WO2018004014A1 - Recombinant protein having transglutaminase activity - Google Patents

Recombinant protein having transglutaminase activity Download PDF

Info

Publication number
WO2018004014A1
WO2018004014A1 PCT/JP2017/024881 JP2017024881W WO2018004014A1 WO 2018004014 A1 WO2018004014 A1 WO 2018004014A1 JP 2017024881 W JP2017024881 W JP 2017024881W WO 2018004014 A1 WO2018004014 A1 WO 2018004014A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
protein
mtg
activity
acid sequence
Prior art date
Application number
PCT/JP2017/024881
Other languages
French (fr)
Japanese (ja)
Inventor
典穂 神谷
浩之輔 林
孝介 南畑
松崎 隆
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2018525324A priority Critical patent/JPWO2018004014A1/en
Publication of WO2018004014A1 publication Critical patent/WO2018004014A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a recombinant protein having transglutaminase activity. Specifically, the present invention relates to the above recombinant protein in which the amino acid of the propeptide portion of the microorganism-derived transglutaminase is mutated.
  • Transglutaminase is an acyl group transfer between a specific glutamine (Q) side chain ⁇ -carboxyamide group and a primary amine including an amine group of lysine (K) side chain, or water.
  • a post-translational modification enzyme that catalyzes the reaction and forms an isopeptide bond.
  • MMG microtransglutaminase derived from Streptomyces mobaraensis does not require a cofactor for the expression of catalytic activity, and is easily expressed in large quantities by a microbial host, and has a cross-linking activity (that is, the above isoforms).
  • Non-Patent Documents 1 and 2). the application range of MTG is expanding, and further application can be expected by improving its function.
  • E. coli expression system which is a general-purpose host for gene recombination, it is difficult to express the mature form of MTG itself, and it has been reported that it is insolubilized (Patent Document 1).
  • MTG has a partial structure called a propeptide and a structure called a precursor fused to the N-terminal side of mature MTG.
  • This propeptide is an intramolecular chaperone that leads to the correct folding of MTG. It can be said that it is indispensable to acquire. Therefore, in a state where a propeptide is added, expression in E. coli is possible (see Non-Patent Document 3).
  • the MTG variant expressed with the propeptide added does not show activity due to the presence of the propeptide covering the active site. Therefore, it has been difficult to prepare an active recombinant MTG using E. coli as a host.
  • Patent Document 2 In previous studies, in order to solve the above-mentioned problems, the MTG precursor and the protease are co-expressed in the E. coli cytoplasm, thereby succeeding in obtaining active MTG simultaneously with the expression. In addition, a search for a more highly active MTG in which a propeptide is easily removed after protease treatment by screening a plurality of mutants by introducing a mutation into an amino acid in the propeptide and studying an expression process has been carried out ( Non-patent document 2).
  • a linker peptide is a peptide that does not have a fixed secondary structure and has some flexibility to satisfy biological conditions.
  • polyglycine, GS, and PT PTPPTTPT
  • the specific activity increased in all mutants compared to the wild type.
  • those with GS and PT linker inserted showed high specific activity.
  • the catalytic efficiency of the enzyme increased because the value of k cat / K m increased in the mutant with the linker inserted. This is presumably because the linker peptide is located in the vicinity of the active site, and the catalytic efficiency is increased by the interaction between the linker peptide and the catalytic region.
  • Non-Patent Document 4 the activity of MTG has been successfully improved by adding a specific sequence to the propeptide.
  • this problem can be cleared by co-expressing a recombinant MTG and a protease in an E. coli host (see Non-Patent Document 2).
  • MTG undergoes partial hydrolysis, leading to inactivation.
  • the reaction efficiency of MTG is lowered, which may affect the subsequent reaction. In any case, a protease treatment and a subsequent purification process are necessary, and an increase in costs associated with this may be considered.
  • the problem to be solved by the present invention is an active MTG (MTG variant having transglutaminase activity) that does not require protease treatment in a protein expression system using a general-purpose host such as Escherichia coli, a method for producing the same, etc. Is to provide.
  • the present inventor has intensively studied to solve the above problems. As a result, a mutant that expresses transglutaminase activity (crosslinking activity) in the state of an MTG precursor, that is, a state having a propeptide was searched.
  • the above activity is spontaneously expressed even in a state having a propeptide by modifying the propeptide possessed by the MTG precursor by genetic engineering and regulating the interaction between the active site and the propeptide.
  • the present invention was completed by finding an MTG variant. That is, the present invention is as follows. (1) A protein obtained by mutating at least an amino acid in the amino acid sequence of a propeptide portion in a wild-type microorganism-derived transglutaminase, wherein the protein has transglutaminase activity. (2) The protein according to (1) above, which has the activity in a state having the propeptide portion after the mutation. (3) The protein according to (1) or (2) above, wherein the mutation is substitution with another amino acid.
  • amino acid in the amino acid sequence of the propeptide portion to be mutated contains lysine and / or at least one tyrosine.
  • the other amino acid obtained by mutating the at least one tyrosine is at least one selected from the group consisting of alanine, glutamine and histidine.
  • amino acids obtained by mutating the lysine are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, tryptophan.
  • protein according to (4) which is at least one selected from the group consisting of tyrosine.
  • a protein comprising an amino acid sequence in which one or several amino acids excluding the amino acid at the substitution site are deleted, substituted, or added, and has transglutaminase activity.
  • the protein according to (7), wherein the other amino acid obtained by mutating the 12th and / or 16th amino acid is at least one selected from the group consisting of alanine, glutamine and histidine.
  • amino acids obtained by mutating the tenth amino acid are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine ,
  • the protein according to (7) which is at least one selected from the group consisting of valine, tryptophan and tyrosine.
  • (10) The following protein (a) or (b): (A) an amino acid sequence in which at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids is substituted with another amino acid in the amino acid sequence shown in SEQ ID NO: 2 (b) (a) A protein having a transglutaminase activity, comprising an amino acid sequence in which one or several amino acids excluding the amino acid at the substitution site in the amino acid sequence are deleted, substituted or added, and having the transglutaminase activity (11)
  • the protein according to (10) above, wherein the other amino acid obtained by mutating the second amino acid is at least one selected from the group consisting of alanine, glutamine and histidine.
  • amino acids obtained by mutating the tenth amino acid are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine.
  • the protein according to (10) above which is at least one selected from the group consisting of valine, tryptophan and tyrosine.
  • the transglutaminase activity according to any one of (1) to (12), wherein the transglutaminase activity has an activity level substantially equivalent to the transglutaminase activity of a wild-type microorganism-derived transglutaminase.
  • a gene comprising the following DNA (a) or (b): (A) In the base sequence shown in SEQ ID NO: 1, the 28th to 30th bases have been replaced with bases indicating codons of amino acids other than lysine, and / or the 34th to 36th and / or Alternatively, DNA consisting of a base sequence in which the 46th to 48th bases are replaced with bases indicating codons of amino acids other than tyrosine.
  • Amino acids other than lysine are composed of arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, tryptophan and tyrosine.
  • the gene according to (15) above which is at least one selected from the group.
  • a recombinant vector comprising the gene according to any one of (14) to (17) above.
  • a transformant comprising the recombinant vector according to (18) above.
  • MTG precursor means MTG having a propeptide portion
  • MTG mutant means MTG obtained by mutating (substituting) an amino acid in the MTG precursor.
  • the protein of the present invention is a mutant protein of transglutaminase (MTG) derived from a microorganism (Streptomyces mobaaraensis).
  • MTG transglutaminase
  • the protein of the present invention is a protein obtained by mutating at least an amino acid in the amino acid sequence of the propeptide portion in wild-type MTG, and having transglutaminase activity. It has the activity in a state having a mutated propeptide portion (a state in which the mutated propeptide portion is present in a protein molecule).
  • propeptide portion a partial structure called a propeptide (propeptide portion) is present in the form of being fused to the N-terminal side of mature MTG.
  • the so-called fusion protein of mature MTG and the propeptide portion is referred to as an MTG precursor.
  • the propeptide portion serves as an inhibitor and has a role for expressing transglutaminase activity (crosslinking activity) at an appropriate location.
  • This cross-linking activity is a post-translational modification between a primary amine including a specific glutamine (Q) side chain ⁇ -carboxyamide group and a lysine (K) side chain amine group, or water.
  • the propeptide portion in MTG is an intramolecular chaperone that leads to correct folding of the protein, and is indispensable for obtaining active MTG, that is, MTG having the above-mentioned crosslinking activity.
  • actinomycetes which is the original host of MTG
  • the MTG precursor is first expressed, and then the propeptide portion is removed by a unique protease secreted by the host to become mature MTG.
  • E. coli expression system which is a general-purpose host for gene recombination, the expression of mature MTG itself is difficult (is insolubilized).
  • the protein of the present invention is a protein in which at least an amino acid in the amino acid sequence of the propeptide portion is mutated in a wild-type microorganism-derived transglutaminase and has transglutaminase activity.
  • those having the activity in the state having the propeptide portion after the mutation, and the mutation being a substitution with another amino acid.
  • the amino acid to be substituted preferably contains at least one tyrosine.
  • the other amino acid after substitution is preferably at least one selected from the group consisting of alanine, glutamine and histidine.
  • the amino acid to be substituted preferably contains lysine, and in this case, other amino acids after substitution include arginine, aspartic acid, glutamic acid, glycine, asparagine, alanine, cysteine, glutamine, serine, threonine (threonine ), Preferably at least one selected from the group consisting of tryptophan, phenylalanine, isoleucine, leucine, methionine, proline, valine, tyrosine and histidine, more preferably at least one selected from the group consisting of aspartic acid and glutamic acid It is.
  • the protein of the present invention for example, in the amino acid sequence of wild-type microorganism-derived transglutaminase, at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids is substituted with another amino acid. It comprises an amino acid sequence or an amino acid sequence in which one or several amino acids excluding the amino acid at the substitution site in the substituted amino acid sequence are deleted, substituted or added, and has transglutaminase activity Protein is preferred.
  • the amino acid sequence of wild-type microorganism-derived transglutaminase is an amino acid sequence excluding the signal peptide part of wild-type microorganism-derived transglutaminase, and a methionine residue (M) is added to the N-terminus thereof. It means the amino acid sequence.
  • the “amino acid sequence in which one or several amino acids are deleted, substituted or added” is, for example, about 1 to 10, preferably 1 to several, 1 to 5, 1 to 4 It is preferable that the amino acid sequence has one, three, one, two, or one amino acid deleted, substituted or added.
  • the introduction of mutation such as deletion, substitution or addition may be carried out by a mutation introduction kit utilizing site-directed mutagenesis, for example, GeneTailor. TM Site-Directed Mutagenesis System (Invitrogen), and TaKaRa Site-Directed Mutagenesis System (Prime STAR (registered trademark) Mutagenesis Basal kit, Muta (registered trademark)-Super Ex. Can do. Whether or not the above deletion, substitution or addition mutation has been introduced can be confirmed using various amino acid sequencing methods and structural analysis methods such as X-ray and NMR.
  • the other amino acid is not particularly limited as far as the 12th and / or 16th amino acid residue is other than tyrosine, but for example, at least one selected from the group consisting of alanine, glutamine and histidine. Species can preferably be mentioned.
  • the tenth amino acid residue is not particularly limited as long as it is other than lysine.
  • the 10th amino acid for example, the production of a self-crosslinked product of MTG itself can be suppressed while maintaining the crosslinking activity of MTG.
  • the protein of the present invention is also preferably the following protein (a) or (b).
  • (B) a transglutaminase activity comprising an amino acid sequence in which one or several amino acids except the amino acid at the substitution site are deleted, substituted or added in the amino acid sequence of the above (a) (the amino acid sequence after the substitution) Protein with
  • the amino acid sequence shown in SEQ ID NO: 2 is an amino acid sequence obtained by adding a methionine residue (M) to the N-terminus of the amino acid sequence excluding the signal peptide portion of the wild-type microorganism-derived transglutaminase, It is an amino acid sequence consisting of a total of 376 amino acids.
  • the protein of (b) is one or several (for example, about 1 to 10, preferably 1 to several, except for the amino acid at the substitution site in the amino acid sequence contained in the protein of (a). Any protein may be used as long as it has a transglutaminase activity and has an amino acid sequence in which 5 to 1, 1 to 4, 1 to 3, 1 to 2, or 1 amino acid is deleted, substituted or added. There is no limitation.
  • the method for introducing a mutation such as deletion, substitution or addition and the confirmation of whether or not a mutation has been introduced are the same as described above.
  • the protein of the following (c) other than the protein of said (b) is mentioned, for example.
  • the protein of (c) those having the above identity of 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more are more preferable.
  • the proteins (b) and (c) can also be prepared by genetic engineering using a gene encoding the amino acid sequence of the protein.
  • the transglutaminase activity can be evaluated and measured by, for example, a method by fluorescence resonance energy transfer (FRET) described in Examples described later.
  • FRET fluorescence resonance energy transfer
  • the proteins (a) to (c) in the present invention may be in the state where the propeptide portion is fused (bound) to the N-terminal side of the mature MTG as in the case of the wild-type MTG.
  • those having a linker sequence between the propeptide portion and the N-terminal side of mature MTG are also preferred.
  • the linker sequence is not limited, but may be an amino acid sequence of about 1 to 30 residues, and specific examples thereof include GGGSLVPRGSGGS (thrombin linker sequence; SEQ ID NO: 10).
  • GGGSLVPRGSGGS thrombin linker sequence
  • SEQ ID NO: 10 wild-type MTG
  • the amino acid sequence from the N-terminal side to the 46th amino acid (proline) is the propeptide portion, and the 47th amino acid (aspartic acid) side to the C-terminal side.
  • the proteins (a) to (c) referred to in the present invention may be peptides derived from natural products, or may be obtained by artificial chemical synthesis, and are not limited.
  • a protein derived from a natural product may be obtained directly from a natural product by known recovery and purification methods, or a gene encoding the protein is incorporated into various expression vectors by a known gene recombination technique. After being introduced into cells and expressed, they may be obtained by known recovery and purification methods.
  • a commercially available kit such as a reagent kit PROTEIOS TM (Toyobo), TNT TM System (Promega), PG-Mate of synthesizer TM
  • the protein may be produced by a cell-free protein synthesis system using Toyobo and RTS (Roche Diagnostics), and may be obtained by a known recovery method and purification method, and is not limited.
  • Chemically synthesized proteins can be obtained using known protein synthesis methods.
  • the synthesis method include an azide method, an acid chloride method, an acid anhydride method, a mixed acid anhydride method, a DCC method, an active ester method, a carboimidazole method, and a redox method.
  • the solid phase synthesis method and the liquid phase synthesis method can be applied to the synthesis.
  • a commercially available protein synthesizer may be used.
  • the protein can be purified by combining known purification methods such as chromatography.
  • a derivative of the protein can be included together with or instead of the proteins (a) to (c). The derivative is meant to include all those that can be prepared from the protein.
  • the protein (a) to (c) and / or a derivative of the protein can be included together with or in place of the protein and / or a salt of the derivative.
  • the salt is preferably a physiologically acceptable acid addition salt or basic salt.
  • Acid addition salts include, for example, salts with inorganic acids such as hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, or acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, apple
  • inorganic acids such as hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, or acetic acid
  • propionic acid fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid
  • organic acids such as acid, oxalic acid, benzoic acid, methanesulfonic acid, and benzenesulfonic acid.
  • Examples of basic salts include salts with inorganic bases such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and magnesium hydroxide, and salts with organic bases such as caffeine, piperidine, trimethylamine and pyridine.
  • the salt can be prepared using a suitable acid such as hydrochloric acid or a suitable base such as sodium hydroxide.
  • a suitable acid such as hydrochloric acid or a suitable base such as sodium hydroxide.
  • it can be prepared by treatment using standard protocols in water or in a liquid containing an inert water-miscible organic solvent such as methanol, ethanol or dioxane.
  • Recombinant gene Although it does not limit as a gene which codes the protein of this invention mentioned above, The gene containing DNA of the following (a) or (b) is mentioned preferably.
  • the following DNAs (a) and (b) are preferably structural genes of the protein of the present invention, but the gene containing these DNAs may be composed only of these DNAs.
  • these DNAs may be included in part, and may also include known base sequences (transcription promoter, SD sequence, Kozak sequence, terminator, etc.) necessary for gene expression, and is not limited.
  • SEQ ID NO: 1 the 28th to 30th bases have been replaced with bases indicating codons of amino acids other than lysine, and / or the 34th to 36th and / or Alternatively, DNA consisting of a base sequence in which the 46th to 48th bases are replaced with bases indicating codons of amino acids other than tyrosine.
  • the term “codon” means not only a three-base chain (triplet) on the RNA sequence after transcription but also a three-base chain on the DNA sequence. Therefore, the notation of the codon on the DNA sequence is performed using thymine (T) instead of uracil (U).
  • the base sequence shown in SEQ ID NO: 1 is a base sequence consisting of 1131 bases encoding wild-type microorganism-derived transglutaminase.
  • the nucleotide sequence of SEQ ID NO: 1 is an amino acid sequence obtained by adding a methionine residue (M) to the N-terminus of the amino acid sequence excluding the signal peptide portion of wild-type microorganism-derived transglutaminase.
  • M methionine residue
  • the DNA of (a) above is preferably a DNA in which the base showing the codons of amino acids other than tyrosine is a base showing at least one codon selected from the group consisting of alanine, glutamine and histidine.
  • the bases indicating the codons of amino acids other than lysine are arginine, aspartic acid, glutamic acid, glycine, asparagine, alanine, cysteine, glutamine, serine, threonine (threonine), tryptophan, phenylalanine.
  • a base showing at least one codon selected from the group consisting of isoleucine, leucine, methionine, proline, valine, tyrosine and histidine, more preferably at least one selected from the group consisting of aspartic acid and glutamic acid Preferred is DNA in the case of a base representing a codon. .
  • Such mutation-substituted DNAs are described in, for example, Molecular Cloning, A Laboratory Manual 4th ed. , Cold Spring Harbor Press (1989), Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997) and the like. Specifically, it can be prepared using a mutation introduction kit using site-directed mutagenesis by a known method such as the Kunkel method or Gapped duplex method, and examples of the kit include QuickChange.
  • TM Site-Directed Mutagenesis Kit (Stratagene), GeneTailor TM Preferred examples include Site-Directed Mutagenesis System (manufactured by Invitrogen), TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc .: manufactured by Takara Bio Inc.) and the like.
  • Site-Directed Mutagenesis System manufactured by Invitrogen
  • TaKaRa Site-Directed Mutagenesis System Matan-K, Mutan-Super Express Km, etc .: manufactured by Takara Bio Inc.
  • PCR primers designed so that a missense mutation is introduced so as to be a base indicating a codon of a desired amino acid using a DNA containing a base sequence encoding wild-type MTG as a template under appropriate conditions It can also be prepared by performing PCR.
  • the DNA polymerase used for PCR is not limited, but is preferably a highly accurate DNA polymerase.
  • Pwo DNA Polymerase Roche Diagnostics
  • Pfu DNA polymerase Promega
  • Platinum Pfx DNA polymerase Invitrogen
  • KOD DNA polymerase Toyobo
  • KOD-plus-polymerase Toyobo
  • the PCR reaction conditions may be appropriately set depending on the optimum temperature of the DNA polymerase to be used, the length and type of the DNA to be synthesized, etc. For example, in the case of cycle conditions, “90-98 ° C. for 5-30 seconds (thermal denaturation, Dissociation) ⁇ 50 to 65 ° C.
  • the DNA of the above (b) uses the DNA of the above (a) or a DNA comprising a complementary base sequence, or a fragment thereof, as a probe, such as colony hybridization, plaque hybridization, Southern blot, etc. It can be obtained from a cDNA library or a genomic library by performing a known hybridization method. A library prepared by a known method may be used, or a commercially available cDNA library or genomic library may be used, and is not limited. For details of the hybridization procedure, see Molecular Cloning, A Laboratory Manual 3rd ed.
  • “Stringent conditions” in carrying out the hybridization method are conditions at the time of washing after hybridization, wherein the buffer salt concentration is 15 to 330 mM, the temperature is 25 to 65 ° C., preferably the salt concentration is 15 to It means a condition of 150 mM and a temperature of 45 to 55 ° C. Specifically, for example, conditions such as 50 mM at 80 mM can be exemplified. Furthermore, in addition to the conditions such as salt concentration and temperature, various conditions such as probe concentration, probe length, reaction time, etc. are taken into account, and the conditions for obtaining the DNA of (b) above are appropriately set. Can do.
  • the hybridizing DNA is preferably a base sequence having at least 40% homology (identity) to the DNA base sequence of (a) above, more preferably 60%, 80% or more, Examples include base sequences having 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identity.
  • the base corresponding to the base at the substitution site is the same as the base at the substitution site.
  • the “substitution site” referred to here is a site of base substitution made in the base sequence contained in the DNA of (a) above. Specifically, a base (triplet) indicating a modified codon generated by the base substitution.
  • the DNA of (b) is, for example, a base that is not completely identical in terms of base sequence, but is completely identical in translated amino acid sequence compared to the DNA of (a) above.
  • a DNA consisting of a sequence that is, a DNA obtained by subjecting the DNA of (a) to a silent mutation
  • codons corresponding to individual amino acids after translation are not particularly limited.
  • codons generally used in mammals such as humans after transcription DNA that shows a codon that is commonly used in microorganisms such as Escherichia coli and yeast, plants, etc. (preferably a codon that is frequently used).
  • the gene encoding the protein of the present invention may include a DNA encoding the amino acid sequence of the linker sequence when the protein includes the linker sequence described above. 3.
  • Recombinant vector and transformant In order to express the protein of the present invention, it is necessary to first construct a recombinant vector by incorporating the above-described gene of the present invention into an expression vector.
  • a transcription promoter an SD sequence (when the host is a prokaryotic cell), and a Kozak sequence (when the host is a eukaryotic cell) are ligated upstream in advance as necessary.
  • a terminator may be linked downstream, and an enhancer, splicing signal, poly A addition signal, selection marker, etc. may be linked.
  • Each element necessary for gene expression such as the above transcription promoter may be included in the gene from the beginning, or may be used when originally included in the expression vector.
  • a use aspect is not specifically limited.
  • As a method for incorporating the gene into the expression vector various methods using known gene recombination techniques such as a method using a restriction enzyme and a method using topoisomerase can be employed.
  • the expression vector is not limited as long as it can hold the gene encoding the protein of the present invention, such as plasmid DNA, bacteriophage DNA, retrotransposon DNA, retroviral vector, artificial chromosome DNA, and the like.
  • a vector suitable for the host cell to be used can be appropriately selected and used.
  • the constructed recombinant vector is introduced into a host to obtain a transformant, which is cultured, whereby the protein of the present invention can be expressed.
  • the “transformant” as used in the present invention means a gene into which a foreign gene has been introduced into the host, for example, a gene into which a foreign gene has been introduced by introducing plasmid DNA or the like into the host (transformation), Also included are those in which a foreign gene has been introduced by infecting a host with various viruses and phages (transduction).
  • the host is not limited as long as it can express the protein of the present invention after the introduction of the above recombinant vector, and can be selected as appropriate. For example, various animal cells such as humans and mice can be selected. And known hosts such as various plant cells, bacteria, yeast, and plant cells.
  • animal cells for example, human fibroblasts, CHO cells, monkey cells COS-7, Vero, mouse L cells, rat GH3, human FL cells and the like are used. Insect cells such as Sf9 cells and Sf21 cells can also be used.
  • bacteria for example, Escherichia coli, Bacillus subtilis and the like are used.
  • yeast is used as a host, for example, Saccharomyces cerevisiae and Schizosaccharomyces pombe are used.
  • plant cells for example, tobacco BY-2 cells are used.
  • the method for obtaining the transformant is not limited and can be appropriately selected in consideration of the combination of the host and expression vector.
  • electroporation, lipofection, heat shock, PEG, Preferred examples include calcium phosphate method, DEAE dextran method, and methods of infecting various viruses such as DNA virus and RNA virus.
  • the codon type of the gene contained in the recombinant vector may be the same as or different from the codon type of the host actually used, and is not limited. 4).
  • Protein production Specifically, the production of the protein of the present invention can be carried out by a method including a step of culturing the above-described transformant and a step of collecting a protein having transglutaminase activity from the obtained culture.
  • cultured product means any of culture supernatant, cultured cells, cultured cells, or disrupted cells or cells.
  • the transformant can be cultured according to a usual method used for host culture.
  • the protein of interest is accumulated in the culture.
  • the collecting step may include a protein purification step.
  • the medium used for the culture any known natural medium and any known medium can be used as long as it contains a carbon source, a nitrogen source, inorganic salts, and the like that can be assimilated by the host, and can efficiently culture the transformant. Any synthetic medium may be used.
  • the cells may be cultured under selective pressure in order to prevent the recombinant vector contained in the transformant from dropping and the gene encoding the target protein from dropping off.
  • the selectable marker when the selectable marker is a drug resistance gene, the corresponding drug can be added to the medium, and when the selectable marker is an auxotrophic complementary gene, the corresponding nutrient factor can be removed from the medium. it can.
  • a suitable inducer for example, IPTG or the like
  • the culture conditions of the transformant are not particularly limited as long as the productivity of the target protein and the growth of the host are not hindered, and are usually 10 to 40 ° C., preferably 20 to 37 ° C. and 5 to 100. Do time.
  • the pH can be adjusted using an inorganic or organic acid, an alkaline solution, or the like.
  • Examples of the culture method include solid culture, stationary culture, shaking culture, and aeration and agitation culture.
  • the target protein When the target protein is produced in the microbial cells or cells after culturing, the target protein can be collected by disrupting the microbial cells or cells.
  • As a method for disrupting cells or cells high-pressure treatment using a French press or homogenizer, ultrasonic treatment, grinding treatment using glass beads, enzyme treatment using lysozyme, cellulase, pectinase, etc., freeze-thawing treatment, hypotonic solution treatment, It is possible to use a lysis inducing treatment with a phage or the like. After crushing, the cells or cell crushing residues (including the cell extract insoluble fraction) can be removed as necessary.
  • Examples of the method for removing the residue include centrifugation and filtration. If necessary, the residue removal efficiency can be increased by using a flocculant or a filter aid.
  • the supernatant obtained after removing the residue is a cell extract soluble fraction and can be a crudely purified protein solution.
  • the target protein is produced in the microbial cells or cells
  • the microbial cells and the cells themselves can be recovered by centrifugation, membrane separation, etc., and used without being crushed.
  • the target protein is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or filtration.
  • the target protein is collected from the culture by extraction with ammonium sulfate precipitation, and further, if necessary, using dialysis and various chromatography (gel filtration, ion exchange chromatography, affinity chromatography, etc.) It can also be isolated and purified.
  • the production yield of the protein obtained by culturing the transformant is, for example, SDS-PAGE (polyacrylamide gel) in units such as per culture solution, per microbial wet weight or dry weight, or per crude enzyme solution protein. For example, electrophoresis).
  • the target protein can also be produced using a cell-free protein synthesis system that does not use any living cells.
  • the cell-free protein synthesis system is a system that synthesizes a target protein in an artificial container such as a test tube using a cell extract.
  • Cell-free protein synthesis systems that can be used also include cell-free transcription systems that synthesize RNA using DNA as a template.
  • the cell extract to be used is preferably derived from the aforementioned host cell.
  • the cell extract include extracts derived from eukaryotic cells or prokaryotic cells, more specifically, CHO cells, rabbit reticulocytes, mouse L-cells, HeLa cells, wheat germ, budding yeast, E. coli, and the like. Liquid can be used. These cell extracts may be used after being concentrated or diluted, or may be used as they are, and are not limited.
  • the cell extract can be obtained by, for example, ultrafiltration, dialysis, polyethylene glycol (PEG) precipitation or the like.
  • Such cell-free protein synthesis can also be performed using a commercially available kit.
  • reagent kit PROTEIOS TM Toyobo
  • TNT TM System Promega
  • PG-Mate of synthesizer TM Toyobo
  • RTS Roche Diagnostics
  • the target protein produced by cell-free protein synthesis can be purified by appropriately selecting means such as chromatography as described above.
  • the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
  • MTG variant DNA encoding MTG variant (specifically, MTG precursor variant) consisting of each amino acid sequence shown below is inserted between NdeI-XhoI of pET22b + to construct a recombinant expression plasmid vector did.
  • the underlined amino acids are substitution-mutated amino acids.
  • Amino acid sequence of MTG variant (Y12A) Amino acid sequence of MTG variant (Y12Q) Amino acid sequence of MTG variant (Y16A) Amino acid sequence of MTG variant (Y16Q) Amino acid sequence of MTG variant (K10R / Y12A)
  • the obtained recombinant expression plasmid vector was transformed into E.
  • coli BL21 (DE3) strain using a heat shock method inoculated into an LB agar medium containing ampicillin sodium at 100 ⁇ g / mL, and allowed to stand at 37 ° C. overnight. A colony was obtained.
  • the obtained Escherichia coli colonies were inoculated into 10 mL of LB medium (containing 100 ⁇ g / mL of ampicillin sodium) and cultured at 37 ° C. and 200 rpm for 4 hours. Inoculate in 500 mL of LB medium, and culture at 37 ° C. and 120 rpm.
  • Isopropyl ⁇ -D-1-thiogalactopylanoside is added at a final concentration of 0.5 mM, and the culture temperature is increased. The temperature was lowered to 15 ° C. and the culture was continued for another 16 hours. The cells were collected by centrifugation at 6000 g for 7 minutes. After washing 3 times with 1 ⁇ TBS Buffer (25 mM Tris-HCl, 150 mM NaCl, pH 7.4), all the supernatant was discarded and the pelleted cells were stored frozen at ⁇ 80 ° C.
  • the cryopreserved pellet is dissolved in 15 mL of 1 ⁇ TBS buffer, the cells are disrupted by sonication (Output 4, Duty 20, 12.5 min), and centrifuged (4 ° C., 18,000 ⁇ g, 20 min). The bacterial cells and the protein-containing solution were separated. The obtained solution was filtered through 0.45 ⁇ m and 0.22 ⁇ m PVDF membrane filters to remove insoluble fractions and bacterial cells. The resulting solution was purified with a hexahistidine tag (His Tag) introduced into the C-terminus of Y16A MTG using a HisTrap Excel column (1 mL).
  • His Tag hexahistidine tag
  • a blank 0.2 M Tris-HCl buffer (pH 7.4), a calibration curve dilution series, and 20 ⁇ L of each MTG dilution series were added to a 96-well plate. 3. 80 ⁇ L of substrate solution was added to each well and incubated at 37 ° C. for 10 min. 4). 100 ⁇ L of the reaction stop solution was added, and the absorption at 525 nm was immediately measured with a plate reader. 5. From the calibration curve, the amount of hydroxamic acid produced under each MTG condition was measured, and the specific activity (U / mg) was calculated. Here, the amount of enzyme that generates 1 ⁇ mol of hydroxamate per minute was defined as the TGase activity unit, 1 U (unit).
  • the enzyme activity measurement results under the conditions of pH 6.0 (FIG. 1) and pH 74 (FIG. 2) are shown below. From these results, Y12A MTG and Y12Q MTG showed no activity at pH 6.0, but Y12A MTG showed a little activity at pH 7.4. A slight improvement in activity was also observed for Y12Q MTG.
  • the enzyme activity in the hydroxamate method is remarkably low. From this result, it is considered that the Y12A MTG precursor and the Y12Q MTG precursor do not recognize either or both of Z-QG and hydroxylamine as a substrate, and the access between the MTG and the substrate is greatly reduced. It was strongly suggested.
  • FIG. 3 shows an experimental schematic diagram for evaluating the activity of the MTG mutant by FRET.
  • FIGS. 4 to 11 show the analysis results by FRET and the change over time in the degree of progress of the crosslinking reaction of MTG based on the ratio of the maximum fluorescence intensity of EGFP and the maximum fluorescence intensity of Texas Red (I 610 / I 508 ).
  • NK-tag EGFP recombinant MKHKGSGGGSGGGS (SEQ ID NO: 9) sequence at the N-terminus
  • fluorescent dye FITC- ⁇ -Ala-QG and Y16A MTG variant were mixed in PBS (pH 7.4). And reacted at 37 ° C. for 1 hour.
  • SDS-PAGE was performed to obtain a FITC-derived fluorescent image labeled with the protein using a fluorescent imager (Bio-Rad, Molecular Imager FX Pro).
  • proteins were stained with Coomassie Brilliant Blue (CBB).
  • the concentrations of EGFP to which the substrate peptide tag was added, fluorescent dyes, and various MTGs were set to 1 ⁇ M, 20 ⁇ M, and 1 ⁇ M, respectively.
  • the results are shown in FIGS. From the results of FIGS. 20 and 21, -Between small molecule primary amine substrate and Gln substrate peptide added protein (FIG. 17) Lys substrate peptide-added protein—small molecule Gln substrate (FIG. 18)
  • a fluorescent band was observed in the vicinity of the molecular weight of the EGFP recombinant, it became clear that the cross-linking reaction proceeded between the substrate peptide sequence added to the protein and the small molecule substrate.
  • MTG prosequence variant was also shown to have cross-linking activity.
  • a fluorescent band was confirmed in a portion corresponding to the MTG mutant, although it was not confirmed in the Y12A MTG mutant lane, the mutation was introduced. It was suggested that the primary amine substrate was labeled on the Gln residue.
  • any of the MTG mutant lanes of Y12A, Y12Q, and Y16A in FIG. 21 a fluorescent band was confirmed at a position corresponding to the MTG mutant.
  • DNAs encoding various MTG mutants shown in Table 3 below were prepared, and using the same method as in Example 1, construction of a recombinant expression plasmid vector, Expression and purification were performed to obtain various MTG mutant proteins.
  • DNAs encoding various MTG mutants are No. 5 which are mutation modes shown in the “mutation introduction position” column of Table 3.
  • K-tag EGFP recombinant (MKHKGS (SEQ ID NO: 12) consists of an amino acid sequence having an N-terminus, and MKHKGS-EGFP (SEQ ID NO: 14).
  • Also referred to as a fluorescent dye FITC- ⁇ -Ala-QG and various MTG mutants were mixed in PBS (pH 7.4) and reacted at 37 ° C. for 1 hour.
  • a K-tag EGFP recombinant different from the above consisting of an amino acid sequence having the MRHKGS (SEQ ID NO: 13) sequence at the C-terminus, also referred to as EGFP-MRHKGS (SEQ ID NO: 15)
  • fluorescent dye FITC- ⁇ -Ala-QG and various MTG variants were mixed in PBS (pH 7.4) and reacted at 37 ° C for 1 hour.
  • SDS-PAGE was performed to obtain a FITC-derived fluorescent image labeled with the protein using a fluorescent imager (Bio-Rad, Molecular Imager FX Pro).
  • proteins were stained with Coomassie Brilliant Blue (CBB).
  • the MTG mutant having a mutation introduced into Y12 or Y16 showed a significant improvement in activity. Further, from FIGS. 32 and 33, the MTG mutant having the mutation of K10R / Y12H or K10R / Y12H / Y16H showed pH responsiveness and showed significantly higher activity at pH 6.0 than at pH 7.4. Finally, in FIG. 34, the expression of activity was confirmed for a single mutant having no mutation in Y12 or Y16 and having a mutation of K10D or K10E.
  • an MTG mutant that can be easily produced (purified) in an expression system using a microorganism such as Escherichia coli as a host, that is, an active MTG having transglutaminase activity.
  • a microorganism such as Escherichia coli as a host
  • an active MTG having transglutaminase activity If it is the said MTG variant, the protease process at the time of expression refinement
  • the MTG variant according to the present invention does not show a crosslinking activity with respect to a small molecule substrate having low reactivity, and is a nonspecific crosslinking that may cause a problem when MTG is used for site-specific modification of a protein. It can prevent reaction.
  • the MTG variant according to the present invention recognizes a substrate by the MTG variant having the propeptide only when a peptidic substrate having a higher affinity than the propeptide into which the mutation has been introduced is used.
  • a peptide sequence-selective cross-linking reaction can be performed.
  • the MTG mutant according to the present invention can also be used for site-specific modification of a target protein substrate in a host.
  • Sequence number 3 Recombinant protein Sequence number 4: Recombinant protein Sequence number 5: Recombinant protein Sequence number 6: Recombinant protein Sequence number 7: Recombinant protein Sequence number 8: Peptide Sequence number 9: Peptide Sequence number 10: Peptide Sequence number 11: Peptide Sequence number 12: Peptide Sequence number 13: Peptide Sequence number 14: Recombinant protein Sequence number 15: Recombinant protein

