WO2018006888A1 - Vorrichtung zum laserschmelzen mit mehreren absaugvorrichtungen - Google Patents

Vorrichtung zum laserschmelzen mit mehreren absaugvorrichtungen Download PDF

Info

Publication number
WO2018006888A1
WO2018006888A1 PCT/DE2017/000191 DE2017000191W WO2018006888A1 WO 2018006888 A1 WO2018006888 A1 WO 2018006888A1 DE 2017000191 W DE2017000191 W DE 2017000191W WO 2018006888 A1 WO2018006888 A1 WO 2018006888A1
Authority
WO
WIPO (PCT)
Prior art keywords
building board
suction devices
protective gas
suction
process chamber
Prior art date
Application number
PCT/DE2017/000191
Other languages
English (en)
French (fr)
Inventor
Johannes Casper
Steffen Schlothauer
Christian Liebl
Alexander Ladewig
Laura Bürger
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP17758423.2A priority Critical patent/EP3478434A1/de
Publication of WO2018006888A1 publication Critical patent/WO2018006888A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a device for selective laser melting with a process chamber, which is surrounded by a housing, arranged in the process chamber, lowerable building board, wherein on the building board an object to be produced is built up in layers by laser irradiation, at least one protective gas inlet, by the inert gas in the process chamber flows in, preferably substantially parallel to the building board, at least one suction device, through which the process products produced during laser welding are extracted.
  • the protective gas flow is currently generated as far as possible in parallel with the building board or the powder layer present on the building board.
  • the protective gas is supplied along one side of the building board, flows over the building board to the opposite side, where it is sucked off by a suction device arranged along this opposite side and removed from the process space.
  • the object of the invention is to provide a device for the selective laser melting moiszustel len, which avoids the above disadvantages.
  • a plurality of protective gas inlets are arranged around the building board at a first height relative to the building board, or a single protective gas inlet surrounding the building board is arranged.
  • the flow of inert gas from several directions takes place approximately to the center of the building board.
  • an ascending flow is generated, in which inert gas and process products, such as smoke, condensates, spatter and the like, are included.
  • At least one further height relative to the building board a plurality of suction devices may be arranged along an imaginary closed form or a single suction device may be arranged with a closed shape.
  • the process products or the process gas are transported further upwards and sucked off.
  • unwanted deposits of process products can be counteracted.
  • the suction devices are not provided along only one side and at the same height as the flow inlet, so that optimized flow conditions can be achieved throughout the installation space.
  • the suction devices or the individual suction device be arranged at several different heights, which differ from the height of the inert gas inlets. Accordingly, process products can be vacuumed at different heights above the building board. Overall, such an arrangement of suction devices at different heights can generate a kind of upward suction, so that process products can be effectively kept away from the building board.
  • the suction devices can surround the building board.
  • the imaginary closed shape or closed shape of the individual suction device may be a rectangle or a circle or a polygon.
  • the imaginary shape is to be understood as being a type of outline along which the suction devices are arranged or aligned. If, for example, a rectangle is formed as an imaginary shape, two suction devices, for example, could be arranged next to each other along the long sides, with only one suction device being arranged on each short side. This can of course be achieved by different lengths suction devices. Analogously, six suction devices can be arranged along an imaginary hexagon.
  • the individual suction device may also take the form of a circle or a rectangle or a polygon.
  • the circular shape of a single suction device is advantageous in terms of generating a uniform suction in the process chamber.
  • the device may have a control device, which is set up to control the suction devices or the individual suction devices of a respective height separately from each other, such that different flow rates can be generated at different heights above the building board.
  • a flow velocity profile can be generated along the vertical direction, wherein a maximum suction speed or a largest suction volume is generated, in particular, at the highest suction device.
  • the control unit can furthermore be designed to control the inflowing inert gas volume and the volume of fluid to be suctioned off so that a flow is generated in the process chamber, which is set up, in particular in the region of the incident laser beam, to process products such as condensate, spatter, and the like To transport building plate away, preferably suck out of the process chamber.
  • the flow can also be such that heavy particles entrained in the process gas, such as shatter splashes or the like, only fall back to the bottom of the process chamber outside the construction surface or building board so that they do not fall down in the powder-coated construction area.
  • control unit may be configured to shift a stagnation point of the protective gas flow in the region of the building board, such that the stagnation point can be moved in dependence on a beam path of a laser. In this way, reliable removal of process gases can be made possible; in particular, the blast path of the laser can be kept as free as possible of smoke, particles and the like.
  • the protective gas inlets and the suction devices may be fluid-tightly connected to the housing.
  • the suction devices are movable relative to the housing. In this way, the aspiration of process products or process gas could be adjusted with respect to the current position of the laser melting.
  • Fig. 1 shows in a simplified and schematic presen- tation a device for selective laser melting A) in a perspective view, B) in a Thomasdar- position and C) in a plan view.
  • FIG. 2 shows in a simplified and schematic representation the device of FIG. 1 with differently configured suction devices A) in a sectional view and B) in a plan view.
  • Fig. 3 is a schematic sectional view in which a velocity profile is drawn qualitatively.
  • Fig. 4 shows in the partial figures A) to C) in simplified and schematic representations of a respective plan view with different possibilities of arrangement of suction devices.
  • FIG. 1 shows, in simplified and schematic form, a device 10 for selective laser melting in various views.
