WO2018006247A1 - 货物运输状态监测方法、监测系统、监测终端及服务器 - Google Patents

货物运输状态监测方法、监测系统、监测终端及服务器 Download PDF

Info

Publication number
WO2018006247A1
WO2018006247A1 PCT/CN2016/088430 CN2016088430W WO2018006247A1 WO 2018006247 A1 WO2018006247 A1 WO 2018006247A1 CN 2016088430 W CN2016088430 W CN 2016088430W WO 2018006247 A1 WO2018006247 A1 WO 2018006247A1
Authority
WO
WIPO (PCT)
Prior art keywords
cargo
data
carrier
acceleration data
axis
Prior art date
Application number
PCT/CN2016/088430
Other languages
English (en)
French (fr)
Inventor
张子奇
王宏钧
张清璇
Original Assignee
深圳市爱丰达盛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱丰达盛科技有限公司 filed Critical 深圳市爱丰达盛科技有限公司
Priority to PCT/CN2016/088430 priority Critical patent/WO2018006247A1/zh
Priority to CN201680000635.9A priority patent/CN108139740B/zh
Publication of WO2018006247A1 publication Critical patent/WO2018006247A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention belongs to the field of state monitoring technology, and in particular, to a cargo transportation state monitoring method, a monitoring system, a monitoring terminal, and a server.
  • Radio Frequency a technology used for the transportation of goods.
  • An object of the present invention is to provide a method for monitoring a state of transport of goods, which aims to solve the problem of the prior art that it is impossible to know the actual state of the goods in transit.
  • a cargo transportation state monitoring method includes:
  • the cargo posture data including cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data
  • detecting an operational posture of the transport carrier and acquiring transport carrier posture data, the transport carrier posture data including carrier acceleration data and carrier geomagnetic data;
  • Another object of the present invention is to provide a method for monitoring a state of transport of goods, and the method for monitoring the state of transport of goods includes:
  • the cargo posture data includes cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data
  • the transport carrier attitude data includes carrier acceleration data and a carrier magnetic field data
  • the data analysis end corrects the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic data to obtain cargo corrected acceleration data, and determines the cargo corrected acceleration data Whether the cargo acceleration data is the same as the carrier acceleration data, and if so, storing the cargo gyro data and the cargo geomagnetic data as the cargo static gyro data and the cargo static magnetic field data; if not, storing the cargo acceleration data
  • the cargo gyroscope data are respectively used as the cargo motion acceleration data and the cargo motion gyroscope data, and send the cargo transportation state abnormality prompt to the vehicle terminal and the monitoring center.
  • Another object of the present invention is to provide a method for monitoring a state of transport of goods, and the method for monitoring the state of transport of goods includes:
  • the cargo posture data includes cargo acceleration data, cargo geomagnetic field data, and cargo gyroscope data, wherein the transport carrier attitude data includes carrier acceleration data and Carrier ground magnetic field data;
  • Another object of the present invention is to provide a cargo transportation state monitoring system
  • the cargo transportation state monitoring system includes a cargo monitoring terminal, a carrier monitoring terminal, and a server;
  • the cargo monitoring terminal detects an operation posture of the cargo, and acquires cargo posture data to be uploaded to the server, where the cargo posture data includes cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data;
  • the carrier monitoring terminal detects an operating posture of the transport carrier, and acquires transport carrier posture data for uploading to the server, and the transport carrier posture data includes carrier acceleration data and carrier geomagnetic data.
  • the server corrects the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic field data to obtain cargo corrected acceleration data, and determines whether the cargo corrected acceleration data and the carrier acceleration data are Similarly, if yes, storing the cargo gyro data and the cargo geomagnetic data as cargo static gyro data and cargo static magnetic field data; if not, storing the cargo acceleration data and the cargo gyro data As the cargo motion acceleration data and the cargo motion gyroscope data, respectively, and send the cargo transportation state abnormality prompt to the vehicle terminal and the monitoring center.
  • Another object of the present invention is to provide a monitoring terminal, which includes a cargo monitoring terminal and a carrier monitoring terminal;
  • the cargo monitoring terminal is configured to acquire cargo posture data and upload to the server, the cargo posture data includes cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data; and the carrier monitoring terminal is configured to acquire a carrier posture And uploading the data to the server, the transport carrier posture data comprising carrier acceleration data and carrier ground magnetic field data; so that the server corrects the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic data to obtain the cargo Correcting the acceleration data, and determining whether the cargo corrected acceleration data is the same as the carrier acceleration data, and if so, storing the cargo gyro data and the cargo geomagnetic data as the cargo stationary gyro data and the cargo static geomagnetic field, respectively Data; if not, storing the cargo acceleration data and the cargo gyroscope data as cargo motion acceleration data and cargo motion gyroscope data, respectively, and transmitting an abnormality of the cargo transportation status to the vehicle terminal and the monitoring center.
  • the cargo posture data includes cargo acceleration data,
  • Another object of the present invention is to provide a server, where the server includes:
  • a data receiving module configured to receive cargo posture data acquired by the cargo monitoring terminal, where the cargo posture data includes cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data; and a transport carrier acquired by the receiving carrier monitoring terminal Attitude data, the transport carrier attitude data includes carrier acceleration Data and carrier geomagnetic data;
  • a data correction module configured to correct the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic field data to obtain cargo corrected acceleration data
  • a state judging module configured to determine whether the cargo correction acceleration data is the same as the carrier acceleration data, and if so, storing the cargo gyroscope data and the cargo geomagnetic data as the cargo static gyroscope data and The static magnetic field data of the cargo; if not, the cargo acceleration data and the cargo gyroscope data are saved as the cargo motion acceleration data and the cargo motion gyroscope data, respectively, and the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center.
  • the cargo transportation state monitoring method includes: detecting an operation posture of the cargo, and acquiring the cargo posture data, the cargo posture data including the cargo acceleration data, the cargo geomagnetic field data, and the cargo gyroscope data; detecting the operation of the transport carrier Attitude, and obtaining the carrier carrier attitude data, the carrier carrier attitude data includes carrier acceleration data and carrier geomagnetic data; correcting the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic data to obtain the cargo corrected acceleration data; Whether the acceleration data and the carrier acceleration data are the same, and if not, the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center.
  • the cargo corrected acceleration data is the same as the carrier acceleration data, when the same ⁇ , the cargo is stationary with respect to the transport carrier, and when it is not the same, the cargo is in an abnormal state, so that the actual state of the cargo in transit can be known.
  • FIG. 1 is a flow chart showing an implementation of a method for monitoring a state of transport of goods according to an embodiment of the present invention
  • FIG. 2 is a flowchart of an implementation of a method for monitoring a state of transport of goods according to another embodiment of the present invention
  • FIG. 3 is a flowchart of an implementation of a method for monitoring a state of transport of goods according to another embodiment of the present invention.
  • FIG. 4 is a flowchart of an implementation of a method for monitoring a state of transport of goods according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of an implementation of a method for monitoring a state of transport of goods according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a cargo transportation state detecting system according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a server according to another embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a server according to another embodiment of the present invention.
  • FIG. 1 shows an implementation flow of a method for monitoring a cargo transportation state according to an embodiment of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • step S1 the running posture of the cargo is detected, and the cargo posture data is acquired, and the cargo attitude data includes cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data.
  • step S1 is specifically: detecting accelerations of the three axial directions of the X0 axis, the Y0 axis, and the Z0 axis, respectively, to obtain acceleration data of the cargo in the three axial directions of the X0 axis, the Y0 axis, and the Z0 axis, respectively.
  • the X-axis angle of the X0-axis offset geomagnetic field coordinate system to which the cargo belongs the Y-axis offset of the Y0-axis offset of the cargo, and the Z-axis offset of the cargo to which the cargo belongs
  • the angle of the Z-axis of the geomagnetic field coordinate system, the offset angle data of the three axial directions is the magnetic field data of the cargo; the movement angles of the three axial directions of the X 0 axis, the Y0 axis and the Z0 axis are respectively detected to obtain
  • the positive direction of the xo axis coincides with the horizontal movement direction of the cargo
  • the positive direction of the Z0 axis coincides with the direction of gravity
  • the Y0 axis is perpendicular to the X0 axis and the Z0 axis
  • the geomagnetic field coordinate system is unique
  • the X-axis and Y of the geomagnetic field coordinate system The direction of the shaft and the z-axis is fixed.
  • step S2 the running posture of the transport carrier is detected, and the transport carrier posture data is acquired, and the transport carrier posture data includes the carrier acceleration data and the carrier ground magnetic field data.
  • step S2 is specifically: detecting accelerations of the transport carrier in three axial directions of the XI axis, the Y1 axis, and the Z1 axis, respectively, to obtain the transport carriers in the three axial directions of the XI axis, the Y1 axis, and the Z1 axis, respectively.
  • Acceleration data that is, carrier acceleration data; detecting and obtaining the angle of the X-axis of the XI-axis offset geomagnetic field coordinate system to which the transport carrier belongs, the Y-axis angle of the Y1-axis offset geomagnetic coordinate system to which the transport carrier belongs, and the transport carrier
  • the Z0 axis is offset from the z-axis angle of the geomagnetic field coordinate system, and the offset angle data in the three axial directions is the carrier ground magnetic field data.
  • step S3 the cargo acceleration data is corrected based on the cargo geomagnetic field data and the carrier geomagnetic data to obtain the cargo corrected acceleration data.
  • step S3 is specifically: correcting the X0 axis, the Y0 axis, and the Z0 axis to which the acceleration data of the cargo belongs based on the magnetic field data of the cargo and the magnetic field data of the carrier, so that the corrected X0 axis and the corrected Y0 are corrected.
  • the positive direction of the axis and the corrected Z0 axis are respectively coincident with the positive directions of the XI axis, the Y1 axis, and the Z1 axis to which the carrier acceleration data belongs, and the accelerations of the goods in the XI axis, the Y1 axis, and the Z1 axis direction are obtained according to the cargo acceleration data.
  • the data that is, the cargo corrected acceleration data.
  • the step of correcting the X0 axis, the Y0 axis, and the Z0 axis to which the acceleration data of the cargo belongs based on the magnetic field data of the cargo and the magnetic field data of the carrier is specifically: offsetting the geomagnetic coordinate system according to the X0 axis to which the cargo belongs The difference between the angle of the X-axis and the angle of the X-axis of the XI-axis offset geomagnetic coordinate system to which the transport carrier belongs is corrected for the X0 axis to which the cargo acceleration data belongs; the geomagnetic field coordinate is offset according to the Y0 axis to which the cargo belongs The difference between the angle of the Y-axis of the system and the angle of the Y-axis of the Y1 axis offset of the transport carrier to the Y-axis of the magnetic field coordinate system is corrected for the Y0 axis to which the cargo acceleration data belongs; the magnetic field is offset according to the Z0 axis to
  • step S4 it is determined whether the cargo corrected acceleration data and the carrier acceleration data are the same, and if so, the cargo gyroscope data and the cargo geomagnetic data are stored as the cargo stationary gyro data and the cargo static geomagnetic data; if not, Then, the cargo acceleration data and the cargo gyroscope data are respectively stored as the cargo motion acceleration data and the cargo motion gyroscope data, and the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center.
  • the step of determining whether the cargo correction acceleration data and the carrier acceleration data are the same is: obtaining an average value of all the cargo corrected acceleration data in the preset interval before the current engraving every predetermined inter-turn interval, and Obtaining an average value of all the carrier acceleration data in the preset interval before the current engraving; determining whether the average value of the cargo correction acceleration data is the same as the average value of the carrier acceleration data.
  • the average of all the corrected acceleration data is: averaging the XI-axis direction data of all the cargo corrected acceleration data, averaging the Y1 axis direction data, and averaging the Z1 axis direction data to obtain the goods. Correct the average value of the XI-axis direction data of the acceleration data, the average value of the Y1 axis direction data, and the average value of the Z1 axis direction data.
  • the average of all the carrier acceleration data is as follows: Average the XI-axis direction data of all the carrier acceleration data
  • the average value of the XI-axis direction data, the average value of the Y1 axis direction data, and the average value of the Z1 axis direction data of the cargo corrected acceleration data are respectively compared with the XI-axis direction of the carrier acceleration data.
  • Data average, Y1 axis direction data average and Z1 axis direction data Mean is the same, if a different axial average data, the average value is considered and the average acceleration vector data corrected acceleration data of the goods
  • the cargo corrected acceleration data is the same as the carrier acceleration data, it indicates that the cargo is stationary relative to the transport carrier, and then the cargo gyroscope data is saved and used as the cargo static gyro data; if the cargo corrects the acceleration data Unlike the carrier acceleration data, it indicates that the cargo transportation status is abnormal (such as abnormality such as the goods are reversed, bumped or continuously moving on the transport carrier).
  • the cargo acceleration data, the cargo geomagnetic data and the cargo gyroscope data are respectively Acceleration data of cargo movement, magnetic field data of cargo movement and gyroscope data of cargo movement.
  • the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center to notify the relevant personnel that the cargo transportation state has an abnormality.
  • step S4 based on the cargo static gyro data and the cargo motion gyroscope data pair
  • the acceleration data of the cargo movement is corrected to obtain the first cargo corrected acceleration data.
  • step S5 the cargo static gyro data and the cargo motion gyro data have been saved, that is, the case where the cargo correction acceleration data and the carrier acceleration data have occurred are the same.
  • the coordinate system to which the goods belong is X. 2 axis, Y2 axis and Z2 axis.
  • the X2 axis, Y2 axis and Z2 axis to which the cargo acceleration data belongs are corrected based on the cargo geomagnetic field data and the carrier geomagnetic field data, so that the corrected X2 axis is corrected.
  • the positive direction of the Y 2 axis and the corrected Z2 axis are respectively coincident with the positive directions of the XI axis, the Y1 axis, and the Z1 axis to which the carrier acceleration data belongs, and the goods are acquired according to the cargo acceleration data on the XI axis, the Y1 axis, and the Z1 axis, respectively.
