WO2018007711A1 - Dispositif cascode integre monolithiquement - Google Patents

Dispositif cascode integre monolithiquement Download PDF

Info

Publication number
WO2018007711A1
WO2018007711A1 PCT/FR2017/051638 FR2017051638W WO2018007711A1 WO 2018007711 A1 WO2018007711 A1 WO 2018007711A1 FR 2017051638 W FR2017051638 W FR 2017051638W WO 2018007711 A1 WO2018007711 A1 WO 2018007711A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
useful layer
manufacturing
layer
hybrid device
Prior art date
Application number
PCT/FR2017/051638
Other languages
English (en)
Inventor
Domenico Lo Verde
Original Assignee
Exagan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exagan filed Critical Exagan
Publication of WO2018007711A1 publication Critical patent/WO2018007711A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0883Combination of depletion and enhancement field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT

Definitions

  • the present invention relates to a cascode device coupling two components, one drawn on semi conductor material ⁇ group IV, another developed on semi conductor material ⁇ III-V group. It relates in particular to a cascode device whose two components are integrated monolithically.
  • HEMT transistors high electron mobility transistors produced on III-N semiconductor materials are conventionally called “normally on”, that is to say they have a negative threshold voltage and can conduct current with a gate voltage at 0V.
  • depletion mode or “D-mode” according to the English terminology.
  • power electronics applications it is preferable for power electronics applications to have so-called “normally off” devices, that is to say with positive threshold voltage, which therefore can not conduct the current when the gate voltage is at 0V; these components are commonly referred to as enrichment mode (“E-mode”) components.
  • the fabrication of high voltage devices on III-N semiconductor materials in E-mode is complex.
  • An alternative to a simple high voltage E-mode device is to combine a high voltage D-mode component with a low voltage E-mode component in a hybrid device called cascode.
  • the Hybrid device typically comprises a HEMT D-mode transistor developed on III-N semiconductor materials and a MOS transistor ("Metal-Oxide-Semiconductor" according to the English terminology) E-mode developed on silicon. These two components are then coupled in the packaging: the drain electrode and the source electrode of the MOS transistor E-mode are respectively connected to the source electrode and to the gate electrode of the HEMT D-mode transistor.
  • An object of the invention is to provide a method for manufacturing a monolithically integrated cascode hybrid device for simplifying the assembly and packaging of a hybrid device for obtaining a high-voltage device in E-mode.
  • the invention relates to a method of manufacturing a hybrid device comprising a first component of group IV semiconductor material and a second component of Group III-N semiconductor materials; the process is remarkable in that it comprises:
  • the manufacturing method according to the invention makes it possible to develop a heterogeneous semiconductor structure comprising a first useful layer made of semiconductor material IV and a second useful layer made of III-N semiconductor materials, the two layers having good quality. , suitable for the manufacture of microelectronic components of different natures. These are elaborated monolithically and sequentially on the same substrate. Both components are integrated and connected in the same chip. According to advantageous features of the invention, taken alone or in combination:
  • Step a) comprises:
  • Step b) comprises the successive deposition of Group III-N semiconductor material layers to form the second useful layer
  • Step c) of removing a portion of the second useful layer comprises a method or a combination of methods selected from mechanical chemical polishing, wet chemical etching, dry chemical etching;
  • Step d) comprises:
  • a drain electrode and a source electrode of the first component are respectively connected to a source electrode and a gate electrode of the second component during step d), to form a cascode device;
  • the first component is a MOS transistor
  • the second component is a HEMT transistor.
  • FIGS. 1a-1d and 2a-2e show stages of the manufacturing method according to the invention. .
  • the invention relates to a method of manufacturing a hybrid cascode device combining two components connected in series and configured to produce a high-voltage device that can not conduct the current when the applied control voltage is zero.
  • Said device comprises a first component of Group IV semiconductor material and a second component of group III-V semiconductor materials, advantageously Group III-N: the method according to the invention aims to integrate them monolithically, that is, that is, they are elaborated on the same substrate and will form a single chip after singularization.
  • the manufacturing method comprises a step of forming at least one island constituting a first useful layer 2 on a support substrate 1, as represented in FIG.
