WO2019181235A1 - Method for producing lipidated protein, and lipidated protein - Google Patents

Method for producing lipidated protein, and lipidated protein Download PDF

Info

Publication number
WO2019181235A1
WO2019181235A1 PCT/JP2019/003695 JP2019003695W WO2019181235A1 WO 2019181235 A1 WO2019181235 A1 WO 2019181235A1 JP 2019003695 W JP2019003695 W JP 2019003695W WO 2019181235 A1 WO2019181235 A1 WO 2019181235A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
residue
lipid
protein
amino acid
Prior art date
Application number
PCT/JP2019/003695
Other languages
French (fr)
Japanese (ja)
Inventor
典穂 神谷
里衣 若林
孝介 南畑
茉莉 ▲高▼原
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2020507403A priority Critical patent/JPWO2019181235A1/en
Publication of WO2019181235A1 publication Critical patent/WO2019181235A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to a method for producing a lipidated protein and a lipidated protein.
  • Lipidated proteins play an important role in the process of cell function expression and function control. Analyzing the function of lipidated proteins on cell membranes is a useful tool for analyzing various diseases. Therefore, analysis of the function of lipidated proteins on the cell membrane has attracted attention. Lipidated proteins also have properties such as being able to be anchored to a drug delivery carrier. Therefore, application of lipidated proteins as pharmaceuticals is also expected.
  • Non-Patent Document 1 discloses a fusion protein in which a peptide containing a lysine residue is bound to the C-terminus of a green fluorescent protein in the presence of a microorganism-derived transglutaminase, and a fatty acid at the N-terminus of a peptide having a glutamine residue.
  • a method of obtaining a lipidated protein by reacting with a lipid peptide to which is bound is described.
  • the transglutaminase reaction may not proceed easily, and the substrate for the transglutaminase reaction may be limited. Any method for producing a lipidated protein capable of easily carrying out a transglutaminase reaction regardless of the type of protein and lipid is useful.
  • the present invention can introduce various lipids or fat-soluble vitamins corresponding to uses required for lipidated proteins and the like, and a lipidated protein production method and lipidation capable of easily producing lipidated proteins
  • the object is to provide a protein.
  • a lipidated protein in which a fusion protein and a compound having a primary amino group are reacted in the presence of a microorganism-derived transglutaminase, and the fusion protein and the compound are cross-linked by an isopeptide bond.
  • the fusion protein has a first peptide and protein containing a glutamine residue
  • the compound has a lipid part or a fat-soluble vitamin part.
  • the lipid peptide obtained by the reaction of a peptide having a glutamine residue with a fatty acid has high hydrophobicity and the reactivity in the transglutaminase reaction is lowered.
  • a method for improving the water solubility of the lipid peptide by introducing a hydrophilic amino acid residue into the peptide having a glutamine residue is considered.
  • a hydrophilic amino acid residue is introduced into a peptide containing a glutamine residue, it tends to be difficult to be recognized as a substrate by a microorganism-derived transglutaminase.
  • the lipid peptide is difficult to dissolve in water, it can be considered that the lipid peptide is dissolved by adding a surfactant, an organic solvent or the like to the reaction system.
  • a surfactant an organic solvent or the like
  • the fusion protein containing the protein to be lipidated has a glutamine residue, and the compound containing lipid has a primary amino group.
  • Microorganism-derived transglutaminase can recognize a fusion protein and a compound having a primary amino group as a substrate.
  • the transglutaminase reaction proceeds between the fusion protein and the compound having the primary amino group, and the lipid can be easily Protein can be produced.
  • the compound may include a second peptide containing a lysine residue and a lipid peptide having a lipid part or a fat-soluble vitamin part, and the primary amino group may be derived from the lysine residue. .
  • the second peptide containing a lysine residue and the lipid peptide having a lipid part or a fat-soluble vitamin part are easily recognized as a substrate by the microorganism-derived transglutaminase.
  • a lipidated protein can be produced more easily.
  • the said lipid peptide has a peptide chain (2nd peptide), the kind and number of amino acid residues of a 2nd peptide part can be adjusted.
  • the type and number of amino acid residues can be adjusted according to the lipid to be introduced into the protein.
  • the compound contains a lipid peptide
  • options for lipids or fat-soluble vitamins that can be post-modified to proteins by the above production method can be expanded.
  • the second peptide may have a higher ratio of hydrophilic amino acid residues than the first peptide.
  • the ratio of the hydrophilic amino acid residue of the second peptide higher than that of the first peptide, it is possible to weaken the degree of hydrophobicity derived from the lipid portion of the lipid peptide and improve water solubility.
  • the transglutaminase reaction can be made easier to proceed.
  • the second peptide may further contain at least one amino acid residue selected from the group consisting of a histidine residue, a proline residue, a tryptophan residue, and an arginine residue.
  • the second peptide contains the amino acid residue, the lipid peptide is more easily recognized by the microorganism-derived transglutaminase, and the transglutaminase reaction can be further promoted.
  • the lipid part may contain an aliphatic hydrocarbon group having 12 to 18 carbon atoms.
  • the obtained lipidated protein is easily anchored by the cell membrane.
  • the first peptide is at least one hydrophobic group selected from the group consisting of glycine residues, alanine residues, valine residues, leucine residues, isoleucine residues, tyrosine residues, tryptophan residues, and phenylalanine residues.
  • An amino acid residue may be further included.
  • the present invention includes a fusion protein part having a first peptide and protein containing a glutamine residue, and a lipid part or a fat-soluble vitamin part, wherein the lipid part or the fat-soluble vitamin part is the first part.
  • a lipidated protein which is bound to the fusion protein part by an isopeptide bond with a glutamine residue of one peptide.
  • the above lipidated protein is easily synthesized because the fusion protein part has a glutamine residue, and the lipid part or fat-soluble vitamin part has a structure in which the fusion protein part is bound to the glutamine residue by an isopeptide bond. can do.
  • the lipid part or the fat-soluble vitamin part includes a lipid peptide part having a second peptide containing a lysine residue, and the isopeptide bond is a bond between the lysine residue and the glutamine residue. Also good.
  • the second peptide may have a higher ratio of hydrophilic amino acid residues than the first peptide.
  • the second peptide may further contain at least one amino acid residue selected from the group consisting of a histidine residue, a proline residue, a tryptophan residue, and an arginine residue.
  • the lipid part may have an aliphatic hydrocarbon group having 12 to 18 carbon atoms.
  • the lipidated protein is more easily anchored to the cell membrane.
  • the first peptide further contains at least one hydrophobic amino acid residue selected from the group consisting of a glycine residue, an alanine residue, a valine residue, a leucine residue, an isoleucine residue and a phenylalanine residue. Also good.
  • the present invention it is possible to introduce various lipids or fat-soluble vitamins corresponding to required uses and the like, and to provide a lipidated protein production method and a lipidated protein capable of easily producing a lipidated protein. be able to.
  • FIG. 1 is a graph showing the results of a cytotoxicity test of a synthesized lipid peptide.
  • FIG. 2 is a graph showing the results of measuring the fluorescence intensity ratio (I 385 / I 373 ) of the fluorescent substance (pyrene) encapsulated in the synthesized lipid peptide.
  • FIG. 3 is a graph showing the results of circular dichroism spectrum measurement of the synthesized lipid peptide.
  • FIG. 4 is a graph showing the results of circular dichroism spectrum measurement of the synthesized lipid peptide.
  • FIG. 5 is a liquid chromatograph showing the reaction results of the fusion protein and lipid peptide in Example 1.
  • FIG. 6 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 1 and 2.
  • FIG. 7 is a graph showing the relationship between the reaction rate of the transglutaminase reaction and the reaction time in Examples 1 and 2.
  • FIG. 8 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 3 and 4.
  • FIG. 9 is a graph showing the relationship between the transglutaminase reaction rate and reaction time in Examples 3 and 4.
  • FIG. 10 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 5 and 6.
  • FIG. 11 is a graph showing the relationship between the reaction rate of the transglutaminase reaction and the reaction time in Example 6.
  • FIG. 12 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Example 3, Example 4, and Examples 7 to 10.
  • FIG. 13 is a graph showing the relationship between the reaction rate of the transglutaminase reaction and the reaction time in Example 3, Example 4, and Examples 7 to 10.
  • FIG. 14 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Example 3, Example 4, and Examples 11-16.
  • FIG. 15 is a graph showing the relationship between the reaction rate of the transglutaminase reaction and the reaction time in Example 3, Example 4, and Examples 11 to 16.
  • FIG. 16 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 3, Example 4, and Examples 8 to 10 were applied to floating cells. is there.
  • FIG. 17 is a graph showing cytotoxicity evaluation results after applying the lipidated protein and fusion protein obtained in Example 3, Example 4, and Examples 8 to 10 to floating cells.
  • FIG. 18 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 4 and Examples 11 to 16 were applied to floating cells.
  • FIG. 19 is a graph showing cytotoxicity evaluation results after the lipidated protein and fusion protein obtained in Example 3, Example 4, and Examples 11 to 16 were applied to floating cells.
  • FIG. 17 is a graph showing cytotoxicity evaluation results after applying the lipidated protein and fusion protein obtained in Example 3, Example 4, and Examples 8 to 10 to floating cells.
  • FIG. 18 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 4 and Examples 11 to 16 were
  • FIG. 20 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 25-28.
  • FIG. 21 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Examples 21 to 22 and 25 to 28 were applied to floating cells.
  • FIG. 22 is a fluorescence micrograph showing a state where the lipidated protein and fusion protein obtained in Examples 25 to 28 are applied to floating cells.
  • FIG. 23 is a fluorescence micrograph showing a state in which the lipidated protein and fusion protein obtained in Example 28 were applied to floating cells.
  • FIG. 24 is a graph showing the cytotoxicity evaluation results after the lipidated protein and fusion protein obtained in Examples 21 and 22 were applied to floating cells.
  • FIG. 21 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 25-28.
  • FIG. 21 is a graph showing the amount of fluorescence generated per cell after the lipidated
  • FIG. 25 is a graph showing cytotoxicity evaluation results after the lipidated protein and fusion protein obtained in Examples 26 to 28 were applied to floating cells.
  • FIG. 26 is a graph showing the results of a cytotoxicity test of the synthesized lipid peptide.
  • FIG. 27 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 9 and Examples 29 to 34 were applied to floating cells.
  • FIG. 28 is a graph showing the cytotoxicity evaluation results after applying the lipidated protein and fusion protein obtained in Example 4 and Examples 29 to 34 to floating cells.
  • FIG. 29 is a graph showing the results of a cytotoxicity test of the synthesized lipid peptide.
  • FIG. 30 is a graph showing the results of cytotoxicity tests of synthesized lipid peptides.
  • FIG. 31 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 11 and Examples 42 to 47 were applied to floating cells.
  • FIG. 32 is a graph showing the cytotoxicity evaluation results after the lipidated protein and fusion protein obtained in Example 11 and Examples 42 to 47 were applied to floating cells.
  • FIG. 33 is a graph showing the results of cytotoxicity tests of synthesized lipid peptides.
  • FIG. 34 is a graph showing the results of a cytotoxicity test of the synthesized lipid peptide.
  • FIG. 35 is a graph showing the results of a cytotoxicity test of the synthesized lipid peptide.
  • FIG. 36 is a graph showing the relationship between the reaction rate of the synthesized lipid peptide transglutaminase reaction and the K / Q ratio.
  • FIG. 37 is a graph showing the relationship between the reaction rate of the synthesized lipid peptide transglutaminase reaction and the K / Q ratio.
  • FIG. 38 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 16 and Examples 55 to 64 were applied to floating cells.
  • FIG. 39 is a graph showing the evaluation results of cytotoxicity after applying the lipidated protein and fusion protein obtained in Examples 55 to 57, Examples 59 to 63, and Example 66 to floating cells.
  • FIG. 40 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 67 were applied to floating cells.
  • FIG. 41 is a graph showing the evaluation results of cytotoxicity after the lipidated protein and fusion protein obtained in Example 68 were applied to floating cells.
  • a fusion protein and a compound having a primary amino group are reacted in the presence of a microorganism-derived transglutaminase, and the fusion protein and the compound are cross-linked by an isopeptide bond.
  • the fusion protein has a first peptide and protein containing a glutamine residue.
  • the compound has a lipid part or a fat-soluble vitamin part.
  • a fusion protein having a first peptide containing a glutamine (Q) residue and a compound having a primary amino group are both recognized as substrates by a microorganism-derived transglutaminase. Therefore, an isopeptide bond is formed by a transglutaminase reaction, and a lipidated protein into which a lipid or a fat-soluble vitamin is easily introduced can be obtained.
  • the number of amino acid residues constituting the first peptide of the fusion protein may be 1 to 27, 2 to 27, 2 to 10, or 2 to 8. Or 2-7.
  • the first peptide may be, for example, a peptide including an amino acid sequence represented by the X 1 n QX 2 m motif.
  • n may be an integer of 0 to 13, an integer of 1 to 13, an integer of 1 to 9, or an integer of 1 to 4.
  • m may be an integer of 0 to 13, an integer of 1 to 13, an integer of 1 to 9, or an integer of 1 to 4.
  • a plurality of X 1 and a plurality of X 2 may be the same as or different from each other.
  • X 1 represents an amino acid residue other than a glutamine residue and a lysine (K) residue.
  • X 1 in X 1 n QX 2 m motif glycine (G), alanine (A) residue, valine (V), leucine (L) residues, isoleucine (I) residue, a tyrosine (Y ) Residue, proline (P) residue, tryptophan (W) residue, phenylalanine (F) residue, histidine (H) residue, and at least one amino acid residue selected from the group consisting of arginine (R) residues Or at least one hydrophobic group selected from the group consisting of glycine residue, alanine residue, valine residue, leucine residue, isoleucine residue, tyrosine residue, tryptophan residue, and phenylalanine residue Sex amino acid residues may be included.
  • X 2 in X 1 n QX 2 m motif shows the amino acid residue other than glutamine and lysine residues.
  • X 2 in X 1 n QX 2 m motif for example, methionine (M) residues, arginine (R) residue, at least one amino acid residue selected from the group consisting of glycine and serine (S) residues Groups may be included.
  • the amino acid sequence represented by the X 1 n QX 2 m motif may be, for example, an amino acid sequence represented by FYPLQMRG, LLQG, AWHRPQFGG, or the like.
  • the protein constituting the fusion protein is not particularly limited, and examples thereof include green fluorescent protein, antibody, enzyme, antigen protein, growth factor, and hormones (for example, insulin and growth hormone) that act on physiological activity. Can be mentioned.
  • the first peptide may be directly bonded to the C-terminal or N-terminal of the protein, or may be bonded to the first linker by binding a first linker to the C-terminal or N-terminal of the protein. That is, the fusion protein may have a protein, a first linker, and a first peptide.
  • the fusion protein may include, for example, a fusion protein represented by [protein]-[first linker]-[first peptide]
  • a fusion protein represented by [peptide]-[first linker]-[protein] may be included.
  • the first linker contains 1 to 20 amino acid residues.
  • the amino acid residue constituting the first linker may include at least one amino acid residue selected from the group consisting of a glycine residue, a serine residue, and a proline residue. It may contain at least one amino acid residue selected from the group consisting of
  • the number of amino acid residues constituting the first linker is determined as follows. First, the amino acid residues of the fusion protein are analyzed, and the number of amino acid residues is counted from the amino acid residue directly connected to the C-terminal or N-terminal of the protein constituting the fusion protein toward the first peptide.
  • the first linker is, for example, a peptide represented by a G r motif, a (G r S) s motif, a (PG r ) s motif, a (PG r S) s motif, and a (SG r S) s motif. It may be.
  • r is an integer of 1-6.
  • s is an integer of 1 to 5. More specifically, examples of the first linker include GGGS, PGGG, SGGGS, and PGGGS.
  • the fusion protein may be obtained by chemical synthesis, or may be obtained by expressing the protein using a transformed host.
  • a protein obtained by introducing the first peptide or the first peptide and the first linker by post-expression modification of the protein may be used.
  • a fusion protein obtained using a transformed host for example, a protein in which the first peptide or the amino acid sequence of the first peptide and the first linker is introduced into the amino acid sequence of the protein (modified protein) Designing and expressing the modified protein by a host transformed with an expression vector having a nucleic acid sequence encoding the modified protein and one or more regulatory sequences operably linked to the nucleic acid sequence. You may use what is obtained.
  • the regulatory sequence, expression vector, host and the like are not particularly limited.
  • the method for producing the nucleic acid encoding the modified protein is not particularly limited, and may be a method of cloning by amplification using polymerase chain reaction (PCR) using the designed gene, or a method of producing by chemical synthesis. May be.
  • PCR polymerase chain reaction
  • a nucleic acid encoding a modified protein comprising an amino acid sequence in which an amino acid sequence comprising a start codon and a His tag is added to the N-terminus of the amino acid sequence of the modified protein may be synthesized. .
  • the compound having a primary amino group has a lipid part or a fat-soluble vitamin part.
  • the compound having a primary amino group and a lipid part include aliphatic amines such as tetradecylamine and hexadecylamine.
  • the compound having a primary amino group may be, for example, a second peptide containing a lysine residue and a lipid peptide having a lipid part or a fat-soluble vitamin part.
  • the primary amino group may be an amino group derived from a lysine residue.
  • the compound is, for example, a lipid peptide having a lysine residue and a lipid part or a fat-soluble vitamin part.
  • the second peptide of the compound may be composed of only lysine residues or may be composed of a plurality of amino acid residues.
  • the number of amino acid residues constituting the second peptide may be 1 to 27, 2 to 27, 2 to 10, 2 to 8, or It may be 2-7.
  • the second peptide may be, for example, a peptide including an amino acid sequence represented by the X 3 p KX 4 q motif.
  • p may be an integer of 0 to 13, an integer of 1 to 13, an integer of 1 to 9, or an integer of 1 to 4.
  • q may be an integer of 0 to 13, an integer of 1 to 13, an integer of 1 to 9, or an integer of 1 to 4.
  • a plurality of X 3 and a plurality of X 4 may be the same as or different from each other.
  • X 3 represents an amino acid residue other than a glutamine residue and a lysine residue.
  • X 3 in X 3 p KX 4 q motif preferably comprises a histidine residue, a proline residue, at least one amino acid residue selected from the group consisting of tryptophan and arginine residues, more preferably, It contains at least one basic amino acid residue selected from the group consisting of histidine residues and arginine residues.
  • X 3 p KX 4 q X in motif 3 includes the amino acid residue
  • the reaction solution of the lipid peptide e.g., aqueous solution
  • X 4 in the X 3 p KX 4 q motif shows the amino acid residue other than glutamine and lysine residues.
  • X 3 p X 4 in KX 4 q motif may include at least one amino acid residue selected from the group consisting of glycine and serine residues.
  • the amino acid sequence represented by the X 3 p KX 4 q motif may be, for example, an amino acid sequence represented by MRHKGS, KGS, RKGS, HKGS, or the like.
  • the amino acid sequence represented by the X 3 p KX 4 q motif may also be, for example, K, RK, HK and RHK.
  • the lipid part is a part having a structure derived from lipid.
  • the fat-soluble vitamin part is a part having a structure derived from a fat-soluble vitamin.
  • the lipid includes a fatty acid, a steroid and the like.
  • fatty acids include saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids.
  • steroids include cholesterol.
  • cholesterol include lithocholic acid and the like.
  • the lipid may be, for example, a lipid having at least one hydrocarbon group selected from the group consisting of aliphatic hydrocarbon groups, and the aliphatic hydrocarbon group may be linear, branched or alicyclic You may have.
  • the aliphatic hydrocarbon group may be, for example, a lipid having an aliphatic hydrocarbon group having 6 or more carbon atoms, a lipid having an aliphatic hydrocarbon group having 12 to 29 carbon atoms, and 12 to 12 carbon atoms. It may be a lipid having 18 aliphatic hydrocarbon groups.
  • the lipid having an aliphatic hydrocarbon group having 12 to 18 carbon atoms include saturated fatty acids such as lauric acid, myristic acid, palmitic acid, and stearic acid.
  • Examples of the lipid having an aliphatic hydrocarbon group having 12 to 18 carbon atoms include unsaturated fatty acids such as oleic acid and linoleic acid in addition to the saturated fatty acid.
  • Examples of the lipid having an aliphatic hydrocarbon group having 12 to 24 carbon atoms include lithocholic acid and the like in addition to the saturated fatty acid.
  • Examples of the fat-soluble vitamin include vitamin A (such as retinal), vitamin D (such as ergocalciferol and cholecalciferol), vitamin E (such as ⁇ -tocopherol), and vitamin K (phylloquinone, menaquinone, menadione, and Menadiol, etc.).
  • the second peptide may be directly bonded to the carboxyl group or amino group at the end of the lipid part or fat-soluble vitamin part, and the second peptide may be bonded to the carboxyl group or amino group at the end of the lipid part or fat-soluble vitamin part.
  • a linker may be bound to the second linker. That is, the lipid peptide may have a lipid part or a fat-soluble vitamin part, a second linker, and a second peptide.
  • the lipid peptide may include, for example, a lipid peptide represented by [lipid part]-[second linker]-[second peptide] or [lipid A lipid peptide represented by [soluble vitamin part]-[second linker]-[second peptide] may be included.
  • the second linker may be a linker peptide containing 1 to 10 amino acid residues, or may be a polyalkylene glycol chain.
  • the amino acid residue constituting the linker peptide may include at least one amino acid residue selected from the group consisting of a glycine residue, a serine residue and a proline residue.
  • the number of amino acid residues constituting the linker peptide is determined as follows. First, the amino acid residue of the peptide part which comprises a lipid peptide is analyzed, and the number of amino acid residues is counted toward the 2nd peptide from the amino acid residue directly connected to a lipid part or a fat-soluble vitamin part.
  • the amino acid residue constituting the linker peptide may also contain at least one amino acid residue selected from the group consisting of lysine residue, glycine residue, serine residue and proline residue.
  • the number of amino acid residues constituting the linker peptide is determined as follows. First, the amino acid residue of the peptide part which comprises a lipid peptide is analyzed, and the number of amino acid residues is counted toward the 2nd peptide from the amino acid residue directly connected to a lipid part or a fat-soluble vitamin part.
  • the second linker is, for example, a peptide represented by a G r motif, a (G r S) s motif, a (PG r ) s motif, a (PG r S) s motif, and a (SG r S) s motif. It may be.
  • r represents an integer of 1 to 6.
  • s represents an integer of 1 to 5.
  • examples of the second linker include those having an amino acid sequence such as GG, GGGGS, SGGGS, PGGG, and PGGGS.
  • the polyalkylene glycol chain is represented by (RO) t .
  • t represents an integer of 1 to 3
  • R represents an alkyl group.
  • Examples of the polyalkylene glycol chain include polyethylene glycol and polypropylene glycol.
  • the above compound for example, the above lipid peptide
  • a compound obtained by amination of a lipid terminal or the like may be used, or a compound obtained by peptide synthesis may be used.
  • the Fmoc solid phase synthesis method can be used.
  • the resin used for the Fmoc solid phase synthesis method can be selected according to the characteristics required for the lipid peptide, the characteristics of the fusion protein to be reacted, and the like.
  • the first peptide may have a higher proportion of hydrophobic amino acid residues than the second peptide.
  • the second peptide may have a higher proportion of hydrophilic amino acid residues than the first peptide.
  • the critical micelle concentration of the compound may be, for example, 1 ⁇ M or more, 5 ⁇ M or more, 10 ⁇ M or more, or 20 ⁇ M or more.
  • the critical micelle concentration of the compound may be, for example, 350 ⁇ M or less, 300 ⁇ M or less, 250 ⁇ M or less, or 200 ⁇ M or less.
  • the critical micelle concentration of the compound may also be, for example, 150 ⁇ M or less, or 140 ⁇ M or less.
  • the critical micelle concentration of the compound is within the above range, the compound is prevented from forming micelles in the system during the transglutaminase reaction, and the compound enters the reaction site of the microorganism-derived transglutaminase. And the transglutaminase reaction can be promoted.
  • the critical micelle concentration can be adjusted, for example, by selecting the type of lipid part or fat-soluble vitamin part, the length of the second linker and second peptide, the type of amino acid residue constituting the part, and the like.
  • the critical micelle concentration was determined by measuring the ratio (I 385 / I 373 ) of the fluorescence intensity (I 385 ) at 385 nm and the fluorescence intensity (I 373 ) at 373 nm using a solution containing pyrene in the above compound. It can be determined from the change in the 385 / I 373 ratio. Specifically, it can be determined based on the method described in Examples described later.
  • the compound for example, the lipid peptide
  • the secondary structure of the compound include a ⁇ sheet structure and a random coil structure.
  • the ability to anchor to the cell membrane can be improved.
  • the microorganism-derived transglutaminase may be a wild-type microorganism-derived transglutaminase or a mutant of a wild-type microorganism-derived transglutaminase.
  • a mutant of a wild-type microorganism-derived transglutaminase refers to an amino acid sequence modified from a wild-type microorganism-derived transglutaminase or a wild-type microorganism-derived transglutaminase. It is a protein that is artificially designed and synthesized regardless of the amino acid sequence and has transglutaminase activity.
  • the mutant of the wild-type microorganism-derived transglutaminase is, for example, a substitution, deletion, insertion and / or substitution of one or more amino acid residues in the amino acid sequence of the wild-type microorganism-derived transglutaminase (excluding the signal peptide portion). It has an amino acid sequence corresponding to the addition.
  • Substitution, deletion, insertion and / or addition of amino acid residues can be performed by methods well known to those skilled in the art such as partial-directed mutagenesis.
  • Substitution, deletion, insertion and / or addition of amino acid residues is, for example, 1 to 10 amino acid residues, 1 to 5 amino acid residues, 1 to 3 amino acid residues, 1 amino acid residue It may be performed on a group.
  • a mutant of a microorganism-derived transglutaminase disclosed in International Publication No. 2018/004014 can be used.
  • a reaction is performed in a reaction solution in which a microorganism-derived transglutaminase, a fusion protein, and a compound having a primary amino group (for example, a compound containing a lipid peptide) are dissolved in a solvent.
  • the solvent includes water, and for example, phosphate buffered saline can be used.
