WO2018004121A1 - Capacitive sensor - Google Patents

Capacitive sensor Download PDF

Info

Publication number
WO2018004121A1
WO2018004121A1 PCT/KR2017/004412 KR2017004412W WO2018004121A1 WO 2018004121 A1 WO2018004121 A1 WO 2018004121A1 KR 2017004412 W KR2017004412 W KR 2017004412W WO 2018004121 A1 WO2018004121 A1 WO 2018004121A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
block
vertical electrode
electrodes
vertical
Prior art date
Application number
PCT/KR2017/004412
Other languages
French (fr)
Korean (ko)
Inventor
김민철
Original Assignee
주식회사 로보터스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 로보터스 filed Critical 주식회사 로보터스
Publication of WO2018004121A1 publication Critical patent/WO2018004121A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • G01L1/165Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators with acoustic surface waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance

Definitions

  • the present invention relates to a capacitive sensor, and more particularly, to a capacitive sensor that detects a six-axis force / torque using a change in capacitance.
  • Conventional force / torque sensors use a method of sensing or measuring force / torque using a strain gauge.
  • a sensor using a strain gauge is composed of a pair of external connectors to which an external force is applied, an elastic body connecting the pair of external connectors and a strain gauge attached to the elastic body to measure the amount of deformation of the elastic body.
  • the strain gauge detects or measures an external force by sensing a resistance that changes according to the amount of deformation of the elastic body deformed by an external force applied to an external connector.
  • Sensors using strain gauges are manufactured by attaching a large number of strain gauges to an elastic body. In this process, the manufacturing cost increases, and after a long time, the adhesive used to bond the strain gauges is cured to damage the adhesive. Problems such as this easily caused often occurred.
  • the problem to be solved by the present invention is to provide a capacitive sensor with a simpler structure lowering the manufacturing difficulty and improved durability.
  • the capacitive sensor according to the embodiment of the present invention for solving the above problems, the upper block, the lower block, a plurality of elastic support for elastically supporting the upper block and the lower block, perpendicular to the lower surface of the upper block
  • An upper vertical electrode formed to have a surface
  • a lower vertical electrode formed to have a surface perpendicular to an upper surface of the lower block, and disposed to face the upper vertical electrode so that at least a portion thereof overlaps the upper vertical electrode and the upper vertical electrode
  • the lower vertical electrode as part of a circuit, wherein a change in capacitance between the upper vertical electrode and the lower vertical electrode is changed by a force or torque applied to at least one of the upper block and the lower block.
  • An electronic circuit that outputs a corresponding signal.
  • Simple construction reduces manufacturing difficulty, improves durability and more accurately senses 6-axis force / torque.
  • FIG. 1 is an exploded perspective view showing a capacitive sensor according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a bottom surface of an upper block of a capacitive sensor according to a first embodiment of the present invention.
  • FIG 3 is a view showing a lower surface of the upper block and the upper surface of the lower block of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 4 is a view schematically showing the initial positions of the upper vertical electrode and the lower vertical electrode of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 5 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by an X-direction force Fx acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 6 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by the Y-direction force Fy acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 7 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by a Z-direction torque Tz acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 8 is a view schematically showing initial positions of an upper horizontal electrode and a lower horizontal electrode of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 9 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode changed by a Z direction force Fz acting on an upper block of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 10 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode which are changed by the X-direction torque Tx acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 11 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode changed by the Y-direction torque Ty acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • FIG. 12 is an exploded perspective view schematically illustrating an upper block and a lower block of a capacitive sensor according to a second embodiment of the present invention.
  • FIG. 13 is a perspective view illustrating an assembled state of an upper block and a lower block of a capacitive sensor according to a second embodiment of the present invention.
  • FIG. 14 is an exploded perspective view schematically illustrating a lower surface of an upper block and a lower surface of a lower block of a capacitive sensor according to a third embodiment of the present invention.
  • FIG. 15 is a perspective view illustrating an assembled state of an upper block and a lower block of a capacitive sensor according to a third embodiment of the present invention.
  • 16 is an exploded perspective view schematically illustrating a lower surface of an upper block and a lower surface of a lower block of a capacitive sensor according to a fourth embodiment of the present invention.
  • An capacitive sensor includes an upper block, a lower block, a plurality of elastic supports elastically supporting the upper block and the lower block, and an upper portion formed to have a surface perpendicular to a lower surface of the upper block.
  • a lower vertical electrode and a lower vertical electrode formed to have a surface perpendicular to an upper surface of the lower block and disposed to face the upper vertical electrode such that the upper vertical electrode overlaps the upper vertical electrode, and the upper vertical electrode and the lower vertical electrode; Included as part of the circuit, and outputs a signal corresponding to a change in capacitance (capacitance) between the upper vertical electrode and the lower vertical electrode that is changed by a force or torque applied to at least one of the upper block and the lower block It includes an electronic circuit.
  • FIG. 1 is an exploded perspective view showing a capacitive sensor according to a first embodiment of the present invention
  • Figure 2 is a perspective view showing a lower surface of the upper block of the capacitive sensor according to a first embodiment of the present invention
  • 3 is a view showing a lower surface of the upper block and the upper surface of the lower block of the capacitive sensor according to the first embodiment of the present invention.
  • the capacitive sensor 1 includes a housing 10, an upper block 20, a lower block 30, and elastic supports 41, 42, 43. ).
  • the housing 10 includes a body 11 defining an accommodation space 14 therein. At least a portion of the upper block 20, the elastic supports 41, 42, and 43, and the lower block 30 may be accommodated in the accommodation space 14.
  • the body 11 may be combined with the lower block 30, in which case the lower end of the body 11 is in contact with the top of the base plate 31 of the lower block 30 or surrounds the side of the base plate 31. Can be combined.
  • a plurality of first upper block fixing holes 12a, 12b and 12c and a plurality of first elastic support fixing holes 13a, 13b and 13c may be formed at an upper end of the body 11.
  • the first upper block fixing holes 12a, 12b, and 12c are spaces into which a fixing member (not shown, for example, a screw) for fixing the upper block 20 to the housing 10 is inserted, and the first elastic support is fixed.
  • the holes 13a, 13b, 13c are spaces into which fixing members (not shown, for example, screws) are inserted to fix the elastic supports 41, 42, 43 to the housing 10.
  • the upper block 20 includes a printed circuit board (PCB) 21 on which electronic circuits are printed.
  • PCB printed circuit board
  • the plurality of second upper block fixing holes 21a, 21b, and 21c corresponding to the plurality of first upper block fixing holes 12a, 12b, and 12c are formed in the PCB 21.
  • the second upper block fixing holes 21a, 21b and 21c are spaces in which the fixing member inserted through the first upper block fixing holes 12a, 12b and 12c is inserted.
  • the upper block 20 is fixed to the housing 10 by the fixing member, and moves together with the housing 10.
  • a plurality of upper vertical electrodes 23a, 23b and 23c and a plurality of upper horizontal electrodes 24a, 24b and 24c are formed on the lower surface of the PCB 21.
  • the upper vertical electrodes 23a, 23b, and 23c protrude from the lower surface to have a surface perpendicular to the lower surface, and the upper horizontal electrodes 24a, 24b and 24c are parallel to the lower surface or formed on the same plane. It is formed to have.
  • the plurality of upper vertical electrodes 23a, 23b, and 23c may be arranged at equal intervals.
  • three upper vertical electrodes 23a, 23b, and 23c are disposed radially at intervals of 120 degrees, but four or more upper vertical electrodes may be disposed according to the exemplary embodiment.
  • the plurality of upper horizontal electrodes 24a, 24b, 24c may also be arranged at equal intervals.
  • three upper horizontal electrodes 24a, 24b, and 24c are arranged radially at intervals of 120 degrees.
  • four or more upper horizontal electrodes may be arranged according to the exemplary embodiment.
  • the upper vertical electrodes 23a, 23b and 23c and the upper horizontal electrodes 24a, 24b and 24c may be provided in different numbers.
  • the plurality of upper vertical electrodes 23a, 23b, 23c and the plurality of upper horizontal electrodes 24a, 24b, 24c may be arranged in a manner other than radial.
  • three electrodes may be arranged to form a substantially triangular shape, or four electrodes may be arranged to form a square shape.
  • the elastic support (41, 42, 43) is provided in plurality. Although three elastic supports 41, 42, and 43 are illustrated in the present embodiment, the number of elastic supports 41, 42, and 43 may vary depending on the embodiment.
  • the three elastic supports 41, 42, 43 may have the same structure, and for the convenience of description, one elastic support 41 will be described in detail, and the description of the other elastic supports 42, 43 will be described. Omit.
  • the elastic support 41 includes an upper support end 41a, an upper rod 41b, an elastic portion 41c, a lower rod 41d, and a lower support end 41e.
  • the upper support end 41a is coupled to the housing 10.
  • a second elastic support fixing hole 41f is formed in the upper support end 41a.
  • the second elastic support fixing hole 41f is formed to correspond to the first elastic support fixing hole 13c, and a separate fixing member is formed as the first elastic support fixing hole 13c and the second elastic support fixing hole 41f. It is inserted to fix the elastic support 41 to the housing (10).
  • the upper rod 41b extends downward from the center portion of the upper support end 41a to connect the upper support end 41a and the elastic portion 41c.
  • the elastic portion 41c may have a ring shape to facilitate elastic deformation by external force. According to the exemplary embodiment, the shape of the elastic part 41c may be variously modified.
  • the lower rod 41d and the lower support end 41e are formed symmetrically with the upper support end 41a and the upper rod 41b about the elastic part 41c.
  • a third elastic support fixing hole 41g is formed in the lower support end 41e.
  • the third elastic support fixing hole 41g is a space in which a fixing member (not shown) for fixing the lower supporting end 41e to the lower block 30 is inserted.
  • the lower block 30 includes a base plate 31 and a lower horizontal electrode 31a protruding from an upper surface of the base plate 31.
  • the lower horizontal electrode 31a forms an upper surface of the lower block 30.
  • the lower horizontal electrode 31a is configured as one plate facing the plurality of upper horizontal electrodes 24a, 24b, and 24c. It may be composed of a plurality of lower horizontal electrodes separated from each other to correspond one-to-one.
  • the lower horizontal electrode 31a is parallel with the upper horizontal electrodes 24a, 24b, and 24c and at least partially overlaps. Accordingly, each of the upper horizontal electrodes 24a, 24b, and 24c functions as a capacitor having the lower horizontal electrode 31a and air as a dielectric layer, and the lower horizontal electrode 31a and the upper horizontal electrodes 24a, 24b, The capacitor composed of 24c) becomes part of the electronic circuit formed on the PCB 21. In some embodiments, a separate dielectric may be interposed between the upper horizontal electrodes 24a, 24b, and 24c and the lower horizontal electrode 31a.
  • the lower block 30 includes a plurality of electrode grooves 32a, 32b, and 32c recessed from the lower horizontal electrode 31a to the base plate 31.
  • the plurality of electrode grooves 32a, 32b and 32c respectively correspond to the positions of the plurality of upper vertical electrodes 23a, 23b and 23c and are formed to accommodate at least a portion of the plurality of upper vertical electrodes 23a, 23b and 23c. .
  • the upper vertical electrodes 23a, 23b, and 23c do not contact the bottom and side surfaces of the electrode grooves 32a, 32b, and 32c.
  • the surface facing the upper vertical electrodes 23a, 23b and 23c becomes the lower vertical electrodes 33a, 33b and 33c.
  • the lower vertical electrodes 33a, 33b, 33c are formed to have a surface perpendicular to the lower horizontal electrode 31a, which is the upper surface of the lower block 30, and at least partially overlap the upper vertical electrodes 23a, 23b, 23c. do.
  • Each of the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c functions as a capacitor having air as a dielectric layer, and the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes.
  • the capacitor composed of the vertical electrodes 33a, 33b, 33c becomes part of the electronic circuit formed on the PCB 21.
  • a separate dielectric may be interposed between the upper vertical electrodes 23a, 23b and 23c and the lower vertical electrodes 33a, 33b and 33c.
  • a plurality of elastic support receiving grooves (34a, 34b, 34c) is formed on the upper surface of the base plate (31).
  • the elastic support receiving grooves 34a, 34b, and 34c are spaces in which the lower support ends 41e of the elastic supports 41, 42, and 43 are inserted, and are formed to correspond to the positions of the elastic supports 41, 42, and 43. .
  • Fourth elastic support fixing holes 35a, 35b, and 35c are formed in each of the elastic support receiving grooves 34a, 34b, and 34c.
  • the fourth elastic support fixing holes 35a, 35b, and 35c are formed to correspond to the third elastic support fixing holes 41g, so that a separate fixing member is provided with the third elastic support fixing holes 41g and the fourth elastic support fixing holes. Inserted into (35a, 35b, 35c) to fix the elastic support (41, 42, 43) to the lower block (30).
  • the elastic supports 41, 42, and 43 may elastically support the housing 10 and the lower block 30. Since the upper block 20 is installed to be fixed to the housing 10, as a result, the elastic supports 41, 42, and 43 elastically support the upper block 20 and the lower block 30.
  • the upper block 20 moves integrally with the housing 10, so that the upper block 20 moves relative to the lower block 30.
  • the lower block 30 moves relative to the upper block 20.
  • the gap between the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c changes, and the upper horizontal electrode
  • the interval between the 24a, 24b, 24c and the lower horizontal electrode 31a changes.
  • the upper block 20 and the lower block 30 are moved relative to each other by an external force, so that the gap between the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c and the upper horizontal portion.
  • the gap between the electrodes 24a, 24b, 24c and the lower horizontal electrode 31a changes, the electrostatic capacitance of the capacitor formed by the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c.
  • the capacitance changes, and the capacitance of the capacitor formed by the upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a changes.
  • the capacitive sensor 1 senses information about the force components Fx, Fy, and Fz and the torque components Tx, Ty, and Tz acting in three axes using the changing capacitance. .
  • the electronic circuit may be provided with a capacitance between the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c and between the upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrodes 31a. It may be an electronic circuit that outputs each capacitance.
  • the signal output from the electronic circuit may include information about the force components (Fx, Fy, Fz) and the torque components (Tx, Ty, Tz) acting in the three-axis direction.
  • An arithmetic unit for calculating the force components (Fx, Fy, Fz) and torque components (Tx, Ty, Tz) acting in the three-axis direction on the basis can be included.
  • FIGS. 4 to 11 illustrate the relative movement between the electrodes of the capacitive sensor according to the first embodiment, and unnecessary configuration is omitted, and the upper block 20 and the lower block 30 are circular. Simplified.
  • FIG. 4 is a view schematically showing the initial positions of the upper vertical electrode and the lower vertical electrode of the capacitive sensor according to the first embodiment of the present invention.
  • the capacitive sensor 1 includes three upper vertical electrodes 23a, 23b, and 23c disposed at 120 degree intervals, and three lower vertical electrodes.
  • 33a, 33b, and 33c are provided to correspond in one-to-one correspondence with the three upper vertical electrodes 23a, 23b, and 23c.
  • the three upper vertical electrodes 23a, 23b, 23c are supported by the upper block 20, and the three lower vertical electrodes 33a, 33b, 33c are the base plate 31 of the lower block 30. Is formed.
  • the three upper vertical electrodes 23a, 23b, and 23c and the three lower vertical electrodes 33a and 33b. , 33c) are present at approximately constant intervals in parallel.
  • the upper vertical electrode 33a parallel to the X axis in FIG. 4 is referred to as a first upper vertical electrode, and the upper vertical electrode located in a +120 degree direction from the first upper vertical electrode 23a.
  • the electrode 23b is referred to as the second upper vertical electrode, and the upper vertical electrode 23c positioned in the ⁇ 120 degree direction from the first upper vertical electrode 23a is referred to as a third upper vertical electrode.
  • the lower vertical electrode 33a facing the first upper vertical electrode 23a is the first lower vertical electrode
  • the lower vertical electrode 33b facing the second upper vertical electrode 23b is the second lower vertical electrode
  • the lower vertical electrode 33c facing the third upper vertical electrode 23c is referred to as a third lower vertical electrode.
  • FIG. 5 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by an X-direction force Fx acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • the upper block 20 moves slightly in the X direction together with the housing 10.
  • the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a does not change, and the second upper vertical electrode 23b and the second lower vertical electrode 33b do not change.
  • the distance is shortened, and the distance between the third upper vertical electrode 23c and the third lower vertical electrode 33c becomes long.
  • the capacitance C1 between the first upper vertical electrode 23a and the first lower vertical electrode 33a hardly changes (the first upper vertical electrode 23a and the first lower vertical electrode 33a are not changed).
  • the capacitance may be slightly reduced
  • the capacitance C2 between the second upper vertical electrode 23b and the second lower vertical electrode 33b is increased
  • the third upper vertical electrode is increased.
  • the capacitance C3 between 23c and the third lower vertical electrode 33c decreases.
  • the distance between the second upper vertical electrode 23b and the second lower vertical electrode 33b becomes shorter, and the third upper vertical electrode 23c And the distance between the third lower vertical electrode 33c become longer.
  • the capacitance C2 between Fx and the second upper vertical electrode 23b and the second lower vertical electrode 33b is proportional, and Fx and the third upper vertical electrode 23c and the third lower vertical electrode 33c are proportional to each other.
  • the capacitance C3 between) becomes inversely proportional.
  • This relationship can be used to detect the force Fx acting in the X direction.
  • FIG. 6 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by the Y-direction force Fy acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • the upper block 20 moves slightly in the Y direction together with the housing 10.
  • the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a becomes long, and the second upper vertical electrode 23b and the second lower vertical electrode 33b are extended. The distance between them becomes short, and the distance between the third upper vertical electrode 23c and the third lower vertical electrode 33c becomes short.
  • the capacitance C1 between the first upper vertical electrode 23a and the first lower vertical electrode 33a decreases, and the electrostatic capacitance between the second upper vertical electrode 23b and the second lower vertical electrode 33b is reduced.
  • the capacitance C2 increases, and the capacitance C3 between the third upper vertical electrode 23c and the third lower vertical electrode 33c increases.
  • the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a becomes longer, and the second upper vertical electrode 23b And the distance between the second lower vertical electrode 33b becomes shorter, and the distance between the third upper vertical electrode 23c and the third lower vertical electrode 33c becomes shorter.
  • the capacitance C1 between Fy and the first upper vertical electrode 23a and the first lower vertical electrode 33a is inversely proportional
  • Fy and the second upper vertical electrode 23b and the second lower vertical electrode 33b are inversely proportional to each other.
  • the capacitance C2 between ⁇ is proportional
  • the capacitance C3 between Fy and the third upper vertical electrode 23c and the third lower vertical electrode 33c is proportional to each other.
  • This relationship can be used to detect the force Fy acting in the Y direction.
  • FIG. 7 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by a Z-direction torque Tz acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • the upper block 20 rotates in the Z direction together with the housing 10.
  • the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a, between the second upper vertical electrode 23b and the second lower vertical electrode 33b The distance and the distance between the third upper vertical electrode 23c and the third lower vertical electrode 33c become longer.
  • the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a, the second upper vertical electrode 23b and the second the distance between the lower vertical electrodes 33b and the distance between the third upper vertical electrodes 23c and the third lower vertical electrodes 33c become longer.
  • Tz is the capacitance C1 between the first upper vertical electrode 23a and the first lower vertical electrode 33a, and the capacitance between the second upper vertical electrode 23b and the second lower vertical electrode 33b. It is inversely proportional to the capacitance C3 between (C2) and the third upper vertical electrode 23c and the third lower vertical electrode 33c.
  • FIG. 8 is a view schematically showing initial positions of an upper horizontal electrode and a lower horizontal electrode of the capacitive sensor according to the first embodiment of the present invention.
  • three upper horizontal electrodes 24a, 24b, and 24c are provided on the lower surface of the upper block 20. As shown in FIG. 3, three upper horizontal electrodes 24a, 24b, 24c are provided at 120 degree intervals.
  • the lower horizontal electrode 31 a protrudes from the base plate 31 of the lower block 30.
  • the three upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a are approximately parallel. It exists at a certain interval.
  • the upper horizontal electrode 24a positioned at the rightmost side as the first upper horizontal electrode and the upper horizontal electrode 24b positioned at the leftmost side as the second upper horizontal electrode will be described with reference to FIG. 8.
  • the upper horizontal electrode 24c positioned at the center is referred to as a third upper horizontal electrode.
  • FIG. 9 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode changed by a Z direction force Fz acting on an upper block of the capacitive sensor according to the first embodiment of the present invention.
  • the upper block 20 moves slightly in the Z direction together with the housing 10. By the movement of the upper block 20, the distance between the three upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a becomes long.
  • the distance between the three upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a becomes longer.
  • Fz is the capacitance C4 between the first upper horizontal electrode 24a and the lower horizontal electrode 31a, the capacitance C5 between the second upper horizontal electrode 24b and the lower horizontal electrode 31a, and It is inversely proportional to the capacitance C6 between the third upper horizontal electrode 24c and the lower horizontal electrode 31a.
  • FIG. 10 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode which are changed by the X-direction torque Tx acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • the upper block 20 rotates in the X direction together with the housing 10.
  • the distance between the first upper horizontal electrode 24a and the third upper horizontal electrode 24c and the lower horizontal electrode 31a is shortened, and the second upper horizontal electrode 24b and the lower portion are lowered.
  • the distance between the horizontal electrodes 31a becomes long.
  • the capacitance C4 between the first upper horizontal electrode 24a and the lower horizontal electrode 31a and the capacitance C6 between the third upper horizontal electrode 24c and the lower horizontal electrode 31a are increased and The capacitance C5 between the second upper horizontal electrode 24b and the lower horizontal electrode 31a decreases.
  • the distance between the first upper horizontal electrode 24a and the third upper horizontal electrode 24c and the lower horizontal electrode 31a becomes shorter, and The distance between the upper horizontal electrode 24b and the lower horizontal electrode 31a becomes longer.
  • the capacitance C4 between Tx and the first upper horizontal electrode 24a and the lower horizontal electrode 31a and the capacitance C6 between the third upper horizontal electrode 24c and the lower horizontal electrode 31a are In proportion, the capacitance C5 between Tx and the second upper horizontal electrode 24b and the lower horizontal electrode 31a is inversely proportional.
  • This relationship can be used to detect the torque Tx acting in the X direction.
  • FIG. 11 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode changed by the Y-direction torque Ty acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
  • the distance between the second upper horizontal electrode 24b and the lower horizontal electrode 31a does not change significantly.
  • the distance between the first upper horizontal electrode 24a and the lower horizontal electrode 31a becomes longer, and the distance between the third upper horizontal electrode 24c and the lower horizontal electrode 31a becomes shorter.
  • the capacitance C5 between the second upper horizontal electrode 24b and the lower horizontal electrode 31a hardly changes, and the capacitance between the first upper horizontal electrode 24a and the lower horizontal electrode 31a ( C4) decreases, and the capacitance C6 between the third upper horizontal electrode 24c and the lower horizontal electrode 31a increases.
  • the distance between the first upper horizontal electrode 24a and the lower horizontal electrode 31a becomes longer, and the third upper horizontal electrode 24c and the lower portion are lower.
  • the distance between the horizontal electrodes 31a becomes shorter.
  • the capacitance C4 between Ty and the first upper horizontal electrode 24a and the lower horizontal electrode 31a is inversely proportional
  • the electrostatic capacitance between Ty and the third upper horizontal electrode 24c and the lower horizontal electrode 31a is inversely proportional.
  • the capacity C6 becomes proportional.
  • This relationship can be used to detect the torque Ty acting in the Y direction.
  • FIG. 12 is an exploded perspective view schematically illustrating an upper block and a lower block of a capacitive sensor according to a second embodiment of the present invention
  • FIG. 13 is an upper block of the capacitive sensor according to a second embodiment of the present invention.
  • the upper block 220 of the capacitive sensor 2 according to the second embodiment of the present invention has a shape similar to that of the lower horizontal electrode 31a of the first embodiment.
  • the upper block 220 includes a plate 221 forming a body, and the side of the plate 221 functions as the upper vertical electrodes 223a, 223b, and 223c, and the lower surface of the plate 221 is the upper horizontal electrode. Function as. That is, in the present embodiment, the upper vertical electrodes 223a, 223b, and 223c are formed on the side surface of the upper block 220.
  • the lower block 230 includes a plurality of lower vertical electrodes 233a, 233b, and 233c protruding from the upper surface of the base plate 231, and a plurality of lower horizontal electrodes 232a, 232b, and 232c.
  • the plurality of lower horizontal electrodes 232a, 232b, and 232c overlap the lower surface of the plate 221.
  • the plurality of lower horizontal electrodes 232a, 232b, and 232c and the lower surfaces of the plate 221 are not in contact with each other.
  • the plurality of lower vertical electrodes 233a, 233b, and 233c are disposed to be spaced apart from the side surfaces of the plate 221, respectively.
  • a surface of the side surface of the plate 221 facing the lower vertical electrodes 233a, 233b, and 233c serves as the upper vertical electrodes 223a, 223b, and 223c.
  • the capacitive sensor 2 also has a housing 10 and an elastic support 41, 42, 43 similar to the capacitive sensor 1 according to the first embodiment described above. It may include.
  • the upper block 220 is fixed to the housing 10, and the elastic supports 41, 42, and 43 elastically support the housing 10 and the lower block 230, respectively, so that external forces Fx, Fy, Fz, Tx, Ty, and Tz) may be configured to allow the upper block 220 and the lower block 230 to move relatively.
  • the capacitive sensor 2 also has the external vertical electrodes 223a, 223b, and 223c and the lower vertical electrodes 233a, 233b, and 233c by the external force, and the upper and lower horizontal electrodes 232a and 232b.
  • the force component (Fx, Fy, Fz) and the torque component (Tx, Ty, Tz) acting in the three-axis direction can be detected by using the change of the interval / static capacitance between 232c).
  • the upper block 220 and the lower block 230 may be arranged such that their positions are reversed from each other. That is, the lower block 230 of FIGS. 12 and 13 is inverted 180 degrees to function as the upper block, and the upper block 220 is inverted 180 degrees to function as the lower block.
  • the plurality of lower vertical electrodes 233a, 233b, and 233c and the plurality of lower horizontal electrodes 232a, 232b, and 232c shown in FIG. 12 become upper vertical electrodes and upper horizontal electrodes, respectively.
  • the upper vertical electrodes 223a, 223b, and 223c formed on the side of the plate 221 become lower vertical electrodes, and one surface of the plate 221 functions as a lower horizontal electrode.
  • the upper vertical electrode protrudes from the lower surface of the upper block, and the lower vertical electrode is formed on the side of the lower block.
  • FIG. 14 is an exploded perspective view schematically illustrating a lower surface of an upper block and a lower surface of a lower block of a capacitive sensor according to a third embodiment of the present invention
  • FIG. 15 is an electrostatic force according to a third embodiment of the present invention. It is a perspective view which shows the assembled state of the upper block and lower block of a capacitive sensor.
  • the upper block 320 of the capacitive sensor 3 may include a plurality of upper vertical electrodes 323a, protruding from the lower surface of the upper plate 321. 323b and 323c and a plurality of upper horizontal electrodes 324a, 324b and 324c.
  • the lower block 330 includes a plurality of lower vertical electrodes 333a, 333b, and 333c protruding from the upper surface of the base plate 331, and a plurality of lower horizontal electrodes 332a, 332b, and 332c.
  • the plurality of upper vertical electrodes 323a, 323b, and 323c and the plurality of lower vertical electrodes 333a, 333b, and 333c are disposed to face each other without overlapping one another.
  • the plurality of upper vertical electrodes 323a, 323b, and 323c are formed not to contact the base plate 331, and the plurality of lower vertical electrodes 333a, 333b, and 333c are formed not to contact the upper plate 321. .
  • the plurality of upper horizontal electrodes 324a, 324b, and 324c are disposed on the upper portions of the plurality of lower horizontal electrodes 332a, 332b, and 332c, and disposed to overlap each other without being in contact with each other.
  • the capacitive sensor 3 also has a housing 10 and an elastic support 41, 42, 43 similar to the capacitive sensor 1 according to the first embodiment described above. It may include.
  • the upper block 320 is fixed to the housing 10, and the elastic supports 41, 42, and 43 elastically support the housing 10 and the lower block 330, respectively, so that external forces Fx, Fy, Fz, Tx, Ty, and Tz) may be configured to allow the upper block 320 and the lower block 330 to move relatively.
  • the capacitive sensor 3 also includes the upper vertical electrodes 323a, 323b and 323c, the lower vertical electrodes 333a, 333b and 333c, and the upper horizontal electrodes 324a, 324b and 324c by an external force.
  • the force component (Fx, Fy, Fz) and torque component (Tx, Ty, Tz) acting in the three-axis direction can be detected using the change in the interval / change in capacitance between the lower horizontal electrodes 332a, 332b, and 332c. have.
  • 16 is an exploded perspective view schematically illustrating a lower surface of an upper block and a lower surface of a lower block of a capacitive sensor according to a fourth embodiment of the present invention.
  • the capacitive sensor 4 according to the fourth embodiment of the present invention has an upper block 420 compared to the capacitive sensor 3 according to the third embodiment.
  • the shape of is somewhat different.
  • a plurality of upper vertical electrodes 423a, 423b, and 423c are recessed from the lower surface of the upper plate 321.
  • some of the lower vertical electrodes 333a, 333b, and 333c formed in the lower block 330 are inserted into the upper block 420 to face the upper vertical electrodes 423a, 423b, and 423c.
  • the gap between the upper block 420 and the lower block 330 is narrowed, so that the plurality of upper horizontal electrodes 424a,
  • the protrusion lengths 424b and 424c may be shorter than those of the third embodiment, or may be formed on the same plane as the lower surface of the upper plate 321.
  • the capacitive sensor uses the relative movement of the upper block and the upper block generated by an external force, so that the upper and lower vertical electrodes, the upper horizontal electrode and the lower horizontal electrode
  • the force components Fx, Fy, and Fz and the torque components Tx, Ty, and Tz acting in the triaxial direction are detected based on the change in capacitance.