  • a support substrate 1 made of Group IV semiconductor material is first provided.
  • the semiconductor material of the group IV may be chosen, for example, from silicon, germanium, silicon carbide. Silicon is advantageously chosen for its availability and its compatibility with microelectronic manufacturing steps.
  • 1 silicon carrier substrate preferably present an N type doping (e.g., doped Phosphorus, Arsenic.) And a resistivity of between 10 A 6 ohms. cm and 10 A -3 ohm. cm.
  • the support substrate 1 made of silicon may advantageously have a crystallographic orientation (111) or (100).
  • a layer 2 of Group IV semiconductor material is then produced on the support substrate 1, for example by epitaxy.
  • the semiconductor material of group IV of layer 2 may be selected from silicon, germanium, silicon-germanium, etc .; we will take the example of silicon in the following description, this material is the most commonly used.
  • This layer 2 constitutes a first useful layer (which will be referenced 2 later).
  • the first component 200 will be produced in this first useful layer 2.
  • the type (P or N) and the doping level of the first useful layer 2, as well as the characteristics of the support substrate 1, are thus chosen as a function of the component 200 to be manufactured. .
  • the first useful layer 2 is disposed on the support substrate 1 in the form of one or preferably several islands 20. Each island 20 will comprise a component 200. According to one variant, the first useful layer 2 can be deposited on the entire surface of the support substrate 1, then etched locally by known techniques of photolithography and dry or wet etching, to form the islands 20.
  • the first useful layer 20 may be deposited by selective epitaxial growth only at the location of the islands 20; for this, a masking layer is deposited on the support substrate 1, prior to the epitaxial step, in the regions where it is not desired to make the islands 20.
  • the manufacturing method then comprises a step of forming a second useful layer 3, made of group III-N semiconductor materials, on the support substrate 1 and on the island 20.
  • the second useful layer 3 is formed of a stack of layers of Group III-N semiconductor materials ( Figure 1b).
  • Group III-N semiconductor materials may be selected from gallium nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (Al x Ga- x N) alloys, nitride nitride, and indium (InN) and other ternary or quaternary alloys based on III-N materials.
  • the second useful layer 3 comprises, starting from the support substrate 1:
  • a nucleation layer 3a for example AIN
  • a buffer layer for example
  • a channel layer 3b (for example GaN)
  • a spacer layer 3c (for example AIN)
  • a barrier layer 3d for example AlGaN
  • the layers 3a to 3e forming the second useful layer 3 are deposited successively to form the stack. This may be done using different heterogeneous epitaxy techniques commonly used for the growth of Group III-N semiconductor materials, such as the deposit by MOCVD ("Metal organic chemical vapor deposition").
  • the temperatures used for these epitaxies are between 800 ° C. and 1200 ° C.
  • the second component 300 of the hybrid device cascode will be developed in the second useful layer 3.
  • the stack of layers 3a to 3e is typically used for the manufacture of high mobility electronic components.
  • the blanks 21 of the island 20 of the first useful layer 2 form a shoulder at their base and not a right or acute angle with the surface of the support substrate 1.
  • This configuration is favorable the epitaxial growth of the layers 3a to 3e because it makes it possible to form a much more ordered layer 3 and limiting the appearance of defects such as dislocations, interstitial defects, Frenkel defects and many other defects resulting from epitaxial growth .
  • the manufacturing method comprises a step of removing a portion of the second useful layer 3 to expose the first useful layer 2, on at least a portion of the surface (in a plane (x, y)) of the island (s) 20 ( Figure 1c).
  • this removal step can be performed by chemical mechanical polishing adapted to III-N materials in the presence.
  • the thickness of the upper layer 3d is chosen sufficiently thick to take into account the removal of material that will take place in the region 32 during the polishing step. Indeed, even if it is much less than in the region 22, a material removal occurs in the region 32, for which it is necessary to keep the stack of layers 3a to 3e forming the second useful layer 3.
  • a barrier layer may be deposited on the layer 3e, only in the region 32: this stop layer will be chosen for its high etching selectivity with respect to the stack of layers 3a to 3e and will thus protect the second active layer 3 of a mechano-chemical removal too important.
  • this removal step may be carried out by dry or wet etching in the region 22, the region 32 having previously been protected by a barrier layer deposited locally by the usual techniques of photolithography and deposition.