  • the reaction temperature can be adjusted according to the activity of the microorganism-derived transglutaminase. For example, the reaction temperature may be 50 ° C. or higher, 60 ° C. or higher, and 70 ° C. or lower.
  • the concentration of the fusion protein and the compound containing the lipid peptide in the reaction solution can be adjusted by the type and combination of the compound containing the fusion protein and the lipid peptide.
  • the molar ratio of the primary amino group (here lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein (K / Q ratio) may be, for example, 3 or more, 4 or more, 5 or more, 10 or more, or 15 or more.
  • the K / Q ratio may be, for example, 25 or less or 20 or less.
  • lipids can be more efficiently introduced into proteins by setting the K / Q ratio within the above numerical range.
  • the method for producing a lipidated protein can also be performed in the presence of a target cell on which the lipidated protein acts. That is, another embodiment of the method for producing a lipidated protein includes a compound having a primary amino group and a fusion protein in the presence of a cell (for example, a cell to be treated with a lipidated protein) and a microorganism-derived transglutaminase. To obtain a lipidated protein in which the fusion protein and the compound are cross-linked by an isopeptide bond.
  • the fusion protein has a first peptide and protein containing a glutamine residue, and the compound has a lipid part or a fat-soluble vitamin part.
  • the method of reacting the fusion protein with the lipid peptide in the presence of the cell to which the lipidated protein is to be anchored is as follows. Compared with the method of tethering lipidated proteins to cell membranes, it is advantageous because operations such as purification are unnecessary.
  • a lipidated protein comprises a fusion protein portion having a first peptide and protein containing a glutamine residue, and a lipid portion or a fat-soluble vitamin portion.
  • the lipid part or the fat-soluble vitamin part is bound to the fusion protein part by a glutamine residue of the first peptide and an isopeptide bond.
  • the lipid part or the fat-soluble vitamin part may include a lipid peptide part having a second peptide containing a lysine residue.
  • Lipidated protein can also be obtained by the above-described method for producing lipidated protein. Therefore, the description content about the manufacturing method of the above-mentioned lipidated protein is applicable to lipidated protein. Conversely, the description of the lipidated protein of the present embodiment can be applied to the above-described method for producing a lipidated protein.
  • Lipidated proteins can interact with cell membranes such as anchoring to cell membranes by introducing lipids or fat-soluble vitamins.
  • the lipidated protein according to the present embodiment can select various lipids that can be introduced into the protein, and by selecting the first peptide and the second peptide, and the first linker and the second linker, It is possible to control the degree of tethering to the cell membrane.
  • the lipidated protein according to the present embodiment is useful for, for example, drugs, analytical reagents, enzyme reactions, and the like.
  • the 50% effective concentration (CC50) in the cell viability when the lipidated protein coexists with or acts on cells may be, for example, 1 ⁇ M or more, 5 ⁇ M or more, 10 ⁇ M or more, or 20 ⁇ M or more.
  • the 50% effective concentration in cell viability when the lipidated protein coexists with or acts on cells may be, for example, 150 ⁇ M or less, or 140 ⁇ M or less.
  • the 50% effective concentration in cell viability can be adjusted, for example, by selecting the type of lipid part or fat-soluble vitamin part, the chain length of the lipid part, and the like.
  • the 50% effective concentration in cell viability can be assessed by WST assay. Specifically, the 50% effective concentration in cell viability can be determined based on the method described in Examples described later.
  • Example 1 [Preparation of fusion protein] Based on the base sequence and amino acid sequence of highly sensitive green fluorescent protein (EGFP) (GeneBank accession number: HM640279, GI: 31205490), a fusion protein consisting of the amino acid sequences shown in SEQ ID NOs: 1 to 3 was designed. Both of these fusion proteins have a first peptide portion containing a glutamine (Q) residue.
  • EGFP and the first peptide are linked by a linker consisting of 4 bases of Gly-Gly-Gly-Ser.
  • SEQ ID NO: 3 EGFP and the first peptide are directly bound.
  • nucleic acid encoding the designed fusion protein was synthesized.
  • the nucleic acid was cloned into a cloning vector (pET22b +). Thereafter, the nucleic acid was genetically recombined by the PCR method to obtain an expression vector in which the target tag sequence was inserted.
  • the sequence of this expression vector was identified by DNA sequencing.
  • the E. coli BL21 (DE3) strain was transformed with the above expression vector containing a nucleic acid encoding a protein having the amino acid sequence represented by SEQ ID NO: 1 using the heat shock method.
  • the transformed Escherichia coli was inoculated into an LB agar medium containing 100 ⁇ g / mL of ampicillin sodium, and allowed to stand at 37 ° C. overnight to obtain colonies.
  • the obtained Escherichia coli colony was inoculated into 10 mL of LB medium containing 100 ⁇ g / mL of ampicillin sodium and cultured at 37 ° C. and 200 rpm for 4 hours. Thereafter, the cells are inoculated into 500 mL of LB medium and cultured at 37 ° C.
  • the culture was centrifuged at 6000 ⁇ g for 7 minutes to recover the cells.
  • the obtained bacterial cells were washed three times with TBS buffer (mixture of 25 mM Tris-HCl and 150 mM NaCl aqueous solution, pH 7.4), the supernatant was removed, and the pelleted bacterial cells were- It was stored frozen at 80 ° C.
  • the cryopreserved pellet was dissolved in 15 mL of TBS buffer, the cells were pulverized by sonication and disrupted by centrifugation (temperature: 4 ° C., centrifugal force: 18000 ⁇ g, time: 20 minutes). Were separated from the protein-dissolved solution.
  • the obtained solution was filtered through a 0.45 ⁇ m PVDF membrane filter and a 0.22 ⁇ m PVDF membrane filter to remove insoluble fractions and bacterial cells.
  • Protein was purified using a HisTrap Excel column (1 mL) with respect to the solution from which the insoluble fraction and the like were removed. SDS-PAGE was performed on the obtained protein, and the appearance of a band corresponding to the molecular weight band corresponding to the designed fusion protein was observed, confirming the expression and purity of the fusion protein.
  • lipid peptide Preparation of compound having lipid part (lipid peptide)
  • the Fmoc solid phase synthesis method is used to prepare a second peptide by condensing the amino acid sequences shown in Table 1 below, one by one, and then the amino group and myristic acid of the N-terminal amino acid of the second peptide are prepared.
  • Lipid peptide 1 was synthesized by condensation.
  • the resulting lipid peptide was purified by reverse phase liquid chromatography (RP-HPLC). Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC.
  • lipid peptides in which myristic acid and the second peptide were connected by a linker were synthesized in the same manner (lipid peptides 2 to 12 in Table 1).
  • Lipid peptides were synthesized in the same manner using lauric acid, palmitic acid, and stearic acid instead of myristic acid (lipid peptides 13 to 15 in Table 1).
  • Lipid peptides were synthesized in the same manner using a peptide shorter than MRHKGS as the second peptide (lipid peptides 16 to 21 in Table 1).
  • a lipid peptide was synthesized using lithocholic acid instead of myristic acid (lipid peptide 22 in Table 1).
  • Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 ⁇ 250 mm Inertsil ODS-3 column.
  • the mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA.
  • the elution of lipid peptide (0.5 mg / mL, 20 ⁇ L) was performed under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 30% to 60% after 30 minutes. The absorbance was detected.
  • Measurement using MALDI-TOF-MS was performed using 2 ⁇ L of a 0.5 mg / mL lipid peptide solution and an ⁇ -cyano-4-hydroxycinnamic acid (CHCA) matrix.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • a color former (WST-8, manufactured by Dojindo Laboratories) diluted 6-fold with Opti-MEM was added to 60 ⁇ L / well and incubated at 37 ° C. for 90 minutes. Then, the absorbance at 450 nm was measured, and the cell viability was calculated. Cell viability was calculated from the following formula. The results are shown in FIG. From FIG. 1, CC50, which is an index of cytotoxicity, was calculated from a sigmoidal regression curve of KaleidaGraph. The results are shown in Table 2.
  • CMC critical micelle concentration
  • FIG. 3 and 4 are graphs showing the results of circular dichroism spectrum measurement of the synthesized lipid peptide.
  • FIG. 3 shows the results for lipid peptides 1, 3, 6, and 9-12
  • FIG. 4 shows the results for lipid peptides 9, and 16-21. From the results shown in FIG. 3, lipid peptides 9 to 11 have a negative peak at 215 to 225 nm, confirming that the lipid peptide forms a ⁇ sheet structure. Moreover, since the lipid peptides 6 and 12 have a negative peak at 205 nm, it was confirmed that the lipid peptides formed a random coil structure. From the results shown in FIG.
  • lipid peptides 16, 17 and 20 also formed a ⁇ sheet structure like the lipid peptide 9. It was also confirmed that lipid peptides 19 and 21 formed a random coil structure. By using a lipid peptide that forms a ⁇ -sheet structure, it is expected to improve the anchoring ability to the cell membrane.
  • the chromatogram shown in the upper part of FIG. 5 shows the result of liquid chromatography on the solution before the reaction. It was confirmed that an elution peak corresponding to the fusion protein was observed after 13.4 minutes. Further, the chromatogram shown at the bottom of FIG. 5 shows the result of liquid chromatography on the solution after the reaction. In addition to the elution peak corresponding to the fusion protein being observed after 13.4 minutes, a new elution peak corresponding to the lipidated protein was observed after 14.3 minutes. From the results shown in FIG. 5, it was confirmed that the transglutaminase reaction was progressing. Further, the reaction rate in the transglutaminase reaction was calculated from the peak area of the chromatogram shown in FIG.
  • Measurement by RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 ⁇ 150 mm Inertsil ODS-3 column.
  • the mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA.
  • the elution of the lipidated protein was carried out under the condition that the mobile phase was fed at a flow rate of 1 mL / min so that the concentration gradient of acetonitrile would be 20% to 100% after 40 minutes, and the absorbance was detected at 280 nm.
  • Example 2 The reaction rate was calculated in the same manner as in Example 1 except that lipid peptide 9 having a linker was used instead of lipid peptide 1. The results are shown in Table 3, FIG. 6 and FIG.
  • Example 3 An experiment was conducted in the same manner as in Example 1 except that the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 was used instead of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1. The reaction rate was calculated. The results are shown in Table 3, FIG. 8 and FIG.
  • Example 4 An experiment was conducted in the same manner as in Example 2 except that the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 was used instead of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1. The reaction rate was calculated. The results are shown in Table 3, FIG. 8 and FIG.
  • Example 5 An experiment was conducted in the same manner as in Example 1 except that the fusion protein having the amino acid sequence represented by SEQ ID NO: 3 was used instead of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1. .
  • the relationship between the K / Q ratio and the reaction rate was evaluated. The results are shown in Table 3 and FIG.
  • Example 6 An experiment was conducted in the same manner as in Example 2 except that the fusion protein having the amino acid sequence represented by SEQ ID NO: 3 was used instead of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1. The reaction rate was calculated. The results are shown in Table 3, FIG. 10 and FIG.
  • lipidated protein can be produced in any relationship between the fusion protein and the lipid peptide.
  • a fusion protein having the amino acid sequence represented by SEQ ID NO: 1 it was confirmed that the reactivity was excellent even when the K / Q ratio was small, regardless of the type of lipid peptide.
  • the fusion protein which has an amino acid sequence represented by sequence number 2 it was confirmed that lipid can be introduce
  • Example 7 [Reaction between fusion protein and lipid peptide] 10 ⁇ M of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 above, 50 ⁇ M of the lipid peptide 6 and 0.1 U / mL of the microorganism-derived transglutaminase were mixed in 10 mL of PBS, under the conditions of 37 ° C. And reacted for 60 minutes. At this time, the K / Q ratio was set to 5. After 60 minutes, 30 ⁇ L of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained.
  • Example 8 instead of using lipid peptide 6 in Table 1 (Example 8), lipid peptide 11 in Table 1 (Example 9), or lipid peptide 12 in Table 1 (Example 10) instead of lipid peptide 6, Experiments and evaluations were performed in the same manner as in Example 7. The results are shown in Table 3, FIG. 12 and FIG.
  • Example 11 instead of lipid peptide 6, lipid peptide 16 in Table 1 (Example 11), lipid peptide 17 in Table 1 (Example 12), lipid peptide 18 in Table 1 (Example 13), lipid peptide 19 in Table 1 (Example 13) Example 14), lipid peptide 20 of Table 1 (Example 15), or lipid peptide 21 of Table 1 (Example 16) was used except that the experiment was conducted and evaluated in the same manner as in Example 7. It was. The results are shown in Table 3, FIG. 14 and FIG.
  • the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 before reacting with the lipid peptide was directly added to the suspension of suspension cells to prepare a solution having a final concentration of 1 ⁇ M or 5 ⁇ M. .
  • the mixed solution was incubated at 37 ° C. for 15 minutes. After incubation, the solution was washed twice with 200 ⁇ L PBS. The washed solution was suspended in 400 ⁇ L of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in Table 3 and FIG.
  • cytotoxicity test Using the lipidated protein reaction solutions (including unreacted lipid peptides) obtained in Example 3, Example 4, and Examples 8 to 10, cytotoxicity of the lipidated protein was evaluated by WST assay. did. First, floating cells SNU-1 washed twice with 100 ⁇ L of PBS was seeded in a 96-well plate at 5.0 ⁇ 10 4 cells / well (25 ⁇ L Dulbecco's PBS (D-PBS)). Then, 25 ⁇ L of the above reaction solution (2 ⁇ M or 10 ⁇ M, the concentration of which was adjusted with D-PBS if necessary) was mixed to prepare a solution with a final concentration of 1 ⁇ M or 2 ⁇ M.
  • D-PBS Dulbecco's PBS
  • the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 before reacting with the lipid peptide was directly added to the suspension of suspension cells to prepare a solution having a final concentration of 1 ⁇ M or 5 ⁇ M. .
  • the resulting solution was incubated at 37 ° C. for 15 minutes. After incubation, the plate was washed twice with 100 ⁇ L of D-PBS. 110 ⁇ L / well of WST-8 diluted with Opti-MEM was added and incubated for 90 minutes. Thereafter, the absorbance at 450 nm was measured to calculate the cell viability. The results are shown in FIG.
  • Example 17 (Examples 17 to 20) Implemented except that lipid peptide 3 (Example 17), lipid peptide 4 (Example 18), lipid peptide 8 (Example 19) or lipid peptide 7 (Example 20) was used instead of lipid peptide 1.
  • Example 17 lipid peptide 3
  • Example 18 lipid peptide 4
  • Example 19 lipid peptide 8
  • Example 19 lipid peptide 7
  • Example 21 [Preparation of compound having fat-soluble vitamin part]
  • the amino acid sequence represented by GGGSMRHKGS is synthesized by condensing one amino acid at a time, and then the amino group of the N-terminal amino acid and ⁇ -tocopherol are condensed to synthesize a compound having a fat-soluble vitamin part.
  • the obtained compound having a fat-soluble vitamin part was purified by reverse phase liquid chromatography (RP-HPLC). Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC.
  • Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 ⁇ 250 mm Inertsil ODS-3 column.
  • the mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA.
  • the mobile phase is fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile becomes 50% to 80% after 30 minutes.
  • the detection was carried out under the conditions, and the absorbance was 220 nm.
  • the measurement using MALDI-TOF-MS was performed using 2 ⁇ L of a solution of a compound having a fat-soluble vitamin part of 0.5 mg / mL and an ⁇ -cyano-4-hydroxycinnamic acid (CHCA) matrix. It was.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • the molar ratio (K) of the primary amino group (here, lysine (K) residue) in the compound having a fat-soluble vitamin part and the glutamine (Q) residue contained in the first peptide in the fusion protein. / Q ratio) was set to 5. After 60 minutes, 30 ⁇ L of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein (purity: 99%) was obtained.
  • Example 22 [Reaction between fusion protein and compound having lipid part (lipid peptide)]
  • a lipidated protein was prepared in the same manner as in Example 21 except that the lipid peptide 22 shown in Table 1 was used instead of the compound having the fat-soluble vitamin part. It was confirmed by RP-HPLC that lipidated protein (purity: 80%) was obtained.
  • Example 23 [Reaction between fusion protein and compound having lipid part]
  • a lipidated protein was produced in the same manner as in Example 21 except that tetradecylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the compound having a fat-soluble vitamin part. That is, 10 ⁇ M of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 above, 50 ⁇ M of tetradecylamine, and 0.1 U / mL of microorganism-derived transglutaminase were mixed in 10 mL of PBS, and the conditions at 37 ° C. The reaction was allowed to proceed for 30 minutes.
  • the molar ratio (K / Q ratio) between the primary amino group contained in the compound having a lipid part and the glutamine (Q) residue contained in the first peptide in the fusion protein was set to 5. After 30 minutes, 30 ⁇ L of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained. Tetradecylamine was a 5 mM solution prepared by dissolving in dimethyl sulfoxide.
  • Example 24 An experiment was performed in the same manner as in Example 23 except that hexadecylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of tetradecylamine, and it was confirmed that a lipidated protein was obtained.
  • hexadecylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 25 [Reaction between fusion protein and lipid peptide] 10 ⁇ M of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1, 50 ⁇ M of lipid peptide 9 of Table 1, and 0.1 U / mL of microorganism-derived transglutaminase in 10 mM Tris-HCl (pH 8.0) And reacted at 37 ° C. for 60 minutes.
  • the molar ratio between the primary amino group (here, lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein. (K / Q ratio) was set to 1, 5 or 20.
  • Example 26 The procedure was carried out except that lipid peptide 13 in Table 1 (Example 26), lipid peptide 14 in Table 1 (Example 27) or lipid peptide 15 in Table 1 (Example 28) was used in place of lipid peptide 9.
  • lipidated protein was produced.
  • the purity of the lipidated protein was 48% in Example 26, 96% in Example 27, and 90% in Example 28, respectively.
  • the result of the reaction rate in each K / Q ratio is shown in FIG.
  • Example 29 The Fmoc solid phase synthesis method was used to prepare a second peptide by condensing the amino acid sequences shown in Table 5 below, one by one, and then preparing the amino group of the N-terminal amino acid of the second peptide and ⁇ -tocopherol Were connected by a second linker to synthesize lipid peptide 23.
  • the resulting lipid peptide was purified by RP-HPLC. Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC. Lipid peptides were synthesized in the same manner using cholesterol instead of ⁇ -tocopherol (lipid peptide 24 in Table 5).
  • the lipid peptide 24 is represented by the following chemical formula.
  • Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 ⁇ 250 mm Inertsil ODS-3 column.
  • the mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA.
  • the elution of lipid peptide (0.5 mg / mL, 20 ⁇ L) was carried out under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 30% or 60% after 30 minutes. The absorbance was detected.
  • Measurement using MALDI-TOF-MS was performed using 2 ⁇ L of a 0.5 mg / mL lipid peptide solution and an ⁇ -cyano-4-hydroxycinnamic acid (CHCA) matrix.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • Example 6 For the lipid peptide 23 and lipid peptide 24 synthesized as described above, the cytotoxicity test and the critical micelle concentration were evaluated in the same manner as in Example 1. The results are shown in Table 6. The measurement results when lipid peptide 24 is used are shown in FIG. For comparison, the evaluation results of lipid peptide 9, lipid peptide 13, lipid peptide 14, lipid peptide 15, and lipid peptide 22 synthesized in Example 1 are also shown in Table 6.
  • Examples 30 to 34 As described in Table 7, instead of lipid peptide 13, lipid peptide 14 (Example 30), lipid peptide 15 (Example 31), lipid peptide 22 (Example 32), lipid peptide 23 (Example 33), In addition, the experiment was conducted in the same manner as in Example 29 except that lipid peptide 24 (Example 34) was used, and the reactivity of the transglutaminase reaction of the fusion protein and the lipid peptide was evaluated. The results are shown in Table 7.
  • Example 35 As shown in Table 7, the experiment was carried out in the same manner as in Example 4 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
  • Example 36 As shown in Table 7, the experiment was performed in the same manner as in Example 29 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
  • Example 37 As shown in Table 7, the experiment was performed in the same manner as in Example 30 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
  • Example 38 As shown in Table 7, the experiment was carried out in the same manner as in Example 31 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
  • Example 39 As shown in Table 7, the experiment was conducted in the same manner as in Example 32 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
  • Example 40 As shown in Table 7, the experiment was performed in the same manner as in Example 33 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
  • Example 41 As shown in Table 7, the experiment was performed in the same manner as in Example 34 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
  • the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 before reacting with the lipid peptide was directly added to the suspension of suspension cells to prepare a solution having a final concentration of 1 ⁇ M or 5 ⁇ M. .
  • the mixed solution was incubated at 37 ° C. for 15 minutes. After incubation, the solution was washed twice with 200 ⁇ L PBS. The washed solution was suspended in 400 ⁇ L of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG.
  • lipid peptide in which a fatty acid is bonded to the N-terminus of a peptide having a glutamine residue is used as a substrate as in a conventional method for producing a lipidated protein using transglutaminase
  • the carbon number of the lipid part is relatively small.
  • it is large for example, having 16 or more carbon atoms
  • the water solubility is low, and it was difficult to carry out the transglutaminase reaction without the addition of a surfactant.
  • the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 before reacting with the lipid peptide was directly added to the suspension of suspension cells to prepare a solution having a final concentration of 1 ⁇ M or 5 ⁇ M. .
  • the resulting solution was incubated at 37 ° C. for 15 minutes. After incubation, the plate was washed twice with 100 ⁇ L of D-PBS. 110 ⁇ L / well of WST-8 diluted with Opti-MEM was added and incubated for 90 minutes. Thereafter, the absorbance at 450 nm was measured to calculate the cell viability. The results are shown in FIG.
  • Example 42 The Fmoc solid phase synthesis method was used to prepare a second peptide by condensing the amino acid sequences listed in Table 8 below, one amino acid at a time, and then the amino group of the N-terminal amino acid of the second peptide, lauric acid, Were connected by a second linker to synthesize lipid peptide 25.
  • the resulting lipid peptide was purified by RP-HPLC. Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC. Further, lipid peptides were synthesized in the same manner using palmitic acid, stearic acid, oleic acid, linoleic acid or cholesterol instead of lauric acid (lipid peptides 26 to 30 in Table 8).
  • Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 ⁇ 250 mm Inertsil ODS-3 column.
  • the mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA.
  • the elution of lipid peptide (0.5 mg / mL, 20 ⁇ L) was carried out under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 30% or 60% after 30 minutes. The absorbance was detected.
  • Measurement using MALDI-TOF-MS was performed using 2 ⁇ L of a 0.5 mg / mL lipid peptide solution and an ⁇ -cyano-4-hydroxycinnamic acid (CHCA) matrix.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • Example 1 After the incubation, a color former (WST-8, manufactured by Dojindo Laboratories) diluted 6-fold with Opti-MEM was added to 60 ⁇ L / well and incubated at 37 ° C. for 90 minutes. Then, the absorbance at 450 nm was measured, and the cell viability was calculated. Cell viability was calculated using the same formula as shown in Example 1. The results are shown in FIG. 29 and FIG. From FIG. 29 and FIG. 30, CC50, which is an index of cytotoxicity, was calculated using a sigmoid regression curve of KaleidaGraph. The results are shown in Table 9. For comparison, the results of lipid peptide 16 synthesized in Example 1 are also shown in Table 9.
  • CMC critical micelle concentration
  • Example 1 After incubation, a PBS solution was added to a 96-well plate at 50 ⁇ L / well, and the ratio of fluorescence intensity at 385 nm (I 385 ) to fluorescence intensity at 373 nm (I 373 ) (I 385 / I 373 ) was measured. The wavelength of the excitation light was set at 334 nm. Similarly to Example 1, a change in the I 385 / I 373 ratio was derived from the graph showing the results of fluorescence intensity measurement when lipid peptides were used, and the critical micelle concentration was determined. The results are shown in Table 9. For comparison, the results of lipid peptide 16 synthesized in Example 1 are also shown in Table 9.
  • Example 11 After 60 minutes, 30 ⁇ L of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained. The reactivity was evaluated in the same manner as in Example 1. The results are shown in Table 10. For comparison, the results of Example 11 are also shown in Table 9.
  • Example 43 As shown in Table 10, instead of lipid peptide 25, lipid peptide 26 (Example 43), lipid peptide 27 (Example 44), lipid peptide 28 (Example 45), lipid peptide 29 (Example 46), In addition, experiments were conducted in the same manner as in Example 42 except that lipid peptide 30 (Example 47) was used, and the reactivity of the transglutaminase reaction of the fusion protein and the lipid peptide was evaluated. The results are shown in Table 10.
  • Example 48 As shown in Table 10, the experiment was conducted in the same manner as in Example 11 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
  • Example 49 As shown in Table 10, the experiment was conducted in the same manner as in Example 42 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
  • Example 50 As shown in Table 10, the experiment was conducted in the same manner as in Example 43 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
  • Example 51 As shown in Table 10, the experiment was performed in the same manner as in Example 44 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
  • Example 52 As shown in Table 10, the experiment was conducted in the same manner as in Example 45 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
  • Example 53 As shown in Table 10, the experiment was conducted in the same manner as in Example 46 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
  • Example 54 As shown in Table 10, the experiment was conducted in the same manner as in Example 47 except that n-dodecyl- ⁇ -D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
  • the washed solution was suspended in 400 ⁇ L of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG. 31 and Table 10.
  • Example 55 The Fmoc solid phase synthesis method was used to prepare a second peptide by condensing the amino acid sequences shown in Table 11 below one by one, and then preparing the second peptide with the amino group of the N-terminal amino acid, lauric acid, Were synthesized with a lipid peptide 31 connected by a linker. The resulting lipid peptide was purified by RP-HPLC. Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC. Lipid peptides were synthesized in the same manner using palmitic acid, stearic acid, ⁇ -tocopherol or cholesterol instead of lauric acid (lipid peptides 32-35 in Table 11).
  • lipid peptide into which two lipid parts have been introduced is also synthesized.
  • the measurement was performed by MALDI-TOF-MS and RP-HPLC. More specifically, lipid peptide 36 introduced with two lauric acids, lipid peptide 37 introduced with two myristic acids, lipid peptide 38 introduced with two palmitic acids, lipid peptide 39 introduced with two stearic acids, Lipid peptide 40 introduced with two ⁇ -tocopherols and lipid peptide 41 introduced with two cholesterols were synthesized.