  • the acceleration data of the direction that is, the cargo corrected acceleration data
  • the coordinate system to which the cargo belongs is the X3 axis, the Y3 axis and the Z3 axis.
  • the cargo acceleration is based on the cargo geomagnetic field data and the carrier geomagnetic data.
  • the X3 axis, Y3 axis, and Z3 axis to which the data belongs are corrected so that the positive direction of the corrected X3 axis, the corrected Y3 axis, and the corrected Z3 axis are respectively related to the XI axis, the Y1 axis, and the Z1 to which the carrier acceleration data belongs.
  • the positive direction of the axes is the same, and the acceleration data of the goods in the XI axis, the Y1 axis and the Z1 axis direction are obtained according to the acceleration data of the cargo, that is, the cargo correction acceleration data is obtained, and the cargo corrected acceleration data obtained by the ⁇ is different from the carrier acceleration data.
  • the coordinate system of the cargo static gyro data and the cargo static magnetic field data is X2, Y2, ⁇ 2, and the coordinate system of the cargo motion acceleration data and the cargo motion gyro data is ⁇ 3, ⁇ 3, ⁇ 3.
  • step S5 is specifically: correcting the ⁇ 3 axis to which the acceleration data of the cargo belongs according to the difference between the ⁇ 2 axis data of the cargo static gyro data and the ⁇ 3 axis data of the cargo motion gyro data, according to the cargo
  • the difference between the ⁇ 2 axis data of the stationary gyro data and the ⁇ 3 axis data of the cargo motion gyro data is corrected for the ⁇ 3 axis to which the cargo motion acceleration data belongs, the ⁇ 2 axis data of the cargo stationary gyro data, and the cargo motion gyro data.
  • the difference between the ⁇ 3 axis data is corrected for the ⁇ 3 axis to which the cargo motion acceleration data belongs, so that the corrected ⁇ 3 axis, ⁇ 3 axis, and ⁇ 3 axis positive direction respectively correspond to the ⁇ 2 axis, ⁇ 2 to which the cargo stationary gyro data belongs.
  • the positive direction of the axis and the ⁇ 2 axis are the same, and the acceleration data of the cargo in the directions of the ⁇ 2 axis, the ⁇ 2 axis and the ⁇ 2 axis are obtained according to the acceleration data of the cargo movement, that is, the first cargo corrected acceleration data is obtained.
  • step S6 the first cargo correction acceleration data is corrected based on the cargo static magnetic field data and the carrier geomagnetic data to obtain the second cargo corrected acceleration data.
  • step S6 is specifically: according to the X-axis angle of the ⁇ 2-axis offset geomagnetic field coordinate system to which the cargo static geomagnetic data belongs and the X-axis of the XI-axis offset geomagnetic coordinate system to which the carrier geomagnetic data belongs The difference between the angles is corrected for the ⁇ 2 axis to which the first cargo corrected acceleration data belongs, according to the cargo stationary
  • the Y2 axis to which the magnetic field data belongs is offset from the angle of the x-axis of the geomagnetic field coordinate system and the difference between the angle of the x-axis of the geomagnetic field data to which the carrier geomagnetic data belongs and the angle of the x-axis of the geomagnetic coordinate system.
  • the ⁇ 2 axis is corrected, according to the ⁇ 2-axis offset of the geomagnetic field data of the cargo, and the angle of the ⁇ axis of the geomagnetic field coordinate system and the Z1 axis of the carrier geomagnetic field data offset from the ⁇ axis angle of the geomagnetic coordinate system
  • the difference is corrected for the ⁇ 2 axis to which the first cargo corrected acceleration data belongs, so that the positive directions of the corrected ⁇ 2 axis, ⁇ 2 axis, and ⁇ 2 axis are respectively coincident with the positive directions of the XI axis, the Y1 axis, and the Z1 axis, and according to
  • the first cargo correction acceleration data acquires acceleration data of the cargo in the XI axis, the Y1 axis, and the Z1 axis direction, that is, acquires the second corrected acceleration data of the cargo.
  • step S7 it is determined whether the second cargo corrected acceleration data and the carrier acceleration data are the same; if yes, a short abnormality alert is sent to the vehicle terminal; if not, the cargo continues to be abnormally prompted to the vehicle terminal and the monitoring center.
  • the step of determining whether the second cargo corrected acceleration data and the carrier acceleration data are the same is specifically: determining the XI axis direction data, the Y1 axis direction data, and the Z1 axis direction data of the second cargo corrected acceleration data and the carrier acceleration respectively Whether the data of the XI axis direction data, the Y1 axis direction data, and the Z1 axis direction data of the data are the same, and if one of the axial data is different, the second cargo corrected acceleration data is different from the carrier acceleration data.
  • FIG. 3 is a flowchart showing an implementation process of a method for monitoring a cargo transportation state according to another embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • step S10 the cargo posture data and the transport carrier posture data are acquired and uploaded to the data analysis end, the cargo posture data includes cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data, and the transport carrier posture data includes carrier acceleration data. And carrier geomagnetic data.
  • the step S10 is specifically: detecting accelerations of the three axial directions of the ⁇ 0 axis, the ⁇ 0 axis, and the ⁇ 0 axis respectively, to obtain acceleration data of the cargo in three axial directions of the ⁇ 0 axis, the ⁇ 0 axis, and the ⁇ 0 axis respectively.
  • the three axial movement angle data of the X0 axis, the Y0 axis, and the Z0 axis that is, the cargo gyroscope data.
  • the positive direction of the xo axis coincides with the horizontal movement direction of the cargo
  • the positive direction of the Z0 axis coincides with the direction of gravity
  • the Y0 axis is perpendicular to the X0 axis and the Z0 axis
  • the geomagnetic field coordinate system is unique
  • the X-axis and Y of the geomagnetic field coordinate system The direction of the shaft and the z-axis is fixed.
  • the X-axis angle of the XI-axis offset geomagnetic field coordinate system to which the transport carrier belongs, the Y-axis offset of the Y1-axis offset geomagnetic coordinate system to which the transport carrier belongs, and the Z0-axis offset geomagnetic coordinate system of the transport carrier The angle of the axis, the offset angle data in the three axial directions is the carrier earth magnetic field data.
  • the positive direction of the XI axis is consistent with the horizontal movement direction of the transport carrier
  • the positive direction of the Z1 axis is consistent with the direction of gravity
  • the Y1 axis is perpendicular to the XI axis and the Z1 axis.
  • step S20 the data analysis end corrects the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic field data to obtain the cargo corrected acceleration data, and determines whether the cargo corrected acceleration data is the same as the carrier acceleration data, and if so,
  • the cargo gyroscope data and the cargo geomagnetic data are respectively stored as the cargo static gyroscope data and the cargo static geomagnetic data; if not, the cargo acceleration data and the cargo gyroscope data are saved as the cargo motion acceleration data and the cargo motion gyroscope data, respectively. And send the cargo transportation status abnormality prompt to the vehicle terminal and the monitoring center.
  • the data analysis end corrects the acceleration data of the cargo based on the magnetic field data of the cargo and the magnetic field data of the carrier
  • the step of acquiring the acceleration data of the cargo is specifically: the acceleration of the cargo based on the magnetic field data of the cargo and the geomagnetic data of the carrier
  • the X0 axis, the Y0 axis, and the Z0 axis to which the data belongs are corrected so that the positive direction of the corrected X0 axis, the corrected Y0 axis, and the corrected Z0 axis are respectively related to the XI axis, the Y1 axis, and the Z1 to which the carrier acceleration data belongs.
  • the positive direction of the axes is the same, and the acceleration data of the goods in the XI axis, the Y1 axis and the Z1 axis direction is obtained according to the acceleration data of the cargo, that is, the cargo correction acceleration data is obtained.
  • the step of correcting the X0 axis, the Y0 axis, and the Z0 axis to which the acceleration data of the cargo belongs based on the magnetic field data of the cargo and the magnetic field data of the carrier is specifically: offsetting the geomagnetic coordinate system according to the X0 axis to which the cargo belongs The angle of the X-axis and the angle of the X-axis of the XI-axis offset of the transport carrier to the X-axis of the geomagnetic coordinate system The difference is corrected for the xo axis to which the acceleration data of the cargo belongs; the angle of the Y-axis of the geomagnetic coordinate system offset from the Y0 axis to which the cargo belongs is the angle of the Y-axis of the geomagnetic coordinate system to which the Y1 axis of the transport carrier belongs The difference between the Z0 axis to which the acceleration data of the cargo belongs is corrected; the angle of the Z axis of the geomagnetic
  • the step of determining, by the data analysis end, whether the corrected acceleration data of the cargo is the same as the acceleration data of the carrier is: the data analysis end acquires the corrected acceleration of all the goods in the preset interval before the current engraving every predetermined inter-turn interval The average value of the data, and the average value of all the carrier acceleration data in the preset interval before the current engraving is obtained; and it is judged whether the average value of the cargo correction acceleration data is the same as the average value of the carrier acceleration data. For example: Get all the cargo correction acceleration data within 15 seconds before the current engraving every 10 seconds, and average all the cargo correction acceleration data, and obtain all the carrier accelerations within 15 seconds before the current engraving.
  • the average of all the corrected acceleration data is: averaging the XI-axis direction data of all the cargo corrected acceleration data, averaging the Y1 axis direction data, and averaging the Z1 axis direction data to obtain the goods. Correct the average value of the XI-axis direction data of the acceleration data, the average value of the Y1 axis direction data, and the average value of the Z1 axis direction data.
  • the average of all the carrier acceleration data is as follows: Average the XI-axis direction data of all the carrier acceleration data The value, the average value of the Y1 axis direction data, and the average of the Z1 axis direction data are obtained to obtain the average value of the XI axis direction data of the carrier acceleration data, the average value of the Y1 axis direction data, and the average value of the Z1 axis direction data; Whether the average value and the average value of the carrier acceleration data are the same are as follows: The average value of the XI-axis direction data, the average value of the Y1 axis direction data, and the average value of the Z1 axis direction data of the cargo corrected acceleration data are respectively compared with the XI-axis direction of the carrier acceleration data. Data average, Y1 axis direction data average Z1-axis direction is the same as the average value of the data, if there is a different average axial data, an average value is considered and the average acceleration vector data corrected acceleration data of the goods is
  • the data analysis end determines that the cargo corrected acceleration data is the same as the carrier acceleration data, the table It indicates that the cargo is stationary relative to the transport carrier, and the cargo gyroscope data is saved and used as the cargo static gyro data; if the data analysis end determines that the cargo corrected acceleration data is different from the carrier acceleration data, it indicates that the cargo transportation state is abnormal ( If the goods are reversed, bumped or continuously moving on the transport carrier, etc., the cargo acceleration data, the cargo geomagnetic data and the cargo gyroscope data are respectively used as cargo motion acceleration data, cargo motion magnetic field data and cargo motion gyroscope. Instrument data.
  • the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center to notify the relevant personnel that the cargo transportation state has an abnormality.
  • FIG. 4 shows an implementation flow of a method for monitoring a cargo transportation state according to another embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • step S100 receiving the cargo posture data and the transport carrier posture data acquired by the data monitoring end, the cargo posture data includes cargo acceleration data, cargo geomagnetic field data, and cargo gyroscope data, and the transport carrier posture data includes carrier acceleration data. And carrier geomagnetic data.
  • step S100 is specifically: receiving acceleration data of the three axes of the X0 axis, the Y0 axis, and the Z0 axis respectively acquired by the data monitoring end, that is, the cargo acceleration data; and the X0 axis offset to which the cargo belongs
  • the angle of the X-axis of the geomagnetic field coordinate system, the Y0 axis to which the cargo belongs, the angle of the Y-axis of the geomagnetic field coordinate system, and the Z-axis of the Z0-axis offset of the cargo which is the Z-axis angle of the geomagnetic coordinate system, that is, the magnetic field data of the cargo;
  • the movement angle data of the cargo in the three axial directions of the X0 axis, the Y0 axis and the Z0 axis that is, the cargo gyroscope data.
  • the positive direction of the X0 axis coincides with the horizontal movement direction of the cargo
  • the positive direction of the Z0 axis coincides with the direction of gravity
  • the Y0 axis is perpendicular to the X0 axis and the Z0 axis
  • the geomagnetic field coordinate system is unique
  • the X-axis and Y of the geomagnetic field coordinate system The direction of the shaft and the Z axis is fixed.
  • the acceleration data obtained by the receiving data monitoring end in the three axial directions of the XI axis, the Y1 axis and the Z1 axis respectively, that is, the carrier acceleration data; and the X of the XI axis offset geomagnetic coordinate system to which the transport carrier belongs The angle of the shaft, the Y 1 axis to which the transport carrier belongs, the angle of the Y axis of the geomagnetic field coordinate system, and the Z axis of the transport carrier to which the Z0 axis belongs are offset from the Z axis of the geomagnetic coordinate system, that is, the carrier geomagnetic field data.
  • the positive direction of the XI axis is consistent with the horizontal movement direction of the transport carrier
  • the positive direction of the Z1 axis is consistent with the direction of gravity
  • the Y1 axis is perpendicular to the XI axis and the Z1 axis.
  • step S200 the cargo acceleration data is corrected based on the cargo geomagnetic field data and the carrier geomagnetic data to obtain the cargo corrected acceleration data.
  • step S200 is specifically: accelerating the cargo based on the magnetic field data of the cargo and the magnetic field data of the carrier
  • the XO axis, the Y0 axis, and the ZO axis to which the degree data belongs are corrected so that the positive direction of the corrected X0 axis, the corrected Y0 axis, and the corrected Z0 axis are respectively related to the XI axis and the Y1 axis to which the carrier acceleration data belongs.
  • the positive direction of the Z1 axis is the same, and the acceleration data of the goods in the XI axis, the Y1 axis and the Z1 axis direction is obtained according to the acceleration data of the cargo, that is, the cargo correction acceleration data is obtained.
  • the step of correcting the X0 axis, the Y0 axis, and the Z0 axis to which the acceleration data of the cargo belongs based on the magnetic field data of the cargo and the magnetic field data of the carrier is specifically: offsetting the geomagnetic coordinate system according to the X0 axis to which the cargo belongs The difference between the angle of the X-axis and the angle of the X-axis of the XI-axis offset geomagnetic coordinate system to which the transport carrier belongs is corrected for the X0 axis to which the cargo acceleration data belongs; the geomagnetic field coordinate is offset according to the Y0 axis to which the cargo belongs The difference between the angle of the Y-axis of the system and the angle of the Y-axis of the Y1 axis offset of the transport carrier to the Y-axis of the magnetic field coordinate system is corrected for the Y0 axis to which the cargo acceleration data belongs; the magnetic field is offset according to the Z0 axis to
  • step S300 it is determined whether the cargo corrected acceleration data and the carrier acceleration data are the same, and if so, the cargo gyroscope data and the cargo geomagnetic data are stored as the cargo stationary gyro data and the cargo static geomagnetic data; respectively; Then, the cargo acceleration data and the cargo gyroscope data are respectively stored as the cargo motion acceleration data and the cargo motion gyroscope data, and the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center.