  • the step of removing the second useful layer 3 in the region 22 may be carried out by combining the techniques mentioned above: for example, etching in the region 22, then chemical-mechanical polishing to give to the surface 12 a good flatness after the removal step.
  • the chemical-mechanical polishing may be carried out first, followed by an etching step in region 22, with selective stopping on the surface of island (s) 20.
  • heterogeneous semiconductor structure 10 comprising at least a first working layer 2 in semiconductor IV material in a region 22, substantially coplanar with a second working layer 3 semi materials ⁇ III-N conductors in a region 32, the two layers 2,3 having a good quality, suitable for the manufacture of microelectronic components of different natures.
  • the manufacturing method may advantageously comprise a step of isolating the regions 22 and 32, by forming a zone 203 between the regions 22 and 32 ( Figure 1d).
  • This zone 203 may be made insulating, either by implantation (for example, of argon ions, silicon or any other suitable species), or by local etching and filling with an electrical insulating material, for example silicon oxide, nitride etc.
  • the manufacturing method according to the invention finally comprises a step of producing the first component 200 in and on the first useful layer 2 and the second component 300 in and on the second useful layer 3.
  • microelectronic components comprises first stage called “front end” consisting of the formation of semi elements ⁇ conductors such that the active regions (source, drain, channel), the regions insulation in the useful layers 2,3, the source, drain, gate contacts. Second, it comprises so-called “back end” stages consisting of the formation of metal interconnections between the electrodes connected to the contacts.
  • the "front end” stages comprise heat treatments at high temperatures, typically ranging from 200 ° C to 1100 ° C for silicon technologies (first component 200) and ranging from 200 ° C to 950 ° C for the technologies III- N (second component 300).
  • a first encapsulation layer 33 may be deposited on the second useful layer 3 after the isolation step, to protect said layer 3 from the subsequent steps of the process.
  • the first encapsulation layer 33 may for example be formed of silicon nitride and silicon oxide.
  • the manufacturing method according to the invention comprises steps of partial elaboration of the first component 200 in and on the first useful layer 2, advantageously comprising the high temperature manufacturing steps, called "front end".
  • Figure 2b illustrates the source 201, drain 202 and gate contacts 204 formed as a result of these steps.
  • the first partial component 200 is preferentially protected by another encapsulation layer 23, as shown in FIG. 2c.
  • This other encapsulation layer 23 makes it possible in particular to prevent contamination of the first component 200 by elements III or other compounds used. during the manufacture of the second component 3.
  • the other encapsulation layer 23 may be of the same nature or of a different nature as the first encapsulation layer 33.
  • the manufacturing process then comprises steps of partial elaboration of the second component 300 in and on the second useful layer 3, again including the high temperature manufacturing steps ("front end").
  • Figure 2d illustrates the source 301, drain 302, and gate contacts 304 formed as a result of these steps.
  • the manufacturing method comprises carrying out metallization, isolation and interconnection steps to finalize the first component 200 and the second component 300, and to electrically connect them.
  • Metallic electrodes are connected to the different contacts to form the source 211,311, drain 212,312, and gate 214,314, respectively the first and second 2-component electrodes.
  • the drain electrode 212 of the first component 2 is connected to the source electrode 311 of the second component 3 by a metal connection 501, as illustrated in FIG. 2e.
  • the source electrode 211 of the first component 2 is connected to the gate electrode 314 of the second component 3.
  • the resulting hybrid cascode device 500 forms a high voltage device operating in E-mode.
  • the first component 2 is a MOS transistor
  • the second component 3 is an HEM transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un dispositif hybride (500) comprenant un premier composant (200) en matériau semi-conducteur du groupe IV et un deuxième composant (300) en matériaux semi-conducteurs du groupe III-N. Le procédé est remarquable en ce qu'il comprend : a) La formation d'au moins un ilot (20) constituant une première couche utile (2) sur un substrat support (1); la première couche utile (2) et le substrat support (1) étant chacun en matériau du groupe IV; b) La formation d'une deuxième couche utile (3) en matériaux semi-conducteurs du groupe III-N sur le substrat support (1) et sur l'ilot (20); c) Le retrait d'une partie de la deuxième couche utile (3) pour exposer la première couche utile (2); d) L'élaboration du premier composant (200) dans et sur la première couche utile (2) et du deuxième composant (300) dans et sur la deuxième couche utile (3).