  • the lipid peptide 36 is represented by the following chemical formula.
  • Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 ⁇ 250 mm Inertsil ODS-3 column.
  • the mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA.
  • the elution of lipid peptide (0.5 mg / mL, 20 ⁇ L) was carried out under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 30% or 60% after 30 minutes. The absorbance was detected.
  • Measurement using MALDI-TOF-MS was performed using 2 ⁇ L of a 0.5 mg / mL lipid peptide solution and an ⁇ -cyano-4-hydroxycinnamic acid (CHCA) matrix.
  • CHCA ⁇ -cyano-4-hydroxycinnamic acid
  • lipid peptides 31 to 41 synthesized as described above, cytotoxicity tests and critical micelle concentrations were evaluated.
  • Example 1 After the incubation, a color former (WST-8, manufactured by Dojindo Laboratories) diluted 6-fold with Opti-MEM was added to 60 ⁇ L / well and incubated at 37 ° C. for 90 minutes. Then, the absorbance at 450 nm was measured, and the cell viability was calculated. Cell viability was calculated using the same formula as shown in Example 1. The results are shown in FIG. 33, FIG. 34 and FIG. From FIG. 33, FIG. 34 and FIG. 35, CC50 as an index of cytotoxicity was calculated using a sigmoid regression curve of KaleidaGraph. The results are shown in Table 12. For comparison, the results of the lipid peptide 21 synthesized in Example 1 are also shown in Table 12.
  • CMC critical micelle concentration
  • the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 is 10 ⁇ M
  • the lipid peptide 31 is 50 ⁇ M
  • the microorganism-derived transglutaminase is 0.1 U / mL
  • n-dodecyl- ⁇ -D-maltoside is 1 as a surfactant.
  • 0.0 mass / volume% was mixed in 10 mL of PBS and reacted at 37 ° C. for 60 minutes.
  • the (K / Q ratio) was 10.
  • the same reaction as described above was performed by changing the K / Q ratio to 5 or 20. The results are shown in FIG.
  • Examples 56 to 66 As described in Table 13, instead of lipid peptide 31, lipid peptide 32 (Example 56), lipid peptide 33 (Example 57), lipid peptide 34 (Example 58), lipid peptide 35 (Example 59), Lipid peptide 36 (Example 60), Lipid peptide 37 (Example 61), Lipid peptide 38 (Example 62), Lipid peptide 39 (Example 63), Lipid peptide 40 (Example 64), Lipid peptide 41 (Execute) Example 55), except that lipid peptide 21 (Example 66) was used, and that the amount of each lipid peptide was adjusted so that the K / Q ratio was 5, 10, 20 and Example 55 The experiment was conducted in the same manner, and the reactivity of the transglutaminase reaction of the fusion protein and lipid peptide was evaluated. The results are shown in FIGS. 36 and 37 and Table 13.
  • Example 16 The washed solution was suspended in 400 ⁇ L of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG. 38 and Table 13. For comparison, the results of Example 16 are also shown in Table 13.
  • Example 68 [Reaction between fusion protein and lipid peptide] The reaction between the fusion protein and the lipid peptide was carried out in the presence of the cells to be anchored with the lipidated protein.
  • the cell membrane of cells targeted for lipidated proteins can also be obtained by the method of reacting the fusion protein with the lipid peptide in the presence of cells targeted for anchoring the lipidated proteins. It has been confirmed that it can be moored at.
  • the method of reacting the fusion protein with the lipid peptide in the presence of the cells to be moored with the lipidated protein is to synthesize and produce the lipidated protein in advance and then lipidate the cell membrane of the target cell. Compared to the method of tethering proteins, operations such as purification are unnecessary, which is beneficial.

Abstract

The present disclosure provides a method for producing a lipidated protein, said method comprising a step for reacting a fused protein with a compound having a primary amino group in the presence of a transglutaminase derived from a microorganism to thereby give a lipidated protein in which the fused protein is crosslinked to the compound via an isopeptide bond, wherein the fused protein comprises a first peptide having a glutamine residue and a protein while the compound has a lipid moiety or a fat-soluble vitamin moiety.

Description

脂質化タンパク質の製造方法、及び脂質化タンパク質Method for producing lipidated protein and lipidated protein
 本発明は、脂質化タンパク質の製造方法、及び脂質化タンパク質に関する。 The present invention relates to a method for producing a lipidated protein and a lipidated protein.
 脂質化タンパク質は、細胞の機能発現及び機能制御の過程における重要な役割を担っている。細胞膜上における脂質化タンパク質の機能を解析することが、種々の疾病を解析するための有用な手段である。そのため、細胞膜上における脂質化タンパク質の機能を解析することが注目されている。また、脂質化タンパク質は、薬物送達キャリアへの係留が可能である等の特性を有している。そのため、脂質化タンパク質の医薬品としての応用も期待される。 Lipidated proteins play an important role in the process of cell function expression and function control. Analyzing the function of lipidated proteins on cell membranes is a useful tool for analyzing various diseases. Therefore, analysis of the function of lipidated proteins on the cell membrane has attracted attention. Lipidated proteins also have properties such as being able to be anchored to a drug delivery carrier. Therefore, application of lipidated proteins as pharmaceuticals is also expected.
 従来、タンパク質の脂質化方法は、反応効率及び部位特異性が低いことに加えて、原料のタンパク質に期待する機能に比べて、得られる脂質化タンパク質の機能が低下する等の課題があった。部位特異的かつ効率的な脂質修飾手段としては、微生物由来トランスグルタミナーゼを利用した脂質化タンパク質の製造方法が検討されている。例えば、非特許文献1には、微生物由来のトランスグルタミナーゼの存在下、リジン残基を含むペプチドを緑色蛍光タンパク質のC末端に結合させた融合タンパク質と、グルタミン残基を有するペプチドのN末端に脂肪酸を結合させた脂質ペプチドと、を反応させて、脂質化タンパク質を得る方法が記載されている。 Conventionally, protein lipidation methods have problems such as low reaction efficiency and site specificity, and lower functions of the resulting lipidated protein compared to functions expected of the starting protein. As a site-specific and efficient lipid modification means, a method for producing a lipidated protein using a microorganism-derived transglutaminase has been studied. For example, Non-Patent Document 1 discloses a fusion protein in which a peptide containing a lysine residue is bound to the C-terminus of a green fluorescent protein in the presence of a microorganism-derived transglutaminase, and a fatty acid at the N-terminus of a peptide having a glutamine residue. A method of obtaining a lipidated protein by reacting with a lipid peptide to which is bound is described.
 脂質化タンパク質を得るために用いる融合タンパク質及び脂質ペプチドの組み合わせによってはトランスグルタミナーゼ反応が進行しづらく、トランスグルタミナーゼ反応の基質が制限される場合がある。タンパク質及び脂質の種類にかかわらず、容易にトランスグルタミナーゼ反応を行うことが可能な脂質化タンパク質の製造方法があれば、有用である。 Depending on the combination of the fusion protein and lipid peptide used to obtain the lipidated protein, the transglutaminase reaction may not proceed easily, and the substrate for the transglutaminase reaction may be limited. Any method for producing a lipidated protein capable of easily carrying out a transglutaminase reaction regardless of the type of protein and lipid is useful.
 そこで、本発明は、脂質化タンパク質に求められる用途等に対応した種々の脂質又は脂溶性ビタミンが導入可能であり、脂質化タンパク質を容易に製造することができる脂質化タンパク質の製造方法及び脂質化タンパク質を提供することを目的とする。 Therefore, the present invention can introduce various lipids or fat-soluble vitamins corresponding to uses required for lipidated proteins and the like, and a lipidated protein production method and lipidation capable of easily producing lipidated proteins The object is to provide a protein.
 本発明は一側面において、微生物由来トランスグルタミナーゼの存在下、融合タンパク質と、1級アミノ基を有する化合物とを反応させて、上記融合タンパク質と上記化合物とがイソペプチド結合によって架橋された脂質化タンパク質を得る工程を備え、上記融合タンパク質は、グルタミン残基を含有する第一のペプチド及びタンパク質を有し、上記化合物は、脂質部又は脂溶性ビタミン部を有する、脂質化タンパク質の製造方法を提供する。 In one aspect of the present invention, a lipidated protein in which a fusion protein and a compound having a primary amino group are reacted in the presence of a microorganism-derived transglutaminase, and the fusion protein and the compound are cross-linked by an isopeptide bond. Wherein the fusion protein has a first peptide and protein containing a glutamine residue, and the compound has a lipid part or a fat-soluble vitamin part. .
 従来法において、グルタミン残基を有するペプチドと脂肪酸との反応によって得られる脂質ペプチドの疎水性が高くトランスグルタミナーゼ反応における反応性が低下する場合等がある。このような場合には、グルタミン残基を有するペプチドに親水性アミノ酸残基を導入することで、脂質ペプチドの水溶性を改善する方法が考えられる。しかし、グルタミン残基を含有するペプチドに親水性のアミノ酸残基を導入すると、微生物由来トランスグルタミナーゼによって基質として認識されづらくなる傾向がある。 In conventional methods, there are cases where the lipid peptide obtained by the reaction of a peptide having a glutamine residue with a fatty acid has high hydrophobicity and the reactivity in the transglutaminase reaction is lowered. In such a case, a method for improving the water solubility of the lipid peptide by introducing a hydrophilic amino acid residue into the peptide having a glutamine residue is considered. However, when a hydrophilic amino acid residue is introduced into a peptide containing a glutamine residue, it tends to be difficult to be recognized as a substrate by a microorganism-derived transglutaminase.
 脂質ペプチドが水に溶けにくい場合には、反応系に界面活性剤及び有機溶剤等を添加することで脂質ペプチドを溶解させる対応が考えられる。しかし、微生物由来トランスグルタミナーゼの酵素活性の低下若しくは消失を誘発し得ることから、脂質化タンパク質を得ることが困難になることが懸念される。また、医薬品等への応用を考えると、脂質化タンパク質の製造において有機溶剤等の使用は極力控えることが好ましい。 If the lipid peptide is difficult to dissolve in water, it can be considered that the lipid peptide is dissolved by adding a surfactant, an organic solvent or the like to the reaction system. However, since it is possible to induce a decrease or disappearance of the enzyme activity of the microorganism-derived transglutaminase, there is a concern that it may be difficult to obtain a lipidated protein. In view of application to pharmaceuticals and the like, it is preferable to refrain from using organic solvents as much as possible in the production of lipidated proteins.
 上記脂質化タンパク質の製造方法では、従来とは逆に、脂質化させる対象となるタンパク質を含む融合タンパク質がグルタミン残基を有しており、脂質を含む化合物が1級アミノ基を有している。融合タンパク質と1級アミノ基を有する化合物とを、微生物由来トランスグルタミナーゼが基質として認識できる。また、親水性を付与し得る官能基として1級アミノ基を脂質側に導入することで、融合タンパク質と、1級アミノ基を有する化合物との間で、トランスグルタミナーゼ反応を進行させ、容易に脂質化タンパク質を製造することができる。 In the method for producing lipidated protein, contrary to the conventional method, the fusion protein containing the protein to be lipidated has a glutamine residue, and the compound containing lipid has a primary amino group. . Microorganism-derived transglutaminase can recognize a fusion protein and a compound having a primary amino group as a substrate. In addition, by introducing a primary amino group as a functional group capable of imparting hydrophilicity to the lipid side, the transglutaminase reaction proceeds between the fusion protein and the compound having the primary amino group, and the lipid can be easily Protein can be produced.
 上記化合物は、リジン残基を含有する第二のペプチド、及び、脂質部又は脂溶性ビタミン部を有する脂質ペプチドを含み、上記1級アミノ基が上記リジン残基に由来するものであってもよい。リジン残基を含有する第二のペプチド、及び、脂質部又は脂溶性ビタミン部を有する脂質ペプチドは、微生物由来トランスグルタミナーゼに基質として認識されやすい。上記化合物がこのような脂質ペプチドを含むことで、より容易に脂質化タンパク質を製造することができる。また、上記脂質ペプチドは、ペプチド鎖(第二のペプチド)を有しているため、第二のペプチド部分のアミノ酸残基の種類及び数を調整することができる。これによって、例えば、タンパク質に導入する脂質に応じて、アミノ酸残基の種類及び数等を調整することができる。上記化合物が脂質ペプチドを含むことで、上記製造方法によってタンパク質に後修飾可能な脂質又は脂溶性ビタミンの選択肢を広げることができる。 The compound may include a second peptide containing a lysine residue and a lipid peptide having a lipid part or a fat-soluble vitamin part, and the primary amino group may be derived from the lysine residue. . The second peptide containing a lysine residue and the lipid peptide having a lipid part or a fat-soluble vitamin part are easily recognized as a substrate by the microorganism-derived transglutaminase. When the above compound contains such a lipid peptide, a lipidated protein can be produced more easily. Moreover, since the said lipid peptide has a peptide chain (2nd peptide), the kind and number of amino acid residues of a 2nd peptide part can be adjusted. Thus, for example, the type and number of amino acid residues can be adjusted according to the lipid to be introduced into the protein. When the compound contains a lipid peptide, options for lipids or fat-soluble vitamins that can be post-modified to proteins by the above production method can be expanded.
 上記第二のペプチドは、上記第一のペプチドよりも親水性アミノ酸残基の割合が高くてもよい。第二のペプチドの親水性アミノ酸残基の割合を、第一のペプチドよりも高くすることで、脂質ペプチドの脂質部分に由来する疎水性の程度を弱めて水溶性を改善させることができるため、トランスグルタミナーゼ反応をより進行しやすいものとできる。 The second peptide may have a higher ratio of hydrophilic amino acid residues than the first peptide. By making the ratio of the hydrophilic amino acid residue of the second peptide higher than that of the first peptide, it is possible to weaken the degree of hydrophobicity derived from the lipid portion of the lipid peptide and improve water solubility. The transglutaminase reaction can be made easier to proceed.
 上記第二のペプチドは、ヒスチジン残基、プロリン残基、トリプトファン残基及びアルギニン残基からなる群から選ばれる少なくとも一種のアミノ酸残基を更に含有してもよい。第二のペプチドが上記アミノ酸残基を含むことで、脂質ペプチドが微生物由来トランスグルタミナーゼによってより認識されやすいものとなり、トランスグルタミナーゼ反応をより進行しやすいものとできる。 The second peptide may further contain at least one amino acid residue selected from the group consisting of a histidine residue, a proline residue, a tryptophan residue, and an arginine residue. When the second peptide contains the amino acid residue, the lipid peptide is more easily recognized by the microorganism-derived transglutaminase, and the transglutaminase reaction can be further promoted.
 上記脂質部は、炭素数12~18の脂肪族炭化水素基を含んでもよい。脂質部が上述のような構成を有することによって、得られる脂質化タンパク質が細胞膜により係留しやすいものとなる。 The lipid part may contain an aliphatic hydrocarbon group having 12 to 18 carbon atoms. When the lipid part has the above-described configuration, the obtained lipidated protein is easily anchored by the cell membrane.
 上記第一のペプチドは、グリシン残基、アラニン残基、バリン残基、ロイシン残基、イソロイシン残基、チロシン残基、トリプトファン残基、及びフェニルアラニン残基からなる群から選ばれる少なくとも一種の疎水性アミノ酸残基を更に含んでもよい。第一のペプチドが上記疎水性アミノ酸残基を含むことで、融合タンパク質における第一のペプチドが微生物由来トランスグルタミナーゼによってより認識されやすいものとなり、トランスグルタミナーゼ反応をより進行しやすいものとできる。 The first peptide is at least one hydrophobic group selected from the group consisting of glycine residues, alanine residues, valine residues, leucine residues, isoleucine residues, tyrosine residues, tryptophan residues, and phenylalanine residues. An amino acid residue may be further included. When the first peptide contains the hydrophobic amino acid residue, the first peptide in the fusion protein can be more easily recognized by the microorganism-derived transglutaminase, and the transglutaminase reaction can proceed more easily.
 本発明は別の側面において、グルタミン残基を含有する第一のペプチド及びタンパク質を有する融合タンパク質部、及び脂質部又は脂溶性ビタミン部を含み、上記脂質部又は上記脂溶性ビタミン部が、上記第一のペプチドのグルタミン残基とイソペプチド結合によって上記融合タンパク質部と結合している、脂質化タンパク質を提供する。 In another aspect, the present invention includes a fusion protein part having a first peptide and protein containing a glutamine residue, and a lipid part or a fat-soluble vitamin part, wherein the lipid part or the fat-soluble vitamin part is the first part. Provided is a lipidated protein which is bound to the fusion protein part by an isopeptide bond with a glutamine residue of one peptide.
 上記脂質化タンパク質は、融合タンパク質部がグルタミン残基を有しており、脂質部又は脂溶性ビタミン部がグルタミン残基とイソペプチド結合によって融合タンパク質部と結合する構成を備えることから、容易に合成することができる。 The above lipidated protein is easily synthesized because the fusion protein part has a glutamine residue, and the lipid part or fat-soluble vitamin part has a structure in which the fusion protein part is bound to the glutamine residue by an isopeptide bond. can do.
 上記脂質部又は上記脂溶性ビタミン部は、リジン残基を含有する第二のペプチドを有する脂質ペプチド部を含み、上記イソペプチド結合が、上記リジン残基と上記グルタミン残基との結合であってもよい。 The lipid part or the fat-soluble vitamin part includes a lipid peptide part having a second peptide containing a lysine residue, and the isopeptide bond is a bond between the lysine residue and the glutamine residue. Also good.
 上記第二のペプチドは、上記第一のペプチドよりも親水性アミノ酸残基の割合が高くてもよい。 The second peptide may have a higher ratio of hydrophilic amino acid residues than the first peptide.
 上記第二のペプチドは、ヒスチジン残基、プロリン残基、トリプトファン残基及びアルギニン残基からなる群から選ばれる少なくとも1種のアミノ酸残基を更に含有してもよい。 The second peptide may further contain at least one amino acid residue selected from the group consisting of a histidine residue, a proline residue, a tryptophan residue, and an arginine residue.
 上記脂質部は、炭素数12~18の脂肪族炭化水素基を有してもよい。脂質が上記のような構成を有することによって、脂質化タンパク質がより細胞膜に係留しやすいものとなる。 The lipid part may have an aliphatic hydrocarbon group having 12 to 18 carbon atoms. When the lipid has the above-described configuration, the lipidated protein is more easily anchored to the cell membrane.
 上記第一のペプチドは、グリシン残基、アラニン残基、バリン残基、ロイシン残基、イソロイシン残基及びフェニルアラニン残基からなる群から選ばれる少なくとも1種の疎水性アミノ酸残基を更に含有してもよい。 The first peptide further contains at least one hydrophobic amino acid residue selected from the group consisting of a glycine residue, an alanine residue, a valine residue, a leucine residue, an isoleucine residue and a phenylalanine residue. Also good.
 本発明によれば、求められる用途等に対応した種々の脂質又は脂溶性ビタミンが導入可能であり、脂質化タンパク質を容易に製造することができる脂質化タンパク質の製造方法及び脂質化タンパク質を提供することができる。 According to the present invention, it is possible to introduce various lipids or fat-soluble vitamins corresponding to required uses and the like, and to provide a lipidated protein production method and a lipidated protein capable of easily producing a lipidated protein. be able to.
図1は、合成した脂質ペプチドの細胞毒性試験の結果を示すグラフである。FIG. 1 is a graph showing the results of a cytotoxicity test of a synthesized lipid peptide. 図2は、合成した脂質ペプチドに内包させた蛍光物質(ピレン)の蛍光強度比(I385/I373)を測定した結果を示すグラフである。FIG. 2 is a graph showing the results of measuring the fluorescence intensity ratio (I 385 / I 373 ) of the fluorescent substance (pyrene) encapsulated in the synthesized lipid peptide. 図3は、合成した脂質ペプチドの円二色性スペクトル測定の結果を示すグラフである。FIG. 3 is a graph showing the results of circular dichroism spectrum measurement of the synthesized lipid peptide. 図4は、合成した脂質ペプチドの円二色性スペクトル測定の結果を示すグラフである。FIG. 4 is a graph showing the results of circular dichroism spectrum measurement of the synthesized lipid peptide. 図5は、実施例1における融合タンパク質と脂質ペプチドの反応結果を示す液体クロマトグラフである。FIG. 5 is a liquid chromatograph showing the reaction results of the fusion protein and lipid peptide in Example 1. 図6は、実施例1及び2におけるトランスグルタミナーゼ反応の反応率とK/Q比率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 1 and 2. 図7は、実施例1及び2におけるトランスグルタミナーゼ反応の反応率と反応時間との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the reaction rate of the transglutaminase reaction and the reaction time in Examples 1 and 2. 図8は、実施例3及び4におけるトランスグルタミナーゼ反応の反応率とK/Q比率との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 3 and 4. 図9は、実施例3及び4におけるトランスグルタミナーゼ反応の反応率と反応時間との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the transglutaminase reaction rate and reaction time in Examples 3 and 4. 図10は、実施例5及び6におけるトランスグルタミナーゼ反応の反応率とK/Q比率との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 5 and 6. 図11は、実施例6におけるトランスグルタミナーゼ反応の反応率と反応時間との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the reaction rate of the transglutaminase reaction and the reaction time in Example 6. 図12は、実施例3、実施例4及び実施例7~10におけるトランスグルタミナーゼ反応の反応率とK/Q比率との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Example 3, Example 4, and Examples 7 to 10. 図13は、実施例3、実施例4及び実施例7~10におけるトランスグルタミナーゼ反応の反応率と反応時間との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the reaction rate of the transglutaminase reaction and the reaction time in Example 3, Example 4, and Examples 7 to 10. 図14は、実施例3、実施例4及び実施例11~16におけるトランスグルタミナーゼ反応の反応率とK/Q比率との関係を示すグラフである。FIG. 14 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Example 3, Example 4, and Examples 11-16. 図15は、実施例3、実施例4及び実施例11~16におけるトランスグルタミナーゼ反応の反応率と反応時間との関係を示すグラフである。FIG. 15 is a graph showing the relationship between the reaction rate of the transglutaminase reaction and the reaction time in Example 3, Example 4, and Examples 11 to 16. 図16は、実施例3、実施例4、及び実施例8~10にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞一個当たりの蛍光の発生量を示すグラフである。FIG. 16 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 3, Example 4, and Examples 8 to 10 were applied to floating cells. is there. 図17は、実施例3、実施例4、及び実施例8~10にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞毒性の評価結果を示すグラフである。FIG. 17 is a graph showing cytotoxicity evaluation results after applying the lipidated protein and fusion protein obtained in Example 3, Example 4, and Examples 8 to 10 to floating cells. 図18は、実施例4、及び実施例11~16にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞一個当たりの蛍光の発生量を示すグラフである。FIG. 18 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 4 and Examples 11 to 16 were applied to floating cells. 図19は、実施例3、実施例4、及び実施例11~16にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞毒性の評価結果を示すグラフである。FIG. 19 is a graph showing cytotoxicity evaluation results after the lipidated protein and fusion protein obtained in Example 3, Example 4, and Examples 11 to 16 were applied to floating cells. 図20は、実施例25~28におけるトランスグルタミナーゼ反応の反応率とK/Q比率との関係を示すグラフである。FIG. 20 is a graph showing the relationship between the transglutaminase reaction rate and the K / Q ratio in Examples 25-28. 図21は、実施例21~22、及び25~28にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞一個当たりの蛍光の発生量を示すグラフである。FIG. 21 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Examples 21 to 22 and 25 to 28 were applied to floating cells. 図22は、実施例25~28にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した状態を示す蛍光顕微鏡写真である。FIG. 22 is a fluorescence micrograph showing a state where the lipidated protein and fusion protein obtained in Examples 25 to 28 are applied to floating cells. 図23は、実施例28にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した状態を示す蛍光顕微鏡写真である。FIG. 23 is a fluorescence micrograph showing a state in which the lipidated protein and fusion protein obtained in Example 28 were applied to floating cells. 図24は、実施例21及び22にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞毒性の評価結果を示すグラフである。FIG. 24 is a graph showing the cytotoxicity evaluation results after the lipidated protein and fusion protein obtained in Examples 21 and 22 were applied to floating cells. 図25は、実施例26~28にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞毒性の評価結果を示すグラフである。FIG. 25 is a graph showing cytotoxicity evaluation results after the lipidated protein and fusion protein obtained in Examples 26 to 28 were applied to floating cells. 図26は、合成した脂質ペプチドの細胞毒性試験の結果を示すグラフである。FIG. 26 is a graph showing the results of a cytotoxicity test of the synthesized lipid peptide. 図27は、実施例9及び実施例29~34にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞一個当たりの蛍光の発生量を示すグラフである。FIG. 27 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 9 and Examples 29 to 34 were applied to floating cells. 図28は、実施例4及び実施例29~34にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞毒性の評価結果を示すグラフである。FIG. 28 is a graph showing the cytotoxicity evaluation results after applying the lipidated protein and fusion protein obtained in Example 4 and Examples 29 to 34 to floating cells. 図29は、合成した脂質ペプチドの細胞毒性試験の結果を示すグラフである。FIG. 29 is a graph showing the results of a cytotoxicity test of the synthesized lipid peptide. 図30は、合成した脂質ペプチドの細胞毒性試験の結果を示すグラフである。FIG. 30 is a graph showing the results of cytotoxicity tests of synthesized lipid peptides. 図31は、実施例11及び実施例42~47にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞一個当たりの蛍光の発生量を示すグラフである。FIG. 31 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 11 and Examples 42 to 47 were applied to floating cells. 図32は、実施例11及び実施例42~47にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞毒性の評価結果を示すグラフである。FIG. 32 is a graph showing the cytotoxicity evaluation results after the lipidated protein and fusion protein obtained in Example 11 and Examples 42 to 47 were applied to floating cells. 図33は、合成した脂質ペプチドの細胞毒性試験の結果を示すグラフである。FIG. 33 is a graph showing the results of cytotoxicity tests of synthesized lipid peptides. 図34は、合成した脂質ペプチドの細胞毒性試験の結果を示すグラフである。FIG. 34 is a graph showing the results of a cytotoxicity test of the synthesized lipid peptide. 図35は、合成した脂質ペプチドの細胞毒性試験の結果を示すグラフである。FIG. 35 is a graph showing the results of a cytotoxicity test of the synthesized lipid peptide. 図36は、合成した脂質ペプチドトランスグルタミナーゼ反応の反応率とK/Q比率との関係を示すグラフである。FIG. 36 is a graph showing the relationship between the reaction rate of the synthesized lipid peptide transglutaminase reaction and the K / Q ratio. 図37は、合成した脂質ペプチドトランスグルタミナーゼ反応の反応率とK/Q比率との関係を示すグラフである。FIG. 37 is a graph showing the relationship between the reaction rate of the synthesized lipid peptide transglutaminase reaction and the K / Q ratio. 図38は、実施例16及び実施例55~64にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞一個当たりの蛍光の発生量を示すグラフである。FIG. 38 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 16 and Examples 55 to 64 were applied to floating cells. 図39は、実施例55~57、実施例59~63及び実施例66にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞毒性の評価結果を示すグラフである。FIG. 39 is a graph showing the evaluation results of cytotoxicity after applying the lipidated protein and fusion protein obtained in Examples 55 to 57, Examples 59 to 63, and Example 66 to floating cells. 図40は、実施例67にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞一個当たりの蛍光の発生量を示すグラフである。FIG. 40 is a graph showing the amount of fluorescence generated per cell after the lipidated protein and fusion protein obtained in Example 67 were applied to floating cells. 図41は、実施例68にて得られた脂質化タンパク質及び融合タンパク質を浮遊細胞に適用した後における、細胞毒性の評価結果を示すグラフである。FIG. 41 is a graph showing the evaluation results of cytotoxicity after the lipidated protein and fusion protein obtained in Example 68 were applied to floating cells.
