, in which the additional carriers of the OFDM segment are grouped into groups of the number Ng of groups according to the FFT size.
  • the IFFT operation unit 44 converts the OFDM frame supplied from the channel coding unit 43 into an OFDM frame in the time domain by performing an IFFT of the FFT size from the size setting unit 41 as a signal in the frequency domain.
  • the data is supplied to the adding unit 45.
  • the GI addition unit 45 adds a GI having a length that is an integral part of the symbol length of the OFDM symbol to each OFDM symbol constituting the time-domain OFDM frame from the IFFT operation unit 44 and transmits the OFDM as transmission data.
  • the signal is configured and supplied to the transmission unit 46.
  • the transmission unit 46 performs frequency conversion of transmission data from the GI addition unit 45, and transmits an OFDM signal as transmission data after the frequency conversion.
  • FIG. 5 is a diagram showing an example of a grouping pattern of additional carriers grouped by the OFDM segment, which is performed by the channel coding unit 43 of FIG.
  • FIG. 5 an example of a grouping pattern of 12 additional carriers is shown.
  • a of FIG. 5 illustrates a grouping pattern in which 12 additional carriers are grouped into two groups G1 and G2 each having 6 additional carriers as members.
  • FIG. 5 shows a grouping pattern in which 12 additional carriers are grouped into 3 groups G1, G2 and G3 each having 4 additional carriers as members.
  • FIG. 5 shows a grouping pattern in which 12 additional carriers are grouped into 4 groups G1, G2, G3 and G4 each having 3 additional carriers as members.
  • FIG. 5 shows a grouping pattern in which 12 additional carriers are grouped into 6 groups G1, G2, G3, G4, G5 and G6 each having 2 additional carriers as members.
  • E of FIG. 5 shows 12 additional carriers in 12 groups G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11, G12 each having one additional carrier as a member.
  • the grouping pattern to be grouped is shown.
  • the number of additional carriers that are members of the group is the same regardless of the group, but the number of additional carriers that are members of the group may be different depending on the group.
  • F and G in FIG. 5 show examples of such grouping patterns in which the number of additional carriers that are members differs depending on the group.
  • F in FIG. 5 shows a grouping pattern in which 12 additional carriers are grouped into a group G1 having 4 additional carriers as a member and a group G2 having 8 additional carriers as a member. There is.
  • G in FIG. 5 groups 12 additional carriers into 2 groups G1 and G2 each having 2 additional carriers as members and 2 groups G3 and G4 each having 4 additional carriers as members. It shows a grouping pattern to be divided.
  • the transmission path coding unit 43 sets the 12 additional carriers of the OFDM segment according to the grouping size according to the FFT size set by the size setting unit 41 according to the grouping pattern determined in advance. Divide into groups.
  • the transmission path coding unit 43 assigns the same additional information to the additional carriers in the same group.
  • the number of additional carriers in the OFDM segment is a fixed number
  • the number of additional carriers that are members of the group becomes small.
  • the redundancy of the additional information transmitted on the additional carrier is reduced and the robustness is reduced.
  • the transmitter 11 can adopt, for example, an OFDM frame configured with the number of symbols Nsym such that the frame length of the OFDM frame is set to a predetermined value.
  • the number of channel segments Nseg is considered to set the number of channel segments Nseg to 35 segments from 13 segments of current terrestrial digital broadcasting.
  • the number of carriers of one OFDM segment for example, as in the current terrestrial digital broadcasting (ISDB-T) described in FIG.
  • the number of carriers of the OFDM signal of one channel is 15,121 including the pilot carrier for reception synchronization.
  • the additional information is approximately equal to that of the current terrestrial digital broadcasting. It is to be transmitted at a redundancy of 2.7 times (420420 carriers / (12 carriers ⁇ 13 segments)).
  • the FFT size becomes 16K points, 32K points or the like larger than the number of carriers.
  • the carrier interval is halved and the FFT size is doubled.
  • the carrier interval is 1 ⁇ 2 times that of mode 1 and the FFT size is 4K, which is twice the 2K point that is the mode 1 FFT size.
  • the carrier interval is 1 ⁇ 2 times that of mode 2 and the FFT size is 8K, which is twice the 4K point that is the FFT size of mode 2.
  • this FFT size is twice the 8K point which is the FFT size of mode 3 of the current terrestrial digital broadcasting, so 16K points are used as the FFT size.
  • carrier intervals for example, intervals of 1/2 times the carrier intervals of mode 3 of the current terrestrial digital broadcast are adopted as carrier intervals, for example, in accordance with the current terrestrial digital broadcast.
  • the symbol length is twice the symbol length of mode 3 of the current terrestrial digital broadcast.
  • the frame length of the OFDM frame is the same as that of mode 3 of the current terrestrial digital broadcasting. It is double the frame length.
  • the frame length of a new OFDM frame which is an OFDM frame of advanced terrestrial digital broadcasting
  • the frame length of the current OFDM frame which is an OFDM frame of digital broadcasting, needs to be the same.
  • the number of symbols of the OFDM symbols constituting the new OFDM frame should be about half of that of the current OFDM frame.
  • the frame length of the OFDM frame is set to a predetermined value, for example, the frame length of the current OFDM frame (or the current OFDM frame It is possible to employ an OFDM frame composed of the number of symbols Nsym to make it close to the frame length).
  • the amount of information of the TMCC signal as additional information which can be transmitted in the current OFDM frame is 204 bits which is the same as the number of 204 OFDM symbols constituting the OFDM frame. .
  • the amount of additional information that can be transmitted in the new OFDM frame is This is 102 bits, which is half the 204 bits in the case of the current OFDM frame.
  • TMCC signal and an AC signal as additional information in the same manner as in the current OFDM frame
  • a new OFDM frame composed of OFDM symbols of which the number of symbols is 1/2 times that of the current OFDM frame The TMCC signal and the AC signal as additional information that can be transmitted in an OFDM frame both decrease from 204 bits to 102 bits.
  • the channel coding unit 43 for example, as shown in C of FIG. 5, has 12 additional carriers and 3 additional carriers as members. Groups are divided into four groups G1, G2, G3 and G4.
  • the new OFDM frame obtained by grouping 12 additional carriers into 4 groups G1, G2, G3 and G4 of which members are 3 additional carriers the addition of the same amount of information as the current OFDM frame is performed. Information can be transmitted.
  • the new OFDM frame by grouping the additional carriers into groups of more than four groups, it is possible to transmit additional information with a larger amount of information than the current OFDM frame.
  • What kind of grouping is adopted as the grouping pattern of additional carriers according to the FFT size in the channel coding unit 43 is, for example, the required frame length Tf required as the frame length of the new OFDM frame, It can be determined based on the required information amount Nb required as the amount of additional information to be transmitted in a new OFDM frame, and the symbol length Tsym of an OFDM symbol having a carrier interval carrier relative to the FFT size.
  • the number of symbols Nsym of OFDM symbols constituting a new OFDM frame satisfying the required frame length Tf is determined, and only Ng such that Nsym ⁇ Ng becomes the required information amount Nb or more.
  • the grouping into which the number of groups is obtained can be adopted as a grouping pattern of additional carriers according to the FFT size.
  • FIG. 6 is a flowchart for explaining transmission processing performed by the transmission device 11 of FIG.
  • an OFDM signal as transmission data is generated and transmitted.
  • step S11 the size setting unit 41 sets the FFT size and supplies it to the additional information generation unit 42, the channel coding unit 43, and the IFFT operation unit 44, and the process proceeds to step S12. move on.
  • step S12 the upper layer processing unit 21 generates upper layer data and supplies the upper layer data to the physical layer processing unit 22, and the process proceeds to step S13.
  • step S13 the additional information generation unit 42 of the physical layer processing unit 22 generates additional information of the information amount according to the FFT size from the size setting unit 41, supplies the additional information to the transmission path coding unit 43, , And proceeds to step S14.
  • the additional information generation unit 42 groups additional carriers included in one frame of the OFDM signal (OFDM frame) into groups of the number of groups according to the FFT size from the size setting unit 41. Generate additional information on the number of bits that can be allocated to
  • the additional carriers included in the OFDM segment are grouped into Ng groups according to the FFT size from size setting section 41, and the OFDM frame is Nsym (symbols) of OFDM symbols.
  • the additional information generation unit 42 generates, for example, additional information of Ng ⁇ Nsym bits (or less) as additional information of the information amount according to the FFT size from the size setting unit 41. Then, the additional information generation unit 42 supplies, to the channel coding unit 43, additional information of Ng ⁇ Nsym bits as additional information to be included in the OFDM frame.
  • step S14 the physical layer processing unit 22 adds the additional information generated by the additional information generation unit 42 to the upper layer data from the upper layer processing unit 21, and generates an OFDM signal as transmission data.
  • the transmission path encoding unit 43 performs transmission path encoding on the upper layer data from the upper layer processing unit 21.
  • data carriers data carriers modulated with upper layer data
  • the transmission path coding unit 43 generates an additional carrier (additional carrier modulated with additional information) corresponding to the additional information from the additional information generation unit 42, and a pilot carrier (pilot signal) corresponding to the pilot signal. Generate a modulated pilot carrier).
  • the transmission path coding unit 43 adds the additional carrier and the pilot carrier to the data carrier, thereby making the additional carriers included in the OFDM frame into groups of the number of groups according to the FFT size from the size setting unit 41.
  • An OFDM frame in which additional information is allocated to the grouped additional carriers for each group is generated.
  • the OFDM frame is supplied from the channel coding unit 43 to the IFFT operation unit 44.
  • the IFFT operation unit 44 performs IFFT of the FFT size from the size setting unit 41 on the OFDM frame from the transmission path coding unit 43, and supplies the resultant time-domain OFDM frame to the GI addition unit 45. Do.
  • the GI addition unit 45 adds a GI to each OFDM symbol constituting the time-domain OFDM frame from the IFFT operation unit 44 to form an OFDM signal as transmission data.
  • the GI addition unit 45 supplies the OFDM signal as transmission data to the transmission unit 46, and the process proceeds from step S14 to step S15.
  • step S15 the transmission unit 46 performs frequency conversion of the transmission data from the GI addition unit 45, and transmits an OFDM signal as transmission data after the frequency conversion.
  • FIG. 7 is a block diagram showing a configuration example of the receiving device 12 of FIG.
  • the receiving device 12 is, for example, a receiving device using an ISDB-T transmission method, and includes a physical layer processing unit 51 and an upper layer processing unit 52.
  • the physical layer processing unit 51 receives the OFDM signal as transmission data transmitted from the transmission device 11, and performs processing of the physical layer on the transmission data.
  • the physical layer processing unit 51 includes a tuner 61, an ADC (Analog to Digital Converter) 62, an orthogonal demodulation unit 63, an FFT operation unit 64, an additional information acquisition unit 65, and a transmission path decoding unit 66.
  • ADC Analog to Digital Converter
  • the tuner 61 functions as a receiving unit that receives an OFDM signal as transmission data of a predetermined channel (frequency band) transmitted from the transmission device 11 and supplies the signal to the ADC 62.
  • the ADC 62 performs A / D conversion of the OFDM signal as transmission data from the tuner 61, and supplies it to the orthogonal demodulation unit 63.
  • the orthogonal demodulation unit 63 orthogonally demodulates the OFDM signal as transmission data from the ADC 62, and supplies the time-domain OFDM signal obtained as a result to the FFT operation unit 64.
  • the FFT operation unit 64 performs FFT on the time-domain OFDM signal from the orthogonal demodulation unit 63, and the OFDM signal in the frequency domain obtained as a result is transmitted to the additional information acquisition unit 65 and the transmission path decoding unit 66. Supply.
  • the FFT operation unit 64 determines, for example, a plurality of FFT sizes of IFFTs of the OFDM signal performed in the transmitting device 11 using correlation of the OFDM signal or the like. It is possible to estimate from among the FFT sizes and perform FFT of the FFT size.
  • the FFT operation unit 64 can supply the additional information acquisition unit 65 with the FFT size estimated from the OFDM signal.
  • the additional information acquisition unit 65 acquires additional information that is physical layer data (for example, information corresponding to a TMCC signal or an AC signal of ISDB-T) from the OFDM signal from the FFT operation unit 64, and the transmission path decoding unit 66 Supply to
  • the transmission line decoding unit 66 performs predetermined transmission line decoding on the OFDM signal from the FFT calculation unit 64 using the additional information supplied from the additional information acquisition unit 65 as necessary, and restores the upper layer data. To the upper layer processing unit 52.
  • the additional information includes, for example, information such as the modulation scheme of the data carrier, and transmission line decoding is performed using the additional information supplied from the additional information acquisition unit 65 to the transmission line decoding unit 66 as necessary. Can.
  • the upper layer processing unit 52 performs processing of the upper layer on the upper layer data from (the transmission path decoding unit 66 of) the physical layer processing unit 51.
  • the upper layer processing unit 52 includes the DEMUX 71 and the upper layer data processing unit 72.
  • the upper layer data from the physical layer processing unit 51 is supplied to the DEMUX 71.
  • the DEMUX 71 separates the encoded image and sound from the upper layer data from the physical layer processing unit 51 and supplies the image and sound to the upper layer data processing unit 72.
  • the upper layer data processing unit 72 decodes the encoded image and sound from the DEMUX 71 and supplies the decoded image and sound to the output device 13 (FIG. 3).
  • FIG. 8 is a flowchart illustrating the reception process performed by the receiving device 12 of FIG.
  • an OFDM signal as transmission data is received, and a process of an upper layer for acquiring an image or sound included in upper layer data included in the OFDM signal is performed.
  • the tuner 61 of the physical layer processing unit 51 receives the OFDM signal as transmission data transmitted from the transmission device 11, and supplies the OFDM signal to the ADC 62.
  • the ADC 62 performs AD conversion of the OFDM signal from the tuner 61, and supplies it to the orthogonal demodulation unit 63.
  • the orthogonal demodulation unit 63 performs orthogonal demodulation of the OFDM signal from the ADC 62, and supplies the result to the FFT operation unit 64.
  • the FFT operation unit 64 recognizes from the OFDM signal from the orthogonal demodulation unit 63 by estimating the FFT size, and performs the FFT of the OFDM signal according to the FFT size.
  • the FFT operation unit 64 supplies the OFDM signal after FFT to the additional information acquisition unit 65 and the transmission path decoding unit 66, and supplies the FFT size to the additional information acquisition unit 65, and the process is performed from step S21. The process proceeds to step S22.
  • step S22 the additional information acquisition unit 65 is included in an OFDM segment (OFDM symbol) that constitutes an OFDM frame that is an OFDM signal of one frame from the FFT operation unit 64 according to the FFT size from the FFT operation unit 64. Recognize the number Ng of additional carrier groups.