Description

DISPOSITIF CASCODE INTEGRE MONOLITHIQUEMENT
DOMAINE DE L' INVENTION
La présente invention concerne un dispositif cascode couplant deux composants, l'un élaboré sur matériau semi¬ conducteur du groupe IV, l'autre élaboré sur matériau semi¬ conducteur du groupe III-V. Elle concerne en particulier un dispositif cascode dont les deux composants sont intégrés monolithiquement .
ARRIERE PLAN TECHNOLOGIQUE DE L' INVENTION
Les transistors HEMT (transistors à haute mobilité électronique) élaborés sur des matériaux semi-conducteurs III-N sont classiquement dit « normally on », c'est-à-dire qu'ils présentent une tension de seuil négative et peuvent conduire le courant avec une tension de grille à 0V. Ces composants avec des tensions de seuil négatives sont appelés composants en mode déplétion (« depletion mode » ou « D-mode » selon la terminologie anglo-saxonne). Afin d'éviter qu'une défaillance de la grille ne bascule le composant en mode passant, il est préférable pour les applications d'électronique de puissance d'avoir des dispositifs dits « normally off », c'est-à-dire présentant une tension de seuil positive, qui ne peuvent donc pas conduire le courant lorsque la tension de grille est à 0V ; ces composants sont communément appelés composants en mode enrichissement (« E-mode ») .
La fabrication de dispositifs à haute tension sur matériaux semi-conducteurs III-N en E-mode s'avère complexe. Une alternative à un dispositif E-mode haute tension simple est de combiner un composant D-mode à haute tension avec un composant E-mode basse tension dans un dispositif hybride dit cascode. Le dispositif hybride comprend typiquement un transistor HEMT D- mode élaboré sur matériaux semi-conducteurs III-N et un transistor MOS (« Metal-Oxide-Semiconductor » selon la terminologie anglo-saxonne) E-mode élaboré sur silicium. Ces deux composants sont ensuite couplés dans le packaging : l'électrode de drain et l'électrode de source du transistor MOS E-mode sont respectivement connectée à l'électrode de source et à l'électrode de grille du transistor HEMT D-mode.
OBJET DE L' INVENTION
Un objet de l'invention est de proposer un procédé de fabrication d'un dispositif hybride de type cascode intégré monolithiquement permettant de simplifier l'assemblage et le packaging d'un dispositif hybride visant à obtenir un dispositif à haute tension en E-mode.
BREVE DESCRIPTION DE L' INVENTION
L'invention concerne un procédé de fabrication d'un dispositif hybride comprenant un premier composant en matériau semi-conducteur du groupe IV et un deuxième composant en matériaux semi-conducteurs du groupe III-N ; le procédé est remarquable en ce qu' il comprend :
a) La formation d'au moins un ilot constituant une première couche utile sur un substrat support ; la première couche utile et le substrat support étant chacun en matériau du groupe IV ;
b) La formation d'une deuxième couche utile en matériaux semi-conducteurs du groupe III-N sur le substrat support et sur l'ilot ;
c) Le retrait d'une partie de la deuxième couche utile pour exposer la première couche utile ; d) L'élaboration du premier composant dans et sur la première couche utile et du deuxième composant dans et sur la deuxième couche utile. Le procédé de fabrication selon l'invention permet d'élaborer une structure semi-conductrice hétérogène comprenant une première couche utile en matériau semi-conducteur IV et une deuxième couche utile en matériaux semi-conducteurs III-N, les deux couches présentant une bonne qualité, adaptée à la fabrication de composants microélectroniques de natures différentes. Ces derniers sont élaborés de manière monolithique et séquentiellement sur le même substrat. Les deux composants sont ainsi intégrés et connectés dans la même puce. Selon des caractéristiques avantageuses de l'invention, prises seules ou en combinaison :
• l'étape a) comprend :
o le dépôt de la première couche utile sur le substrat support,
o le retrait local de la première couche utile de manière à former au moins un ilot ;
• l'étape b) comprend le dépôt successif de couches en matériaux semi-conducteurs du groupe III-N pour former la deuxième couche utile ;
· l'étape c) de retrait d'une partie de la deuxième couche utile comprend un procédé ou une combinaison de procédés choisis parmi le polissage mécano-chimique, la gravure chimique humide, la gravure chimique sèche ;
• l'étape d) comprend :
o l'élaboration partielle du premier composant dans et sur la première couche utile, comprenant des étapes de fabrication à hautes températures ;
o puis, l'élaboration partielle du deuxième composant dans et sur la deuxième couche utile, comprenant des étapes de fabrication à hautes températures ; o enfin, la réalisation d'étapes de métallisation, d' isolation et d' interconnexion pour finaliser le premier composant et le deuxième composant, et pour les connecter électriquement ;
• une électrode de drain et une électrode de source du premier composant sont respectivement connectées à une électrode de source et à une électrode de grille du deuxième composant au cours de l'étape d) , pour former un dispositif cascode ;
• le premier composant est un transistor MOS ;
• le deuxième composant est un transistor HEMT.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée de l'invention qui va suivre en référence aux figures annexées sur lesquelles les figures la à ld et 2a à 2e présentent des étapes du procédé de fabrication conforme à l'invention.
DESCRIPTION DETAILLEE DE L' INVENTION Les figures sont des représentations schématiques de dispositifs en coupe ou en vue de dessus dans lesquelles les dimensions latérales ou verticales peuvent ne pas être respectées. Les mêmes références pourront être utilisées pour des éléments de même nature.