 以下、場合により図面を参照して、本発明の実施形態について説明する。ただし、以下の実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
[脂質化タンパク質の製造方法]
 脂質化タンパク質の製造方法の一実施形態は、微生物由来トランスグルタミナーゼの存在下、融合タンパク質と、1級アミノ基を有する化合物とを反応させて、上記融合タンパク質と上記化合物とがイソペプチド結合によって架橋された脂質化タンパク質を得る工程を備える。上記融合タンパク質は、グルタミン残基を含有する第一のペプチド及びタンパク質を有する。上記化合物は、脂質部又は脂溶性ビタミン部を有する。
[Method for producing lipidated protein]
In one embodiment of a method for producing a lipidated protein, a fusion protein and a compound having a primary amino group are reacted in the presence of a microorganism-derived transglutaminase, and the fusion protein and the compound are cross-linked by an isopeptide bond. Obtaining a lipidated protein obtained. The fusion protein has a first peptide and protein containing a glutamine residue. The compound has a lipid part or a fat-soluble vitamin part.
 本実施形態に係る脂質化タンパク質の製造方法において、グルタミン(Q)残基を含有する第一のペプチドを有する融合タンパク質、及び1級アミノ基を有する化合物がいずれも微生物由来トランスグルタミナーゼによって基質として認識されることから、トランスグルタミナーゼ反応によってイソペプチド結合を形成して、容易に脂質又は脂溶性ビタミンを導入した脂質化タンパク質を得ることができる。 In the method for producing a lipidated protein according to this embodiment, a fusion protein having a first peptide containing a glutamine (Q) residue and a compound having a primary amino group are both recognized as substrates by a microorganism-derived transglutaminase. Therefore, an isopeptide bond is formed by a transglutaminase reaction, and a lipidated protein into which a lipid or a fat-soluble vitamin is easily introduced can be obtained.
 融合タンパク質が有する第一のペプチドを構成するアミノ酸残基数は、1~27であってもよく、2~27であってもよく、2~10であってもよく、2~8であってもよく、又は2~7であってもよい。第一のペプチドは、例えば、X QX モチーフで表されるアミノ酸配列を含むペプチドであってよい。ここで、nは、0~13の整数であってもよく、1~13の整数であってもよく、1~9の整数であってもよく、又は1~4の整数であってもよい。mは、0~13の整数であってもよく、1~13の整数であってもよく、1~9の整数であってもよく、又は1~4の整数であってもよい。X QX モチーフ中、複数あるX、及び複数あるXは互いに同一であっても異なってもよい。 The number of amino acid residues constituting the first peptide of the fusion protein may be 1 to 27, 2 to 27, 2 to 10, or 2 to 8. Or 2-7. The first peptide may be, for example, a peptide including an amino acid sequence represented by the X 1 n QX 2 m motif. Here, n may be an integer of 0 to 13, an integer of 1 to 13, an integer of 1 to 9, or an integer of 1 to 4. . m may be an integer of 0 to 13, an integer of 1 to 13, an integer of 1 to 9, or an integer of 1 to 4. In the X 1 n QX 2 m motif, a plurality of X 1 and a plurality of X 2 may be the same as or different from each other.
 X QX モチーフにおいて、Xは、グルタミン残基及びリジン(K)残基以外のアミノ酸残基を示す。X QX モチーフにおけるXは、グリシン(G)残基、アラニン(A)残基、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、チロシン(Y)残基、プロリン(P)残基、トリプトファン(W)残基、フェニルアラニン(F)残基、ヒスチジン(H)残基及びアルギニン(R)残基からなる群から選ばれる少なくとも1種のアミノ酸残基を含んでもよく、又はグリシン残基、アラニン残基、バリン残基、ロイシン残基、イソロイシン残基、チロシン残基、トリプトファン残基、及びフェニルアラニン残基からなる群から選ばれる少なくとも1種の疎水性アミノ酸残基を含んでもよい。 In the X 1 n QX 2 m motif, X 1 represents an amino acid residue other than a glutamine residue and a lysine (K) residue. X 1 in X 1 n QX 2 m motif, glycine (G), alanine (A) residue, valine (V), leucine (L) residues, isoleucine (I) residue, a tyrosine (Y ) Residue, proline (P) residue, tryptophan (W) residue, phenylalanine (F) residue, histidine (H) residue, and at least one amino acid residue selected from the group consisting of arginine (R) residues Or at least one hydrophobic group selected from the group consisting of glycine residue, alanine residue, valine residue, leucine residue, isoleucine residue, tyrosine residue, tryptophan residue, and phenylalanine residue Sex amino acid residues may be included.
 X QX モチーフにおけるXは、グルタミン残基及びリジン残基以外のアミノ酸残基を示す。X QX モチーフにおけるXは、例えば、メチオニン(M)残基、アルギニン(R)残基、グリシン残基及びセリン(S)残基からなる群から選ばれる少なくとも1種のアミノ酸残基を含んでもよい。 X 2 in X 1 n QX 2 m motif shows the amino acid residue other than glutamine and lysine residues. X 2 in X 1 n QX 2 m motif, for example, methionine (M) residues, arginine (R) residue, at least one amino acid residue selected from the group consisting of glycine and serine (S) residues Groups may be included.
 X QX モチーフで表されるアミノ酸配列は、例えば、FYPLQMRG、LLQG、及びAWHRPQFGG等で表されるアミノ酸配列であってよい。 The amino acid sequence represented by the X 1 n QX 2 m motif may be, for example, an amino acid sequence represented by FYPLQMRG, LLQG, AWHRPQFGG, or the like.
 融合タンパク質を構成するタンパク質は、特に制限されるものではなく、例えば、緑色蛍光タンパク質、抗体、酵素、抗原タンパク質、増殖因子、及び生理活性に作用するホルモン(例えば、インスリン及び成長ホルモン等)等が挙げられる。 The protein constituting the fusion protein is not particularly limited, and examples thereof include green fluorescent protein, antibody, enzyme, antigen protein, growth factor, and hormones (for example, insulin and growth hormone) that act on physiological activity. Can be mentioned.
 第一のペプチドは、タンパク質のC末端若しくはN末端に直接結合してもよく、又はタンパク質のC末端若しくはN末端に第一のリンカーを結合させ、当該第一のリンカーに結合してもよい。つまり、融合タンパク質は、タンパク質と、第一のリンカーと、第一のペプチドとを有していてもよい。融合タンパク質が第一のリンカーを有する場合、融合タンパク質は、例えば、[タンパク質]-[第一のリンカー]-[第一のペプチド]で表される融合タンパク質が含まれてもよく、[第一のペプチド]-[第一のリンカー]-[タンパク質]で表される融合タンパク質が含まれてもよい。 The first peptide may be directly bonded to the C-terminal or N-terminal of the protein, or may be bonded to the first linker by binding a first linker to the C-terminal or N-terminal of the protein. That is, the fusion protein may have a protein, a first linker, and a first peptide. When the fusion protein has a first linker, the fusion protein may include, for example, a fusion protein represented by [protein]-[first linker]-[first peptide] A fusion protein represented by [peptide]-[first linker]-[protein] may be included.
 第一のリンカーは、1~20個のアミノ酸残基を含む。第一のリンカーを構成するアミノ酸残基は、グリシン残基、セリン残基及びプロリン残基からなる群から選択される少なくとも1種のアミノ酸残基を含んでよく、グリシン残基、及びセリン残基からなる群から選択される少なくとも一種のアミノ酸残基を含んでよい。ここで、第一のリンカーを構成するアミノ酸残基数は以下のように決定される。まず、融合タンパク質のアミノ酸残基を解析し、融合タンパク質を構成するタンパク質のC末端又はN末端に直接接続するアミノ酸残基から第一のペプチドの方向に向かってアミノ酸残基の数を数える。アミノ酸残基の数が20個となるまでの間にグリシン残基、セリン残基及びプロリン残基以外のアミノ酸残基が検出された場合、検出された当該アミノ酸残基までのアミノ酸残基の数からひとつ減じた数を、第一のリンカーを構成するアミノ酸残基数とする。 The first linker contains 1 to 20 amino acid residues. The amino acid residue constituting the first linker may include at least one amino acid residue selected from the group consisting of a glycine residue, a serine residue, and a proline residue. It may contain at least one amino acid residue selected from the group consisting of Here, the number of amino acid residues constituting the first linker is determined as follows. First, the amino acid residues of the fusion protein are analyzed, and the number of amino acid residues is counted from the amino acid residue directly connected to the C-terminal or N-terminal of the protein constituting the fusion protein toward the first peptide. When amino acid residues other than glycine residue, serine residue and proline residue are detected before the number of amino acid residues reaches 20, the number of amino acid residues up to the detected amino acid residue The number obtained by subtracting one from is used as the number of amino acid residues constituting the first linker.
 第一のリンカーは、例えば、Gモチーフ、(GS)モチーフ、(PGモチーフ、(PGS)モチーフ、及び(SGS)モチーフ等で表されるペプチドであってよい。ここで、rは1~6の整数である。ここで、sは1~5の整数である。第一のリンカーは、より具体的には、GGGS、PGGG、SGGGS、及びPGGGS等が挙げられる。 The first linker is, for example, a peptide represented by a G r motif, a (G r S) s motif, a (PG r ) s motif, a (PG r S) s motif, and a (SG r S) s motif. It may be. Here, r is an integer of 1-6. Here, s is an integer of 1 to 5. More specifically, examples of the first linker include GGGS, PGGG, SGGGS, and PGGGS.
 融合タンパク質は、化学合成によって得られるものであってもよく、又は形質転換した宿主を利用してタンパク質を発現して得られるものであってもよい。化学合成によって得られる融合タンパク質としては、例えば、タンパク質の発現後修飾によって、第一のペプチド、又は第一のペプチド及び第一のリンカーを導入して得られるものを用いてもよい。形質転換した宿主を利用して得られる融合タンパク質としては、例えば、タンパク質のアミノ酸配列に、第一のペプチド、又は第一のペプチド及び第一のリンカーのアミノ酸配列を導入したもの(改変タンパク質)を設計して、当該改変タンパク質をコードする核酸配列と、当該核酸配列に作動可能に連結された1以上の調節配列とを有する発現ベクターで形質転換された宿主によって、当該改変タンパク質を発現させることで得られるものを用いてもよい。ここで、調節配列、発現ベクター、及び宿主等は特に制限されるものではない。 The fusion protein may be obtained by chemical synthesis, or may be obtained by expressing the protein using a transformed host. As the fusion protein obtained by chemical synthesis, for example, a protein obtained by introducing the first peptide or the first peptide and the first linker by post-expression modification of the protein may be used. As a fusion protein obtained using a transformed host, for example, a protein in which the first peptide or the amino acid sequence of the first peptide and the first linker is introduced into the amino acid sequence of the protein (modified protein) Designing and expressing the modified protein by a host transformed with an expression vector having a nucleic acid sequence encoding the modified protein and one or more regulatory sequences operably linked to the nucleic acid sequence. You may use what is obtained. Here, the regulatory sequence, expression vector, host and the like are not particularly limited.
 改変タンパク質をコードする核酸の製造方法は特に限定されず、設計した遺伝子を利用してポリメラーゼ連鎖反応(PCR)等で増幅してクローニングする方法であってよく、又は化学合成によって製造する方法であってもよい。改変タンパク質の精製等を容易にするために、改変タンパク質のアミノ酸配列のN末端に開始コドン及びHisタグからなるアミノ酸配列を付加したアミノ酸配列からなる改変タンパク質、をコードする核酸を合成してもよい。 The method for producing the nucleic acid encoding the modified protein is not particularly limited, and may be a method of cloning by amplification using polymerase chain reaction (PCR) using the designed gene, or a method of producing by chemical synthesis. May be. In order to facilitate purification of the modified protein, etc., a nucleic acid encoding a modified protein comprising an amino acid sequence in which an amino acid sequence comprising a start codon and a His tag is added to the N-terminus of the amino acid sequence of the modified protein may be synthesized. .
 1級アミノ基を有する化合物は、脂質部又は脂溶性ビタミン部を有する。1級アミノ基及び脂質部を有する化合物は、例えば、テトラデシルアミン、及びヘキサデシルアミン等の脂肪族アミンが挙げられる。1級アミノ基を有する化合物は、例えば、リジン残基を含有する第二のペプチド、及び、脂質部又は脂溶性ビタミン部を有する脂質ペプチドであってもよい。この場合、1級アミノ基は、リジン残基に由来するアミノ基であってよい。上記化合物は、例えば、リジン残基、及び、脂質部又は脂溶性ビタミン部を有する脂質ペプチドである。上記化合物が、リジン残基を有することによって、微生物由来トランスグルタミナーゼに基質としてより認識されやすくなる。 The compound having a primary amino group has a lipid part or a fat-soluble vitamin part. Examples of the compound having a primary amino group and a lipid part include aliphatic amines such as tetradecylamine and hexadecylamine. The compound having a primary amino group may be, for example, a second peptide containing a lysine residue and a lipid peptide having a lipid part or a fat-soluble vitamin part. In this case, the primary amino group may be an amino group derived from a lysine residue. The compound is, for example, a lipid peptide having a lysine residue and a lipid part or a fat-soluble vitamin part. When the above compound has a lysine residue, it is more easily recognized as a substrate by the microorganism-derived transglutaminase.
 上記化合物が有する第二のペプチドは、リジン残基のみで構成されていてもよく、複数のアミノ酸残基で構成されていてもよい。第二のペプチドを構成するアミノ酸残基数は、1~27であってもよく、2~27であってもよく、2~10であってもよく、2~8であってもよく、又は2~7であってもよい。第二のペプチドは、例えば、X KX モチーフで表されるアミノ酸配列を含むペプチドであってよい。ここで、pは、0~13の整数であってもよく、1~13の整数であってもよく、1~9の整数であってもよく、又は1~4の整数であってもよい。qは、0~13の整数であってもよく、1~13の整数であってもよく、1~9の整数であってもよく、又は1~4の整数であってもよい。X KX モチーフ中、複数あるX、及び複数あるXは互いに同一であっても異なってもよい。 The second peptide of the compound may be composed of only lysine residues or may be composed of a plurality of amino acid residues. The number of amino acid residues constituting the second peptide may be 1 to 27, 2 to 27, 2 to 10, 2 to 8, or It may be 2-7. The second peptide may be, for example, a peptide including an amino acid sequence represented by the X 3 p KX 4 q motif. Here, p may be an integer of 0 to 13, an integer of 1 to 13, an integer of 1 to 9, or an integer of 1 to 4. . q may be an integer of 0 to 13, an integer of 1 to 13, an integer of 1 to 9, or an integer of 1 to 4. In the X 3 p KX 4 q motif, a plurality of X 3 and a plurality of X 4 may be the same as or different from each other.
 X KX モチーフにおいて、Xは、グルタミン残基及びリジン残基以外のアミノ酸残基を示す。X KX モチーフにおけるXは、好ましくは、ヒスチジン残基、プロリン残基、トリプトファン残基及びアルギニン残基からなる群から選ばれる少なくとも1種のアミノ酸残基を含み、より好ましくは、ヒスチジン残基及びアルギニン残基からなる群から選ばれる少なくとも1種の塩基性アミノ酸残基を含む。X KX モチーフにおけるXが上記のアミノ酸残基を含むことによって、脂質ペプチドの反応溶液(例えば、水溶液)への溶解性をより向上させることが可能であり、使用可能な脂質又は脂溶性ビタミンの選択肢を広げるとともに、トランスグルタミナーゼ反応の進行をより促進できる。 In the X 3 p KX 4 q motif, X 3 represents an amino acid residue other than a glutamine residue and a lysine residue. X 3 in X 3 p KX 4 q motif preferably comprises a histidine residue, a proline residue, at least one amino acid residue selected from the group consisting of tryptophan and arginine residues, more preferably, It contains at least one basic amino acid residue selected from the group consisting of histidine residues and arginine residues. By X 3 p KX 4 q X in motif 3 includes the amino acid residue, the reaction solution of the lipid peptide (e.g., aqueous solution) it is possible to improve the solubility in the available lipid or While expanding the choice of fat-soluble vitamins, it can further promote the progress of the transglutaminase reaction.
 X KX モチーフにおけるXは、グルタミン残基及びリジン残基以外のアミノ酸残基を示す。X KX モチーフにおけるXは、例えば、グリシン残基及びセリン残基からなる群より選ばれる少なくとも1種のアミノ酸残基を含んでもよい。 X 4 in the X 3 p KX 4 q motif shows the amino acid residue other than glutamine and lysine residues. X 3 p X 4 in KX 4 q motif, for example, may include at least one amino acid residue selected from the group consisting of glycine and serine residues.
 X KX モチーフで表されるアミノ酸配列は、例えば、MRHKGS、KGS、RKGS及びHKGS等で表されるアミノ酸配列であってよい。X KX モチーフで表されるアミノ酸配列は、また例えば、K、RK、HK及びRHK等であってよい。 The amino acid sequence represented by the X 3 p KX 4 q motif may be, for example, an amino acid sequence represented by MRHKGS, KGS, RKGS, HKGS, or the like. The amino acid sequence represented by the X 3 p KX 4 q motif may also be, for example, K, RK, HK and RHK.
 上記脂質部は、脂質に由来する構造を備える部分である。上記脂溶性ビタミン部は、脂溶性ビタミンに由来する構造を備える部分である。上記脂質は、脂肪酸、及びステロイド等を含む。脂肪酸としては、例えば、飽和脂肪酸、一価不飽和脂肪酸、及び多価不飽和脂肪酸等が挙げられる。ステロイドとしては、例えば、コレステロール等が挙げられる。コレステロールとしては、例えば、リトコール酸等が挙げられる。上記脂質は、例えば、脂肪族炭化水素基からなる群から選ばれる少なくとも1種の炭化水素基を有する脂質であってよく、脂肪族炭化水素基は、直鎖であってよく、分岐又は脂環を有していてもよい。脂肪族炭化水素基は、例えば、炭素数6以上の脂肪族炭化水素基を有する脂質であってよく、炭素数12~29の脂肪族炭化水素基を有する脂質であってよく、炭素数12~18の脂肪族炭化水素基を有する脂質であってもよい。脂質が上述のような炭化水素基を有すると、細胞膜への脂質化タンパク質の係留をより強いものとすることができ、また細胞に対する毒性を充分に低いものとできる。炭素数12~18の脂肪族炭化水素基を有する脂質は、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、及びステアリン酸等の飽和脂肪酸が挙げられる。炭素数12~18の脂肪族炭化水素基を有する脂質は、上記飽和脂肪酸に加えて、例えば、オレイン酸及びリノール酸等の不飽和脂肪酸が挙げられる。炭素数12~24の脂肪族炭化水素基を有する脂質は、上記飽和脂肪酸に加えて、例えば、リトコール酸等が挙げられる。上記脂溶性ビタミンとしては、例えば、ビタミンA(レチナール等)、ビタミンD(エルゴカルシフェロール、及びコレカルシフェロール等),ビタミンE(α-トコフェロール等)、及びビタミンK(フィロキノン、メナキノン、メナジオン、及びメナジオール等)等が挙げられる。 The lipid part is a part having a structure derived from lipid. The fat-soluble vitamin part is a part having a structure derived from a fat-soluble vitamin. The lipid includes a fatty acid, a steroid and the like. Examples of fatty acids include saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. Examples of steroids include cholesterol. Examples of cholesterol include lithocholic acid and the like. The lipid may be, for example, a lipid having at least one hydrocarbon group selected from the group consisting of aliphatic hydrocarbon groups, and the aliphatic hydrocarbon group may be linear, branched or alicyclic You may have. The aliphatic hydrocarbon group may be, for example, a lipid having an aliphatic hydrocarbon group having 6 or more carbon atoms, a lipid having an aliphatic hydrocarbon group having 12 to 29 carbon atoms, and 12 to 12 carbon atoms. It may be a lipid having 18 aliphatic hydrocarbon groups. When the lipid has a hydrocarbon group as described above, the tethered lipidated protein to the cell membrane can be made stronger, and the toxicity to the cell can be made sufficiently low. Examples of the lipid having an aliphatic hydrocarbon group having 12 to 18 carbon atoms include saturated fatty acids such as lauric acid, myristic acid, palmitic acid, and stearic acid. Examples of the lipid having an aliphatic hydrocarbon group having 12 to 18 carbon atoms include unsaturated fatty acids such as oleic acid and linoleic acid in addition to the saturated fatty acid. Examples of the lipid having an aliphatic hydrocarbon group having 12 to 24 carbon atoms include lithocholic acid and the like in addition to the saturated fatty acid. Examples of the fat-soluble vitamin include vitamin A (such as retinal), vitamin D (such as ergocalciferol and cholecalciferol), vitamin E (such as α-tocopherol), and vitamin K (phylloquinone, menaquinone, menadione, and Menadiol, etc.).
 第二のペプチドは、脂質部又は脂溶性ビタミン部が末端に有するカルボキシル基若しくはアミノ基に直接結合してもよく、脂質部又は脂溶性ビタミン部が末端に有するカルボキシル基若しくはアミノ基に第二のリンカーを結合させ、当該第二のリンカーと結合していてもよい。つまり、脂質ペプチドは、脂質部又は脂溶性ビタミン部と、第二のリンカーと、第二のペプチドとを有していてもよい。脂質ペプチドが第二のリンカーを有する場合、脂質ペプチドは、例えば、[脂質部]-[第二のリンカー]-[第二のペプチド]で表される脂質ペプチドを含んでもよく、又は、[脂溶性ビタミン部]-[第二のリンカー]-[第二のペプチド]で表される脂質ペプチドを含んでもよい。 The second peptide may be directly bonded to the carboxyl group or amino group at the end of the lipid part or fat-soluble vitamin part, and the second peptide may be bonded to the carboxyl group or amino group at the end of the lipid part or fat-soluble vitamin part. A linker may be bound to the second linker. That is, the lipid peptide may have a lipid part or a fat-soluble vitamin part, a second linker, and a second peptide. When the lipid peptide has a second linker, the lipid peptide may include, for example, a lipid peptide represented by [lipid part]-[second linker]-[second peptide] or [lipid A lipid peptide represented by [soluble vitamin part]-[second linker]-[second peptide] may be included.
 第二のリンカーは、1~10個のアミノ酸残基を含むリンカーペプチドであってよく、又はポリアルキレングリコール鎖であってもよい。リンカーペプチドを構成するアミノ酸残基は、グリシン残基、セリン残基及びプロリン残基からなる群から選択される少なくとも1種のアミノ酸残基を含んでよい。ここで、リンカーペプチドを構成するアミノ酸残基数は以下のように決定される。まず、脂質ペプチドを構成するペプチド部分のアミノ酸残基を解析し、脂質部又は脂溶性ビタミン部に直接接続するアミノ酸残基から第二のペプチドの方向に向かってアミノ酸残基の数を数える。アミノ酸残基の数が10個となるまでの間にグリシン残基、セリン残基及びプロリン残基以外のアミノ酸残基が検出された場合、検出された当該アミノ酸残基までのアミノ酸残基の数からひとつ減じた数を、リンカーペプチドを構成するアミノ酸残基数とする。 The second linker may be a linker peptide containing 1 to 10 amino acid residues, or may be a polyalkylene glycol chain. The amino acid residue constituting the linker peptide may include at least one amino acid residue selected from the group consisting of a glycine residue, a serine residue and a proline residue. Here, the number of amino acid residues constituting the linker peptide is determined as follows. First, the amino acid residue of the peptide part which comprises a lipid peptide is analyzed, and the number of amino acid residues is counted toward the 2nd peptide from the amino acid residue directly connected to a lipid part or a fat-soluble vitamin part. When amino acid residues other than glycine residue, serine residue and proline residue are detected before the number of amino acid residues reaches 10, the number of amino acid residues up to the detected amino acid residue The number obtained by subtracting one from is used as the number of amino acid residues constituting the linker peptide.
 リンカーペプチドを構成するアミノ酸残基はまた、リジン残基、グリシン残基、セリン残基及びプロリン残基からなる群から選択される少なくとも1種のアミノ酸残基を含んでよい。この場合、リンカーペプチドを構成するアミノ酸残基数は以下のように決定される。まず、脂質ペプチドを構成するペプチド部分のアミノ酸残基を解析し、脂質部又は脂溶性ビタミン部に直接接続するアミノ酸残基から第二のペプチドの方向に向かってアミノ酸残基の数を数える。アミノ酸残基の数が10個となるまでの間にリジン残基、グリシン残基、セリン残基及びプロリン残基以外のアミノ酸残基が検出された場合、検出された当該アミノ酸残基の数からひとつ減じた数を、リンカーペプチドを構成するアミノ酸残基数とする。 The amino acid residue constituting the linker peptide may also contain at least one amino acid residue selected from the group consisting of lysine residue, glycine residue, serine residue and proline residue. In this case, the number of amino acid residues constituting the linker peptide is determined as follows. First, the amino acid residue of the peptide part which comprises a lipid peptide is analyzed, and the number of amino acid residues is counted toward the 2nd peptide from the amino acid residue directly connected to a lipid part or a fat-soluble vitamin part. When amino acid residues other than lysine residues, glycine residues, serine residues and proline residues are detected before the number of amino acid residues reaches 10, from the number of detected amino acid residues The number reduced by one is taken as the number of amino acid residues constituting the linker peptide.