  • the device 10 which may also be referred to as an SLM system, comprises a process chamber 12, which is surrounded by a housing 14.
  • the housing 14 is formed in particular by side walls 16, a bottom wall 18 and a top wall 20.
  • a work surface 24 is provided in the area of the outer wall 1 8, in particular in a recess 22 in the bottom wall 1 8, a work surface 24 is provided in the area of the outer wall 1 8, in particular in a recess 22 in the bottom wall 1 8, a work surface 24 is provided in the area of the outer wall 1 8, in particular in a recess 22 in the bottom wall 1 8, a work surface 24 is provided in the area of the outer wall 1 8, in particular in a recess 22 in the bottom wall 1 8, a work surface 24 is provided in the area of the outer wall 1 8, in particular in a recess 22 in the bottom wall 1 8, a work surface 24 is provided in the area of the outer wall 1 8,
  • At least one protective gas inlet 26 and at least one suction device 28 are in fluid communication with the process chamber 12.
  • a circular protective gas inlet 26 and a plurality of circular suction devices 28a, 28b are shown by way of example. 28c shown.
  • the protective gas inlet 26 and the suction devices 28a, 28b, 28c are arranged at different heights H1, H2, H3, H4.
  • the apparatus 10 has at least one laser source 30 which can generate a laser beam 32 to weld the powder (not shown) on the building board 24.
  • the laser source 30 is movable relative to the housing 14 in at least two directions parallel to the plane of the work surface 24.
  • the direction of flow of inert gas is indicated substantially parallel to the structural panel or the current construction area or powder layer in the region of the protective gas inlet with double arrows.
  • the protective gas which flows in essentially horizontally or along the powder layer, is strongly heated, in particular in the region of the impinging laser beam 32, and rises.
  • the so-called process gas is produced, which in particular also contains smoke, condensate, welding beads and the like.
  • the process gas is sucked off by means of the suction devices 28a, 28v, 28c arranged above the protective gas inlet 26.
  • the suction is indicated.
  • H2, H3, H4 suction devices 28a, 28b, 28c By means of the arranged at different heights H2, H3, H4 suction devices 28a, 28b, 28c, a kind of suction in the process chamber 1 2 can be generated.
  • the suction effect serves in particular to reliably transport the process gases upwards away from the powder layer to be processed. In this case, depending on the strength of the suction effect, it is also possible to suck off beads of sweat that would otherwise otherwise fall into the powder layer at another (undesired) point.
  • Fig. I C the device 10 is shown in a strak simplified plan view. Shown are the bottom plate 24, the top suction device 28c and the side walls 16 of the housing. This representation serves in particular to illustrate the geometric shape or arrangement of the suction devices 281, 28b, 28c.
  • the suction device 28a, 28b, 28c shown in FIG. 1, although not shown, are suitably connected to the housing, so that extracted process gas can be removed from the process chamber 1 2.
  • the suction devices are connected to the housing both mechanically and fluid-tight.
  • the suction devices 28a, 28b, 28c can also be connected by means of further (not illustrated) fluid lines leading to an outside of the housing 14.
  • FIGS. 2A) and B) show a device 10 which likewise has a building board 24 and a protective gas inlet 26.
  • Ebenfal ls at different heights H2, H3, H4 with respect to the level BP of the building board 24 and a current powder layer to be processed suction devices 128a, 128b, 128c are provided.
  • these suction devices are arranged relatively movable to the housing 14, which by the two Pfei le in Fig. 2B) and the suction device shown in dashed lines.
  • the suction devices are connected to the laser source 30. In this way, it can be achieved that the suction effect is generated directly in the region of the active laser beam 32.
  • suction devices 128a, 128b, 128c can also be connected to a movement device separate from the laser source 30 so that the suction devices 128a, 128b, 128c are not common with the laser source 30 can be moved or must.
  • FIG. 3 shows a velocity profile 40 along a side wall 16 of the device 10, which indicates, by way of example and purely qualitatively, possible flow velocities or volume flows that can be generated by the suction devices 28a, 28b, 28c.
  • the uppermost suction device 28c generates the greatest flow velocity
  • the suction devices 28b and 28a which are closer to the building board 24, produce lower suction volumes.
  • a process gas cloud 36 is indicated in the laser beam 32 in which smoke, condensate, welding beads and the like are contained and which can be sucked off approximately along the arrows shown by the suction effect of the suction devices 28a, 28b, 28c ,
  • FIG. 4 different examples of the arrangement of suction devices 28 are shown.
  • a plurality of suction devices 28- 1 to 28-4 are arranged around the building board 24 at the respective heights.
  • the suction devices 28-1 to 28-4 are arranged along the sides of the building board 24, ie along an imaginary contour or line of a rectangle.
  • FIGS. 4A) and 4B) are examples of the fact that not only individual suction devices need to be arranged at a height H2, H3, H4 (FIGS. 1B, 2A), but rather that a plurality of separate suction devices are provided around the building board 24 28- 1 to 28-8 can be provided.
  • Fig. 4C finally shows a single suction device 28, which is in the form of a hexagon.
  • the arrangement or shaping of a plurality of suction devices or a single suction device can be selected.
  • individual suction devices may have the shape of a rectangle or an octagon.
  • several circular arc-shaped suction can be added to a complete circle with each other. All of these exemplary embodiments of FIGS. 1 and 4 have in common that they surround the building board 24. For all embodiments, the following should be noted.
  • the device 10 has a control device which is not explained here in detail, which is set up to control the suction devices 128 or the individual suction devices 28 of a respective height H2, H3, H4 separately such that different flow rates can be generated at different heights above the building board 24 are.
  • the control unit can also be set up to control the inflowing protective gas volume and the fluid volume to be suctioned off (process gas) such that a flow is generated in the process chamber 12, which is set up in particular in the region of the impinging laser beam 32, process products such as condensate, spatter , and the like, to be transported away from the building board 24, preferably to be sucked out of the process chamber 12.