L'invention concerne un procédé de fabrication d'un dispositif hybride cascode associant deux composants connectés en série et configuré pour réaliser un dispositif à haute tension qui ne peut conduire le courant lorsque la tension de commande appliquée est nulle. Ledit dispositif comprend un premier composant en matériau semi-conducteur du groupe IV et un deuxième composant en matériaux semi-conducteurs du groupe III- V, avantageusement du groupe III-N : le procédé selon l'invention vise à les intégrer de manière monolithique, c'est- à-dire qu' ils sont élaborés sur un même substrat et formeront une seule puce après singularisation .
Le procédé de fabrication comprend une étape de formation d'au moins un ilot 20 constituant une première couche utile 2 sur un substrat support 1, comme représenté sur la figure la.
Un substrat support 1 en matériau semi-conducteur du groupe IV est d'abord fourni. Le matériau semi-conducteur du groupe IV pourra être choisi, par exemple, parmi le silicium, le germanium, le carbure de silicium. Le silicium est avantageusement choisi pour sa disponibilité et sa compatibilité avec les étapes de fabrication microélectronique. Le substrat support 1 en silicium présentera préférentiellement un dopage de type N (par exemple, dopé Phosphore, Arsenic.) et une résistivité comprise entre 10A6 ohms . cm et 10A-3 ohm. cm. Le substrat support 1 en silicium pourra présenter avantageusement une orientation cristallographique (111) ou (100).
Une couche 2 en matériau semi-conducteur du groupe IV est ensuite élaborée sur le substrat support 1, par exemple par épitaxie. Le matériau semi-conducteur du groupe IV de la couche 2 peut être choisi parmi le silicium, le germanium, le silicium- germanium, etc ; nous prendrons l'exemple du silicium dans la suite de la description, ce matériau étant le plus communément utilisé. Cette couche 2 constitue une première couche utile (qui sera référencée 2 par la suite) . Le premier composant 200 sera élaboré dans cette première couche utile 2. Le type (P ou N) et le niveau de dopage de la première couche utile 2, ainsi que les caractéristiques du substrat support 1 sont ainsi choisis en fonction du composant 200 à fabriquer.
La première couche utile 2 est disposée sur le substrat support 1 sous forme d'un ou préférentiellement plusieurs ilôts 20. Chaque ilot 20 comportera un composant 200. Selon une variante, la première couche utile 2 peut être déposée sur la totalité de la surface du substrat support 1, puis gravée localement par les techniques connues de photolithographie et gravure sèche ou humide, pour former les ilôts 20.
Selon une autre variante, la première couche utile 20 peut être déposée par croissance épitaxiale sélective, uniquement à l'emplacement des ilôts 20 ; pour cela, une couche de masquage est déposée sur le substrat support 1, préalablement à l'étape d'épitaxie, dans les régions où l'on ne souhaite pas réaliser les ilôts 20.
Le procédé de fabrication comprend ensuite une étape de formation d'une deuxième couche utile 3, en matériaux semi- conducteurs du groupe III-N, sur le substrat support 1 et sur l'ilot 20. La deuxième couche utile 3 est formée d'un empilement de couches en matériaux semi-conducteurs du groupe III-N (figure lb) . Les matériaux semi-conducteurs du groupe III-N peuvent être choisis parmi le nitrure de gallium (GaN) , le nitrure d'aluminium (AIN), les alliages de nitrure de gallium aluminium (AlxGai-xN) , le nitrure d' indium (InN) et autres alliages ternaires ou quaternaires à base de matériaux III-N. A titre d'exemple, la deuxième couche utile 3 comporte, en partant du substrat support 1 :
· une couche de nucléation 3a (par exemple AIN) et une couche tampon
• une couche canal 3b (par exemple GaN)
• une couche d'espacement 3c (par exemple AIN)
• une couche barrière 3d (par exemple AlGaN)
· et une couche supérieure 3e (par exemple GaN)
Les couches 3a à 3e formant la deuxième couche utile 3 sont déposées successivement pour former l'empilement. On pourra pour cela mettre en œuvre différentes techniques d'épitaxie hétérogène habituellement utilisées pour la croissance de matériaux semi-conducteurs du groupe III-N, comme notamment le dépôt par MOCVD (« Métal organic chemical vapor déposition ») .
A titre d'exemple, les températures utilisées pour ces épitaxies sont comprises entre 800°C et 1200°C.
D'autres configurations d'empilement de couches, connues de l'état de l'art, pourront bien-sûr être mises en œuvre pour la réalisation de la deuxième couche utile 3.
Le deuxième composant 300 du dispositif hybride cascode sera élaboré dans la deuxième couche utile 3. L'empilement de couches 3a à 3e est typiquement utilisé pour la fabrication de composants à haute mobilité électronique.
Avantageusement, comme illustré sur les figures la et lb, les flans 21 de l'ilot 20 de la première couche utile 2 forment un épaulement à leur base et non un angle droit ou aigu avec la surface du substrat support 1. Cette configuration est favorable à la croissance épitaxiale des couches 3a à 3e car elle permet de former une couche 3 beaucoup plus ordonnée et limitant l'apparition de défauts tels que des dislocations, des défauts interstitiels, des défauts de Frenkel et de nombreux autres défauts résultant de la croissance épitaxiale.
A la suite de l'étape de formation de la deuxième couche utile 3, le procédé de fabrication comprend une étape de retrait d'une partie de la deuxième couche utile 3 pour exposer la première couche utile 2, sur au moins une partie de la surface (dans un plan (x,y)) du ou des ilot(s) 20 (figure le).