Abstract

The invention provides an active microbial transglutaminase (MTG) that does not require protease treatment in a protein expression system using a universal host such as Escherichia coli, that is, an MTG mutant having transglutaminase activity, and a method for producing the same. The invention is a protein obtained by mutating an amino acid in the amino acid sequence of the propeptide moiety in wild-type microbial transglutaminase, wherein the protein is characterized by having transglutaminase activity.

Description

トランスグルタミナーゼ活性を有する組換えタンパク質Recombinant protein with transglutaminase activity
 本発明は、トランスグルタミナーゼ活性を有する組換えタンパク質に関する。詳しくは、微生物由来トランスグルタミナーゼのプロペプチド部分のアミノ酸を変異させた、上記組換えタンパク質に関する。 The present invention relates to a recombinant protein having transglutaminase activity. Specifically, the present invention relates to the above recombinant protein in which the amino acid of the propeptide portion of the microorganism-derived transglutaminase is mutated.
 トランスグルタミナーゼ(Transglutaminase:TGase)とは、特定のグルタミン(Q)側鎖のγ−カルボキシアミド基とリジン(K)側鎖のアミン基をはじめとする一級アミン、または水との間のアシル基転移反応を触媒し、イソペプチド結合を形成する翻訳後修飾酵素である。特にTGaseのなかでも、Streptomyces mobaraensis由来microbial transglutaminase(MTG)は、他のTGaseと比べて、触媒活性の発現に補因子を必要とせず、微生物宿主による大量発現が容易、架橋活性(すなわち、上記イソペプチド結合を形成する活性)が高い等、産業上優位な特徴を有していることから、食品業界を中心に産業利用が盛んに行われてきた。一方、最近は、MTGの製薬分野への応用が試みられるようになり、特に、抗体の部位特異的修飾によるAntibody−drug conjugate(ADC)の調製に注目が集まっている(非特許文献1、2参照)。このように、MTGの適用範囲は拡がりを見せており、その機能改良により更なる応用が期待できる。しかしながら、遺伝子組換えの汎用宿主である大腸菌発現系においては、MTGの成熟型そのものの発現は困難であり、不溶化することが報告されている(特許文献1)。MTGにはプロペプチドと呼ばれる部分構造が、成熟型MTGのN末端側に融合した前駆体と呼ばれる構造が存在し、このプロペプチドはMTGの正しい折りたたみを導く分子内シャペロンであり、活性型MTGを獲得するうえで必要不可欠な存在といえる。従って、プロペプチドを付加した状態においては、大腸菌での発現が可能である(非特許文献3参照)。一方で、プロペプチドを付加した状態で発現したMTG変異体は、活性部位を覆うプロペプチドの存在により活性を示さない。従って、大腸菌を宿主とした活性型組換え体MTGの調製は困難とされてきた。また、他の宿主を使った分泌発現系においても、活性型MTGを得るためには、最終的にプロペプチド部位を適当なプロテアーゼで切断する必要がある(特許文献2)。
 先行研究において、上記の課題を解決するべく、大腸菌細胞質内でMTG前駆体とプロテアーゼを共発現させることで、発現と同時に活性型MTGの獲得に成功している。また、プロペプチド内のアミノ酸に変異導入し、複数の変異体をスクリーニングすることで、プロテアーゼ処理後にプロペプチドが除去されやすい、より高活性なMTGの探索と発現プロセスの検討が行われている(非特許文献2参照)。
 一方、MTGの改良に関してはMTG本体を改変するものが多く、プロペプチドそのものを改変することによってMTGの性質を向上させようとする研究は少ない。その中で、プロペプチドそのものを改変した先行研究の一つに、MTG前駆体をプロペプチドのC末端をリンカーとした融合タンパク質としてみなし、Streptomyces hygroscopicus由来MTGに対して、プロペプチドのC末端にリンカーペプチドを挿入する事で、TGaseの性質を向上させる新しいアプローチの提案を行っている。このリンカーペプチドはドメイン間(プロペプチドと成熟体)の相互作用の調和を満たす上で必須の役割を担っている。リンカーペプチドとは決まった二次構造を持たず、生物学的条件を満たすためにある程度の柔軟性を持っているペプチドである。リンカーペプチドとしてはポリグリシン、GS、PT(PTPPTTPT)を使用したところ、全ての変異体で比活性は野生型より増加した。特にGS、PTリンカーを挿入したものは高い比活性を示した。一方、リンカーを挿入した変異体においてはkcat/Kの値が増加したことから、酵素の触媒効率が上昇したと考えられる。これは、リンカーペプチドが活性部位近傍に位置し、リンカーペプチドと触媒領域との相互作用により触媒効率が上昇したためと推察されている。このように、プロペプチドに特定の配列を付与することでMTGの活性向上に成功している(非特許文献4参照)。
 近年、大腸菌宿主内に、MTGの組換え体とプロテアーゼを共発現することにより、この問題点をクリアできることが示された(非特許文献2参照)。しかしながら、プロテアーゼを用いる系では、MTGが部分的な加水分解を受け、失活を招く懸念がある。また、プロテアーゼと切断したプロペプチドを精製により完全に除去しなければ、MTGの反応効率が低下するため、後の反応に影響を与える懸念がある。何れにせよ、プロテアーゼ処理、その後の精製過程、が必要であり、これにかかるコストの増加などが考えられる。
Transglutaminase (TGase) is an acyl group transfer between a specific glutamine (Q) side chain γ-carboxyamide group and a primary amine including an amine group of lysine (K) side chain, or water. A post-translational modification enzyme that catalyzes the reaction and forms an isopeptide bond. In particular, among TGases, microtransglutaminase (MTG) derived from Streptomyces mobaraensis does not require a cofactor for the expression of catalytic activity, and is easily expressed in large quantities by a microbial host, and has a cross-linking activity (that is, the above isoforms). Since it has industrially superior features such as high activity to form peptide bonds, industrial use has been actively performed mainly in the food industry. On the other hand, recently, application of MTG to the pharmaceutical field has been attempted, and in particular, attention has been focused on the preparation of antibody-drug conjugate (ADC) by site-specific modification of antibodies (Non-Patent Documents 1 and 2). reference). Thus, the application range of MTG is expanding, and further application can be expected by improving its function. However, in the E. coli expression system, which is a general-purpose host for gene recombination, it is difficult to express the mature form of MTG itself, and it has been reported that it is insolubilized (Patent Document 1). MTG has a partial structure called a propeptide and a structure called a precursor fused to the N-terminal side of mature MTG. This propeptide is an intramolecular chaperone that leads to the correct folding of MTG. It can be said that it is indispensable to acquire. Therefore, in a state where a propeptide is added, expression in E. coli is possible (see Non-Patent Document 3). On the other hand, the MTG variant expressed with the propeptide added does not show activity due to the presence of the propeptide covering the active site. Therefore, it has been difficult to prepare an active recombinant MTG using E. coli as a host. Also, in the secretory expression system using other hosts, in order to obtain active MTG, it is necessary to finally cleave the propeptide site with an appropriate protease (Patent Document 2).
In previous studies, in order to solve the above-mentioned problems, the MTG precursor and the protease are co-expressed in the E. coli cytoplasm, thereby succeeding in obtaining active MTG simultaneously with the expression. In addition, a search for a more highly active MTG in which a propeptide is easily removed after protease treatment by screening a plurality of mutants by introducing a mutation into an amino acid in the propeptide and studying an expression process has been carried out ( Non-patent document 2).
On the other hand, with regard to the improvement of MTG, there are many that modify the MTG body, and there are few studies that attempt to improve the properties of MTG by modifying the propeptide itself. Among them, in one of the previous studies that modified the propeptide itself, the MTG precursor was regarded as a fusion protein with the C-terminus of the propeptide as a linker, and the linker was linked to the C-terminus of the propeptide against MTG derived from Streptomyces hygroscopicus We are proposing a new approach to improve the properties of TGase by inserting peptides. This linker peptide plays an essential role in satisfying the harmony of interaction between domains (propeptide and matured body). A linker peptide is a peptide that does not have a fixed secondary structure and has some flexibility to satisfy biological conditions. When polyglycine, GS, and PT (PTPPTTPT) were used as linker peptides, the specific activity increased in all mutants compared to the wild type. In particular, those with GS and PT linker inserted showed high specific activity. On the other hand, it is considered that the catalytic efficiency of the enzyme increased because the value of k cat / K m increased in the mutant with the linker inserted. This is presumably because the linker peptide is located in the vicinity of the active site, and the catalytic efficiency is increased by the interaction between the linker peptide and the catalytic region. In this way, the activity of MTG has been successfully improved by adding a specific sequence to the propeptide (see Non-Patent Document 4).
In recent years, it has been shown that this problem can be cleared by co-expressing a recombinant MTG and a protease in an E. coli host (see Non-Patent Document 2). However, in a system using a protease, there is a concern that MTG undergoes partial hydrolysis, leading to inactivation. Moreover, if the propeptide cleaved with the protease is not completely removed by purification, the reaction efficiency of MTG is lowered, which may affect the subsequent reaction. In any case, a protease treatment and a subsequent purification process are necessary, and an increase in costs associated with this may be considered.
特開平6−30771号公報JP-A-6-30771 特開2005−229807号公報JP 2005-229807 A
 そこで、本発明が解決しようとする課題は、大腸菌などの汎用宿主を用いたタンパク質発現系において、プロテアーゼ処理を必要としない活性型MTG(トランスグルタミナーゼ活性を有するMTG変異体)、及びその製造方法等を提供することにある。
 本発明者は、上記課題を解決するべく鋭意検討を行った。その結果、MTG前駆体の状態、すなわちプロペプチドを有した状態で、トランスグルタミナーゼ活性(架橋活性)を発現する変異体の探索を行った。具体的には、遺伝子工学的にMTG前駆体が持つプロペプチドに変異を加え、活性部位−プロペプチド間の相互作用を調節することで、プロペプチドを有した状態でも自発的に上記活性を発現するMTG変異体を見出し、本発明を完成した。
 すなわち、本発明は以下の通りである。
(1)野生型の微生物由来トランスグルタミナーゼにおいて少なくともプロペプチド部分のアミノ酸配列中のアミノ酸を変異させたタンパク質であって、トランスグルタミナーゼ活性を有することを特徴とする、前記タンパク質。
(2)前記変異後のプロペプチド部分を有した状態で前記活性を有するものである、上記(1)記載のタンパク質。
(3)前記変異が、他のアミノ酸への置換である、上記(1)又は(2)記載のタンパク質。
(4)前記変異させる、プロペプチド部分のアミノ酸配列中のアミノ酸が、リジン及び/又は少なくとも1つのチロシンを含むものである、上記(1)~(3)のいずれか1つに記載のタンパク質。
(5)前記少なくとも1つのチロシンを変異させた他のアミノ酸が、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種である、上記(4)記載のタンパク質。
(6)前記リジンを変異させた他のアミノ酸が、アルギニン、アスパラギン酸、グルタミン酸、アラニン、システイン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、セリン、トレオニン、バリン、トリプトファン及びチロシンからなる群より選ばれる少なくとも1種である、上記(4)記載のタンパク質。
(7)野生型の微生物由来トランスグルタミナーゼのアミノ酸配列において第10番目、第12番目及び第16番目からなる群より選ばれる少なくとも1つのアミノ酸が他のアミノ酸に置換されたアミノ酸配列、又は該置換されたアミノ酸配列のうち前記置換部位のアミノ酸を除く1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつトランスグルタミナーゼ活性を有することを特徴とする、タンパク質。
(8)前記第12番目及び/又は第16番目のアミノ酸を変異させた他のアミノ酸が、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種である、上記(7)記載のタンパク質。
(9)前記第10番目のアミノ酸を変異させた他のアミノ酸が、アルギニン、アスパラギン酸、グルタミン酸、アラニン、システイン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、セリン、トレオニン、バリン、トリプトファン及びチロシンからなる群より選ばれる少なくとも1種である、上記(7)記載のタンパク質。
(10)以下の(a)又は(b)のタンパク質。
 (a)配列番号2に示されるアミノ酸配列において第10番目、第12番目及び第16番目からなる群より選ばれる少なくとも1つのアミノ酸が他のアミノ酸に置換されたアミノ酸配列
 (b)上記(a)のアミノ酸配列において前記置換部位のアミノ酸を除く1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつトランスグルタミナーゼ活性を有するタンパク質
(11)前記第12番目及び/又は第16番目のアミノ酸を変異させた他のアミノ酸が、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種である、上記(10)記載のタンパク質。
(12)前記第10番目のアミノ酸を変異させた他のアミノ酸が、アルギニン、アスパラギン酸、グルタミン酸、アラニン、システイン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、セリン、トレオニン、バリン、トリプトファン及びチロシンからなる群より選ばれる少なくとも1種である、上記(10)記載のタンパク質。
(13)前記トランスグルタミナーゼ活性は、野生型の微生物由来トランスグルタミナーゼが有するトランスグルタミナーゼ活性と実質的に同等の活性レベルのものである、上記(1)~(12)のいずれか1つに記載のタンパク質。
(14)上記(1)~(13)のいずれか1つに記載のタンパク質をコードする遺伝子。
(15)以下の(a)又は(b)のDNAを含む遺伝子。
 (a)配列番号1に示される塩基配列において、第28番目~第30番目の塩基がリジン以外のアミノ酸のコドンを示す塩基に置換されたか、並びに/又は、第34番目~第36番目及び/若しくは第46番目~第48番目の塩基がチロシン以外のアミノ酸のコドンを示す塩基に置換された塩基配列からなるDNA。
 (b)前記(a)のDNAに対し相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAであって、前記置換部位の塩基に対応する塩基が当該置換部位の塩基と同一であり、かつトランスグルタミナーゼ活性を有するタンパク質をコードするDNA
(16)前記チロシン以外のアミノ酸が、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種である、上記(15)記載の遺伝子。
(17)前記リジン以外のアミノ酸が、アルギニン、アスパラギン酸、グルタミン酸、アラニン、システイン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、セリン、トレオニン、バリン、トリプトファン及びチロシンからなる群より選ばれる少なくとも1種である、上記(15)記載の遺伝子。
(18)上記(14)~(17)のいずれか1つに記載の遺伝子を含む、組換えベクター。
(19)上記(18)記載の組換えベクターを含む、形質転換体。
(20)形質転換体が形質転換大腸菌である、上記(19)記載の形質転換体。
(21)上記(19)又は(20)記載の形質転換体を培養する工程と、得られる培養物からトランスグルタミナーゼ活性を有するタンパク質を採取する工程とを含む、当該タンパク質の製造方法。
(22)前記採取する工程が、タンパク質の精製工程を含む、上記(21)記載の方法。
 発明の効果
 本発明によれば、大腸菌等の微生物を宿主とした発現系においても容易に製造(精製等)することが可能な、MTG変異体、すなわちトランスグルタミナーゼ活性を有する活性型MTGを提供することができる。当該MTG変異体であれば、発現精製時のプロテアーゼ処理も不要となり、プロペプチドならびにプロテアーゼの除去にかかる手間とコストを大幅に削減することができる。
Therefore, the problem to be solved by the present invention is an active MTG (MTG variant having transglutaminase activity) that does not require protease treatment in a protein expression system using a general-purpose host such as Escherichia coli, a method for producing the same, etc. Is to provide.
The present inventor has intensively studied to solve the above problems. As a result, a mutant that expresses transglutaminase activity (crosslinking activity) in the state of an MTG precursor, that is, a state having a propeptide was searched. Specifically, the above activity is spontaneously expressed even in a state having a propeptide by modifying the propeptide possessed by the MTG precursor by genetic engineering and regulating the interaction between the active site and the propeptide. The present invention was completed by finding an MTG variant.
That is, the present invention is as follows.
(1) A protein obtained by mutating at least an amino acid in the amino acid sequence of a propeptide portion in a wild-type microorganism-derived transglutaminase, wherein the protein has transglutaminase activity.
(2) The protein according to (1) above, which has the activity in a state having the propeptide portion after the mutation.
(3) The protein according to (1) or (2) above, wherein the mutation is substitution with another amino acid.
(4) The protein according to any one of (1) to (3) above, wherein the amino acid in the amino acid sequence of the propeptide portion to be mutated contains lysine and / or at least one tyrosine.
(5) The protein according to (4) above, wherein the other amino acid obtained by mutating the at least one tyrosine is at least one selected from the group consisting of alanine, glutamine and histidine.
(6) Other amino acids obtained by mutating the lysine are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, tryptophan. And the protein according to (4), which is at least one selected from the group consisting of tyrosine.
(7) An amino acid sequence in which at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids in the amino acid sequence of wild-type microorganism-derived transglutaminase is substituted with another amino acid, or the substitution A protein comprising an amino acid sequence in which one or several amino acids excluding the amino acid at the substitution site are deleted, substituted, or added, and has transglutaminase activity.
(8) The protein according to (7), wherein the other amino acid obtained by mutating the 12th and / or 16th amino acid is at least one selected from the group consisting of alanine, glutamine and histidine.
(9) Other amino acids obtained by mutating the tenth amino acid are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine , The protein according to (7), which is at least one selected from the group consisting of valine, tryptophan and tyrosine.
(10) The following protein (a) or (b):
(A) an amino acid sequence in which at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids is substituted with another amino acid in the amino acid sequence shown in SEQ ID NO: 2 (b) (a) A protein having a transglutaminase activity, comprising an amino acid sequence in which one or several amino acids excluding the amino acid at the substitution site in the amino acid sequence are deleted, substituted or added, and having the transglutaminase activity (11) The protein according to (10) above, wherein the other amino acid obtained by mutating the second amino acid is at least one selected from the group consisting of alanine, glutamine and histidine.
(12) Other amino acids obtained by mutating the tenth amino acid are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine The protein according to (10) above, which is at least one selected from the group consisting of valine, tryptophan and tyrosine.
(13) The transglutaminase activity according to any one of (1) to (12), wherein the transglutaminase activity has an activity level substantially equivalent to the transglutaminase activity of a wild-type microorganism-derived transglutaminase. protein.
(14) A gene encoding the protein according to any one of (1) to (13) above.
(15) A gene comprising the following DNA (a) or (b):
(A) In the base sequence shown in SEQ ID NO: 1, the 28th to 30th bases have been replaced with bases indicating codons of amino acids other than lysine, and / or the 34th to 36th and / or Alternatively, DNA consisting of a base sequence in which the 46th to 48th bases are replaced with bases indicating codons of amino acids other than tyrosine.
(B) a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA of (a), wherein the base corresponding to the base of the substitution site is the base of the substitution site; DNA encoding the same protein having transglutaminase activity
(16) The gene according to (15), wherein the amino acid other than tyrosine is at least one selected from the group consisting of alanine, glutamine, and histidine.
(17) Amino acids other than lysine are composed of arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, tryptophan and tyrosine. The gene according to (15) above, which is at least one selected from the group.
(18) A recombinant vector comprising the gene according to any one of (14) to (17) above.
(19) A transformant comprising the recombinant vector according to (18) above.
(20) The transformant according to (19) above, wherein the transformant is transformed Escherichia coli.
(21) A method for producing the protein, comprising the step of culturing the transformant according to (19) or (20) above, and the step of collecting a protein having transglutaminase activity from the obtained culture.
(22) The method according to (21) above, wherein the collecting step comprises a protein purification step.
EFFECT OF THE INVENTION According to the present invention, an MTG variant that can be easily produced (purified) in an expression system using a microorganism such as Escherichia coli as a host, that is, an active MTG having transglutaminase activity is provided. be able to. If it is the said MTG variant, the protease process at the time of expression refinement | purification becomes unnecessary, and the effort and cost concerning removal of a propeptide and protease can be reduced significantly.