Abstract

Die Erfindung betrifft eine Vorrichtung ( 10) zum selektiven Laserschmelzen mit einer Prozesskammer (12), die von einem Gehäuse (14) umgeben ist, einer in der Prozesskammer (12) angeordneten, absenkbaren Bauplatte (24), wobei auf der Bauplatte (24) ein herzustellender Gegenstand schichtweise mittels Laserbestrahlung (32) aufgebaut wird, wenigstens einem Schutzgaseinlass (26), durch den Schutzgas im Wesentlichen parallel zur Bauplatte (24) in die Prozesskammer (12) einströmt, wenigstens eine Absaugvorrichtung (28), durch die beim Laserschweißen entstehende Prozessprodukte (36) abgesaugt werden. Erfindungsgemäß wird vorgeschlagen, dass um die Bauplatte (24) herum auf einer ersten Höhe (H1) relativ zur Bauplatte (24) mehrere Schutzgaseinlässe angeordnet sind oder ein einzelner die Bauplatte umgebender Schutzgaseinlass (26) angeordnet ist.

Description

Vorrichtung zum Laserschmelzen mit mehreren Absaugvorrichtungen
Beschreibung
Die vorliegende Erfindung betrifft eine Vorrichtung zum selektiven Laserschmelzen mit einer Prozesskammer, die von einem Gehäuse umgeben ist, einer in der Prozesskammer angeordneten, absenkbaren Bauplatte, wobei auf der Bauplatte ein herzustellender Gegenstand schichtweise mittels Laserbestrahlung aufgebaut wird, wenigstens einem Schutzgaseinlass, durch den Schutzgas in die Prozesskammer einströmt, vorzugsweise im Wesentlichen parallel zur Bauplatte, wenigstens eine Absaugvorrichtung, durch die beim Laserschweißen entstehende Prozessprodukte abgesaugt werden.
Bei Vorrichtungen zum selektiven Laserschmelzen, insbesondere SLM-Anlagen, wird die Schutzgasströmung derzeit in der Regel möglichst parallel zur Bauplatte bzw. der auf der Bauplatte vorhandenen Pulverschicht erzeugt. In der Regel wird das Schutzgas entlang einer Seite der Bauplatte zugeführt, strömt über die Bauplatte zur gegenüberliegenden Seite, wo es durch eine entlang dieser gegenüberliegenden Seite angeordneten Absaugvorrichtung abgesaugt und aus dem Prozessraum abgeführt wird.
Derartige Lösungen sind insbesondere nachteilig, weil ein solches Strömungskonzept bei kleinen Bauflächen bereits an Grenzen stößt. Eine derzeit übliche Baufläche einer Bauplatte beträgt etwa 250x250mm. Entsprechend muss das Schutzgas bzw. die Schutzgasströmung eine Strecke von rund 300mm überstreichen. Um eine effektive Abführung von Prozessprodukten bzw. Prozessgas zu ermöglichen, ist eine mögl ichst hohe Geschwindigkeit bzw. ein großer Volumenstrom von Schutzgas vorteilhaft. Dies steht allerdings in Konkurrenz zu der Gefahr, Pulver von der Pulverschicht wegzublasen, was zu einem ungleichmäßigen Schichtaufbau führt. Entsprechend sind mit einem solchen Strömungskonzept größere Bauplatten bzw. Bauflächen, die aus wirtschaftl ichen Überlegungen durchaus vortei lhaft wären, nicht einsetzbar, weil die Strömungsgeschwindigkeit zunehmen muss, wenn größere Flächen überstrichen werden müssen. Schließlich führen stark gerichtete Strömungen auch zu Verwirbe- lungen, so dass es Bereiche auf der Bauplatte geben kann, wo sich unerwünschte Ablagerungen von Pulver bilden, was ebenfalls zu Fehlern in den herzustellenden Produkten führt.
Aufgabe der Erfindung ist es, eine Vorrichtung für das selektive Laserschmelzen bereitzustel len, welche die obigen Nachteile vermeidet. Zur Lösung dieser Aufgabe wird vorgeschlagen, dass um die Bauplatte herum auf einer ersten Höhe relativ zur Bauplatte mehrere Schutzgaseinlässe angeordnet sind oder ein einzelner die Bauplatte umgebender Schutzgaseinlass angeordnet ist. Gemäß diesem Konzept erfolgt das Zuströmen von Schutzgas aus mehreren Richtungen in etwa zum Zentrum der Bauplatte hin. Im Bereich des Bauraums wird eine aufsteigende Strömung erzeugt, in der Schutzgas und Prozessprodukte, wie etwa Schmauch, Kondensate, Schweißspritzer und dergleichen, enthalten sind. Auf wenigstens einer weiteren Höhe relativ zur Bauplatte können mehrere Absaugvorrichtungen entlang einer gedachten geschlossenen Form angeordnet sein oder eine einzelne Absaugvorrichtung mit einer geschlossenen Form angeordnet sein.
Durch die oberhalb angeordneten Absaugeinrichtungen werden die Prozessprodukte bzw. das Prozessgas weiter nach oben transportiert und abgesaugt. Hierdurch kann unerwünschten Ablagerungen von Prozessprodukten entgegen gewirkt werden. Ferner sind die Absaugvorrichtungen nicht entlang nur einer Seite und auf der gleichen Höhe wie die Strömungseinläs- se vorgesehen, so dass im gesamten Bauraum optimierte Strömungsverhältnisse erreicht werden können.