  • the step of determining whether the cargo corrected acceleration data and the carrier acceleration data are the same is: obtaining an average value of all the cargo corrected acceleration data in the preset interval before the current engraving every predetermined inter-turn interval, and Obtaining an average value of all the carrier acceleration data in the preset interval before the current engraving; determining whether the average value of the cargo correction acceleration data is the same as the average value of the carrier acceleration data.
  • the average of all the cargo corrected acceleration data is as follows: The XI-axis direction data of all the cargo corrected acceleration data is leveled.
  • the average value, the average value of the Y1 axis direction data, and the average of the Z1 axis direction data are obtained to obtain the average value of the XI-axis direction data of the cargo corrected acceleration data, the average value of the Y1 axis direction data, and the average value of the Z1 axis direction data;
  • the average of the acceleration data is as follows: averaging the XI-axis direction data of all the carrier acceleration data, averaging the Y1 axis direction data, and averaging the Z1 axis direction data to obtain the XI-axis direction data average of the carrier acceleration data.
  • the cargo corrected acceleration data is the same as the carrier acceleration data, it indicates that the cargo is stationary relative to the transport carrier, and then the cargo gyroscope data is saved and used as the cargo static gyroscope data; if the cargo corrects the acceleration data Unlike the carrier acceleration data, it indicates that the cargo transportation status is abnormal (such as abnormality such as the goods are reversed, bumped or continuously moving on the transport carrier).
  • the cargo acceleration data, the cargo geomagnetic data and the cargo gyroscope data are respectively Acceleration data of cargo movement, magnetic field data of cargo movement and gyroscope data of cargo movement.
  • the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center to notify the relevant personnel that the cargo transportation state has an abnormality.
  • step S300 the following steps are further included after step S300.
  • step S400 the cargo motion acceleration data is corrected based on the cargo stationary gyro data and the cargo motion gyro data to obtain the first cargo corrected acceleration data.
  • step S400 the cargo static gyro data and the cargo movement gyro data have been saved, that is, the case where the cargo correction acceleration data and the carrier acceleration data have occurred are the same.
  • the coordinate system to which the cargo belongs is X2 axis, Y2 axis and Z2 axis.
  • the cargo acceleration data is based on the cargo geomagnetic field data and the carrier geomagnetic data.
  • the X2 axis, Y2 axis, and Z2 axis are corrected so that the corrected X2 axis is corrected.
  • the positive direction of the Y2 axis and the corrected Z2 axis are respectively coincident with the positive directions of the XI axis, the Y1 axis, and the Z1 axis to which the carrier acceleration data belongs, and the goods are obtained in the XI axis, the Y1 axis, and the Z1 axis direction according to the cargo acceleration data.
  • the acceleration data that is, the cargo corrected acceleration data, is obtained by the same cargo corrected acceleration data as the carrier acceleration data.
  • the coordinate system to which the cargo belongs is the X3 axis, the Y3 axis and the Z3 axis.
  • the cargo acceleration is based on the cargo geomagnetic field data and the carrier geomagnetic data.
  • the X3 axis, Y3 axis, and Z3 axis to which the data belongs are corrected so that the positive direction of the corrected X3 axis, the corrected Y3 axis, and the corrected Z3 axis are respectively related to the XI axis, the Y1 axis, and the Z1 to which the carrier acceleration data belongs.
  • the positive direction of the axes is the same, and the acceleration data of the goods in the XI axis, the Y1 axis and the Z1 axis direction are obtained according to the acceleration data of the cargo, that is, the cargo correction acceleration data is obtained, and the cargo corrected acceleration data obtained by the ⁇ is different from the carrier acceleration data.
  • the coordinate system of the cargo static gyro data and the cargo static magnetic field data is the X2 axis, the Y2 axis, and the Z2 axis.
  • the coordinate system of the cargo motion acceleration data and the cargo motion gyro data is the X3 axis, the Y3 axis, and the Z3 axis.
  • step S400 is specifically: correcting the X3 axis to which the acceleration data of the cargo belongs according to the difference between the X2 axis data of the cargo static gyro data and the X3 axis data of the cargo motion gyro data, according to the cargo
  • the difference between the Y2 axis data of the stationary gyro data and the Y3 axis data of the cargo motion gyro data is corrected for the Y3 axis to which the cargo motion acceleration data belongs, the Z2 axis data of the cargo stationary gyro data, and the cargo motion gyro data.
  • the difference between the Z3 axis data is corrected for the Z3 axis to which the acceleration data of the cargo belongs, so that the corrected positive directions of the X3 axis, the Y3 axis, and the Z3 axis are respectively associated with the X2 axis, Y2 to which the cargo stationary gyro data belongs.
  • the positive direction of the axis and the Z2 axis are the same, and the acceleration data of the goods in the X2 axis, the Y2 axis and the Z2 axis direction are obtained according to the acceleration data of the cargo movement, that is, the first cargo corrected acceleration data is obtained.
  • step S500 the first cargo correction acceleration data is corrected based on the cargo static geomagnetic field data and the carrier geomagnetic field data to acquire the second cargo corrected acceleration data.
  • step S500 is specifically: according to the X axis of the ground magnetic field coordinate system to which the cargo static magnetic field data belongs, the X axis of the earth magnetic field coordinate system and the X axis of the magnetic field coordinate system of the XI axis offset of the carrier earth magnetic field data
  • the difference between the angles is corrected for the X2 axis to which the first cargo corrected acceleration data belongs, and the angle of the Y axis of the geomagnetic coordinate system and the Y1 to which the carrier geomagnetic data belongs according to the Y2 axis to which the cargo static geomagnetic data belongs belongs.
  • the difference between the angle of the Y-axis of the axis offset magnetic field coordinate system is corrected for the first cargo corrected acceleration data
  • the Y2 axis is corrected according to the angle of the ⁇ axis of the ⁇ 2 axis offset geomagnetic field coordinate system to which the cargo static magnetic field data belongs and the Z1 axis of the carrier geomagnetic field data offset from the ⁇ axis angle of the geomagnetic coordinate system.
  • the difference is corrected for the ⁇ 2 axis to which the first cargo corrected acceleration data belongs, so that the positive directions of the corrected ⁇ 2 axis, ⁇ 2 axis, and ⁇ 2 axis are respectively coincident with the positive directions of the XI axis, the Y1 axis, and the Z1 axis, and according to the A cargo correction acceleration data acquires acceleration data of the cargo in the XI axis, the Y1 axis, and the Z1 axis direction, that is, the second corrected acceleration data of the cargo is obtained.
  • step S600 it is determined whether the second cargo corrected acceleration data and the carrier acceleration data are the same; if yes, a short abnormality alert is sent to the vehicle terminal; if not, the cargo is continuously sent to the vehicle terminal and the monitoring center.
  • the step of determining whether the second cargo corrected acceleration data and the carrier acceleration data are the same is specifically: determining the XI axis direction data, the Y1 axis direction data, and the Z1 axis direction data of the second cargo corrected acceleration data and the carrier acceleration respectively Whether the data of the XI axis direction data, the Y1 axis direction data, and the Z1 axis direction data of the data are the same, and if one of the axial data is different, the second cargo corrected acceleration data is different from the carrier acceleration data.
  • FIG. 6 shows the structure of the cargo transportation state monitoring system 10 provided by the embodiment of the present invention.
  • the parts related to the embodiment of the present invention are shown, which are as follows:
  • the cargo transportation status monitoring system 10 includes a cargo monitoring terminal 100, a carrier monitoring terminal 200, and a server 30.
  • the cargo monitoring terminal 100 detects the running posture of the cargo, and acquires the cargo posture data to upload to the server 300, and the cargo posture data includes the cargo acceleration data, the cargo geomagnetic data, and the cargo gyroscope data.
  • the carrier monitoring terminal 200 detects the running posture of the transport carrier, and acquires the transport carrier posture data to upload to the server 300, and the transport carrier posture data includes the carrier acceleration data and the carrier ground magnetic field data.
  • the server 300 corrects the acceleration data of the cargo based on the magnetic field data of the cargo and the magnetic field data of the carrier. Obtaining the cargo correction acceleration data, and determining whether the cargo correction acceleration data is the same as the carrier acceleration data, and if so, storing the cargo gyro data and the cargo geomagnetic data as the cargo static gyro data and the cargo static geomagnetic data; if not, Then, the cargo acceleration data and the cargo gyroscope data are respectively stored as the cargo motion acceleration data and the cargo motion gyroscope data, and the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center.
  • the cargo monitoring terminal 100 is fixed on the outer package of the cargo, and the cargo monitoring terminal 100 may include a three-axis acceleration sensor, a three-axis geomagnetic field sensor, and a three-axis gyroscope, respectively, for acquiring acceleration data of the cargo and the cargo ground. Magnetic field data and cargo gyroscope data.
  • the carrier monitoring terminal 200 is fixed to the transport carrier, and the carrier monitoring terminal 200 may include a three-axis acceleration sensor and a three-axis geomagnetic field sensor for respectively obtaining the carrier acceleration data and the carrier ground magnetic field data.
  • the cargo transportation state monitoring system 10 provided by the embodiment of the present invention can be applied to the embodiment of the cargo transportation state monitoring method corresponding to FIG. 1 and FIG. 2, for details, refer to the description of the foregoing cargo transportation state monitoring method embodiment, where No longer.
  • the cargo monitoring terminal 100 is configured to acquire cargo posture data and upload it to the server 300.
  • the cargo posture data includes cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data.
  • the carrier monitoring terminal 200 is configured to acquire the transport carrier posture data and upload the data.
  • the transport carrier posture data includes carrier acceleration data and carrier ground magnetic field data; so that the server 300 corrects the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic data to obtain the cargo corrected acceleration data, and determines the cargo corrected acceleration.
  • the data is the same as the carrier acceleration data, and if so, storing the cargo gyro data and the cargo geomagnetic data as the cargo static gyro data and the cargo static magnetic field data; if not, storing the cargo acceleration data and the cargo gyro data as respectively The acceleration data of the cargo movement and the data of the cargo movement gyroscope, and send the abnormality of the cargo transportation status to the vehicle terminal and the monitoring center.
  • the monitoring terminal provided by the embodiment of the present invention can be applied to the embodiment of the cargo transportation state monitoring method corresponding to FIG. 3.
  • the monitoring terminal can be applied to the embodiment of the cargo transportation state monitoring method corresponding to FIG. 3.
  • details refer to the description of the foregoing cargo transportation state monitoring method embodiment, and details are not described herein again.
  • FIG. 7 shows the structure of a server 300 according to an embodiment of the present invention.
  • a server 300 for the convenience of description, only The relevant parts of the embodiments of the present invention are described in detail as follows:
  • the server 300 includes a data receiving module 301, a data correcting module 302, and a state judging module 303.
  • the data receiving module 301 is configured to receive the cargo posture data acquired by the cargo monitoring terminal 100, the cargo attitude data includes cargo acceleration data, cargo geomagnetic data, and cargo gyroscope data; and the transport carrier acquired by the receiving carrier monitoring terminal 200
  • the attitude data, the transport carrier attitude data includes carrier acceleration data and carrier geomagnetic data.
  • the data correction module 302 is configured to correct the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic field data to obtain the cargo corrected acceleration data.
  • the state determining module 303 is configured to determine whether the cargo corrected acceleration data and the carrier acceleration data are the same, and if so, storing the cargo gyro data and the cargo geomagnetic data as the cargo static gyro data and the cargo static magnetic field data; , the cargo acceleration data and the cargo gyroscope data are respectively stored as the cargo motion acceleration data and the cargo motion gyroscope data, and the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center.
  • the server provided by the embodiment of the present invention can be applied to the embodiment of the cargo transportation state monitoring method corresponding to FIG. 4 and FIG. 5.
  • the foregoing cargo transportation state monitoring method embodiment which is not described herein.
  • FIG. 8 shows another structure of the server.
  • the server includes a processor 30, a communication interface 31, and a memory 32 ( Memory), bus 33.
  • the processor 30, the communication interface 31, and the memory 32 complete communication with each other via the bus 33.
  • the communication interface 31 is configured to communicate with an external device, such as a personal computer, a server, or the like.
  • the processor 30 is configured to execute the program 34.
  • the program 34 may include program code, the program code including computer operating instructions.
  • the processor 30 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 32 is used to store the program 34.
  • Memory 32 may contain high speed RAM memory and may also include non-volatile memory (non-volatile memory) Memory) , such as at least one disk storage.
  • the program 34 may specifically include:
  • the data receiving module 301 is configured to receive the cargo posture data acquired by the cargo monitoring terminal, where the cargo posture data includes the cargo acceleration data, the cargo geomagnetic field data, and the cargo gyroscope data; and the transport carrier posture acquired by the receiving carrier monitoring terminal Data, transport carrier attitude data includes carrier acceleration data and carrier geomagnetic data.
  • the data correction module 302 is configured to correct the cargo acceleration data based on the cargo geomagnetic field data and the carrier geomagnetic data to obtain the cargo corrected acceleration data.
  • the state determining module 303 is configured to determine whether the cargo corrected acceleration data and the carrier acceleration data are the same, and if so, storing the cargo gyro data and the cargo geomagnetic data as the cargo static gyro data and the cargo static geomagnetic data; Otherwise, the cargo acceleration data and the cargo gyroscope data are respectively stored as the cargo motion acceleration data and the cargo motion gyroscope data, and the cargo transportation state abnormality prompt is sent to the vehicle terminal and the monitoring center.
  • the cargo transportation state monitoring method includes: detecting acceleration of the cargo, and acquiring acceleration data of the cargo; detecting acceleration of the transport carrier, and acquiring acceleration data of the transport carrier; and correcting acceleration data of the cargo based on acceleration data of the transport carrier To obtain the cargo correction acceleration data; determine whether the cargo correction acceleration data is the same as the transportation carrier acceleration data, and if not, send the cargo transportation state abnormality prompt to the vehicle terminal and the monitoring center. By judging whether the cargo corrected acceleration data is the same as the transport carrier acceleration data, when the same ⁇ , the cargo is stationary with respect to the transport carrier, and when it is not the same, the cargo is in an abnormal state, so that the actual state of the cargo in transit can be known.