Abstract

A capacitive sensor according to an embodiment of the present invention comprises: an upper block; a lower block; a plurality of elastic supports for elastically supporting the upper block and the lower block; an upper vertical electrode formed to have a surface perpendicular to a lower surface of the upper block; a lower vertical electrode formed to have a surface perpendicular to an upper surface of the lower block and disposed to face the upper vertical electrode so as to at least partially overlap with the upper vertical electrode; and an electronic circuit which includes the upper vertical electrode and the lower vertical electrode as a part thereof and outputs a signal corresponding to a change in capacitance between the upper vertical electrode and the lower vertical electrode which is changed by a force or torque acting on at least one of the upper block and the lower block.

Description

정전 용량형 센서Capacitive sensor
본 발명은 정전 용량형 센서에 관한 것으로서, 보다 상세하게는 정전 용량의 변화를 이용해 6축 힘/토크를 감지하는 정전 용량형 센서에 관한 것이다.The present invention relates to a capacitive sensor, and more particularly, to a capacitive sensor that detects a six-axis force / torque using a change in capacitance.
종래의 힘/토크 센서는 대부분 스트레인 게이지를 이용하여 힘/토크를 감지 또는 측정하는 방식을 사용하고 있다.Conventional force / torque sensors use a method of sensing or measuring force / torque using a strain gauge.
일반적으로 스트레인 게이지를 이용하는 센서는 외력이 가해지는 한 쌍의 외부 연결구와, 한 쌍의 외부 연결구를 연결하는 탄성체 그리고 탄성체에 부착되어 탄성체의 변형량을 측정하는 스트레인 게이지로 구성된다. 스트레인 게이지는 외부 연결구에 가해지는 외력에 의해 변형되는 탄성체의 변형량에 따라 변화하는 저항을 감지하여 외력을 감지 또는 측정한다.In general, a sensor using a strain gauge is composed of a pair of external connectors to which an external force is applied, an elastic body connecting the pair of external connectors and a strain gauge attached to the elastic body to measure the amount of deformation of the elastic body. The strain gauge detects or measures an external force by sensing a resistance that changes according to the amount of deformation of the elastic body deformed by an external force applied to an external connector.
스트레인 게이지를 이용한 센서는 탄성체에 다수의 스트레인 게이지를 접착하는 방식으로 제조되는데, 이 과정에서 제조 경비가 상승하고, 오랜 시간이 경과한 후에는 스트레인 게이지를 접착하는데 사용되는 접착제가 경화되어 접착제의 손상이 쉽게 유발되는 등의 문제가 종종 발생하였다.Sensors using strain gauges are manufactured by attaching a large number of strain gauges to an elastic body. In this process, the manufacturing cost increases, and after a long time, the adhesive used to bond the strain gauges is cured to damage the adhesive. Problems such as this easily caused often occurred.
최근에는 광학적인 방법으로 탄성체의 변형량을 측정하는 방식의 센서가 개발되고 있으나, 다수의 광학 부품이 사용되어야 하므로 역시 제조 난이도 및 비용이 높은 한계가 있다.Recently, a method of measuring a deformation amount of an elastic body by an optical method has been developed. However, since a large number of optical components have to be used, there are also limitations in manufacturing difficulty and high cost.
본 발명이 해결하고자 하는 과제는, 보다 단순한 구조로 제조 난이도를 낮추고 내구성이 향상된 정전 용량식 센서를 제공하는 것이다.The problem to be solved by the present invention is to provide a capacitive sensor with a simpler structure lowering the manufacturing difficulty and improved durability.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명의 실시예에 따른 정전 용량형 센서는, 상부 블록, 하부 블록, 상기 상부 블록과 상기 하부 블록을 탄성 지지하는 복수의 탄성 지지체, 상기 상부 블록의 하부면에 수직한 면을 갖도록 형성되는 상부 수직 전극, 상기 하부 블록의 상부면에 수직한 면을 갖도록 형성되고 상기 상부 수직 전극과 적어도 일부가 오버랩되도록 상기 상부 수직 전극과 마주하도록 배치되는 하부 수직 전극 및 상기 상부 수직 전극과 상기 하부 수직 전극을 회로의 일부로 포함하며, 상기 상부 블록 및 상기 하부 블록 중 적어도 나에 작용하는 힘 또는 토크에 의해 변화되는 상기 상부 수직 전극과 상기 하부 수직 전극 사이의 정전 용량(capacitance) 변화에 대응하는 시그널을 출력하는 전자 회로를 포함한다.The capacitive sensor according to the embodiment of the present invention for solving the above problems, the upper block, the lower block, a plurality of elastic support for elastically supporting the upper block and the lower block, perpendicular to the lower surface of the upper block An upper vertical electrode formed to have a surface, a lower vertical electrode formed to have a surface perpendicular to an upper surface of the lower block, and disposed to face the upper vertical electrode so that at least a portion thereof overlaps the upper vertical electrode and the upper vertical electrode And the lower vertical electrode as part of a circuit, wherein a change in capacitance between the upper vertical electrode and the lower vertical electrode is changed by a force or torque applied to at least one of the upper block and the lower block. An electronic circuit that outputs a corresponding signal.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Other specific details of the invention are included in the detailed description and drawings.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.According to embodiments of the present invention has at least the following effects.
단순한 구조로 제조 난이도를 낮추고, 향상된 내구성을 갖고, 보다 정확하게 6축 힘/토크를 감지한다.Simple construction reduces manufacturing difficulty, improves durability and more accurately senses 6-axis force / torque.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.The effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 제1 실시예에 따른 정전 용량형 센서를 도시한 분해 사시도이다.1 is an exploded perspective view showing a capacitive sensor according to a first embodiment of the present invention.
도 2는 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록의 하부면을 도시한 사시도이다.2 is a perspective view illustrating a bottom surface of an upper block of a capacitive sensor according to a first embodiment of the present invention.
도 3은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록의 하부면과 하부 블록의 상부면을 도시한 도면이다.3 is a view showing a lower surface of the upper block and the upper surface of the lower block of the capacitive sensor according to the first embodiment of the present invention.
도 4는 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 수직 전극과 하부 수직 전극의 초기 위치를 개략적으로 도시한 도면이다.4 is a view schematically showing the initial positions of the upper vertical electrode and the lower vertical electrode of the capacitive sensor according to the first embodiment of the present invention.
도 5는 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 X방향 힘(Fx)에 의해 변화되는 상부 수직 전극과 하부 수직 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 5 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by an X-direction force Fx acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
도 6은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 Y방향 힘(Fy)에 의해 변화되는 상부 수직 전극과 하부 수직 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 6 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by the Y-direction force Fy acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
도 7은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 Z방향 토크(Tz)에 의해 변화되는 상부 수직 전극과 하부 수직 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 7 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by a Z-direction torque Tz acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
도 8은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 수평 전극과 하부 수평 전극의 초기 위치를 개략적으로 도시한 도면이다.8 is a view schematically showing initial positions of an upper horizontal electrode and a lower horizontal electrode of the capacitive sensor according to the first embodiment of the present invention.
도 9는 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 Z방향 힘(Fz)에 의해 변화되는 상부 수평 전극과 하부 수평 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 9 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode changed by a Z direction force Fz acting on an upper block of the capacitive sensor according to the first embodiment of the present invention.
도 10은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 X방향 토크(Tx)에 의해 변화되는 상부 수평 전극과 하부 수평 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 10 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode which are changed by the X-direction torque Tx acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
도 11은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 Y방향 토크(Ty)에 의해 변화되는 상부 수평 전극과 하부 수평 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 11 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode changed by the Y-direction torque Ty acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
도 12는 본 발명의 제2 실시예에 따른 정전 용량형 센서의 상부 블록과 하부 블록을 개략적으로 도시한 분해 사시도이다.12 is an exploded perspective view schematically illustrating an upper block and a lower block of a capacitive sensor according to a second embodiment of the present invention.
도 13은 본 발명의 제2 실시예에 따른 정전 용량형 센서의 상부 블록과 하부 블록의 조립된 상태를 도시한 사시도이다.13 is a perspective view illustrating an assembled state of an upper block and a lower block of a capacitive sensor according to a second embodiment of the present invention.
도 14는 본 발명의 제3 실시예에 따른 정전 용량형 센서의 상부 블록의 하부면과 하부 블록의 하부면을 개략적으로 도시한 분해 사시도이다.14 is an exploded perspective view schematically illustrating a lower surface of an upper block and a lower surface of a lower block of a capacitive sensor according to a third embodiment of the present invention.
도 15는 본 발명의 제3 실시예에 따른 정전 용량형 센서의 상부 블록과 하부 블록의 조립된 상태를 도시한 사시도이다.15 is a perspective view illustrating an assembled state of an upper block and a lower block of a capacitive sensor according to a third embodiment of the present invention.
도 16은 본 발명의 제4 실시예에 따른 정전 용량형 센서의 상부 블록의 하부면과 하부 블록의 하부면을 개략적을 도시한 분해 사시도이다.16 is an exploded perspective view schematically illustrating a lower surface of an upper block and a lower surface of a lower block of a capacitive sensor according to a fourth embodiment of the present invention.
본 발명의 실시예에 따른 정전 용량형 센서는, 상부 블록, 하부 블록, 상기 상부 블록과 상기 하부 블록을 탄성 지지하는 복수의 탄성 지지체, 상기 상부 블록의 하부면에 수직한 면을 갖도록 형성되는 상부 수직 전극, 상기 하부 블록의 상부면에 수직한 면을 갖도록 형성되고 상기 상부 수직 전극과 적어도 일부가 오버랩되도록 상기 상부 수직 전극과 마주하도록 배치되는 하부 수직 전극 및 상기 상부 수직 전극과 상기 하부 수직 전극을 회로의 일부로 포함하며, 상기 상부 블록 및 상기 하부 블록 중 적어도 나에 작용하는 힘 또는 토크에 의해 변화되는 상기 상부 수직 전극과 상기 하부 수직 전극 사이의 정전 용량(capacitance) 변화에 대응하는 시그널을 출력하는 전자 회로를 포함한다.An capacitive sensor according to an embodiment of the present invention includes an upper block, a lower block, a plurality of elastic supports elastically supporting the upper block and the lower block, and an upper portion formed to have a surface perpendicular to a lower surface of the upper block. A lower vertical electrode and a lower vertical electrode formed to have a surface perpendicular to an upper surface of the lower block and disposed to face the upper vertical electrode such that the upper vertical electrode overlaps the upper vertical electrode, and the upper vertical electrode and the lower vertical electrode; Included as part of the circuit, and outputs a signal corresponding to a change in capacitance (capacitance) between the upper vertical electrode and the lower vertical electrode that is changed by a force or torque applied to at least one of the upper block and the lower block It includes an electronic circuit.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
또한, 본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 개략도들을 참고하여 설명될 것이다. 따라서, 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 또한 본 발명에 도시된 각 도면에 있어서 각 구성 요소들은 설명의 편의를 고려하여 다소 확대 또는 축소되어 도시된 것일 수 있다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.In addition, the embodiments described herein will be described with reference to cross-sectional and / or schematic views, which are ideal illustrations of the invention. Accordingly, shapes of the exemplary views may be modified by manufacturing techniques and / or tolerances. In addition, each component in each drawing shown in the present invention may be shown to be somewhat enlarged or reduced in view of the convenience of description. Like reference numerals refer to like elements throughout.
이하, 본 발명의 실시예들에 따른 정전 용량형 센서를 설명하기 위한 도면들을 참고하여 본 발명에 대하여 설명하도록 한다.Hereinafter, the present invention will be described with reference to the drawings for describing a capacitive sensor according to embodiments of the present invention.
도 1은 본 발명의 제1 실시예에 따른 정전 용량형 센서를 도시한 분해 사시도이고, 도 2는 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록의 하부면을 도시한 사시도이고, 도 3은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록의 하부면과 하부 블록의 상부면을 도시한 도면이다.1 is an exploded perspective view showing a capacitive sensor according to a first embodiment of the present invention, Figure 2 is a perspective view showing a lower surface of the upper block of the capacitive sensor according to a first embodiment of the present invention 3 is a view showing a lower surface of the upper block and the upper surface of the lower block of the capacitive sensor according to the first embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 정전 용량형 센서(1)는 하우징(10), 상부 블록(20), 하부 블록(30) 및 탄성 지지체(41, 42, 43)를 포함한다.As shown in FIG. 1, the capacitive sensor 1 according to the first embodiment of the present invention includes a housing 10, an upper block 20, a lower block 30, and elastic supports 41, 42, 43. ).
하우징(10)은 내부에 수용 공간(14)을 형성하는 몸체(11)를 포함한다. 수용 공간(14)으로는 상부 블록(20), 탄성 지지체(41, 42, 43), 그리고 하부 블록(30)의 적어도 일부가 수용될 수 있다.The housing 10 includes a body 11 defining an accommodation space 14 therein. At least a portion of the upper block 20, the elastic supports 41, 42, and 43, and the lower block 30 may be accommodated in the accommodation space 14.
몸체(11)는 하부 블록(30)과 결합될 수 있으며, 이 경우 몸체(11)의 하단은 하부 블록(30)의 베이스 플레이트(31)의 상단에 접하거나 베이스 플레이트(31)의 측면을 둘러싸도록 결합될 수 있다.The body 11 may be combined with the lower block 30, in which case the lower end of the body 11 is in contact with the top of the base plate 31 of the lower block 30 or surrounds the side of the base plate 31. Can be combined.