Weiterbildend wird vorgeschlagen, dass auf mehreren unterschiedlichen Höhen, die sich von der Höhe der Schutzgaseinlässe unterscheiden, jeweils die Absaugvorrichtungen oder die einzelne Absaugvorrichtung angeordnet sind. Entsprechend können Prozessprodukte auf unterschiedlichen Höhen über der Bauplatte abgesaugt werden. Insgesamt kann durch eine sol- che Anordnung von Absaugvorrichtungen auf unterschiedlichen Höhen, eine Art Sog nach oben erzeugt werden, so dass Prozessprodukte effektiv von der Bauplatte ferngehalten werden können.
Die Absaugvorrichtungen können die Bauplatte umgeben. Die gedachte geschlossene Form oder geschlossene Form der einzelnen Absaugvorrichtung kann ein Rechteck oder ein Kreis oder ein Vieleck sein. Die gedachte Form ist so zu verstehen, dass es sich dabei um eine Art Umrisslinie handelt, entlang der die Absaugvorrichtungen angeordnet bzw. ausgerichtet sind. N immt man Beispielsweise als gedachte Form ein Rechteck, könnten entlang der langen Seiten beispielsweise jeweils zwei Absaugvorrichtungen nebeneinander angeordnet sein, wobei an jeder kurzen Seite nur jeweils eine Absaugvorrichtung angeordnet ist. Dies kann natürlich auch durch unterschiedlich lange Absaugvorrichtungen erreicht werden. In analoger Weise können entlang eines gedachten Sechsecks sechs Absaugvorrichtungen angeordnet sein.
Ferner kann auch die einzelne Absaugvorrichtung die Form eines Kreises oder eines Recht- ecks oder eines Vielecks aufweisen. Insbesondere die Kreisform einer einzelnen Absaugvorrichtung ist im Hinblick auf die Erzeugung eines gleichmäßigen Sogs in der Prozesskammer vorteilhaft.
Die Vorrichtung kann eine Steuereinrichtung aufweisen, die dazu eingerichtet ist die Ab- Saugvorrichtungen bzw. die einzelne Absaugvorrichtungen einer jeweiligen Höhe getrennt voneinander anzusteuern, derart, dass in unterschiedlichen Höhen über der Bauplatte verschiedene Strömungsgeschwindigkeiten erzeugbar sind. Hierdurch kann ein Strömungsgeschwindigkeitsprofil entlang der Vertikalrichtung erzeugt werden, wobei insbesondere an der höchsten Absaugvorrichtung eine größte Absauggeschwindigkeit bzw. ein größtes Absaug- volumen erzeugt wird.
Die Steuereinheit kann ferner dazu eingerichtet sein, das einströmende Schutzgasvolumen und das abzusaugende Fluidvolumen zu steuern, derart dass in der Prozesskammer eine Strömung erzeugt wird, die insbesondere im Bereich des auftreffenden Laserstrahls dazu eingerichtet ist, Prozessprodukte wie Kondensat, Schweißspritzer, und dergleichen, von der Bauplatte weg zu transportieren, vorzugsweise aus der Prozesskammer abzusaugen. Die Strömung kann auch derart sein, dass schwere im Prozessgas mitgeführte Partikel, wie etwa Scheißspritzer oder dergleichen, erst außerhalb der Baufläche bzw. der Bauplatte wieder auf den Boden der Prozesskammer fallen, so dass sie nicht in der mit Pulver beschichteten Bau- fläche niedergehen.
Ferner kann die Steuereinheit dazu eingerichtet sein, einen Staupunkt der Schutzgasströmung im Bereich der Bauplatte zu verschieben, derart dass der Staupunkt in Abhängigkeit eines Strahlgangs eines Lasers bewegt werden kann. Hierdurch kann eine sichere Abfuhr von Pro- zessgasen ermöglicht werden, insbesondere kann der Strahlgang des Lasers möglichst frei von Schmauch, Partikeln und dergleichen gehalten werden.
Die Schutzgaseinlässe und die Absaugvorrichtungen können fluiddicht mit dem Gehäuse verbunden sein. Alternativ ist es auch denkbar, dass die Absaugvorrichtungen relativ zum Gehäuse beweglich sind. Hierdurch könnte das Absaugen von Prozessprodukten bzw. Prozessgas in Bezug auf die aktuelle Position des Laserschmelzens angepasst werden. Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden Figuren beispielhaft und nicht einschränkend beschrieben.
Fig. 1 zeigt in einer vereinfachten und schematischen Darstel lung eine Vorrichtung zum selektiven Laserschmelzen A) in einer perspektivischen Darstellung, B) in einer Schnittdar- Stellung und C) in einer Draufsicht.
Fig. 2 zeigt in einer vereinfachten und schematischen Darstellung die Vorrichtung der Fig. 1 mit anders ausgestalteten Absaugvorrichtungen A) in einer Schnittdarstellung und B) in einer Draufsicht.