Abstract

货物运输状态监测方法包括:检测货物的运行姿态,并获取货物姿态数据 (S1);检测运输载体的运行姿态,并获取运输载体姿态数据 (S2);基于货物地磁场数据和载体地磁场数据对货物加速度数据进行修正,以获取货物修正加速度数据(S3);判断货物修正加速度数据与载体加速度数据是否相同,若是,则保存货物陀螺仪数据和货物地磁场数据分别作为货物静止陀螺仪数据和货物静止地磁场数据;若否,则保存货物加速度数据和货物陀螺仪数据分别作为货物运动加速度数据和货物运动陀螺仪数据,并发送货物运输状态异常提示至车载终端和监控中心(S4)。通过判断货物修正加速度数据与载体加速度数据是否相同,当相同时,则货物相对运输载体静止,当不相同时,则货物出现异常状态,因此可得知货物在运输途中的实时状态。

Description

说明书 发明名称:货物运输状态监测方法、 监测系统、 监测终端及服务器 技术领域
[0001] 本发明属于状态监控技术领域, 尤其涉及一种货物运输状态监测方法、 监测系 统、 监测终端及服务器。
背景技术
[0002] 在货物运输过程中, 目前通常通过射频识别技术 (Radio Frequency
Identification, RFID) 或定位系统 (Global Positioning System, GPS) 来进行货 物跟踪, 但是, 通过 RFID或 GPS跟踪货物的方式仅能够获取货物的实吋地理位 置信息, 而无法获取货物在运输途中的实吋状态 (如货物相对运载车静止的安 全状态、 货物翻转掉落等异常状态) 。 因此, 现有技术存在无法得知货物在运 输途中的实吋状态的问题。
技术问题
[0003] 本发明的目的在于提供一种货物运输状态监测方法, 旨在解决现有技术所存在 的无法得知货物在运输途中的实吋状态的问题。
问题的解决方案
技术解决方案
[0004] 本发明是这样实现的, 一种货物运输状态监测方法, 所述货物运输状态监测方 法包括:
[0005] 检测货物的运行姿态, 并获取货物姿态数据, 所述货物姿态数据包括货物加速 度数据、 货物地磁场数据及货物陀螺仪数据;
[0006] 检测运输载体的运行姿态, 并获取运输载体姿态数据, 所述运输载体姿态数据 包括载体加速度数据和载体地磁场数据;
[0007] 基于所述货物地磁场数据和所述载体地磁场数据对所述货物加速度数据进行修 正, 以获取货物修正加速度数据;
[0008] 判断所述货物修正加速度数据与所述载体加速度数据是否相同, 若是, 则保存 所述货物陀螺仪数据和所述货物地磁场数据分别作为货物静止陀螺仪数据和货 物静止地磁场数据; 若否, 则保存所述货物加速度数据和所述货物陀螺仪数据 分别作为货物运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状态异 常提示至车载终端和监控中心。
[0009] 本发明的另一目的还在于提供一种货物运输状态监测方法, 所述货物运输状态 监测方法包括:
[0010] 获取货物姿态数据和运输载体姿态数据并上传至数据分析端, 所述货物姿态数 据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据, 所述运输载体姿 态数据包括载体加速度数据和载体地磁场数据; 以使所述数据分析端基于所述 货物地磁场数据和所述载体地磁场数据对所述货物加速度数据进行修正, 以获 取货物修正加速度数据, 以及判断所述货物修正加速度数据与所述载体加速度 数据是否相同, 若是, 则保存所述货物陀螺仪数据和所述货物地磁场数据分别 作为货物静止陀螺仪数据和货物静止地磁场数据; 若否, 则保存所述货物加速 度数据和所述货物陀螺仪数据分别作为货物运动加速度数据和货物运动陀螺仪 数据, 并发送货物运输状态异常提示至车载终端和监控中心。
[0011] 本发明的另一目的还在于提供一种货物运输状态监测方法, 所述货物运输状态 监测方法包括:
[0012] 接收数据监测端所获取的货物姿态数据和运输载体姿态数据, 所述货物姿态数 据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据, 所述运输载体姿 态数据包括载体加速度数据和载体地磁场数据;
[0013] 基于所述货物地磁场数据和所述载体地磁场数据对所述货物加速度数据进行修 正, 以获取货物修正加速度数据;
[0014] 判断所述货物修正加速度数据与所述载体加速度数据是否相同, 若是, 则保存 所述货物陀螺仪数据和所述货物地磁场数据分别作为货物静止陀螺仪数据和货 物静止地磁场数据; 若否, 则保存所述货物加速度数据和所述货物陀螺仪数据 分别作为货物运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状态异 常提示至车载终端和监控中心。
[0015] 本发明的另一目的在于提供一种货物运输状态监测系统, 所述货物运输状态监 测系统包括货物监测终端、 载体监测终端及服务器; [0016] 所述货物监测终端检测货物的运行姿态, 并获取货物姿态数据以上传至所述服 务器, 所述货物姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪 数据;
[0017] 所述载体监测终端检测运输载体的运行姿态, 并获取运输载体姿态数据以上传 至所述服务器, 所述运输载体姿态数据包括载体加速度数据和载体地磁场数据
[0018] 所述服务器基于所述货物地磁场数据和所述载体地磁场数据对所述货物加速度 数据进行修正以获取货物修正加速度数据, 并判断所述货物修正加速度数据与 所述载体加速度数据是否相同, 若是, 则保存所述货物陀螺仪数据和所述货物 地磁场数据分别作为货物静止陀螺仪数据和货物静止地磁场数据; 若否, 则保 存所述货物加速度数据和所述货物陀螺仪数据分别作为货物运动加速度数据和 货物运动陀螺仪数据, 并发送货物运输状态异常提示至车载终端和监控中心。
[0019] 本发明的另一目的在于提供一种监测终端, 所述监测终端包括货物监测终端和 载体监测终端;
[0020] 所述货物监测终端用于获取货物姿态数据并上传至服务器, 所述货物姿态数据 包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据; 所述载体监测终端 用于获取运输载体姿态数据并上传至服务器, 所述运输载体姿态数据包括载体 加速度数据和载体地磁场数据; 以使服务器基于所述货物地磁场数据和所述载 体地磁场数据对所述货物加速度数据进行修正以获取货物修正加速度数据, 并 判断所述货物修正加速度数据与所述载体加速度数据是否相同, 若是, 则保存 所述货物陀螺仪数据和所述货物地磁场数据分别作为货物静止陀螺仪数据和货 物静止地磁场数据; 若否, 则保存所述货物加速度数据和所述货物陀螺仪数据 分别作为货物运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状态异 常提示至车载终端和监控中心。
[0021] 本发明的另一目的在于提供一种服务器, 所述服务器包括:
[0022] 数据接收模块, 用于接收货物监测终端所获取的货物姿态数据, 所述货物姿态 数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据; 以及接收载体 监测终端所获取的运输载体姿态数据, 所述运输载体姿态数据包括载体加速度 数据和载体地磁场数据;
[0023] 数据修正模块, 用于基于所述货物地磁场数据和所述载体地磁场数据对所述货 物加速度数据进行修正, 以获取货物修正加速度数据;
[0024] 状态判断模块, 用于判断所述货物修正加速度数据与所述载体加速度数据是否 相同, 若是, 则保存所述货物陀螺仪数据和所述货物地磁场数据分别作为货物 静止陀螺仪数据和货物静止地磁场数据; 若否, 则保存所述货物加速度数据和 所述货物陀螺仪数据分别作为货物运动加速度数据和货物运动陀螺仪数据, 并 发送货物运输状态异常提示至车载终端和监控中心。
发明的有益效果
有益效果
[0025] 在本发明中, 货物运输状态监测方法包括: 检测货物的运行姿态, 并获取货物 姿态数据, 货物姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪 数据; 检测运输载体的运行姿态, 并获取运输载体姿态数据, 运输载体姿态数 据包括载体加速度数据和载体地磁场数据; 基于货物地磁场数据和载体地磁场 数据对货物加速度数据进行修正, 以获取货物修正加速度数据; 判断货物修正 加速度数据与载体加速度数据是否相同, 若否, 则发送货物运输状态异常提示 至车载终端和监控中心。 通过判断货物修正加速度数据与载体加速度数据是否 相同, 当相同吋, 则货物相对运输载体静止, 当不相同吋, 则货物出现异常状 态, 因此可得知货物在运输途中的实吋状态。
对附图的简要说明
附图说明
[0026] 图 1是本发明实施例提供的货物运输状态监测方法的实现流程图;
[0027] 图 2是本发明另一实施例提供的货物运输状态监测方法的实现流程图;
[0028] 图 3是本发明另一实施例提供的货物运输状态监测方法的实现流程图;
[0029] 图 4是本发明另一实施例提供的货物运输状态监测方法的实现流程图;
[0030] 图 5是本发明另一实施例提供的货物运输状态监测方法的实现流程图;
[0031] 图 6是本发明另一实施例提供的货物运输状态检测系统的结构示意图;
[0032] 图 7是本发明另一实施例提供的服务器的结构示意图; [0033] 图 8是本发明另一实施例提供的服务器的结构示意图。
本发明的实施方式
[0034] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0035] 图 1示出了本发明实施例提供的货物运输状态监测方法的实现流程, 为了便于 说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0036] 在步骤 S1中, 检测货物的运行姿态, 并获取货物姿态数据, 货物姿态数据包括 货物加速度数据、 货物地磁场数据及货物陀螺仪数据。
[0037] 具体的, 步骤 S1具体为: 检测货物分别在 X0轴、 Y0轴、 Z0轴三个轴向的加速 度, 以获取货物分别在 X0轴、 Y0轴、 Z0轴三个轴向的加速度数据, 即货物加速 度数据; 检测并获取货物所属的 X0轴偏移地磁场坐标系的 X轴的角度、 货物所属 的 Y0轴偏移地磁场坐标系的 Y轴的角度及货物所属的 Z0轴偏移地磁场坐标系的 Z 轴的角度, 三个轴向上的偏移角度数据即为货物地磁场数据; 检测货物分别在 X 0轴、 Y0轴、 Z0轴三个轴向的运动角度, 以获取货物分别在 X0轴、 Y0轴、 Z0轴 三个轴向的运动角度数据, 即货物陀螺仪数据。 其中, xo轴正方向与货物的水 平运动方向一致, Z0轴正方向与重力方向一致, Y0轴垂直于 X0轴和 Z0轴; 地磁 场坐标系是唯一的, 地磁场坐标系的 X轴、 Y轴及 z轴的方向固定。
[0038] 在步骤 S2中, 检测运输载体的运行姿态, 并获取运输载体姿态数据, 运输载体 姿态数据包括载体加速度数据和载体地磁场数据。
[0039] 具体的, 步骤 S2具体为: 检测运输载体分别在 XI轴、 Y1轴、 Z1轴三个轴向的 加速度, 以获取运输载体分别在 XI轴、 Y1轴、 Z1轴三个轴向的加速度数据, 即 载体加速度数据; 检测并获取运输载体所属的 XI轴偏移地磁场坐标系的 X轴的角 度、 运输载体所属的 Y1轴偏移地磁场坐标系的 Y轴的角度及运输载体所属的 Z0 轴偏移地磁场坐标系的 z轴的角度, 三个轴向上的偏移角度数据即为载体地磁场 数据。 其中, XI轴正方向与运输载体的水平运动方向一致, Z1轴正方向与重力 方向一致, Y1轴垂直于 XI轴和 Z1轴。 [0040] 在步骤 S3中, 基于货物地磁场数据和载体地磁场数据对货物加速度数据进行修 正, 以获取货物修正加速度数据。
[0041] 具体的, 步骤 S3具体为: 基于货物地磁场数据和载体地磁场数据对货物加速度 数据所属的 X0轴、 Y0轴及 Z0轴进行修正, 以使修正后的 X0轴、 修正后的 Y0轴 及修正后的 Z0轴的正方向分别与载体加速度数据所属的 XI轴、 Y1轴及 Z1轴的正 方向一致, 并根据货物加速度数据获取货物分别在 XI轴、 Y1轴及 Z1轴方向的加 速度数据, 即获取货物修正加速度数据。
[0042] 进一步具体的, 基于货物地磁场数据和载体地磁场数据对货物加速度数据所属 的 X0轴、 Y0轴及 Z0轴进行修正的步骤具体为: 根据货物所属的 X0轴偏移地磁场 坐标系的 X轴的角度和运输载体所属的 XI轴偏移地磁场坐标系的 X轴的角度之间 的差值对货物加速度数据所属的 X0轴进行修正; 根据货物所属的 Y0轴偏移地磁 场坐标系的 Y轴的角度和运输载体所属的 Y1轴偏移地磁场坐标系的 Y轴的角度之 间的差值对货物加速度数据所属的 Y0轴进行修正; 根据货物所属的 Z0轴偏移地 磁场坐标系的 Z轴的角度和运输载体所属的 Z1轴偏移地磁场坐标系的 Z轴的角度 之间的差值对货物加速度数据所述的 Z0轴进行修正, 以使修正后的 X0轴、 修正 后的 Y0轴及修正后的 Z0轴的正方向分别与载体加速度数据所属的 XI轴、 Y1轴及 Z1轴的正方向一致。
[0043] 在步骤 S4中, 判断货物修正加速度数据与载体加速度数据是否相同, 若是, 则 保存货物陀螺仪数据和货物地磁场数据分别作为货物静止陀螺仪数据和货物静 止地磁场数据; 若否, 则保存货物加速度数据和货物陀螺仪数据分别作为货物 运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状态异常提示至车载 终端和监控中心。