  • OFDM segment OFDM symbol
  • the additional information acquisition unit 65 is configured to add additional information corresponding to the number Ng of groups from the additional carriers included in the OFDM segment constituting the OFDM frame from the FFT operation unit 64, that is, here, the number of bits corresponding to the number Ng of groups.
  • the additional information is acquired (demodulated) and supplied to the transmission path decoding unit 66, and the process proceeds from step S22 to step S23.
  • step S23 the transmission path decoding unit 66 restores the upper layer data by performing transmission path decoding on the OFDM frame from the FFT operation unit 64 using the additional information from the additional information acquisition unit 65 as necessary. Then, the process is supplied to the upper layer processing unit 52, and the process proceeds to step S24.
  • step S24 in the upper layer processing unit 52, the DEMUX 71 separates the encoded image and sound from the upper layer data from (the transmission path decoding unit 66 of) the physical layer processing unit 51, and the upper layer data processing unit Supply to 72.
  • step S24 the upper layer data processing unit 72 restores (acquires) the original image and sound by performing processing such as decoding of the image and sound after encoding from the DEMUX 71, and the output device 13 Supply to Figure 3).
  • the above reception processing is repeatedly performed in the pipeline in the reception device 12.
  • the FFT operation unit 64 recognizes from the OFDM signal by estimating the FFT size of the OFDM signal, the FFT operation unit 64 is not limited to, for example, signaling. Allows the FFT size to be recognized.
  • an OFDM frame may be configured to include an OFDM symbol to be a preamble, and the preamble may include signaling of FFT size information.
  • the receiver 12 can recognize the FFT size from the preamble included in the OFDM frame, and can further recognize the number of additional carrier groups of the OFDM segment according to the FFT size.
  • the preamble includes information of the number of groups of additional carriers of the OFDM segment together with or instead of information of the FFT size. Signaling can be included.
  • the reception apparatus 12 can directly recognize the number of additional carrier groups of the OFDM segment from the preamble included in the OFDM frame.
  • the OFDM frame (the OFDM symbol that constitutes the OFDM frame) is configured by a plurality of OFDM segments in the above, the present technology is not limited to the OFDM frame configured by the OFDM segment, such OFDM segment The present invention can also be applied to an OFDM frame without division in the frequency direction according to the concept of.
  • FIG. 9 is a diagram showing an example of an additional carrier grouping pattern according to the FFT size.
  • FIG. 9 shows an example of the grouping pattern of additional carriers when 8K point, 16K point or 32K point is set as the FFT size in the size setting unit 41 (FIG. 4).
  • the OFDM symbol is configured of 13 OFDM segments, and the additional carriers of each OFDM segment transmit the same additional information.
  • the OFDM segment has 432 carriers (subcarriers).
  • a group index (Group) is used to specify the type of grouping pattern of additional carriers so that the grouping pattern of additional carriers can be selected from among several types. Index) has been introduced.
  • 12 additional carriers for an FFT size of 8K points have 1 (carrier / segment) 12 additional carriers as members (Num Of 24 additional carriers for a 16K-point FFT size are grouped into one group with 24 additional carriers as members, and a 32K-point FFT The 48 additional carriers in size are grouped into one group having 48 additional carriers as members.
  • 12 additional carriers for the FFT size of 8K points are grouped into 12 groups having 1 additional carrier as a member.
  • the 24 additional carriers for the 16K point FFT size are grouped into eight groups of 3 additional carriers as members, and the 48 additional carriers for the 32K point FFT size are 6 Are grouped into eight groups of which additional carriers are
  • the number of OFDM segments constituting an OFDM symbol is not limited to 13, and may be 33 or 35, for example. Furthermore, the number of carriers that an OFDM segment has is not limited to 432, 432 ⁇ 2, and 432 ⁇ 4.
  • the grouping pattern of additional carriers according to the FFT size for example, only one set of the FFT size and the group index used in the transmission device 11 can be determined according to a standard or the like.
  • the receiving apparatus 12 can perform FFT with the FFT size defined by the standard, and acquire additional information from the additional carrier according to the grouping pattern specified by the group index defined by the standard.
  • the grouping pattern of additional carriers according to the FFT size for example, only a plurality of sets of FFT sizes and group indexes usable in the transmission device 11 can be determined according to a standard or the like. In this case, it is possible to determine one set of FFT size and group index set to be used in actual operation of the transmitter 11 from among multiple sets of FFT sizes and group index sets defined in the standard according to the operation specification. it can. In this case, the receiving apparatus 12 can perform FFT with the FFT size defined in the operation specification, and acquire additional information from the additional carrier according to the grouping pattern specified by the group index defined in the operation specification. .
  • the FFT sizes and groups used in the transmitting device 11 are as follows. An index can be identified.
  • the receiving apparatus 12 for example, while performing FFT with each of a plurality of FFT sizes defined by the standard, from additional carriers grouped by the grouping pattern specified by each of the plurality of group indexes defined by the standard , Processing of the physical layer such as acquiring additional information, etc., the FFT size used by the transmitter 11 according to, for example, the result of CRC, the result of channel decoding, etc. obtained by the processing of the physical layer And the group index can be identified.
  • an OFDM frame including FFT size signaling as signaling for broadcasting the FFT size or group index used in the transmitting device 11 is configured, and in the receiving device 12, the FFT included in the OFDM frame By size signaling, it is possible to identify the FFT size and group index used by the transmitter 11.
  • FFT size signaling can be configured without including information of the group index.
  • FFT size signaling for example, one or a plurality of OFDM symbols as frame synchronization symbols may be placed at the beginning of an OFDM frame, and FFT size signaling may be included in the frame synchronization symbols.
  • FIG. 10 is a diagram illustrating an example of an OFDM frame having no frame synchronization symbol.
  • the horizontal direction represents frequency
  • the vertical direction represents time. The same applies to FIGS. 11 to 13 described later.
  • an OFDM symbol is composed of N OFDM segments. The same applies to FIGS. 11 to 13 described later.
  • the OFDM symbol is an OFDM symbol with an FFT size of 8K points, that is, an OFDM symbol for which FFT and IFFT are performed with an FFT size of 8K points, and an OFDM frame is composed of M1 OFDM symbols. .
  • FIG. 11 is a diagram showing a first example of an OFDM frame having a frame synchronization symbol.
  • the OFDM symbol is an OFDM symbol with an FFT size of 8K points as in FIG. 10
  • the OFDM frame is a frame synchronization symbol including FFT size signaling at the beginning of the M1 OFDM symbols in FIG. Of 1 OFDM symbol are arranged in M1 + 1 OFDM symbols.
  • FFT size signaling 8 bits etc. are employable, for example.
  • the same FFT size signaling can be included in each OFDM segment which comprises the OFDM symbol as a frame synchronization symbol.
  • the receiving apparatus 12 can acquire FFT size signaling, for example, only by performing partial reception of one segment without receiving all of the N segments.
  • FIG. 12 is a diagram illustrating a second example of an OFDM frame having a frame synchronization symbol.
  • the OFDM symbol is an OFDM symbol with an FFT size of 16K points
  • the OFDM frame is an M2 OFDM symbols less than M1 in FIGS. 10 and 11 and a frame synchronization symbol placed at the beginning. It consists of one OFDM symbol.
  • the symbol length (time) of an OFDM symbol with an FFT size of 16K points is larger than the symbol length of an OFDM symbol with an FFT size of 8K points in FIG.
  • the OFDM frame of FIG. 12 is composed of a smaller number of M2 + 1 OFDM symbols than the M1 + 1 OFDM symbols constituting the OFDM frame of FIG. As M2, for example, a half value of M1 can be adopted.
  • FIG. 13 is a diagram showing a third example of an OFDM frame having a frame synchronization symbol.
  • the OFDM symbol is an OFDM symbol with an FFT size of 32K points
  • the OFDM frame is an M3 OFDM symbols less than the M1 in FIGS. 10 and 11 and a frame synchronization symbol placed at the beginning. It consists of one OFDM symbol.
  • the OFDM frame of FIG. 13 is composed of a smaller number of M3 + 1 OFDM symbols than the M1 + 1 OFDM symbols that constitute the OFDM frame of FIG.
  • M3 pieces for example, it is possible to adopt about 1 ⁇ 4 of M1 pieces (1 ⁇ 2 of M2 pieces).
  • FIG. 14 is a diagram illustrating an example of FFT size signaling to be included in a frame synchronization symbol.
  • 8 bits are adopted as FFT size signaling, and an FFT size, GI length, hierarchical transmission configuration, group index and the like are assigned to each value represented by the 8 bits.
  • 8-bit 00000000 as FFT size signaling has an FFT size of 8K points, a GI length of 1 ⁇ 4 of the symbol length of an OFDM symbol, 13 layers of one layer hierarchy transmission Represents that the group index (Gp_Index) is three.
  • 8-bit 00000001 as FFT size signaling indicates that the FFT size is 8K points
  • the GI length is 1 ⁇ 4 of the symbol length of the OFDM symbol
  • 12 segments and 1 segment Represents a total of two layers of hierarchical transmission
  • a group index of three Represents a total of two layers of hierarchical transmission.
  • At least a part of the series of processes of the transmission device 11 and the reception device 12 described above can be performed by hardware or can be performed by software.
  • a program constituting the software is installed in a general-purpose computer or the like.
  • FIG. 15 is a block diagram showing a configuration example of an embodiment of a computer in which a program for executing the series of processes described above is installed.
  • the program can be recorded in advance in a hard disk 105 or a ROM 103 as a recording medium built in the computer.
  • the program can be stored (recorded) in the removable recording medium 111.
  • Such removable recording medium 111 can be provided as so-called package software.
  • examples of the removable recording medium 111 include a flexible disc, a compact disc read only memory (CD-ROM), a magneto optical disc (MO), a digital versatile disc (DVD), a magnetic disc, a semiconductor memory, and the like.
  • the program may be installed on the computer from the removable recording medium 111 as described above, or may be downloaded to the computer via a communication network or a broadcast network and installed on the built-in hard disk 105. That is, for example, the program is wirelessly transferred from the download site to the computer via an artificial satellite for digital satellite broadcasting, or transferred to the computer via a network such as a LAN (Local Area Network) or the Internet. be able to.
  • a network such as a LAN (Local Area Network) or the Internet.
  • the computer incorporates a CPU (Central Processing Unit) 102, and an input / output interface 110 is connected to the CPU 102 via a bus 101.
  • a CPU Central Processing Unit
  • the CPU 102 executes a program stored in a ROM (Read Only Memory) 103 accordingly. .
  • the CPU 102 loads a program stored in the hard disk 105 into a random access memory (RAM) 104 and executes the program.
  • RAM random access memory
  • the CPU 102 performs the processing according to the above-described flowchart or the processing performed by the configuration of the above-described block diagram. Then, the CPU 102 outputs the processing result from the output unit 106, transmits the processing result from the communication unit 108, or records the processing result on the hard disk 105, for example, through the input / output interface 110, as necessary.
  • the input unit 107 is configured of a keyboard, a mouse, a microphone, and the like. Further, the output unit 106 is configured of an LCD (Liquid Crystal Display), a speaker, and the like.
  • LCD Liquid Crystal Display
  • the processing performed by the computer according to the program does not necessarily have to be performed chronologically in the order described as the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or separately (for example, parallel processing or processing by an object).
  • the program may be processed by one computer (processor) or may be distributed and processed by a plurality of computers. Furthermore, the program may be transferred to a remote computer for execution.
  • the system means a set of a plurality of components (apparatus, modules (parts), etc.), and it does not matter whether all the components are in the same housing or not. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
  • the present technology can have a cloud computing configuration in which one function is shared and processed by a plurality of devices via a network.
  • each step described in the above-described flowchart can be executed by one device or in a shared manner by a plurality of devices.
  • the plurality of processes included in one step can be executed by being shared by a plurality of devices in addition to being executed by one device.
  • the additional carrier used for transmitting additional information of the physical layer is used according to the DFT size when performing Inverse Discrete Fourier Transform (IDFT) of the OFDM signal.
  • a generation unit configured to generate the OFDM signal in which the additional information is allocated to the additional carriers for each group, the additional carriers grouped into the number of groups as described above;
  • a transmitter configured to transmit the OFDM signal.
  • the OFDM signal of one frame is composed of a plurality of OFDM symbols,
  • the OFDM symbol is composed of a plurality of OFDM segments,
  • the generator generates the additional information by assigning the additional information to the additional carriers for each group, in which the additional carriers among the carriers of the OFDM segment are grouped into groups according to the DFT size.
  • the transmitter according to ⁇ 1> which generates a signal.
  • ⁇ 4> The transmitter according to any one of ⁇ 1> to ⁇ 3>, which generates the OFDM signal including signaling of information of the DFT size or the number of groups of additional carriers.
  • ⁇ 5> Of the carriers of one frame of OFDM (Orthogonal Frequency Division Multiplexing) signal, the additional carrier used for transmitting additional information of the physical layer is used according to the DFT size when performing Inverse Discrete Fourier Transform (IDFT) of the OFDM signal. Generating the OFDM signal in which the additional information is allocated to the additional carriers for each group, the additional carriers grouped into a number of groups. Transmitting the OFDM signal.
  • IDFT Inverse Discrete Fourier Transform
  • the additional carrier used for transmitting additional information of the physical layer is used according to the DFT size when performing Inverse Discrete Fourier Transform (IDFT) of the OFDM signal.
  • a receiver configured to acquire the additional information corresponding to the number of groups corresponding to the DFT size from the OFDM signal.
  • the OFDM signal of one frame is composed of a plurality of OFDM symbols,
  • the OFDM symbol is composed of a plurality of OFDM segments,
  • the reception unit is the OFDM in which the additional information is allocated to the additional carriers for each group, in which the additional carriers among the carriers of the OFDM segment are grouped into groups according to the DFT size.
  • Receiving apparatus according to ⁇ 6> which receives a signal.
  • ⁇ 8> The receiver according to ⁇ 7>, wherein the OFDM signal of one frame is configured by the number of OFDM symbols such that the frame length of the OFDM signal of one frame is a predetermined value.
  • the OFDM signal includes signaling of the DFT size or the number of groups of additional carriers
  • the additional carrier used for transmitting additional information of the physical layer is used according to the DFT size when performing Inverse Discrete Fourier Transform (IDFT) of the OFDM signal.
  • IDFT Inverse Discrete Fourier Transform