ハイドロキサメート法による組換えMTG酵素活性の測定結果(pH6.0)を示す図である。It is a figure which shows the measurement result (pH 6.0) of the recombinant MTG enzyme activity by the hydroxamate method. ハイドロキサメート法による組換えMTG酵素活性の測定結果(pH7.4)を示す図である。It is a figure which shows the measurement result (pH 7.4) of the recombinant MTG enzyme activity by the hydroxamate method. FRETによるMTG変異体の活性評価の実験模式図である。It is an experiment schematic diagram of the activity evaluation of the MTG variant by FRET. 野生型MTG前駆体(Y12 MTG)のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of a wild-type MTG precursor (Y12 MTG). (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) Y12A MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of a Y12A MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) Y12Q MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of a Y12Q MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) Y16A MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of Y16A MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) Y16Q MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of a Y16Q MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) K10R/Y12A MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of K10R / Y12A MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) 市販MTG(Zedira社製)のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of commercial MTG (made by Zedira). (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) 市販MTG及び各MTG変異体の架橋反応の進行度の比較結果を示す図である。It is a figure which shows the comparison result of the progress of the crosslinking reaction of commercial MTG and each MTG variant. Y12A MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of a Y12A MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) K10R/Y12A MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of K10R / Y12A MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) 市販MTG(Zedira社製)のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of commercial MTG (made by Zedira). (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) 市販MTG及び各MTG変異体の架橋反応の進行度の比較結果を示す図である。It is a figure which shows the comparison result of the progress of the crosslinking reaction of commercial MTG and each MTG variant. Y12A MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of a Y12A MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) K10R/Y12A MTG変異体のFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of K10R / Y12A MTG variant. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) 市販MTGのFRET測定結果を示す図である。(左:蛍光スペクトルの経時変化の様子;右:最大蛍光強度比に基づく架橋反応の進行度)It is a figure which shows the FRET measurement result of commercial MTG. (Left: Change in fluorescence spectrum over time; Right: Progress of crosslinking reaction based on maximum fluorescence intensity ratio) 市販MTG及び各MTG変異体の架橋反応の進行度の比較結果を示す図である。It is a figure which shows the comparison result of the progress of the crosslinking reaction of commercial MTG and each MTG variant. CQ−tag EGFP組換体に対する蛍光色素修飾の結果を示す図である。It is a figure which shows the result of the fluorescent dye modification with respect to a CQ-tag EGFP recombinant. NK−tag EGFP組換体に対する蛍光色素修飾結果を示す図である。(上段)Y12A MTG変異体、Y12Q MTG変異体;(中段)Y16A MTG変異体;(下段)K10R/Y12A MTG変異体It is a figure which shows the fluorescent dye modification result with respect to NK-tag EGFP recombinant. (Upper) Y12A MTG variant, Y12Q MTG variant; (Middle) Y16A MTG variant; (Lower) K10R / Y12A MTG variant ハイドロキサメート法による組換えMTG酵素活性の測定結果(pH6.0)を示す図である。It is a figure which shows the measurement result (pH 6.0) of the recombinant MTG enzyme activity by the hydroxamate method. ハイドロキサメート法による組換えMTG酵素活性の測定結果(pH6.0)を示す図である。It is a figure which shows the measurement result (pH 6.0) of the recombinant MTG enzyme activity by the hydroxamate method. ハイドロキサメート法による組換えMTG酵素活性の測定結果(pH6.0)を示す図である。It is a figure which shows the measurement result (pH 6.0) of the recombinant MTG enzyme activity by the hydroxamate method. ハイドロキサメート法による組換えMTG酵素活性の測定結果(pH6.0)を示す図である。It is a figure which shows the measurement result (pH 6.0) of the recombinant MTG enzyme activity by the hydroxamate method. 市販MTG及び各MTG変異体の架橋反応の進行度の比較結果を示す図である。It is a figure which shows the comparison result of the progress of the crosslinking reaction of commercial MTG and each MTG variant. 市販MTG及び各MTG変異体の架橋反応の進行度の比較結果を示す図である。It is a figure which shows the comparison result of the progress of the crosslinking reaction of commercial MTG and each MTG variant. 市販MTG及び各MTG変異体の架橋反応の進行度の比較結果を示す図である。It is a figure which shows the comparison result of the progress of the crosslinking reaction of commercial MTG and each MTG variant. 各MTG変異体の、K−tag EGFP組換体(EGFP−MRHKGS)に対する蛍光色素修飾結果を示す図である。It is a figure which shows the fluorescent dye modification result with respect to K-tag EGFP recombinant (EGFP-MRHKGS) of each MTG variant. 各MTG変異体の、K−tag EGFP組換体(MKHKGS−EGFP)に対する蛍光色素修飾結果を示す図である。It is a figure which shows the fluorescent dye modification result with respect to K-tag EGFP recombinant (MKHKGS-EGFP) of each MTG variant. 各MTG変異体の、K−tag EGFP組換体(MKHKGS−EGFP)に対する蛍光色素修飾結果を示す図である。It is a figure which shows the fluorescent dye modification result with respect to K-tag EGFP recombinant (MKHKGS-EGFP) of each MTG variant. 各MTG変異体の、K−tag EGFP組換体(EGFP−MRHKGS)に対する蛍光色素修飾結果を示す図である。It is a figure which shows the fluorescent dye modification result with respect to K-tag EGFP recombinant (EGFP-MRHKGS) of each MTG variant. 各MTG変異体の、K−tag EGFP組換体(EGFP−MRHKGS)に対する蛍光色素修飾結果を示す図である。It is a figure which shows the fluorescent dye modification result with respect to K-tag EGFP recombinant (EGFP-MRHKGS) of each MTG variant. 各MTG変異体の、K−tag EGFP組換体(EGFP−MRHKGS)に対する蛍光色素修飾結果を示す図である。It is a figure which shows the fluorescent dye modification result with respect to K-tag EGFP recombinant (EGFP-MRHKGS) of each MTG variant.
 以下、本発明を詳細に説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
 なお、本明細書は、本願優先権主張の基礎となる特願2016−131883号明細書(2016年7月1日出願)の全体を包含する。また、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。
 本明細書において、「MTG」とは、前述のとおり、Streptomyces mobaraensis由来microbial transglutaminaseを意味する。また、「MTG前駆体」とは、プロペプチド部分を有した状態のMTGを意味し、「MTG変異体」とは、MTG前駆体におけるアミノ酸を変異(置換等)させたMTGを意味する。
1.タンパク質
 本発明のタンパク質は、微生物(Streptomyces mobaraensis)由来トランスグルタミナーゼ(MTG)の変異体タンパク質である。詳しくは、本発明のタンパク質は、野生型のMTGにおいて、少なくとも、そのプロペプチド部分のアミノ酸配列中のアミノ酸を変異させたタンパク質であって、かつトランスグルタミナーゼ活性を有するタンパク質であり、好ましくは、前記変異後のプロペプチド部分を有した状態(前記変異後のプロペプチド部分がタンパク質分子中に存在した状態)で前記活性を有するものである。
 通常、野生型のMTGにおいては、プロペプチドと呼ばれる部分構造(プロペプチド部分)が、成熟型MTGのN末端側に融合したかたちで存在する。本明細書では、この成熟型MTGとプロペプチド部分との、いわば融合タンパク質を、MTG前駆体という。MTGにおいてプロペプチド部分は、阻害剤の役目を果たし、適切な箇所でトランスグルタミナーゼ活性(架橋活性)を発現するための役割を有している。なお、この架橋活性とは、翻訳後修飾として、特定のグルタミン(Q)側鎖のγ−カルボキシアミド基とリジン(K)側鎖のアミン基をはじめとする一級アミン、または水との間のアシル基転移反応を触媒し、イソペプチド結合を形成する活性のことである。また、MTGにおけるプロペプチド部分は、タンパク質の正しい折りたたみを導く分子内シャペロンであり、活性型MTG、すなわち上記架橋活性を有する状態のMTGを獲得する上で、必要不可欠な存在である。MTGの本来の宿主である放線菌内では、まずMTG前駆体が発現され、その後宿主が分泌する独自のプロテアーゼによってプロペプチド部分が除去され、成熟型MTGとなる。しかしながら、遺伝子組換えの汎用宿主である大腸菌発現系においては、成熟型MTGそのものの発現は困難である(不溶化してしまう)。また、プロペプチド部分を有した状態で発現させたものは、MTGの活性部位を覆うプロペプチド部分の存在により活性を示さないという問題もある。そのため、大腸菌を宿主とした活性型組換え体の調製は、従来困難とされてきた。他方、近年、大腸菌宿主内に、MTGの組換え体とプロテアーゼを共発現させることにより、上記問題を解決し得ることが示された。しかしながら、プロテアーゼを用いる系では、MTGが部分的な加水分解を受け、失活を招く懸念があり、さらに、プロテアーゼと切断したプロペプチドとを精製により完全に除去しなければMTGの反応効率が低下するため、後の反応に影響を与えるという懸念があり、精製にかかるコストも増加するという問題がある。これらに対し、本発明は、上記プロテアーゼ処理なしに活性型MTGを提供するものであり、従来技術における問題を一挙に解決し得るものである。
 本発明のタンパク質は、野生型の微生物由来トランスグルタミナーゼにおいて少なくともプロペプチド部分のアミノ酸配列中のアミノ酸を変異させたタンパク質であって、トランスグルタミナーゼ活性を有することを特徴とするタンパク質である。好ましくは、前記変異後のプロペプチド部分を有した状態で前記活性を有するものであり、前記変異が、他のアミノ酸への置換であるものが挙げられる。置換されるアミノ酸は、少なくとも1つのチロシンを含むものであることが好ましく、この場合、置換後の他のアミノ酸としては、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種が好ましく挙げられる。また、置換されるアミノ酸は、リジンを含むものであることが好ましく、この場合、置換後の他のアミノ酸としては、アルギニン、アスパラギン酸、グルタミン酸、グリシン、アスパラギン、アラニン、システイン、グルタミン、セリン、スレオニン(トレオニン)、トリプトファン、フェニルアラニン、イソロイシン、ロイシン、メチオニン、プロリン、バリン、チロシン及びヒスチジンからなる群より選ばれる少なくとも1種が好ましく挙げられ、より好ましくは、アスパラギン酸及びグルタミン酸からなる群より選ばれる少なくとも1種である。
 本発明のタンパク質としては、例えば、野生型の微生物由来トランスグルタミナーゼのアミノ酸配列において、第10番目、第12番目及び第16番目からなる群より選ばれる少なくとも1つのアミノ酸が他のアミノ酸に置換されたアミノ酸配列、又は該置換されたアミノ酸配列のうち前記置換部位のアミノ酸を除く1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつトランスグルタミナーゼ活性を有することを特徴とするタンパク質が好ましく挙げられる。なお、本明細書において、野生型の微生物由来トランスグルタミナーゼのアミノ酸配列とは、野生型の微生物由来トランスグルタミナーゼにおけるシグナルペプチド部分を除いたアミノ酸配列において、そのN末端にメチオニン残基(M)を付加したアミノ酸配列のことを意味するものとする。この点は、後述する配列番号2のアミノ酸配列についても、同様である。また、配列番号1の塩基配列についても、同様に適用される。
 ここで、上記「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」としては、例えば、1個~10個程度、好ましくは1~数個、1~5個、1~4個、1~3個、1~2個、又は1個のアミノ酸が欠失、置換又は付加されたアミノ酸配列であることが好ましい。当該欠失、置換又は付加等の変異の導入は、部位特異的突然変異誘発法を利用した変異導入用キット、例えば、GeneTailorTM Site−Directed Mutagenesis System(インビトロジェン社)、及びTaKaRa Site−Directed Mutagenesis System(Prime STAR(登録商標)Mutagenesis Basal kit、Mutan(登録商標)−Super Express Km等:タカラバイオ社製)等を用いて行うことができる。また、上記欠失、置換又は付加の変異が導入されているかどうかは、各種アミノ酸配列決定法、並びにX線及びNMR等による構造解析法などを用いて確認することができる。
 上記他のアミノ酸としては、第12番目及び/又は第16番目のアミノ酸残基に関しては、チロシン以外であれば、特に限定はされないが、例えば、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種を好ましく挙げることができる。また、第10番目のアミノ酸残基に関しては、リジン以外であれば、特に限定はされないが、例えば、アルギニン、アスパラギン酸、グルタミン酸、グリシン、アスパラギン、アラニン、システイン、グルタミン、セリン、スレオニン(トレオニン)、トリプトファン、フェニルアラニン、イソロイシン、ロイシン、メチオニン、プロリン、バリン、チロシン及びヒスチジンからなる群より選ばれる少なくとも1種が好ましく挙げられ、より好ましくは、アスパラギン酸及びグルタミン酸からなる群より選ばれる少なくとも1種である。当該第10番目のアミノ酸を置換することにより、例えば、MTGの架橋活性は維持しつつ、MTG自身の自己架橋物の生成を抑制することができる。
 本発明のタンパク質はまた、以下の(a)又は(b)のタンパク質であることが好ましい。
 (a)配列番号2に示されるアミノ酸配列において、第10番目、第12番目及び第16番目からなる群より選ばれる少なくとも1つのアミノ酸が他のアミノ酸に置換されたアミノ酸配列を含むタンパク質
 (b)上記(a)のアミノ酸配列(前記置換後のアミノ酸配列)において前記置換部位のアミノ酸を除く1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつトランスグルタミナーゼ活性を有するタンパク質
 配列番号2に示されるアミノ酸配列は、前述のとおり、野生型の微生物由来トランスグルタミナーゼにおけるシグナルペプチド部分を除いたアミノ酸配列において、そのN末端にメチオニン残基(M)を付加したアミノ酸配列であり、計376個のアミノ酸からなるアミノ酸配列である。
 上記(a)のタンパク質における、「第10番目、第12番目及び第16番目からなる群より選ばれる少なくとも1つのアミノ酸が他のアミノ酸に置換されたアミノ酸配列」については、前述した説明が同様に適宜適用できる。
 上記(b)のタンパク質は、上記(a)のタンパク質に含まれるアミノ酸配列において前記置換部位のアミノ酸を除く、1個又は数個(例えば1個~10個程度、好ましくは1~数個、1~5個、1~4個、1~3個、1~2個、又は1個)のアミノ酸が欠失、置換又は付加されたアミノ酸配列を含み、かつトランスグルタミナーゼ活性を有するタンパク質であればよく、限定はされない。当該欠失、置換又は付加等の変異の導入方法や、変異が導入されているかどうかの確認は、前述と同様である。
 また、上記(a)のタンパク質と機能的に同等なタンパク質としては、上記(b)のタンパク質の他に、例えば、下記(c)のタンパク質も挙げられる。
 (c)上記(a)のアミノ酸配列(前記置換後のアミノ酸配列)に対して、80%以上の同一性(相同性)を有するアミノ酸配列を含み、かつトランスグルタミナーゼ活性を有するタンパク質
 当該(c)のタンパク質としては、上記同一性が、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上のものがより好ましい。
 上記(b)や(c)のタンパク質(いわゆる変異型のタンパク質)は、該タンパク質のアミノ酸配列をコードする遺伝子を用いて遺伝子工学的に作製することもできる。
 本発明においては、トランスグルタミナーゼ活性は、例えば、後述する実施例に記載の蛍光共鳴エネルギー移動(FRET)による方法等により、評価・測定することができる。
 本発明でいう前記(a)~(c)のタンパク質は、野生型のMTGと同様に、プロペプチド部分が、成熟型MTGのN末端側に融合した(結合した)状態のものであってもよいが、他の態様として、当該プロペプチド部分と、成熟型MTGのN末端側との間に、リンカー配列を有するものも好ましく挙げられる。当該リンカー配列としては、限定はされないが、例えば、1~30残基程度のアミノ酸配列であればよく、具体例としては、GGGSLVPRGSGGGS(トロンビンリンカー配列;配列番号10)などが好ましく挙げられる。なお、野生型のMTGのアミノ酸配列(配列番号2)において、N末端側から第46番目のアミノ酸(プロリン)までが、プロペプチド部分であり、第47番目のアミノ酸(アスパラギン酸)からC末端側までが、成熟型MTGのアミノ酸配列である。
 本発明でいう前記(a)~(c)のタンパク質は、天然物由来のペプチドであってもよいし、人工的に化学合成して得られたものであってもよく、限定はされない。
 天然物由来のタンパク質は、天然物から公知の回収法及び精製法により直接得てもよいし、又は、公知の遺伝子組換え技術により、当該タンパク質をコードする遺伝子を各種発現ベクター等に組込んで細胞に導入し、発現させた後、公知の回収法及び精製法により得てもよい。あるいは、市販のキット、例えば、試薬キットPROTEIOSTM(東洋紡)、TNTTM System(プロメガ)、合成装置のPG−MateTM(東洋紡)及びRTS(ロシュ・ダイアグノスティクス)等を用いた無細胞タンパク質合成系により当該タンパク質を産生し、公知の回収法及び精製法により得てもよく、限定はされない。
 また、化学合成タンパク質は、公知のタンパク質合成方法を用いて得ることができる。合成方法としては、例えば、アジド法、酸クロライド法、酸無水物法、混合酸無水物法、DCC法、活性エステル法、カルボイミダゾール法及び酸化還元法等が挙げられる。また、その合成は、固相合成法及び液相合成法のいずれをも適用することができる。市販のタンパク質合成装置を使用してもよい。合成反応後は、クロマトグラフィー等の公知の精製法を組み合わせてタンパク質を精製することができる。
 本発明においては、前記(a)~(c)のタンパク質とともに、又はそれに代えて、当該タンパク質の誘導体を含むことができる。当該誘導体とは、当該タンパク質に由来して調製され得るものをすべて含む意味であり、例えば、構成アミノ酸の一部が非天然のアミノ酸に置換されたものや、構成アミノ酸(主にその側鎖)の一部に化学修飾が施されたもの等が挙げられる。
 また本発明においては、前記(a)~(c)のタンパク質、及び/又は、当該タンパク質の誘導体とともに、あるいはそれに代えて、当該タンパク質及び/又は当該誘導体の塩を含むことができる。当該塩としては、生理学的に許容される酸付加塩又は塩基性塩が好ましい。酸付加塩としては、例えば、塩酸、リン酸、臭化水素酸、硫酸などの無機酸との塩、あるいは酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸などの有機酸との塩が挙げられる。塩基性塩としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、水酸化マグネシウムなどの無機塩基との塩、あるいはカフェイン、ピペリジン、トリメチルアミン、ピリジンなどの有機塩基との塩が挙げられる。
 当該塩は、塩酸などの適切な酸、又は水酸化ナトリウムなどの適切な塩基を用いて調製することができる。例えば、水中、又はメタノール、エタノール若しくはジオキサンなどの不活性な水混和性有機溶媒を含む液体中で、標準的なプロトコルを用いて処理することにより調製することができる。
2.組換え遺伝子
 上述した本発明のタンパク質をコードする遺伝子としては、限定はされないが、以下の(a)又は(b)のDNAを含む遺伝子が好ましく挙げられる。なお、以下の(a)及び(b)のDNAは、いずれも本発明のタンパク質の構造遺伝子であることが好ましいが、これらDNAを含む遺伝子としては、これらDNAのみからなるものであってもよいし、これらDNAを一部に含み、その他に遺伝子発現に必要な公知の塩基配列(転写プロモーター、SD配列、Kozak配列、ターミネーター等)をも含むものであってもよく、限定はされない。
 (a)配列番号1に示される塩基配列において、第28番目~第30番目の塩基がリジン以外のアミノ酸のコドンを示す塩基に置換されたか、並びに/又は、第34番目~第36番目及び/若しくは第46番目~第48番目の塩基がチロシン以外のアミノ酸のコドンを示す塩基に置換された塩基配列からなるDNA。
 (b)前記(a)のDNAに対し相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAであって、前記置換部位の塩基に対応する塩基が当該置換部位の塩基と同一であり、かつトランスグルタミナーゼ活性を有するタンパク質をコードするDNA
 本発明において「コドン」とは、転写後のRNA配列上の3塩基連鎖(トリプレット)に限らず、DNA配列上の3塩基連鎖をも意味する。よって、DNA配列上のコドンの表記は、ウラシル(U)の代わりにチミン(T)を用いて行う。
 配列番号1に示される塩基配列は、野生型の微生物由来トランスグルタミナーゼをコードする1131個の塩基からなる塩基配列である。前述したとおり、本願明細書においては、配列番号1の塩基配列は、野生型の微生物由来トランスグルタミナーゼにおけるシグナルペプチド部分を除いたアミノ酸配列において、そのN末端にメチオニン残基(M)を付加したアミノ酸配列をコードする塩基配列である。
 また、上記(a)のDNAとしては、前記チロシン以外のアミノ酸のコドンを示す塩基がアラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種のコドンを示す塩基である場合のDNAが好ましく挙げられる。
 さらに、上記(a)のDNAとしては、前記リジン以外のアミノ酸のコドンを示す塩基が、アルギニン、アスパラギン酸、グルタミン酸、グリシン、アスパラギン、アラニン、システイン、グルタミン、セリン、スレオニン(トレオニン)、トリプトファン、フェニルアラニン、イソロイシン、ロイシン、メチオニン、プロリン、バリン、チロシン及びヒスチジンからなる群より選ばれる少なくとも1種のコドンを示す塩基が好ましく挙げられ、より好ましくは、アスパラギン酸及びグルタミン酸からなる群より選ばれる少なくとも1種のコドンを示す塩基である場合のDNAが好ましく挙げられる。。
 以上のような変異置換型のDNAは、例えば、Molecular Cloning,A Laboratory Manual 4th ed.,Cold Spring Harbor Laboratory Press(1989)、Current Protocols in Molecular Biology,John Wiley & Sons(1987−1997)等に記載の部位特異的変位誘発法に準じて調製することができる。具体的には、Kunkel法やGapped duplex法等の公知手法により、部位特異的突然変異誘発法を利用した変異導入用キットを用いて調製することができ、当該キットとしては、例えば、QuickChangeTM Site−Directed Mutagenesis Kit(ストラタジーン社製)、GeneTailorTM Site−Directed Mutagenesis System(インビトロジェン社製)、TaKaRa Site−Directed Mutagenesis System(Mutan−K、Mutan−Super Express Km等:タカラバイオ社製)等が好ましく挙げられる。
 また、所望のアミノ酸のコドンを示す塩基となるようにミスセンス変異が導入されるように設計したPCRプライマーを用い、野生型MTGをコードする塩基配列を含むDNA等をテンプレートとして、適当な条件下でPCRを行うことにより調製することもできる。PCRに用いるDNAポリメラーゼは、限定はされないが、正確性の高いDNAポリメラーゼであることが好ましく、例えば、Pwo DNA(ポリメラーゼロシュ・ダイアグノスティックス)、Pfu DNAポリメラーゼ(プロメガ)、プラチナPfx DNAポリメラーゼ(インビトロジェン)、KOD DNAポリメラーゼ(東洋紡)、KOD−plus−ポリメラーゼ(東洋紡)等が好ましい。PCRの反応条件は、用いるDNAポリメラーゼの最適温度、合成するDNAの長さや種類等により適宜設定すればよいが、例えば、サイクル条件であれば「90~98℃で5~30秒(熱変性・解離)→50~65℃で5~30秒(アニーリング)→65~80℃で30~1200秒(合成・伸長)」を1サイクルとして合計20~200サイクル行う条件が好ましい。
 上記(b)のDNAは、上記(a)のDNA若しくはそれと相補的な塩基配列からなるDNA、又はこれらを断片化したものをプローブとして用い、コロニーハイブリダイゼーション、プラークハイブリダイゼーション、及びサザンブロット等の公知のハイブリダイゼーション法を実施し、cDNAライブラリーやゲノムライブラリーから得ることができる。ライブラリーは、公知の方法で作製されたものを利用してもよいし、市販のcDNAライブラリーやゲノムライブラリーを利用してもよく、限定はされない。
 ハイブリダイゼーション法の詳細な手順については、Molecular Cloning,A Laboratory Manual 3rd ed.(Cold Spring Harbor Laboratory Press(1989)等を適宜参照することができる。
 ハイブリダイゼーション法を実施における「ストリンジェントな条件」とは、ハイブリダイゼーション後の洗浄時の条件であって、バッファーの塩濃度が15~330mM、温度が25~65℃、好ましくは塩濃度が15~150mM、温度が45~55℃の条件を意味する。具体的には、例えば80mMで50℃等の条件を挙げることができる。さらに、このような塩濃度や温度等の条件に加えて、プローブ濃度、プローブの長さ、反応時間等の諸条件も考慮し、上記(b)のDNAを得るための条件を適宜設定することができる。
 ハイブリダイズするDNAとしては、上記(a)のDNAの塩基配列に対して少なくとも40%以上の相同性(同一性)を有する塩基配列であることが好ましく、より好ましくは60%、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上の同一性を有する塩基配列が挙げられる。
 また、上記(b)のDNAは、前記置換部位の塩基に対応する塩基が当該置換部位の塩基と同一である。
 ここでいう「置換部位」とは、上記(a)のDNAに含まれる塩基配列においてなされた塩基置換の部位であり、詳しくは、当該塩基置換により生じた変更後のコドンを示す塩基(トリプレット)の部位を意味する。
 また「前記置換部位の塩基に対応する塩基」の「対応する塩基」とは、上記(b)のDNAが上記(a)のDNAに対する相補鎖とハイブリダイズした場合に、このハイブリッドにおいて、前記置換部位の塩基に対する相補塩基(トリプレット)と、位置的に対向する関係にある塩基(トリプレット)を意味する。
 上記(b)のDNAとしては、例えば、上記(a)のDNAと比較して、塩基配列については完全に同一ではないが、翻訳された後のアミノ酸配列については完全に同一となるような塩基配列からなるDNA(すなわち上記(a)のDNAにサイレント変異が施されたDNA)が、特に好ましい。
 本発明のタンパク質をコードする遺伝子としては、翻訳後の個々のアミノ酸に対応するコドンは、特に限定はされないので、転写後、ヒト等の哺乳類において一般的に用いられているコドン(好ましくは使用頻度の高いコドン)を示すDNAを含むものであってもよいし、また、大腸菌や酵母等の微生物や、植物等において一般的に用いられているコドン(好ましくは使用頻度の高いコドン)を示すDNAを含むものであってもよい。
 また、本発明のタンパク質をコードする遺伝子としては、当該タンパク質が前述したリンカー配列を含むものである場合は、そのリンカー配列のアミノ酸配列をコードするDNAを含むものであってもよい。
3.組換えベクター及び形質転換体
 本発明のタンパク質を発現させるためには、まず、上述した本発明の遺伝子を発現ベクターに組込んで組換えベクターを構築することが必要である。この際、発現ベクターに組込む遺伝子には、必要に応じて、予め、上流に転写プロモーター、SD配列(宿主が原核細胞の場合)及びKozak配列(宿主が真核細胞の場合)を連結しておいてもよいし、下流にターミネーターを連結しておいてもよく、その他、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー等を連結しておくこともできる。なお、上記転写プロモーター等の遺伝子発現に必要な各要素は、初めから当該遺伝子に含まれていてもよいし、もともと発現ベクターに含まれている場合はそれを利用してもよく、各要素の使用態様は特に限定されない。
 発現ベクターに当該遺伝子を組込む方法としては、例えば、制限酵素を用いる方法や、トポイソメラーゼを用いる方法など、公知の遺伝子組換え技術を利用した各種方法が採用できる。また、発現ベクターとしては、例えば、プラスミドDNA、バクテリオファージDNA、レトロトランスポゾンDNA、レトロウイルスベクター、人工染色体DNAなど、本発明のタンパク質をコードする遺伝子を保持し得るものであれば、限定はされず、使用する宿主細胞に適したベクターを適宜選択して使用することができる。
 次いで、構築した上記組換えベクターを宿主に導入して形質転換体を得、これを培養することにより、本発明のタンパク質を発現させることができる。なお、本発明で言う「形質転換体」とは宿主に外来遺伝子が導入されたものを意味し、例えば、宿主にプラスミドDNA等を導入すること(形質転換)で外来遺伝子が導入されたもの、並びに、宿主に各種ウイルス及びファージを感染させること(形質導入)で外来遺伝子が導入されたものが含まれる。
 宿主としては、上記組換えベクターが導入された後、本発明のタンパク質を発現し得るものであれば、限定はされず、適宜選択することができるが、例えば、ヒトやマウス等の各種動物細胞、各種植物細胞、細菌、酵母、植物細胞等の公知の宿主が挙げられる。
 動物細胞を宿主とする場合は、例えば、ヒト繊維芽細胞、CHO細胞、サル細胞COS−7、Vero、マウスL細胞、ラットGH3、ヒトFL細胞等が用いられる。また、Sf9細胞、Sf21細胞等の昆虫細胞を用いることもできる。
 細菌を宿主とする場合、例えば、大腸菌、枯草菌等が用いられる。
 酵母を宿主とする場合は、例えば、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)等が用いられる。
 植物細胞を宿主とする場合は、例えば、タバコBY−2細胞等が用いられる。
 形質転換体を得る方法は、限定はされず、宿主と発現ベクターとの種類の組み合わせを考慮し、適宜選択することができるが、例えば、電気穿孔法、リポフェクション法、ヒートショック法、PEG法、リン酸カルシウム法、DEAEデキストラン法、並びに、DNAウイルスやRNAウイルス等の各種ウイルスを感染させる方法などが好ましく挙げられる。
 得られる形質転換体においては、組換えベクターに含まれる遺伝子のコドン型は、実際に用いた宿主のコドン型と一致していてもよいし、異なっていてもよく、限定はされない。
4.タンパク質の製法
 本発明のタンパク質の製造は、具体的には、前述した形質転換体を培養する工程と、得られる培養物からトランスグルタミナーゼ活性を有するタンパク質を採取する工程とを含む方法により実施することができる。ここで、「培養物」とは、培養上清、培養細胞、培養菌体、又は細胞若しくは菌体の破砕物のいずれをも意味するものである。上記形質転換体の培養は、宿主の培養に用いられる通常の方法に従って行うことができる。目的のタンパク質は、上記培養物中に蓄積される。本発明においては、前記採取する工程は、タンパク質の精製工程を含んでいてもよい。
 上記培養に用いる培地としては、宿主が資化し得る炭素源、窒素源、無機塩類などを含有し、形質転換体の培養を効率的に行うことができる培地であれば、公知の各種天然培地及び合成培地のいずれを用いてもよい。
 培養中は、形質転換体に含まれる組換えベクターの脱落及び目的タンパク質をコードする遺伝子の脱落を防ぐために、選択圧をかけた状態で培養してもよい。すなわち、選択マーカーが薬剤耐性遺伝子である場合には、相当する薬剤を培地に添加することができ、選択マーカーが栄養要求性相補遺伝子である場合には、相当する栄養因子を培地から除くことができる。
 プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した形質転換体等を培養する場合は、必要に応じて、好適なインデューサー(例えば、IPTG等)を培地に添加してもよい。
 形質転換体の培養条件は、目的タンパク質の生産性及び宿主の生育が妨げられない条件であれば特に限定はされず、通常、10℃~40℃、好ましくは20℃~37℃で5~100時間行う。pHの調整は、無機又は有機酸、アルカリ溶液等を用いて行うことができる。培養方法としては、固体培養、静置培養、振盪培養、通気攪拌培養などが挙げられる。
 培養後、目的タンパク質が菌体内又は細胞内に生産される場合には、菌体又は細胞を破砕することにより目的タンパク質を採取することができる。菌体又は細胞の破砕方法としては、フレンチプレス又はホモジナイザーによる高圧処理、超音波処理、ガラスビーズ等による磨砕処理、リゾチーム、セルラーゼ又はペクチナーゼ等を用いる酵素処理、凍結融解処理、低張液処理、ファージによる溶菌誘導処理等を利用することができる。破砕後、必要に応じて菌体又は細胞の破砕残渣(細胞抽出液不溶性画分を含む)を除くことができる。残渣を除去する方法としては、例えば、遠心分離やろ過などが挙げられ、必要に応じて、凝集剤やろ過助剤等を使用して残渣除去効率を上げることもできる。残渣を除去した後に得られた上清は、細胞抽出液可溶性画分であり、粗精製したタンパク質溶液とすることができる。
 また、目的のタンパク質が菌体内又は細胞内に生産される場合は、菌体や細胞そのものを遠心分離、膜分離等で回収して、未破砕のまま使用することも可能である。
 一方、目的のタンパク質が菌体外又は細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離やろ過等により菌体又は細胞を除去する。その後、必要に応じて硫安沈澱による抽出等により、培養物中から目的タンパク質を採取し、さらに必要に応じて透析、各種クロマトグラフィー(ゲルろ過、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等)を用いて単離精製することもできる。
 形質転換体等を培養して得られたタンパク質の生産収率は、例えば、培養液あたり、菌体湿重量又は乾燥重量あたり、粗酵素液タンパク質あたりなどの単位で、SDS−PAGE(ポリアクリルアミドゲル電気泳動)等により確認することができる。
 また、目的タンパク質の製造は、上述したような形質転換体を用いたタンパク質合成系のほか、生細胞を全く使用しない無細胞タンパク質合成系を用いて行うこともできる。
 無細胞タンパク質合成系とは、細胞抽出液を用いて試験管等の人工容器内で目的タンパク質を合成する系である。また、使用し得る無細胞タンパク質合成系としては、DNAを鋳型としてRNAを合成する無細胞転写系も含まれる。
 この場合、使用する細胞抽出液の由来は、前述の宿主細胞であることが好ましい。細胞抽出液としては、例えば真核細胞由来又は原核細胞由来の抽出液、より具体的には、CHO細胞、ウサギ網状赤血球、マウスL−細胞、HeLa細胞、小麦胚芽、出芽酵母、大腸菌などの抽出液を使用することができる。なお、これらの細胞抽出液は、濃縮又は希釈して用いてもよいし、そのままでもよく、限定はされない。
 細胞抽出液は、例えば限外濾過、透析、ポリエチレングリコール(PEG)沈殿等によって得ることができる。
 このような無細胞タンパク質合成は、市販のキットを用いて行うこともできる。例えば、試薬キットPROTEIOSTM(東洋紡)、TNTTM System(プロメガ)、合成装置のPG−MateTM(東洋紡)、RTS(ロシュ・ダイアグノスティクス)等が挙げられる。
 無細胞タンパク質合成によって産生された目的のタンパク質は、前述したようにクロマトグラフィー等の手段を適宜選択して、精製することができる。
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.
In addition, this specification includes the whole of Japanese Patent Application No. 2006-131883 specification (application on July 1, 2016) used as the foundation of this application priority claim. In addition, all publications cited in the present specification, for example, prior art documents, and publications, patent publications and other patent documents are incorporated herein by reference.
In the present specification, “MTG” means a microtransglutaminase derived from Streptomyces mobileaensis as described above. In addition, “MTG precursor” means MTG having a propeptide portion, and “MTG mutant” means MTG obtained by mutating (substituting) an amino acid in the MTG precursor.
1. protein
The protein of the present invention is a mutant protein of transglutaminase (MTG) derived from a microorganism (Streptomyces mobaaraensis). Specifically, the protein of the present invention is a protein obtained by mutating at least an amino acid in the amino acid sequence of the propeptide portion in wild-type MTG, and having transglutaminase activity. It has the activity in a state having a mutated propeptide portion (a state in which the mutated propeptide portion is present in a protein molecule).