[0044] 具体的, 判断货物修正加速度数据与载体加速度数据是否相同的步骤具体为: 每隔预设吋间间隔获取当前吋刻之前预设吋间段内所有货物修正加速度数据的 平均值, 以及获取当前吋刻之前预设吋间段内所有载体加速度数据的平均值; 判断货物修正加速度数据的平均值与载体加速度数据的平均值是否相同。 例如
: 每隔 10秒获取当前吋刻之前 15秒内的所有的货物修正加速度数据, 并对所有 的货物修正加速度数据求平均值, 同吋, 获取当前吋刻之前 15秒内的所有的载 体加速度数据, 并对所有的载体加速度数据求平均值, 判断货物修正加速度数 据的平均值与载体加速度数据的平均值是否相同。 其中, 对所有的货物修正加 速度数据求平均值具体为: 对所有的货物修正加速度数据的 XI轴方向数据求平 均值、 Y1轴方向数据求平均值以及 Z1轴方向数据求平均值, 以获得货物修正加 速度数据的 XI轴方向数据平均值、 Y1轴方向数据平均值及 Z1轴方向数据平均值 ; 对所有的载体加速度数据求平均值具体为: 对所有的载体加速度数据的 XI轴 方向数据求平均值、 Y1轴方向数据求平均值以及 Z1轴方向数据求平均值, 以获 得载体加速度数据的 XI轴方向数据平均值、 Y1轴方向数据平均值及 Z1轴方向数 据平均值; 判断货物修正加速度数据的平均值与载体加速度数据的平均值是否 相同具体为: 判断货物修正加速度数据的 XI轴方向数据平均值、 Y1轴方向数据 平均值及 Z1轴方向数据平均值分别与载体加速度数据的 XI轴方向数据平均值、 Y1轴方向数据平均值及 Z1轴方向数据平均值是否相同, 如果有一个轴向数据平 均值不同, 则认为货物修正加速度数据的平均值与载体加速度数据的平均值不 相同。
[0045] 具体的, 若货物修正加速度数据与载体加速度数据相同, 则表示货物相对运输 载体是静止的, 此吋保存货物陀螺仪数据, 并将其作为货物静止陀螺仪数据; 若货物修正加速度数据与载体加速度数据不相同, 则表示货物运输状态异常 ( 如货物发生翻转、 颠簸或在运输载体上持续移动等异常状况) , 此吋保存货物 加速度数据、 货物地磁场数据及货物陀螺仪数据分别作为货物运动加速度数据 、 货物运动地磁场数据及货物运动陀螺仪数据。 当货物修正加速度数据与载体 加速度数据不相同吋, 则发送货物运输状态异常提示至车载终端和监控中心, 以向相关人员提示货物运输状态发生了异常。
[0046] 此外, 在本发明另一实施例中, 如图 2所示, 在步骤 S4之后还包括以下步骤: [0047] 在步骤 S5中, 基于货物静止陀螺仪数据和货物运动陀螺仪数据对货物运动加速 度数据进行修正, 以获取第一货物修正加速度数据。
[0048] 具体的, 在步骤 S5发生之前, 已经保存了货物静止陀螺仪数据和货物运动陀螺 仪数据, 即发生过货物修正加速度数据与载体加速度数据相同的情况。 当货物 修正加速度数据与载体加速度数据相同吋, 令该种情况下货物所属的坐标系为 X 2轴、 Y2轴及 Z2轴, 该种情况下基于货物地磁场数据和载体地磁场数据对货物加 速度数据所属的 X2轴、 Y2轴及 Z2轴进行修正, 以使修正后的 X2轴、 修正后的 Y 2轴及修正后的 Z2轴的正方向分别与载体加速度数据所属的 XI轴、 Y1轴及 Z1轴 的正方向一致, 并根据货物加速度数据获取货物分别在 XI轴、 Y1轴及 Z1轴方向 的加速度数据, 即获取货物修正加速度数据, 此吋所得到的货物修正加速度数 据与载体加速度数据相同。 当货物修正加速度数据与载体加速度数据不相同吋 , 令该种情况下货物所属的坐标系为 X3轴、 Y3轴及 Z3轴, 该种情况下基于货物 地磁场数据和载体地磁场数据对货物加速度数据所属的 X3轴、 Y3轴及 Z3轴进行 修正, 以使修正后的 X3轴、 修正后的 Y3轴及修正后的 Z3轴的正方向分别与载体 加速度数据所属的 XI轴、 Y1轴及 Z1轴的正方向一致, 并根据货物加速度数据获 取货物分别在 XI轴、 Y1轴及 Z1轴方向的加速度数据, 即获取货物修正加速度数 据, 此吋所得到的货物修正加速度数据与载体加速度数据不相同。 货物静止陀 螺仪数据和货物静止地磁场数据所属坐标系为 X2、 Y2、 Ζ2, 货物运动加速度数 据和货物运动陀螺仪数据所属坐标系为 Χ3、 Υ3、 Ζ3。
[0049] 具体的, 步骤 S5具体为: 根据货物静止陀螺仪数据的 Χ2轴数据和货物运动陀 螺仪数据的 Χ3轴数据之间的差值对货物运动加速度数据所属的 Χ3轴进行修正, 根据货物静止陀螺仪数据的 Υ2轴数据和货物运动陀螺仪数据的 Υ3轴数据之间的 差值对货物运动加速度数据所属的 Υ3轴进行修正, 货物静止陀螺仪数据的 Ζ2轴 数据和货物运动陀螺仪数据的 Ζ3轴数据之间的差值对货物运动加速度数据所属 的 Ζ3轴进行修正, 以使修正后的 Χ3轴、 Υ3轴及 Ζ3轴的正方向分别与货物静止陀 螺仪数据所属的 Χ2轴、 Υ2轴及 Ζ2轴的正方向一致, 并根据货物运动加速度数据 获取货物分别在 Χ2轴、 Υ2轴及 Ζ2轴方向的加速度数据, 即获取第一货物修正加 速度数据。
[0050] 在步骤 S6中, 基于货物静止地磁场数据和载体地磁场数据对第一货物修正加速 度数据进行修正, 以获取第二货物修正加速度数据。
[0051] 具体的, 步骤 S6具体为: 根据货物静止地磁场数据所属的 Χ2轴偏移地磁场坐 标系的 X轴的角度和载体地磁场数据所属的 XI轴偏移地磁场坐标系的 X轴的角度 之间的差值对第一货物修正加速度数据所属的 Χ2轴进行修正, 根据货物静止地 磁场数据所属的 Y2轴偏移地磁场坐标系的 Υ轴的角度和载体地磁场数据所属的 Υ 1轴偏移地磁场坐标系的 Υ轴的角度之间的差值对第一货物修正加速度数据所属 的 Υ2轴进行修正, 根据货物静止地磁场数据所属的 Ζ2轴偏移地磁场坐标系的 Ζ轴 的角度和载体地磁场数据所属的 Z1轴偏移地磁场坐标系的 Ζ轴的角度之间的差值 对第一货物修正加速度数据所属的 Ζ2轴进行修正, 以使修正后的 Χ2轴、 Υ2轴及 Ζ2轴的正方向分别与 XI轴、 Y1轴及 Z1轴的正方向一致, 并根据第一货物修正加 速度数据获取货物分别在 XI轴、 Y1轴及 Z1轴方向的加速度数据, 即获取货物第 二修正加速度数据。
[0052] 在步骤 S7中, 判断第二货物修正加速度数据与载体加速度数据是否相同; 若是 , 则发送货物短暂异常提示至车载终端; 若否, 则发送货物持续异常提示至车 载终端和监控中心。
[0053] 具体的, 判断第二货物修正加速度数据与载体加速度数据是否相同的步骤具体 为: 判断第二货物修正加速度数据的 XI轴方向数据、 Y1轴方向数据及 Z1轴方向 数据分别与载体加速度数据的 XI轴方向数据、 Y1轴方向数据及 Z1轴方向数据是 否相同, 若有一轴向数据不同, 则第二货物修正加速度数据与载体加速度数据 不相同。
[0054] 具体的, 当判断第二货物修正加速度数据与载体加速度数据相同吋, 则发送货 物短暂异常提示至车载终端, 以向相关人员提示货物发生了短暂运动 (如翻转 、 颠簸等) , 现已相对运输载体静止, 若不相同, 则发送货物持续异常提示至 车载终端和监控中心, 以向相关人员提示货物发生了持续异常状况 (如持续移 动等) 。
[0055] 图 3示出了本发明另一实施例提供的货物运输状态监测方法的实现流程, 为了 便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0056] 在步骤 S10中, 获取货物姿态数据和运输载体姿态数据并上传至数据分析端, 货物姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据, 运输 载体姿态数据包括载体加速度数据和载体地磁场数据。
[0057] 具体的, 步骤 S10具体为: 检测货物分别在 Χ0轴、 Υ0轴、 Ζ0轴三个轴向的加速 度, 以获取货物分别在 Χ0轴、 Υ0轴、 Ζ0轴三个轴向的加速度数据, 即货物加速 度数据; 检测并获取货物所属的 xo轴偏移地磁场坐标系的 X轴的角度、 货物所属 的 Y0轴偏移地磁场坐标系的 Y轴的角度及货物所属的 Z0轴偏移地磁场坐标系的 Z 轴的角度, 三个轴向上的偏移角度数据即为货物地磁场数据; 检测货物分别在 X 0轴、 Y0轴、 Z0轴三个轴向的运动角度, 以获取货物分别在 X0轴、 Y0轴、 Z0轴 三个轴向的运动角度数据, 即货物陀螺仪数据。 其中, xo轴正方向与货物的水 平运动方向一致, Z0轴正方向与重力方向一致, Y0轴垂直于 X0轴和 Z0轴; 地磁 场坐标系是唯一的, 地磁场坐标系的 X轴、 Y轴及 z轴的方向固定。 检测运输载 体分别在 XI轴、 Y1轴、 Z1轴三个轴向的加速度, 以获取运输载体分别在 XI轴、 Y1轴、 Z1轴三个轴向的加速度数据, 即载体加速度数据; 检测并获取运输载体 所属的 XI轴偏移地磁场坐标系的 X轴的角度、 运输载体所属的 Y1轴偏移地磁场 坐标系的 Y轴的角度及运输载体所属的 Z0轴偏移地磁场坐标系的 Z轴的角度, 三 个轴向上的偏移角度数据即为载体地磁场数据。 其中, XI轴正方向与运输载体 的水平运动方向一致, Z1轴正方向与重力方向一致, Y1轴垂直于 XI轴和 Z1轴。
[0058] 在步骤 S20中, 数据分析端基于货物地磁场数据和载体地磁场数据对货物加速 度数据进行修正, 以获取货物修正加速度数据, 以及判断货物修正加速度数据 与载体加速度数据是否相同, 若是, 则保存货物陀螺仪数据和货物地磁场数据 分别作为货物静止陀螺仪数据和货物静止地磁场数据; 若否, 则保存货物加速 度数据和货物陀螺仪数据分别作为货物运动加速度数据和货物运动陀螺仪数据 , 并发送货物运输状态异常提示至车载终端和监控中心。
[0059] 具体的, 数据分析端基于货物地磁场数据和载体地磁场数据对货物加速度数据 进行修正, 以获取货物修正加速度数据的步骤具体为: 基于货物地磁场数据和 载体地磁场数据对货物加速度数据所属的 X0轴、 Y0轴及 Z0轴进行修正, 以使修 正后的 X0轴、 修正后的 Y0轴及修正后的 Z0轴的正方向分别与载体加速度数据所 属的 XI轴、 Y1轴及 Z1轴的正方向一致, 并根据货物加速度数据获取货物分别在 XI轴、 Y1轴及 Z1轴方向的加速度数据, 即获取货物修正加速度数据。
[0060] 进一步具体的, 基于货物地磁场数据和载体地磁场数据对货物加速度数据所属 的 X0轴、 Y0轴及 Z0轴进行修正的步骤具体为: 根据货物所属的 X0轴偏移地磁场 坐标系的 X轴的角度和运输载体所属的 XI轴偏移地磁场坐标系的 X轴的角度之间 的差值对货物加速度数据所属的 xo轴进行修正; 根据货物所属的 Y0轴偏移地磁 场坐标系的 Y轴的角度和运输载体所属的 Y1轴偏移地磁场坐标系的 Y轴的角度之 间的差值对货物加速度数据所属的 Y0轴进行修正; 根据货物所属的 Z0轴偏移地 磁场坐标系的 Z轴的角度和运输载体所属的 Z1轴偏移地磁场坐标系的 Z轴的角度 之间的差值对货物加速度数据所述的 Z0轴进行修正, 以使修正后的 X0轴、 修正 后的 Y0轴及修正后的 Z0轴的正方向分别与载体加速度数据所属的 XI轴、 Y1轴及 Z1轴的正方向一致。
[0061] 具体的, 数据分析端判断货物修正加速度数据与载体加速度数据是否相同的步 骤具体为: 数据分析端每隔预设吋间间隔获取当前吋刻之前预设吋间段内所有 货物修正加速度数据的平均值, 以及获取当前吋刻之前预设吋间段内所有载体 加速度数据的平均值; 判断货物修正加速度数据的平均值与载体加速度数据的 平均值是否相同。 例如: 每隔 10秒获取当前吋刻之前 15秒内的所有的货物修正 加速度数据, 并对所有的货物修正加速度数据求平均值, 同吋, 获取当前吋刻 之前 15秒内的所有的载体加速度数据, 并对所有的载体加速度数据求平均值, 判断货物修正加速度数据的平均值与载体加速度数据的平均值是否相同。 其中 , 对所有的货物修正加速度数据求平均值具体为: 对所有的货物修正加速度数 据的 XI轴方向数据求平均值、 Y1轴方向数据求平均值以及 Z1轴方向数据求平均 值, 以获得货物修正加速度数据的 XI轴方向数据平均值、 Y1轴方向数据平均值 及 Z1轴方向数据平均值; 对所有的载体加速度数据求平均值具体为: 对所有的 载体加速度数据的 XI轴方向数据求平均值、 Y1轴方向数据求平均值以及 Z1轴方 向数据求平均值, 以获得载体加速度数据的 XI轴方向数据平均值、 Y1轴方向数 据平均值及 Z1轴方向数据平均值; 判断货物修正加速度数据的平均值与载体加 速度数据的平均值是否相同具体为: 判断货物修正加速度数据的 XI轴方向数据 平均值、 Y1轴方向数据平均值及 Z1轴方向数据平均值分别与载体加速度数据的 XI轴方向数据平均值、 Y1轴方向数据平均值及 Z1轴方向数据平均值是否相同, 如果有一个轴向数据平均值不同, 则认为货物修正加速度数据的平均值与载体 加速度数据的平均值不相同。
[0062] 具体的, 若数据分析端判断货物修正加速度数据与载体加速度数据相同, 则表 示货物相对运输载体是静止的, 此吋保存货物陀螺仪数据, 并将其作为货物静 止陀螺仪数据; 若数据分析端判断货物修正加速度数据与载体加速度数据不相 同, 则表示货物运输状态异常 (如货物发生翻转、 颠簸或在运输载体上持续移 动等异常状况) , 此吋保存货物加速度数据、 货物地磁场数据及货物陀螺仪数 据分别作为货物运动加速度数据、 货物运动地磁场数据及货物运动陀螺仪数据 。 当货物修正加速度数据与载体加速度数据不相同吋, 则发送货物运输状态异 常提示至车载终端和监控中心, 以向相关人员提示货物运输状态发生了异常。