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Television Systems (AREA)

Abstract

本技術は、物理層の付加情報の情報量を十分に確保することができるようにする送信装置、送信方法、受信装置、及び、受信方法に関する。 送信装置は、1フレームのOFDM信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、OFDM信号のIDFTを行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの付加キャリアに、付加情報を割り当てたOFDM信号を生成して送信する。受信装置は、OFDM信号を受信し、OFDM信号から、DFTサイズに応じたグループ数に対応する付加情報を取得する。本技術は、例えば、OFDM信号の送信や受信を行う場合等に適用することができる。

Description

送信装置、送信方法、受信装置、及び、受信方法
 本技術は、送信装置、送信方法、受信装置、及び、受信方法に関し、特に、例えば、物理層の付加情報の情報量を十分に確保することができるようにする送信装置、送信方法、受信装置、及び、受信方法に関する。
 例えば、地上ディジタル放送の規格であるISDB-T(Integrated Services Digital Broadcasting-Terrestrial)では、UHF(Ultra High Frequency)帯の約6MHzの周波数帯域であるチャンネル(物理チャンネル)を13セグメントに分割すること等が規定されている(例えば、非特許文献1を参照)。
 また、ISDB-Tでは、部分受信、すなわち、13セグメントのうちの中央の1セグメントで、携帯端末向けのワンセグメント放送が可能であることが想定されている。
 さらに、ISDB-Tでは、OFDM(Orthogonal Frequency Division Multiplexing)信号のキャリア間隔(サブキャリアの間隔)が異なるモード1,2,3の3個の伝送モードが規定されている。
 現行の地上ディジタル放送(ISDB-Tに準拠した地上ディジタル放送)では、モード1ないし3のうちの、モード3だけが運用されている。
 モード3では、OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズ、すなわち、OFDM信号のIFFT(Inverse Fast Fourier Transform)を行うときのFFTサイズとして、8K点(1Kは、1024)が採用される。
「ARIB STD-B31 2.2版」、社団法人電波産業会
 現在、次世代の地上ディジタル放送(以下、高度地上ディジタル放送ともいう)の規格の策定が開始されている。高度地上ディジタル放送では、現行の地上ディジタル放送のモード3よりも狭いキャリア間隔が採用され、FFTサイズも、現行の地上ディジタル放送の8K点よりも大の、例えば、16K点や32K点等が採用されることが予想される。
 OFDM信号のIFFTは、例えば、OFDMシンボルの単位で行われるが、キャリア間隔が狭くなって(キャリアの数が多くなって)、FFTサイズが大になると、OFDMシンボルのシンボル長(時間)が大になる。
 現行の地上ディジタル放送では、204個のOFDMシンボルで、1フレームのOFDM信号が構成される。いま、FFTサイズを大にして、1フレームのOFDM信号であるOFDMフレームを、例えば、現行の地上ディジタル放送と同様に、204個のOFDMシンボルで構成することとすると、シンボル長が大になる結果、OFDMフレームのフレーム長は、現行の地上ディジタル放送の場合よりも大になる。
 ところで、OFDMフレームは、物理層より上位の上位層(OSI(Open Systems Interconnection)参照モデルのデータリンク層、ネットワーク層、トランスポート層、セッション層、プレゼンテーション層、アプリケーション層)の上位層データに、物理層で、物理層の情報が付加されて構成される。
 物理層で付加される情報を、付加情報ということとすると、現行の地上ディジタル放送の付加情報としては、TMCC(Transmission and Multiplexing Configuration and Control)信号やAC(Auxiliary Channel)信号がある。
 受信側では、OFDMフレームに含まれるTMCC信号のすべてを取得してからでないと、そのTMCC信号に基づく処理を実行することができない。AC信号についても同様である。
 そのため、FFTサイズを大にして、OFDMフレームを、現行の地上ディジタル放送と同様の204個のOFDMシンボルで構成する場合には、チャンネル切り替えが行われたときに、OFDMフレームを受信し、TMCC信号やAC信号に基づく処理を実行するまでに時間を要することになる。その結果、同期処理等に要する時間が大になり、チャンネル切り替えの時間、すなわち、チャンネル切り替え後にコンテンツが出力されるまでの時間が大になる。
 以上のように、チャンネル切り替えの時間が大になることを抑制する方法としては、例えば、OFDMフレームを、現行の地上ディジタル放送よりも少ない数のOFDMシンボルで構成し、フレーム長を現行の地上ディジタル放送同程度にする方法が考えられる。
 しかしながら、OFDMフレームに含めることができる物理層の付加情報、すなわち、例えば、TMCC信号やAC信号の情報量(ビット数)は、OFDMフレームを構成するOFDMシンボルの数に比例する。
 したがって、OFDMフレームを構成するOFDMシンボルの数を少なくすると、OFDMフレームに含めることができる付加情報の情報量が小になり、OFDMフレームに含める物理層の付加情報の情報量を十分に確保することが困難になる。
 本技術は、このような状況に鑑みてなされたものであり、物理層の付加情報の情報量を十分に確保することができるようにするものである。
 本技術の送信装置は、1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を生成する生成部と、前記OFDM信号を送信する送信部とを備える送信装置である。
 本技術の送信方法は、1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を生成することと、前記OFDM信号を送信することとを含む送信方法である。
 本技術の送信装置及び送信方法においては、1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号が生成されて送信される。
 本技術の受信装置は、1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を受信する受信部と、前記OFDM信号から、前記DFTサイズに応じたグループ数に対応する前記付加情報を取得する取得部とを備える受信装置である。
 本技術の受信方法は、1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を受信することと、前記OFDM信号から、前記DFTサイズに応じたグループ数に対応する前記付加情報を取得することとを含む受信方法である。
 本技術の受信装置及び受信方法においては、1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号が受信され、前記OFDM信号から、前記DFTサイズに応じたグループ数に対応する前記付加情報が取得される。
 なお、送信装置や受信装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
 また、送信装置や受信装置は、コンピュータにプログラムを実行させることにより実現することができる。送信装置や受信装置を実現するプログラムは、伝送媒体を介して伝送することにより、又は、記録媒体に記録して提供することができる。
 本技術によれば、物理層の付加情報の情報量を十分に確保することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
ISDB-Tのモード3のOFDMフレームの構成の概要を示す図である。 OFDMフレームを構成するOFDMシンボルのパラメータを説明する図である。 本技術を適用した伝送システムの一実施の形態の構成例を示すブロック図である。 送信装置11の構成例を示すブロック図である。 伝送路符号化部43で行われる、OFDMセグメントが有する付加キャリアのグループ分けのグループ分けパターンの例を示す図である。 送信装置11が行う送信処理を説明するフローチャートである。 受信装置12の構成例を示すブロック図である。 受信装置12が行う受信処理を説明するフローチャートである。 FFTサイズに応じた、付加キャリアのグループ分けパターンの例を示す図である。 フレーム同期シンボルを有しないOFDMフレームの例を示す図である。 フレーム同期シンボルを有するOFDMフレームの第1の例を示す図である。 フレーム同期シンボルを有するOFDMフレームの第2の例を示す図である。 フレーム同期シンボルを有するOFDMフレームの第3の例を示す図である。 フレーム同期シンボルに含めるFFTサイズシグナリングの例を示す図である。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
 以下、本技術の実施の形態について説明するが、その前に、前段階の準備として、OFDMフレームの概要について説明する。
 <OFDMフレーム>
 図1は、ISDB-Tのモード3のOFDMフレームの構成の概要を示す図である。
 図1において、横軸は、周波数を表し、縦軸は、時間を表す。
 OFDMフレームは、シンボル長が1008us(micro second)のOFDMシンボルが、204個だけ配置されて構成される。
 OFDMシンボルは、1チャンネルを構成する13のセグメントに対応する13個の、周波数方向に延びる部分で構成される。本明細書では、説明の便宜上、OFDMシンボルの、1チャンネルを構成する13のセグメントに対応する13個の部分それぞれを、OFDMセグメントという。
 OFDMセグメントは、432個のキャリア(サブキャリア)を有する。
 したがって、OFDMシンボルは、5616キャリア=432キャリア×13セグメントを有する。
 なお、ISDB-Tでは、チャンネルの高域で、受信同期用のパイロット(CP(Continual Pilot))キャリアが送信される。したがって、1チャンネルで伝送されるOFDM信号のキャリアの総数は、5617キャリア=5616キャリア+1キャリアである。
 ISDB-Tでは、上位層データによるキャリアの変調方式として、同期変調としてのQPSK(Quaternary Phase Shift Keying),16QAM(Quadrature Amplitude Modulation)、及び、64QAM、並びに、差動変調としてのDQPSK(Differential QPSK)の4つの変調方式が規定されている。
 同期変調が採用される場合、OFDMセグメントの432個のキャリアのうちの、384個のキャリアは、上位層データの伝送に用いられ、36個のキャリアは、パイロット信号(SP(Scattered Pilot))の伝送に用いられる。また、4個のキャリアは、物理層の付加情報としてのTMCC信号の伝送に用いられ、8個のキャリアは、物理層の付加情報としてのAC信号の伝送に用いられる。
 以下、上位層データの伝送に用いられるキャリアを、データキャリアともいい、TMCC信号やAC信号といった物理層の付加情報の伝送に用いられるキャリアを、付加キャリアともいう。
 ここで、非特許文献1では、TMCC信号は、復調等を補助する制御情報であり、AC信号は、放送に関する付加情報であると定義されているが、TMCC信号及びAC信号(の付加キャリア)は、いずれも、データキャリアに付加される物理層の情報であるので、本明細書では、TMCC信号やAC信号を、付加情報という。付加情報には、TMCC信号やAC信号の他、データキャリアに付加される物理層のあらゆる情報を含めることができる。
 OFDMセグメントには、TMCC信号の伝送に用いられる4個の付加キャリア(TMCCキャリア)と、AC信号の伝送に用いられる8個の付加キャリア(ACキャリア)との、合計で、12個の付加キャリアが含まれる。
 付加キャリアは、TMCC信号やAC信号によりBPSK(DBPSK)で変調される。
 したがって、1個の付加キャリアで伝送されるTMCC信号やAC信号は、1ビットである。
 また、OFDMセグメントの12個の付加キャリアのうちの、4個のTMCCキャリアでは、同一のTMCC信号が伝送される。すなわち、OFDMセグメントの4個のTMCCキャリアは、TMCC信号の同一の1ビットで変調される。したがって、OFDMセグメントの4個のTMCCキャリアで伝送されるTMCC信号は、1ビットである。
 同様に、OFDMセグメントの12個の付加キャリアのうちの、8個のACキャリアでは、同一のAC信号が伝送される。したがって、OFDMセグメントの8個のACキャリアで伝送されるAC信号は、やはり、1ビットである。
 ISDB-Tでは、階層伝送が規定されており、階層ごとに、異なる伝送路符号化を施したOFDMセグメントを同時に伝送することができる。
 本明細書では、説明を簡単にするため、13個のOFDMセグメントによる1階層の伝送を行うこととすると、ISDB-Tでは、1階層の13個のOFDMセグメントによって、同一のTMCC信号及びAC信号が伝送される。
 したがって、1個のOFDMシンボルを構成する13個のOFDMセグメントが有する4×13個のTMCCキャリアで伝送されるTMCC信号、及び、8×13個のACキャリアで伝送されるAC信号は、いずれも、1ビットである。
 以上のように、TMCC信号の1ビットは、1個のOFDMシンボルを構成する13個のOFDMセグメントが有する4×13個のTMCCキャリアで伝送される。同様に、AC信号の1ビットは、1個のOFDMシンボルを構成する13個のOFDMセグメントが有する8×13個のACキャリアで伝送される。
 したがって、TMCC信号やAC信号は、高い冗長性を持って伝送されるので、例えば、付加キャリア(TMCCキャリア、ACキャリア)の1つが、マルチパスフェージング等によって潰れても、受信側では、他の付加キャリアを用いて、TMCC信号やAC信号を復元することができ、ロバスト性の高い伝送を行うことができる。
 なお、ISDB-Tでは、異なるOFDMシンボルでは、TMCC信号の異なるビットが伝送される。したがって、OFDMフレームで伝送することができるTMCC信号の情報量は、OFDMフレームを構成する204個のOFDMシンボルの数に等しい204ビットである。AC信号についても、同様である。
 図2は、OFDMフレームを構成するOFDMシンボルのパラメータを説明する図である。
 OFDMシンボルのシンボル長Tは、OFDMシンボルが有するキャリアのキャリア間隔f0の逆数に等しい。
 したがって、キャリア間隔f0を小にして、OFDMシンボルのキャリア数、ひいては、OFDMシンボルのFFTサイズを大にすると、シンボル長Tは、大になる。
 ISDB-Tでは、OFDMシンボルの先頭に、そのOFDMシンボルの後部の一部のコピーがGI(Guard Interval)として付加され、その結果得られるOFDM信号が伝送される。GIの付加により、そのGIの長さ(GI長)までの遅延時間の遅延波からの干渉を抑制することができる。
 ところで、現行の地上ディジタル放送の次世代の地上ディジタル放送である高度地上ディジタル放送において、現行の地上ディジタル放送より狭いキャリア間隔が採用され、FFTサイズも、現行の地上ディジタル放送の8K点よりも大の、例えば、16K点や32K点等が採用された場合、図2で説明したことから、OFDMシンボルのシンボル長が大になる。
 そして、OFDMフレームを、例えば、現行の地上ディジタル放送と同様に、204個のOFDMシンボルで構成することとすると、シンボル長が大になる結果、OFDMフレームのフレーム長は、現行の地上ディジタル放送の場合より大になる。
 ここで、現行の地上ディジタル放送の8K点よりも大の、例えば、16K点や32K点等のFFTサイズを採用するOFDMフレームを、新OFDMフレームともいう。また、現行の地上ディジタル放送(のモード3)の8K点のFFTサイズを採用するOFDMフレームを、現行OFDMフレームともいう。
 新OFDMフレームについては、現行OFDMフレームの場合と同一のGI長のGIを付加することで、現行OFDMフレームの場合と同一の遅延時間までの遅延波からの干渉を抑制することできる。
 また、新OFDMフレームは、現行OFDMフレームに比較して、シンボル長が長いので、GI長は、シンボル長に対して相対的に短くなる。したがって、新OFDMフレームによれば、現行OFDMフレームに比較して、伝送効率を向上させることができる。