 第二のリンカーは、例えば、Gモチーフ、(GS)モチーフ、(PGモチーフ、(PGS)モチーフ、及び(SGS)モチーフ等で表されるペプチドであってよい。ここで、rは1~6の整数を示す。ここで、sは1~5の整数を示す。第二のリンカーは、より具体的には、GG、GGGGS、SGGGS、PGGG、及びPGGGS等のアミノ酸配列を有するものが挙げられる。ポリアルキレングリコール鎖は、(RO)で表される。ここで、tは1~3の整数を示し、Rはアルキル基を示す。ポリアルキレングリコール鎖は、例えば、ポリエチレングリコール、及びポリプロピレングリコール等が挙げられる。 The second linker is, for example, a peptide represented by a G r motif, a (G r S) s motif, a (PG r ) s motif, a (PG r S) s motif, and a (SG r S) s motif. It may be. Here, r represents an integer of 1 to 6. Here, s represents an integer of 1 to 5. More specifically, examples of the second linker include those having an amino acid sequence such as GG, GGGGS, SGGGS, PGGG, and PGGGS. The polyalkylene glycol chain is represented by (RO) t . Here, t represents an integer of 1 to 3, and R represents an alkyl group. Examples of the polyalkylene glycol chain include polyethylene glycol and polypropylene glycol.
 上記化合物(例えば、上記脂質ペプチド)は、例えば、脂質末端のアミノ化等によって得られるものを用いてもよく、ペプチド合成によって得られるものを用いてもよい。ペプチド合成としては、例えば、Fmoc固相合成法を使用することができる。Fmoc固相合成法に用いる樹脂は、脂質ペプチドに要求される特性、及び反応させる融合タンパク質の特性等に応じて選択することができる。 As the above compound (for example, the above lipid peptide), for example, a compound obtained by amination of a lipid terminal or the like may be used, or a compound obtained by peptide synthesis may be used. For peptide synthesis, for example, the Fmoc solid phase synthesis method can be used. The resin used for the Fmoc solid phase synthesis method can be selected according to the characteristics required for the lipid peptide, the characteristics of the fusion protein to be reacted, and the like.
 第一のペプチドは、第二のペプチドよりも疎水性アミノ酸残基の割合が高くてもよい。第一のペプチド及び第二のペプチドを上記のような関係とすることで、融合タンパク質及び脂質ペプチドが微生物由来トランスグルタミナーゼによって認識されやすいものとできる。 The first peptide may have a higher proportion of hydrophobic amino acid residues than the second peptide. By setting the first peptide and the second peptide as described above, the fusion protein and the lipid peptide can be easily recognized by the microorganism-derived transglutaminase.
 第二のペプチドは、第一のペプチドよりも親水性アミノ酸残基の割合が高くてもよい。第一のペプチド及び第二のペプチドを上記のような関係とすることで、脂質ペプチドの脂質部又は脂溶性ビタミン部に由来する疎水性の程度を弱め、トランスグルタミナーゼ反応を促進することができる。 The second peptide may have a higher proportion of hydrophilic amino acid residues than the first peptide. By setting the first peptide and the second peptide as described above, the degree of hydrophobicity derived from the lipid part or the fat-soluble vitamin part of the lipid peptide can be weakened and the transglutaminase reaction can be promoted.
 上記化合物(例えば、上記脂質ペプチド)の臨界ミセル濃度は、例えば、1μM以上、5μM以上、10μM以上、又は20μM以上であってよい。上記化合物(例えば、上記脂質ペプチド)の臨界ミセル濃度は、例えば、350μM以下、300μM以下、250μM以下、又は200μM以下であってよい。上記化合物(例えば、上記脂質ペプチド)の臨界ミセル濃度はまた、例えば、150μM以下、又は140μM以下であってよい。上記化合物の臨界ミセル濃度が上記の範囲内にあることによって、トランスグルタミナーゼ反応の際に、系内において上記化合物がミセルを形成することが抑制され、微生物由来トランスグルタミナーゼの反応サイトに上記化合物が浸入することが容易となり、トランスグルタミナーゼ反応を促進することができる。臨界ミセル濃度は、例えば、脂質部又は脂溶性ビタミン部の種類、第二のリンカー並びに第二のペプチドの長さ及び構成するアミノ酸残基の種類等を選択することによって調整することができる。臨界ミセル濃度は、上記化合物にピレンを含む溶液を用いて、385nmにおける蛍光強度(I385)と373nmにおける蛍光強度(I373)との比(I385/I373)を測定する方法によって、I385/I373比の変化から決定することができる。具体的には、後述する実施例に記載した方法に基づいて決定することができる。 The critical micelle concentration of the compound (eg, the lipid peptide) may be, for example, 1 μM or more, 5 μM or more, 10 μM or more, or 20 μM or more. The critical micelle concentration of the compound (eg, the lipid peptide) may be, for example, 350 μM or less, 300 μM or less, 250 μM or less, or 200 μM or less. The critical micelle concentration of the compound (eg, the lipid peptide) may also be, for example, 150 μM or less, or 140 μM or less. When the critical micelle concentration of the compound is within the above range, the compound is prevented from forming micelles in the system during the transglutaminase reaction, and the compound enters the reaction site of the microorganism-derived transglutaminase. And the transglutaminase reaction can be promoted. The critical micelle concentration can be adjusted, for example, by selecting the type of lipid part or fat-soluble vitamin part, the length of the second linker and second peptide, the type of amino acid residue constituting the part, and the like. The critical micelle concentration was determined by measuring the ratio (I 385 / I 373 ) of the fluorescence intensity (I 385 ) at 385 nm and the fluorescence intensity (I 373 ) at 373 nm using a solution containing pyrene in the above compound. It can be determined from the change in the 385 / I 373 ratio. Specifically, it can be determined based on the method described in Examples described later.
 上記化合物(例えば、上記脂質ペプチド)は、脂質部又は脂溶性ビタミン部の種類等によって、種々の二次構造を取り得る。上記化合物の二次構造としては、例えば、βシート構造及びランダムコイル構造等が挙げられる。例えば、上記化合物の二次構造が、βシート構造であると、細胞膜への係留能力を向上させることができる。 The compound (for example, the lipid peptide) can have various secondary structures depending on the type of lipid part or fat-soluble vitamin part. Examples of the secondary structure of the compound include a β sheet structure and a random coil structure. For example, when the secondary structure of the compound is a β sheet structure, the ability to anchor to the cell membrane can be improved.
 微生物由来トランスグルタミナーゼは、野生型の微生物由来トランスグルタミナーゼ、又は野生型の微生物由来トランスグルタミナーゼの変異体であってよい。本明細書において「野生型の微生物由来トランスグルタミナーゼの変異体」とは、野生型の微生物由来トランスグルタミナーゼのアミノ酸配列に依拠して、そのアミノ酸配列を改変したもの又は野生型の微生物由来トランスグルタミナーゼのアミノ酸配列によらずに人工的に設計及び合成したものであり、トランスグルタミナーゼ活性を有するタンパク質である。 The microorganism-derived transglutaminase may be a wild-type microorganism-derived transglutaminase or a mutant of a wild-type microorganism-derived transglutaminase. In the present specification, “a mutant of a wild-type microorganism-derived transglutaminase” refers to an amino acid sequence modified from a wild-type microorganism-derived transglutaminase or a wild-type microorganism-derived transglutaminase. It is a protein that is artificially designed and synthesized regardless of the amino acid sequence and has transglutaminase activity.
 野生型の微生物由来トランスグルタミナーゼの変異体は、例えば、野生型の微生物由来トランスグルタミナーゼのアミノ酸配列(シグナルペプチド部分を除く)において、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列を有する。アミノ酸残基を置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者において周知の方法によって行うことができる。アミノ酸残基を置換、欠失、挿入及び/又は付加は、例えば、1~10個のアミノ酸残基、1~5個のアミノ酸残基、1~3個のアミノ酸残基、1個のアミノ酸残基に対して行われてもよい。具体的には、国際公開2018/004014号に開示された微生物由来トランスグルタミナーゼの変異体等を使用することができる。 The mutant of the wild-type microorganism-derived transglutaminase is, for example, a substitution, deletion, insertion and / or substitution of one or more amino acid residues in the amino acid sequence of the wild-type microorganism-derived transglutaminase (excluding the signal peptide portion). It has an amino acid sequence corresponding to the addition. Substitution, deletion, insertion and / or addition of amino acid residues can be performed by methods well known to those skilled in the art such as partial-directed mutagenesis. Substitution, deletion, insertion and / or addition of amino acid residues is, for example, 1 to 10 amino acid residues, 1 to 5 amino acid residues, 1 to 3 amino acid residues, 1 amino acid residue It may be performed on a group. Specifically, a mutant of a microorganism-derived transglutaminase disclosed in International Publication No. 2018/004014 can be used.
 脂質化タンパク質の製造方法において、微生物由来トランスグルタミナーゼと、融合タンパク質と、1級アミノ基を有する化合物(例えば、脂質ペプチドを含む化合物)とを、溶媒に溶解させた反応溶液中で反応を行う。溶媒は水を含み、例えば、リン酸緩衝生理食塩水を用いることができる。反応温度は、微生物由来トランスグルタミナーゼの活性に合わせて調整することができ、例えば、50℃以上、又は60℃以上であってよく、70℃以下であってよい。 In the method for producing lipidated protein, a reaction is performed in a reaction solution in which a microorganism-derived transglutaminase, a fusion protein, and a compound having a primary amino group (for example, a compound containing a lipid peptide) are dissolved in a solvent. The solvent includes water, and for example, phosphate buffered saline can be used. The reaction temperature can be adjusted according to the activity of the microorganism-derived transglutaminase. For example, the reaction temperature may be 50 ° C. or higher, 60 ° C. or higher, and 70 ° C. or lower.
 反応溶液における融合タンパク質と脂質ペプチドを含む化合物との濃度は、融合タンパク質及び脂質ペプチドを含む化合物の種類、及び組み合わせによって調整することができる。例えば、脂質ペプチドにおける第二のペプチドに含まれる1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)は、例えば、3以上、4以上、5以上、10以上、又は15以上であってよい。K/Q比率は、例えば、25以下又は20以下であってよい。例えば、K/Q比率を上記数値範囲内とすることによって、より効率的にタンパク質に脂質を導入することができる。 The concentration of the fusion protein and the compound containing the lipid peptide in the reaction solution can be adjusted by the type and combination of the compound containing the fusion protein and the lipid peptide. For example, the molar ratio of the primary amino group (here lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein ( The (K / Q ratio) may be, for example, 3 or more, 4 or more, 5 or more, 10 or more, or 15 or more. The K / Q ratio may be, for example, 25 or less or 20 or less. For example, lipids can be more efficiently introduced into proteins by setting the K / Q ratio within the above numerical range.
 脂質化タンパク質の製造方法は、脂質化タンパク質を作用させる対象となる細胞の存在下で行うこともできる。すなわち、脂質化タンパク質の製造方法の別の実施形態は、細胞(例えば、脂質化タンパク質を作用させる対象となる細胞)及び微生物由来トランスグルタミナーゼの存在下、融合タンパク質と、1級アミノ基を有する化合物とを反応させて、上記融合タンパク質と上記化合物とがイソペプチド結合によって架橋された脂質化タンパク質を得る工程を備える。上記融合タンパク質は、グルタミン残基を含有する第一のペプチド及びタンパク質を有し、上記化合物は、脂質部又は脂溶性ビタミン部を有する。 The method for producing a lipidated protein can also be performed in the presence of a target cell on which the lipidated protein acts. That is, another embodiment of the method for producing a lipidated protein includes a compound having a primary amino group and a fusion protein in the presence of a cell (for example, a cell to be treated with a lipidated protein) and a microorganism-derived transglutaminase. To obtain a lipidated protein in which the fusion protein and the compound are cross-linked by an isopeptide bond. The fusion protein has a first peptide and protein containing a glutamine residue, and the compound has a lipid part or a fat-soluble vitamin part.
 脂質化タンパク質を係留させる対象となる細胞の存在下で、融合タンパク質と脂質ペプチドとの反応を行う方法は、上述のようにあらかじめ脂質化タンパク質の合成及び生成を行ってから、対象とする細胞の細胞膜へ脂質化タンパク質を係留させる方法に比べて、精製などの操作が不要であるため有益である。 The method of reacting the fusion protein with the lipid peptide in the presence of the cell to which the lipidated protein is to be anchored is as follows. Compared with the method of tethering lipidated proteins to cell membranes, it is advantageous because operations such as purification are unnecessary.
[脂質化タンパク質]
 脂質化タンパク質の一実施形態は、グルタミン残基を含有する第一のペプチド及びタンパク質を有する融合タンパク質部、及び脂質部又は脂溶性ビタミン部を含む。上記脂質部又は上記脂溶性ビタミン部が、上記第一のペプチドのグルタミン残基とイソペプチド結合によって上記融合タンパク質部と結合している。上記脂質部又は上記脂溶性ビタミン部は、リジン残基を含有する第二のペプチドを有する脂質ペプチド部を含んでもよい。
[Lipidated protein]
One embodiment of a lipidated protein comprises a fusion protein portion having a first peptide and protein containing a glutamine residue, and a lipid portion or a fat-soluble vitamin portion. The lipid part or the fat-soluble vitamin part is bound to the fusion protein part by a glutamine residue of the first peptide and an isopeptide bond. The lipid part or the fat-soluble vitamin part may include a lipid peptide part having a second peptide containing a lysine residue.
 脂質化タンパク質は、上述の脂質化タンパク質の製造方法によっても得ることができる。したがって、脂質化タンパク質は、上述の脂質化タンパク質の製造方法についての説明内容を適用することができる。また逆に、本実施形態の脂質化タンパク質についての説明は、上述の脂質化タンパク質の製造方法に適用することができる。 Lipidated protein can also be obtained by the above-described method for producing lipidated protein. Therefore, the description content about the manufacturing method of the above-mentioned lipidated protein is applicable to lipidated protein. Conversely, the description of the lipidated protein of the present embodiment can be applied to the above-described method for producing a lipidated protein.
 脂質化タンパク質は、脂質又は脂溶性ビタミンを導入することによって、細胞膜への係留等の細胞膜との相互作用を持つことが可能となっている。本実施形態に係る脂質化タンパク質は、タンパク質に導入することが可能な脂質を種々選択可能であり、また第一のペプチド及び第二のペプチド並びに第一のリンカー及び第二のリンカーの選択によって、細胞膜への係留の程度を制御することが可能である。本実施形態に係る脂質化タンパク質は、例えば、医薬、分析試薬、及び酵素反応等に有用である。 Lipidated proteins can interact with cell membranes such as anchoring to cell membranes by introducing lipids or fat-soluble vitamins. The lipidated protein according to the present embodiment can select various lipids that can be introduced into the protein, and by selecting the first peptide and the second peptide, and the first linker and the second linker, It is possible to control the degree of tethering to the cell membrane. The lipidated protein according to the present embodiment is useful for, for example, drugs, analytical reagents, enzyme reactions, and the like.
 上記脂質化タンパク質を細胞と共存又は細胞に作用させた際の細胞生存率における50%効果濃度(CC50)は、例えば、1μM以上、5μM以上、10μM以上、又は20μM以上であってよい。上記脂質化タンパク質を細胞と共存又は細胞に作用させた際の細胞生存率における50%効果濃度は、例えば、150μM以下、又は140μM以下であってよい。上記細胞生存率における50%効果濃度が上記の範囲内にあることによって、脂質化タンパク質の安全性をより十分なものとすることができる。細胞生存率における50%効果濃度は、例えば、脂質部又は脂溶性ビタミン部の種類、脂質部の鎖長等を選択することによって調整することができる。細胞生存率における50%効果濃度は、WSTアッセイによって評価することができる。具体的には、後述する実施例に記載した方法に基づいて細胞生存率における50%効果濃度を決定することができる。 The 50% effective concentration (CC50) in the cell viability when the lipidated protein coexists with or acts on cells may be, for example, 1 μM or more, 5 μM or more, 10 μM or more, or 20 μM or more. The 50% effective concentration in cell viability when the lipidated protein coexists with or acts on cells may be, for example, 150 μM or less, or 140 μM or less. When the 50% effective concentration in the cell viability is within the above range, the safety of the lipidated protein can be further improved. The 50% effective concentration in cell viability can be adjusted, for example, by selecting the type of lipid part or fat-soluble vitamin part, the chain length of the lipid part, and the like. The 50% effective concentration in cell viability can be assessed by WST assay. Specifically, the 50% effective concentration in cell viability can be determined based on the method described in Examples described later.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment at all.
 以下、実施例、比較例及び参考例を参照して本発明の内容をより詳細に説明する。ただし、本発明は、下記の実施例に限定されるものではない。 Hereinafter, the contents of the present invention will be described in more detail with reference to examples, comparative examples, and reference examples. However, the present invention is not limited to the following examples.
(実施例1)
[融合タンパク質の調製]
 高感度緑色蛍光タンパク質(EGFP)(GeneBankアクセッション番号:HM640279、GI:312205490)の塩基配列及びアミノ酸配列に基づいて、配列番号1~3に示すアミノ酸配列からなる融合タンパク質を設計した。これらの融合タンパク質はいずれもグルタミン(Q)残基を含む第一のペプチド部分を有している。なお、配列番号1及び配列番号2に示すアミノ酸配列においては、EGFPと第一のペプチドとがGly-Gly-Gly-Serの4塩基からなるリンカーによって結合している。一方、配列番号3に示すアミノ酸配列においては、EGFPと第一のペプチドとが直接結合している。
(Example 1)
[Preparation of fusion protein]
Based on the base sequence and amino acid sequence of highly sensitive green fluorescent protein (EGFP) (GeneBank accession number: HM640279, GI: 31205490), a fusion protein consisting of the amino acid sequences shown in SEQ ID NOs: 1 to 3 was designed. Both of these fusion proteins have a first peptide portion containing a glutamine (Q) residue. In the amino acid sequences shown in SEQ ID NO: 1 and SEQ ID NO: 2, EGFP and the first peptide are linked by a linker consisting of 4 bases of Gly-Gly-Gly-Ser. On the other hand, in the amino acid sequence shown in SEQ ID NO: 3, EGFP and the first peptide are directly bound.
 次に、設計した上記融合タンパク質をコードする核酸を合成した。当該核酸をクローニングベクター(pET22b+)にクローニングした。その後、当該核酸を、PCR法によって遺伝子組換えを行うことで、目的タグ配列が挿入された発現ベクターを得た。この発現ベクターの配列は、DNAシーケンスにより同定した。 Next, a nucleic acid encoding the designed fusion protein was synthesized. The nucleic acid was cloned into a cloning vector (pET22b +). Thereafter, the nucleic acid was genetically recombined by the PCR method to obtain an expression vector in which the target tag sequence was inserted. The sequence of this expression vector was identified by DNA sequencing.
 配列番号1で示されるアミノ酸配列を有するタンパク質をコードする核酸を含む上記発現ベクターで、大腸菌BL21(DE3)株に対してヒートショック法を用いて形質転換した。形質転換した大腸菌を、アンピシリンナトリウム100μg/mLで含むLB寒天培地に植菌して、37℃で一晩静置することでコロニーを得た。得られた大腸菌コロニーを、アンピシリンナトリウム100μg/mLで含むLB培地10mLに植菌して、37℃、200rpmで4時間培養した。その後、500mLのLB培地に植菌して、37℃、120rpmで培養を行い、OD600が0.6に到達した時点で、イソプロピル-β-チオガラクトピラノシド(Isopropyl β-D-1-Thiogalactopyranoside:IPTG)を終濃度が0.5mMとなるように添加して、培養温度を15℃に下げ、更に16時間培養を継続した。 The E. coli BL21 (DE3) strain was transformed with the above expression vector containing a nucleic acid encoding a protein having the amino acid sequence represented by SEQ ID NO: 1 using the heat shock method. The transformed Escherichia coli was inoculated into an LB agar medium containing 100 μg / mL of ampicillin sodium, and allowed to stand at 37 ° C. overnight to obtain colonies. The obtained Escherichia coli colony was inoculated into 10 mL of LB medium containing 100 μg / mL of ampicillin sodium and cultured at 37 ° C. and 200 rpm for 4 hours. Thereafter, the cells are inoculated into 500 mL of LB medium and cultured at 37 ° C. and 120 rpm. When OD600 reaches 0.6, isopropyl-β-thiogalactopyranoside (Isopropyl β-D-1-Thiogalactopyranoside) is obtained. : IPTG) was added to a final concentration of 0.5 mM, the culture temperature was lowered to 15 ° C., and the culture was further continued for 16 hours.
 培養後、培養液を6000×g、7分間の条件で遠心分離を行い、菌体を回収した。得られた菌体をTBS緩衝液(25mMのTris-HCl及び150mMのNaCl水溶液の混合液、pH7.4)で3回洗浄した後、上清を除去し、ペレット状になった菌体を-80℃で凍結保存した。凍結保存したペレットをTBS緩衝液15mLに溶解させた後、超音波処理によって菌体を粉砕し、遠心分離(温度:4℃、遠心力:18000×g、時間:20分間)によって破砕した菌体の沈殿物と、タンパク質が溶解した溶液とを分離した。得られた溶液を0.45μmのPVDFメンブレンフィルター及び0.22μmのPVDFメンブレンフィルターでろ過して、不溶性画分及び菌体を除去した。不溶性画分等が除去された溶液に対してHisTrap Excel カラム(1mL)を用いて、タンパク質の精製を行った。得られたタンパク質に対してSDS-PAGEを行い、設計した融合タンパク質に対応する分子量帯に相当するバンドの出現が見られ、融合タンパク質の発現及び純度を確認した。 After culturing, the culture was centrifuged at 6000 × g for 7 minutes to recover the cells. The obtained bacterial cells were washed three times with TBS buffer (mixture of 25 mM Tris-HCl and 150 mM NaCl aqueous solution, pH 7.4), the supernatant was removed, and the pelleted bacterial cells were- It was stored frozen at 80 ° C. After the cryopreserved pellet was dissolved in 15 mL of TBS buffer, the cells were pulverized by sonication and disrupted by centrifugation (temperature: 4 ° C., centrifugal force: 18000 × g, time: 20 minutes). Were separated from the protein-dissolved solution. The obtained solution was filtered through a 0.45 μm PVDF membrane filter and a 0.22 μm PVDF membrane filter to remove insoluble fractions and bacterial cells. Protein was purified using a HisTrap Excel column (1 mL) with respect to the solution from which the insoluble fraction and the like were removed. SDS-PAGE was performed on the obtained protein, and the appearance of a band corresponding to the molecular weight band corresponding to the designed fusion protein was observed, confirming the expression and purity of the fusion protein.
[脂質部を有する化合物(脂質ペプチド)の調製]
 Fmoc固相合成法によって、下記表1に記載のアミノ酸配列を1アミノ酸ずつ縮合して合成して第二のペプチドを調製し、その後、第二のペプチドのN末端アミノ酸のアミノ基とミリスチン酸を縮合して脂質ペプチド1を合成した。得られた脂質ペプチドは、逆相液体クロマトグラフィー(RP-HPLC)によって精製した。精製後の脂質ペプチドの同定及び純度の測定は、MALDI-TOF-MS及びRP-HPLCによって行った。また、ミリスチン酸と第二のペプチドとをリンカーで接続した脂質ペプチドを同様に合成した(表1の脂質ペプチド2~12)。ミリスチン酸に代えて、ラウリン酸、パルミチン酸、ステアリン酸を用いて同様に脂質ペプチドを合成した(表1の脂質ペプチド13~15)。第二のペプチドとして、MRHKGSよりも短いペプチドを用いて同様に脂質ペプチドを合成した(表1の脂質ペプチド16~21)。ミリスチン酸に代えて、リトコール酸を用いて脂質ペプチドを合成した(表1の脂質ペプチド22)。
[Preparation of compound having lipid part (lipid peptide)]
The Fmoc solid phase synthesis method is used to prepare a second peptide by condensing the amino acid sequences shown in Table 1 below, one by one, and then the amino group and myristic acid of the N-terminal amino acid of the second peptide are prepared. Lipid peptide 1 was synthesized by condensation. The resulting lipid peptide was purified by reverse phase liquid chromatography (RP-HPLC). Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC. In addition, lipid peptides in which myristic acid and the second peptide were connected by a linker were synthesized in the same manner (lipid peptides 2 to 12 in Table 1). Lipid peptides were synthesized in the same manner using lauric acid, palmitic acid, and stearic acid instead of myristic acid (lipid peptides 13 to 15 in Table 1). Lipid peptides were synthesized in the same manner using a peptide shorter than MRHKGS as the second peptide (lipid peptides 16 to 21 in Table 1). A lipid peptide was synthesized using lithocholic acid instead of myristic acid (lipid peptide 22 in Table 1).