Fig. 3 ist eine schematische Schnittdarstellung, in der ein Geschwindigkeitsprofil qualitativ eingezeichnet ist.
Fig. 4 zeigt in der Teilfiguren A) bis C) in vereinfachten und schematischen Darstellungen eine jeweilige Draufsicht mit verschiedenen Möglichkeiten der Anordnung von Absaugvorrichtungen.
In Fig. 1 ist vereinfacht und schematisch eine Vorrichtung 10 zum selektiven Laserschmelzen in verschiedenen Ansichten dargestellt. In den Figuren werden nicht alle üblichen Teile einer solchen Vorrichtung 10 dargestellt. Vielmehr sind nur die wichtigsten Komponenten schematisch dargestellt. Die Vorrichtung 10, die auch als SLM-Anlage bezeichnet werden kann, umfasst eine Prozesskammer 12, die von einem Gehäuse 14 umgeben ist. Das Gehäuse 14 wird insbesondere von Seitenwänden 16, einer Bodenwand 18 und einer Deckwand 20 gebildet. Im Bereich der ßodenwand 1 8, insbesondere in einer Ausnehmung 22 in der Bo- denwand 1 8, ist eine Arbeitsplatte 24 vorgesehen. Die Arbeitsplatte 24 ist relativ zum Gehäuse 14 beweglich, insbesondere nach oben und unten beweglich.
In mit der Prozesskammer 12 in Fluidverbindung stehen wenigstens ein Schutzgaseinlass 26 und wenigstens eine Absaugvorrichtung 28. Im Beispiel der Fig. 1 sind exemplarisch ein kreisförmiger Schutzgaseinlass 26 und mehrere kreisförmige Absaugvorrichtungen 28a, 28b, 28c dargestellt. Bezogen auf die Bauplatte 24 und beispielsweise ihr anfängliches N iveau bzw. ihre anfängliche Höhe BP sind der Schutzgaseinlass 26 und die Absaugvorrichtungen 28a, 28b, 28c auf unterschiedlichen Höhen Hl , H2, H3, H4 angeordnet. Ferner weist die Vorrichtung 10 wenigstens eine Laserquelle 30 auf, die einen Laserstrahl 32 erzeugen kann, um das auf der Bauplatte 24 (nicht dargestellte) Pulver zu schweißen. Die Laserquelle 30 ist relativ zum Gehäuse 14 in wenigstens zwei Richtungen parallel zur Ebene der Arbeitsplatte 24 beweglich.
In Fig. 1 B) ist im Bereich des Schutzgaseinlasses mit Doppelpfeilen die Strömungsrichtung von Schutzgas im Wesentlichen parallel zur Bauplatte bzw. der aktuellen Baufläche bzw. Pulverschicht angedeutet. Das im Wesentlichen horizontal bzw. entlang der Pulverschicht einströmende Schutzgas wird insbesondere im Bereich des auftreffenden Laserstrahls 32 stark erhitzt und steigt nach oben. Beim Laserschweißen im Bereich des auf die Pulverschicht auftreffenden Laserstrahls 32 entsteht das sogenannte Prozessgas, das insbesondere auch Schmauch, Kondensat, Schweißperlen und dergleichen enthält. Das Prozessgas wird mittels der oberhalb des Schutzgaseinlasses 26 angeordneten Absaugvorrichtungen 28a, 28v, 28c abgesaugt. Durch die entsprechenden Doppelpfei le im Bereich der Absaugvorrichtungen 28a, 28b, 28c, ist in Fig. 1 B) das Absaugen angedeutet. Mittels der auf unterschiedlichen Höhen H2, H3, H4 angeordneten Absaugvorrichtungen 28a, 28b, 28c kann eine Art Sog im Prozessraum 1 2 erzeugt werden. Die Sogwirkung dient insbesondere dazu, die Prozessgase zuverlässig nach oben, weg von der zu bearbeitenden Pulverschicht zu transportieren. Dabei können je nach Stärke der Sogwirkung auch Schweißperlen mit abgesaugt werden, die sonst üblicherweise an einer anderen (unerwünschten) Stelle wieder in die Pulverschicht fallen.
In Fig. I C) ist die Vorrichtung 10 in einer strak vereinfachten Draufsicht dargestellt. Dargestellt sind die Bodenplatte 24, die oberste Absaugvorrichtung 28c und die Seitenwände 16 des Gehäuses. Diese Darstellung dient insbesondere dazu die geometrische Form bzw. An- Ordnung der Absaugvorrichtungen 281 , 28b, 28c zu illustrieren.
Die in der Fig. 1 dargestellten Absaugvorrichtung 28a, 28b, 28c sind, auch wenn dies nicht dargestellt ist, in geeigneter Weise mit dem Gehäuse verbunden, so dass abgesaugtes Prozessgas aus der Prozesskammer 1 2 abgeführt werden kann. Dabei sind die Absaugvorrich- tungen sowohl mechanisch als auch fluiddicht mit dem Gehäuse verbunden. Gegebenenfalls können die Absaugvorrichtungen 28a, 28b, 28c auch mittels weiterer (nicht dargestel lter) Fluidleitungen verbunden sein, die zu einer Außenseite des Gehäuses 14 führen.