 但し、新OFDMフレームは、現行OFDMフレームに比較して、シンボル長が長いので、新OFDMフレームを、現行の地上ディジタル放送と同様の204個のOFDMシンボルで構成する場合には、フレーム長が長くなる。
 いま、説明を簡単にするため、新OFDMフレームに、現行OFDMフレームと同様の付加情報(の付加キャリア)が含まれていることとすると、フレーム長が長い新OFDMフレームについては、1フレーム分のTMCC信号やAC信号を取得して、そのTMCC信号やAC信号に基づく処理を実行するまでに、現行OFDMフレームの場合よりも長時間を要する。
 その結果、チャンネル切り替えが行われた場合に、そのチャンネル切り替えに要する時間、すなわち、チャンネル切り替え後のコンテンツが出力されるまでの時間が大になる。
 以上のように、チャンネル切り替えに要する時間が大になることを抑制する方法としては、例えば、OFDMフレームを、現行の地上ディジタル放送よりも少ない数のOFDMシンボルで構成する方法が考えられる。
 しかしながら、OFDMフレームに含めることができる物理層の付加情報、すなわち、例えば、TMCC信号やAC信号の情報量(ビット数)は、OFDMフレームを構成するOFDMシンボルの数に比例する。
 したがって、OFDMフレームを構成するOFDMシンボルの数を少なくすると、OFDMフレームに含めることができる付加情報の情報量が小になり、OFDMフレームに含める物理層の付加情報の情報量を十分に確保することが困難になる。
 ところで、図1で説明したように、現行OFDMフレームでは、TMCC信号やAC信号といった付加情報に、高い冗長性を持たせることで、ロバスト性が高い伝送が行われる。
 本技術では、ロバスト性を多少犠牲にすることで、新OFDMフレームに含めることができる付加情報の情報量を十分に確保する。
 <本技術を適用した伝送システムの一実施の形態>
 図3は、本技術を適用した伝送システム(システムとは、複数の装置が論理的に集合した物をいい、各構成の装置が同一筐体中にあるか否かは、問わない)の一実施の形態の構成例を示すブロック図である。
 図3において、伝送システムは、送信装置11、受信装置12、及び、出力装置13を有する。
 送信装置11は、例えば、テレビジョン放送の番組等の送信(放送)(伝送)を行う。すなわち、送信装置11は、例えば、画像データや音声データ等の番組のコンテンツを、送信の対象である対象データとして、その対象データに必要な送信処理を行う。送信装置11は、対象データに送信処理を施すことで得られる送信データを、例えば、衛星回線や、地上波、ケーブル(有線回線)等の伝送路を介して送信する。
 送信装置11が送信する送信データには、番組のコンテンツの他、パイロット信号や、物理層の付加情報が含まれる。
 受信装置12は、送信装置11から伝送路を介して送信されてくる送信データを受信し、その送信データに含まれる番組のコンテンツを復元して出力装置13に供給する。
 出力装置13は、画像を表示するディスプレイや、音声(音)を出力するスピーカを有し、受信装置12からのコンテンツ等としての画像を表示し、音声を出力する。
 <送信装置11の構成例>
 図4は、図3の送信装置11の構成例を示すブロック図である。
 図4において、送信装置11は、例えば、ISDB-Tの伝送方式を利用した送信装置であり、上位層処理部21及び物理層処理部22を有する。
 上位層処理部21には、番組のコンテンツの画像や音声等が供給される。
 上位層処理部21は、番組のコンテンツの画像や音声等から、上位層で規定されるフォーマットの上位層データを生成する上位層の処理を行い、物理層処理部22に供給する。
 すなわち、上位層処理部21は、例えば、上位層の処理として、番組のコンテンツの画像や音声の符号化等を行い、符号化後の画像や音声等を含む上位層データを生成し、物理層処理部22に供給する。
 上位層データとしては、例えば、TS(Transport Stream)や、TLV(Type Length Value)/MMT(MPEG Media Transport)等のストリームを採用することができる。
 物理層処理部22は、上位層処理部21からの上位層データに物理層の処理を施し、その結果得られる送信データとしての、例えば、OFDM信号を送信する。
 すなわち、物理層処理部22は、サイズ設定部41、付加情報生成部42、伝送路符号化部43、IFFT(Inverse Fast Fourier Transform)演算部44、GI(Guard Interval)付加部45、及び、送信部46を有する。
 サイズ設定部41は、例えば、送信装置11のオペレータの操作等に従って、OFDM信号のIFFTを行うときのFFTサイズを、あらかじめ決められた複数のFFTサイズの中から選択することにより設定し、付加情報生成部42、伝送路符号化部43、及び、IFFT演算部44に供給する。
 付加情報生成部42は、物理層データ(物理層のデータ)である付加情報を生成し、伝送路符号化部43に供給する。例えば、ISDB-Tでは、TMCC信号やAC信号が、物理層データである付加情報である。
 ここで、付加情報は、伝送路符号化部43で得られるOFDMフレームに含められるが、1個のOFDMフレームに含めることができる付加情報の情報量(以下、許容情報量ともいう)が、FFTサイズ等に応じて決まる。そこで、付加情報生成部42は、サイズ設定部41から供給されるFFTサイズを用いて、許容情報量を求め、その許容情報量の範囲内の情報量の付加情報を生成する。
 伝送路符号化部43には、サイズ設定部41からFFTサイズが供給されるとともに、付加情報生成部42から付加情報が供給される他、上位層処理部21から上位層データが供給される。
 伝送路符号化部43は、上位層処理部21からの上位層データに、所定の伝送路符号化を施し、上位層データに対して、付加情報生成部42からの付加情報、さらには、必要なパイロット信号といった物理層データを付加したOFDMフレームを生成する。
 したがって、伝送路符号化部43は、OFDMフレームを生成する生成部として機能する。
 ここで、例えば、ISDB-Tの伝送路符号化では、例えば、上位層データの誤り訂正符号化や、上位層データに従ったデータキャリアの変調としてのマッピング(上位層データの、IQコンスタレーション上へのマッピング)、周波数インターリーブ、時間インターリーブ等が行われる。
 伝送路符号化部43の伝送路符号化では、例えば、ISDB-Tの伝送路符号化と同様の処理が行われる。さらに、伝送路符号化部43は、伝送路符号化により得られる、上位層データに対応するデータキャリア(上位層データに従って変調されたキャリア)に、付加情報に対応する付加キャリア(付加情報に従って変調されたキャリア)や、パイロット信号に対応するキャリア(パイロット信号に従って変調されたキャリア)等を付加することで、OFDMセグメントを構成する。
 さらに、伝送路符号化部43は、Nseg個のOFDMセグメントにより、1個のOFDMシンボルを構成し、サイズ設定部41からのFFTサイズに応じた数のOFDMシンボルにより、1フレームのOFDM信号、すなわち、1個のOFDMフレームを構成する。Nsegは、OFDMシンボルを構成するOFDMセグメントのセグメント数を表す。ISDB-Tでは、セグメント数Nsegは、13である。
 ここで、OFDMセグメントを構成する付加キャリアの数は、固定の数にあらかじめ決まっている。但し、伝送路符号化部43は、固定の数の付加キャリアを、サイズ設定部41からのFFTサイズに応じたグループ数のグループにグループ分けし、グループごとの付加キャリアに、付加情報を割り当てる。付加キャリアは、その付加キャリアに割り当てられた付加情報に従って変調される。
 すなわち、図3の伝送システムでは、例えば、サイズ設定部41が設定する各FFTサイズに対して、そのFFTサイズに応じた、付加キャリアのグループ分けパターン(グループ分けのパターン)が、あらかじめ決められている。
 例えば、いま、OFDMセグメントを構成する付加キャリアの数が、図1で説明したISDB-Tのモード3の場合と同様に、12個であるとする。
 この場合、伝送路符号化部43は、12個の付加キャリアを、サイズ設定部41が設定したFFTサイズに応じたグループ数のグループにグループ分する。
 例えば、いま、サイズ設定部41が設定したFFTサイズに対する付加キャリアのグループ分けパターンが、12個の付加キャリアを、3個の付加キャリアからなる4個のグループにグループ分けするように決められているとすると、伝送路符号化部43は、12個の付加キャリアを、3個の付加キャリアからなる4個のグループにグループ分けする。
 付加キャリアの変調方式として、例えば、ISDB-Tと同様に、IQコンスタレーション上の信号点が2個のBPSK(DBPSK)を採用する場合、1個の付加キャリアで、1ビットを伝送することができる。また、付加キャリアの変調方式として、例えば、IQコンスタレーション上の信号点が22個のQPSK等を採用する場合、1個の付加キャリアで、2ビットを伝送することができる。
 本実施の形態では、説明を簡単にするため、付加キャリアの変調方式として、例えば、ISDB-Tと同様の、IQコンスタレーション上の信号点が2個のBPSKを採用することとする。この場合、伝送路符号化部43は、1個の付加キャリアに対して、その1個の付加キャリアで伝送することができる1ビットの付加情報を割り当てる。
 但し、伝送路符号化部43は、同一のグループの付加キャリアに対して、同一の付加情報を割り当てる。
 したがって、OFDMセグメントが有する12個の付加キャリアが、例えば、上述のように、3個の付加キャリアからなる4個のグループにグループ分けされた場合には、OFDMセグメントでは、グループ数と同一の3ビットの付加情報が伝送される。
 いま、OFDMシンボルを構成するOFDMセグメントのセグメント数を、上述したように、Nsegと表すこととし、OFDMシンボルを構成するNseg個の各OFDMセグメントでは、図1の場合と同様に、同一の付加情報が伝送されることとする。さらに、OFDMフレームを構成するOFDMシンボルの数を、Nsymと表すこととする。また、OFDMセグメントが有する付加キャリアが、Ng個のグループにグループ分けされていることとする。
 この場合、1個のOFDMフレームに含めることができる付加情報の情報量である許容情報量は、Nseg×Nsym×Ngビットとなる。
 伝送システムでは、グループ数(グループの数)Ngは、FFTサイズに応じて決まるため、許容情報量としてのNseg×Nsym×Ngビットは、FFTサイズに応じて決まるということができる。
 上述したように、伝送路符号化部43では、同一のグループの付加キャリアに対して、同一の付加情報が割り当てられるので、グループを構成する付加キャリアが多いほど、冗長性が大になり、付加キャリアに割り当てられる付加情報のロバスト性を向上させることができる。
 また、許容情報量は、Nseg×Nsym×Ngビットであるので、グループ数Ngが大であるほど、OFDMフレームで伝送することができる付加情報の情報量を向上させることができる。
 伝送路符号化部43は、以上のようにして、OFDMセグメントの付加キャリアを、FFTサイズに応じたグループ数Ngのグループにグループ分けした、グループごとの付加キャリアに、付加情報を割り当てたOFDM信号としてのOFDMフレームを生成し、IFFT演算部44に供給する。
 IFFT演算部44は、伝送路符号化部43から供給されるOFDMフレームを、周波数領域の信号として、サイズ設定部41からのFFTサイズのIFFTを行い、時間領域のOFDMフレームに変換して、GI付加部45に供給する。
 GI付加部45は、IFFT演算部44からの時間領域のOFDMフレームを構成する各OFDMシンボルに、そのOFDMシンボルのシンボル長の整数分の一の長さのGIを付加して送信データとしてのOFDM信号を構成し、送信部46に供給する。
 送信部46は、GI付加部45からの送信データの周波数変換を行い、その周波数変換後の送信データとしてのOFDM信号を送信する。
 図5は、図4の伝送路符号化部43で行われる、OFDMセグメントが有する付加キャリアのグループ分けのグループ分けパターンの例を示す図である。
 図5では、12個の付加キャリアのグループ分けパターンの例が示されている。
 図5のAは、12個の付加キャリアを、6個の付加キャリアをメンバとする2個のグループG1,G2にグループ分けするグループ分けパターンを示している。
 図5のBは、12個の付加キャリアを、4個の付加キャリアをメンバとする3個のグループG1,G2,G3にグループ分けするグループ分けパターンを示している。
 図5のCは、12個の付加キャリアを、3個の付加キャリアをメンバとする4個のグループG1,G2,G3,G4にグループ分けするグループ分けパターンを示している。
 図5のDは、12個の付加キャリアを、2個の付加キャリアをメンバとする6個のグループG1,G2,G3,G4,G5,G6にグループ分けするグループ分けパターンを示している。
 図5のEは、12個の付加キャリアを、1個の付加キャリアをメンバとする12個のグループG1,G2,G3,G4,G5,G6,G7,G8,G9,G10,G11,G12にグループ分けするグループ分けパターンを示している。
 図5のAないしEでは、グループのメンバとなる付加キャリアの数が、グループによらず同一になっているが、グループのメンバとなる付加キャリアの数は、グループによって異なっていても良い。
 図5のF及びGは、そのような、グループによって、メンバとなる付加キャリアの数が異なるグループ分けパターンの例を示している。
 すなわち、図5のFは、12個の付加キャリアを、4個の付加キャリアをメンバとするグループG1と、8個の付加キャリアをメンバとするグループG2とにグループ分けするグループ分けパターンを示している。
 図5のGは、12個の付加キャリアを、2個の付加キャリアをメンバとする2個のグループG1,G2と、4個の付加キャリアをメンバとする2個のグループG3,G4とにグループ分けするグループ分けパターンを示している。
 図4で説明したように、伝送路符号化部43は、あらかじめ決められたグループ分けパターンに従い、OFDMセグメントの12個の付加キャリアを、サイズ設定部41が設定したFFTサイズに応じたグループ数のグループにグループ分する。
 そして、伝送路符号化部43は、同一のグループの付加キャリアに対して、同一の付加情報を割り当てる。
 したがって、グループ数が多いグループ分けパターンを採用することにより、付加キャリアで伝送することができる付加情報の情報量を大にすることができる。
 但し、OFDMセグメントの付加キャリアの数は、固定の数であるため、グループ数が多いグループ分けパターンを採用する場合には、グループのメンバとなる付加キャリアの数が小になる。その結果、付加キャリアで伝送される付加情報の冗長性が小になり、ロバスト性が低下する。
 以上のように、グループ数が多いグループ分けパターンを採用する場合には、ロバスト性を犠牲にして、付加キャリアで伝送することができる付加情報の情報量を確保することができる。
 ここで、送信装置11では、例えば、OFDMフレームのフレーム長を所定値にするようなシンボル数Nsymで構成されるOFDMフレームを採用することができる。
 例えば、高度地上ディジタル放送では、チャンネルのセグメント数Nsegを、現行の地上ディジタル放送の13セグメントから、35セグメントにすることが検討されている。
 高度地上ディジタル放送において、1個のOFDMセグメントが有するキャリアのキャリア数として、例えば、図1で説明した現行の地上ディジタル放送(ISDB-T)と同様に、432個を採用することとすると、セグメント数Nsegが35セグメントである場合、OFDMシンボルのキャリア数は、15120キャリア=432キャリア×35セグメントになる。また、1チャンネルのOFDM信号のキャリア数は、受信同期用のパイロットキャリアを含めて、15121キャリアになる。
 さらに、高度地上ディジタル放送において、1個のOFDMセグメントが有する付加キャリアのキャリア数として、例えば、図1で説明した現行の地上ディジタル放送と同様に、12個を採用することとすると、OFDMシンボルの付加キャリアのキャリア数は、420キャリア=12キャリア×35セグメントになる。
 OFDMシンボルを構成する35個の各OFDMセグメントにおいて、図1の場合と同様に、同一の付加情報が伝送されることとすると、高度地上ディジタル放送では、付加情報が、現行の地上ディジタル放送の約2.7倍(≒420キャリア/(12キャリア×13セグメント))の冗長度で伝送されることになる。
 ところで、高度地上ディジタル放送において、上述したように、1チャンネルのOFDM信号のキャリア数が、15121キャリアとなった場合、FFTサイズは、そのキャリア数より大の16K点や32K点等になる。
 いま、高度地上ディジタル放送において、FFTサイズとして、例えば、現行の地上ディジタル放送の8K点の2倍の16K点を採用することとし、これに伴い、キャリア間隔として、現行の地上ディジタル放送のモード3のキャリア間隔の1/2倍の間隔を採用することとする。