몸체(11)의 상단에는 복수의 제1 상부 블록 고정홀(12a, 12b, 12c)과 복수의 제1 탄성 지지체 고정홀(13a, 13b, 13c)이 형성될 수 있다.A plurality of first upper block fixing holes 12a, 12b and 12c and a plurality of first elastic support fixing holes 13a, 13b and 13c may be formed at an upper end of the body 11.
제1 상부 블록 고정홀(12a, 12b, 12c)은 상부 블록(20)을 하우징(10)에 고정하기 위한 고정 부재(미도시, 예를 들면 스크류)가 삽입되는 공간이고, 제1 탄성 지지체 고정홀(13a, 13b, 13c)은 탄성 지지체(41, 42, 43)를 하우징(10)에 고정하기 위한 고정 부재(미도시, 예를 들면 스크류)가 삽입되는 공간이다.The first upper block fixing holes 12a, 12b, and 12c are spaces into which a fixing member (not shown, for example, a screw) for fixing the upper block 20 to the housing 10 is inserted, and the first elastic support is fixed. The holes 13a, 13b, 13c are spaces into which fixing members (not shown, for example, screws) are inserted to fix the elastic supports 41, 42, 43 to the housing 10.
한편, 상부 블록(20)은 전자 회로가 인쇄된 PCB(printed circuit board)(21)를 포함한다. On the other hand, the upper block 20 includes a printed circuit board (PCB) 21 on which electronic circuits are printed.
PCB(21)에는 복수의 제1 상부 블록 고정홀(12a, 12b, 12c)과 대응되는 복수의 제2 상부 블록 고정홀(21a, 21b, 21c)이 형성된다. 제2 상부 블록 고정홀(21a, 21b, 21c)은 제1 상부 블록 고정홀(12a, 12b, 12c)을 통해 삽입된 고정 부재가 삽입되는 공간이다.The plurality of second upper block fixing holes 21a, 21b, and 21c corresponding to the plurality of first upper block fixing holes 12a, 12b, and 12c are formed in the PCB 21. The second upper block fixing holes 21a, 21b and 21c are spaces in which the fixing member inserted through the first upper block fixing holes 12a, 12b and 12c is inserted.
고정 부재에 의해 상부 블록(20)은 하우징(10)에 고정되며, 하우징(10)과 일체로 움직이게 된다.The upper block 20 is fixed to the housing 10 by the fixing member, and moves together with the housing 10.
도 2에 도시된 바와 같이, PCB(21)의 하부면에는 복수의 상부 수직 전극(23a, 23b, 23c)과 복수의 상부 수평 전극(24a, 24b, 24c)이 형성된다.As shown in FIG. 2, a plurality of upper vertical electrodes 23a, 23b and 23c and a plurality of upper horizontal electrodes 24a, 24b and 24c are formed on the lower surface of the PCB 21.
상부 수직 전극(23a, 23b, 23c)은 하부면에 수직한 면을 갖도록 하부면으로부터 돌출 형성되고, 상부 수평 전극(24a, 24b, 24c)은 하부면과 평행하거나 동일 평면 상에 형성되는 면을 갖도록 형성된다.The upper vertical electrodes 23a, 23b, and 23c protrude from the lower surface to have a surface perpendicular to the lower surface, and the upper horizontal electrodes 24a, 24b and 24c are parallel to the lower surface or formed on the same plane. It is formed to have.
복수의 상부 수직 전극(23a, 23b, 23c)은 등간격으로 배치될 수 있다. 본 실시예에서는 3개의 상부 수직 전극(23a, 23b, 23c)이 방사형으로 120도 간격으로 배치되는 예를 도시하였지만, 실시예에 따라 4개 이상의 상부 수직 전극이 배치될 수도 있다.The plurality of upper vertical electrodes 23a, 23b, and 23c may be arranged at equal intervals. In the present exemplary embodiment, three upper vertical electrodes 23a, 23b, and 23c are disposed radially at intervals of 120 degrees, but four or more upper vertical electrodes may be disposed according to the exemplary embodiment.
유사하게, 복수의 상부 수평 전극(24a, 24b, 24c) 역시 등간격으로 배치될 수 있다. 본 실시예에서는 3개의 상부 수평 전극(24a, 24b, 24c)이 방사형으로 120도 간격으로 배치되는 예를 도시하였지만, 실시예에 따라 4개 이상의 상부 수평 전극이 배치될 수도 있다.Similarly, the plurality of upper horizontal electrodes 24a, 24b, 24c may also be arranged at equal intervals. In the present exemplary embodiment, three upper horizontal electrodes 24a, 24b, and 24c are arranged radially at intervals of 120 degrees. However, four or more upper horizontal electrodes may be arranged according to the exemplary embodiment.
또한, 실시예에 따라 상부 수직 전극(23a, 23b, 23c)과 상부 수평 전극(24a, 24b, 24c)는 서로 다른 개수로 구비될 수도 있다.In some embodiments, the upper vertical electrodes 23a, 23b and 23c and the upper horizontal electrodes 24a, 24b and 24c may be provided in different numbers.
또한, 복수의 상부 수직 전극(23a, 23b, 23c)과 복수의 상부 수평 전극(24a, 24b, 24c)은 방사형이 아닌 다른 방식으로 배치될 수 있다. 예를 들면, 3개의 전극이 대략 삼각 형상을 이루도록 배치되거나, 4개의 전극이 사각 형상을 이루도록 배치될 수도 있다.In addition, the plurality of upper vertical electrodes 23a, 23b, 23c and the plurality of upper horizontal electrodes 24a, 24b, 24c may be arranged in a manner other than radial. For example, three electrodes may be arranged to form a substantially triangular shape, or four electrodes may be arranged to form a square shape.
한편, 도 1에 도시된 바와 같이, 탄성 지지체(41, 42, 43)는 복수 개로 구비된다. 본 실시예에서는 3개의 탄성 지지체(41, 42, 43)를 도시하였지만, 실시예에 따라 탄성 지지체(41, 42, 43)의 개수는 변경될 수 있다.On the other hand, as shown in Figure 1, the elastic support (41, 42, 43) is provided in plurality. Although three elastic supports 41, 42, and 43 are illustrated in the present embodiment, the number of elastic supports 41, 42, and 43 may vary depending on the embodiment.
3개의 탄성 지지체(41, 42, 43)는 동일한 구조를 가질 수 있으며, 설명의 편의를 위해 하나의 탄성 지지체(41)에 대해 구체적으로 설명하고, 다른 탄성 지지체(42, 43)에 대한 설명은 생략한다.The three elastic supports 41, 42, 43 may have the same structure, and for the convenience of description, one elastic support 41 will be described in detail, and the description of the other elastic supports 42, 43 will be described. Omit.
탄성 지지체(41)는 상부 지지단(41a), 상부 로드(41b), 탄성부(41c), 하부 로드(41d), 하부 지지단(41e)을 포함한다.The elastic support 41 includes an upper support end 41a, an upper rod 41b, an elastic portion 41c, a lower rod 41d, and a lower support end 41e.
상부 지지단(41a)은 하우징(10)에 결합된다. 이를 위해 상부 지지단(41a)에는 제2 탄성 지지체 고정홀(41f)이 형성된다. 제2 탄성 지지체 고정홀(41f)은 제1 탄성 지지체 고정홀(13c)과 대응되도록 형성되며, 별도의 고정 부재가 제1 탄성 지지체 고정홀(13c)과 제2 탄성 지지체 고정홀(41f)로 삽입되어 탄성 지지체(41)를 하우징(10)에 고정한다.The upper support end 41a is coupled to the housing 10. To this end, a second elastic support fixing hole 41f is formed in the upper support end 41a. The second elastic support fixing hole 41f is formed to correspond to the first elastic support fixing hole 13c, and a separate fixing member is formed as the first elastic support fixing hole 13c and the second elastic support fixing hole 41f. It is inserted to fix the elastic support 41 to the housing (10).
상부 로드(41b)는 상부 지지단(41a)의 중앙부로부터 하방으로 연장 형성되어 상부 지지단(41a)과 탄성부(41c)를 연결한다.The upper rod 41b extends downward from the center portion of the upper support end 41a to connect the upper support end 41a and the elastic portion 41c.
탄성부(41c)는 외력에 의한 탄성 변형이 용이하도록 링 형상을 가질 수 있다. 실시예예 따라 탄성부(41c)의 형상은 다양하게 변형될 수 있다.The elastic portion 41c may have a ring shape to facilitate elastic deformation by external force. According to the exemplary embodiment, the shape of the elastic part 41c may be variously modified.
하부 로드(41d) 및 하부 지지단(41e)은 탄성부(41c)를 중심으로 상부 지지단(41a) 및 상부 로드(41b)와 대칭 형성된다. 하부 지지단(41e)에는 제3 탄성 지지체 고정홀(41g)이 형성된다. 제3 탄성 지지체 고정홀(41g)은 하부 지지단(41e)은 하부 블록(30)에 고정하기 위한 고정 부재(미도시)가 삽입되는 공간이다.The lower rod 41d and the lower support end 41e are formed symmetrically with the upper support end 41a and the upper rod 41b about the elastic part 41c. A third elastic support fixing hole 41g is formed in the lower support end 41e. The third elastic support fixing hole 41g is a space in which a fixing member (not shown) for fixing the lower supporting end 41e to the lower block 30 is inserted.
한편, 도 1 및 도 3에 도시된 바와 같이, 하부 블록(30)은 베이스 플레이트(31)와 베이스 플레이트(31)의 상부면으로부터 돌출 형성되는 하부 수평 전극(31a)을 포함한다. 본 실시예에서 하부 수평 전극(31a)은 하부 블록(30)의 상부면을 형성한다.1 and 3, the lower block 30 includes a base plate 31 and a lower horizontal electrode 31a protruding from an upper surface of the base plate 31. In the present embodiment, the lower horizontal electrode 31a forms an upper surface of the lower block 30.
본 실시예에서는 하부 수평 전극(31a)을 복수의 상부 수평 전극(24a, 24b, 24c)과 마주하는 하나의 플레이트로 구성하였으나, 실시예에 따라 복수의 상부 수평 전극(24a, 24b, 24c)에 일대일로 대응하도록 서로 분리된 복수의 하부 수평 전극으로 구성될 수도 있다.In the present exemplary embodiment, the lower horizontal electrode 31a is configured as one plate facing the plurality of upper horizontal electrodes 24a, 24b, and 24c. It may be composed of a plurality of lower horizontal electrodes separated from each other to correspond one-to-one.
하부 수평 전극(31a)은 상부 수평 전극(24a, 24b, 24c)과 평행하고 적어도 일부가 오버랩된다. 따라서, 상부 수평 전극(24a, 24b, 24c) 각각은 하부 수평 전극(31a)과 공기를 유전층으로 하는 커패시터(capacitor)로서 기능하게 되며, 하부 수평 전극(31a)과 상부 수평 전극(24a, 24b, 24c)으로 구성되는 커패시터는 PCB(21)에 형성되는 전자 회로의 일부가 된다. 실시예에 따라 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a) 사이에 별도의 유전체를 개재할 수도 있다.The lower horizontal electrode 31a is parallel with the upper horizontal electrodes 24a, 24b, and 24c and at least partially overlaps. Accordingly, each of the upper horizontal electrodes 24a, 24b, and 24c functions as a capacitor having the lower horizontal electrode 31a and air as a dielectric layer, and the lower horizontal electrode 31a and the upper horizontal electrodes 24a, 24b, The capacitor composed of 24c) becomes part of the electronic circuit formed on the PCB 21. In some embodiments, a separate dielectric may be interposed between the upper horizontal electrodes 24a, 24b, and 24c and the lower horizontal electrode 31a.
도 2 및 도 3에 도시된 바와 같이, 하부 블록(30)은 하부 수평 전극(31a)으로부터 베이스 플레이트(31)까지 함몰 형성되는 복수의 전극홈(32a, 32b, 32c)을 포함한다. 복수의 전극홈(32a, 32b, 32c)은 복수의 상부 수직 전극(23a, 23b, 23c)의 위치와 각각 대응되며 복수의 상부 수직 전극(23a, 23b, 23c)의 적어도 일부가 수용되도록 형성된다. 본 실시예에 따른 정전 용량형 센서(1)가 조립된 상태에서, 상부 수직 전극(23a, 23b, 23c)은 전극홈(32a, 32b, 32c)의 바닥면 및 측면과 접하지 않는다.2 and 3, the lower block 30 includes a plurality of electrode grooves 32a, 32b, and 32c recessed from the lower horizontal electrode 31a to the base plate 31. The plurality of electrode grooves 32a, 32b and 32c respectively correspond to the positions of the plurality of upper vertical electrodes 23a, 23b and 23c and are formed to accommodate at least a portion of the plurality of upper vertical electrodes 23a, 23b and 23c. . In the state where the capacitive sensor 1 according to the present embodiment is assembled, the upper vertical electrodes 23a, 23b, and 23c do not contact the bottom and side surfaces of the electrode grooves 32a, 32b, and 32c.
전극홈(32a, 32b, 32c)의 측면 중 상부 수직 전극(23a, 23b, 23c)과 마주하는 면은 하부 수직 전극(33a, 33b, 33c)이 된다. 하부 수직 전극(33a, 33b, 33c)은 하부 블록(30)의 상부면인 하부 수평 전극(31a)과 수직한 면을 갖도록 형성되며, 상부 수직 전극(23a, 23b, 23c)과 적어도 일부가 오버랩된다.Among the side surfaces of the electrode grooves 32a, 32b and 32c, the surface facing the upper vertical electrodes 23a, 23b and 23c becomes the lower vertical electrodes 33a, 33b and 33c. The lower vertical electrodes 33a, 33b, 33c are formed to have a surface perpendicular to the lower horizontal electrode 31a, which is the upper surface of the lower block 30, and at least partially overlap the upper vertical electrodes 23a, 23b, 23c. do.
각각의 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c)은 공기를 유전층으로 하는 커패시터(capacitor)로서 기능하게 되며, 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c)으로 구성되는 커패시터는 PCB(21)에 형성되는 전자 회로의 일부가 된다. 실시예에 따라 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c) 사이에 별도의 유전체를 개재할 수도 있다.Each of the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c functions as a capacitor having air as a dielectric layer, and the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes. The capacitor composed of the vertical electrodes 33a, 33b, 33c becomes part of the electronic circuit formed on the PCB 21. In some embodiments, a separate dielectric may be interposed between the upper vertical electrodes 23a, 23b and 23c and the lower vertical electrodes 33a, 33b and 33c.
또한, 도 1에 도시된 바와 같이, 베이스 플레이트(31)의 상면에는 복수의 탄성 지지체 수용홈(34a, 34b, 34c)이 형성된다. 탄성 지지체 수용홈(34a, 34b, 34c)은 탄성 지지체(41, 42, 43)의 하부 지지단(41e)이 삽입되는 공간으로, 탄성 지지체(41, 42, 43)의 위치와 대응되도록 형성된다.In addition, as shown in Figure 1, a plurality of elastic support receiving grooves (34a, 34b, 34c) is formed on the upper surface of the base plate (31). The elastic support receiving grooves 34a, 34b, and 34c are spaces in which the lower support ends 41e of the elastic supports 41, 42, and 43 are inserted, and are formed to correspond to the positions of the elastic supports 41, 42, and 43. .
그리고 각각의 탄성 지지체 수용홈(34a, 34b, 34c)에는 제4 탄성 지지체 고정홀(35a, 35b, 35c)이 형성된다. 제4 탄성 지지체 고정홀(35a, 35b, 35c)은 제3 탄성 지지체 고정홀(41g)과 대응되도록 형성되어, 별도의 고정 부재가 제3 탄성 지지체 고정홀(41g)과 제4 탄성 지지체 고정홀(35a, 35b, 35c)에 삽입되어 탄성 지지체(41, 42, 43)를 하부 블록(30)에 고정한다.Fourth elastic support fixing holes 35a, 35b, and 35c are formed in each of the elastic support receiving grooves 34a, 34b, and 34c. The fourth elastic support fixing holes 35a, 35b, and 35c are formed to correspond to the third elastic support fixing holes 41g, so that a separate fixing member is provided with the third elastic support fixing holes 41g and the fourth elastic support fixing holes. Inserted into (35a, 35b, 35c) to fix the elastic support (41, 42, 43) to the lower block (30).
탄성 지지체(41, 42, 43)는 하우징(10)과 하부 블록(30)을 탄성 지지하게 된다. 상부 블록(20)은 하우징(10)에 고정되도록 설치되므로, 결과적으로 탄성 지지체(41, 42, 43)는 상부 블록(20)과 하부 블록(30)을 탄성 지지하게 된다.The elastic supports 41, 42, and 43 may elastically support the housing 10 and the lower block 30. Since the upper block 20 is installed to be fixed to the housing 10, as a result, the elastic supports 41, 42, and 43 elastically support the upper block 20 and the lower block 30.
하우징(10)에 외력이 가해지면 상부 블록(20)은 하우징(10)과 일체로 움직이므로, 상부 블록(20)은 하부 블록(30)에 대해 상대적으로 이동하게 된다. 반대로, 하부 블록(30)에 외력이 가해지면, 하부 블록(30)은 상부 블록(20)에 대해 상대적으로 이동하게 된다. When an external force is applied to the housing 10, the upper block 20 moves integrally with the housing 10, so that the upper block 20 moves relative to the lower block 30. On the contrary, when an external force is applied to the lower block 30, the lower block 30 moves relative to the upper block 20.
상부 블록(20)과 하부 블록(30)이 서로 상대적으로 이동함에 따라, 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c) 사이의 간격이 변화하고, 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a) 사이의 간격이 변화한다.As the upper block 20 and the lower block 30 move relative to each other, the gap between the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c changes, and the upper horizontal electrode The interval between the 24a, 24b, 24c and the lower horizontal electrode 31a changes.