In den Fig. 2A) und B) ist eine Vorrichtung 10 dargestellt, die ebenfalls eine Bauplatte 24 und einen Schutzgaseinlass 26 aufweist. Ebenfal ls auf unterschiedlichen Höhen H2, H3, H4 bezogen auf das Niveau BP der Bauplatte 24 bzw. einer aktuelle zu bearbeitenden Pulverschicht sind Absaugvorrichtungen 128a, 128b, 128c vorgesehen. Diese Absaugvorrichtungen sind allerdings relativ beweglich zum Gehäuse 14 angeordnet, was durch die beiden Pfei le in Fig. 2B) und die gestrichelt dargestellte Absaugvorrichtung. Im Beispiel sind die Absaugvor- richtungen mit der Laserquelle 30 verbunden. Hierdurch kann erreicht werden, dass die Sogwirkung direkt im Bereich des aktiven Laserstrahls 32 erzeugt wird. Der Bereich der stärksten Sogwirkung bewegt sich somit quasi synchron mit dem Laserstrahl 32. Alternativ können die Absaugvorrichtungen 128a, 128b, 128c auch mit einer von der Laserquelle 30 getrennten Bewegungseinrichtung verbunden sein, so dass die Absaugvorrichtungen 128a, 128b, 128c nicht gemeinsam mit der Laserquelle 30 bewegt werden können bzw. müssen.
In Fig. 3 ist entlang einer Seitenwand 16 der Vorrichtung 10 ein Geschwindigkeitsprofil 40 dargestellt, das beispielhaft und rein qualitativ mögliche Strömungsgeschwindigkeiten bzw. Volumenströme andeutet, die durch die Absaugvorrichtungen 28a, 28b, 28c erzeugt werden können. Dabei erzeugt beispielsweise die oberste Absaugvorrichtung 28c die größte Strömungsgeschwindigkeit, während die Absaugvorrichtungen 28b und 28a, die näher an der Bauplatte 24 liegen, geringere Absaugvolumina erzeugen. In der Fig. 3 ist ebenfalls rein beispielhaft beim Laserstrahl 32 eine Prozessgaswolke 36 angedeutet, in der Schmauch, Kondensat, Schweißperlen und dergleichen enthalten sind und die durch die Sogwirkung der Ab- Saugvorrichtungen 28a, 28b, 28c etwa entlang den dargestellten Pfeilen abgesaugt werden kann.
In der Fig. 4 sind unterschiedliche Beispiele der Anordnung von Absaugvorrichtungen 28 dargestellt. In Fig. 4A) sind auf den jeweiligen Höhen mehrere Absaugvorrichtungen 28- 1 bis 28-4 um die Bauplatte 24 herum angeordnet. In diesem Beispiel sind die Absaugvorrichtungen 28- 1 bis 28-4 entlang den Seiten der Bauplatte 24 angeordnet, also entlang einer gedachten Kontur bzw. Form oder Linie eines Rechtecks.
In Fig. 4B) sind auf den jeweiligen Höhen mehrere Absaugvorrichtungen 28- 1 bis 28-8 an- geordnet, die entlang einer gedachten Kontur eines Achtecks angeordnet sind. Die Fig. 4A) und 4B) sind Beispiele dafür, dass auf einer Höhe H2, H3, H4 (Fig. 1 B, 2A) nicht zwingend nur einzelne Absaugvorrichtungen angeordnet sein müssen, sondern dass um die Bauplatte 24 herum auch mehrere voneinander getrennte Absaugvorrichtungen 28- 1 bis 28-8 vorgesehen werden können .
Fig. 4C) zeigt schließlich eine einzelne Absaugvorrichtung 28, die in Form eines Sechsecks ausgebildet ist. Die Anordnung bzw. Formgebung von mehreren Absaugvorrichtungen bzw. eine einzelnen Absaugvorrichtung sind wählbar. Auch einzelne Absaugvorrichtungen können die Form eines Rechtecks oder eines Achtecks haben. Ferner können auch mehrere kreisbogenförmige Absaugelemente zu einem vollständigen Kreis miteinander ergänzt werden. Allen diesen beispielhaften Ausgestaltungen der Fig. 1 und 4 ist gemeinsam, dass sie die Bauplatte 24 umgeben. Für alle Ausführungsformen ist folgende anzumerken. Die Vorrichtung 10 weist eine hier nicht näher erläuterte Steuereinrichtung auf, die dazu eingerichtet ist die Absaugvorrichtungen 128 bzw. die einzelne Absaugvorrichtungen 28 einer jeweiligen Höhe H2, H3, H4 getrennt voneinander anzusteuern, derart, dass in unterschiedlichen Höhen über der Bauplatte 24 verschiedene Strömungsgeschwindigkeiten erzeugbar sind. Dabei kann die Steuereinheit ferner dazu eingerichtet sein, das einströmende Schutzgasvolumen und das abzusaugende Fluidvolumen (Prozessgas) zu steuern, derart dass in der Prozesskammer 12 eine Strömung erzeugt wird, die insbesondere im Bereich des auftreffenden Laserstrahls 32 dazu eingerichtet ist, Prozessprodukte wie Kondensat, Schweißspritzer, und dergleichen, von der Bauplatte 24 weg zu transportieren, vorzugsweise aus der Prozesskammer 12 abzusaugen.
Bezugszeichenliste
0 Vorrichtung zum selektiven Laserschmelzen
12 Prozessraum
14 Gehäuse
16 Seitenwand
18 Bodenwand
20 Deckwand
22 Ausnehmung
24 Bodenplatte
26 Schutzgaseinlass
28, 128 Absaugvorrichtung
30 Laserquelle
32 Laserstrahl
36 Prozessgaswolke
40 Geschwindigkeitsprofii