 すなわち、現行の地上ディジタル放送では、例えば、モードが1だけ大になるごとに、キャリア間隔が1/2倍になり、FFTサイズが2倍になる。例えば、モード2では、キャリア間隔がモード1のキャリア間隔の1/2倍になり、FFTサイズがモード1のFFTサイズである2K点の2倍の4K点になる。また、例えば、モード3では、キャリア間隔がモード2のキャリア間隔の1/2倍になり、FFTサイズがモード2のFFTサイズである4K点の2倍の8K点になる。
 高度地上ディジタル放送において、FFTサイズとして、16K点を採用する場合、このFFTサイズは、現行の地上ディジタル放送のモード3のFFTサイズである8K点の2倍であるから、FFTサイズとして、16K点を採用することに伴い、キャリア間隔としては、例えば、現行の地上ディジタル放送に倣い、現行の地上ディジタル放送のモード3のキャリア間隔の1/2倍の間隔を採用することとする。
 キャリア間隔として、現行の地上ディジタル放送のモード3のキャリア間隔の1/2倍の間隔を採用する場合、シンボル長は、現行の地上ディジタル放送のモード3のシンボル長の2倍になる。
 したがって、高度地上ディジタル放送において、OFDMフレームを、現行の地上ディジタル放送の場合と同様の204シンボルのOFDMシンボルで構成することとすると、OFDMフレームのフレーム長は、現行の地上ディジタル放送のモード3のフレーム長の2倍になる。
 この場合、大ざっぱには、チャンネル切り替えに要する時間が、現行の地上ディジタル放送の場合の2倍になる。
 高度地上ディジタル放送において、チャンネル切り替えに要する時間を、現行の地上ディジタル放送の場合と同程度の時間にするには、高度地上ディジタル放送のOFDMフレームである新OFDMフレームのフレーム長を、現行の地上ディジタル放送のOFDMフレームである現行OFDMフレームのフレーム長と同程度にする必要がある。
 いまの場合、新OFDMフレームのフレーム長を、現行OFDMフレームのフレーム長と同程度にするには、新OFDMフレームを構成するOFDMシンボルのシンボル数を、現行OFDMフレームの場合の1/2程度にする必要がある。
 送信装置11で生成するOFDMフレーム、すなわち、例えば、高度地上ディジタル放送の新OFDMシンボルとしては、OFDMフレームのフレーム長を、所定値としての、例えば、現行OFDMフレームのフレーム長(又は現行OFDMフレームのフレーム長に近い値)にするようなシンボル数Nsymで構成されるOFDMフレームを採用することができる。
 この場合、送信装置11では、102シンボル=204シンボル/2のOFDMシンボルで構成されるOFDMフレームが生成される。
 ところで、図1等で説明したように、現行OFDMフレームで伝送することができる付加情報としてのTMCC信号の情報量は、OFDMフレームを構成する204個のOFDMシンボルの数と同一の204ビットである。AC信号についても、同様である。
 一方、送信装置11で生成する新OFDMフレームを構成するOFDMシンボルのシンボル数を、現行OFDMフレームの場合の1/2倍とすると、新OFDMフレームで伝送することができる付加情報の情報量は、現行OFDMフレームの場合の204ビットの1/2倍の102ビットとなる。
 すなわち、現行OFDMフレームの1/2倍のシンボル数のOFDMシンボルで構成される新OFDMフレームにおいて、現行OFDMフレームと同様にして、付加情報としてのTMCC信号及びAC信号を伝送する場合には、新OFDMフレームで伝送することができる付加情報としてのTMCC信号及びAC信号は、いずれも、204ビットから102ビットに減少する。
 そこで、伝送路符号化部43は、新OFDMフレームのFFTサイズである16K点に応じて、例えば、図5のCに示したように、12個の付加キャリアを、3個の付加キャリアをメンバとする4個のグループG1,G2,G3,G4にグループ分けする。
 この場合、OFDMセグメントで伝送することができる付加情報は、グループ数に等しい4ビットとなり、そのようなOFDMセグメントで構成される102シンボルのOFDMシンボルを有する新OFDMフレームによれば、408ビット=4ビット×102シンボルの付加情報を伝送することができる。
 現行OFDMフレームでは、204ビットのTMCC信号と、204ビットのAC信号との、合計で408ビットの付加情報を伝送することができる。
 したがって、12個の付加キャリアを、3個の付加キャリアをメンバとする4個のグループG1,G2,G3,G4にグループ分けした新OFDMフレームによれば、現行OFDMフレームと同一の情報量の付加情報を伝送することができる。
 すなわち、付加情報の情報量を十分に確保することができる。
 なお、新OFDMフレームによれば、付加キャリアを、4個より大のグループ数のグループにグループ分けすることにより、現行OFDMフレームよりも多くの情報量の付加情報を伝送することができる。
 伝送路符号化部43において、FFTサイズに応じた、付加キャリアのグループ分けパターンとして、どのようなグループ分けを採用するかは、例えば、新OFDMフレームのフレーム長として要求される要求フレーム長Tf、新OFDMフレームで伝送する付加情報の情報量として要求される要求情報量Nb、及び、FFTサイズに対するキャリア間隔のキャリアを有するOFDMシンボルのシンボル長Tsymに基づいて決めることができる。
 すなわち、要求フレーム長Tfとシンボル長Tsymとから、要求フレーム長Tfを満たす新OFDMフレームを構成するOFDMシンボルのシンボル数Nsymを求め、Nsym×Ngが要求情報量Nb以上となるようなNg個だけのグループ数が得られるグループ分けを、FFTサイズに応じた、付加キャリアのグループ分けパターンとして採用することができる。
 かかるグループ分けパターンによれば、FFTサイズに応じて、要求フレーム長Tfを満たす新OFDMフレームによって、要求情報量Nbを満たす情報量の付加情報を伝送することができる。
 図6は、図4の送信装置11が行う送信処理を説明するフローチャートである。
 送信処理では、送信データとしてのOFDM信号が生成されて送信される。
 具体的には、ステップS11において、サイズ設定部41は、FFTサイズを設定し、付加情報生成部42、伝送路符号化部43、及び、IFFT演算部44に供給し、処理は、ステップS12に進む。
 ステップS12において、上位層処理部21は、上位層データを生成し、物理層処理部22に供給して、処理は、ステップS13に進む。
 ステップS13では、物理層処理部22の付加情報生成部42が、サイズ設定部41からのFFTサイズに応じた情報量の付加情報を生成し、伝送路符号化部43に供給して、処理は、ステップS14に進む。
 すなわち、付加情報生成部42は、1フレームのOFDM信号(OFDMフレーム)に含まれる付加キャリアを、サイズ設定部41からのFFTサイズに応じたグループ数のグループにグループ分けした、グループごとの付加キャリアに割り当て可能なビット数の付加情報を生成する。
 より具体的には、OFDMセグメントに含まれる付加キャリアが、サイズ設定部41からのFFTサイズに応じて、Ng個のグループにグループ分けされ、かつ、OFDMフレームがNsym個(シンボル)のOFDMシンボルで構成される場合、付加情報生成部42は、サイズ設定部41からのFFTサイズに応じた情報量の付加情報として、例えば、Ng×Nsymビット(以下)の付加情報を生成する。そして、付加情報生成部42は、Ng×Nsymビットの付加情報を、OFDMフレームに含める付加情報として、伝送路符号化部43に供給する。
 ステップS14では、物理層処理部22は、上位層処理部21からの上位層データに、付加情報生成部42で生成された付加情報を付加し、送信データとしてのOFDM信号を生成する。
 すなわち、物理層処理部22において、伝送路符号化部43は、上位層処理部21からの上位層データに、伝送路符号化を施す。伝送路符号化により、上位層データに対応するデータキャリア(上位層データで変調されたデータキャリア)が得られる。
 また、伝送路符号化部43は、付加情報生成部42からの付加情報に対応する付加キャリア(付加情報で変調された付加キャリア)を生成するとともに、パイロット信号に対応するパイロットキャリア(パイロット信号で変調されたパイロットキャリア)を生成する。
 さらに、伝送路符号化部43は、データキャリアに、付加キャリア及びパイロットキャリアを付加することで、OFDMフレームに含まれる付加キャリアを、サイズ設定部41からのFFTサイズに応じたグループ数のグループにグループ分けした、グループごとの付加キャリアに、付加情報を割り当てたOFDMフレームを生成する。OFDMフレームは、伝送路符号化部43からIFFT演算部44に供給される。
 IFFT演算部44は、伝送路符号化部43からのOFDMフレームを対象として、サイズ設定部41からのFFTサイズのIFFTを行い、その結果得られる時間領域のOFDMフレームを、GI付加部45に供給する。
 GI付加部45は、IFFT演算部44からの時間領域のOFDMフレームを構成する各OFDMシンボルに、GIを付加して、送信データとしてのOFDM信号を構成する。
 GI付加部45は、送信データとしてのOFDM信号を、送信部46に供給して、処理は、ステップS14からステップS15に進む。
 ステップS15において、送信部46は、GI付加部45からの送信データの周波数変換を行い、その周波数変換後の送信データとしてのOFDM信号を送信する。
 送信装置11において、ステップS12ないしS15の処理は、パイプラインで繰り返し行われる。
 <受信装置12の構成例>
 図7は、図3の受信装置12の構成例を示すブロック図である。
 図7において、受信装置12は、例えば、ISDB-Tの伝送方式を利用した受信装置であり、物理層処理部51及び上位層処理部52を有する。
 物理層処理部51は、送信装置11から送信されてくる送信データとしてのOFDM信号を受信し、その送信データに、物理層の処理を行う。
 すなわち、物理層処理部51は、チューナ61、ADC(Analog to Digital Converter)62、直交復調部63、FFT演算部64、付加情報取得部65、伝送路復号部66を有する。
 チューナ61は、送信装置11から送信されてくる、所定のチャンネル(周波数帯域)の送信データとしてのOFDM信号を受信し、ADC62に供給する受信部として機能する。
 ADC62は、チューナ61からの送信データとしてのOFDM信号のAD変換を行い、直交復調部63に供給する。
 直交復調部63は、ADC62からの送信データとしてのOFDM信号の直交復調を行い、その結果得られる時間領域のOFDM信号を、FFT演算部64に供給する。
 FFT演算部64は、直交復調部63からの時間領域のOFDM信号を対象として、FFTを行い、その結果得られる周波数領域のOFDM信号を、付加情報取得部65、及び、伝送路復号部66に供給する。
 なお、FFT演算部64は、OFDM信号のFFTを行う際に、例えば、OFDM信号の相関等を用いて、送信装置11で行われたOFDM信号のIFFTのFFTサイズを、あらかじめ決められた複数のFFTサイズの中から推定し、そのFFTサイズのFFTを行うことができる。FFT演算部64は、OFDM信号から推定したFFTサイズを、付加情報取得部65に供給することができる。
 付加情報取得部65は、FFT演算部64からのOFDM信号から、物理層データである付加情報(例えば、ISDB-TのTMCC信号やAC信号に相当する情報)を取得し、伝送路復号部66に供給する。
 伝送路復号部66は、付加情報取得部65から供給される付加情報を必要に応じて用いて、FFT演算部64からのOFDM信号に、所定の伝送路復号を施し、上位層データを復元して、上位層処理部52に供給する。
 ここで、例えば、ISDB-Tの伝送路復号では、例えば、時間デインターリーブ、周波数デインターリーブ、データキャリアの復調としてのデマッピング、誤り訂正復号等が行われ、上位層データが復元される。付加情報には、例えば、データキャリアの変調方式等の情報が含まれ、伝送路復号は、付加情報取得部65から伝送路復号部66に供給される付加情報を必要に応じて用いて行うことができる。
 上位層処理部52は、物理層処理部51(の伝送路復号部66)からの上位層データに上位層の処理を行う。
 すなわち、上位層処理部52は、DEMUX71及び上位層データ処理部72を有する。
 DEMUX71には、物理層処理部51からの上位層データが供給される。
 DEMUX71は、物理層処理部51からの上位層データから、符号化後の画像や音声を分離し、上位層データ処理部72に供給する。
 上位層データ処理部72は、DEMUX71からの符号化後の画像や音声を復号し、出力装置13(図3)に供給する。
 図8は、図7の受信装置12が行う受信処理を説明するフローチャートである。
 受信処理では、送信データとしてのOFDM信号が受信され、そのOFDM信号に含まれる上位層データに含まれる画像や音声を取得する上位層の処理が行われる。
 具体的には、ステップS21において、物理層処理部51のチューナ61は、送信装置11から送信されてくる送信データとしてのOFDM信号を受信し、ADC62に供給する。ADC62は、チューナ61からのOFDM信号のAD変換を行い、直交復調部63に供給する。直交復調部63は、ADC62からのOFDM信号の直交復調を行い、FFT演算部64に供給する。
 FFT演算部64は、直交復調部63からのOFDM信号から、FFTサイズを推定することにより認識し、そのFFTサイズに応じて、OFDM信号のFFTを行う。FFT演算部64は、FFT後のOFDM信号を、付加情報取得部65、及び、伝送路復号部66に供給するとともに、FFTサイズを、付加情報取得部65に供給し、処理は、ステップS21からステップS22に進む。
 ステップS22では、付加情報取得部65は、FFT演算部64からのFFTサイズに応じて、FFT演算部64からの1フレームのOFDM信号であるOFDMフレームを構成するOFDMセグメント(OFDMシンボル)に含まれる付加キャリアのグループ数Ngを認識する。
 さらに、付加情報取得部65は、FFT演算部64からのOFDMフレームを構成するOFDMセグメントに含まれる付加キャリアから、グループ数Ngに対応する付加情報、すなわち、ここでは、グループ数Ngだけのビット数の付加情報を取得(復調)し、伝送路復号部66に供給して、処理は、ステップS22からステップS23に進む。
 ステップS23では、伝送路復号部66は、付加情報取得部65からの付加情報を必要に応じて用いて、FFT演算部64からのOFDMフレームに伝送路復号を施すことで、上位層データを復元し、上位層処理部52に供給して、処理は、ステップS24に進む。
 ステップS24では、上位層処理部52において、DEMUX71が、物理層処理部51(の伝送路復号部66)からの上位層データから、符号化後の画像や音声を分離し、上位層データ処理部72に供給する。
 さらに、ステップS24では、上位層データ処理部72は、DEMUX71からの符号化後の画像や音声の復号等の処理を行うことで、元の画像や音声を復元(取得)し、出力装置13(図3)に供給する。
 受信装置12において、以上の受信処理は、パイプラインで繰り返し行われる。
 なお、図8では、受信装置12において、FFT演算部64が、OFDM信号から、そのOFDM信号のFFTサイズを推定することにより認識することとしたが、FFT演算部64は、その他、例えば、シグナリングにより、FFTサイズを認識することができる。
 すなわち、送信装置11において、OFDMフレームを、プリアンブルとなるOFDMシンボルを含めて構成し、そのプリアンブルには、FFTサイズの情報のシグナリングを含めることができる。
 この場合、受信装置12では、OFDMフレームに含まれるプリアンブルから、FFTサイズを認識し、さらに、そのFFTサイズに応じて、OFDMセグメントの付加キャリアのグループ数を認識することができる。
 また、OFDMフレームを、プリアンブルとなるOFDMシンボルを含めて構成する場合、そのプリアンブルには、FFTサイズの情報とともに、又は、FFTサイズの情報に代えて、OFDMセグメントの付加キャリアのグループ数の情報のシグナリングを含めることができる。
 この場合、受信装置12では、OFDMフレームに含まれるプリアンブルから、OFDMセグメントの付加キャリアのグループ数を直接認識することができる。
 なお、以上においては、OFDMフレーム(を構成するOFDMシンボル)が、複数のOFDMセグメントで構成されることとしたが、本技術は、OFDMセグメントで構成されるOFDMフレームの他、そのようなOFDMセグメントという概念による周波数方向の分割がないOFDMフレームにも適用することができる。
 <FFTサイズに応じた、付加キャリアのグループ分けパターンの例>
 図9は、FFTサイズに応じた、付加キャリアのグループ分けパターンの例を示す図である。