Usually, in wild-type MTG, a partial structure called a propeptide (propeptide portion) is present in the form of being fused to the N-terminal side of mature MTG. In this specification, the so-called fusion protein of mature MTG and the propeptide portion is referred to as an MTG precursor. In MTG, the propeptide portion serves as an inhibitor and has a role for expressing transglutaminase activity (crosslinking activity) at an appropriate location. This cross-linking activity is a post-translational modification between a primary amine including a specific glutamine (Q) side chain γ-carboxyamide group and a lysine (K) side chain amine group, or water. The activity of catalyzing the acyl transfer reaction and forming an isopeptide bond. The propeptide portion in MTG is an intramolecular chaperone that leads to correct folding of the protein, and is indispensable for obtaining active MTG, that is, MTG having the above-mentioned crosslinking activity. In actinomycetes, which is the original host of MTG, the MTG precursor is first expressed, and then the propeptide portion is removed by a unique protease secreted by the host to become mature MTG. However, in the E. coli expression system, which is a general-purpose host for gene recombination, the expression of mature MTG itself is difficult (is insolubilized). In addition, those expressed in a state having a propeptide portion also have a problem that they do not show activity due to the presence of the propeptide portion covering the active site of MTG. Therefore, it has been conventionally difficult to prepare an active recombinant using Escherichia coli as a host. On the other hand, in recent years, it has been shown that the above problem can be solved by co-expressing a recombinant MTG and a protease in an E. coli host. However, in a system using a protease, there is a concern that MTG may be partially hydrolyzed, leading to inactivation. Further, if the protease and the cleaved propeptide are not completely removed by purification, the reaction efficiency of MTG decreases. Therefore, there is a concern that it affects the subsequent reaction, and there is a problem that the cost for purification increases. On the other hand, the present invention provides active MTG without the protease treatment, and can solve the problems in the prior art at once.
The protein of the present invention is a protein in which at least an amino acid in the amino acid sequence of the propeptide portion is mutated in a wild-type microorganism-derived transglutaminase and has transglutaminase activity. Preferably, those having the activity in the state having the propeptide portion after the mutation, and the mutation being a substitution with another amino acid. The amino acid to be substituted preferably contains at least one tyrosine. In this case, the other amino acid after substitution is preferably at least one selected from the group consisting of alanine, glutamine and histidine. The amino acid to be substituted preferably contains lysine, and in this case, other amino acids after substitution include arginine, aspartic acid, glutamic acid, glycine, asparagine, alanine, cysteine, glutamine, serine, threonine (threonine ), Preferably at least one selected from the group consisting of tryptophan, phenylalanine, isoleucine, leucine, methionine, proline, valine, tyrosine and histidine, more preferably at least one selected from the group consisting of aspartic acid and glutamic acid It is.
As the protein of the present invention, for example, in the amino acid sequence of wild-type microorganism-derived transglutaminase, at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids is substituted with another amino acid. It comprises an amino acid sequence or an amino acid sequence in which one or several amino acids excluding the amino acid at the substitution site in the substituted amino acid sequence are deleted, substituted or added, and has transglutaminase activity Protein is preferred. In the present specification, the amino acid sequence of wild-type microorganism-derived transglutaminase is an amino acid sequence excluding the signal peptide part of wild-type microorganism-derived transglutaminase, and a methionine residue (M) is added to the N-terminus thereof. It means the amino acid sequence. The same applies to the amino acid sequence of SEQ ID NO: 2 described later. The same applies to the base sequence of SEQ ID NO: 1.
Here, the “amino acid sequence in which one or several amino acids are deleted, substituted or added” is, for example, about 1 to 10, preferably 1 to several, 1 to 5, 1 to 4 It is preferable that the amino acid sequence has one, three, one, two, or one amino acid deleted, substituted or added. The introduction of mutation such as deletion, substitution or addition may be carried out by a mutation introduction kit utilizing site-directed mutagenesis, for example, GeneTailor. TM Site-Directed Mutagenesis System (Invitrogen), and TaKaRa Site-Directed Mutagenesis System (Prime STAR (registered trademark) Mutagenesis Basal kit, Muta (registered trademark)-Super Ex. Can do. Whether or not the above deletion, substitution or addition mutation has been introduced can be confirmed using various amino acid sequencing methods and structural analysis methods such as X-ray and NMR.
The other amino acid is not particularly limited as far as the 12th and / or 16th amino acid residue is other than tyrosine, but for example, at least one selected from the group consisting of alanine, glutamine and histidine. Species can preferably be mentioned. The tenth amino acid residue is not particularly limited as long as it is other than lysine. For example, arginine, aspartic acid, glutamic acid, glycine, asparagine, alanine, cysteine, glutamine, serine, threonine (threonine), Preferred is at least one selected from the group consisting of tryptophan, phenylalanine, isoleucine, leucine, methionine, proline, valine, tyrosine and histidine, more preferably at least one selected from the group consisting of aspartic acid and glutamic acid. . By substituting the 10th amino acid, for example, the production of a self-crosslinked product of MTG itself can be suppressed while maintaining the crosslinking activity of MTG.
The protein of the present invention is also preferably the following protein (a) or (b).
(A) a protein comprising an amino acid sequence in which at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids is substituted with another amino acid in the amino acid sequence shown in SEQ ID NO: 2
(B) a transglutaminase activity comprising an amino acid sequence in which one or several amino acids except the amino acid at the substitution site are deleted, substituted or added in the amino acid sequence of the above (a) (the amino acid sequence after the substitution) Protein with
As described above, the amino acid sequence shown in SEQ ID NO: 2 is an amino acid sequence obtained by adding a methionine residue (M) to the N-terminus of the amino acid sequence excluding the signal peptide portion of the wild-type microorganism-derived transglutaminase, It is an amino acid sequence consisting of a total of 376 amino acids.
As for the “amino acid sequence in which at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids is substituted with another amino acid” in the protein (a) above, Applicable as appropriate.
The protein of (b) is one or several (for example, about 1 to 10, preferably 1 to several, except for the amino acid at the substitution site in the amino acid sequence contained in the protein of (a). Any protein may be used as long as it has a transglutaminase activity and has an amino acid sequence in which 5 to 1, 1 to 4, 1 to 3, 1 to 2, or 1 amino acid is deleted, substituted or added. There is no limitation. The method for introducing a mutation such as deletion, substitution or addition and the confirmation of whether or not a mutation has been introduced are the same as described above.
Moreover, as a protein functionally equivalent to the protein of said (a), the protein of the following (c) other than the protein of said (b) is mentioned, for example.
(C) a protein comprising an amino acid sequence having 80% or more identity (homology) to the amino acid sequence of (a) above (the amino acid sequence after the substitution) and having transglutaminase activity
As the protein of (c), those having the above identity of 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more are more preferable.
The proteins (b) and (c) (so-called mutant proteins) can also be prepared by genetic engineering using a gene encoding the amino acid sequence of the protein.
In the present invention, the transglutaminase activity can be evaluated and measured by, for example, a method by fluorescence resonance energy transfer (FRET) described in Examples described later.
The proteins (a) to (c) in the present invention may be in the state where the propeptide portion is fused (bound) to the N-terminal side of the mature MTG as in the case of the wild-type MTG. However, as another embodiment, those having a linker sequence between the propeptide portion and the N-terminal side of mature MTG are also preferred. The linker sequence is not limited, but may be an amino acid sequence of about 1 to 30 residues, and specific examples thereof include GGGSLVPRGSGGS (thrombin linker sequence; SEQ ID NO: 10). In the amino acid sequence of wild-type MTG (SEQ ID NO: 2), the amino acid sequence from the N-terminal side to the 46th amino acid (proline) is the propeptide portion, and the 47th amino acid (aspartic acid) side to the C-terminal side. Up to here is the amino acid sequence of mature MTG.
The proteins (a) to (c) referred to in the present invention may be peptides derived from natural products, or may be obtained by artificial chemical synthesis, and are not limited.
A protein derived from a natural product may be obtained directly from a natural product by known recovery and purification methods, or a gene encoding the protein is incorporated into various expression vectors by a known gene recombination technique. After being introduced into cells and expressed, they may be obtained by known recovery and purification methods. Alternatively, a commercially available kit such as a reagent kit PROTEIOS TM (Toyobo), TNT TM System (Promega), PG-Mate of synthesizer TM The protein may be produced by a cell-free protein synthesis system using Toyobo and RTS (Roche Diagnostics), and may be obtained by a known recovery method and purification method, and is not limited.
Chemically synthesized proteins can be obtained using known protein synthesis methods. Examples of the synthesis method include an azide method, an acid chloride method, an acid anhydride method, a mixed acid anhydride method, a DCC method, an active ester method, a carboimidazole method, and a redox method. In addition, the solid phase synthesis method and the liquid phase synthesis method can be applied to the synthesis. A commercially available protein synthesizer may be used. After the synthesis reaction, the protein can be purified by combining known purification methods such as chromatography.
In the present invention, a derivative of the protein can be included together with or instead of the proteins (a) to (c). The derivative is meant to include all those that can be prepared from the protein. For example, a derivative in which a part of the constituent amino acid is replaced with a non-natural amino acid, or a constituent amino acid (mainly its side chain). And those having a part thereof chemically modified.
In the present invention, the protein (a) to (c) and / or a derivative of the protein can be included together with or in place of the protein and / or a salt of the derivative. The salt is preferably a physiologically acceptable acid addition salt or basic salt. Acid addition salts include, for example, salts with inorganic acids such as hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, or acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, apple Examples thereof include salts with organic acids such as acid, oxalic acid, benzoic acid, methanesulfonic acid, and benzenesulfonic acid. Examples of basic salts include salts with inorganic bases such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and magnesium hydroxide, and salts with organic bases such as caffeine, piperidine, trimethylamine and pyridine. .
The salt can be prepared using a suitable acid such as hydrochloric acid or a suitable base such as sodium hydroxide. For example, it can be prepared by treatment using standard protocols in water or in a liquid containing an inert water-miscible organic solvent such as methanol, ethanol or dioxane.
2. Recombinant gene
Although it does not limit as a gene which codes the protein of this invention mentioned above, The gene containing DNA of the following (a) or (b) is mentioned preferably. The following DNAs (a) and (b) are preferably structural genes of the protein of the present invention, but the gene containing these DNAs may be composed only of these DNAs. In addition, these DNAs may be included in part, and may also include known base sequences (transcription promoter, SD sequence, Kozak sequence, terminator, etc.) necessary for gene expression, and is not limited.
(A) In the base sequence shown in SEQ ID NO: 1, the 28th to 30th bases have been replaced with bases indicating codons of amino acids other than lysine, and / or the 34th to 36th and / or Alternatively, DNA consisting of a base sequence in which the 46th to 48th bases are replaced with bases indicating codons of amino acids other than tyrosine.
(B) a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA of (a), wherein the base corresponding to the base of the substitution site is the base of the substitution site; DNA encoding the same protein having transglutaminase activity
In the present invention, the term “codon” means not only a three-base chain (triplet) on the RNA sequence after transcription but also a three-base chain on the DNA sequence. Therefore, the notation of the codon on the DNA sequence is performed using thymine (T) instead of uracil (U).
The base sequence shown in SEQ ID NO: 1 is a base sequence consisting of 1131 bases encoding wild-type microorganism-derived transglutaminase. As described above, in the present specification, the nucleotide sequence of SEQ ID NO: 1 is an amino acid sequence obtained by adding a methionine residue (M) to the N-terminus of the amino acid sequence excluding the signal peptide portion of wild-type microorganism-derived transglutaminase. This is a base sequence encoding the sequence.
In addition, the DNA of (a) above is preferably a DNA in which the base showing the codons of amino acids other than tyrosine is a base showing at least one codon selected from the group consisting of alanine, glutamine and histidine. .
Furthermore, as the DNA of the above (a), the bases indicating the codons of amino acids other than lysine are arginine, aspartic acid, glutamic acid, glycine, asparagine, alanine, cysteine, glutamine, serine, threonine (threonine), tryptophan, phenylalanine. Preferably a base showing at least one codon selected from the group consisting of isoleucine, leucine, methionine, proline, valine, tyrosine and histidine, more preferably at least one selected from the group consisting of aspartic acid and glutamic acid Preferred is DNA in the case of a base representing a codon. .
Such mutation-substituted DNAs are described in, for example, Molecular Cloning, A Laboratory Manual 4th ed. , Cold Spring Harbor Press (1989), Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997) and the like. Specifically, it can be prepared using a mutation introduction kit using site-directed mutagenesis by a known method such as the Kunkel method or Gapped duplex method, and examples of the kit include QuickChange. TM Site-Directed Mutagenesis Kit (Stratagene), GeneTailor TM Preferred examples include Site-Directed Mutagenesis System (manufactured by Invitrogen), TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc .: manufactured by Takara Bio Inc.) and the like.
In addition, using PCR primers designed so that a missense mutation is introduced so as to be a base indicating a codon of a desired amino acid, using a DNA containing a base sequence encoding wild-type MTG as a template under appropriate conditions It can also be prepared by performing PCR. The DNA polymerase used for PCR is not limited, but is preferably a highly accurate DNA polymerase. For example, Pwo DNA (Polymerase Roche Diagnostics), Pfu DNA polymerase (Promega), Platinum Pfx DNA polymerase ( Invitrogen), KOD DNA polymerase (Toyobo), KOD-plus-polymerase (Toyobo) and the like are preferable. The PCR reaction conditions may be appropriately set depending on the optimum temperature of the DNA polymerase to be used, the length and type of the DNA to be synthesized, etc. For example, in the case of cycle conditions, “90-98 ° C. for 5-30 seconds (thermal denaturation, Dissociation) → 50 to 65 ° C. for 5 to 30 seconds (annealing) → 65 to 80 ° C. for 30 to 1200 seconds (synthesis / elongation) ”is preferably performed under a total of 20 to 200 cycles.
The DNA of the above (b) uses the DNA of the above (a) or a DNA comprising a complementary base sequence, or a fragment thereof, as a probe, such as colony hybridization, plaque hybridization, Southern blot, etc. It can be obtained from a cDNA library or a genomic library by performing a known hybridization method. A library prepared by a known method may be used, or a commercially available cDNA library or genomic library may be used, and is not limited.
For details of the hybridization procedure, see Molecular Cloning, A Laboratory Manual 3rd ed. (Cold Spring Harbor Laboratory Press (1989) and the like can be appropriately referred to.
“Stringent conditions” in carrying out the hybridization method are conditions at the time of washing after hybridization, wherein the buffer salt concentration is 15 to 330 mM, the temperature is 25 to 65 ° C., preferably the salt concentration is 15 to It means a condition of 150 mM and a temperature of 45 to 55 ° C. Specifically, for example, conditions such as 50 mM at 80 mM can be exemplified. Furthermore, in addition to the conditions such as salt concentration and temperature, various conditions such as probe concentration, probe length, reaction time, etc. are taken into account, and the conditions for obtaining the DNA of (b) above are appropriately set. Can do.
The hybridizing DNA is preferably a base sequence having at least 40% homology (identity) to the DNA base sequence of (a) above, more preferably 60%, 80% or more, Examples include base sequences having 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more identity.
In the DNA of (b), the base corresponding to the base at the substitution site is the same as the base at the substitution site.
The “substitution site” referred to here is a site of base substitution made in the base sequence contained in the DNA of (a) above. Specifically, a base (triplet) indicating a modified codon generated by the base substitution. Means the site of
The “corresponding base” of the “base corresponding to the base at the substitution site” means that when the DNA of (b) is hybridized with a complementary strand to the DNA of (a), It means a base (triplet) that is in a position opposite to the base complementary to the base at the site (triplet).
The DNA of (b) is, for example, a base that is not completely identical in terms of base sequence, but is completely identical in translated amino acid sequence compared to the DNA of (a) above. A DNA consisting of a sequence (that is, a DNA obtained by subjecting the DNA of (a) to a silent mutation) is particularly preferred.
As the gene encoding the protein of the present invention, codons corresponding to individual amino acids after translation are not particularly limited. Therefore, codons generally used in mammals such as humans after transcription (preferably frequency of use) DNA that shows a codon that is commonly used in microorganisms such as Escherichia coli and yeast, plants, etc. (preferably a codon that is frequently used). May be included.