Selon un premier mode de mise en oeuvre, cette étape de retrait peut être réalisée par polissage mécano-chimique adapté aux matériaux III-N en présence. Avantageusement, l'épaisseur de la couche supérieure 3d est choisie suffisamment épaisse pour tenir compte de l'enlèvement de matière qui aura lieu dans la région 32 au cours de l'étape de polissage. En effet, même s'il est bien moindre que dans la région 22, un enlèvement de matière s'opère dans la région 32, pour laquelle il est nécessaire de conserver l'empilement de couches 3a à 3e formant la deuxième couche utile 3. Avantageusement, une couche d'arrêt pourra être déposée sur la couche 3e, uniquement dans la région 32 : cette couche d'arrêt sera choisie pour sa forte sélectivité de gravure par rapport à l'empilement de couches 3a à 3e et permettra ainsi de protéger la deuxième couche active 3 d'un enlèvement mécano- chimique trop important.
Selon un autre mode de réalisation, cette étape de retrait peut être réalisée par gravure sèche ou humide dans la région 22, la région 32 ayant préalablement été protégée par une couche d'arrêt, déposée localement par les techniques habituelles de photolithographie et dépôt.
Selon encore un autre mode de réalisation, l'étape de retrait de la deuxième couche utile 3 dans la région 22 pourra être réalisée par combinaison des techniques précédemment citées : par exemple, gravure dans la région 22, puis polissage mécano-chimique pour conférer à la surface 12 une bonne planéité après l'étape de retrait. Alternativement, le polissage mécano- chimique pourra être effectué en premier, suivi d'une étape de gravure dans la région 22, avec arrêt sélectif sur la surface du ou des ilôts 20.
On obtient à ce stade une structure semi-conductrice hétérogène 10 comprenant au moins une première couche utile 2 en matériau semi-conducteur IV dans une région 22, sensiblement coplanaire avec une deuxième couche utile 3 en matériaux semi¬ conducteurs III-N dans une région 32, les deux couches 2,3 présentant une bonne qualité, adaptée à la fabrication de composants microélectroniques de natures différentes.
Suite à l'étape de retrait, le procédé de fabrication peut avantageusement comporter une étape d' isolation des régions 22 et 32, par formation d'une zone 203 entre les régions 22 et 32 (figure ld) . Cette zone 203 pourra être rendue isolante, soit par implantation (par exemple, d'ions argon, silicium ou tout autre espèce adaptée) , soit par gravure locale et remplissage par un matériau isolant électrique, par exemple l'oxyde de silicium, le nitrure, etc. Le procédé de fabrication selon l'invention comprend enfin une étape d'élaboration du premier composant 200 dans et sur la première couche utile 2 et du deuxième composant 300 dans et sur la deuxième couche utile 3.
L'élaboration de composants microélectroniques, connue de l'homme du métier, comprend en premier lieu des étapes dites « front end » consistant en la formation des éléments semi¬ conducteurs tels que les régions actives (source, drain, canal) , les régions d'isolation dans les couches utiles 2,3, les contacts de source, de drain, de grille. En deuxième lieu, elle comprend des étapes dites « back end » consistant en la formation des interconnexions métalliques entre les électrodes connectées aux contacts. Les étapes « front end » comportent des traitements thermiques à hautes températures, typiquement pouvant aller de 200°C à 1100°C pour les technologies silicium (premier composant 200) et pouvant aller de 200°C à 950°C pour les technologies III-N (deuxième composant 300).
Comme cela est représenté sur la figure 2a, une première couche d' encapsulation 33 peut être déposée sur la deuxième couche utile 3 après l'étape d'isolation, pour protéger ladite couche 3 des étapes subséquentes du procédé. La première couche d' encapsulation 33 pourra être par exemple formée en nitrure de silicium, en oxyde de silicium.
Le procédé de fabrication selon l'invention comporte des étapes d'élaboration partielle du premier composant 200 dans et sur la première couche utile 2, comprenant avantageusement les étapes de fabrication à hautes températures, dites « front end ». La figure 2b illustre les contacts de source 201, de drain 202 et de grille 204 formés à la suite de ces étapes. A ce stade, le premier composant 200 partiel est préférentiellement protégé par une autre couche d' encapsulation 23, comme cela est représenté sur la figure 2c. Cette autre couche d' encapsulation 23 permet notamment d'éviter une contamination du premier composant 200 par des éléments III ou d'autres composés utilisés lors de la fabrication du deuxième composant 3. L'autre couche d' encapsulation 23 peut être de même nature ou de différente nature que la première couche d' encapsulation 33.
Le procédé de fabrication comporte ensuite des étapes d'élaboration partielle du deuxième composant 300 dans et sur la deuxième couche utile 3, comprenant là encore les étapes de fabrication à hautes températures (« front end ») . La figure 2d illustre les contacts de source 301, de drain 302 et de grille 304 formés à la suite de ces étapes.
Enfin, le procédé de fabrication comporte la réalisation d'étapes de métallisation, d'isolation et d'interconnexion pour finaliser le premier composant 200 et le deuxième composant 300, et pour les connecter électriquement. Des électrodes métalliques sont connectées aux différents contacts pour former les électrodes de source 211,311, de drain 212,312, et de grille 214,314, respectivement des premier 1 et deuxième 2 composants.
Pour former le dispositif hybride cascode 500, l'électrode de drain 212 du premier composant 2 est reliée à l'électrode de source 311 du deuxième composant 3 par une connexion métallique 501, comme illustré sur la figure 2e. L'électrode de source 211 du premier composant 2 est quant à elle connectée à l'électrode de grille 314 du deuxième composant 3.
Le dispositif hybride cascode 500 obtenu forme un dispositif à haute tension fonctionnant en E-mode.
Selon un mode de mise en œuvre préféré, le premier composant 2 est un transistor MOS, le deuxième composant 3 est un transistor HEM .
Bien entendu, l'invention n'est pas limitée aux modes de
réalisation décrits et on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention tel que défini par les revendications.