 図9では、サイズ設定部41(図4)において、8K点、16K点、又は、32K点が、FFTサイズとして設定される場合の、付加キャリアのグループ分けパターンの例を示している。
 なお、図9では、例えば、OFDMシンボルは、13個のOFDMセグメントで構成され、各OFDMセグメントの付加キャリアは、同一の付加情報を伝送することとする。さらに、FFTサイズが8K点である場合には、OFDMセグメントは、432個のキャリア(サブキャリア)を有することとする。また、FFTサイズが16K点(=8K点×2)である場合には、OFDMセグメントは、FFTサイズが8K点の場合の2倍の432×2個のキャリアを有し、FFTサイズが32K点(=8K点×4)である場合には、OFDMセグメントは、FFTサイズが8K点の場合の4倍の432×4個のキャリアを有することとする。
 さらに、図9では、FFTサイズが8K点である場合には、432個のキャリアを有する1個のOFDMセグメントあたり、12個の付加キャリア(12キャリア/セグ)が存在し、FFTサイズが16K点(=8K点×2)である場合には、432×2個のキャリアを有する1個のOFDMセグメントあたり、FFTサイズが8K点の場合の2倍の24=12×2個の付加キャリアが存在し、FFTサイズが32K点(=8K点×4)である場合には、432×4個のキャリアを有する1個のOFDMセグメントあたり、FFTサイズが8K点の場合の4倍の48=12×4個の付加キャリアが存在することとする。
 また、図9では、同一のFFTサイズにおいて、付加キャリアのグループ分けパターンを、幾つかの種類の中から選択することができるように、付加キャリアのグループ分けパターンの種類を指定するグループインデクス(Group Index)が導入されている。
 図9によれば、例えば、グループインデクスとして1が指定された場合、8K点のFFTサイズについての12個の付加キャリアは、12個(キャリア/セグ)の付加キャリアをメンバとする1個(Num. of Groups(Ng))のグループにグループ分けされ、16K点のFFTサイズについての24個の付加キャリアは、24個の付加キャリアをメンバとする1個のグループにグループ分けされ、32K点のFFTサイズについての48個の付加キャリアは、48個の付加キャリアをメンバとする1個のグループにグループ分けされる。
 また、図9によれば、例えば、グループインデクスとして6が指定された場合、8K点のFFTサイズについての12個の付加キャリアは、1個の付加キャリアをメンバとする12個のグループにグループ分けされ、16K点のFFTサイズについての24個の付加キャリアは、3個の付加キャリアをメンバとする8個のグループにグループ分けされ、32K点のFFTサイズについての48個の付加キャリアは、6個の付加キャリアをメンバとする8個のグループにグループ分けされる。
 なお、OFDMシンボルを構成するOFDMセグメントの数は、13個に限定されるものではなく、例えば、33個や35個等であっても良い。さらに、OFDMセグメントが有するキャリアの数は、432個や、432×2個、432×4個に限定されるものではない。
 FFTサイズに応じた、付加キャリアのグループ分けパターンについては、例えば、送信装置11で使用するFFTサイズ及びグループインデクスのセットを、規格等によって1セットだけ定めることができる。この場合、受信装置12では、規格で定められたFFTサイズでFFTを行い、規格で定められたグループインデクスで指定されるグループ分けパターンに従って、付加キャリアから、付加情報を取得することができる。
 また、FFTサイズに応じた、付加キャリアのグループ分けパターンについては、例えば、送信装置11で使用可能なFFTサイズ及びグループインデクスのセットを、規格等によって複数セットだけ定めることができる。この場合、運用規定によって、規格で定められた複数セットのFFTサイズ及びグループインデクスのセットの中から、送信装置11の実際の運用で使用する1セットのFFTサイズ及びグループインデクスのセットを定めることができる。この場合、受信装置12では、運用規定で定められたFFTサイズでFFTを行い、運用規定で定められたグループインデクスで指定されるグループ分けパターンに従って、付加キャリアから、付加情報を取得することができる。
 その他、送信装置11で使用可能な複数セットのFFTサイズ及びグループインデクスのセットを、規格等によって定める場合には、受信装置12では、以下のように、送信装置11で使用されたFFTサイズ及びグループインデクスを特定することができる。
 すなわち、受信装置12では、例えば、規格で定められた複数のFFTサイズそれぞれでFFTを行うとともに、規格で定められた複数のグループインデクスそれぞれで指定されるグループ分けパターンでグループ分けされた付加キャリアから、付加情報を取得する等の物理層の処理を試み、その物理層の処理で得られる、例えば、CRCの結果や、伝送路復号の結果等に応じて、送信装置11で使用されたFFTサイズ及びグループインデクスを特定することができる。
 また、例えば、送信装置11において、送信装置11で使用されたFFTサイズやグループインデクスを報知するシグナリングとしてのFFTサイズシグナリングを含むOFDMフレームを構成し、受信装置12では、そのOFDMフレームに含まれるFFTサイズシグナリングによって、送信装置11で使用されたFFTサイズ及びグループインデクスを特定することができる。
 FFTサイズシグナリングには、FFTサイズやグループインデクスの情報の他、例えば、GI長等を必要に応じて含めることができる。また、送信装置11で使用されるグループインデクスが、例えば、あらかじめ決められたデフォルトのグループインデクスである場合には、FFTサイズシグナリングは、グループインデクスの情報を含めずに構成することができる。
 FFTサイズシグナリングについては、例えば、OFDMフレームの先頭に、フレーム同期シンボルとしてのOFDMシンボルを、1個又は複数個配置し、そのフレーム同期シンボルに、FFTサイズシグナリングを含めることができる。
 <フレーム同期シンボルを有するOFDMフレームの例>
 図10は、フレーム同期シンボルを有しないOFDMフレームの例を示す図である。
 図10において、横方向は周波数を表し、縦方向は時間を表す。後述する図11ないし図13でも同様である。
 図10では、OFDMシンボルは、N個のOFDMセグメントで構成される。後述する図11ないし図13でも同様である。
 また、図10では、OFDMシンボルは、FFTサイズが8K点のOFDMシンボル、すなわち、8K点のFFTサイズでFFT及びIFFTが行われるOFDMシンボルで、OFDMフレームは、M1個のOFDMシンボルで構成される。
 図11は、フレーム同期シンボルを有するOFDMフレームの第1の例を示す図である。
 図11では、OFDMシンボルは、図10と同様に、FFTサイズが8K点のOFDMシンボルであり、OFDMフレームは、図10のM1個のOFDMシンボルの先頭に、FFTサイズシグナリングを含むフレーム同期シンボルとしての1個のOFDMシンボルが配置されたM1+1個のOFDMシンボルで構成される。
 FFTサイズシグナリングとしては、例えば、8ビット等を採用することができる。例えば、8ビットのFFTサイズシグナリングによれば、256=28通りの情報を伝送することができる。
 なお、フレーム同期シンボルとしてのOFDMシンボルを構成する各OFDMセグメントには、同一のFFTサイズシグナリングを含めることができる。この場合、受信装置12では、N個のセグメントのすべてを受信しなくても、例えば、1セグメントの部分受信を行うだけで、FFTサイズシグナリングを取得することができる。
 図12は、フレーム同期シンボルを有するOFDMフレームの第2の例を示す図である。
 図12では、OFDMシンボルは、FFTサイズが16K点のOFDMシンボルであり、OFDMフレームは、図10及び図11のM1個より少ないM2個のOFDMシンボルと、先頭に配置されたフレーム同期シンボルとしての1個のOFDMシンボルとで構成される。
 FFTサイズが16K点のOFDMシンボルのシンボル長(時間)は、図11のFFTサイズが8K点のOFDMシンボルのシンボル長よりも大であるため、フレーム長(時間)が、図11のOFDMフレームと同程度になるように、図12のOFDMフレームは、図11のOFDMフレームを構成するM1+1個のOFDMシンボルよりも少ない数のM2+1個のOFDMシンボルで構成される。M2個としては、例えば、M1個の1/2の値程度を採用することができる。
 図13は、フレーム同期シンボルを有するOFDMフレームの第3の例を示す図である。
 図13では、OFDMシンボルは、FFTサイズが32K点のOFDMシンボルであり、OFDMフレームは、図10及び図11のM1個より少ないM3個のOFDMシンボルと、先頭に配置されたフレーム同期シンボルとしての1個のOFDMシンボルとで構成される。
 FFTサイズが32K点のOFDMシンボルのシンボル長は、図11のFFTサイズが8K点のOFDMシンボルのシンボル長よりも大であるため、フレーム長が、図11のOFDMフレームと同程度になるように、図13のOFDMフレームは、図11のOFDMフレームを構成するM1+1個のOFDMシンボルよりも少ない数のM3+1個のOFDMシンボルで構成される。M3個としては、例えば、M1個の1/4の値(M2個の1/2の値)程度を採用することができる。
 <FFTサイズシグナリングの例>
 図14は、フレーム同期シンボルに含めるFFTサイズシグナリングの例を示す図である。
 図14では、FFTサイズシグナリングとして、8ビットが採用され、その8ビットで表される各値に、FFTサイズや、GI長、階層伝送の構成、グループインデクス等が割り当てられている。
 図14において、例えば、FFTサイズシグナリングとしての8ビットの00000000は、FFTサイズが8K点であること、GI長がOFDMシンボルのシンボル長の1/4であること、13セグメントで1階層の階層伝送が構成されること、及び、グループインデクス(Gp_Index)が3であることを表す。
 また、図14において、例えば、FFTサイズシグナリングとしての8ビットの00000001は、FFTサイズが8K点であること、GI長がOFDMシンボルのシンボル長の1/4であること、12セグメントと1セグメントとをそれぞれ1階層として、合計2階層の階層伝送が構成されること、及び、グループインデクスが3であることを表す。
 <本技術を適用したコンピュータの説明>
 次に、上述した送信装置11や受信装置12の一連の処理の少なくとも一部は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
 図15は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示すブロック図である。
 プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク105やROM103に予め記録しておくことができる。
 あるいはまた、プログラムは、リムーバブル記録媒体111に格納(記録)しておくことができる。このようなリムーバブル記録媒体111は、いわゆるパッケージソフトウエアとして提供することができる。ここで、リムーバブル記録媒体111としては、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリ等がある。
 なお、プログラムは、上述したようなリムーバブル記録媒体111からコンピュータにインストールする他、通信網や放送網を介して、コンピュータにダウンロードし、内蔵するハードディスク105にインストールすることができる。すなわち、プログラムは、例えば、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送することができる。
 コンピュータは、CPU(Central Processing Unit)102を内蔵しており、CPU102には、バス101を介して、入出力インタフェース110が接続されている。
 CPU102は、入出力インタフェース110を介して、ユーザによって、入力部107が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)103に格納されているプログラムを実行する。あるいは、CPU102は、ハードディスク105に格納されたプログラムを、RAM(Random Access Memory)104にロードして実行する。
 これにより、CPU102は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU102は、その処理結果を、必要に応じて、例えば、入出力インタフェース110を介して、出力部106から出力、あるいは、通信部108から送信、さらには、ハードディスク105に記録等させる。
 なお、入力部107は、キーボードや、マウス、マイク等で構成される。また、出力部106は、LCD(Liquid Crystal Display)やスピーカ等で構成される。
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 なお、本技術は、以下の構成をとることができる。
 <1>
 1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を生成する生成部と、
 前記OFDM信号を送信する送信部と
 を備える送信装置。
 <2>
 前記1フレームのOFDM信号は、複数のOFDMシンボルで構成され、
 前記OFDMシンボルは、複数のOFDMセグメントで構成され、
 前記生成部は、前記OFDMセグメントのキャリアのうちの、前記付加キャリアを、前記DFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を生成する
 <1>に記載の送信装置。
 <3>
 前記1フレームのOFDM信号は、前記1フレームのOFDM信号のフレーム長を所定値にするような数の前記OFDMシンボルで構成される
 <2>に記載の送信装置。
 <4>
 前記DFTサイズ、又は、前記付加キャリアのグループ数の情報のシグナリングを含む前記OFDM信号を生成する
 <1>ないし<3>のいずれかに記載の送信装置。
 <5>
 1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を生成することと、
 前記OFDM信号を送信することと
 を含む送信方法。
 <6>
 1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を受信する受信部と、
 前記OFDM信号から、前記DFTサイズに応じたグループ数に対応する前記付加情報を取得する取得部と
 を備える受信装置。
 <7>
 前記1フレームのOFDM信号は、複数のOFDMシンボルで構成され、
 前記OFDMシンボルは、複数のOFDMセグメントで構成され、
 前記受信部は、前記OFDMセグメントのキャリアのうちの、前記付加キャリアを、前記DFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を受信する
 <6>に記載の受信装置。
 <8>
 前記1フレームのOFDM信号は、前記1フレームのOFDM信号のフレーム長を所定値にするような数の前記OFDMシンボルで構成される
 <7>に記載の受信装置。
 <9>
 前記OFDM信号は、前記DFTサイズ、又は、前記付加キャリアのグループ数の情報のシグナリングを含み、
 前記取得部は、前記OFDM信号に含まれるシグナリングから認識される前記付加キャリアのグループ数に対応する前記付加情報を取得する
 <6>ないし<8>に記載の受信装置。
 <10>
 前記取得部は、前記OFDM信号から推定される前記DFTサイズから認識される前記付加キャリアのグループ数に対応する前記付加情報を取得する
 <6>ないし<8>に記載の受信装置。
 <11>
 1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を受信することと、
 前記OFDM信号から、前記DFTサイズに応じたグループ数に対応する前記付加情報を取得することと
 を含む受信方法。
 11 送信装置, 12 受信装置, 13 出力装置, 21 上司層処理部, 22 物理層処理部, 41 サイズ設定部, 42 付加情報生成部, 43 伝送路符号化部, 44 IFFT演算部, 45 GI付加部, 46 送信部, 51 物理層処理部, 52 上位層処理部, 61 チューナ, 62 ADC, 63 直交復調部, 64 FFT演算部, 65 付加情報取得部, 66 伝送路復号部, 71 DEMUX, 72 上位層データ処理部, 101 バス, 102 CPU, 103 ROM, 104 RAM, 105 ハードディスク, 106 出力部, 107 入力部, 108 通信部, 109 ドライブ, 110 入出力インタフェース, 111 リムーバブル記録媒体