Further, the gene encoding the protein of the present invention may include a DNA encoding the amino acid sequence of the linker sequence when the protein includes the linker sequence described above.
3. Recombinant vector and transformant
In order to express the protein of the present invention, it is necessary to first construct a recombinant vector by incorporating the above-described gene of the present invention into an expression vector. At this time, a transcription promoter, an SD sequence (when the host is a prokaryotic cell), and a Kozak sequence (when the host is a eukaryotic cell) are ligated upstream in advance as necessary. Alternatively, a terminator may be linked downstream, and an enhancer, splicing signal, poly A addition signal, selection marker, etc. may be linked. Each element necessary for gene expression such as the above transcription promoter may be included in the gene from the beginning, or may be used when originally included in the expression vector. A use aspect is not specifically limited.
As a method for incorporating the gene into the expression vector, various methods using known gene recombination techniques such as a method using a restriction enzyme and a method using topoisomerase can be employed. The expression vector is not limited as long as it can hold the gene encoding the protein of the present invention, such as plasmid DNA, bacteriophage DNA, retrotransposon DNA, retroviral vector, artificial chromosome DNA, and the like. A vector suitable for the host cell to be used can be appropriately selected and used.
Subsequently, the constructed recombinant vector is introduced into a host to obtain a transformant, which is cultured, whereby the protein of the present invention can be expressed. The “transformant” as used in the present invention means a gene into which a foreign gene has been introduced into the host, for example, a gene into which a foreign gene has been introduced by introducing plasmid DNA or the like into the host (transformation), Also included are those in which a foreign gene has been introduced by infecting a host with various viruses and phages (transduction).
The host is not limited as long as it can express the protein of the present invention after the introduction of the above recombinant vector, and can be selected as appropriate. For example, various animal cells such as humans and mice can be selected. And known hosts such as various plant cells, bacteria, yeast, and plant cells.
When animal cells are used as hosts, for example, human fibroblasts, CHO cells, monkey cells COS-7, Vero, mouse L cells, rat GH3, human FL cells and the like are used. Insect cells such as Sf9 cells and Sf21 cells can also be used.
When bacteria are used as hosts, for example, Escherichia coli, Bacillus subtilis and the like are used.
When yeast is used as a host, for example, Saccharomyces cerevisiae and Schizosaccharomyces pombe are used.
When plant cells are used as hosts, for example, tobacco BY-2 cells are used.
The method for obtaining the transformant is not limited and can be appropriately selected in consideration of the combination of the host and expression vector. For example, electroporation, lipofection, heat shock, PEG, Preferred examples include calcium phosphate method, DEAE dextran method, and methods of infecting various viruses such as DNA virus and RNA virus.
In the resulting transformant, the codon type of the gene contained in the recombinant vector may be the same as or different from the codon type of the host actually used, and is not limited.
4). Protein production
Specifically, the production of the protein of the present invention can be carried out by a method including a step of culturing the above-described transformant and a step of collecting a protein having transglutaminase activity from the obtained culture. Here, “cultured product” means any of culture supernatant, cultured cells, cultured cells, or disrupted cells or cells. The transformant can be cultured according to a usual method used for host culture. The protein of interest is accumulated in the culture. In the present invention, the collecting step may include a protein purification step.
As the medium used for the culture, any known natural medium and any known medium can be used as long as it contains a carbon source, a nitrogen source, inorganic salts, and the like that can be assimilated by the host, and can efficiently culture the transformant. Any synthetic medium may be used.
During the culture, the cells may be cultured under selective pressure in order to prevent the recombinant vector contained in the transformant from dropping and the gene encoding the target protein from dropping off. That is, when the selectable marker is a drug resistance gene, the corresponding drug can be added to the medium, and when the selectable marker is an auxotrophic complementary gene, the corresponding nutrient factor can be removed from the medium. it can.
When cultivating a transformant transformed with an expression vector using an inducible promoter as a promoter, a suitable inducer (for example, IPTG or the like) may be added to the medium as necessary.
The culture conditions of the transformant are not particularly limited as long as the productivity of the target protein and the growth of the host are not hindered, and are usually 10 to 40 ° C., preferably 20 to 37 ° C. and 5 to 100. Do time. The pH can be adjusted using an inorganic or organic acid, an alkaline solution, or the like. Examples of the culture method include solid culture, stationary culture, shaking culture, and aeration and agitation culture.
When the target protein is produced in the microbial cells or cells after culturing, the target protein can be collected by disrupting the microbial cells or cells. As a method for disrupting cells or cells, high-pressure treatment using a French press or homogenizer, ultrasonic treatment, grinding treatment using glass beads, enzyme treatment using lysozyme, cellulase, pectinase, etc., freeze-thawing treatment, hypotonic solution treatment, It is possible to use a lysis inducing treatment with a phage or the like. After crushing, the cells or cell crushing residues (including the cell extract insoluble fraction) can be removed as necessary. Examples of the method for removing the residue include centrifugation and filtration. If necessary, the residue removal efficiency can be increased by using a flocculant or a filter aid. The supernatant obtained after removing the residue is a cell extract soluble fraction and can be a crudely purified protein solution.
In addition, when the target protein is produced in the microbial cells or cells, the microbial cells and the cells themselves can be recovered by centrifugation, membrane separation, etc., and used without being crushed.
On the other hand, when the target protein is produced outside the cells or cells, the culture solution is used as it is, or the cells or cells are removed by centrifugation or filtration. Then, if necessary, the target protein is collected from the culture by extraction with ammonium sulfate precipitation, and further, if necessary, using dialysis and various chromatography (gel filtration, ion exchange chromatography, affinity chromatography, etc.) It can also be isolated and purified.
The production yield of the protein obtained by culturing the transformant is, for example, SDS-PAGE (polyacrylamide gel) in units such as per culture solution, per microbial wet weight or dry weight, or per crude enzyme solution protein. For example, electrophoresis).
In addition to the protein synthesis system using the transformant as described above, the target protein can also be produced using a cell-free protein synthesis system that does not use any living cells.
The cell-free protein synthesis system is a system that synthesizes a target protein in an artificial container such as a test tube using a cell extract. Cell-free protein synthesis systems that can be used also include cell-free transcription systems that synthesize RNA using DNA as a template.
In this case, the cell extract to be used is preferably derived from the aforementioned host cell. Examples of the cell extract include extracts derived from eukaryotic cells or prokaryotic cells, more specifically, CHO cells, rabbit reticulocytes, mouse L-cells, HeLa cells, wheat germ, budding yeast, E. coli, and the like. Liquid can be used. These cell extracts may be used after being concentrated or diluted, or may be used as they are, and are not limited.
The cell extract can be obtained by, for example, ultrafiltration, dialysis, polyethylene glycol (PEG) precipitation or the like.
Such cell-free protein synthesis can also be performed using a commercially available kit. For example, reagent kit PROTEIOS TM (Toyobo), TNT TM System (Promega), PG-Mate of synthesizer TM (Toyobo), RTS (Roche Diagnostics) and the like.
The target protein produced by cell-free protein synthesis can be purified by appropriately selecting means such as chromatography as described above.
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
MTG変異体の調製
 以下に示す各アミノ酸配列からなるMTG変異体(詳しくは、MTG前駆体の変異体)をコードするDNAを、pET22b+のNdeI−XhoI間に挿入し、組換え発現プラスミドベクターを構築した。なお、下記の各MTG変異体のアミノ酸配列中、下線を付したアミノ酸は、置換変異したアミノ酸である。
MTG変異体(Y12A)のアミノ酸配列
Figure JPOXMLDOC01-appb-I000001
MTG変異体(Y12Q)のアミノ酸配列
Figure JPOXMLDOC01-appb-I000002
MTG変異体(Y16A)のアミノ酸配列
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
MTG変異体(Y16Q)のアミノ酸配列
Figure JPOXMLDOC01-appb-I000005
MTG変異体(K10R/Y12A)のアミノ酸配列
Figure JPOXMLDOC01-appb-I000006
 得られた組換え発現プラスミドベクターを大腸菌BL21(DE3)株に対してヒートショック法を用いて形質転換し、アンピシリンナトリウムを100μg/mLで含むLB寒天培地に植菌、37℃で一晩静置することでコロニーを得た。得られた大腸菌コロニーを、LB培地(アンピシリンナトリウム100μg/mL含)、10mLに植菌し、37℃、200rpmで4時間培養した。500mLのLB培地に植え継ぎ、37℃、120rpmで培養を行い、OD600=0.6に達した時点で、Isopropyl β−D−1−thiogalactopyranosideを終濃度0.5mMで添加し、培養温度を15℃に下げ、さらに16時間培養を継続した。菌体を6000g、7分の遠心分離で回収した。1×TBS Buffer(25mM Tris−HCl,150mM NaCl,pH7.4)で3回洗浄した後、上清を全て捨て、ペレット状になった菌体を−80℃で凍結保存した。凍結保存したペレットを1×TBS buffer 15mLに溶解させ、超音波処理(Output 4,Duty 20,12.5min)により菌体を破砕し、遠心分離(4℃,18,000×g,20min)によって菌体と含タンパク質溶液とを分離した。得られた溶液を0.45μm及び0.22μmPVDFメンブレンフィルターで濾過し不溶性画分および菌体を除去した。得られた溶液に対してHisTrap Excelカラム(1mL)を用いて、Y16A MTGのC末端に導入されたヘキサヒスチジンタグ(His Tag)による精製を行った。タンパク質中の芳香族アミノ酸(チロシン・トリプトファン)の吸光度に由来する280nmの吸収が確認されたフラクションを回収し、PD−10カラムによって脱塩を行った。次に、HiTrap Qカラム(1mL)によって陰イオン交換クロマトグラフィーによる精製を行った。先程と同様に、280nmの吸収が確認されたフラクションを回収し、PD−10カラムによって1×PBSによるバッファー交換を行った。以下に各カラムでの精製条件を示す。
・HisTrap Excel(1mL)
 Buffer A(20mM Tris−HCl、0.5M NaCl、5mM Imidazole、pH7.4)
 Buffer B(20mM Tris−HCl、0.5M NaCl、500mM Imidazole pH7.4)
Figure JPOXMLDOC01-appb-T000007
・HiTrap Q HP(1mL)
 Buffer A(20mM Tris−HCl)
 Buffer B(20mM Tris−HCl、1M NaCl)
Figure JPOXMLDOC01-appb-T000008
Preparation of MTG variant DNA encoding MTG variant (specifically, MTG precursor variant) consisting of each amino acid sequence shown below is inserted between NdeI-XhoI of pET22b + to construct a recombinant expression plasmid vector did. In the amino acid sequences of the following MTG variants, the underlined amino acids are substitution-mutated amino acids.
Amino acid sequence of MTG variant (Y12A)
Figure JPOXMLDOC01-appb-I000001
Amino acid sequence of MTG variant (Y12Q)
Figure JPOXMLDOC01-appb-I000002
Amino acid sequence of MTG variant (Y16A)
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Amino acid sequence of MTG variant (Y16Q)
Figure JPOXMLDOC01-appb-I000005
Amino acid sequence of MTG variant (K10R / Y12A)
Figure JPOXMLDOC01-appb-I000006
The obtained recombinant expression plasmid vector was transformed into E. coli BL21 (DE3) strain using a heat shock method, inoculated into an LB agar medium containing ampicillin sodium at 100 μg / mL, and allowed to stand at 37 ° C. overnight. A colony was obtained. The obtained Escherichia coli colonies were inoculated into 10 mL of LB medium (containing 100 μg / mL of ampicillin sodium) and cultured at 37 ° C. and 200 rpm for 4 hours. Inoculate in 500 mL of LB medium, and culture at 37 ° C. and 120 rpm. When OD 600 = 0.6 is reached, Isopropyl β-D-1-thiogalactopylanoside is added at a final concentration of 0.5 mM, and the culture temperature is increased. The temperature was lowered to 15 ° C. and the culture was continued for another 16 hours. The cells were collected by centrifugation at 6000 g for 7 minutes. After washing 3 times with 1 × TBS Buffer (25 mM Tris-HCl, 150 mM NaCl, pH 7.4), all the supernatant was discarded and the pelleted cells were stored frozen at −80 ° C. The cryopreserved pellet is dissolved in 15 mL of 1 × TBS buffer, the cells are disrupted by sonication (Output 4, Duty 20, 12.5 min), and centrifuged (4 ° C., 18,000 × g, 20 min). The bacterial cells and the protein-containing solution were separated. The obtained solution was filtered through 0.45 μm and 0.22 μm PVDF membrane filters to remove insoluble fractions and bacterial cells. The resulting solution was purified with a hexahistidine tag (His Tag) introduced into the C-terminus of Y16A MTG using a HisTrap Excel column (1 mL). The fraction in which absorption at 280 nm derived from the absorbance of aromatic amino acids (tyrosine / tryptophan) in the protein was collected, and desalted with a PD-10 column. Next, purification by anion exchange chromatography was performed using a HiTrap Q column (1 mL). In the same manner as described above, a fraction in which absorption at 280 nm was confirmed was collected, and buffer exchange with 1 × PBS was performed using a PD-10 column. The purification conditions for each column are shown below.
・ HisTrap Excel (1 mL)
Buffer A (20 mM Tris-HCl, 0.5 M NaCl, 5 mM Imidazole, pH 7.4)
Buffer B (20 mM Tris-HCl, 0.5 M NaCl, 500 mM Imidazole pH 7.4)
Figure JPOXMLDOC01-appb-T000007
・ HiTrap Q HP (1mL)
Buffer A (20 mM Tris-HCl)
Buffer B (20 mM Tris-HCl, 1M NaCl)
Figure JPOXMLDOC01-appb-T000008
ハイドロキサメート法(J.E.Folk & P.W.Cole,J.Biol.Chem.,1966,241,5518−5525)による組換えMTG前駆体の活性評価
1.Z−Gln−Gly(Z−QG)、塩化ヒドロキシルアンモニウム、ならびに還元型グルタチオン(GSH)を混合した溶液(基質溶液)、トリクロロ酢酸と塩化鉄6水和物に濃塩酸を加えた溶液(反応停止液)、検量線としてL−グルタミン酸γ−モノヒドロキシアミン塩の希釈系列、および各MTGの希釈系列を作製した。
2.96穴プレートにブランクである0.2M Tris−HCl緩衝液(pH7.4)、検量線希釈系列、各MTG希釈系列を20μLずつそれぞれ添加した。
3.基質溶液80μLを各wellに添加し、37℃、10minインキュベートした。
4.反応停止液を100μL添加し、速やかにプレートリーダーにて525nmの吸収を測定した。
5.検量線から、各MTG条件で生成したヒドロキサム酸量を測定し、比活性(U/mg)を算出した。ここで、1分間に1μmolのハイドロキサメートを生成させる酵素量をTGaseの活性単位、1U(unit)と定義した。ここで、各試薬の反応時における最終濃度は以下の通りである。[Z−QG]=30mM、[塩化ヒドロキシルアンモニウム]=0.1M、[GSH]=10mM in 0.2M Tris−Acetate(pH6.0)or0.2M Tris−HCl(pH7.4)。
Figure JPOXMLDOC01-appb-I000009
 pH6.0(図1)ならびにpH74(図2)の条件における酵素活性測定結果を以下に示す。これらの結果からpH6.0ではY12A MTG、Y12Q MTGは活性を示さなかったが、pH7.4ではY12A MTGはわずかながら活性を示した。また、Y12Q MTGに関しても若干の活性の向上が見られた。しかしながら、市販MTGに比べると、ハイドロキサメート法における酵素活性は著しく低い。この結果より、Y12A MTG前駆体ならびにY12Q MTG前駆体は、Z−QGとヒドロキシルアミンのいずれか、または両方を基質として認識していないと考えられ、MTGと基質のアクセスが大幅に低減していることが強く示唆された。
Evaluation of activity of recombinant MTG precursor by hydroxamate method (JE Folk & PW Cole, J. Biol. Chem., 1966, 241, 5518-5525) Z-Gln-Gly (Z-QG), hydroxylammonium chloride and reduced glutathione (GSH) mixed solution (substrate solution), trichloroacetic acid and iron chloride hexahydrate added with concentrated hydrochloric acid (reaction stopped) Solution), as a calibration curve, a dilution series of L-glutamic acid γ-monohydroxyamine salt and a dilution series of each MTG were prepared.
2. A blank 0.2 M Tris-HCl buffer (pH 7.4), a calibration curve dilution series, and 20 μL of each MTG dilution series were added to a 96-well plate.
3. 80 μL of substrate solution was added to each well and incubated at 37 ° C. for 10 min.
4). 100 μL of the reaction stop solution was added, and the absorption at 525 nm was immediately measured with a plate reader.
5. From the calibration curve, the amount of hydroxamic acid produced under each MTG condition was measured, and the specific activity (U / mg) was calculated. Here, the amount of enzyme that generates 1 μmol of hydroxamate per minute was defined as the TGase activity unit, 1 U (unit). Here, the final concentration of each reagent during the reaction is as follows. [Z-QG] = 30 mM, [hydroxylammonium chloride] = 0.1 M, [GSH] = 10 mM in 0.2 M Tris-Acetate (pH 6.0) or 0.2 M Tris-HCl (pH 7.4).
Figure JPOXMLDOC01-appb-I000009
The enzyme activity measurement results under the conditions of pH 6.0 (FIG. 1) and pH 74 (FIG. 2) are shown below. From these results, Y12A MTG and Y12Q MTG showed no activity at pH 6.0, but Y12A MTG showed a little activity at pH 7.4. A slight improvement in activity was also observed for Y12Q MTG. However, compared to commercially available MTG, the enzyme activity in the hydroxamate method is remarkably low. From this result, it is considered that the Y12A MTG precursor and the Y12Q MTG precursor do not recognize either or both of Z-QG and hydroxylamine as a substrate, and the access between the MTG and the substrate is greatly reduced. It was strongly suggested.
蛍光共鳴エネルギー移動(FRET)による組換えMTG変異体の活性評価
 Texas Red−QG(200μM)、CRK−tag EGFP組換体(C末端にMRHKGS(配列番号8)配列を持つ)(10μM)ならびに各種組換えMTG変異体(1μM)を50μLの体積で37℃条件下で混合した。経時的にサンプル溶液から5μL分取し、495μLの1mM N−エチルマレイミド溶液(in 10mM Tris−HCl(pH8.0))と混合し、架橋反応を停止させ、蛍光光度計(PerkinElmer,LS 55)で蛍光スペクトルを測定した(励起光波長:460nm、蛍光スペクトル測定範囲:480~680nm)。
<酵素反応条件>
 Lysペプチド基質融合タンパク質:CRK−EGFP(C末端MRHKGS) 10μM
 小分子Gln基質:TexasRed−QG 200μM
 MTG 1μM
蛍光スペクトル測定条件
 励起波長 460nm
 測定波長 480~680nm
FRETによるMTG変異体の活性評価の実験模式図を、図3に示す。
 図4~11に、FRETによる分析結果ならびに、EGFPの極大蛍光強度とTexas Redの極大蛍光強度の比(I610/I508)に基づくMTGの架橋反応進行度の経時変化を示す。
 以上の結果より、Y12A MTG変異体と市販MTGでは最終的に同程度の反応率に達していることから、Y12A MTG変異体は市販MTGと同等の反応性を示すことが明らかとなった。しかしながら、FRETとハイドロキサメートの結果では活性の差が大きく異なることから、Y12A MTG変異体の基質認識能の差が反映された結果と言える。また、野生型MTG前駆体(Y12)よりも著しく活性が高いことが示された。
以上の結果から、Y12A MTG変異体はプロペプチドを切断せずとも、架橋活性を発現する変異体であることが示された。同時に、市販MTGよりも初期活性が若干低いことが示された。
Activity Evaluation of Recombinant MTG Mutants by Fluorescence Resonance Energy Transfer (FRET) Texas Red-QG (200 μM), CRK-tag EGFP Recombinant (having MRHKGS (SEQ ID NO: 8) sequence at C-terminus) (10 μM) and various sets The replacement MTG variant (1 μM) was mixed at 37 ° C. in a volume of 50 μL. 5 μL was sampled from the sample solution over time, mixed with 495 μL of 1 mM N-ethylmaleimide solution (in 10 mM Tris-HCl (pH 8.0)) to stop the crosslinking reaction, and the fluorometer (PerkinElmer, LS 55) The fluorescence spectrum was measured with (excitation light wavelength: 460 nm, fluorescence spectrum measurement range: 480 to 680 nm).
<Enzyme reaction conditions>
Lys peptide substrate fusion protein: CRK-EGFP (C-terminal MRHKGS) 10 μM
Small molecule Gln substrate: Texas Red-QG 200 μM
MTG 1μM
Fluorescence spectrum measurement conditions Excitation wavelength 460nm
Measurement wavelength 480 ~ 680nm
FIG. 3 shows an experimental schematic diagram for evaluating the activity of the MTG mutant by FRET.
FIGS. 4 to 11 show the analysis results by FRET and the change over time in the degree of progress of the crosslinking reaction of MTG based on the ratio of the maximum fluorescence intensity of EGFP and the maximum fluorescence intensity of Texas Red (I 610 / I 508 ).
From the above results, it was revealed that the Y12A MTG mutant and the commercially available MTG finally reached the same reaction rate, and thus the Y12A MTG mutant showed the same reactivity as the commercially available MTG. However, since the difference in activity differs greatly between the results of FRET and hydroxamate, it can be said that the difference in substrate recognition ability of the Y12A MTG mutant was reflected. Moreover, it was shown that activity is remarkably higher than a wild-type MTG precursor (Y12).