커패시터의 정전 용량(C)은 아래와 같은 유전율(ε) 및 오버랩 면적(A)에 비례하고, 전극 사이의 간격(d)에 반비례한다(C= εA/d).The capacitance C of the capacitor is proportional to the dielectric constant epsilon and the overlap area A as follows, and inversely proportional to the spacing d between the electrodes (C = εA / d).
따라서, 외력에 의해 상부 블록(20)과 하부 블록(30)이 서로 상대적으로 이동하여, 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c) 사이의 간격과 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a) 사이의 간격이 변화하면, 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c)에 의해 형성되는 커패시터의 정전 용량이 변화하고, 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a)에 의해 형성되는 커패시터의 정전 용량이 변화한다.Therefore, the upper block 20 and the lower block 30 are moved relative to each other by an external force, so that the gap between the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c and the upper horizontal portion. When the gap between the electrodes 24a, 24b, 24c and the lower horizontal electrode 31a changes, the electrostatic capacitance of the capacitor formed by the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c. The capacitance changes, and the capacitance of the capacitor formed by the upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a changes.
본 실시예에 따른 정전 용량형 센서(1)는 변화하는 정전 용량을 이용해 3축 방향으로 작용하는 힘 성분(Fx, Fy, Fz) 및 토크 성분(Tx, Ty, Tz)에 대한 정보를 센싱한다.The capacitive sensor 1 according to the present embodiment senses information about the force components Fx, Fy, and Fz and the torque components Tx, Ty, and Tz acting in three axes using the changing capacitance. .
PCB(21), 상부 수직 전극(23a, 23b, 23c), 하부 수직 전극(33a, 33b, 33c), 상부 수평 전극(24a, 24b, 24c) 및 하부 수평 전극(31a)에 의해 구성되는 전자 회로는 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c) 간의 정전 용량 및 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a) 사이의 정전 용량의 변화에 대응하여 변화하는 시그널을 출력하는 전자 회로일 수 있다. Electronic circuit constituted by PCB 21, upper vertical electrodes 23a, 23b, 23c, lower vertical electrodes 33a, 33b, 33c, upper horizontal electrodes 24a, 24b, 24c and lower horizontal electrodes 31a. Is a change in the capacitance between the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c and the capacitance between the upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a. It may be an electronic circuit that outputs a correspondingly changing signal.
일례로서, 전자 회로는 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c) 간의 정전 용량과 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a) 사이의 정전 용량을 각각 출력하는 전자 회로일 수 있다.As an example, the electronic circuit may be provided with a capacitance between the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c and between the upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrodes 31a. It may be an electronic circuit that outputs each capacitance.
또는, 전자 회로에서 출력되는 시그널에는 3축 방향으로 작용하는 힘 성분(Fx, Fy, Fz) 및 토크 성분(Tx, Ty, Tz)에 대한 정보가 포함될 수 있다. 이 경우, 상부 수직 전극(23a, 23b, 23c)과 하부 수직 전극(33a, 33b, 33c) 간의 정전 용량과 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a) 사이의 정전 용량에 기초하여 3축 방향으로 작용하는 힘 성분(Fx, Fy, Fz) 및 토크 성분(Tx, Ty, Tz)을 연산하는 연산부가 포함될 수 있다.Alternatively, the signal output from the electronic circuit may include information about the force components (Fx, Fy, Fz) and the torque components (Tx, Ty, Tz) acting in the three-axis direction. In this case, the capacitance between the upper vertical electrodes 23a, 23b, 23c and the lower vertical electrodes 33a, 33b, 33c, and the capacitance between the upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a. An arithmetic unit for calculating the force components (Fx, Fy, Fz) and torque components (Tx, Ty, Tz) acting in the three-axis direction on the basis can be included.
이하에서는, 도 4 내지 도 11을 참고하여 3축 방향으로 작용하는 힘(Fx, Fy, Fz)/토크(Tx, Ty, Tz)와 정전 용량의 변화에 대한 관계에 대해 구체적으로 설명한다. 도 4 내지 도 11은 제1 실시예에 따른 정전 용량형 센서의 전극들 사이의 상대적인 이동을 설명하기 위한 것으로서 설명에 불필요한 구성은 생략하였고, 상부 블록(20)과 하부 블록(30)은 원형으로 단순화하였다.Hereinafter, the relationship between the force (Fx, Fy, Fz) / torque (Tx, Ty, Tz) and the change in the capacitance acting in the triaxial direction will be described in detail with reference to FIGS. 4 to 11. 4 to 11 illustrate the relative movement between the electrodes of the capacitive sensor according to the first embodiment, and unnecessary configuration is omitted, and the upper block 20 and the lower block 30 are circular. Simplified.
도 4는 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 수직 전극과 하부 수직 전극의 초기 위치를 개략적으로 도시한 도면이다.4 is a view schematically showing the initial positions of the upper vertical electrode and the lower vertical electrode of the capacitive sensor according to the first embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 정전 용량형 센서(1)는 3개의 상부 수직 전극(23a, 23b, 23c)이 120도 간격으로 구비되고, 3개의 하부 수직 전극(33a, 33b, 33c)이 3개의 상부 수직 전극(23a, 23b, 23c)과 일대일로 대응되도록 구비된다. 전술한 바와 같이, 3개의 상부 수직 전극(23a, 23b, 23c)은 상부 블록(20)에 지지되고, 3개의 하부 수직 전극(33a, 33b, 33c)은 하부 블록(30)의 베이스 플레이트(31)에 형성된다.As shown in FIG. 4, the capacitive sensor 1 according to the first embodiment of the present invention includes three upper vertical electrodes 23a, 23b, and 23c disposed at 120 degree intervals, and three lower vertical electrodes. 33a, 33b, and 33c are provided to correspond in one-to-one correspondence with the three upper vertical electrodes 23a, 23b, and 23c. As described above, the three upper vertical electrodes 23a, 23b, 23c are supported by the upper block 20, and the three lower vertical electrodes 33a, 33b, 33c are the base plate 31 of the lower block 30. Is formed.
도 4에 도시된 바와 같이, 상부 블록(20) 및 하부 블록(30)에 외력이 가해지지 않는 상황에서는, 3개의 상부 수직 전극(23a, 23b, 23c)과 3개의 하부 수직 전극(33a, 33b, 33c)이 대략 평행하게 일정 간격을 유지한 상태로 존재한다.As shown in FIG. 4, in the situation where no external force is applied to the upper block 20 and the lower block 30, the three upper vertical electrodes 23a, 23b, and 23c and the three lower vertical electrodes 33a and 33b. , 33c) are present at approximately constant intervals in parallel.
이하에서는 설명의 편의를 위해, 도 4에서 X축에 평행한 상부 수직 전극(33a)을 제1 상부 수직 전극으로 지칭하고, 제1 상부 수직 전극(23a)으로부터 +120도 방향에 위치하는 상부 수직 전극(23b)을 제2 상부 수직 전극으로, 제1 상부 수직 전극(23a)으로부터 -120도 방향에 위치하는 상부 수직 전극(23c)을 제3 상부 수직 전극으로 지칭한다.Hereinafter, for convenience of description, the upper vertical electrode 33a parallel to the X axis in FIG. 4 is referred to as a first upper vertical electrode, and the upper vertical electrode located in a +120 degree direction from the first upper vertical electrode 23a. The electrode 23b is referred to as the second upper vertical electrode, and the upper vertical electrode 23c positioned in the −120 degree direction from the first upper vertical electrode 23a is referred to as a third upper vertical electrode.
그리고, 제1 상부 수직 전극(23a)과 마주하는 하부 수직 전극(33a)을 제1 하부 수직 전극으로, 제2 상부 수직 전극(23b)과 마주하는 하부 수직 전극(33b)을 제2 하부 수직 전극으로, 제3 상부 수직 전극(23c)과 마주하는 하부 수직 전극(33c)을 제3 하부 수직 전극으로 지칭한다.The lower vertical electrode 33a facing the first upper vertical electrode 23a is the first lower vertical electrode, and the lower vertical electrode 33b facing the second upper vertical electrode 23b is the second lower vertical electrode. For example, the lower vertical electrode 33c facing the third upper vertical electrode 23c is referred to as a third lower vertical electrode.
그리고, 하부 블록(30)을 고정된 상태로 유지되고, 상부 블록(20)이 하부 블록(30)에 대해 움직이는 것을 전제로 설명한다.In addition, the lower block 30 will be kept fixed and the upper block 20 will be described on the assumption that the lower block 30 moves.
도 5는 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 X방향 힘(Fx)에 의해 변화되는 상부 수직 전극과 하부 수직 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 5 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by an X-direction force Fx acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
하우징(10)에 X방향 힘(Fx)이 작용하면, 도 5에 도시된 바와 같이, 상부 블록(20)은 하우징(10)과 함께 X방향으로 소폭 이동하게 된다. 상부 블록(20)의 이동에 의해, 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 거리는 변화하지 않고, 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 거리는 짧아지고, 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 거리는 길어진다.When the X direction force Fx acts on the housing 10, as shown in FIG. 5, the upper block 20 moves slightly in the X direction together with the housing 10. By the movement of the upper block 20, the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a does not change, and the second upper vertical electrode 23b and the second lower vertical electrode 33b do not change. ), The distance is shortened, and the distance between the third upper vertical electrode 23c and the third lower vertical electrode 33c becomes long.
따라서, 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 정전 용량(C1)은 거의 변화하지 않고(제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a)의 오버랩 면적이 작아지는 경우에는 정전 용량이 소폭 감소할 수 있음), 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 정전 용량(C2)은 증가하고, 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 정전 용량(C3)은 감소한다.Therefore, the capacitance C1 between the first upper vertical electrode 23a and the first lower vertical electrode 33a hardly changes (the first upper vertical electrode 23a and the first lower vertical electrode 33a are not changed). When the overlap area is small, the capacitance may be slightly reduced), the capacitance C2 between the second upper vertical electrode 23b and the second lower vertical electrode 33b is increased, and the third upper vertical electrode is increased. The capacitance C3 between 23c and the third lower vertical electrode 33c decreases.
하우징(10)에 가해지는 X방향 힘(Fx)이 커짐에 따라, 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 거리는 더욱 짧아지고, 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 거리는 더욱 길어진다.As the X-direction force Fx applied to the housing 10 increases, the distance between the second upper vertical electrode 23b and the second lower vertical electrode 33b becomes shorter, and the third upper vertical electrode 23c And the distance between the third lower vertical electrode 33c become longer.
따라서, Fx와 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 정전 용량(C2)은 비례하고, Fx와 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 정전 용량(C3)은 반비례하게 된다.Therefore, the capacitance C2 between Fx and the second upper vertical electrode 23b and the second lower vertical electrode 33b is proportional, and Fx and the third upper vertical electrode 23c and the third lower vertical electrode 33c are proportional to each other. The capacitance C3 between) becomes inversely proportional.
이러한 관계를 이용해 X 방향으로 작용하는 힘(Fx)을 검출할 수 있다.This relationship can be used to detect the force Fx acting in the X direction.
도 6은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 Y방향 힘(Fy)에 의해 변화되는 상부 수직 전극과 하부 수직 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 6 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by the Y-direction force Fy acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
하우징(10)에 Y방향 힘(Fy)이 작용하면, 도 6에 도시된 바와 같이, 상부 블록(20)은 하우징(10)과 함께 Y방향으로 소폭 이동하게 된다. 상부 블록(20)의 이동에 의해, 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 거리는 길어지고, 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 거리는 짧아지고, 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 거리는 짧아진다.When the Y direction force Fy acts on the housing 10, as shown in FIG. 6, the upper block 20 moves slightly in the Y direction together with the housing 10. By the movement of the upper block 20, the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a becomes long, and the second upper vertical electrode 23b and the second lower vertical electrode 33b are extended. The distance between them becomes short, and the distance between the third upper vertical electrode 23c and the third lower vertical electrode 33c becomes short.
따라서, 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 정전 용량(C1)은 감소하고, 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 정전 용량(C2)은 증가하고, 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 정전 용량(C3)은 증가한다.Therefore, the capacitance C1 between the first upper vertical electrode 23a and the first lower vertical electrode 33a decreases, and the electrostatic capacitance between the second upper vertical electrode 23b and the second lower vertical electrode 33b is reduced. The capacitance C2 increases, and the capacitance C3 between the third upper vertical electrode 23c and the third lower vertical electrode 33c increases.
하우징(10)에 가해지는 Y방향 힘(Fy)이 커짐에 따라, 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 거리는 더욱 길어지고, 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 거리는 더욱 짧아지고, 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 거리는 더욱 짧아진다.As the Y-direction force Fy applied to the housing 10 increases, the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a becomes longer, and the second upper vertical electrode 23b And the distance between the second lower vertical electrode 33b becomes shorter, and the distance between the third upper vertical electrode 23c and the third lower vertical electrode 33c becomes shorter.
따라서, Fy와 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 정전 용량(C1)은 반비례하고, Fy와 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 정전 용량(C2)은 비례하고, Fy와 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 정전 용량(C3)은 비례하게 된다.Therefore, the capacitance C1 between Fy and the first upper vertical electrode 23a and the first lower vertical electrode 33a is inversely proportional, and Fy and the second upper vertical electrode 23b and the second lower vertical electrode 33b are inversely proportional to each other. The capacitance C2 between λ is proportional, and the capacitance C3 between Fy and the third upper vertical electrode 23c and the third lower vertical electrode 33c is proportional to each other.