Claims (11)

 1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を生成する生成部と、
 前記OFDM信号を送信する送信部と
 を備える送信装置。
 前記1フレームのOFDM信号は、複数のOFDMシンボルで構成され、
 前記OFDMシンボルは、複数のOFDMセグメントで構成され、
 前記生成部は、前記OFDMセグメントのキャリアのうちの、前記付加キャリアを、前記DFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を生成する
 請求項1に記載の送信装置。
 前記1フレームのOFDM信号は、前記1フレームのOFDM信号のフレーム長を所定値にするような数の前記OFDMシンボルで構成される
 請求項2に記載の送信装置。
 前記DFTサイズ、又は、前記付加キャリアのグループ数の情報のシグナリングを含む前記OFDM信号を生成する
 請求項1に記載の送信装置。
 1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を生成することと、
 前記OFDM信号を送信することと
 を含む送信方法。
 1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を受信する受信部と、
 前記OFDM信号から、前記DFTサイズに応じたグループ数に対応する前記付加情報を取得する取得部と
 を備える受信装置。
 前記1フレームのOFDM信号は、複数のOFDMシンボルで構成され、
 前記OFDMシンボルは、複数のOFDMセグメントで構成され、
 前記受信部は、前記OFDMセグメントのキャリアのうちの、前記付加キャリアを、前記DFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を受信する
 請求項6に記載の受信装置。
 前記1フレームのOFDM信号は、前記1フレームのOFDM信号のフレーム長を所定値にするような数の前記OFDMシンボルで構成される
 請求項7に記載の受信装置。
 前記OFDM信号は、前記DFTサイズ、又は、前記付加キャリアのグループ数の情報のシグナリングを含み、
 前記取得部は、前記OFDM信号に含まれるシグナリングから認識される前記付加キャリアのグループ数に対応する前記付加情報を取得する
 請求項6に記載の受信装置。
 前記取得部は、前記OFDM信号から推定される前記DFTサイズから認識される前記付加キャリアのグループ数に対応する前記付加情報を取得する
 請求項6に記載の受信装置。
 1フレームのOFDM(Orthogonal Frequency Division Multiplexing)信号のキャリアのうちの、物理層の付加情報の伝送に用いられる付加キャリアを、前記OFDM信号のIDFT(Inverse Discrete Fourier Transform)を行うときのDFTサイズに応じたグループ数のグループにグループ分けした、グループごとの前記付加キャリアに、前記付加情報を割り当てた前記OFDM信号を受信することと、
 前記OFDM信号から、前記DFTサイズに応じたグループ数に対応する前記付加情報を取得することと
 を含む受信方法。
PCT/JP2017/023147 2016-07-08 2017-06-23 送信装置、送信方法、受信装置、及び、受信方法 WO2018008427A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17824034.7A EP3484111B1 (en) 2016-07-08 2017-06-23 Transmitting device, transmitting method, receiving device and receiving method
JP2018526032A JP7046805B2 (ja) 2016-07-08 2017-06-23 送信装置及び送信方法
US16/099,769 US10917277B2 (en) 2016-07-08 2017-06-23 Transmission device, transmission method, reception device, and reception method
MX2018016211A MX2018016211A (es) 2016-07-08 2017-06-23 Dispositivo de transmision, metodo de transmision, dispositivo de recepcion, y metodo de recepcion.
CN201780041216.4A CN109417528B (zh) 2016-07-08 2017-06-23 发送设备、发送方法、接收设备以及接收方法
AU2017292436A AU2017292436B2 (en) 2016-07-08 2017-06-23 Transmitting device, transmitting method, receiving device and receiving method
CA3028937A CA3028937A1 (en) 2016-07-08 2017-06-23 Transmission device, transmission method, reception device, and reception method
JP2022046528A JP7214910B2 (ja) 2016-07-08 2022-03-23 受信装置、及び、受信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-135710 2016-07-08
JP2016135710 2016-07-08