 RP-HPLCを用いた測定は、4.6×250mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂質ペプチド(0.5mg/mL、20μL)の溶出は、30分間後にアセトニトリルの濃度勾配が30%から60%になるように流速1.0mL/minで移動相を送液する条件で行い、220nmの吸光度で検出した。また、MALDI-TOF-MSを用いた測定は、0.5mg/mLの脂質ペプチド溶液2μLと、α-シアノ-4-ヒドロキシけい皮酸(CHCA)マトリックスとを用いて行った。 Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 250 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. The elution of lipid peptide (0.5 mg / mL, 20 μL) was performed under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 30% to 60% after 30 minutes. The absorbance was detected. Measurement using MALDI-TOF-MS was performed using 2 μL of a 0.5 mg / mL lipid peptide solution and an α-cyano-4-hydroxycinnamic acid (CHCA) matrix.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[脂質ペプチドの細胞毒性試験]
 合成した脂質ペプチドの細胞に対する毒性をWSTアッセイによって評価した。100μLのリン酸緩衝生理食塩水(PBS)で2回洗浄した浮遊細胞SNU-1を5.0×10個/ウェル(25μLの液体培地(Opti-MEM、ライフテクノロジーズジャパン株式会社製))となるように、96ウェルプレートに播種した。そして、上記で合成した脂質ペプチド(0~1000μM)を25μLだけ加えて混合し、終濃度が0~500μMとなるようにして溶液を調製した。得られた溶液を37℃の条件下で、一日間インキュベートした。インキュベート後、Opti-MEMで6倍に希釈した発色剤(WST-8、同仁化学研究所製)を60μL/ウェルとなるように添加して、37℃の条件下で、90分間インキュベートした。そして、450nmにおける吸光度を測定して、細胞生存率を算出した。細胞生存率は以下の式より計算した。結果を図1に示す。図1より、細胞毒性の指標であるCC50を、KaleidaGraphのシグモイド回帰曲線から算出した。結果を表2に示す。
[Cytotoxicity test of lipid peptides]
Toxicity of synthesized lipid peptides to cells was evaluated by WST assay. Floating cells SNU-1 washed twice with 100 μL phosphate buffered saline (PBS) 5.0 × 10 4 cells / well (25 μL liquid medium (Opti-MEM, Life Technologies Japan)) and Inoculated into a 96-well plate. Then, 25 μL of the lipid peptide synthesized above (0 to 1000 μM) was added and mixed to prepare a solution with a final concentration of 0 to 500 μM. The obtained solution was incubated at 37 ° C. for one day. After the incubation, a color former (WST-8, manufactured by Dojindo Laboratories) diluted 6-fold with Opti-MEM was added to 60 μL / well and incubated at 37 ° C. for 90 minutes. Then, the absorbance at 450 nm was measured, and the cell viability was calculated. Cell viability was calculated from the following formula. The results are shown in FIG. From FIG. 1, CC50, which is an index of cytotoxicity, was calculated from a sigmoidal regression curve of KaleidaGraph. The results are shown in Table 2.
 細胞生存率[%]=[OD450(試料)-OD450(ブランク)]/[OD450(未処理)-OD450(ブランク)]×100
 上記式において、ODは光学濃度を示す。
Cell viability [%] = [OD450 (sample) −OD450 (blank)] / [OD450 (untreated) −OD450 (blank)] × 100
In the above formula, OD represents optical density.
[脂質ペプチドの臨界ミセル濃度(CMC)の測定]
 表2に示す脂質ペプチドの臨界ミセル濃度を測定した。脂質ペプチドの濃度は、ピレン法(J. Aguiar et al., J. Colloid Interface Sci. 2003, 258, p.116-122)に従って測定した。まず、2μLミクロチューブに100μMのピレン(テトラヒドロフラン溶液)を取り、テトラヒドロフランを蒸発させた。その後、100μLの脂質ペプチド(0.0001~0.5mM、PBS溶液)を上記ミクロチューブに加えて、25℃、15rpmの条件下で、60分間インキュベートした。インキュベート後、PBS溶液を96ウェルプレートに、50μL/ウェルとなるように添加し、蛍光プレートリーダーで、385nmにおける蛍光強度(I385)と373nmにおける蛍光強度(I373)との比(I385/I373)を測定した。励起光の波長は334nmに設定した。脂質ペプチド1を用いた場合の結果を図2に示す。図2におけるI385/I373比の変化から、臨界ミセル濃度を決定した。結果を表2に示す。
[Measurement of critical micelle concentration (CMC) of lipid peptide]
The critical micelle concentration of the lipid peptides shown in Table 2 was measured. The lipid peptide concentration was measured according to the pyrene method (J. Aguar et al., J. Colloid Interface Sci. 2003, 258, p. 116-122). First, 100 μM pyrene (tetrahydrofuran solution) was taken in a 2 μL microtube, and tetrahydrofuran was evaporated. Thereafter, 100 μL of lipid peptide (0.0001 to 0.5 mM, PBS solution) was added to the microtube and incubated at 25 ° C. and 15 rpm for 60 minutes. After incubation, a PBS solution was added to a 96-well plate at 50 μL / well, and the ratio of fluorescence intensity at 385 nm (I 385 ) to fluorescence intensity at 373 nm (I 373 ) (I 385 / I 373 ) was measured. The wavelength of the excitation light was set at 334 nm. The results when lipid peptide 1 is used are shown in FIG. The critical micelle concentration was determined from the change in the I 385 / I 373 ratio in FIG. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1に示す結果から、いずれの脂質ペプチドもCC50が大きな値となっており、脂質ペプチドが通常使用される1μM程度の濃度であれば、細胞毒性は低いことが確認された。また、第二のリンカーの選択によって、細胞毒性を調整することができることも確認された。表2に示す結果から、第二のリンカーの選択によって、臨界ミセル濃度を調整することができることが確認された。 1. From the results shown in FIG. 1, it was confirmed that any lipid peptide had a large CC50 value, and the cytotoxicity was low when the lipid peptide was used at a concentration of about 1 μM. It was also confirmed that cytotoxicity can be adjusted by selecting a second linker. From the results shown in Table 2, it was confirmed that the critical micelle concentration can be adjusted by selecting the second linker.
[脂質ペプチドの円二色性スペクトル測定]
 合成した脂質ペプチドの円二色性スペクトル測定を行い、二次構造を評価した。まず、50μMの脂質ペプチドを、400μLのPBS中に溶解して、37℃の条件下で、30分間インキュベートした。インキュベート後、PBS溶液を、光路長0.1cmの石英セルを用いて、円二色性スペクトルの測定を行った。測定は、温度を37℃、走査速度を50nm/分、データ取込み間隔を0.2nmとして行った。結果を図3及び図4に示す。
[Measurement of circular dichroism spectra of lipid peptides]
The circular dichroism spectrum of the synthesized lipid peptide was measured and the secondary structure was evaluated. First, 50 μM lipid peptide was dissolved in 400 μL of PBS and incubated at 37 ° C. for 30 minutes. After the incubation, the circular dichroism spectrum of the PBS solution was measured using a quartz cell having an optical path length of 0.1 cm. The measurement was performed at a temperature of 37 ° C., a scanning speed of 50 nm / min, and a data acquisition interval of 0.2 nm. The results are shown in FIGS.
 図3及び図4は、合成した脂質ペプチドの円二色性スペクトル測定の結果を示すグラフである。図3は、脂質ペプチド1,3,6,及び9~12の結果を示し、図4には、脂質ペプチド9、及び16~21の結果を示している。図3に示す結果から、脂質ペプチド9~11は、215~225nmに負のピークを有することから、脂質ペプチドがβシート構造を形成していることが確認された。また、脂質ペプチド6及び12は、205nmに負のピークを有することから、脂質ペプチドがランダムコイル構造を形成していることが確認された。図4に示す結果から、脂質ペプチド16,17及び20も脂質ペプチド9と同様にβシート構造を形成していることが確認された。また脂質ペプチド19及び21がランダムコイル構造を形成していることが確認された。βシート構造を形成する脂質ペプチドを用いることで、細胞膜への係留能力を向上させることが期待される。 3 and 4 are graphs showing the results of circular dichroism spectrum measurement of the synthesized lipid peptide. FIG. 3 shows the results for lipid peptides 1, 3, 6, and 9-12, and FIG. 4 shows the results for lipid peptides 9, and 16-21. From the results shown in FIG. 3, lipid peptides 9 to 11 have a negative peak at 215 to 225 nm, confirming that the lipid peptide forms a β sheet structure. Moreover, since the lipid peptides 6 and 12 have a negative peak at 205 nm, it was confirmed that the lipid peptides formed a random coil structure. From the results shown in FIG. 4, it was confirmed that the lipid peptides 16, 17 and 20 also formed a β sheet structure like the lipid peptide 9. It was also confirmed that lipid peptides 19 and 21 formed a random coil structure. By using a lipid peptide that forms a β-sheet structure, it is expected to improve the anchoring ability to the cell membrane.
[融合タンパク質と脂質ペプチドとの反応]
 上記配列番号1で表されるアミノ酸配列を有する融合タンパク質を10μM、上記脂質ペプチド1を50μM、及び微生物由来トランスグルタミナーゼを0.1U/mLを、10mLのPBS中で混合させ、37℃の条件下で、60分間反応させた。このとき、脂質ペプチドにおける第二のペプチドに含まれる1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を5とした。60分間経過後、0.2%TFA含有アセトニトリルを30μL添加して反応を停止させた。RP-HPLCによって、脂質化タンパク質が得られたことを確認した。結果を図5に示す。
[Reaction between fusion protein and lipid peptide]
10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1, 50 μM of the lipid peptide 1, and 0.1 U / mL of microorganism-derived transglutaminase were mixed in 10 mL of PBS, and the conditions were 37 ° C. And reacted for 60 minutes. At this time, the molar ratio between the primary amino group (here, lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein. (K / Q ratio) was set to 5. After 60 minutes, 30 μL of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained. The results are shown in FIG.
 図5の上部に示すクロマトグラムは反応前の溶液に対する液体クロマトグラフィーの結果を示している。13.4分間経過後に融合タンパク質に対応する溶出ピークが観察されることが確認された。また、図5の下部に示すクロマトグラムは反応後の溶液に対する液体クロマトグラフィーの結果を示している。13.4分間経過後に融合タンパク質に対応する溶出ピークが観察されることに加えて、14.3分間経過後に脂質化タンパク質に対応する新たな溶出ピークが観察された。図5に示される結果から、トランスグルタミナーゼ反応が進行していることが確認された。また図5に示すクロマトグラムのピーク面積から、トランスグルタミナーゼ反応における反応率を下記式によって算出した。 The chromatogram shown in the upper part of FIG. 5 shows the result of liquid chromatography on the solution before the reaction. It was confirmed that an elution peak corresponding to the fusion protein was observed after 13.4 minutes. Further, the chromatogram shown at the bottom of FIG. 5 shows the result of liquid chromatography on the solution after the reaction. In addition to the elution peak corresponding to the fusion protein being observed after 13.4 minutes, a new elution peak corresponding to the lipidated protein was observed after 14.3 minutes. From the results shown in FIG. 5, it was confirmed that the transglutaminase reaction was progressing. Further, the reaction rate in the transglutaminase reaction was calculated from the peak area of the chromatogram shown in FIG.
 トランスグルタミナーゼ反応における反応率[%]=[(14.3分間後のピークに対するピーク面積)/{(13.4分間後のピークに対するピーク面積)+(14.3分間後のピークに対するピーク面積)}]×100 Reaction rate in transglutaminase reaction [%] = [(peak area with respect to peak after 14.3 minutes) / {(peak area with respect to peak after 13.4 minutes) + (peak area with respect to peak after 14.3 minutes)] }] × 100
 RP-HPLCによる測定は、4.6×150mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂質化タンパク質の溶出は、40分間後にアセトニトリルの濃度勾配が20%から100%になるように流速1mL/分で移動相を送液する条件で行い、280nmの吸光度で検出した。 Measurement by RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 150 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. The elution of the lipidated protein was carried out under the condition that the mobile phase was fed at a flow rate of 1 mL / min so that the concentration gradient of acetonitrile would be 20% to 100% after 40 minutes, and the absorbance was detected at 280 nm.
 K/Q比率が5且つ反応時間30分間経過した際の、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を下記の基準で評価した。結果を表3に示す。
<反応性の評価基準>
 反応に要した融合タンパク質に対して脂質ペプチドが導入された割合に基づいて反応性を評価した。
 A:脂質ペプチドと反応した融合タンパク質が100質量%
 B:脂質ペプチドと反応した融合タンパク質が60質量%を超えて100%未満
 C:脂質ペプチドと反応した融合タンパク質が60質量%未満
When the K / Q ratio was 5 and the reaction time was 30 minutes, the reactivity of the transglutaminase reaction of the fusion protein and lipid peptide was evaluated according to the following criteria. The results are shown in Table 3.
<Reactivity evaluation criteria>
The reactivity was evaluated based on the ratio of lipid peptide introduced to the fusion protein required for the reaction.
A: 100% by mass of fusion protein reacted with lipid peptide
B: Fusion protein reacted with lipid peptide exceeds 60% by mass and less than 100% C: Fusion protein reacted with lipid peptide is less than 60% by mass
 次に、K/Q比率が、1,2,10,及び20となるように変更して、上記と同様の実験を行い、各K/Q比率における反応率を算出した。結果を図6に示す。また、反応時間が、5分間,10分間,15分間,30分間,及び60分間経過したごとにサンプリングを行い、各反応時間後における反応率を算出した。結果を図7に示す。 Next, the K / Q ratio was changed to 1, 2, 10, and 20, and the same experiment as described above was performed to calculate the reaction rate at each K / Q ratio. The results are shown in FIG. In addition, sampling was performed every 5 minutes, 10 minutes, 15 minutes, 30 minutes, and 60 minutes, and the reaction rate after each reaction time was calculated. The results are shown in FIG.
(実施例2)
 脂質ペプチド1に変えて、リンカーを有する脂質ペプチド9を用いたこと以外は、実施例1と同様にして実験を行い、反応率を算出した。結果を表3、図6及び図7に示す。
(Example 2)
The reaction rate was calculated in the same manner as in Example 1 except that lipid peptide 9 having a linker was used instead of lipid peptide 1. The results are shown in Table 3, FIG. 6 and FIG.
(実施例3)
 上記配列番号1で表されるアミノ酸配列を有する融合タンパク質に代えて、上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を用いたこと以外は、実施例1と同様にして実験を行い、反応率を算出した。結果を表3、図8及び図9に示す。
(Example 3)
An experiment was conducted in the same manner as in Example 1 except that the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 was used instead of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1. The reaction rate was calculated. The results are shown in Table 3, FIG. 8 and FIG.
(実施例4)
 上記配列番号1で表されるアミノ酸配列を有する融合タンパク質に代えて、上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を用いたこと以外は、実施例2と同様にして実験を行い、反応率を算出した。結果を表3、図8及び図9に示す。
Example 4
An experiment was conducted in the same manner as in Example 2 except that the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 was used instead of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1. The reaction rate was calculated. The results are shown in Table 3, FIG. 8 and FIG.
(実施例5)
 上記配列番号1で表されるアミノ酸配列を有する融合タンパク質に代えて、上記配列番号3で表されるアミノ酸配列を有する融合タンパク質を用いたこと以外は、実施例1と同様にして実験を行った。評価に関しては、K/Q比率と反応率との関係を評価した。結果を表3、図10に示す。
(Example 5)
An experiment was conducted in the same manner as in Example 1 except that the fusion protein having the amino acid sequence represented by SEQ ID NO: 3 was used instead of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1. . Regarding the evaluation, the relationship between the K / Q ratio and the reaction rate was evaluated. The results are shown in Table 3 and FIG.
(実施例6)
 上記配列番号1で表されるアミノ酸配列を有する融合タンパク質に代えて、上記配列番号3で表されるアミノ酸配列を有する融合タンパク質を用いたこと以外は、実施例2と同様にして実験を行い、反応率を算出した。結果を表3、図10及び図11に示す。
(Example 6)
An experiment was conducted in the same manner as in Example 2 except that the fusion protein having the amino acid sequence represented by SEQ ID NO: 3 was used instead of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1. The reaction rate was calculated. The results are shown in Table 3, FIG. 10 and FIG.
 図6~図11に示す結果から、いずれの融合タンパク質と脂質ペプチドの関係においても脂質化タンパク質を製造できることが確認された。配列番号1で表されるアミノ酸配列を有する融合タンパク質を用いる場合、脂質ペプチドの種類によらず、K/Q比率が小さくても反応性に優れることが確認された。また、配列番号2で表されるアミノ酸配列を有する融合タンパク質を用いる場合、K/Q比率を調整することによって、融合タンパク質のすべてに脂質を導入することが可能であることが確認された。 From the results shown in FIG. 6 to FIG. 11, it was confirmed that lipidated protein can be produced in any relationship between the fusion protein and the lipid peptide. When using a fusion protein having the amino acid sequence represented by SEQ ID NO: 1, it was confirmed that the reactivity was excellent even when the K / Q ratio was small, regardless of the type of lipid peptide. Moreover, when using the fusion protein which has an amino acid sequence represented by sequence number 2, it was confirmed that lipid can be introduce | transduced into all the fusion proteins by adjusting K / Q ratio.
(実施例7)
[融合タンパク質と脂質ペプチドとの反応]
 上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を10μM、上記脂質ペプチド6を50μM、及び微生物由来トランスグルタミナーゼを0.1U/mLを、10mLのPBS中で混合させ、37℃の条件下で、60分間反応させた。このとき、K/Q比率を5とした。60分間経過後、0.2%TFA含有アセトニトリルを30μL添加して反応を停止させた。RP-HPLCによって、脂質化タンパク質が得られたことを確認した。
(Example 7)
[Reaction between fusion protein and lipid peptide]
10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 above, 50 μM of the lipid peptide 6 and 0.1 U / mL of the microorganism-derived transglutaminase were mixed in 10 mL of PBS, under the conditions of 37 ° C. And reacted for 60 minutes. At this time, the K / Q ratio was set to 5. After 60 minutes, 30 μL of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained.
 次に、K/Q比率が、1,2,10,及び20となるように変更して、上記と同様の実験を行い、反応性を評価した。結果を図12に示す。また、反応時間が、5分間,10分間,15分間,30分間,及び60分間経過したごとにサンプリングを行い、反応性を評価した。結果を表3及び図13に示す。図12及び図13には、比較のために実施例3及び実施例4で製造した例も併記する。 Next, the K / Q ratio was changed to 1, 2, 10, and 20, and the same experiment as described above was performed to evaluate the reactivity. The results are shown in FIG. In addition, sampling was performed every 5 minutes, 10 minutes, 15 minutes, 30 minutes, and 60 minutes to evaluate the reactivity. The results are shown in Table 3 and FIG. 12 and 13 also show the examples manufactured in Example 3 and Example 4 for comparison.
(実施例8~10)
 脂質ペプチド6に代えて、表1の脂質ペプチド10(実施例8)、表1の脂質ペプチド11(実施例9)、又は表1の脂質ペプチド12(実施例10)を用いたこと以外は、実施例7と同様にして実験を行い、評価を行った。結果を表3、図12及び図13に示す。
(Examples 8 to 10)
Instead of using lipid peptide 6 in Table 1 (Example 8), lipid peptide 11 in Table 1 (Example 9), or lipid peptide 12 in Table 1 (Example 10) instead of lipid peptide 6, Experiments and evaluations were performed in the same manner as in Example 7. The results are shown in Table 3, FIG. 12 and FIG.
(実施例11~16)
 脂質ペプチド6に代えて、表1の脂質ペプチド16(実施例11)、表1の脂質ペプチド17(実施例12)、表1の脂質ペプチド18(実施例13)、表1の脂質ペプチド19(実施例14)、表1の脂質ペプチド20(実施例15)、又は表1の脂質ペプチド21(実施例16)を用いたこと以外は、実施例7と同様にして実験を行い、評価を行った。結果を表3、図14及び図15に示す。
(Examples 11 to 16)
Instead of lipid peptide 6, lipid peptide 16 in Table 1 (Example 11), lipid peptide 17 in Table 1 (Example 12), lipid peptide 18 in Table 1 (Example 13), lipid peptide 19 in Table 1 (Example 13) Example 14), lipid peptide 20 of Table 1 (Example 15), or lipid peptide 21 of Table 1 (Example 16) was used except that the experiment was conducted and evaluated in the same manner as in Example 7. It was. The results are shown in Table 3, FIG. 14 and FIG.
[細胞膜への係留能力解析(フローサイトメトリー解析)]
 実施例3、実施例4、及び実施例8~実施例10で得られた脂質化タンパク質の反応溶液(未反応の脂質ペプチドを含む)を用いて、脂質化タンパク質の細胞膜への係留能力を評価した。まず、浮遊細胞SNU-1を2.0×10個播種して、200μLのPBSで2回洗浄した後、25μLのPBSに懸濁させた。得られた浮遊細胞の懸濁液に、上記で得られた脂質化タンパク質(2μM、又は10μM)を25μLだけ混合して、終濃度が1μM又は5μMとなるようにして溶液を調製した。混合した後の溶液を37℃の条件下で、15分間インキュベートした。インキュベート後、200μLのPBSで溶液を2回洗浄した。洗浄した後の溶液を400μLのPBSに懸濁し、セルストレーナーで濾過した。その後、セルアナライザー(製品名「セルアナライザーEC800」)によって細胞一個あたりの蛍光を定量した。結果を図16に示す。
[Mounting ability analysis to cell membrane (flow cytometry analysis)]
Using the reaction solutions of lipidated proteins (including unreacted lipid peptides) obtained in Example 3, Example 4, and Examples 8 to 10, the ability of the lipidated proteins to anchor to the cell membrane was evaluated. did. First, 2.0 × 10 5 floating cells SNU-1 were seeded, washed twice with 200 μL of PBS, and then suspended in 25 μL of PBS. The resulting suspension of suspension cells was mixed with 25 μL of the lipidated protein (2 μM or 10 μM) obtained above to prepare a solution with a final concentration of 1 μM or 5 μM. The mixed solution was incubated at 37 ° C. for 15 minutes. After incubation, the solution was washed twice with 200 μL PBS. The washed solution was suspended in 400 μL of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG.
 定量した蛍光量に基づいて脂質化タンパク質の細胞膜への係留能力を下記の基準で評価した。結果を表3に示す。
<係留能力の評価基準(細胞1個あたりの蛍光強度)>
 A:1000以上
 B:500以上1000未満
 C:200以上500未満
 D:150以上200未満
 E:100以上150未満
 F:50以上100未満
 G:50未満
Based on the quantified amount of fluorescence, the ability of the lipidated protein to anchor to the cell membrane was evaluated according to the following criteria. The results are shown in Table 3.
<Evaluation criteria for mooring ability (fluorescence intensity per cell)>
A: 1000 or more B: 500 or more and less than 1000 C: 200 or more and less than 500 D: 150 or more and less than 200 E: 100 or more and less than 150 F: 50 or more and less than 100 G: less than 50
(参考例1)
 参考例として、脂質ペプチドと反応させる前の、上記配列番号2で表されるアミノ酸配列を有する融合タンパク質をそのまま浮遊細胞の懸濁液に添加し、終濃度が1μM又は5μMである溶液を調製した。混合した後の溶液を、37℃の条件下で、15分間インキュベートした。インキュベート後、200μLのPBSで溶液を2回洗浄した。洗浄した後の溶液を400μLのPBSに懸濁し、セルストレーナーで濾過した。その後、セルアナライザー(製品名「セルアナライザーEC800」)によって細胞一個あたりの蛍光を定量した。結果を表3及び図16に示す。
(Reference Example 1)
As a reference example, the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 before reacting with the lipid peptide was directly added to the suspension of suspension cells to prepare a solution having a final concentration of 1 μM or 5 μM. . The mixed solution was incubated at 37 ° C. for 15 minutes. After incubation, the solution was washed twice with 200 μL PBS. The washed solution was suspended in 400 μL of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in Table 3 and FIG.
[細胞毒性試験]
 実施例3、実施例4、及び実施例8~実施例10で得られた脂質化タンパク質の反応溶液(未反応の脂質ペプチドを含む)を用いて、WSTアッセイによって脂質化タンパク質の細胞毒性を評価した。まず、100μLのPBSで2回洗浄した浮遊細胞SNU-1を5.0×10個/ウェル(25μLのダルベッコPBS(D-PBS))を96ウェルプレートに播種した。そして、上記の反応溶液(2μM又は10μM、必要に応じてD-PBSで濃度を調整した)を25μLだけ混合して、終濃度が1μM又は2μMとるようにして溶液を調製した。得られた溶液を、37℃の条件下で、15分間インキュベートした。インキュベート後、100μLのD-PBSで2回洗浄した。Opti-MEMで希釈したWST-8を110μL/ウェル添加して、37℃の条件下で、90分間インキュベートした。その後、450nmにおける吸光度を測定して細胞生存率を算出した。結果を図17に示す。
[Cytotoxicity test]
Using the lipidated protein reaction solutions (including unreacted lipid peptides) obtained in Example 3, Example 4, and Examples 8 to 10, cytotoxicity of the lipidated protein was evaluated by WST assay. did. First, floating cells SNU-1 washed twice with 100 μL of PBS was seeded in a 96-well plate at 5.0 × 10 4 cells / well (25 μL Dulbecco's PBS (D-PBS)). Then, 25 μL of the above reaction solution (2 μM or 10 μM, the concentration of which was adjusted with D-PBS if necessary) was mixed to prepare a solution with a final concentration of 1 μM or 2 μM. The resulting solution was incubated at 37 ° C. for 15 minutes. After incubation, the plate was washed twice with 100 μL of D-PBS. WST-8 diluted with Opti-MEM was added at 110 μL / well and incubated at 37 ° C. for 90 minutes. Thereafter, the absorbance at 450 nm was measured to calculate the cell viability. The results are shown in FIG.
(参考例2)
 参考例として、脂質ペプチドと反応させる前の、上記配列番号2で表されるアミノ酸配列を有する融合タンパク質をそのまま浮遊細胞の懸濁液に添加し、終濃度が1μM又は5μMである溶液を調製した。得られた溶液を、37℃の条件下で、15分間インキュベートした。インキュベート後、100μLのD-PBSで2回洗浄した。Opti-MEMで希釈したWST-8を110μL/ウェル添加して、90分間インキュベートした。その後、450nmにおける吸光度を測定して細胞生存率を算出した。結果を図17に示す。
(Reference Example 2)
As a reference example, the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 before reacting with the lipid peptide was directly added to the suspension of suspension cells to prepare a solution having a final concentration of 1 μM or 5 μM. . The resulting solution was incubated at 37 ° C. for 15 minutes. After incubation, the plate was washed twice with 100 μL of D-PBS. 110 μL / well of WST-8 diluted with Opti-MEM was added and incubated for 90 minutes. Thereafter, the absorbance at 450 nm was measured to calculate the cell viability. The results are shown in FIG.