이러한 관계를 이용해 Y방향으로 작용하는 힘(Fy)을 검출할 수 있다.This relationship can be used to detect the force Fy acting in the Y direction.
도 7은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 Z방향 토크(Tz)에 의해 변화되는 상부 수직 전극과 하부 수직 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 7 is a view schematically illustrating a positional change of an upper vertical electrode and a lower vertical electrode changed by a Z-direction torque Tz acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
하우징(10)에 Z방향 토크(Tz)가 작용하면, 도 7에 도시된 바와 같이, 상부 블록(20)은 하우징(10)과 함께 Z방향으로 회전하게 된다. 상부 블록(20)의 회전에 의해, 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 거리, 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 거리 및 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 거리는 길어진다.When the Z-direction torque Tz acts on the housing 10, as shown in FIG. 7, the upper block 20 rotates in the Z direction together with the housing 10. By rotation of the upper block 20, the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a, between the second upper vertical electrode 23b and the second lower vertical electrode 33b The distance and the distance between the third upper vertical electrode 23c and the third lower vertical electrode 33c become longer.
따라서, 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 정전 용량(C1), 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 정전 용량(C2) 및 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 정전 용량(C3)은 감소한다.Therefore, the capacitance C1 between the first upper vertical electrode 23a and the first lower vertical electrode 33a, and the capacitance C2 between the second upper vertical electrode 23b and the second lower vertical electrode 33b. ) And the capacitance C3 between the third upper vertical electrode 23c and the third lower vertical electrode 33c decrease.
하우징(10)에 가해지는 Z방향 토크(Tz)가 커짐에 따라, 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 거리, 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 거리 및 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 거리는 더욱 길어진다.As the Z-direction torque Tz applied to the housing 10 increases, the distance between the first upper vertical electrode 23a and the first lower vertical electrode 33a, the second upper vertical electrode 23b and the second The distance between the lower vertical electrodes 33b and the distance between the third upper vertical electrodes 23c and the third lower vertical electrodes 33c become longer.
따라서, Tz는 제1 상부 수직 전극(23a)과 제1 하부 수직 전극(33a) 사이의 정전 용량(C1), 제2 상부 수직 전극(23b)과 제2 하부 수직 전극(33b) 사이의 정전 용량(C2) 및 제3 상부 수직 전극(23c)과 제3 하부 수직 전극(33c) 사이의 정전 용량(C3)과 반비례한다.Therefore, Tz is the capacitance C1 between the first upper vertical electrode 23a and the first lower vertical electrode 33a, and the capacitance between the second upper vertical electrode 23b and the second lower vertical electrode 33b. It is inversely proportional to the capacitance C3 between (C2) and the third upper vertical electrode 23c and the third lower vertical electrode 33c.
이러한 관계를 이용해 Z방향으로 작용하는 토크(Tz)를 검출할 수 있다.Using this relationship, the torque Tz acting in the Z direction can be detected.
도 8은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 수평 전극과 하부 수평 전극의 초기 위치를 개략적으로 도시한 도면이다.8 is a view schematically showing initial positions of an upper horizontal electrode and a lower horizontal electrode of the capacitive sensor according to the first embodiment of the present invention.
도 8에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 정전 용량형 센서(1)는 3개의 상부 수평 전극(24a, 24b, 24c)이 상부 블록(20)의 하부면에 구비된다. 도 3에 도시된 바와 같이, 3개의 상부 수평 전극(24a, 24b, 24c)은 120도 간격으로 구비된다. 그리고, 하부 수평 전극(31a)은 하부 블록(30)의 베이스 플레이트(31)로부터 돌출 형성된다.As shown in FIG. 8, in the capacitive sensor 1 according to the first embodiment of the present invention, three upper horizontal electrodes 24a, 24b, and 24c are provided on the lower surface of the upper block 20. As shown in FIG. 3, three upper horizontal electrodes 24a, 24b, 24c are provided at 120 degree intervals. The lower horizontal electrode 31 a protrudes from the base plate 31 of the lower block 30.
도 8에 도시된 바와 같이, 상부 블록(20) 및 하부 블록(30)에 외력이 가해지지 않는 상황에서는, 3개의 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a)이 대략 평행하게 일정 간격을 유지한 상태로 존재한다.As shown in FIG. 8, in the situation where no external force is applied to the upper block 20 and the lower block 30, the three upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a are approximately parallel. It exists at a certain interval.
이하에서는 설명의 편의를 위해, 도 8을 기준으로 최우측에 위치하는 상부 수평 전극(24a)을 제1 상부 수평 전극으로, 최좌측에 위치하는 상부 수평 전극(24b)을 제2 상부 수평 전극으로, 중앙에 위치하는 상부 수평 전극(24c)을 제3 상부 수평 전극으로 지칭한다.Hereinafter, for convenience of description, the upper horizontal electrode 24a positioned at the rightmost side as the first upper horizontal electrode and the upper horizontal electrode 24b positioned at the leftmost side as the second upper horizontal electrode will be described with reference to FIG. 8. The upper horizontal electrode 24c positioned at the center is referred to as a third upper horizontal electrode.
도 9는 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 Z방향 힘(Fz)에 의해 변화되는 상부 수평 전극과 하부 수평 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 9 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode changed by a Z direction force Fz acting on an upper block of the capacitive sensor according to the first embodiment of the present invention.
하우징(10)에 Z방향 힘(Fz)이 작용하면, 도 9에 도시된 바와 같이, 상부 블록(20)은 하우징(10)과 함께 Z방향으로 소폭 이동하게 된다. 상부 블록(20)의 이동에 의해, 3개의 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a) 사이의 거리는 길어진다.When the Z direction force Fz acts on the housing 10, as shown in FIG. 9, the upper block 20 moves slightly in the Z direction together with the housing 10. By the movement of the upper block 20, the distance between the three upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a becomes long.
따라서, 제1 상부 수평 전극(24a)과 하부 수평 전극(31a) 사이의 정전 용량(C4), 제2 상부 수평 전극(24b)과 하부 수평 전극(31a) 사이의 정전 용량(C5) 및 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 정전 용량(C6)은 모두 감소한다.Therefore, the capacitance C4 between the first upper horizontal electrode 24a and the lower horizontal electrode 31a, the capacitance C5 between the second upper horizontal electrode 24b and the lower horizontal electrode 31a, and the third The capacitance C6 between the upper horizontal electrode 24c and the lower horizontal electrode 31a all decreases.
하우징(10)에 가해지는 Z방향 힘(Fz)이 커짐에 따라, 3개의 상부 수평 전극(24a, 24b, 24c)과 하부 수평 전극(31a) 사이의 거리는 더욱 길어진다.As the Z-direction force Fz applied to the housing 10 increases, the distance between the three upper horizontal electrodes 24a, 24b, 24c and the lower horizontal electrode 31a becomes longer.
따라서, Fz는 제1 상부 수평 전극(24a)과 하부 수평 전극(31a) 사이의 정전 용량(C4), 제2 상부 수평 전극(24b)과 하부 수평 전극(31a) 사이의 정전 용량(C5) 및 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 정전 용량(C6)과 반비례한다.Therefore, Fz is the capacitance C4 between the first upper horizontal electrode 24a and the lower horizontal electrode 31a, the capacitance C5 between the second upper horizontal electrode 24b and the lower horizontal electrode 31a, and It is inversely proportional to the capacitance C6 between the third upper horizontal electrode 24c and the lower horizontal electrode 31a.
이러한 관계를 이용해 Z방향으로 작용하는 힘(Fz)을 검출할 수 있다.Using this relationship, the force Fz acting in the Z direction can be detected.
도 10은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 X방향 토크(Tx)에 의해 변화되는 상부 수평 전극과 하부 수평 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 10 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode which are changed by the X-direction torque Tx acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
하우징(10)에 X방향 토크(Tx)가 작용하면, 도 10에 도시된 바와 같이, 상부 블록(20)은 하우징(10)과 함께 X방향으로 회전하게 된다. 상부 블록(20)의 회전에 의해, 제1 상부 수평 전극(24a) 및 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 거리는 짧아지고, 제2 상부 수평 전극(24b)과 하부 수평 전극(31a) 사이의 거리는 길어진다.When the X direction torque Tx acts on the housing 10, as shown in FIG. 10, the upper block 20 rotates in the X direction together with the housing 10. By the rotation of the upper block 20, the distance between the first upper horizontal electrode 24a and the third upper horizontal electrode 24c and the lower horizontal electrode 31a is shortened, and the second upper horizontal electrode 24b and the lower portion are lowered. The distance between the horizontal electrodes 31a becomes long.
따라서, 제1 상부 수평 전극(24a)과 하부 수평 전극(31a) 사이의 정전 용량(C4) 및 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 정전 용량(C6)은 증가하고, 제2 상부 수평 전극(24b)과 하부 수평 전극(31a) 사이의 정전 용량(C5)은 감소한다.Accordingly, the capacitance C4 between the first upper horizontal electrode 24a and the lower horizontal electrode 31a and the capacitance C6 between the third upper horizontal electrode 24c and the lower horizontal electrode 31a are increased and The capacitance C5 between the second upper horizontal electrode 24b and the lower horizontal electrode 31a decreases.
하우징(10)에 가해지는 X방향 토크(Tx)가 커짐에 따라, 제1 상부 수평 전극(24a) 및 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 거리는 더욱 짧아지고, 제2 상부 수평 전극(24b)과 하부 수평 전극(31a) 사이의 거리는 더욱 길어진다.As the X-direction torque Tx applied to the housing 10 increases, the distance between the first upper horizontal electrode 24a and the third upper horizontal electrode 24c and the lower horizontal electrode 31a becomes shorter, and The distance between the upper horizontal electrode 24b and the lower horizontal electrode 31a becomes longer.
따라서, Tx와 제1 상부 수평 전극(24a)과 하부 수평 전극(31a) 사이의 정전 용량(C4) 및 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 정전 용량(C6)은 비례하고, Tx와 제2 상부 수평 전극(24b)과 하부 수평 전극(31a) 사이의 정전 용량(C5)은 반비례하게 된다.Accordingly, the capacitance C4 between Tx and the first upper horizontal electrode 24a and the lower horizontal electrode 31a and the capacitance C6 between the third upper horizontal electrode 24c and the lower horizontal electrode 31a are In proportion, the capacitance C5 between Tx and the second upper horizontal electrode 24b and the lower horizontal electrode 31a is inversely proportional.
이러한 관계를 이용해 X방향으로 작용하는 토크(Tx)를 검출할 수 있다.This relationship can be used to detect the torque Tx acting in the X direction.
도 11은 본 발명의 제1 실시예에 따른 정전 용량형 센서의 상부 블록에 작용하는 Y방향 토크(Ty)에 의해 변화되는 상부 수평 전극과 하부 수평 전극의 위치 변화를 개략적으로 도시한 도면이다.FIG. 11 is a view schematically illustrating a positional change of an upper horizontal electrode and a lower horizontal electrode changed by the Y-direction torque Ty acting on the upper block of the capacitive sensor according to the first embodiment of the present invention.
하우징(10)에 Y방향 토크(Ty)가 작용하면, 도 11에 도시된 바와 같이, 상부 블록(20)은 하우징(10)과 함께 Y방향으로 회전하게 된다.When the Y-direction torque Ty acts on the housing 10, as shown in FIG. 11, the upper block 20 rotates in the Y direction together with the housing 10.
제2 상부 수평 전극(24b)은 Y축에 인접하여 위치하므로 제2 상부 수평 전극(24b)과 하부 수평 전극(31a) 사이의 거리는 크게 변하지 않는다.Since the second upper horizontal electrode 24b is positioned adjacent to the Y axis, the distance between the second upper horizontal electrode 24b and the lower horizontal electrode 31a does not change significantly.
그러나, 제1 상부 수평 전극(24a)과 하부 수평 전극(31a) 사이의 거리는 길어지고, 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 거리는 짧아진다.However, the distance between the first upper horizontal electrode 24a and the lower horizontal electrode 31a becomes longer, and the distance between the third upper horizontal electrode 24c and the lower horizontal electrode 31a becomes shorter.
따라서, 제2 상부 수평 전극(24b)과 하부 수평 전극(31a) 사이의 정전 용량(C5)은 거의 변화하지 않고, 제1 상부 수평 전극(24a)과 하부 수평 전극(31a) 사이의 정전 용량(C4)은 감소하고, 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 정전 용량(C6)은 증가한다.Therefore, the capacitance C5 between the second upper horizontal electrode 24b and the lower horizontal electrode 31a hardly changes, and the capacitance between the first upper horizontal electrode 24a and the lower horizontal electrode 31a ( C4) decreases, and the capacitance C6 between the third upper horizontal electrode 24c and the lower horizontal electrode 31a increases.
하우징(10)에 가해지는 Y방향 토크(Ty)가 커짐에 따라, 제1 상부 수평 전극(24a)과 하부 수평 전극(31a) 사이의 거리는 더욱 길어지고, 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 거리는 더욱 짧아진다.As the Y-direction torque Ty applied to the housing 10 increases, the distance between the first upper horizontal electrode 24a and the lower horizontal electrode 31a becomes longer, and the third upper horizontal electrode 24c and the lower portion are lower. The distance between the horizontal electrodes 31a becomes shorter.
따라서, Ty와 제1 상부 수평 전극(24a)과 하부 수평 전극(31a) 사이의 정전 용량(C4)은 반비례하고, Ty와 제3 상부 수평 전극(24c)과 하부 수평 전극(31a) 사이의 정전 용량(C6)은 비례하게 된다.Therefore, the capacitance C4 between Ty and the first upper horizontal electrode 24a and the lower horizontal electrode 31a is inversely proportional, and the electrostatic capacitance between Ty and the third upper horizontal electrode 24c and the lower horizontal electrode 31a is inversely proportional. The capacity C6 becomes proportional.
이러한 관계를 이용해 Y방향으로 작용하는 토크(Ty)를 검출할 수 있다.This relationship can be used to detect the torque Ty acting in the Y direction.
상부 수직 전극(23a, 23b, 23c), 하부 수직 전극(33a, 33b, 33c), 상부 수평 전극(24a, 24b, 24c)의 X, Y, Z 축에 대한 상대적인 위치의 변화에 따라 3축 방향으로 작용하는 힘 성분(Fx, Fy, Fz) 및 토크 성분(Tx, Ty, Tz)을 검출하는 방법은 달라질 수 있다.3-axis direction according to the change of the position of the upper vertical electrodes 23a, 23b, 23c, the lower vertical electrodes 33a, 33b, 33c, and the upper horizontal electrodes 24a, 24b, 24c relative to the X, Y, and Z axes. The method of detecting the force components (Fx, Fy, Fz) and torque components (Tx, Ty, Tz) acting as can vary.