[0063] 图 4示出了本发明另一实施例提供的货物运输状态监测方法的实现流程, 为了 便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0064] 在步骤 S100中, 接收数据监测端所获取的货物姿态数据和运输载体姿态数据, 货物姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据, 运输 载体姿态数据包括载体加速度数据和载体地磁场数据。
[0065] 具体的, 步骤 S100具体为: 接收数据监测端所获取的货物分别在 X0轴、 Y0轴 、 Z0轴三个轴向的加速度数据, 即货物加速度数据; 以及货物所属的 X0轴偏移 地磁场坐标系的 X轴的角度、 货物所属的 Y0轴偏移地磁场坐标系的 Y轴的角度及 货物所属的 Z0轴偏移地磁场坐标系的 Z轴的角度, 即货物地磁场数据; 以及货物 分别在 X0轴、 Y0轴、 Z0轴三个轴向的运动角度数据, 即货物陀螺仪数据。 其中 , X0轴正方向与货物的水平运动方向一致, Z0轴正方向与重力方向一致, Y0轴 垂直于 X0轴和 Z0轴; 地磁场坐标系是唯一的, 地磁场坐标系的 X轴、 Y轴及 Z轴 的方向固定。 同吋, 接收数据监测端所获取的运输载体分别在 XI轴、 Y1轴、 Z1 轴三个轴向的加速度数据, 即载体加速度数据; 以及运输载体所属的 XI轴偏移 地磁场坐标系的 X轴的角度、 运输载体所属的 Y 1轴偏移地磁场坐标系的 Y轴的角 度及运输载体所属的 Z0轴偏移地磁场坐标系的 Z轴的角度, 即载体地磁场数据。 其中, XI轴正方向与运输载体的水平运动方向一致, Z1轴正方向与重力方向一 致, Y1轴垂直于 XI轴和 Z1轴。
[0066] 在步骤 S200中, 基于货物地磁场数据和载体地磁场数据对货物加速度数据进行 修正, 以获取货物修正加速度数据。
[0067] 具体的, 步骤 S200具体为: 基于货物地磁场数据和载体地磁场数据对货物加速 度数据所属的 XO轴、 Y0轴及 ZO轴进行修正, 以使修正后的 X0轴、 修正后的 Y0 轴及修正后的 Z0轴的正方向分别与载体加速度数据所属的 XI轴、 Y1轴及 Z1轴的 正方向一致, 并根据货物加速度数据获取货物分别在 XI轴、 Y1轴及 Z1轴方向的 加速度数据, 即获取货物修正加速度数据。
[0068] 进一步具体的, 基于货物地磁场数据和载体地磁场数据对货物加速度数据所属 的 X0轴、 Y0轴及 Z0轴进行修正的步骤具体为: 根据货物所属的 X0轴偏移地磁场 坐标系的 X轴的角度和运输载体所属的 XI轴偏移地磁场坐标系的 X轴的角度之间 的差值对货物加速度数据所属的 X0轴进行修正; 根据货物所属的 Y0轴偏移地磁 场坐标系的 Y轴的角度和运输载体所属的 Y1轴偏移地磁场坐标系的 Y轴的角度之 间的差值对货物加速度数据所属的 Y0轴进行修正; 根据货物所属的 Z0轴偏移地 磁场坐标系的 Z轴的角度和运输载体所属的 Z1轴偏移地磁场坐标系的 Z轴的角度 之间的差值对货物加速度数据所述的 Z0轴进行修正, 以使修正后的 X0轴、 修正 后的 Y0轴及修正后的 Z0轴的正方向分别与载体加速度数据所属的 XI轴、 Y1轴及 Z1轴的正方向一致。
[0069] 在步骤 S300中, 判断货物修正加速度数据与载体加速度数据是否相同, 若是, 则保存货物陀螺仪数据和货物地磁场数据分别作为货物静止陀螺仪数据和货物 静止地磁场数据; 若否, 则保存货物加速度数据和货物陀螺仪数据分别作为货 物运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状态异常提示至车 载终端和监控中心。
[0070] 具体的, 判断货物修正加速度数据与载体加速度数据是否相同的步骤具体为: 每隔预设吋间间隔获取当前吋刻之前预设吋间段内所有货物修正加速度数据的 平均值, 以及获取当前吋刻之前预设吋间段内所有载体加速度数据的平均值; 判断货物修正加速度数据的平均值与载体加速度数据的平均值是否相同。 例如
: 每隔 10秒获取当前吋刻之前 15秒内的所有的货物修正加速度数据, 并对所有 的货物修正加速度数据求平均值, 同吋, 获取当前吋刻之前 15秒内的所有的载 体加速度数据, 并对所有的载体加速度数据求平均值, 判断货物修正加速度数 据的平均值与载体加速度数据的平均值是否相同。 其中, 对所有的货物修正加 速度数据求平均值具体为: 对所有的货物修正加速度数据的 XI轴方向数据求平 均值、 Yl轴方向数据求平均值以及 Zl轴方向数据求平均值, 以获得货物修正加 速度数据的 XI轴方向数据平均值、 Y1轴方向数据平均值及 Z1轴方向数据平均值 ; 对所有的载体加速度数据求平均值具体为: 对所有的载体加速度数据的 XI轴 方向数据求平均值、 Y1轴方向数据求平均值以及 Z1轴方向数据求平均值, 以获 得载体加速度数据的 XI轴方向数据平均值、 Y1轴方向数据平均值及 Z1轴方向数 据平均值; 判断货物修正加速度数据的平均值与载体加速度数据的平均值是否 相同具体为: 判断货物修正加速度数据的 XI轴方向数据平均值、 Y1轴方向数据 平均值及 Z1轴方向数据平均值分别与载体加速度数据的 XI轴方向数据平均值、 Y1轴方向数据平均值及 Z1轴方向数据平均值是否相同, 如果有一个轴向数据平 均值不同, 则认为货物修正加速度数据的平均值与载体加速度数据的平均值不 相同。
[0071] 具体的, 若货物修正加速度数据与载体加速度数据相同, 则表示货物相对运输 载体是静止的, 此吋保存货物陀螺仪数据, 并将其作为货物静止陀螺仪数据; 若货物修正加速度数据与载体加速度数据不相同, 则表示货物运输状态异常 ( 如货物发生翻转、 颠簸或在运输载体上持续移动等异常状况) , 此吋保存货物 加速度数据、 货物地磁场数据及货物陀螺仪数据分别作为货物运动加速度数据 、 货物运动地磁场数据及货物运动陀螺仪数据。 当货物修正加速度数据与载体 加速度数据不相同吋, 则发送货物运输状态异常提示至车载终端和监控中心, 以向相关人员提示货物运输状态发生了异常。
[0072] 此外, 在本发明另一实施例中, 如图 5所示, 在步骤 S300之后还包括以下步骤
[0073] 在步骤 S400中, 基于货物静止陀螺仪数据和货物运动陀螺仪数据对货物运动加 速度数据进行修正, 以获取第一货物修正加速度数据。
[0074] 具体的, 在步骤 S400发生之前, 已经保存了货物静止陀螺仪数据和货物运动陀 螺仪数据, 即发生过货物修正加速度数据与载体加速度数据相同的情况。 当货 物修正加速度数据与载体加速度数据相同吋, 令该种情况下货物所属的坐标系 为 X2轴、 Y2轴及 Z2轴, 该种情况下基于货物地磁场数据和载体地磁场数据对货 物加速度数据所属的 X2轴、 Y2轴及 Z2轴进行修正, 以使修正后的 X2轴、 修正后 的 Y2轴及修正后的 Z2轴的正方向分别与载体加速度数据所属的 XI轴、 Y1轴及 Z1 轴的正方向一致, 并根据货物加速度数据获取货物分别在 XI轴、 Y1轴及 Z1轴方 向的加速度数据, 即获取货物修正加速度数据, 此吋所得到的货物修正加速度 数据与载体加速度数据相同。 当货物修正加速度数据与载体加速度数据不相同 吋, 令该种情况下货物所属的坐标系为 X3轴、 Y3轴及 Z3轴, 该种情况下基于货 物地磁场数据和载体地磁场数据对货物加速度数据所属的 X3轴、 Y3轴及 Z3轴进 行修正, 以使修正后的 X3轴、 修正后的 Y3轴及修正后的 Z3轴的正方向分别与载 体加速度数据所属的 XI轴、 Y1轴及 Z1轴的正方向一致, 并根据货物加速度数据 获取货物分别在 XI轴、 Y1轴及 Z1轴方向的加速度数据, 即获取货物修正加速度 数据, 此吋所得到的货物修正加速度数据与载体加速度数据不相同。 货物静止 陀螺仪数据和货物静止地磁场数据所属坐标系为 X2轴、 Y2轴、 Z2轴, 货物运动 加速度数据和货物运动陀螺仪数据所属坐标系为 X3轴、 Y3轴、 Z3轴。
[0075] 具体的, 步骤 S400具体为: 根据货物静止陀螺仪数据的 X2轴数据和货物运动 陀螺仪数据的 X3轴数据之间的差值对货物运动加速度数据所属的 X3轴进行修正 , 根据货物静止陀螺仪数据的 Y2轴数据和货物运动陀螺仪数据的 Y3轴数据之间 的差值对货物运动加速度数据所属的 Y3轴进行修正, 货物静止陀螺仪数据的 Z2 轴数据和货物运动陀螺仪数据的 Z3轴数据之间的差值对货物运动加速度数据所 属的 Z3轴进行修正, 以使修正后的 X3轴、 Y3轴及 Z3轴的正方向分别与货物静止 陀螺仪数据所属的 X2轴、 Y2轴及 Z2轴的正方向一致, 并根据货物运动加速度数 据获取货物分别在 X2轴、 Y2轴及 Z2轴方向的加速度数据, 即获取第一货物修正 加速度数据。
[0076] 在步骤 S500中, 基于货物静止地磁场数据和载体地磁场数据对第一货物修正加 速度数据进行修正, 以获取第二货物修正加速度数据。
[0077] 具体的, 步骤 S500具体为: 根据货物静止地磁场数据所属的 X2轴偏移地磁场 坐标系的 X轴的角度和载体地磁场数据所属的 XI轴偏移地磁场坐标系的 X轴的角 度之间的差值对第一货物修正加速度数据所属的 X2轴进行修正, 根据货物静止 地磁场数据所属的 Y2轴偏移地磁场坐标系的 Y轴的角度和载体地磁场数据所属的 Y1轴偏移地磁场坐标系的 Y轴的角度之间的差值对第一货物修正加速度数据所属 的 Y2轴进行修正, 根据货物静止地磁场数据所属的 Ζ2轴偏移地磁场坐标系的 Ζ轴 的角度和载体地磁场数据所属的 Z1轴偏移地磁场坐标系的 Ζ轴的角度之间的差值 对第一货物修正加速度数据所属的 Ζ2轴进行修正, 以使修正后的 Χ2轴、 Υ2轴及 Ζ2轴的正方向分别与 XI轴、 Y1轴及 Z1轴的正方向一致, 并根据第一货物修正加 速度数据获取货物分别在 XI轴、 Y1轴及 Z1轴方向的加速度数据, 即获取货物第 二修正加速度数据。
[0078] 在步骤 S600中, 判断第二货物修正加速度数据与载体加速度数据是否相同; 若 是, 则发送货物短暂异常提示至车载终端; 若否, 则发送货物持续异常提示至 车载终端和监控中心。
[0079] 具体的, 判断第二货物修正加速度数据与载体加速度数据是否相同的步骤具体 为: 判断第二货物修正加速度数据的 XI轴方向数据、 Y1轴方向数据及 Z1轴方向 数据分别与载体加速度数据的 XI轴方向数据、 Y1轴方向数据及 Z1轴方向数据是 否相同, 若有一轴向数据不同, 则第二货物修正加速度数据与载体加速度数据 不相同。
[0080] 具体的, 当判断第二货物修正加速度数据与载体加速度数据相同吋, 则发送货 物短暂异常提示至车载终端, 以向相关人员提示货物发生了短暂运动 (如翻转 、 颠簸等) , 现已相对运输载体静止, 若不相同, 则发送货物持续异常提示至 车载终端和监控中心, 以向相关人员提示货物发生了持续异常状况 (如持续移 动等) 。
[0081] 图 6示出了本发明实施例提供的货物运输状态监测系统 10的结构, 为了便于说 明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0082] 货物运输状态监测系统 10包括货物监测终端 100、 载体监测终端 200及服务器 30
0。
[0083] 货物监测终端 100检测货物的运行姿态, 并获取货物姿态数据以上传至服务器 3 00, 货物姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据。
[0084] 载体监测终端 200检测运输载体的运行姿态, 并获取运输载体姿态数据以上传 至服务器 300, 运输载体姿态数据包括载体加速度数据和载体地磁场数据。
[0085] 服务器 300基于货物地磁场数据和载体地磁场数据对货物加速度数据进行修正 以获取货物修正加速度数据, 并判断货物修正加速度数据与载体加速度数据是 否相同, 若是, 则保存货物陀螺仪数据和货物地磁场数据分别作为货物静止陀 螺仪数据和货物静止地磁场数据; 若否, 则保存货物加速度数据和货物陀螺仪 数据分别作为货物运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状 态异常提示至车载终端和监控中心。
[0086] 具体的, 货物监测终端 100固定于货物的外包装上, 货物监测终端 100可包括三 轴加速度传感器、 三轴地磁场传感器及三轴陀螺仪, 分别用于获取货物加速度 数据、 货物地磁场数据及货物陀螺仪数据。 载体监测终端 200固定于运输载体上 , 载体监测终端 200可包括三轴加速度传感器和三轴地磁场传感器, 分别用于获 取载体加速度数据和载体地磁场数据。
[0087] 本发明实施例提供的货物运输状态监测系统 10可以应用于与图 1和图 2对应的货 物运输状态监测方法实施例中, 详情参见上述货物运输状态监测方法实施例的 描述, 在此不再赘述。
[0088] 本发明另一实施例提供一种监测终端, 监测终端包括货物监测终端 100和载体 监测终端 200。
[0089] 货物监测终端 100用于获取货物姿态数据并上传至服务器 300, 货物姿态数据包 括货物加速度数据、 货物地磁场数据及货物陀螺仪数据; 载体监测终端 200用于 获取运输载体姿态数据并上传至服务器 300, 运输载体姿态数据包括载体加速度 数据和载体地磁场数据; 以使服务器 300基于货物地磁场数据和载体地磁场数据 对货物加速度数据进行修正以获取货物修正加速度数据, 并判断货物修正加速 度数据与载体加速度数据是否相同, 若是, 则保存货物陀螺仪数据和货物地磁 场数据分别作为货物静止陀螺仪数据和货物静止地磁场数据; 若否, 则保存货 物加速度数据和货物陀螺仪数据分别作为货物运动加速度数据和货物运动陀螺 仪数据, 并发送货物运输状态异常提示至车载终端和监控中心。