Publications (1)

Publication Number Publication Date
WO2018008427A1 true WO2018008427A1 (ja) 2018-01-11

Family

ID=60901365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023147 WO2018008427A1 (ja) 2016-07-08 2017-06-23 送信装置、送信方法、受信装置、及び、受信方法

Country Status (8)

Country Link
US (1) US10917277B2 (ja)
EP (1) EP3484111B1 (ja)
JP (2) JP7046805B2 (ja)
CN (1) CN109417528B (ja)
AU (1) AU2017292436B2 (ja)
CA (1) CA3028937A1 (ja)
MX (1) MX2018016211A (ja)
WO (1) WO2018008427A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506469B2 (ja) 2019-12-06 2024-06-26 日本放送協会 送信装置及び受信装置、並びにチップ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029922A (ja) * 2009-07-24 2011-02-10 Sony Corp 受信装置および方法、並びにプログラム
JP2015070279A (ja) * 2013-09-26 2015-04-13 日本放送協会 送信装置、受信装置及びチップ
JP2015076690A (ja) * 2013-10-08 2015-04-20 アイコム株式会社 通信機及び通信方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3799951B2 (ja) * 2000-04-13 2006-07-19 ソニー株式会社 Ofdm送信装置及び方法
US7483368B2 (en) * 2003-09-30 2009-01-27 Hitachi Kokusai Electric Inc. Method and detecting carrier shift amount in digital transmission signal, method of correcting carrier shift amount, and receiver employing these methods
JP4419969B2 (ja) * 2006-02-09 2010-02-24 ソニー株式会社 Ofdm復調装置及び方法
JP4949738B2 (ja) * 2006-05-29 2012-06-13 富士通セミコンダクター株式会社 デジタル放送受信機、移動端末およびチャネルサーチ方法
EP2264922B1 (en) * 2008-04-11 2019-06-05 Panasonic Intellectual Property Management Co., Ltd. Receiver, integrated circuit, digital television receiver, reception method, and reception program
US8433010B2 (en) * 2008-06-16 2013-04-30 Panasonic Corporation Reception device, integrated circuit, digital television receiver, reception method, and reception program
JPWO2010067829A1 (ja) * 2008-12-12 2012-05-24 パナソニック株式会社 受信装置および受信方法
KR101607846B1 (ko) * 2009-01-06 2016-04-01 삼성전자주식회사 무선통신시스템에서 동기 채널 생성 장치 및 방법
EP2205030B1 (en) * 2009-01-06 2020-09-30 Nokia Technologies Oy Apparatus and method for generating synchronization channel in a wireless communication system
JP5175761B2 (ja) * 2009-02-12 2013-04-03 株式会社東芝 Ofdm受信装置
JP5267874B2 (ja) * 2009-07-24 2013-08-21 ソニー株式会社 信号処理装置、及び、信号処理方法
JP5704380B2 (ja) * 2010-02-17 2015-04-22 ソニー株式会社 受信装置
JP5577884B2 (ja) * 2010-06-28 2014-08-27 ソニー株式会社 受信装置、及び、受信方法、並びに、受信システム
US8670505B2 (en) * 2011-03-31 2014-03-11 Subrahmanya Kondageri Shankaraiah Early detection of segment type using BPSK and DBPSK modulated carriers in ISDB-T receivers
US8395985B2 (en) * 2011-07-25 2013-03-12 Ofinno Technologies, Llc Time alignment in multicarrier OFDM network
WO2013114454A1 (ja) * 2012-02-01 2013-08-08 日立コンシューマエレクトロニクス株式会社 コンテンツ受信装置、コンテンツ受信方法、及び、デジタル放送送受信システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029922A (ja) * 2009-07-24 2011-02-10 Sony Corp 受信装置および方法、並びにプログラム
JP2015070279A (ja) * 2013-09-26 2015-04-13 日本放送協会 送信装置、受信装置及びチップ
JP2015076690A (ja) * 2013-10-08 2015-04-20 アイコム株式会社 通信機及び通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506469B2 (ja) 2019-12-06 2024-06-26 日本放送協会 送信装置及び受信装置、並びにチップ

Also Published As

Publication number Publication date
JPWO2018008427A1 (ja) 2019-04-25
MX2018016211A (es) 2019-06-17
EP3484111A4 (en) 2019-07-17
JP2022075902A (ja) 2022-05-18
AU2017292436A1 (en) 2018-12-13
JP7214910B2 (ja) 2023-01-30
EP3484111B1 (en) 2022-03-09
US10917277B2 (en) 2021-02-09
CA3028937A1 (en) 2018-01-11
CN109417528A (zh) 2019-03-01
AU2017292436B2 (en) 2020-07-16
EP3484111A1 (en) 2019-05-15
CN109417528B (zh) 2022-04-08
JP7046805B2 (ja) 2022-04-04
US20190182090A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP5347792B2 (ja) 信号処理装置、信号処理方法、及び、受信システム
KR102024796B1 (ko) 계층변조 신호의 전송 장치 및 방법
US20110317790A1 (en) Receiving apparatus, receiving method, and receiving system
JP2024038416A (ja) 送信装置、送信方法、受信装置、及び、受信方法
JP5278173B2 (ja) 受信装置および方法、プログラム、並びに受信システム
TWI820096B (zh) 收訊裝置、收訊方法、送訊裝置、及送訊方法
JP7214910B2 (ja) 受信装置、及び、受信方法
WO2020121842A1 (ja) 送信装置、送信方法、受信装置、及び受信方法
JP7310983B2 (ja) 送信装置、及び送信方法
JP7268343B2 (ja) 送信装置、送信方法、受信装置、及び受信方法
WO2022024802A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2020121843A1 (ja) 受信装置、受信方法、送信装置、及び送信方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526032

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017292436

Country of ref document: AU

Date of ref document: 20170623

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3028937

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824034

Country of ref document: EP

Effective date: 20190208