이하에서는 본 발명의 제2 실시예에 따른 정전 용량형 센서에 대해 설명한다. 설명의 편의를 위하여 제1 실시예와 유사한 부분은 동일한 도면부호를 사용하고, 제1 실시예와 공통되는 부분은 그 설명을 생략한다.Hereinafter, a capacitive sensor according to a second embodiment of the present invention will be described. For convenience of description, parts similar to those of the first embodiment will be denoted by the same reference numerals, and parts common to the first embodiment will be omitted.
도 12는 본 발명의 제2 실시예에 따른 정전 용량형 센서의 상부 블록과 하부 블록을 개략적으로 도시한 분해 사시도이고, 도 13은 본 발명의 제2 실시예에 따른 정전 용량형 센서의 상부 블록과 하부 블록의 조립된 상태를 도시한 사시도이다.12 is an exploded perspective view schematically illustrating an upper block and a lower block of a capacitive sensor according to a second embodiment of the present invention, and FIG. 13 is an upper block of the capacitive sensor according to a second embodiment of the present invention. And a perspective view showing the assembled state of the lower block.
도 12에 도시된 바와 같이, 본 발명의 제2 실시예에 따른 정전 용량형 센서(2)의 상부 블록(220)은 제1 실시예의 하부 수평 전극(31a)과 유사한 형상을 갖는다.As shown in FIG. 12, the upper block 220 of the capacitive sensor 2 according to the second embodiment of the present invention has a shape similar to that of the lower horizontal electrode 31a of the first embodiment.
상부 블록(220)은 몸체를 형성하는 플레이트(221)를 포함하며, 플레이트(221)의 측면은 상부 수직 전극(223a, 223b, 223c)으로 기능하고, 플레이트(221)의 하부면은 상부 수평 전극으로 기능한다. 즉, 본 실시예에서는 상부 수직 전극(223a, 223b, 223c)이 상부 블록(220)의 측면에 형성된다.The upper block 220 includes a plate 221 forming a body, and the side of the plate 221 functions as the upper vertical electrodes 223a, 223b, and 223c, and the lower surface of the plate 221 is the upper horizontal electrode. Function as. That is, in the present embodiment, the upper vertical electrodes 223a, 223b, and 223c are formed on the side surface of the upper block 220.
한편, 하부 블록(230)은 베이스 플레이트(231)의 상부면에 돌출 형성되는 복수의 하부 수직 전극(233a, 233b, 233c)과 복수의 하부 수평 전극(232a, 232b, 232c)을 포함한다.The lower block 230 includes a plurality of lower vertical electrodes 233a, 233b, and 233c protruding from the upper surface of the base plate 231, and a plurality of lower horizontal electrodes 232a, 232b, and 232c.
도 13에 도시된 바와 같이, 복수의 하부 수평 전극(232a, 232b, 232c)은 플레이트(221)의 하부면과 오버랩된다. 복수의 하부 수평 전극(232a, 232b, 232c)과 플레이트(221)의 하부면은 서로 접촉하지 않은 상태를 유지한다.As shown in FIG. 13, the plurality of lower horizontal electrodes 232a, 232b, and 232c overlap the lower surface of the plate 221. The plurality of lower horizontal electrodes 232a, 232b, and 232c and the lower surfaces of the plate 221 are not in contact with each other.
또한, 복수의 하부 수직 전극(233a, 233b, 233c)은 각각 플레이트(221)의 측면과 이격되도록 배치된다. 플레이트(221)의 측면 중 하부 수직 전극(233a, 233b, 233c)들과 마주하는 면이 상부 수직 전극(223a, 223b, 223c)으로 기능하게 된다. In addition, the plurality of lower vertical electrodes 233a, 233b, and 233c are disposed to be spaced apart from the side surfaces of the plate 221, respectively. A surface of the side surface of the plate 221 facing the lower vertical electrodes 233a, 233b, and 233c serves as the upper vertical electrodes 223a, 223b, and 223c.
도시되지는 않았지만, 본 실시예에 따른 정전 용량형 센서(2) 역시 전술한 제1 실시예에 따른 정전 용량형 센서(1)와 유사하게 하우징(10) 및 탄성 지지체(41, 42, 43)를 포함할 수 있다. 그리고, 상부 블록(220)은 하우징(10)에 고정되고, 탄성 지지체(41, 42, 43)는 하우징(10)과 하부 블록(230)을 각각 탄성 지지하여, 외력(Fx, Fy, Fz, Tx, Ty, Tz)에 의해 상부 블록(220)과 하부 블록(230)이 상대적으로 움직일 수 있도록 구성될 수 있다.Although not shown, the capacitive sensor 2 according to the present embodiment also has a housing 10 and an elastic support 41, 42, 43 similar to the capacitive sensor 1 according to the first embodiment described above. It may include. The upper block 220 is fixed to the housing 10, and the elastic supports 41, 42, and 43 elastically support the housing 10 and the lower block 230, respectively, so that external forces Fx, Fy, Fz, Tx, Ty, and Tz) may be configured to allow the upper block 220 and the lower block 230 to move relatively.
본 실시예에 따른 정전 용량형 센서(2) 역시, 외력에 의해 상부 수직 전극(223a, 223b, 223c)과 하부 수직 전극(233a, 233b, 233c), 상부 수평 전극과 하부 수평 전극(232a, 232b, 232c) 사이의 간격 변화/정전 용량의 변화를 이용해 3축 방향으로 작용하는 힘 성분(Fx, Fy, Fz) 및 토크 성분(Tx, Ty, Tz)을 검출할 수 있다.The capacitive sensor 2 according to the present embodiment also has the external vertical electrodes 223a, 223b, and 223c and the lower vertical electrodes 233a, 233b, and 233c by the external force, and the upper and lower horizontal electrodes 232a and 232b. , The force component (Fx, Fy, Fz) and the torque component (Tx, Ty, Tz) acting in the three-axis direction can be detected by using the change of the interval / static capacitance between 232c).
제2 실시예에 따른 정전 용량형 센서(2)의 변형예로서, 상부 블록(220)과 하부 블록(230)이 서로 위치가 반전되도록 배치될 수 있다. 즉, 도 12 및 도 13의 하부 블록(230)이 180도 반전되어 상부 블록으로서 기능하고, 상부 블록(220)이 180도 반전되어 하부 블록으로서 기능하게 된다. As a modification of the capacitive sensor 2 according to the second embodiment, the upper block 220 and the lower block 230 may be arranged such that their positions are reversed from each other. That is, the lower block 230 of FIGS. 12 and 13 is inverted 180 degrees to function as the upper block, and the upper block 220 is inverted 180 degrees to function as the lower block.
이 경우, 도 12에 도시된 복수의 하부 수직 전극(233a, 233b, 233c)과 복수의 하부 수평 전극(232a, 232b, 232c)은 각각 상부 수직 전극과 상부 수평 전극이 된다. 그리고 플레이트(221)의 측면에 형성된 상부 수직 전극(223a, 223b, 223c)은 하부 수직 전극이 되고, 플레이트(221)의 일면은 하부 수평 전극으로 기능하게 된다.In this case, the plurality of lower vertical electrodes 233a, 233b, and 233c and the plurality of lower horizontal electrodes 232a, 232b, and 232c shown in FIG. 12 become upper vertical electrodes and upper horizontal electrodes, respectively. The upper vertical electrodes 223a, 223b, and 223c formed on the side of the plate 221 become lower vertical electrodes, and one surface of the plate 221 functions as a lower horizontal electrode.
즉, 변형예에 따른 정전 용량형 센서에서는 상부 수직 전극이 상부 블록의 하부면으로부터 돌출 형성되고, 하부 수직 전극은 하부 블록의 측면에 형성되게 된다.That is, in the capacitive sensor according to the modification, the upper vertical electrode protrudes from the lower surface of the upper block, and the lower vertical electrode is formed on the side of the lower block.
이하에서는 본 발명의 제3 실시예에 따른 정전 용량형 센서에 대해 설명한다. 설명의 편의를 위하여 제1 실시예와 유사한 부분은 동일한 도면부호를 사용하고, 제1 실시예와 공통되는 부분은 그 설명을 생략한다.Hereinafter, a capacitive sensor according to a third embodiment of the present invention will be described. For convenience of description, parts similar to those of the first embodiment will be denoted by the same reference numerals, and parts common to the first embodiment will be omitted.
도 14는 본 발명의 제3 실시예에 따른 정전 용량형 센서의 상부 블록의 하부면과 하부 블록의 하부면을 개략적으로 도시한 분해 사시도이고, 도 15는 본 발명의 제3 실시예에 따른 정전 용량형 센서의 상부 블록과 하부 블록의 조립된 상태를 도시한 사시도이다.14 is an exploded perspective view schematically illustrating a lower surface of an upper block and a lower surface of a lower block of a capacitive sensor according to a third embodiment of the present invention, and FIG. 15 is an electrostatic force according to a third embodiment of the present invention. It is a perspective view which shows the assembled state of the upper block and lower block of a capacitive sensor.
도 14에 도시된 바와 같이, 본 발명의 제3 실시예에 따른 정전 용량형 센서(3)의 상부 블록(320)은 상부 플레이트(321)의 하부면에 돌출 형성된 복수의 상부 수직 전극(323a, 323b, 323c)과 복수의 상부 수평 전극(324a, 324b, 324c)을 포함한다.As shown in FIG. 14, the upper block 320 of the capacitive sensor 3 according to the third embodiment of the present invention may include a plurality of upper vertical electrodes 323a, protruding from the lower surface of the upper plate 321. 323b and 323c and a plurality of upper horizontal electrodes 324a, 324b and 324c.
그리고, 하부 블록(330)은 베이스 플레이트(331)의 상부면에 돌출 형성된 복수의 하부 수직 전극(333a, 333b, 333c)과 복수의 하부 수평 전극(332a, 332b, 332c)을 포함한다.The lower block 330 includes a plurality of lower vertical electrodes 333a, 333b, and 333c protruding from the upper surface of the base plate 331, and a plurality of lower horizontal electrodes 332a, 332b, and 332c.
도 15에 도시된 바와 같이, 복수의 상부 수직 전극(323a, 323b, 323c)과 복수의 하부 수직 전극(333a, 333b, 333c)은 일부가 오버랩되고 상호 간에 접하지 않고 마주하도록 배치된다. 동시에 복수의 상부 수직 전극(323a, 323b, 323c)은 베이스 플레이트(331)와 접하지 않도록 형성되고, 복수의 하부 수직 전극(333a, 333b, 333c)은 상부 플레이트(321)에 접하지 않도록 형성된다.As shown in FIG. 15, the plurality of upper vertical electrodes 323a, 323b, and 323c and the plurality of lower vertical electrodes 333a, 333b, and 333c are disposed to face each other without overlapping one another. At the same time, the plurality of upper vertical electrodes 323a, 323b, and 323c are formed not to contact the base plate 331, and the plurality of lower vertical electrodes 333a, 333b, and 333c are formed not to contact the upper plate 321. .
또한, 복수의 상부 수평 전극(324a, 324b, 324c)은 복수의 하부 수평 전극(332a, 332b, 332c)의 상부에 위치하여 상호 간에 접하지 않고 오버랩되도록 배치된다.In addition, the plurality of upper horizontal electrodes 324a, 324b, and 324c are disposed on the upper portions of the plurality of lower horizontal electrodes 332a, 332b, and 332c, and disposed to overlap each other without being in contact with each other.
도시되지는 않았지만, 본 실시예에 따른 정전 용량형 센서(3) 역시 전술한 제1 실시예에 따른 정전 용량형 센서(1)와 유사하게 하우징(10) 및 탄성 지지체(41, 42, 43)를 포함할 수 있다. 그리고, 상부 블록(320)은 하우징(10)에 고정되고, 탄성 지지체(41, 42, 43)는 하우징(10)과 하부 블록(330)을 각각 탄성 지지하여, 외력(Fx, Fy, Fz, Tx, Ty, Tz)에 의해 상부 블록(320)과 하부 블록(330)이 상대적으로 움직일 수 있도록 구성될 수 있다.Although not shown, the capacitive sensor 3 according to the present embodiment also has a housing 10 and an elastic support 41, 42, 43 similar to the capacitive sensor 1 according to the first embodiment described above. It may include. The upper block 320 is fixed to the housing 10, and the elastic supports 41, 42, and 43 elastically support the housing 10 and the lower block 330, respectively, so that external forces Fx, Fy, Fz, Tx, Ty, and Tz) may be configured to allow the upper block 320 and the lower block 330 to move relatively.
본 실시예에 따른 정전 용량형 센서(3) 역시, 외력에 의해 상부 수직 전극(323a, 323b, 323c)과 하부 수직 전극(333a, 333b, 333c), 상부 수평 전극(324a, 324b, 324c)과 하부 수평 전극(332a, 332b, 332c) 사이의 간격 변화/정전 용량의 변화를 이용해 3축 방향으로 작용하는 힘 성분(Fx, Fy, Fz) 및 토크 성분(Tx, Ty, Tz)을 검출할 수 있다. The capacitive sensor 3 according to the present embodiment also includes the upper vertical electrodes 323a, 323b and 323c, the lower vertical electrodes 333a, 333b and 333c, and the upper horizontal electrodes 324a, 324b and 324c by an external force. The force component (Fx, Fy, Fz) and torque component (Tx, Ty, Tz) acting in the three-axis direction can be detected using the change in the interval / change in capacitance between the lower horizontal electrodes 332a, 332b, and 332c. have.
이하에서는 본 발명의 제4 실시예에 따른 정전 용량형 센서에 대해 설명한다. 설명의 편의를 위하여 제3 실시예와 유사한 부분은 동일한 도면부호를 사용하고, 제1 실시예와 공통되는 부분은 그 설명을 생략한다.Hereinafter, a capacitive sensor according to a fourth embodiment of the present invention will be described. For convenience of description, parts similar to those of the third embodiment have the same reference numerals, and parts common to the first embodiment will be omitted.
도 16은 본 발명의 제4 실시예에 따른 정전 용량형 센서의 상부 블록의 하부면과 하부 블록의 하부면을 개략적을 도시한 분해 사시도이다.16 is an exploded perspective view schematically illustrating a lower surface of an upper block and a lower surface of a lower block of a capacitive sensor according to a fourth embodiment of the present invention.
도 16에 도시된 바와 같이, 본 발명의 제4 실시예에 따른 정전 용량형 센서(4)는, 전술한 제3 실시예에 따른 정전 용량형 센서(3)와 비교하여, 상부 블록(420)의 형상이 다소 상이하다. As shown in FIG. 16, the capacitive sensor 4 according to the fourth embodiment of the present invention has an upper block 420 compared to the capacitive sensor 3 according to the third embodiment. The shape of is somewhat different.
본 발명의 제4 실시예에 따른 정전 용량형 센서(4)는 복수의 상부 수직 전극(423a, 423b, 423c)이 상부 플레이트(321)의 하부면으로부터 함몰 형성된다.In the capacitive sensor 4 according to the fourth embodiment of the present invention, a plurality of upper vertical electrodes 423a, 423b, and 423c are recessed from the lower surface of the upper plate 321.
따라서, 하부 블록(330)에 형성된 복수의 하부 수직 전극(333a, 333b, 333c)은 일부가 상부 블록(420)의 내측으로 삽입되어 상부 수직 전극(423a, 423b, 423c)과 마주하게 된다.Accordingly, some of the lower vertical electrodes 333a, 333b, and 333c formed in the lower block 330 are inserted into the upper block 420 to face the upper vertical electrodes 423a, 423b, and 423c.
하부 수직 전극(333a, 333b, 333c)의 일부가 상부 블록(420)의 내측으로 삽입됨에 따라, 상부 블록(420)과 하부 블록(330) 사이의 간격이 좁아지므로 복수의 상부 수평 전극(424a, 424b, 424c)은 제3 실시예에 비해 돌출 길이가 짧아지거나, 상부 플레이트(321)의 하부면과 동일 평면 상에 형성될 수 있다.As a portion of the lower vertical electrodes 333a, 333b, and 333c is inserted into the upper block 420, the gap between the upper block 420 and the lower block 330 is narrowed, so that the plurality of upper horizontal electrodes 424a, The protrusion lengths 424b and 424c may be shorter than those of the third embodiment, or may be formed on the same plane as the lower surface of the upper plate 321.
이상 설명한 바와 같이, 본 발명의 실시예들에 따른 정전 용량형 센서는 외력에 의해 발생하는 상부 블록과 상부 블록의 상대적인 이동을 이용해 상부 수직 전극과 하부 수직 전극, 상부 수평 전극과 하부 수평 전극에서의 정전 용량의 변화를 기초로 3축 방향으로 작용하는 힘 성분(Fx, Fy, Fz) 및 토크 성분(Tx, Ty, Tz)을 검출한다.As described above, the capacitive sensor according to the embodiments of the present invention uses the relative movement of the upper block and the upper block generated by an external force, so that the upper and lower vertical electrodes, the upper horizontal electrode and the lower horizontal electrode The force components Fx, Fy, and Fz and the torque components Tx, Ty, and Tz acting in the triaxial direction are detected based on the change in capacitance.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art will appreciate that the present invention can be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (12)