Claims

REVENDICATIONS
. Procédé de fabrication d'un dispositif hybride (500) comprenant un premier composant (200) en matériau semi¬ conducteur du groupe IV et un deuxième composant (300) en matériaux semi-conducteurs du groupe III-N, le procédé étant caractérisé en ce qu' il comprend :
a) La formation d'au moins un ilot (20) constituant une première couche utile (2) sur un substrat support (1) ; la première couche utile (2) et le substrat support (1) étant chacun en matériau du groupe IV ;
b) La formation d'une deuxième couche utile (3) en matériaux semi-conducteurs du groupe III-N sur le substrat support (1) et sur l'ilot (20) ;
c) Le retrait d'une partie de la deuxième couche utile (3) pour exposer la première couche utile (2) ;
d) L'élaboration du premier composant (200) dans et sur la première couche utile (2) et du deuxième composant (300) dans et sur la deuxième couche utile (3) .
2. Procédé de fabrication d'un dispositif hybride (500) selon la revendication précédente, dans lequel l'étape a) comprend :
• Le dépôt de la première couche utile (2) sur le substrat support (1),
• Le retrait local de la première couche utile (2) de manière à former au moins un ilot (20) .
Procédé de fabrication d'un dispositif hybride (500) selon l'une des revendications précédentes, dans lequel l'étape b) comprend le dépôt successif de couches (3a, 3b, 3c, 3d, 3e) en matériaux semi-conducteurs du groupe III-N pour former la deuxième couche utile
(3) .
4. Procédé de fabrication d'un dispositif hybride (500) selon l'une des revendications précédentes, dans lequel l'étape c) de retrait d'une partie de la deuxième couche utile (3) comprend un procédé ou une combinaison de procédés choisis parmi le polissage mécano-chimique, la gravure chimique humide, la gravure chimique sèche.
5. Procédé de fabrication d'un dispositif hybride (500) selon l'une des revendications précédentes, dans lequel l'étape d) comprend :
• L'élaboration partielle du premier composant (200) dans et sur la première couche utile (2), comprenant des étapes de fabrication à hautes températures ;
• Puis, l'élaboration partielle du deuxième composant (300) dans et sur la deuxième couche utile (3) , comprenant des étapes de fabrication à hautes températures ;
• Enfin, la réalisation d'étapes de métallisation, d' isolation et d' interconnexion pour finaliser le premier composant (200) et le deuxième composant (300), et pour les connecter électriquement.
6. Procédé de fabrication d'un dispositif hybride (500) selon l'une des revendications précédentes, dans lequel une électrode de drain (212) et une électrode de source (211) du premier composant (200) sont respectivement connectées à une électrode de source (311) et à une électrode de grille (314) du deuxième composant (300) au cours de l'étape d) , pour former un dispositif cascode.
7. Procédé de fabrication d'un dispositif hybride (500) selon l'une des revendications précédentes, dans lequel le premier composant (200) est un transistor MOS . Procédé de fabrication d'un dispositif hybride (500) selon l'une des revendications précédentes, dans lequel le deuxième composant (300) est un transistor HEM .
PCT/FR2017/051638 2016-07-06 2017-06-20 Dispositif cascode integre monolithiquement WO2018007711A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656472 2016-07-06
FR1656472A FR3053835B1 (fr) 2016-07-06 2016-07-06 Dispositif cascode integre monolithiquement

Publications (1)

Publication Number Publication Date
WO2018007711A1 true WO2018007711A1 (fr) 2018-01-11

Family

ID=56787626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/051638 WO2018007711A1 (fr) 2016-07-06 2017-06-20 Dispositif cascode integre monolithiquement