From the above results, it was shown that the Y12A MTG mutant is a mutant that expresses crosslinking activity without cleaving the propeptide. At the same time, it was shown that the initial activity was slightly lower than that of commercial MTG.
(1)小分子1級アミン基質−小分子Gln基質間の反応
 下記酵素反応条件に基づき、蛍光小分子基質を用いてY12A MTG変異体の架橋活性を評価した。その結果を図11~13に示す。
<酵素反応条件>
 小分子1級アミン基質:FITC−cadaverine 10μM
 小分子Gln基質:TexasRed−QG 200μM
 MTG 1μM
蛍光スペクトル測定条件
 励起波長 460nm
 測定波長 480~680nm
 図11~13の結果より、市販MTGに比べるとY12A MTG変異体はほとんど活性を示さないことが明らかとなり、図2のハイドロキサメート法による組換えMTG酵素活性測定結果を支持するものとなった。また、K10R/Y12A MTG変異体(二重変異体)は、Y12A変異体に比べると僅かに高い活性を有することが示唆されたが、市販酵素に比べるとその活性は低いものであった。
(2)6アミノ酸Lysペプチド基質−小分子Gln基質間の反応
 下記酵素反応条件に基づき、蛍光小分子基質を用いてY12A MTG変異体の架橋活性を評価した。その結果を図14~16に示す。
<酵素反応条件>
 Lysペプチド基質:FAM−MRHKGS(配列番号8) 10μM
 小分子Gln基質:TexasRed−QG 200μM
 MTG 1μM
蛍光スペクトル測定条件
 励起波長 480nm
 測定波長 495~680nm
 図14~16の結果より、Y12A MTG変異体は、市販MTGに比べやや初期活性は劣るものの、酵素反応が平衡に達した時点での架橋効率はほぼ同等であることが示唆された。また、K10R/Y12A MTG変異体(二重変異体)は、Y12A変異体と類似の触媒挙動を示した。
 また、上記(1)の結果との比較から、Y12A MTG変異体およびK10R/Y12A MTG変異体(二重変異体)は、ペプチド性Lys基質を用いると、小分子Gln基質に対しても十分な架橋活性を発現することが示された。
 一方、図11と図19の横軸の比較から、同一の小分子Gln基質(TexasRed−QG)に対して、同一のLysペプチド基質配列(MRHKGS(配列番号8))を反応させているにも関わらず、タンパク質に付加配列として融合されたタンパク質性基質(CRK−EGFP)の場合の方が、より早く反応することが示唆された。
(3)まとめ
 以上の結果から、MTGの活性部位を覆うプロペプチド配列部に適当な変異(Y12X,X=A or Q;Y16X,X=A or Q;K10R/Y12A)を導入し、且つ、反応性の高いペプチド性の基質を利用することで、プロペプチドを有するMTG変異体においても触媒活性が発現することが明らかとなった。
(1) Reaction between small molecule primary amine substrate and small molecule Gln substrate Based on the following enzyme reaction conditions, the cross-linking activity of the Y12A MTG mutant was evaluated using a fluorescent small molecule substrate. The results are shown in FIGS.
<Enzyme reaction conditions>
Small molecule primary amine substrate: FITC-cadaverine 10 μM
Small molecule Gln substrate: Texas Red-QG 200 μM
MTG 1μM
Fluorescence spectrum measurement conditions Excitation wavelength 460nm
Measurement wavelength 480 ~ 680nm
From the results shown in FIGS. 11 to 13, it is clear that the Y12A MTG mutant shows almost no activity compared to the commercially available MTG, which supports the measurement result of the recombinant MTG enzyme activity by the hydroxamate method in FIG. . The K10R / Y12A MTG mutant (double mutant) was suggested to have slightly higher activity than the Y12A mutant, but the activity was lower than that of the commercially available enzyme.
(2) Reaction between 6 amino acid Lys peptide substrate and small molecule Gln substrate Based on the following enzyme reaction conditions, the crosslinking activity of the Y12A MTG mutant was evaluated using a fluorescent small molecule substrate. The results are shown in FIGS.
<Enzyme reaction conditions>
Lys peptide substrate: FAM-MRHKGS (SEQ ID NO: 8) 10 μM
Small molecule Gln substrate: Texas Red-QG 200 μM
MTG 1μM
Fluorescence spectrum measurement conditions Excitation wavelength 480nm
Measurement wavelength 495-680nm
From the results of FIGS. 14 to 16, it was suggested that the Y12A MTG mutant had a slightly lower initial activity than the commercially available MTG, but the cross-linking efficiency when the enzyme reaction reached equilibrium was almost the same. The K10R / Y12A MTG mutant (double mutant) showed similar catalytic behavior to the Y12A mutant.
From the comparison with the result of (1) above, the Y12A MTG mutant and the K10R / Y12A MTG mutant (double mutant) are sufficient for the small molecule Gln substrate when the peptidic Lys substrate is used. It was shown to express crosslinking activity.
On the other hand, from the comparison of the horizontal axes of FIG. 11 and FIG. 19, the same Lys peptide substrate sequence (MRHKGS (SEQ ID NO: 8)) is reacted with the same small molecule Gln substrate (TexasRed-QG). Regardless, it was suggested that the proteinaceous substrate (CRK-EGFP) fused as an additional sequence to the protein reacts faster.
(3) Summary From the above results, an appropriate mutation (Y12X, X = A or Q; Y16X, X = A or Q; K10R / Y12A) was introduced into the propeptide sequence covering the active site of MTG, and It has been clarified that catalytic activity is expressed even in MTG mutants having a propeptide by using a highly reactive peptidic substrate.
MTG反応性ペプチドタグ付加タンパク質への蛍光色素修飾実験
 CQ−tag EGFP組換体(LLQG配列をC末端に持つ)、蛍光色素FITC−cadaverine、ならびにY12A MTG変異体またはY12Q MTG変異体をPBS(pH7.4)中で混合し、37℃、1時間反応させた。また、NK−tag EGFP組換体(MKHKGSGGGSGGGS(配列番号9)配列をN末端に持つ)、蛍光色素FITC−β−Ala−QG、ならびにY12A MTG変異体またはY12Q MTG変異体をPBS(pH7.4)中で混合し、37℃、1時間反応させた。最後に、NK−tag EGFP組換体(MKHKGSGGGSGGGS(配列番号9)配列をN末端に持つ)、蛍光色素FITC−β−Ala−QG、ならびにY16A MTG変異体をPBS(pH7.4)中で混合し、37℃、1時間反応させた。
 反応後、SDS−PAGEを行い、蛍光イメージャー(Bio−Rad、Molecular Imager FX Pro)によるタンパク質にラベルされたFITC由来の蛍光イメージを取得した。また、Coomassie Brilliant Blue(CBB)によるタンパク質の染色を行った。ここで、基質ペプチドタグを付加したEGFP、蛍光色素ならびに各種MTGの濃度は、それぞれ1μM、20μM、ならびに1μMと設定した。結果を図17、18に示す。
 図20及び21の結果より、
・小分子1級アミン基質—Gln基質ペプチド付加タンパク質間(図17)
・Lys基質ペプチド付加タンパク質—小分子Gln基質(図18)
の何れの場合においても、EGFP組換体の分子量付近に蛍光バンドが見られたことから、タンパク質に付加した基質ペプチド配列と小分子基質との間での架橋反応が進行することが明らかとなり、何れのMTGプロ配列変異体も架橋活性を有することが示された。
 また、図20のY12Q MTG変異体のレーンにおいて、MTG変異体に該当する箇所に薄いながらも蛍光バンドが確認され、Y12A MTG変異体のレーンにおいてはそれが確認されなかったことから、変異を導入したGln残基に1級アミン基質がラベルされていることが示唆された。
 一方、図21のY12A、Y12Q、Y16AのいずれのMTG変異体のレーンにおいても、MTG変異体に該当する箇所に蛍光バンドが確認された。市販MTGでは蛍光が確認されなかったことから、これらの変異体のプロペプチド配列中のLys残基(K10)に、小分子Gln基質(FITC−β−Ala−QG)がラベルされていることが示唆された。このK10をArg残基に置換したK10R/Y12A MTG変異体(二重変異体)においては、MTG自身のラベル産物は確認されなかった。
Experiment of fluorescent dye modification to MTG-reactive peptide-tagged protein CQ-tag EGFP recombinant (having LLQG sequence at C-terminus), fluorescent dye FITC-cadaverine, and Y12A MTG mutant or Y12Q MTG mutant in PBS (pH 7. 4) The mixture was mixed and reacted at 37 ° C for 1 hour. Further, NK-tag EGFP recombinant (having MKHKGSGGGSGGGS (SEQ ID NO: 9) sequence at the N-terminus), fluorescent dye FITC-β-Ala-QG, and Y12A MTG mutant or Y12Q MTG mutant in PBS (pH 7.4) And mixed at 37 ° C. for 1 hour. Finally, NK-tag EGFP recombinant (MKHKGSGGGSGGGS (SEQ ID NO: 9) sequence at the N-terminus), fluorescent dye FITC-β-Ala-QG, and Y16A MTG variant were mixed in PBS (pH 7.4). And reacted at 37 ° C. for 1 hour.
After the reaction, SDS-PAGE was performed to obtain a FITC-derived fluorescent image labeled with the protein using a fluorescent imager (Bio-Rad, Molecular Imager FX Pro). In addition, proteins were stained with Coomassie Brilliant Blue (CBB). Here, the concentrations of EGFP to which the substrate peptide tag was added, fluorescent dyes, and various MTGs were set to 1 μM, 20 μM, and 1 μM, respectively. The results are shown in FIGS.
From the results of FIGS. 20 and 21,
-Between small molecule primary amine substrate and Gln substrate peptide added protein (FIG. 17)
Lys substrate peptide-added protein—small molecule Gln substrate (FIG. 18)
In any of the cases, since a fluorescent band was observed in the vicinity of the molecular weight of the EGFP recombinant, it became clear that the cross-linking reaction proceeded between the substrate peptide sequence added to the protein and the small molecule substrate. Of the MTG prosequence variant was also shown to have cross-linking activity.
In addition, in the Y12Q MTG mutant lane of FIG. 20, although a fluorescent band was confirmed in a portion corresponding to the MTG mutant, although it was not confirmed in the Y12A MTG mutant lane, the mutation was introduced. It was suggested that the primary amine substrate was labeled on the Gln residue.
On the other hand, in any of the MTG mutant lanes of Y12A, Y12Q, and Y16A in FIG. 21, a fluorescent band was confirmed at a position corresponding to the MTG mutant. Since fluorescence was not confirmed with commercially available MTG, the small molecule Gln substrate (FITC-β-Ala-QG) is labeled on the Lys residue (K10) in the propeptide sequence of these mutants. It was suggested. In the K10R / Y12A MTG mutant (double mutant) in which K10 was substituted with an Arg residue, the label product of MTG itself was not confirmed.
 下記の表3に示す各種MTG変異体(詳しくは、MTG前駆体の変異体)をコードするDNAを作製し、実施例1と同様の方法を用いて、組換え発現プラスミドベクターの構築、タンパク質の発現及び精製を行い、各種MTG変異体タンパク質を得た。各種MTG変異体をコードするDNAは、表3中の「変異導入位置」欄に示した変異態様であるNo.2~21のMTG変異体をコードするDNAである。詳しくは、実施例1において構築したMTG変異体をコードするDNAと同様に、野生型のMTGのアミノ酸配列(配列番号2)のC末端に「GSHHHHHH」(配列番号11)のペプチドを付加したアミノ酸配列(表3中のNo.1の野生型(WT)MTGのアミノ酸配列)をベースとし、当該アミノ酸配列のプロペプチド部分に表3中のNo.2~21のアミノ酸置換変異を導入したり、リンカー配列(トロンビンリンカー配列:配列番号10)の挿入をしたMTG変異体をコードするDNAである。なお、表3中のNo.9のMTG変異体(K10X(X≠K,R)/Y12A/TL)については、第10番目のKに関しては、K及びR以外の各種アミノ酸(すなわち、X(X≠K,R))に置換されたものである(図24、27、28、31参照)。
Figure JPOXMLDOC01-appb-T000010
得られた野生型MTG(No.1)及び各種MTG変異体(No.2~21)について、1)小分子基質を用いたハイドロキサメート法、及び
 2)ペプチド(タンパク質)基質を用いた方法としての、2−1)ペプチド架橋FRET、2−2)タンパク質ラベル(SDS−PAGE)
の各分析手法により、トランスグルタミナーゼ活性を測定・評価した。その結果を下記の表4にまとめて示した。なお、表4中の各評価結果(+、−など)には、当該評価のベースとなる図面番号(図22~図34)も併記した。
Figure JPOXMLDOC01-appb-T000011
 詳しくは、1)小分子基質を用いたハイドロキサメート法については、前述した実施例2の方法において、pH6.0とpH7.0の条件のうちpH6.0の条件でのみ行った以外は、当該方法と同様にして、比活性(U/mg)を算出した。その結果を、図22~25に示した。
 また、2)ペプチド(タンパク質)基質を用いた方法については、以下のとおりである。
 2−1)ペプチド架橋FRETの方法では、前述した実施例3の方法と同様にして、酵素活性を評価した。その結果を、図26~28に示した。ただし、図27、28に結果を示したMTG変異体については、使用濃度を1μMではなく0.1μMとして実施した。
 2−2)タンパク質ラベル(SDS−PAGE)の方法では、K−tag EGFP組換体(MKHKGS(配列番号12)配列をN末端に持つアミノ酸配列からなるものであり、MKHKGS−EGFP(配列番号14)とも称する)、蛍光色素FITC−β−Ala−QG、ならびに各種MTG変異体をPBS(pH7.4)中で混合し、37℃、1時間反応させた。反応後、SDS−PAGEを行い、蛍光イメージャー(Bio−Rad、Molecular Imager FX Pro)によるタンパク質にラベルされたFITC由来の蛍光イメージを取得した。また、Coomassie Brilliant Blue(CBB)によるタンパク質の染色を行った。ここで、基質ペプチドタグを付加したEGFP、蛍光色素ならびに各種MTGの濃度は、それぞれ1μM、20μM、ならびに1μMと設定した。その結果を図30、31に示した。
 また、上記とは異なるK−tag EGFP組換体(MRHKGS(配列番号13)配列をC末端に持つアミノ酸配列からなるものであり、EGFP−MRHKGS(配列番号15)とも称する)、蛍光色素FITC−β−Ala−QG、ならびに各種MTG変異体をPBS(pH7.4)中で混合し、37℃、1時間反応させた。反応後、SDS−PAGEを行い、蛍光イメージャー(Bio−Rad、Molecular Imager FX Pro)によるタンパク質にラベルされたFITC由来の蛍光イメージを取得した。また、Coomassie Brilliant Blue(CBB)によるタンパク質の染色を行った。ここで、基質ペプチドタグを付加したEGFP、蛍光色素ならびに各種MTGの濃度は、それぞれ1μM、20μM、ならびに1μMと設定した。その結果を図29及び32~34に示した。
Figure JPOXMLDOC01-appb-I000012
<本実施例の考察>
 本実施例を総括したものが表4である。
 まず、図22、23より、ハイドロキサメート法によるMTG活性測定において、Y12A,Y12Q,Y16A,Y16Q変異体においては、活性を示さないが、Y12,Y16の両方をAに変異させたダブルミュータントに関しては、有意な活性向上が観察された。続いて、図24において、Y12をAに固定し、K10を各種アミノ酸に置換したダブルミュータントに関しては、D,Eなどの酸性アミノ酸に置換した変異体において有意な活性向上が見られた。次に、図25より、Y12H、Y16Hのシングルあるいはダブルミュータントにおいて、Y12Hの変異を有するMTG変異体において、有意な活性向上が見られ、さらにY12H/Y16Hのダブルミュータントにおいては更なる活性向上が観察された。また、Y12A変異を持たない、K10DあるいはK10E変異体においては有意な活性は見られなかった。
 次に、図26において、トロンビンリンカー配列のみを有するWT/TLは活性を示さないのに対して、Y12またはY16にAやQの変異を導入した、シングルまたはダブルミュータントは、顕著な活性向上を示した。各変異体の活性の差異を見積もるため、MTG濃度を10分の1にして、同様の検討をおこなった。図27、28より、各K10X/Y12A/TL変異体において、X=D>E,G>K(Y12A/TL)>A,C,N>M>Hの順に高い架橋活性を示した。
 最後に、図29より、トロンビンリンカーの挿入により、僅かに活性が発現することが示された。さらに、図30、31から、Y12あるいはY16に変異を導入したMTG変異体は、有意な活性向上を示した。さらに図32、33より、K10R/Y12HあるいはK10R/Y12H/Y16Hの変異を有するMTG変異体は、pH応答性を示し、pH6.0において、pH7.4よりも有意に高い活性を示した。最後に、図34において、Y12あるいはY16に変異を持たず、K10DあるいはK10Eの変異を持つシングルミュータントに関して、活性の発現が確認できた。
DNAs encoding various MTG mutants shown in Table 3 below (specifically, MTG precursor mutants) were prepared, and using the same method as in Example 1, construction of a recombinant expression plasmid vector, Expression and purification were performed to obtain various MTG mutant proteins. DNAs encoding various MTG mutants are No. 5 which are mutation modes shown in the “mutation introduction position” column of Table 3. DNA encoding 2 to 21 MTG variants. Specifically, in the same manner as the DNA encoding the MTG variant constructed in Example 1, an amino acid obtained by adding a peptide of “GSHHHHHH” (SEQ ID NO: 11) to the C-terminus of the amino acid sequence of wild-type MTG (SEQ ID NO: 2) Based on the sequence (amino acid sequence of wild-type (WT) MTG No. 1 in Table 3), the propeptide portion of the amino acid sequence was assigned No. 1 in Table 3. This is a DNA encoding an MTG variant into which an amino acid substitution mutation of 2 to 21 is introduced or a linker sequence (thrombin linker sequence: SEQ ID NO: 10) is inserted. In Table 3, No. For the 9 MTG variants (K10X (X ≠ K, R) / Y12A / TL), for the tenth K, various amino acids other than K and R (ie, X (X ≠ K, R)) It has been replaced (see FIGS. 24, 27, 28, 31).
Figure JPOXMLDOC01-appb-T000010
Regarding the obtained wild type MTG (No. 1) and various MTG variants (No. 2 to 21), 1) a hydroxamate method using a small molecule substrate, and 2) a method using a peptide (protein) substrate 2-1) Peptide cross-linked FRET, 2-2) Protein label (SDS-PAGE)
The transglutaminase activity was measured and evaluated by each analysis method. The results are summarized in Table 4 below. In addition, in each evaluation result (+,-, etc.) in Table 4, a drawing number (FIGS. 22 to 34) as a basis of the evaluation is also shown.
Figure JPOXMLDOC01-appb-T000011
Specifically, 1) The hydroxamate method using a small molecule substrate was carried out in the method of Example 2 described above except that it was performed only under the conditions of pH 6.0 among the conditions of pH 6.0 and pH 7.0. The specific activity (U / mg) was calculated in the same manner as this method. The results are shown in FIGS.
Further, 2) the method using a peptide (protein) substrate is as follows.
2-1) In the method of peptide cross-linking FRET, the enzyme activity was evaluated in the same manner as in the method of Example 3 described above. The results are shown in FIGS. However, for the MTG variants whose results are shown in FIGS. 27 and 28, the concentration used was 0.1 μM instead of 1 μM.
2-2) In the method of protein labeling (SDS-PAGE), K-tag EGFP recombinant (MKHKGS (SEQ ID NO: 12) consists of an amino acid sequence having an N-terminus, and MKHKGS-EGFP (SEQ ID NO: 14). (Also referred to as a fluorescent dye) FITC-β-Ala-QG and various MTG mutants were mixed in PBS (pH 7.4) and reacted at 37 ° C. for 1 hour. After the reaction, SDS-PAGE was performed to obtain a FITC-derived fluorescent image labeled with the protein using a fluorescent imager (Bio-Rad, Molecular Imager FX Pro). In addition, proteins were stained with Coomassie Brilliant Blue (CBB). Here, the concentrations of EGFP to which the substrate peptide tag was added, fluorescent dyes, and various MTGs were set to 1 μM, 20 μM, and 1 μM, respectively. The results are shown in FIGS.
Further, a K-tag EGFP recombinant different from the above (consisting of an amino acid sequence having the MRHKGS (SEQ ID NO: 13) sequence at the C-terminus, also referred to as EGFP-MRHKGS (SEQ ID NO: 15)), fluorescent dye FITC-β -Ala-QG and various MTG variants were mixed in PBS (pH 7.4) and reacted at 37 ° C for 1 hour. After the reaction, SDS-PAGE was performed to obtain a FITC-derived fluorescent image labeled with the protein using a fluorescent imager (Bio-Rad, Molecular Imager FX Pro). In addition, proteins were stained with Coomassie Brilliant Blue (CBB). Here, the concentrations of EGFP to which the substrate peptide tag was added, fluorescent dyes, and various MTGs were set to 1 μM, 20 μM, and 1 μM, respectively. The results are shown in FIGS. 29 and 32-34.
Figure JPOXMLDOC01-appb-I000012
<Consideration of this example>
Table 4 summarizes this example.
First, as shown in FIGS. 22 and 23, in the measurement of MTG activity by the hydroxamate method, the Y12A, Y12Q, Y16A, and Y16Q mutants did not show activity, but the double mutant in which both Y12 and Y16 were mutated to A was shown. A significant improvement in activity was observed. Subsequently, in FIG. 24, with regard to double mutants in which Y12 is fixed to A and K10 is substituted with various amino acids, significant activity improvement was observed in mutants substituted with acidic amino acids such as D and E. Next, as shown in FIG. 25, in the single or double mutant of Y12H and Y16H, significant activity improvement was observed in the MTG mutant having the mutation of Y12H, and further improvement in activity was observed in the double mutant of Y12H / Y16H. It was done. Further, no significant activity was observed in the K10D or K10E mutants that did not have the Y12A mutation.
Next, in FIG. 26, WT / TL having only the thrombin linker sequence does not show activity, whereas single or double mutants in which a mutation of A or Q is introduced into Y12 or Y16 show a significant improvement in activity. Indicated. In order to estimate the difference in the activity of each mutant, the same examination was performed with the MTG concentration set to 1/10. 27 and 28, each K10X / Y12A / TL mutant showed high crosslinking activity in the order of X = D> E, G> K (Y12A / TL)> A, C, N>M> H.
Finally, FIG. 29 shows that the activity is slightly expressed by insertion of the thrombin linker. Furthermore, from FIGS. 30 and 31, the MTG mutant having a mutation introduced into Y12 or Y16 showed a significant improvement in activity. Further, from FIGS. 32 and 33, the MTG mutant having the mutation of K10R / Y12H or K10R / Y12H / Y16H showed pH responsiveness and showed significantly higher activity at pH 6.0 than at pH 7.4. Finally, in FIG. 34, the expression of activity was confirmed for a single mutant having no mutation in Y12 or Y16 and having a mutation of K10D or K10E.
 本発明によれば、大腸菌等の微生物を宿主とした発現系においても容易に製造(精製等)することが可能な、MTG変異体、すなわちトランスグルタミナーゼ活性を有する活性型MTGを提供することができる。当該MTG変異体であれば、発現精製時のプロテアーゼ処理も不要となり、プロペプチドならびにプロテアーゼの除去にかかる手間とコストを大幅に削減することができる。
 さらに、本発明に係るMTG変異体は、反応性の低い小分子基質に対して架橋活性を示さないものであり、MTGをタンパク質の部位特異的修飾に用いる上で問題となりうる非特異的な架橋反応を防ぎ得るものである。すなわち、本発明に係るMTG変異体は、変異の導入されたプロペプチドよりも高い親和性を有するペプチド性基質を用いたときのみ、当該プロペプチドを有するMTG変異体によって基質認識をし、特定のペプチド配列選択的な架橋反応を行い得るものである。また、本発明に係るMTG変異体は、宿主内での対象タンパク質基質の部位特異的修飾にも用い得るものである。
According to the present invention, it is possible to provide an MTG mutant that can be easily produced (purified) in an expression system using a microorganism such as Escherichia coli as a host, that is, an active MTG having transglutaminase activity. . If it is the said MTG variant, the protease process at the time of expression refinement | purification becomes unnecessary, and the effort and cost concerning removal of a propeptide and protease can be reduced significantly.
Furthermore, the MTG variant according to the present invention does not show a crosslinking activity with respect to a small molecule substrate having low reactivity, and is a nonspecific crosslinking that may cause a problem when MTG is used for site-specific modification of a protein. It can prevent reaction. That is, the MTG variant according to the present invention recognizes a substrate by the MTG variant having the propeptide only when a peptidic substrate having a higher affinity than the propeptide into which the mutation has been introduced is used. A peptide sequence-selective cross-linking reaction can be performed. The MTG mutant according to the present invention can also be used for site-specific modification of a target protein substrate in a host.
 配列番号3:組換えタンパク質
 配列番号4:組換えタンパク質
 配列番号5:組換えタンパク質
 配列番号6:組換えタンパク質
 配列番号7:組換えタンパク質
 配列番号8:ペプチド
 配列番号9:ペプチド
 配列番号10:ペプチド
 配列番号11:ペプチド
 配列番号12:ペプチド
 配列番号13:ペプチド
 配列番号14:組換えタンパク質
 配列番号15:組換えタンパク質
Sequence number 3: Recombinant protein Sequence number 4: Recombinant protein Sequence number 5: Recombinant protein Sequence number 6: Recombinant protein Sequence number 7: Recombinant protein Sequence number 8: Peptide Sequence number 9: Peptide Sequence number 10: Peptide Sequence number 11: Peptide Sequence number 12: Peptide Sequence number 13: Peptide Sequence number 14: Recombinant protein Sequence number 15: Recombinant protein