[0090] 本发明实施例提供的监测终端可以应用于与图 3对应的货物运输状态监测方法 实施例中, 详情参见上述货物运输状态监测方法实施例的描述, 在此不再赘述
[0091] 图 7示出了本发明实施例提供的服务器 300的结构, 为了便于说明, 仅示出了与 本发明实施例相关的部分, 详述如下:
[0092] 服务器 300包括数据接收模块 301、 数据修正模块 302及状态判断模块 303。
[0093] 数据接收模块 301用于接收货物监测终端 100所获取的货物姿态数据, 货物姿态 数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据; 以及接收载体 监测终端 200所获取的运输载体姿态数据, 运输载体姿态数据包括载体加速度数 据和载体地磁场数据。
[0094] 数据修正模块 302用于基于货物地磁场数据和载体地磁场数据对货物加速度数 据进行修正, 以获取货物修正加速度数据。
[0095] 状态判断模块 303用于判断货物修正加速度数据与载体加速度数据是否相同, 若是, 则保存货物陀螺仪数据和货物地磁场数据分别作为货物静止陀螺仪数据 和货物静止地磁场数据; 若否, 则保存货物加速度数据和货物陀螺仪数据分别 作为货物运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状态异常提 示至车载终端和监控中心。
[0096] 本发明实施例提供的服务器可以应用于与图 4和图 5对应的货物运输状态监测方 法实施例中, 详情参见上述货物运输状态监测方法实施例的描述, 在此不再赘 述。
[0097] 本发明还提供了服务器的另一种优先的实施例, 图 8示出了服务器的另一种结 构, 服务器包括处理器 30 (processor) , 通信接口 31 (Communications Interface ) , 存储器 32 (memory) , 总线 33。
[0098] 处理器 30, 通信接口 31, 存储器 32通过总线 33完成相互间的通信。
[0099] 通信接口 31, 用于与外界设备, 例如, 个人电脑、 服务器等通信。
[0100] 处理器 30, 用于执行程序 34。
[0101] 具体地, 程序 34可以包括程序代码, 所述程序代码包括计算机操作指令。
[0102] 处理器 30可能是一个中央处理器 CPU, 或者是特定集成电路 ASIC (Application Specific Integrated Circuit) , 或者是被配置成实施本发明实施例的一个或多个集 成电路。
[0103] 存储器 32, 用于存放程序 34。 存储器 32可能包含高速 RAM存储器, 也可能还 包括非易失性存储器 (non-volatile memory) , 例如至少一个磁盘存储器。 程序 34具体可以包括:
[0104] 数据接收模块 301, 用于接收货物监测终端所获取的货物姿态数据, 货物姿态 数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据; 以及接收载体 监测终端所获取的运输载体姿态数据, 运输载体姿态数据包括载体加速度数据 和载体地磁场数据。
[0105] 数据修正模块 302, 用于基于货物地磁场数据和载体地磁场数据对货物加速度 数据进行修正, 以获取货物修正加速度数据。
[0106] 状态判断模块 303, 用于判断货物修正加速度数据与载体加速度数据是否相同 , 若是, 则保存货物陀螺仪数据和货物地磁场数据分别作为货物静止陀螺仪数 据和货物静止地磁场数据; 若否, 则保存货物加速度数据和货物陀螺仪数据分 别作为货物运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状态异常 提示至车载终端和监控中心。
[0107] 在本发明中, 货物运输状态监测方法包括: 检测货物的加速度, 并获取货物加 速度数据; 检测运输载体的加速度, 并获取运输载体加速度数据; 基于运输载 体加速度数据对货物加速度数据进行修正以得到货物修正加速度数据; 判断货 物修正加速度数据与运输载体加速度数据是否相同, 若否, 则发送货物运输状 态异常提示至车载终端和监控中心。 通过判断货物修正加速度数据与运输载体 加速度数据是否相同, 当相同吋, 则货物相对运输载体静止, 当不相同吋, 则 货物出现异常状态, 因此可得知货物在运输途中的实吋状态。
[0108] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种货物运输状态监测方法, 其特征在于, 所述货物运输状态监测方 法包括:
检测货物的运行姿态, 并获取货物姿态数据, 所述货物姿态数据包括 货物加速度数据、 货物地磁场数据及货物陀螺仪数据;
检测运输载体的运行姿态, 并获取运输载体姿态数据, 所述运输载体 姿态数据包括载体加速度数据和载体地磁场数据; 基于所述货物地磁场数据和所述载体地磁场数据对所述货物加速度数 据进行修正, 以获取货物修正加速度数据;
判断所述货物修正加速度数据与所述载体加速度数据是否相同, 若是
, 则保存所述货物陀螺仪数据和所述货物地磁场数据分别作为货物静 止陀螺仪数据和货物静止地磁场数据; 若否, 则保存所述货物加速度 数据和所述货物陀螺仪数据分别作为货物运动加速度数据和货物运动 陀螺仪数据, 并发送货物运输状态异常提示至车载终端和监控中心。
[权利要求 2] 如权利要求 1所述的货物运输状态监测方法, 其特征在于, 所述若否
, 则保存所述货物加速度数据、 所述货物地磁场数据及所述货物陀螺 仪数据分别作为货物运动加速度数据、 货物运动地磁场数据及货物运 动陀螺仪数据, 并发送货物运输状态异常提示至车载终端和监控中心 的步骤之后还包括:
基于所述货物静止陀螺仪数据和所述货物运动陀螺仪数据对所述货物 运动加速度数据进行修正, 以获取第一货物修正加速度数据; 基于所述货物静止地磁场数据和所述载体地磁场数据对所述第一货物 修正加速度数据进行修正, 以获取第二货物修正加速度数据; 判断所述第二货物修正加速度数据与所述载体加速度数据是否相同; 若是, 则发送货物短暂异常提示至所述车载终端; 若否, 则发送货物 持续异常提示至所述车载终端和所述监控中心。
[权利要求 3] 如权利要求 1所述的货物运输状态监测方法, 其特征在于, 所述判断 所述货物修正加速度数据与所述载体加速度数据是否相同的步骤具体 为:
每隔预设吋间间隔获取当前吋刻之前预设吋间段内所有所述货物修正 加速度数据的平均值, 以及获取当前吋刻之前预设吋间段内所有所述 载体加速度数据的平均值;
判断所述货物修正加速度数据的平均值与所述载体加速度数据的平均 值是否相同。
[权利要求 4] 一种货物运输状态监测方法, 其特征在于, 所述货物运输状态监测方 法包括:
获取货物姿态数据和运输载体姿态数据并上传至数据分析端, 所述货 物姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据 , 所述运输载体姿态数据包括载体加速度数据和载体地磁场数据; 以 使所述数据分析端基于所述货物地磁场数据和所述载体地磁场数据对 所述货物加速度数据进行修正, 以获取货物修正加速度数据, 以及判 断所述货物修正加速度数据与所述载体加速度数据是否相同, 若是, 则保存所述货物陀螺仪数据和所述货物地磁场数据分别作为货物静止 陀螺仪数据和货物静止地磁场数据; 若否, 则保存所述货物加速度数 据和所述货物陀螺仪数据分别作为货物运动加速度数据和货物运动陀 螺仪数据, 并发送货物运输状态异常提示至车载终端和监控中心。
[权利要求 5] —种货物运输状态监测方法, 其特征在于, 所述货物运输状态监测方 法包括:
接收数据监测端所获取的货物姿态数据和运输载体姿态数据, 所述货 物姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据 , 所述运输载体姿态数据包括载体加速度数据和载体地磁场数据; 基于所述货物地磁场数据和所述载体地磁场数据对所述货物加速度数 据进行修正, 以获取货物修正加速度数据;
判断所述货物修正加速度数据与所述载体加速度数据是否相同, 若是 , 则保存所述货物陀螺仪数据和所述货物地磁场数据分别作为货物静 止陀螺仪数据和货物静止地磁场数据; 若否, 则保存所述货物加速度 数据和所述货物陀螺仪数据分别作为货物运动加速度数据和货物运动 陀螺仪数据, 并发送货物运输状态异常提示至车载终端和监控中心。
[权利要求 6] 如权利要求 5所述的货物运输状态监测方法, 其特征在于, 所述若否
, 则保存所述货物加速度数据、 所述货物地磁场数据及所述货物陀螺 仪数据分别作为货物运动加速度数据、 货物运动地磁场数据及货物运 动陀螺仪数据, 并发送货物运输状态异常提示至车载终端和监控中心 的步骤之后还包括:
基于所述货物静止陀螺仪数据和所述货物运动陀螺仪数据对所述货物 运动加速度数据进行修正, 以获取第一货物修正加速度数据; 基于所述货物静止地磁场数据和所述载体地磁场数据对所述第一货物 修正加速度数据进行修正, 以获取第二货物修正加速度数据; 判断所述第二货物修正加速度数据与所述载体加速度数据是否相同; 若是, 则发送货物短暂异常提示至所述车载终端; 若否, 则发送货物 持续异常提示至所述车载终端和所述监控中心。
[权利要求 7] 如权利要求 5所述的货物运输状态监测方法, 其特征在于, 所述判断 所述货物修正加速度数据与所述载体加速度数据是否相同的步骤具体 为:
每隔预设吋间间隔获取当前吋刻之前预设吋间段内所有所述货物修正 加速度数据的平均值, 以及获取当前吋刻之前预设吋间段内所有所述 载体加速度数据的平均值;
判断所述货物修正加速度数据的平均值与所述载体加速度数据的平均 值是否相同。
[权利要求 8] —种货物运输状态监测系统, 其特征在于, 所述货物运输状态监测系 统包括货物监测终端、 载体监测终端及服务器; 所述货物监测终端检测货物的运行姿态, 并获取货物姿态数据以上传 至所述服务器, 所述货物姿态数据包括货物加速度数据、 货物地磁场 数据及货物陀螺仪数据;
所述载体监测终端检测运输载体的运行姿态, 并获取运输载体姿态数 据以上传至所述服务器, 所述运输载体姿态数据包括载体加速度数据 和载体地磁场数据;
所述服务器基于所述货物地磁场数据和所述载体地磁场数据对所述货 物加速度数据进行修正以获取货物修正加速度数据, 并判断所述货物 修正加速度数据与所述载体加速度数据是否相同, 若是, 则保存所述 货物陀螺仪数据和所述货物地磁场数据分别作为货物静止陀螺仪数据 和货物静止地磁场数据; 若否, 则保存所述货物加速度数据和所述货 物陀螺仪数据分别作为货物运动加速度数据和货物运动陀螺仪数据, 并发送货物运输状态异常提示至车载终端和监控中心。
[权利要求 9] 一种监测终端, 其特征在于, 所述监测终端包括货物监测终端和载体 监测终端;
所述货物监测终端用于获取货物姿态数据并上传至服务器, 所述货物 姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数据; 所述载体监测终端用于获取运输载体姿态数据并上传至服务器, 所述 运输载体姿态数据包括载体加速度数据和载体地磁场数据; 以使服务 器基于所述货物地磁场数据和所述载体地磁场数据对所述货物加速度 数据进行修正以获取货物修正加速度数据, 并判断所述货物修正加速 度数据与所述载体加速度数据是否相同, 若是, 则保存所述货物陀螺 仪数据和所述货物地磁场数据分别作为货物静止陀螺仪数据和货物静 止地磁场数据; 若否, 则保存所述货物加速度数据和所述货物陀螺仪 数据分别作为货物运动加速度数据和货物运动陀螺仪数据, 并发送货 物运输状态异常提示至车载终端和监控中心。
[权利要求 10] —种服务器, 其特征在于, 所述服务器包括:
数据接收模块, 用于接收货物监测终端所获取的货物姿态数据, 所述 货物姿态数据包括货物加速度数据、 货物地磁场数据及货物陀螺仪数 据; 以及接收载体监测终端所获取的运输载体姿态数据, 所述运输载 体姿态数据包括载体加速度数据和载体地磁场数据;
数据修正模块, 用于基于所述货物地磁场数据和所述载体地磁场数据 对所述货物加速度数据进行修正, 以获取货物修正加速度数据; 状态判断模块, 用于判断所述货物修正加速度数据与所述载体加速度 数据是否相同, 若是, 则保存所述货物陀螺仪数据和所述货物地磁场 数据分别作为货物静止陀螺仪数据和货物静止地磁场数据; 若否, 则 保存所述货物加速度数据和所述货物陀螺仪数据分别作为货物运动加 速度数据和货物运动陀螺仪数据, 并发送货物运输状态异常提示至车 载终端和监控中心。
PCT/CN2016/088430 2016-07-04 2016-07-04 货物运输状态监测方法、监测系统、监测终端及服务器 WO2018006247A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/088430 WO2018006247A1 (zh) 2016-07-04 2016-07-04 货物运输状态监测方法、监测系统、监测终端及服务器
CN201680000635.9A CN108139740B (zh) 2016-07-04 2016-07-04 货物运输状态监测方法、监测系统、监测终端及服务器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/088430 WO2018006247A1 (zh) 2016-07-04 2016-07-04 货物运输状态监测方法、监测系统、监测终端及服务器