Claims

Ansprüche
1 . Vorrichtung ( 10) zum selektiven Laserschmelzen mit
einer Prozesskammer ( 12), die von einem Gehäuse ( 14) umgeben ist,
einer in der Prozesskammer ( 12) angeordneten, absenkbaren Bauplatte (24), wobei auf der Bauplatte (24) ein herzustellender Gegenstand schichtweise mittels Laserbestrahlung (32) aufgebaut wird,
wenigstens einem Schutzgaseinlass (26), durch den Schutzgas in die Prozesskammer ( 12) einströmt, vorzugsweise im Wesentlichen paral lel zur Bauplatte (24),
wenigstens eine Absaugvorrichtung (28; 128), durch die beim Laserschweißen entste- hende Prozessprodukte (36) abgesaugt werden,
dadurch gekennzeichnet,
dass um die Bauplatte (24) herum auf einer ersten Höhe (H l ) relativ zur Bauplatte (24) mehrere Schutzgaseinlässe angeordnet sind oder ein einzelner die Bauplatte umgebender Schutzgaseinlass (26) angeordnet ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass auf wenigstens einer weiteren Höhe (H2, H3, H4) relativ zur Bauplatte (24) mehrere Absaugvorrichtungen ( 128) entlang einer gedachten geschlossenen Form angeordnet sind oder eine einzelne Absaugvorrichtung (28) mit einer geschlossenen Form angeordnet ist.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass auf mehreren unterschiedlichen Höhen (H2, H3, H4), die sich von der Höhe (H l ) der Schutzgaseinlässe (26) unterscheiden, jeweils die Absaugvorrichtungen ( 128) oder die einzelne Absaugvorrichtung (28) angeordnet sind
4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Absaugvorrichtungen (28; 128) die Bauplatte (24) umgeben.
5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die ge- dachte geschlossene Form oder die geschlossene Form der einzelnen Absaugvorrichtung (28) ein Rechteck oder ein Kreis oder ein Vieleck ist.
6. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die einzelne Absaugvorrichtung (28) die Form eines Kreises oder eines Rechtecks oder eines Vielecks aufweist.
7. Vorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass sie eine Steuereinrichtung aufweist, die dazu eingerichtet ist die Absaugvorrichtungen (128) bzw. die einzelnen Absaugvorrichtungen (28) einer jewei ligen Höhe (H2, H3, H4) getrennt voneinander anzusteuern, derart, dass in unterschiedlichen Höhen (H2, H3, H4) über der Bauplatte (24) verschiedene Strömungsgeschwindigkeiten (40) erzeugbar sind.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Steuereinheit ferner dazu eingerichtet ist das einströmende Schutzgasvolumen und das abzusaugende Fluidvolu- men zu steuern, derart dass in der Prozesskammer (12) eine Strömung erzeugt wird, die insbesondere im Bereich des auftreffenden Laserstrahls (32) dazu eingerichtet ist, Prozesspro- dukte wie Kondensat, Schweißspritzer, und dergleichen, von der Bauplatte (24) weg zu transportieren, vorzugsweise aus der Prozesskammer (12) abzusaugen.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Steuereinheit ferner dazu eingerichtet ist, einen Staupunkt der Schutzgasströmung im Bereich der Bauplat- te zu verschieben, derart dass der Staupunkt in Abhängigkeit eines Strahlgangs eines Lasers bewegt werden kann.
10. Vorrichtung nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass die Schutzgaseinlässe (26) und die Absaugvorrichtungen (28; 128) fluiddicht mit dem Gehäuse (14) verbunden sind.
1 1 . Vorrichtung nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass die Absaugvorrichtungen (128) relativ zum Gehäuse ( 14) beweglich sind.
12. Vorrichtung nach einem der Ansprüche 2 bis 1 1 , dadurch gekennzeichnet, dass wenigstens einer der Absaugvorrichtungen (128), die auf unterschiedlichen Höhen angeordnet sind, dazu eingerichtet ist, auch als Schutzgaseinlass betrieben werden zu können.
PCT/DE2017/000191 2016-07-04 2017-07-04 Vorrichtung zum laserschmelzen mit mehreren absaugvorrichtungen WO2018006888A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17758423.2A EP3478434A1 (de) 2016-07-04 2017-07-04 Vorrichtung zum laserschmelzen mit mehreren absaugvorrichtungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016212082.4A DE102016212082A1 (de) 2016-07-04 2016-07-04 Vorrichtung zum Laserschmelzen mit mehreren Absaugvorrichtungen
DE102016212082.4 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018006888A1 true WO2018006888A1 (de) 2018-01-11

Family

ID=59738089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/000191 WO2018006888A1 (de) 2016-07-04 2017-07-04 Vorrichtung zum laserschmelzen mit mehreren absaugvorrichtungen

Country Status (3)