Country Status (2)

Country Link
FR (1) FR3053835B1 (fr)
WO (1) WO2018007711A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3624179A1 (fr) * 2018-09-13 2020-03-18 IMEC vzw Intégration d'un dispositif iii-v sur un substrat de si
US11557503B2 (en) 2019-10-16 2023-01-17 Imec Vzw Method for co-integration of III-V devices with group IV devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012037A1 (en) * 2002-07-18 2004-01-22 Motorola, Inc. Hetero-integration of semiconductor materials on silicon
US20110180806A1 (en) * 2010-01-28 2011-07-28 Intersil Americas Inc. Monolithic integration of gallium nitride and silicon devices and circuits, structure and method
EP2824838A1 (fr) * 2013-07-12 2015-01-14 International Rectifier Corporation HFET à mode D à Nitrure III intégré avec demi-pont à paire en cascade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012037A1 (en) * 2002-07-18 2004-01-22 Motorola, Inc. Hetero-integration of semiconductor materials on silicon
US20110180806A1 (en) * 2010-01-28 2011-07-28 Intersil Americas Inc. Monolithic integration of gallium nitride and silicon devices and circuits, structure and method
EP2824838A1 (fr) * 2013-07-12 2015-01-14 International Rectifier Corporation HFET à mode D à Nitrure III intégré avec demi-pont à paire en cascade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3624179A1 (fr) * 2018-09-13 2020-03-18 IMEC vzw Intégration d'un dispositif iii-v sur un substrat de si
CN110896049A (zh) * 2018-09-13 2020-03-20 Imec 非营利协会 在Si基材上集成III-V器件
US11195767B2 (en) 2018-09-13 2021-12-07 Imec Vzw Integration of a III-V device on a Si substrate
CN110896049B (zh) * 2018-09-13 2024-04-26 Imec非营利协会 在Si基材上集成III-V器件
US11557503B2 (en) 2019-10-16 2023-01-17 Imec Vzw Method for co-integration of III-V devices with group IV devices

Also Published As

Publication number Publication date
FR3053835A1 (fr) 2018-01-12
FR3053835B1 (fr) 2018-11-16

Similar Documents

Publication Publication Date Title
EP1266409B1 (fr) Transistor mos a source et drain metalliques, et procede de fabrication d'un tel transistor
FR3047838A1 (fr) Transistor bipolaire et son procede de fabrication
EP2736079B1 (fr) Procédé de fabrication d'un transistor à hétérojonction de type normalement bloqué
FR2990295A1 (fr) Procede de formation de contacts de grille, de source et de drain sur un transistor mos
EP3117465B1 (fr) Transistor a effet de champ et a heterojonction.
EP1788635B1 (fr) Procédé de réalisation de transistor à double grilles auto-alignées par réduction de motifs de grille
WO2018100262A1 (fr) Transistor à hétérojonction à structure verticale
EP3531444A1 (fr) Circuit intégré comprenant un substrat équipé d'une région riche en pièges, et procédé de fabrication
EP1292991B1 (fr) Procédé de fabrication d'un transistor MOS vertical à grille enterrée
FR3068507A1 (fr) Realisation de regions semiconductrices dans une puce electronique
WO2018007711A1 (fr) Dispositif cascode integre monolithiquement
US20120223367A1 (en) Method For Fabricating Semiconductor Wafers For The Integration of Silicon Components With Hemts, And Appropriate Semiconductor Layer Arrangement
EP0503731B1 (fr) Procédé de réalisation d'un transistor à haute mobilité électronique intégré
FR3067516A1 (fr) Realisation de regions semiconductrices dans une puce electronique
WO2019224448A1 (fr) Transistor a haute mobilite electronique en mode enrichissement
EP1407486B1 (fr) Procede de fabrication d'un transistor sur un substrat soi
EP3104402B1 (fr) Realisation d'elements d'interconnexions auto-alignes pour circuit integre 3d
FR2718287A1 (fr) Procédé de fabrication d'un transistor à effet de champ à grille isolée, en particulier de longueur de canal réduite, et transistor correspondant.
FR3035265A1 (fr) Procede de fabrication de transistors soi pour une densite d'integration accrue
FR2860919A1 (fr) Structures et procedes de fabrication de regions semiconductrices sur isolant
EP3065180B1 (fr) Transistor à connexions mis et procédé de fabrication
WO2017203185A1 (fr) Dispositif a haute mobilite electronique avec elements passifs integres
FR3098014A1 (fr) Composé intermétallique
FR3073977A1 (fr) Transistors de circuit 3d a grille retournee
EP3035386A1 (fr) Procédé de réalisation d'un dispositif à effet de champ amélioré

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17742482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17742482

Country of ref document: EP

Kind code of ref document: A1