Claims (22)

  1.  野生型の微生物由来トランスグルタミナーゼにおいて少なくともプロペプチド部分のアミノ酸配列中のアミノ酸を変異させたタンパク質であって、トランスグルタミナーゼ活性を有することを特徴とする、前記タンパク質。 A protein obtained by mutating at least an amino acid in the amino acid sequence of the propeptide portion of a wild-type microorganism-derived transglutaminase and having transglutaminase activity.
  2.  前記変異後のプロペプチド部分を有した状態で前記活性を有するものである、請求項1記載のタンパク質。 The protein according to claim 1, which has the activity in a state having the propeptide portion after the mutation.
  3.  前記変異が、他のアミノ酸への置換である、請求項1又は2記載のタンパク質。 The protein according to claim 1 or 2, wherein the mutation is substitution with another amino acid.
  4.  前記変異させる、プロペプチド部分のアミノ酸配列中のアミノ酸が、リジン及び/又は少なくとも1つのチロシンを含むものである、請求項1~3のいずれか1項に記載のタンパク質。 The protein according to any one of claims 1 to 3, wherein the amino acid in the amino acid sequence of the propeptide part to be mutated contains lysine and / or at least one tyrosine.
  5.  前記少なくとも1つのチロシンを変異させた他のアミノ酸が、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種である、請求項4記載のタンパク質。 The protein according to claim 4, wherein the other amino acid obtained by mutating the at least one tyrosine is at least one selected from the group consisting of alanine, glutamine and histidine.
  6.  前記リジンを変異させた他のアミノ酸が、アルギニン、アスパラギン酸、グルタミン酸、アラニン、システイン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、セリン、トレオニン、バリン、トリプトファン及びチロシンからなる群より選ばれる少なくとも1種である、請求項4記載のタンパク質。 Other amino acids obtained by mutating the lysine are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, tryptophan and tyrosine. The protein according to claim 4, which is at least one selected from the group consisting of:
  7.  野生型の微生物由来トランスグルタミナーゼのアミノ酸配列において第10番目、第12番目及び第16番目からなる群より選ばれる少なくとも1つのアミノ酸が他のアミノ酸に置換されたアミノ酸配列、又は該置換されたアミノ酸配列のうち前記置換部位のアミノ酸を除く1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつトランスグルタミナーゼ活性を有することを特徴とする、タンパク質。 Amino acid sequence in which at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids in the amino acid sequence of wild-type microorganism-derived transglutaminase is substituted with another amino acid, or the substituted amino acid sequence A protein comprising an amino acid sequence in which one or several amino acids excluding the amino acid at the substitution site are deleted, substituted or added, and having transglutaminase activity.
  8.  前記第12番目及び/又は第16番目のアミノ酸を変異させた他のアミノ酸が、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種である、請求項7記載のタンパク質。 The protein according to claim 7, wherein the other amino acid obtained by mutating the 12th and / or 16th amino acid is at least one selected from the group consisting of alanine, glutamine and histidine.
  9.  前記第10番目のアミノ酸を変異させた他のアミノ酸が、アルギニン、アスパラギン酸、グルタミン酸、アラニン、システイン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、セリン、トレオニン、バリン、トリプトファン及びチロシンからなる群より選ばれる少なくとも1種である、請求項7記載のタンパク質。 Other amino acids obtained by mutating the tenth amino acid are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, The protein according to claim 7, which is at least one selected from the group consisting of tryptophan and tyrosine.
  10.  以下の(a)又は(b)のタンパク質。
     (a)配列番号2に示されるアミノ酸配列において第10番目、第12番目及び第16番目からなる群より選ばれる少なくとも1つのアミノ酸が他のアミノ酸に置換されたアミノ酸配列
     (b)上記(a)のアミノ酸配列において前記置換部位のアミノ酸を除く1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含み、かつトランスグルタミナーゼ活性を有するタンパク質
    The following protein (a) or (b).
    (A) an amino acid sequence in which at least one amino acid selected from the group consisting of the 10th, 12th and 16th amino acids is substituted with another amino acid in the amino acid sequence shown in SEQ ID NO: 2 (b) (a) A protein having a transglutaminase activity, comprising an amino acid sequence in which one or several amino acids except the amino acid at the substitution site are deleted, substituted or added in the amino acid sequence of
  11.  前記第12番目及び/又は第16番目のアミノ酸を変異させた他のアミノ酸が、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種である、請求項10記載のタンパク質。 The protein according to claim 10, wherein the other amino acid obtained by mutating the 12th and / or 16th amino acid is at least one selected from the group consisting of alanine, glutamine and histidine.
  12.  前記第10番目のアミノ酸を変異させた他のアミノ酸が、アルギニン、アスパラギン酸、グルタミン酸、アラニン、システイン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、セリン、トレオニン、バリン、トリプトファン及びチロシンからなる群より選ばれる少なくとも1種である、請求項10記載のタンパク質。 Other amino acids obtained by mutating the tenth amino acid are arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, The protein according to claim 10, which is at least one selected from the group consisting of tryptophan and tyrosine.
  13.  前記トランスグルタミナーゼ活性は、野生型の微生物由来トランスグルタミナーゼが有するトランスグルタミナーゼ活性と実質的に同等の活性レベルのものである、請求項1~12のいずれか1項に記載のタンパク質。 The protein according to any one of claims 1 to 12, wherein the transglutaminase activity has an activity level substantially equivalent to a transglutaminase activity of a wild-type microorganism-derived transglutaminase.
  14.  請求項1~13のいずれか1項に記載のタンパク質をコードする遺伝子。 A gene encoding the protein according to any one of claims 1 to 13.
  15.  以下の(a)又は(b)のDNAを含む遺伝子。
     (a)配列番号1に示される塩基配列において、第28番目~第30番目の塩基がリジン以外のアミノ酸のコドンを示す塩基に置換されたか、並びに/又は、第34番目~第36番目及び/若しくは第46番目~第48番目の塩基がチロシン以外のアミノ酸のコドンを示す塩基に置換された塩基配列からなるDNA。
     (b)前記(a)のDNAに対し相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAであって、前記置換部位の塩基に対応する塩基が当該置換部位の塩基と同一であり、かつトランスグルタミナーゼ活性を有するタンパク質をコードするDNA
    A gene comprising the following DNA (a) or (b):
    (A) In the base sequence shown in SEQ ID NO: 1, the 28th to 30th bases have been replaced with bases indicating codons of amino acids other than lysine, and / or the 34th to 36th and / or Alternatively, DNA consisting of a base sequence in which the 46th to 48th bases are replaced with bases indicating codons of amino acids other than tyrosine.
    (B) a DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA of (a), wherein the base corresponding to the base of the substitution site is the base of the substitution site; DNA encoding the same protein having transglutaminase activity
  16.  前記チロシン以外のアミノ酸が、アラニン、グルタミン及びヒスチジンからなる群より選ばれる少なくとも1種である、請求項15記載の遺伝子。 The gene according to claim 15, wherein the amino acid other than tyrosine is at least one selected from the group consisting of alanine, glutamine and histidine.
  17.  前記リジン以外のアミノ酸が、アルギニン、アスパラギン酸、グルタミン酸、アラニン、システイン、フェニルアラニン、グリシン、ヒスチジン、イソロイシン、ロイシン、メチオニン、アスパラギン、プロリン、グルタミン、セリン、トレオニン、バリン、トリプトファン及びチロシンからなる群より選ばれる少なくとも1種である、請求項15記載の遺伝子。 The amino acid other than lysine is selected from the group consisting of arginine, aspartic acid, glutamic acid, alanine, cysteine, phenylalanine, glycine, histidine, isoleucine, leucine, methionine, asparagine, proline, glutamine, serine, threonine, valine, tryptophan and tyrosine. The gene according to claim 15, which is at least one selected from the group consisting of
  18.  請求項14~17のいずれか1項に記載の遺伝子を含む、組換えベクター。 A recombinant vector comprising the gene according to any one of claims 14 to 17.
  19.  請求項18記載の組換えベクターを含む、形質転換体。 A transformant comprising the recombinant vector according to claim 18.
  20.  形質転換体が形質転換大腸菌である、請求項19記載の形質転換体。 20. The transformant according to claim 19, wherein the transformant is transformed Escherichia coli.
  21.  請求項19又は20記載の形質転換体を培養する工程と、得られる培養物からトランスグルタミナーゼ活性を有するタンパク質を採取する工程とを含む、当該タンパク質の製造方法。 A method for producing the protein, comprising the step of culturing the transformant according to claim 19 or 20, and the step of collecting a protein having transglutaminase activity from the obtained culture.
  22.  前記採取する工程が、タンパク質の精製工程を含む、請求項21記載の方法。 The method according to claim 21, wherein the collecting step includes a protein purification step.
PCT/JP2017/024881 2016-07-01 2017-06-30 Recombinant protein having transglutaminase activity WO2018004014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018525324A JPWO2018004014A1 (en) 2016-07-01 2017-06-30 Recombinant protein having transglutaminase activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016131883 2016-07-01
JP2016131883 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018004014A1 true WO2018004014A1 (en) 2018-01-04