Publications (1)

Publication Number Publication Date
WO2018006247A1 true WO2018006247A1 (zh) 2018-01-11

Family

ID=60901515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088430 WO2018006247A1 (zh) 2016-07-04 2016-07-04 货物运输状态监测方法、监测系统、监测终端及服务器

Country Status (2)

Country Link
CN (1) CN108139740B (zh)
WO (1) WO2018006247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409561A (zh) * 2021-05-27 2021-09-17 中国人民解放军陆军工程大学 一种带有北斗短报文功能的弹药押运伴随保障系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040885A1 (en) * 2001-08-14 2003-02-27 Schoess Jeffrey N. Apparatus and method for determining vehicle load weight status
CN102069769A (zh) * 2010-12-17 2011-05-25 交通运输部公路科学研究所 危险货物运输车辆动态监控方法及预警装置
CN102381517A (zh) * 2010-09-06 2012-03-21 廖明忠 一种物体运输过程的记录方法及记录器
CN203882171U (zh) * 2014-03-31 2014-10-15 北京物资学院 货运车辆全程监控装置及系统
CN104729587A (zh) * 2015-03-27 2015-06-24 国家电网公司 一种大型电力物资运输的监控系统及方法
CN104950830A (zh) * 2014-03-31 2015-09-30 北京物资学院 货运车辆全程监控装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8103414B2 (en) * 2008-10-30 2012-01-24 International Business Machines Corporation Adaptive vehicle configuration
US8464529B2 (en) * 2011-03-02 2013-06-18 Ford Global Technologies, Llc Reduction in turbocharger lag at high altitudes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030040885A1 (en) * 2001-08-14 2003-02-27 Schoess Jeffrey N. Apparatus and method for determining vehicle load weight status
CN102381517A (zh) * 2010-09-06 2012-03-21 廖明忠 一种物体运输过程的记录方法及记录器
CN102069769A (zh) * 2010-12-17 2011-05-25 交通运输部公路科学研究所 危险货物运输车辆动态监控方法及预警装置
CN203882171U (zh) * 2014-03-31 2014-10-15 北京物资学院 货运车辆全程监控装置及系统
CN104950830A (zh) * 2014-03-31 2015-09-30 北京物资学院 货运车辆全程监控装置及系统
CN104729587A (zh) * 2015-03-27 2015-06-24 国家电网公司 一种大型电力物资运输的监控系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409561A (zh) * 2021-05-27 2021-09-17 中国人民解放军陆军工程大学 一种带有北斗短报文功能的弹药押运伴随保障系统

Also Published As

Publication number Publication date
CN108139740B (zh) 2020-03-10
CN108139740A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
EP2995906A1 (en) Position calculating system and haulage vehicle
US10928205B2 (en) In-vehicle device and vehicle
EP1653194A2 (en) Azimuth/attitude detecting sensor
WO2014163998A1 (en) Heading confidence interval estimation
KR20080025705A (ko) 지상 차량에서 관성 측정 유닛의 센서의 부정확한 배향 및오프셋을 수정 및 결정하는 방법
JP2004239643A (ja) ハイブリッド航法装置
JP2012194175A (ja) 姿勢判定方法、位置算出方法及び姿勢判定装置
JP2012208033A (ja) 航法計算システム
WO2019205002A1 (zh) 手持云台的姿态解算的方法和云台系统
WO2006088057A1 (ja) 方位計測装置
CN107402022B (zh) 一种稳定云台的加速度计校准方法及装置
WO2022037340A1 (zh) 故障检测方法、装置及系统
KR102245884B1 (ko) 차재기, 연산 장치 및 프로그램
JP2017166895A (ja) 電子機器及びセンサ較正方法、センサ較正プログラム
EP3847418B1 (en) Method and system for calibrating sensors
WO2018006247A1 (zh) 货物运输状态监测方法、监测系统、监测终端及服务器
JP2016170124A (ja) 移動体測位装置、及び移動体測位方法
JP5810898B2 (ja) 車両姿勢推定装置、及び、盗難通知装置
JP2011005985A (ja) 軌道決定装置及び軌道決定方法
JP2012032302A (ja) 移設検知方法及び移設検知ユニット
CN116608853A (zh) 载体动态姿态估计方法、设备、存储介质
JP2012202749A (ja) 方位測定装置
JP2005147696A (ja) 取り付け角度算出装置
JP2012010103A (ja) 位置監視装置、位置監視プログラムおよび位置監視方法
WO2019094564A1 (en) Method and process for automatically calibrating a system to determine the heading of a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907752

Country of ref document: EP

Kind code of ref document: A1