  1. 상부 블록;Upper block;
    하부 블록;Lower block;
    상기 상부 블록과 상기 하부 블록을 탄성 지지하는 복수의 탄성 지지체;A plurality of elastic supports elastically supporting the upper block and the lower block;
    상기 상부 블록의 하부면에 수직한 면을 갖도록 형성되는 상부 수직 전극; An upper vertical electrode formed to have a surface perpendicular to a lower surface of the upper block;
    상기 하부 블록의 상부면에 수직한 면을 갖도록 형성되고 상기 상부 수직 전극과 적어도 일부가 오버랩되도록 상기 상부 수직 전극과 마주하도록 배치되는 하부 수직 전극; 및A lower vertical electrode formed to have a surface perpendicular to an upper surface of the lower block and disposed to face the upper vertical electrode such that at least a portion of the lower vertical electrode overlaps the upper vertical electrode; And
    상기 상부 수직 전극과 상기 하부 수직 전극을 회로의 일부로 포함하며, 상기 상부 블록 및 상기 하부 블록 중 적어도 하나에 작용하는 힘 또는 토크에 의해 변화되는 상기 상부 수직 전극과 상기 하부 수직 전극 사이의 정전 용량(capacitance) 변화에 대응하는 시그널을 출력하는 전자 회로를 포함하는, 정전 용량형 센서.A capacitance between the upper vertical electrode and the lower vertical electrode including the upper vertical electrode and the lower vertical electrode as part of a circuit, and changed by a force or a torque applied to at least one of the upper block and the lower block. Capacitive sensor comprising an electronic circuit for outputting a signal corresponding to the change.
  2. 제1항에 있어서,The method of claim 1,
    상기 정전 용량 변화는 상기 상부 수직 전극과 상기 하부 수직 전극 사이의 간격의 변화에 의해 발생하는, 정전 용량형 센서.Wherein the capacitance change is caused by a change in the distance between the upper vertical electrode and the lower vertical electrode.
  3. 제1항에 있어서,The method of claim 1,
    상기 상부 수직 전극은 3개 이상이 구비되고, The upper vertical electrode is provided with three or more,
    상기 하부 수직 전극은 상기 상부 수직 전극에 각각 대응되도록 구비되는, 정전 용량형 센서.The lower vertical electrode is provided so as to correspond to the upper vertical electrode, respectively.
  4. 제1항에 있어서,The method of claim 1,
    상기 상부 수직 전극은 상기 상부 블록의 하부면으로부터 돌출 형성되고, 상기 하부 수직 전극은 상기 하부 블록의 상부면으로부터 돌출 형성되는, 정전 용량형 센서.The upper vertical electrode protrudes from the lower surface of the upper block, the lower vertical electrode protrudes from the upper surface of the lower block, capacitive sensor.
  5. 제1항에 있어서,The method of claim 1,
    상기 상부 수직 전극은 상기 상부 블록의 하부면으로부터 함몰 형성되고, 상기 하부 수직 전극은 상기 하부 블록의 상부면으로부터 돌출 형성되는, 정전 용량형 센서.The upper vertical electrode is recessed from the lower surface of the upper block, the lower vertical electrode protruding from the upper surface of the lower block, capacitive sensor.
  6. 제1항에 있어서,The method of claim 1,
    상기 상부 수직 전극은 상기 상부 블록의 하부면으로부터 돌출 형성되고, 상기 하부 수직 전극은 상기 하부 블록의 상부면으로부터 함몰 형성되는, 정전 용량형 센서.And the upper vertical electrode protrudes from a lower surface of the upper block, and the lower vertical electrode is recessed from an upper surface of the lower block.
  7. 제1항에 있어서,The method of claim 1,
    상기 상부 수직 전극은 상기 상부 블록의 측면에 형성되고, 상기 하부 수직 전극은 상기 하부 블록의 상부면으로부터 돌출 형성되는, 정전 용량형 센서.The upper vertical electrode is formed on the side of the upper block, the lower vertical electrode protruding from the upper surface of the lower block, the capacitive sensor.
  8. 제1항에 있어서,The method of claim 1,
    상기 상부 수직 전극은 상기 상부 블록의 하부면으로부터 돌출 형성되고, 상기 하부 수직 전극은 상기 하부 블록의 측면에 형성되는, 정전 용량형 센서.The upper vertical electrode protrudes from the lower surface of the upper block, the lower vertical electrode is formed on the side of the lower block, the capacitive sensor.
  9. 제1항에 있어서,The method of claim 1,
    상기 상부 블록의 하부면과 평행하거나 동일 평면 상에 형성되는 면을 갖도록 형성되는 상부 수평 전극 및An upper horizontal electrode formed to have a surface that is parallel or parallel to the lower surface of the upper block;
    상기 하부 블록의 상부면과 평행하거나 동일 평면 상에 형성되는 면을 갖도록 형성되고, 상기 상부 수평 전극과 적어도 일부가 오버랩되도록 상기 상부 수평 전극과 마주하도록 배치되는 하부 수평 전극을 더 포함하는, 정전 용량형 센서.And a lower horizontal electrode formed to have a surface parallel to the upper surface of the lower block or formed on the same plane and disposed to face the upper horizontal electrode so that at least a portion of the upper horizontal electrode overlaps with the upper horizontal electrode. Type sensor.
  10. 제9항에 있어서,The method of claim 9,
    상기 전자 회로는,The electronic circuit,
    상기 상부 수평 전극과 상기 하부 수평 전극을 회로의 일부로 포함하며, 상기 시그널은 상기 상부 블록 및 상기 하부 블록 중 적어도 하나에 작용하는 힘 또는 토크에 의해 변화되는 상기 상부 수직 전극과 상기 하부 수직 전극 사이의 정전 용량 변화 및 상기 상부 수평 전극과 상기 하부 수평 전극 사이의 정전 용량 변화에 대응하여 변화하는, 정전 용량형 센서.The upper horizontal electrode and the lower horizontal electrode as part of a circuit, wherein the signal is between the upper vertical electrode and the lower vertical electrode which is changed by a force or torque acting on at least one of the upper block and the lower block. And a capacitance change corresponding to a capacitance change and a capacitance change between the upper horizontal electrode and the lower horizontal electrode.
  11. 제10항에 있어서,The method of claim 10,
    상기 시그널은 서로 직교하는 3축 방향으로 작용하는 힘 성분(Fx, Fy, Fz) 및 토크 성분(Tx, Ty, Tz) 각각에 대한 정보를 포함하는, 정전 용량형 센서.The signal includes information about each of the force component (Fx, Fy, Fz) and the torque component (Tx, Ty, Tz) acting in three axial directions orthogonal to each other.
  12. 제10항에 있어서,The method of claim 10,
    상기 시그널은 상기 상부 수직 전극과 상기 하부 수직 전극 사이의 정전 용량 및 상기 상부 수평 전극과 상기 하부 수평 전극 사이의 정전 용량에 대한 정보를 포함하는, 정전 용량형 센서.The signal includes information about the capacitance between the upper vertical electrode and the lower vertical electrode and the capacitance between the upper horizontal electrode and the lower horizontal electrode.
PCT/KR2017/004412 2016-07-01 2017-04-26 Capacitive sensor WO2018004121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160083395A KR102560535B1 (en) 2016-07-01 2016-07-01 Capacitive sensor
KR10-2016-0083395 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018004121A1 true WO2018004121A1 (en) 2018-01-04