Family

ID=60787147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024881 WO2018004014A1 (en) 2016-07-01 2017-06-30 Recombinant protein having transglutaminase activity

Country Status (2)

Country Link
JP (1) JPWO2018004014A1 (en)
WO (1) WO2018004014A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181235A1 (en) * 2018-03-19 2019-09-26 国立大学法人九州大学 Method for producing lipidated protein, and lipidated protein
CN110551675A (en) * 2018-06-04 2019-12-10 清华大学 Glutamine transaminase mediated cell membrane surface modification method
WO2021178001A1 (en) * 2020-03-05 2021-09-10 Curie Co. Inc. Methods for cell free protein expression of mature polypeptides derived from zymogens and proproteins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504170A (en) * 2005-08-18 2009-02-05 ノボ ノルディスク ヘルス ケア アーゲー Transglutaminase variants with improved specificity
WO2009030211A2 (en) * 2007-09-07 2009-03-12 Martin-Luther-Universität Halle-Wittenberg Thermostable transglutaminases

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101256A1 (en) * 2009-03-06 2010-09-10 味の素株式会社 Thermotolerant transglutaminase originating in actinomyces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504170A (en) * 2005-08-18 2009-02-05 ノボ ノルディスク ヘルス ケア アーゲー Transglutaminase variants with improved specificity
WO2009030211A2 (en) * 2007-09-07 2009-03-12 Martin-Luther-Universität Halle-Wittenberg Thermostable transglutaminases

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN K. ET AL.: "Enhancement of Streptomyces transglutaminase activity and pro-peptide cleavage efficiency by introducing linker peptide in the C-terminus of the pro-peptide", J. IND. MICROBIOL. BIOTECHNOL., vol. 40, no. 3, 2013, pages 317 - 325, XP035330676, DOI: 10.1007/s10295-012-1221-y *
MATSUZAKI, TAKASHI ET AL.: "Shinki Biseibutsu Yurai Transglutaminase Sosei ni Muketa Kiso Kenkyu", DAI 53 KAI PREPRINTS OF JOINT CHEMICAL CONFERENCE OF KYUSHU BRANCH GAIKOKUJIN KENKYUSHA KORYU KOKUSAI SYMPOSIUM, 2 July 2016 (2016-07-02), pages 17 *
RICKERT M. ET AL.: "Production of soluble and active microbial transglutaminase in Escherichia coli for site-specific antibody drug conjugation", PROTEIN SCI., vol. 25, February 2016 (2016-02-01), pages 442 - 455, XP055276114, DOI: doi:10.1002/pro.2833 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181235A1 (en) * 2018-03-19 2019-09-26 国立大学法人九州大学 Method for producing lipidated protein, and lipidated protein
JPWO2019181235A1 (en) * 2018-03-19 2021-03-11 国立大学法人九州大学 Method for producing lipidated protein, and lipidated protein
CN110551675A (en) * 2018-06-04 2019-12-10 清华大学 Glutamine transaminase mediated cell membrane surface modification method
CN110551675B (en) * 2018-06-04 2021-05-11 清华大学 Glutamine transaminase mediated cell membrane surface modification method
WO2021178001A1 (en) * 2020-03-05 2021-09-10 Curie Co. Inc. Methods for cell free protein expression of mature polypeptides derived from zymogens and proproteins

Also Published As

Publication number Publication date
JPWO2018004014A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP2023116605A (en) MODIFIED AMINOACYL-tRNA SYNTHETASE AND USE THEREOF
JP2005514025A (en) Methods and compositions for protein expression and purification
JP5419220B2 (en) Method for producing non-natural protein containing ester bond
WO2018004014A1 (en) Recombinant protein having transglutaminase activity
CN113195521A (en) Mtu Delta I-CM intein variants and uses thereof
WO2007061136A1 (en) Method for production of protein having non-natural type amino acid integrated therein
US20230235340A1 (en) Process for extracellular secretion of Brazzein
CN110714020B (en) Method for efficiently, simply and conveniently purifying protein
CA2991195C (en) Novel p450-bm3 variants with improved activity
US8426572B2 (en) Artificial entropic bristle domain sequences and their use in recombinant protein production
CN112266908B (en) Recombinant carnosine hydrolase mutant and application thereof
JP3844082B2 (en) Thermostable firefly luciferase, thermostable firefly luciferase gene, novel recombinant DNA, and method for producing thermostable firefly luciferase
US20230332116A1 (en) Polypeptide with aspartate kinase activity and use thereof in production of amino acid
US8530217B2 (en) Processing of peptides and proteins
JP2008245604A (en) Highly efficient heat resistant dna ligase
CN116096872A (en) Thermostable terminal deoxynucleotidyl transferase
JP4631436B2 (en) Metalloendopeptidase
KR20160077750A (en) Mass production method of recombinant trans glutaminase
US20090137004A1 (en) Artificial entropic bristle domain sequences and their use in recombinant protein production
WO2024032020A1 (en) Enhanced monomeric staygold protein and use thereof
WO2022138969A1 (en) Mutant l-pipecolic acid hydroxylase and cis-5-hydroxy-l-pipecolic acid production method utilizing same
JP2009148205A (en) Highly reactive heat-resistant dna ligase
CN115261363A (en) Method for determining RNA deaminase activity of APOBEC3A and APOBEC3A variant with high RNA activity
JP2002199888A (en) Thermophilic prolylendopeptidase
JP2020530029A (en) A new amino acid responsible for the norbornene portion

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525324

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820368

Country of ref document: EP

Kind code of ref document: A1