Country Link
EP (1) EP3478434A1 (de)
DE (1) DE102016212082A1 (de)
WO (1) WO2018006888A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019134812A1 (de) * 2019-12-17 2021-06-17 Chiron Group Se Vorrichtung zur Beschichtung von Bremsscheiben
CN112060588A (zh) * 2020-09-01 2020-12-11 杭州德迪智能科技有限公司 成型仓排烟系统及粉末床3d打印设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031881A1 (de) * 2004-06-30 2006-01-26 Concept Laser Gmbh Vorrichtung zum Absaugen von Gasen, Dämpfen und/oder Partikeln aus dem Arbeitsbereich einer Laserbearbeitungsmaschine
DE102006052292A1 (de) * 2006-11-03 2008-05-08 Lpkf Laser & Electronics Ag Vorrichtung und Verfahren zur Bearbeitung eines Werkstücks mittels eines Laserstrahls
DE102014209161A1 (de) * 2014-05-14 2015-11-19 Eos Gmbh Electro Optical Systems Steuereinheit, Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DE102014212100A1 (de) * 2014-06-24 2015-12-24 MTU Aero Engines AG Generatives Herstellungsverfahren und Vorrichtung hierzu mit entgegengesetzt gerichteten Schutzgasströmen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3685941A1 (de) * 2013-06-11 2020-07-29 Renishaw PLC Vorrichtung und verfahren zur generativen fertigung
EP3015197B1 (de) * 2014-10-30 2017-03-08 MTU Aero Engines GmbH Vorrichtung zur Herstellung oder Reparatur eines dreidimensionalen Objekts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031881A1 (de) * 2004-06-30 2006-01-26 Concept Laser Gmbh Vorrichtung zum Absaugen von Gasen, Dämpfen und/oder Partikeln aus dem Arbeitsbereich einer Laserbearbeitungsmaschine
DE102006052292A1 (de) * 2006-11-03 2008-05-08 Lpkf Laser & Electronics Ag Vorrichtung und Verfahren zur Bearbeitung eines Werkstücks mittels eines Laserstrahls
DE102014209161A1 (de) * 2014-05-14 2015-11-19 Eos Gmbh Electro Optical Systems Steuereinheit, Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DE102014212100A1 (de) * 2014-06-24 2015-12-24 MTU Aero Engines AG Generatives Herstellungsverfahren und Vorrichtung hierzu mit entgegengesetzt gerichteten Schutzgasströmen

Also Published As

Publication number Publication date
EP3478434A1 (de) 2019-05-08
DE102016212082A1 (de) 2018-01-04

Similar Documents

Publication Publication Date Title
EP3015197B1 (de) Vorrichtung zur Herstellung oder Reparatur eines dreidimensionalen Objekts
DE102006014694B3 (de) Prozesskammer und Verfahren für die Bearbeitung eines Werkstoffs mit einem gerichteten Strahl elektromagnetischer Strahlung, insbesondere für eine Lasersintervorrichtung
EP3174691B1 (de) Verfahren, vorrichtung und steuereinheit zum herstellen eines dreidimensionalen objekts
DE102015010387A1 (de) Additive Fertigung dreidimensionaler Strukturen
DE102015215270B4 (de) Laminier-Formgebungsvorrichtung
EP3160669A1 (de) Generatives herstellungsverfahren und vorrichtung hierzu mit entgegengesetzt gerichteten schutzgasströmen parallel zur pulverschicht
EP3122538A1 (de) Vorrichtung und verfahren zum schichtweisen herstellen eines dreidimensionalen objekts
EP3478434A1 (de) Vorrichtung zum laserschmelzen mit mehreren absaugvorrichtungen
EP3538302A1 (de) Homogene absaugung bei der generativen fertigung
EP3758917A1 (de) Vorrichtung und verfahren zum generativen herstellen eines dreidimensionalen objekts
EP4164830B1 (de) Fertigungsvorrichtung mit grossflächigem absenkgasstrom
WO2019197212A1 (de) Herstellvorrichtung und verfahren für additive herstellung mit mobiler beströmung
WO2016066237A1 (de) Vorrichtung und verfahren zur generativen herstellung zumindest eines bauteilbereichs eines bauteils
WO2019197213A1 (de) Herstellvorrichtung und verfahren für additive herstellung mit mobilem gasauslass
DE2438302C3 (de) Vorrichtung zum Kochen, Braten und insbesondere zum Räuchern von Fleischwaren
DE112014007017T5 (de) Schichtausbildungsvorrichtung
WO2019233839A1 (de) Vorrichtung und verfahren zum mattieren einer oberfläche
EP2555233A1 (de) Abluftsystem und Verfahren dazu
DE102017218926A1 (de) Vorrichtung und Verfahren zur additiven Herstellung eines dreidimensionalen Produktes
DE2935758C2 (de) Einrichtung zum Absaugen von Schweißschadstoffen
EP3382101A2 (de) Reinigungsvorrichtung und analoges reinigungsverfahren
DE202022105823U1 (de) Filtervorrichtung zur Reinigung von Fremdkörper mitführendem Rohgas
WO2023025473A1 (de) Verschlussvorrichtung sowie gargerät mit verschlussvorrichtung
DE602004000563T2 (de) Strömungsverteiler und mit diesem ausgestattetes kesselartiges Element
WO2023070139A1 (de) Abscheidevorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17758423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017758423

Country of ref document: EP

Effective date: 20190204