 図17に示す結果から、脂質化タンパク質は1μM程度の濃度で使用しても、脂質化タンパク質を係留させた細胞の細胞生存率は100%近くとなっており、十分に生体適合性があるといえることが確認された。 From the results shown in FIG. 17, even when the lipidated protein is used at a concentration of about 1 μM, the cell viability of the cells to which the lipidated protein is anchored is close to 100% and is sufficiently biocompatible. That was confirmed.
 実施例4、及び実施例11~16で得られた脂質化タンパク質の反応溶液(未反応の脂質ペプチドを含む)を用いて、脂質化タンパク質の細胞膜への係留挙動及び細胞毒性を評価した。結果を表3、図18及び図19に示す。 Using the reaction solution (including unreacted lipid peptide) of the lipidated protein obtained in Example 4 and Examples 11 to 16, the anchoring behavior and cytotoxicity of the lipidated protein to the cell membrane were evaluated. The results are shown in Table 3, FIG. 18 and FIG.
 図19に示す結果から、脂質化タンパク質は1μM程度の濃度で使用しても、脂質化タンパク質を係留させた細胞の細胞生存率は100%近くとなっており、十分に生体適合性があるといえることが確認された。 From the results shown in FIG. 19, even when the lipidated protein is used at a concentration of about 1 μM, the cell viability of the cells to which the lipidated protein is anchored is close to 100%, and is sufficiently biocompatible. That was confirmed.
(実施例17~20)
 脂質ペプチド1に代えて、脂質ペプチド3(実施例17)、脂質ペプチド4(実施例18)、脂質ペプチド8(実施例19)又は脂質ペプチド7(実施例20)を用いたこと以外は、実施例7と同様にして実験を行い、脂質化タンパク質を製造できることを確認した。結果を表3に示す。
(Examples 17 to 20)
Implemented except that lipid peptide 3 (Example 17), lipid peptide 4 (Example 18), lipid peptide 8 (Example 19) or lipid peptide 7 (Example 20) was used instead of lipid peptide 1. Experiments were conducted in the same manner as in Example 7 to confirm that lipidated proteins can be produced. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例21)
[脂溶性ビタミン部を有する化合物の調製]
 Fmoc固相合成法によって、GGGSMRHKGSで表されるアミノ酸配列を1アミノ酸ずつ縮合して合成し、その後、N末端アミノ酸のアミノ基とα-トコフェロールとを縮合して脂溶性ビタミン部を有する化合物を合成した。得られた脂溶性ビタミン部を有する化合物は逆相液体クロマトグラフィー(RP-HPLC)によって精製した。精製後の脂質ペプチドの同定及び純度の測定は、MALDI-TOF-MS及びRP-HPLCによって行った。
(Example 21)
[Preparation of compound having fat-soluble vitamin part]
By Fmoc solid phase synthesis, the amino acid sequence represented by GGGSMRHKGS is synthesized by condensing one amino acid at a time, and then the amino group of the N-terminal amino acid and α-tocopherol are condensed to synthesize a compound having a fat-soluble vitamin part. did. The obtained compound having a fat-soluble vitamin part was purified by reverse phase liquid chromatography (RP-HPLC). Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC.
 RP-HPLCを用いた測定は、4.6×250mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂溶性ビタミン部を有する化合物(0.5mg/mL、20μL)の溶出は、30分間後にアセトニトリルの濃度勾配が50%から80%になるように流速1.0mL/minで移動相を送液する条件で行い、220nmの吸光度で検出した。また、MALDI-TOF-MSを用いた測定は、0.5mg/mLの脂溶性ビタミン部を有する化合物の溶液2μLと、α-シアノ-4-ヒドロキシけい皮酸(CHCA)マトリックスとを用いて行った。 Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 250 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. For elution of the compound having a fat-soluble vitamin part (0.5 mg / mL, 20 μL), the mobile phase is fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile becomes 50% to 80% after 30 minutes. The detection was carried out under the conditions, and the absorbance was 220 nm. The measurement using MALDI-TOF-MS was performed using 2 μL of a solution of a compound having a fat-soluble vitamin part of 0.5 mg / mL and an α-cyano-4-hydroxycinnamic acid (CHCA) matrix. It was.
[融合タンパク質と脂溶性ビタミン部を有する化合物との反応]
 上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を10μM、上記脂溶性ビタミン部を有する化合物を50μM、及び微生物由来トランスグルタミナーゼを0.1U/mLを、10mMのTris-HCl(pH8.0)、及び1質量/体積%のn-ドデシル-β-D-マルトシド(n-Dodecyl-β-D-maltoside:DDM)の混合溶液中で混合させ、37℃の条件下で、60分間反応させた。このとき、脂溶性ビタミン部を有する化合物における1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を5とした。60分間経過後、0.2%TFA含有アセトニトリルを30μL添加して反応を停止させた。RP-HPLCによって、脂質化タンパク質(純度:99%)が得られたことを確認した。
[Reaction between fusion protein and compound with fat-soluble vitamin]
10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2, 50 μM of the compound having the fat-soluble vitamin part, 0.1 U / mL of microorganism-derived transglutaminase, 10 mM Tris-HCl (pH 8.0) ) And 1% by mass / volume in a mixed solution of n-dodecyl-β-D-maltoside (DDM) and allowed to react at 37 ° C. for 60 minutes. It was. At this time, the molar ratio (K) of the primary amino group (here, lysine (K) residue) in the compound having a fat-soluble vitamin part and the glutamine (Q) residue contained in the first peptide in the fusion protein. / Q ratio) was set to 5. After 60 minutes, 30 μL of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein (purity: 99%) was obtained.
(実施例22)
[融合タンパク質と、脂質部を有する化合物(脂質ペプチド)との反応]
 上記脂溶性ビタミン部を有する化合物に代えて、表1の脂質ペプチド22を用いたこと以外は、実施例21と同様にして、脂質化タンパク質を調製した。RP-HPLCによって、脂質化タンパク質(純度:80%)が得られたことを確認した。
(Example 22)
[Reaction between fusion protein and compound having lipid part (lipid peptide)]
A lipidated protein was prepared in the same manner as in Example 21 except that the lipid peptide 22 shown in Table 1 was used instead of the compound having the fat-soluble vitamin part. It was confirmed by RP-HPLC that lipidated protein (purity: 80%) was obtained.
(実施例23)
[融合タンパク質と脂質部を有する化合物との反応]
 脂溶性ビタミン部を有する化合物に代えて、テトラデシルアミン(東京化成工業株式会社製)を用いたこと以外は、実施例21と同様にして脂質化タンパク質を製造した。すなわち、上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を10μM、テトラデシルアミンを50μM、及び微生物由来トランスグルタミナーゼを0.1U/mLを、10mLのPBS中で混合させ、37℃の条件下で、30分間反応させた。このとき、脂質部を有する化合物に含まれる1級アミノ基と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を5とした。30分間経過後、0.2%TFA含有アセトニトリルを30μL添加して反応を停止させた。RP-HPLCによって、脂質化タンパク質が得られたことを確認した。なお、テトラデシルアミンは、ジメチルスルホキシドに溶解させて調製した5mM溶液を用いた。
(Example 23)
[Reaction between fusion protein and compound having lipid part]
A lipidated protein was produced in the same manner as in Example 21 except that tetradecylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of the compound having a fat-soluble vitamin part. That is, 10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 above, 50 μM of tetradecylamine, and 0.1 U / mL of microorganism-derived transglutaminase were mixed in 10 mL of PBS, and the conditions at 37 ° C. The reaction was allowed to proceed for 30 minutes. At this time, the molar ratio (K / Q ratio) between the primary amino group contained in the compound having a lipid part and the glutamine (Q) residue contained in the first peptide in the fusion protein was set to 5. After 30 minutes, 30 μL of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained. Tetradecylamine was a 5 mM solution prepared by dissolving in dimethyl sulfoxide.
(実施例24)
 テトラデシルアミンに代えてヘキサデシルアミン(東京化成工業株式会社製)を用いたこと以外は、実施例23と同様にして実験を行い、脂質化タンパク質が得られたことを確認した。
(Example 24)
An experiment was performed in the same manner as in Example 23 except that hexadecylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of tetradecylamine, and it was confirmed that a lipidated protein was obtained.
(実施例25)
[融合タンパク質と脂質ペプチドとの反応]
 上記配列番号1で表されるアミノ酸配列を有する融合タンパク質を10μM、表1の脂質ペプチド9を50μM、及び微生物由来トランスグルタミナーゼを0.1U/mLを、10mMのTris-HCl(pH8.0)中で混合させ、37℃の条件下で60分間反応させた。このとき、脂質ペプチドにおける第二のペプチドに含まれる1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を1,5又は20とした。60分間経過後、0.2%TFA含有アセトニトリルを30μL添加して反応を停止させた。RP-HPLCによって、脂質化タンパク質(純度:91%)が得られたことを確認した。各K/Q比率における反応率の結果を図20に示す。
(Example 25)
[Reaction between fusion protein and lipid peptide]
10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 1, 50 μM of lipid peptide 9 of Table 1, and 0.1 U / mL of microorganism-derived transglutaminase in 10 mM Tris-HCl (pH 8.0) And reacted at 37 ° C. for 60 minutes. At this time, the molar ratio between the primary amino group (here, lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein. (K / Q ratio) was set to 1, 5 or 20. After 60 minutes, 30 μL of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein (purity: 91%) was obtained. The result of the reaction rate in each K / Q ratio is shown in FIG.
(実施例26~28)
 脂質ペプチド9に代えて、表1の脂質ペプチド13(実施例26),表1の脂質ペプチド14(実施例27)又は表1の脂質ペプチド15(実施例28)を用いたこと以外は、実施例25と同様にして、脂質化タンパク質を製造した。脂質化タンパク質の純度はそれぞれ、実施例26では48%、実施例27では96%、及び実施例28では90%であった。各K/Q比率における反応率の結果を図20に示す。
(Examples 26 to 28)
The procedure was carried out except that lipid peptide 13 in Table 1 (Example 26), lipid peptide 14 in Table 1 (Example 27) or lipid peptide 15 in Table 1 (Example 28) was used in place of lipid peptide 9. In the same manner as in Example 25, lipidated protein was produced. The purity of the lipidated protein was 48% in Example 26, 96% in Example 27, and 90% in Example 28, respectively. The result of the reaction rate in each K / Q ratio is shown in FIG.
[細胞膜への係留能力解析(フローサイトメトリー解析)]
 実施例21~22、及び25~28で得られた脂質化タンパク質の反応溶液(未反応の脂溶性ビタミンを有する化合物を含む)を用いて、脂質化タンパク質の細胞膜への係留能力を評価した。評価方法は、上記実施例3と同様にして行った。結果を図21に示す。実施例25~28の蛍光顕微鏡観察結果を図22及び図23に示す。
[Mounting ability analysis to cell membrane (flow cytometry analysis)]
Using the lipidated protein reaction solutions obtained in Examples 21 to 22 and 25 to 28 (including compounds having unreacted fat-soluble vitamins), the ability of the lipidated protein to anchor to the cell membrane was evaluated. The evaluation method was performed in the same manner as in Example 3 above. The results are shown in FIG. The fluorescence microscope observation results of Examples 25 to 28 are shown in FIGS.
[細胞毒性試験]
 実施例21及び22、並びに実施例26~28で得られた脂質化タンパク質の反応溶液(未反応の脂溶性ビタミンを有する化合物を含む)を用いて、WSTアッセイによって脂質化タンパク質の細胞毒性を評価した。評価方法は、上記実施例3と同様にして行った。結果を図24及び図25に示す。
[Cytotoxicity test]
Using the reaction solutions of lipidated proteins obtained in Examples 21 and 22 and Examples 26 to 28 (including compounds having unreacted fat-soluble vitamins), cytotoxicity of lipidated proteins was evaluated by WST assay. did. The evaluation method was performed in the same manner as in Example 3 above. The results are shown in FIGS.
[脂質部又は脂溶性ビタミン部を有する化合物の細胞毒性及び臨界ミセル濃度の測定]
 実施例21~22、及び実施例25~28で使用した脂質部又は脂溶性ビタミン部を有する化合物の細胞毒性及び臨界ミセル濃度を測定した。結果を表4に示す。
[Measurement of cytotoxicity and critical micelle concentration of compounds having lipid part or fat-soluble vitamin part]
The cytotoxicity and critical micelle concentration of the compounds having lipid part or fat-soluble vitamin part used in Examples 21 to 22 and Examples 25 to 28 were measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例29)
 Fmoc固相合成法によって、下記表5に記載のアミノ酸配列を1アミノ酸ずつ縮合して合成して第二のペプチドを調製し、その後、第二のペプチドのN末端アミノ酸のアミノ基とα-トコフェロールとを第二のリンカーで接続して脂質ペプチド23を合成した。得られた脂質ペプチドは、RP-HPLCによって精製した。精製後の脂質ペプチドの同定及び純度の測定は、MALDI-TOF-MS及びRP-HPLCによって行った。α-トコフェロールに代えて、コレステロールを用いて、同様に脂質ペプチドを合成した(表5の脂質ペプチド24)。なお、脂質ペプチド24は、下記の化学式で表される。
(Example 29)
The Fmoc solid phase synthesis method was used to prepare a second peptide by condensing the amino acid sequences shown in Table 5 below, one by one, and then preparing the amino group of the N-terminal amino acid of the second peptide and α-tocopherol Were connected by a second linker to synthesize lipid peptide 23. The resulting lipid peptide was purified by RP-HPLC. Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC. Lipid peptides were synthesized in the same manner using cholesterol instead of α-tocopherol (lipid peptide 24 in Table 5). The lipid peptide 24 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 RP-HPLCを用いた測定は、4.6×250mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂質ペプチド(0.5mg/mL、20μL)の溶出は、30分間後にアセトニトリルの濃度勾配が30%か60%になるように流速1.0mL/minで移動相を送液する条件で行い、220nmの吸光度で検出した。また、MALDI-TOF-MSを用いた測定は、0.5mg/mLの脂質ペプチド溶液2μLと、α-シアノ-4-ヒドロキシけい皮酸(CHCA)マトリックスとを用いて行った。 Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 250 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. The elution of lipid peptide (0.5 mg / mL, 20 μL) was carried out under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 30% or 60% after 30 minutes. The absorbance was detected. Measurement using MALDI-TOF-MS was performed using 2 μL of a 0.5 mg / mL lipid peptide solution and an α-cyano-4-hydroxycinnamic acid (CHCA) matrix.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上述のとおり合成した脂質ペプチド23及び脂質ペプチド24について、実施例1と同様にして、細胞毒性試験及び臨界ミセル濃度の評価を行った。結果を表6に示す。脂質ペプチド24を用いた場合の測定結果を図26に示す。また比較のため、実施例1において合成した脂質ペプチド9、脂質ペプチド13、脂質ペプチド14、脂質ペプチド15及び脂質ペプチド22の評価結果も表6に示す。 For the lipid peptide 23 and lipid peptide 24 synthesized as described above, the cytotoxicity test and the critical micelle concentration were evaluated in the same manner as in Example 1. The results are shown in Table 6. The measurement results when lipid peptide 24 is used are shown in FIG. For comparison, the evaluation results of lipid peptide 9, lipid peptide 13, lipid peptide 14, lipid peptide 15, and lipid peptide 22 synthesized in Example 1 are also shown in Table 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[融合タンパク質と脂質ペプチドとの反応]
 上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を10μM、上記脂質ペプチド13を50μM、及び微生物由来トランスグルタミナーゼを0.1U/mLを、10mMのTris-HCl(pH8.0)中で混合させ、37℃の条件下で、60分間反応させた。このとき、脂質ペプチドにおける第二のペプチドに含まれる1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を5とした。
[Reaction between fusion protein and lipid peptide]
10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2, 50 μM of the lipid peptide 13, and 0.1 U / mL of the microorganism-derived transglutaminase were mixed in 10 mM Tris-HCl (pH 8.0). And allowed to react at 37 ° C. for 60 minutes. At this time, the molar ratio between the primary amino group (here, lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein. (K / Q ratio) was set to 5.
 60分間経過後、0.2%TFA含有アセトニトリルを30μL添加して反応を停止させた。RP-HPLCによって、脂質化タンパク質が得られたことを確認した。実施例1と同様に反応性を評価した。結果を表7に示す。 After 60 minutes, 30 μL of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained. The reactivity was evaluated in the same manner as in Example 1. The results are shown in Table 7.
 RP-HPLCを用いた測定は、4.6×250mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂質ペプチド(0.5mg/mL、20μL)の溶出は、40分間後にアセトニトリルの濃度勾配が20%か100%になるように流速1.0mL/minで移動相を送液する条件で行い、280nmの吸光度で検出した。 Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 250 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. The elution of lipid peptide (0.5 mg / mL, 20 μL) was carried out under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 20% or 100% after 40 minutes. The absorbance was detected.
(実施例30~34)
 表7に記載のとおり、脂質ペプチド13に代えて、脂質ペプチド14(実施例30)、脂質ペプチド15(実施例31)、脂質ペプチド22(実施例32)、脂質ペプチド23(実施例33)、及び脂質ペプチド24(実施例34)を用いたこと以外は、実施例29と同様にして実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表7に示す。
(Examples 30 to 34)
As described in Table 7, instead of lipid peptide 13, lipid peptide 14 (Example 30), lipid peptide 15 (Example 31), lipid peptide 22 (Example 32), lipid peptide 23 (Example 33), In addition, the experiment was conducted in the same manner as in Example 29 except that lipid peptide 24 (Example 34) was used, and the reactivity of the transglutaminase reaction of the fusion protein and the lipid peptide was evaluated. The results are shown in Table 7.
(実施例35)
 表7に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例4と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表7に示す。
(Example 35)
As shown in Table 7, the experiment was carried out in the same manner as in Example 4 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
(実施例36)
 表7に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例29と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表7に示す。
(Example 36)
As shown in Table 7, the experiment was performed in the same manner as in Example 29 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
(実施例37)
 表7に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例30と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表7に示す。
(Example 37)
As shown in Table 7, the experiment was performed in the same manner as in Example 30 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
(実施例38)
 表7に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例31と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表7に示す。
(Example 38)
As shown in Table 7, the experiment was carried out in the same manner as in Example 31 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
(実施例39)
 表7に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例32と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表7に示す。
(Example 39)
As shown in Table 7, the experiment was conducted in the same manner as in Example 32 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
(実施例40)
 表7に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例33と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表7に示す。
(Example 40)
As shown in Table 7, the experiment was performed in the same manner as in Example 33 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
(実施例41)
 表7に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例34と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表7に示す。
(Example 41)
As shown in Table 7, the experiment was performed in the same manner as in Example 34 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 7.
[細胞膜への係留能力解析(フローサイトメトリー解析)]
 実施例29~実施例41で得られた脂質化タンパク質の反応溶液(未反応の脂質ペプチドを含む)を用いて、脂質化タンパク質の細胞膜への係留能力を評価した。まず、浮遊細胞SNU-1を2.0×10個播種して、100μLのPBSで2回洗浄した後、25μLのPBSに懸濁させた。得られた浮遊細胞の懸濁液に、上記で得られた脂質化タンパク質(2μM)を25μLだけ混合して、終濃度が1μMとなるようにして溶液を調製した。混合した後の溶液を37℃の条件下で、15分間インキュベートした。インキュベート後、200μLのPBSで溶液を2回洗浄した。洗浄した後の溶液を400μLのPBSに懸濁し、セルストレーナーで濾過した。その後、セルアナライザー(製品名「セルアナライザーEC800」)によって細胞一個あたりの蛍光を定量した。結果を図27及び表7に示す。
[Mounting ability analysis to cell membrane (flow cytometry analysis)]
Using the lipidated protein reaction solutions (including unreacted lipid peptide) obtained in Examples 29 to 41, the ability of the lipidated protein to anchor to the cell membrane was evaluated. First, 2.0 × 10 5 floating cells SNU-1 were seeded, washed twice with 100 μL of PBS, and then suspended in 25 μL of PBS. The resulting suspension of suspension cells was mixed with 25 μL of the lipidated protein (2 μM) obtained above to prepare a solution with a final concentration of 1 μM. The mixed solution was incubated at 37 ° C. for 15 minutes. After incubation, the solution was washed twice with 200 μL PBS. The washed solution was suspended in 400 μL of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG.
(参考例3)
 参考例として、脂質ペプチドと反応させる前の、上記配列番号2で表されるアミノ酸配列を有する融合タンパク質をそのまま浮遊細胞の懸濁液に添加し、終濃度が1μM又は5μMである溶液を調製した。混合した後の溶液を、37℃の条件下で、15分間インキュベートした。インキュベート後、200μLのPBSで溶液を2回洗浄した。洗浄した後の溶液を400μLのPBSに懸濁し、セルストレーナーで濾過した。その後、セルアナライザー(製品名「セルアナライザーEC800」)によって細胞一個あたりの蛍光を定量した。結果を図27に示す。
(Reference Example 3)
As a reference example, the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 before reacting with the lipid peptide was directly added to the suspension of suspension cells to prepare a solution having a final concentration of 1 μM or 5 μM. . The mixed solution was incubated at 37 ° C. for 15 minutes. After incubation, the solution was washed twice with 200 μL PBS. The washed solution was suspended in 400 μL of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 従来のトランスグルタミナーゼを用いた脂質化タンパク質の製造方法のように、グルタミン残基を有するペプチドのN末端に脂肪酸を結合させた脂質ペプチドを基質として用いる場合には、脂質部の炭素数が比較的大きい(例えば、炭素数16以上)と水溶性が低く、界面活性剤の添加無しでは、トランスグルタミナーゼ反応を行うことが困難であった。しかしながら、表7の結果から、炭素数が比較的大きな脂質ペプチド14、脂質ペプチド15、脂質ペプチド23、及び脂質ペプチド24を用いた場合であっても、トランスグルタミナーゼ反応が進行し、脂質化タンパク質を製造することができることが確認された。また、表7の結果から、界面活性剤を用いた例(実施例35~実施例41)において、トランスグルタミナーゼ反応の反応性をより向上させることができた。 When a lipid peptide in which a fatty acid is bonded to the N-terminus of a peptide having a glutamine residue is used as a substrate as in a conventional method for producing a lipidated protein using transglutaminase, the carbon number of the lipid part is relatively small. When it is large (for example, having 16 or more carbon atoms), the water solubility is low, and it was difficult to carry out the transglutaminase reaction without the addition of a surfactant. However, from the results in Table 7, even when lipid peptide 14, lipid peptide 15, lipid peptide 23, and lipid peptide 24 having a relatively large number of carbon atoms are used, the transglutaminase reaction proceeds and lipidated proteins are It was confirmed that it could be manufactured. Further, from the results shown in Table 7, the reactivity of the transglutaminase reaction could be further improved in the examples using the surfactant (Examples 35 to 41).
 なお、従来のトランスグルタミナーゼを用いた脂質化タンパク質の製造方法のように、グルタミン残基を有するペプチドのN末端に脂肪酸を結合させた脂質ペプチドを基質として用いる場合、脂質部の炭素数が大きくなると、脂質ペプチド自体の精製も困難となるため、脂質化タンパク質を製造するための脂質ペプチドの選択肢が限られる傾向にあった。上述のように本開示の方法によれば、脂質ペプチドの選択肢を従来よりも広げることが可能であることが確認された。 In addition, when a lipid peptide in which a fatty acid is bonded to the N-terminus of a peptide having a glutamine residue is used as a substrate as in a conventional method for producing a lipidated protein using transglutaminase, the number of carbons in the lipid portion increases. However, since purification of the lipid peptide itself becomes difficult, the choice of lipid peptide for producing a lipidated protein tends to be limited. As described above, according to the method of the present disclosure, it has been confirmed that the choice of lipid peptides can be expanded more than before.
[細胞毒性試験]
 実施例29~34で得られた脂質化タンパク質の反応溶液(未反応の脂溶性ビタミンを有する化合物を含む)を用いて、WSTアッセイによって脂質化タンパク質の細胞毒性を評価した。評価方法は、上記実施例3と同様にして行った。結果を図28に示す。
[Cytotoxicity test]
Using the lipidated protein reaction solutions obtained in Examples 29 to 34 (including compounds having unreacted fat-soluble vitamins), the cytotoxicity of lipidated proteins was evaluated by WST assay. The evaluation method was performed in the same manner as in Example 3 above. The results are shown in FIG.
(参考例4)
 参考例として、脂質ペプチドと反応させる前の、上記配列番号2で表されるアミノ酸配列を有する融合タンパク質をそのまま浮遊細胞の懸濁液に添加し、終濃度が1μM又は5μMである溶液を調製した。得られた溶液を、37℃の条件下で、15分間インキュベートした。インキュベート後、100μLのD-PBSで2回洗浄した。Opti-MEMで希釈したWST-8を110μL/ウェル添加して、90分間インキュベートした。その後、450nmにおける吸光度を測定して細胞生存率を算出した。結果を図28に示す。
(Reference Example 4)
As a reference example, the fusion protein having the amino acid sequence represented by SEQ ID NO: 2 before reacting with the lipid peptide was directly added to the suspension of suspension cells to prepare a solution having a final concentration of 1 μM or 5 μM. . The resulting solution was incubated at 37 ° C. for 15 minutes. After incubation, the plate was washed twice with 100 μL of D-PBS. 110 μL / well of WST-8 diluted with Opti-MEM was added and incubated for 90 minutes. Thereafter, the absorbance at 450 nm was measured to calculate the cell viability. The results are shown in FIG.
(実施例42)
 Fmoc固相合成法によって、下記表8に記載のアミノ酸配列を1アミノ酸ずつ縮合して合成して第二のペプチドを調製し、その後、第二のペプチドのN末端アミノ酸のアミノ基とラウリン酸とを第二のリンカーで接続して脂質ペプチド25を合成した。得られた脂質ペプチドは、RP-HPLCによって精製した。精製後の脂質ペプチドの同定及び純度の測定は、MALDI-TOF-MS及びRP-HPLCによって行った。さらに、ラウリン酸に代えて、パルミチン酸、ステアリン酸、オレイン酸、リノール酸又はコレステロールを用いて、同様に脂質ペプチドを合成した(表8の脂質ペプチド26~30)。
(Example 42)
The Fmoc solid phase synthesis method was used to prepare a second peptide by condensing the amino acid sequences listed in Table 8 below, one amino acid at a time, and then the amino group of the N-terminal amino acid of the second peptide, lauric acid, Were connected by a second linker to synthesize lipid peptide 25. The resulting lipid peptide was purified by RP-HPLC. Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC. Further, lipid peptides were synthesized in the same manner using palmitic acid, stearic acid, oleic acid, linoleic acid or cholesterol instead of lauric acid (lipid peptides 26 to 30 in Table 8).