Family

ID=60787440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004412 WO2018004121A1 (en) 2016-07-01 2017-04-26 Capacitive sensor

Country Status (2)

Country Link
KR (1) KR102560535B1 (en)
WO (1) WO2018004121A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813476A (en) * 2019-01-23 2019-05-28 广西大学 A kind of novel capacitance-type torque sensor based on structure decoupling
WO2022021038A1 (en) 2020-07-28 2022-02-03 Shanghai Flexiv Robotics Technology Co., Ltd. Multi-degree of freedom force and torque sensor and robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020093491A (en) * 2001-06-09 2002-12-16 전자부품연구원 A capacitive differential pressure sensor and method for manufacturing thereof
KR20060007233A (en) * 2004-07-19 2006-01-24 삼성전자주식회사 Vertical offset structure and method for fabrication of the same
KR20090016550A (en) * 2006-04-28 2009-02-16 파나소닉 전공 주식회사 Capacitive sensor
KR20130032073A (en) * 2011-09-22 2013-04-01 성균관대학교산학협력단 Six-axis sensor measuring power and torque
US20150292969A1 (en) * 2014-04-14 2015-10-15 Research & Business Foundation Sungkyunkwan University Capacitive type 6-axial force/torque sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201219632D0 (en) * 2012-10-31 2012-12-12 Univ Southampton Apparatus for sensing and measuring pressure and shear components of a force at an interface between two surfaces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020093491A (en) * 2001-06-09 2002-12-16 전자부품연구원 A capacitive differential pressure sensor and method for manufacturing thereof
KR20060007233A (en) * 2004-07-19 2006-01-24 삼성전자주식회사 Vertical offset structure and method for fabrication of the same
KR20090016550A (en) * 2006-04-28 2009-02-16 파나소닉 전공 주식회사 Capacitive sensor
KR20130032073A (en) * 2011-09-22 2013-04-01 성균관대학교산학협력단 Six-axis sensor measuring power and torque
US20150292969A1 (en) * 2014-04-14 2015-10-15 Research & Business Foundation Sungkyunkwan University Capacitive type 6-axial force/torque sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813476A (en) * 2019-01-23 2019-05-28 广西大学 A kind of novel capacitance-type torque sensor based on structure decoupling
CN109813476B (en) * 2019-01-23 2021-03-16 广西大学 Capacitive torque sensor based on structure decoupling
WO2022021038A1 (en) 2020-07-28 2022-02-03 Shanghai Flexiv Robotics Technology Co., Ltd. Multi-degree of freedom force and torque sensor and robot
EP4176239A4 (en) * 2020-07-28 2023-08-16 Shanghai Flexiv Robotics Technology Co., Ltd. Multi-degree of freedom force and torque sensor and robot
US11913849B2 (en) 2020-07-28 2024-02-27 Flexiv Ltd. Multi-degree of freedom force and torque sensor and robot

Also Published As

Publication number Publication date
KR102560535B1 (en) 2023-07-28
KR20180003807A (en) 2018-01-10

Similar Documents

Publication Publication Date Title
WO2018101617A1 (en) Capacitive sensor
WO2010085070A2 (en) Input apparatus
WO2018004121A1 (en) Capacitive sensor
WO2014046351A1 (en) Camera module
WO2017200296A1 (en) Torque sensor and torque angle sensor, and steering apparatus comprising same
WO2017026610A1 (en) Flexible tactile sensor and manufacturing method therefor
CN109313004A (en) Measurement of coordinates probe body
WO2019164335A1 (en) Lens module and camera module comprising same
WO2014208898A1 (en) Apparatus for detecting touch
WO2022030995A1 (en) Electronic apparatus including fixing structure for fixing substrate
WO2016148531A1 (en) Pressure sensor
WO2015130013A1 (en) Touch pen capable of sensing writing pressure
WO2018004113A1 (en) Mems-based three-axis acceleration sensor
WO2019231026A1 (en) Display device
WO2010053229A1 (en) Method and system of measuring motion error in precision linear stage
WO2020189992A1 (en) Camera module
WO2012033247A1 (en) Touch panel
WO2017119727A2 (en) Camera module
WO2021040401A1 (en) Sensing device
WO2009136777A2 (en) Resilient body for measuring loads, and a non-contact load-measuring device employing the same
WO2020036268A1 (en) Touch sensor module
WO2019083302A1 (en) Joint torque sensor and robot joint unit including same
WO2019031824A1 (en) Waterproof fingerprint sensor module having cover part
WO2020209397A1 (en) Silicon strain gauge having high sensitivity and pressure transducer comprising same
WO2010120042A2 (en) Displacement sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820398

Country of ref document: EP

Kind code of ref document: A1