 RP-HPLCを用いた測定は、4.6×250mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂質ペプチド(0.5mg/mL、20μL)の溶出は、30分間後にアセトニトリルの濃度勾配が30%か60%になるように流速1.0mL/minで移動相を送液する条件で行い、220nmの吸光度で検出した。また、MALDI-TOF-MSを用いた測定は、0.5mg/mLの脂質ペプチド溶液2μLと、α-シアノ-4-ヒドロキシけい皮酸(CHCA)マトリックスとを用いて行った。 Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 250 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. The elution of lipid peptide (0.5 mg / mL, 20 μL) was carried out under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 30% or 60% after 30 minutes. The absorbance was detected. Measurement using MALDI-TOF-MS was performed using 2 μL of a 0.5 mg / mL lipid peptide solution and an α-cyano-4-hydroxycinnamic acid (CHCA) matrix.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上述のとおり合成した脂質ペプチド25~脂質ペプチド30について、細胞毒性試験及び臨界ミセル濃度の評価を行った。 Cytotoxicity tests and critical micelle concentrations were evaluated for lipid peptides 25 to 30 synthesized as described above.
[脂質ペプチドの細胞毒性試験]
 合成した脂質ペプチドの細胞に対する毒性をWSTアッセイによって評価した。100μLのリン酸緩衝生理食塩水(PBS)で2回洗浄した浮遊細胞SNU-1を1.0×10個/ウェル(25μLの液体培地(Opti-MEM、ライフテクノロジーズジャパン株式会社製))となるように、96ウェルプレートに播種した。そして、上記で合成した脂質ペプチド(0~1000μM)を25μLだけ加えて混合し、終濃度が0~500μMとなるようにして溶液を調製した。得られた溶液を37℃の条件下で、一日間インキュベートした。インキュベート後、Opti-MEMで6倍に希釈した発色剤(WST-8、同仁化学研究所製)を60μL/ウェルとなるように添加して、37℃の条件下で、90分間インキュベートした。そして、450nmにおける吸光度を測定して、細胞生存率を算出した。細胞生存率は実施例1に示したものと同じ式を用いて計算した。結果を図29及び図30に示す。図29及び図30から、細胞毒性の指標であるCC50をKaleidaGraphのシグモイド回帰曲線を用いて算出した。結果を表9に示す。比較のため、実施例1において合成した脂質ペプチド16の結果も表9に示す。
[Cytotoxicity test of lipid peptides]
Toxicity of synthesized lipid peptides to cells was evaluated by WST assay. 1.0 × 10 4 floating cells SNU-1 washed twice with 100 μL phosphate buffered saline (PBS) (25 μL liquid medium (Opti-MEM, Life Technologies Japan)) and Inoculated into a 96-well plate. Then, 25 μL of the lipid peptide synthesized above (0 to 1000 μM) was added and mixed to prepare a solution with a final concentration of 0 to 500 μM. The obtained solution was incubated at 37 ° C. for one day. After the incubation, a color former (WST-8, manufactured by Dojindo Laboratories) diluted 6-fold with Opti-MEM was added to 60 μL / well and incubated at 37 ° C. for 90 minutes. Then, the absorbance at 450 nm was measured, and the cell viability was calculated. Cell viability was calculated using the same formula as shown in Example 1. The results are shown in FIG. 29 and FIG. From FIG. 29 and FIG. 30, CC50, which is an index of cytotoxicity, was calculated using a sigmoid regression curve of KaleidaGraph. The results are shown in Table 9. For comparison, the results of lipid peptide 16 synthesized in Example 1 are also shown in Table 9.
[脂質ペプチドの臨界ミセル濃度(CMC)の測定]
 脂質ペプチド25~脂質ペプチド30の臨界ミセル濃度を測定した。脂質ペプチドの濃度は、ピレン法(J. Aguiar et al., J. Colloid Interface Sci. 2003, 258, p.116-122)に従って測定した。まず、2μLミクロチューブに100μMのピレン(テトラヒドロフラン溶液)を取り、テトラヒドロフランを蒸発させた。その後、100μLの脂質ペプチド(0.0001~0.5mM、PBS溶液)を上記ミクロチューブに加えて、25℃、15rpmの条件下で、60分間インキュベートした。インキュベート後、PBS溶液を96ウェルプレートに、50μL/ウェルとなるように添加し、蛍光プレートリーダーで、385nmにおける蛍光強度(I385)と373nmにおける蛍光強度(I373)との比(I385/I373)を測定した。励起光の波長は334nmに設定した。実施例1と同様に、脂質ペプチドを用いた場合の蛍光強度測定の結果を示すグラフから、I385/I373比の変化を導き、臨界ミセル濃度を決定した。結果を表9に示す。比較のため、実施例1において合成した脂質ペプチド16の結果も表9に示す。
[Measurement of critical micelle concentration (CMC) of lipid peptide]
The critical micelle concentration of lipid peptide 25 to lipid peptide 30 was measured. The lipid peptide concentration was measured according to the pyrene method (J. Aguar et al., J. Colloid Interface Sci. 2003, 258, p. 116-122). First, 100 μM pyrene (tetrahydrofuran solution) was taken in a 2 μL microtube, and tetrahydrofuran was evaporated. Thereafter, 100 μL of lipid peptide (0.0001 to 0.5 mM, PBS solution) was added to the microtube and incubated at 25 ° C. and 15 rpm for 60 minutes. After incubation, a PBS solution was added to a 96-well plate at 50 μL / well, and the ratio of fluorescence intensity at 385 nm (I 385 ) to fluorescence intensity at 373 nm (I 373 ) (I 385 / I 373 ) was measured. The wavelength of the excitation light was set at 334 nm. Similarly to Example 1, a change in the I 385 / I 373 ratio was derived from the graph showing the results of fluorescence intensity measurement when lipid peptides were used, and the critical micelle concentration was determined. The results are shown in Table 9. For comparison, the results of lipid peptide 16 synthesized in Example 1 are also shown in Table 9.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[融合タンパク質と脂質ペプチドとの反応]
 上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を10μM、上記脂質ペプチド25を50μM、及び微生物由来トランスグルタミナーゼを0.1U/mLを、10mMのTris-HCl(pH8.0)中で混合させ、37℃の条件下で、60分間反応させた。このとき、脂質ペプチドにおける第二のペプチドに含まれる1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を5とした。
[Reaction between fusion protein and lipid peptide]
10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2, 50 μM of the lipid peptide 25, and 0.1 U / mL of the microorganism-derived transglutaminase were mixed in 10 mM Tris-HCl (pH 8.0). And allowed to react at 37 ° C. for 60 minutes. At this time, the molar ratio between the primary amino group (here, lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein. (K / Q ratio) was set to 5.
 60分間経過後、0.2%TFA含有アセトニトリルを30μL添加して反応を停止させた。RP-HPLCによって、脂質化タンパク質が得られたことを確認した。実施例1と同様に反応性を評価した。結果を表10に示す。比較のため、実施例11の結果も表9に示す。 After 60 minutes, 30 μL of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained. The reactivity was evaluated in the same manner as in Example 1. The results are shown in Table 10. For comparison, the results of Example 11 are also shown in Table 9.
 RP-HPLCを用いた測定は、4.6×250mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂質ペプチド(0.5mg/mL、20μL)の溶出は、40分間後にアセトニトリルの濃度勾配が20%から100%になるように流速1.0mL/minで移動相を送液する条件で行い、280nmの吸光度で検出した。 Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 250 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. The elution of lipid peptide (0.5 mg / mL, 20 μL) was performed under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 20% to 100% after 40 minutes. The absorbance was detected.
(実施例43~47)
 表10に記載のとおり、脂質ペプチド25に代えて、脂質ペプチド26(実施例43)、脂質ペプチド27(実施例44)、脂質ペプチド28(実施例45)、脂質ペプチド29(実施例46)、及び脂質ペプチド30(実施例47)を用いたこと以外は、実施例42と同様にして実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表10に示す。
(Examples 43 to 47)
As shown in Table 10, instead of lipid peptide 25, lipid peptide 26 (Example 43), lipid peptide 27 (Example 44), lipid peptide 28 (Example 45), lipid peptide 29 (Example 46), In addition, experiments were conducted in the same manner as in Example 42 except that lipid peptide 30 (Example 47) was used, and the reactivity of the transglutaminase reaction of the fusion protein and the lipid peptide was evaluated. The results are shown in Table 10.
(実施例48)
 表10に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例11と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表10に示す。
(Example 48)
As shown in Table 10, the experiment was conducted in the same manner as in Example 11 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
(実施例49)
 表10に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例42と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表10に示す。
(Example 49)
As shown in Table 10, the experiment was conducted in the same manner as in Example 42 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
(実施例50)
 表10に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例43と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表10に示す。
(Example 50)
As shown in Table 10, the experiment was conducted in the same manner as in Example 43 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
(実施例51)
 表10に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例44と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表10に示す。
(Example 51)
As shown in Table 10, the experiment was performed in the same manner as in Example 44 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
(実施例52)
 表10に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例45と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表10に示す。
(Example 52)
As shown in Table 10, the experiment was conducted in the same manner as in Example 45 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
(実施例53)
 表10に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例46と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表10に示す。
(Example 53)
As shown in Table 10, the experiment was conducted in the same manner as in Example 46 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
(実施例54)
 表10に記載のとおり、界面活性剤としてn-ドデシル-β-D-マルトシドを加えたこと以外は、実施例47と同様にして、実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を表10に示す。
(Example 54)
As shown in Table 10, the experiment was conducted in the same manner as in Example 47 except that n-dodecyl-β-D-maltoside was added as a surfactant, and the reaction of the transglutaminase reaction of the fusion protein and lipid peptide was performed. Sex was evaluated. The results are shown in Table 10.
[細胞膜への係留能力解析(フローサイトメトリー解析)]
 実施例11及び実施例42~実施例54で得られた脂質化タンパク質の反応溶液(未反応の脂質ペプチドを含む)を用いて、脂質化タンパク質の細胞膜への係留能力を評価した。まず、浮遊細胞SNU-1を2.0×10個播種して、100μLのPBSで2回洗浄した後、25μLのPBSに懸濁させた。得られた浮遊細胞の懸濁液に、上記で得られた脂質化タンパク質(2μM)を25μLだけ混合して、終濃度が1μMとなるようにして溶液を調製した。混合した後の溶液を37℃の条件下で、15分間インキュベートした。インキュベート後、200μLのPBSで溶液を2回洗浄した。洗浄した後の溶液を400μLのPBSに懸濁し、セルストレーナーで濾過した。その後、セルアナライザー(製品名「セルアナライザーEC800」)によって細胞一個あたりの蛍光を定量した。結果を図31及び表10に示す。
[Mounting ability analysis to cell membrane (flow cytometry analysis)]
Using the lipidated protein reaction solutions (including unreacted lipid peptides) obtained in Example 11 and Examples 42 to 54, the ability of the lipidated protein to anchor to the cell membrane was evaluated. First, 2.0 × 10 5 floating cells SNU-1 were seeded, washed twice with 100 μL of PBS, and then suspended in 25 μL of PBS. The resulting suspension of suspension cells was mixed with 25 μL of the lipidated protein (2 μM) obtained above to prepare a solution with a final concentration of 1 μM. The mixed solution was incubated at 37 ° C. for 15 minutes. After incubation, the solution was washed twice with 200 μL PBS. The washed solution was suspended in 400 μL of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG. 31 and Table 10.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[細胞毒性試験]
 実施例42~47で得られた脂質化タンパク質の反応溶液(未反応の脂溶性ビタミンを有する化合物を含む)を用いて、WSTアッセイによって脂質化タンパク質の細胞毒性を評価した。評価方法は、上記実施例3と同様にして行った。結果を図32に示す。
[Cytotoxicity test]
Using the lipidated protein reaction solutions obtained in Examples 42 to 47 (including compounds having unreacted fat-soluble vitamins), the cytotoxicity of lipidated proteins was evaluated by WST assay. The evaluation method was performed in the same manner as in Example 3 above. The results are shown in FIG.
(実施例55)
 Fmoc固相合成法によって、下記表11に記載のアミノ酸配列を1アミノ酸ずつ縮合して合成して第二のペプチドを調製し、その後、第二のペプチドのN末端アミノ酸のアミノ基とラウリン酸とをリンカーで接続した脂質ペプチド31を合成した。得られた脂質ペプチドは、RP-HPLCによって精製した。精製後の脂質ペプチドの同定及び純度の測定は、MALDI-TOF-MS及びRP-HPLCによって行った。また、ラウリン酸に代えて、パルミチン酸、ステアリン酸、α-トコフェロール又はコレステロールを用いて同様に脂質ペプチドを合成した(表11の脂質ペプチド32~35)。
(Example 55)
The Fmoc solid phase synthesis method was used to prepare a second peptide by condensing the amino acid sequences shown in Table 11 below one by one, and then preparing the second peptide with the amino group of the N-terminal amino acid, lauric acid, Were synthesized with a lipid peptide 31 connected by a linker. The resulting lipid peptide was purified by RP-HPLC. Identification of the lipid peptide after purification and measurement of purity were performed by MALDI-TOF-MS and RP-HPLC. Lipid peptides were synthesized in the same manner using palmitic acid, stearic acid, α-tocopherol or cholesterol instead of lauric acid (lipid peptides 32-35 in Table 11).
 また、第二のリンカーとして、GSの脂質部側にリジン(K)を導入することで、脂質部を2つ導入した脂質ペプチドの合成も行い、精製後の脂質ペプチドの同定及び純度の測定は、MALDI-TOF-MS及びRP-HPLCによって行った。より具体的には、ラウリン酸を2つ導入した脂質ペプチド36、ミリスチン酸を2つ導入した脂質ペプチド37、パルミチン酸を2つ導入した脂質ペプチド38、ステアリン酸を2つ導入した脂質ペプチド39、α-トコフェロールを2つ導入した脂質ペプチド40、及びコレステロールを2つ導入した脂質ペプチド41を合成した。なお、脂質ペプチド36は、下記の化学式で表される。 In addition, as a second linker, by introducing lysine (K) into the lipid part side of G 3 S, a lipid peptide into which two lipid parts have been introduced is also synthesized. The measurement was performed by MALDI-TOF-MS and RP-HPLC. More specifically, lipid peptide 36 introduced with two lauric acids, lipid peptide 37 introduced with two myristic acids, lipid peptide 38 introduced with two palmitic acids, lipid peptide 39 introduced with two stearic acids, Lipid peptide 40 introduced with two α-tocopherols and lipid peptide 41 introduced with two cholesterols were synthesized. The lipid peptide 36 is represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 RP-HPLCを用いた測定は、4.6×250mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂質ペプチド(0.5mg/mL、20μL)の溶出は、30分間後にアセトニトリルの濃度勾配が30%か60%になるように流速1.0mL/minで移動相を送液する条件で行い、220nmの吸光度で検出した。また、MALDI-TOF-MSを用いた測定は、0.5mg/mLの脂質ペプチド溶液2μLと、α-シアノ-4-ヒドロキシけい皮酸(CHCA)マトリックスとを用いて行った。 Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 250 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. The elution of lipid peptide (0.5 mg / mL, 20 μL) was carried out under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 30% or 60% after 30 minutes. The absorbance was detected. Measurement using MALDI-TOF-MS was performed using 2 μL of a 0.5 mg / mL lipid peptide solution and an α-cyano-4-hydroxycinnamic acid (CHCA) matrix.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上述のとおり合成した脂質ペプチド31~脂質ペプチド41について、細胞毒性試験及び臨界ミセル濃度の評価を行った。 For the lipid peptides 31 to 41 synthesized as described above, cytotoxicity tests and critical micelle concentrations were evaluated.
[脂質ペプチドの細胞毒性試験]
 合成した脂質ペプチドの細胞に対する毒性をWSTアッセイによって評価した。100μLのリン酸緩衝生理食塩水(PBS)で2回洗浄した浮遊細胞SNU-1を1.0×10個/ウェル(25μLの液体培地(Opti-MEM、ライフテクノロジーズジャパン株式会社製))となるように、96ウェルプレートに播種した。そして、上記で合成した脂質ペプチド(0~1000μM)を25μLだけ加えて混合し、終濃度が0~500μMとなるようにして溶液を調製した。得られた溶液を37℃の条件下で、一日間インキュベートした。インキュベート後、Opti-MEMで6倍に希釈した発色剤(WST-8、同仁化学研究所製)を60μL/ウェルとなるように添加して、37℃の条件下で、90分間インキュベートした。そして、450nmにおける吸光度を測定して、細胞生存率を算出した。細胞生存率は実施例1に示したものと同じ式を用いて計算した。結果を図33、図34及び図35に示す。図33、図34及び図35から、細胞毒性の指標であるCC50をKaleidaGraphのシグモイド回帰曲線を用いて算出した。結果を表12に示す。比較のため、実施例1において合成した脂質ペプチド21の結果も表12に示す。
[Cytotoxicity test of lipid peptides]
Toxicity of synthesized lipid peptides to cells was evaluated by WST assay. 1.0 × 10 4 floating cells SNU-1 washed twice with 100 μL phosphate buffered saline (PBS) (25 μL liquid medium (Opti-MEM, Life Technologies Japan)) and Inoculated into a 96-well plate. Then, 25 μL of the lipid peptide synthesized above (0 to 1000 μM) was added and mixed to prepare a solution with a final concentration of 0 to 500 μM. The obtained solution was incubated at 37 ° C. for one day. After the incubation, a color former (WST-8, manufactured by Dojindo Laboratories) diluted 6-fold with Opti-MEM was added to 60 μL / well and incubated at 37 ° C. for 90 minutes. Then, the absorbance at 450 nm was measured, and the cell viability was calculated. Cell viability was calculated using the same formula as shown in Example 1. The results are shown in FIG. 33, FIG. 34 and FIG. From FIG. 33, FIG. 34 and FIG. 35, CC50 as an index of cytotoxicity was calculated using a sigmoid regression curve of KaleidaGraph. The results are shown in Table 12. For comparison, the results of the lipid peptide 21 synthesized in Example 1 are also shown in Table 12.
[脂質ペプチドの臨界ミセル濃度(CMC)の測定]
 脂質ペプチド21及び脂質ペプチド31~脂質ペプチド41の臨界ミセル濃度を測定した。脂質ペプチドの濃度は、ピレン法(J. Aguiar et al., J. Colloid Interface Sci. 2003, 258, p.116-122)に従って測定した。まず、2μLミクロチューブに100μMのピレン(テトラヒドロフラン溶液)を取り、テトラヒドロフランを蒸発させた。その後、100μLの脂質ペプチド(0.0001~0.5mM、PBS溶液)を上記ミクロチューブに加えて、25℃、15rpmの条件下で、60分間インキュベートした。インキュベート後、PBS溶液を96ウェルプレートに、50μL/ウェルとなるように添加し、蛍光プレートリーダーで、385nmにおける蛍光強度(I385)と373nmにおける蛍光強度(I373)との比(I385/I373)を測定した。励起光の波長は334nmに設定した。実施例1と同様に、脂質ペプチドを用いた場合の蛍光強度測定の結果を示すグラフから、I385/I373比の変化を導き、臨界ミセル濃度を決定した。結果を表12に示す。
[Measurement of critical micelle concentration (CMC) of lipid peptide]
The critical micelle concentrations of lipid peptide 21 and lipid peptide 31 to lipid peptide 41 were measured. The lipid peptide concentration was measured according to the pyrene method (J. Aguar et al., J. Colloid Interface Sci. 2003, 258, p. 116-122). First, 100 μM pyrene (tetrahydrofuran solution) was taken in a 2 μL microtube, and tetrahydrofuran was evaporated. Thereafter, 100 μL of lipid peptide (0.0001 to 0.5 mM, PBS solution) was added to the microtube and incubated at 25 ° C. and 15 rpm for 60 minutes. After incubation, a PBS solution was added to a 96-well plate at 50 μL / well, and the ratio of fluorescence intensity at 385 nm (I 385 ) to fluorescence intensity at 373 nm (I 373 ) (I 385 / I 373 ) was measured. The wavelength of the excitation light was set at 334 nm. Similarly to Example 1, a change in the I 385 / I 373 ratio was derived from the graph showing the results of fluorescence intensity measurement when lipid peptides were used, and the critical micelle concentration was determined. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[融合タンパク質と脂質ペプチドとの反応]
 上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を10μM、上記脂質ペプチド31を50μM、微生物由来トランスグルタミナーゼを0.1U/mL及び界面活性剤としてn-ドデシル-β-D-マルトシドを1.0質量/体積%を、10mLのPBS中で混合させ、37℃の条件下で、60分間反応させた。このとき、脂質ペプチドにおける第二のペプチドに含まれる1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を10とした。K/Q比率を、5又は20に変更して上記同様の反応を行った。結果を図36に示す。
[Reaction between fusion protein and lipid peptide]
The fusion protein having the amino acid sequence represented by SEQ ID NO: 2 is 10 μM, the lipid peptide 31 is 50 μM, the microorganism-derived transglutaminase is 0.1 U / mL, and n-dodecyl-β-D-maltoside is 1 as a surfactant. 0.0 mass / volume% was mixed in 10 mL of PBS and reacted at 37 ° C. for 60 minutes. At this time, the molar ratio between the primary amino group (here, lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein. The (K / Q ratio) was 10. The same reaction as described above was performed by changing the K / Q ratio to 5 or 20. The results are shown in FIG.
 60分間経過後、0.2%TFA含有アセトニトリルを30μL添加して反応を停止させた。RP-HPLCによって、脂質化タンパク質が得られたことを確認した。実施例1と同様に反応性を評価した。結果を表13に示す。 After 60 minutes, 30 μL of 0.2% TFA-containing acetonitrile was added to stop the reaction. It was confirmed by RP-HPLC that lipidated protein was obtained. The reactivity was evaluated in the same manner as in Example 1. The results are shown in Table 13.
 RP-HPLCを用いた測定は、4.6×250mmのInertsil ODS-3カラムを用いて室温(25℃)で行った。移動相は0.1%TFA含有Milli-Q水及び0.1%TFA含有アセトニトリルを使用した。脂質ペプチド(0.5mg/mL、20μL)の溶出は、40分間後にアセトニトリルの濃度勾配が20%から100%になるように流速1.0mL/minで移動相を送液する条件で行い、280nmの吸光度で検出した。 Measurement using RP-HPLC was performed at room temperature (25 ° C.) using a 4.6 × 250 mm Inertsil ODS-3 column. The mobile phase used was Milli-Q water containing 0.1% TFA and acetonitrile containing 0.1% TFA. The elution of lipid peptide (0.5 mg / mL, 20 μL) was performed under the condition that the mobile phase was fed at a flow rate of 1.0 mL / min so that the concentration gradient of acetonitrile would be 20% to 100% after 40 minutes. The absorbance was detected.
(実施例56~66)
 表13に記載のとおり、脂質ペプチド31に代えて、脂質ペプチド32(実施例56)、脂質ペプチド33(実施例57)、脂質ペプチド34(実施例58)、脂質ペプチド35(実施例59)、脂質ペプチド36(実施例60)、脂質ペプチド37(実施例61)、脂質ペプチド38(実施例62)、脂質ペプチド39(実施例63)、脂質ペプチド40(実施例64)、脂質ペプチド41(実施例65)、及び脂質ペプチド21(実施例66)を用いたこと、及びK/Q比率が5、10、20となるように各脂質ペプチドの配合量を調整したこと以外は、実施例55と同様にして実験を行い、融合タンパク質及び脂質ペプチドのトランスグルタミナーゼ反応の反応性を評価した。結果を図36、図37及び表13に示す。
(Examples 56 to 66)
As described in Table 13, instead of lipid peptide 31, lipid peptide 32 (Example 56), lipid peptide 33 (Example 57), lipid peptide 34 (Example 58), lipid peptide 35 (Example 59), Lipid peptide 36 (Example 60), Lipid peptide 37 (Example 61), Lipid peptide 38 (Example 62), Lipid peptide 39 (Example 63), Lipid peptide 40 (Example 64), Lipid peptide 41 (Execute) Example 55), except that lipid peptide 21 (Example 66) was used, and that the amount of each lipid peptide was adjusted so that the K / Q ratio was 5, 10, 20 and Example 55 The experiment was conducted in the same manner, and the reactivity of the transglutaminase reaction of the fusion protein and lipid peptide was evaluated. The results are shown in FIGS. 36 and 37 and Table 13.
[細胞膜への係留能力解析(フローサイトメトリー解析)]
 実施例55~実施例66で得られた脂質化タンパク質の反応溶液(未反応の脂質ペプチドを含む)を用いて、脂質化タンパク質の細胞膜への係留能力を評価した。まず、浮遊細胞SNU-1を2.0×10個播種して、100μLのPBSで2回洗浄した後、25μLのPBSに懸濁させた。得られた浮遊細胞の懸濁液に、上記で得られた脂質化タンパク質(2μM)を25μLだけ混合して、終濃度が1μMとなるようにして溶液を調製した。混合した後の溶液を37℃の条件下で、15分間インキュベートした。インキュベート後、200μLのPBSで溶液を2回洗浄した。洗浄した後の溶液を400μLのPBSに懸濁し、セルストレーナーで濾過した。その後、セルアナライザー(製品名「セルアナライザーEC800」)によって細胞一個あたりの蛍光を定量した。結果を図38及び表13に示す。比較のため、実施例16の結果も表13に示す。
[Mounting ability analysis to cell membrane (flow cytometry analysis)]
Using the lipidated protein reaction solutions (including unreacted lipid peptides) obtained in Examples 55 to 66, the ability of the lipidated protein to anchor to the cell membrane was evaluated. First, 2.0 × 10 5 floating cells SNU-1 were seeded, washed twice with 100 μL of PBS, and then suspended in 25 μL of PBS. The resulting suspension of suspension cells was mixed with 25 μL of the lipidated protein (2 μM) obtained above to prepare a solution with a final concentration of 1 μM. The mixed solution was incubated at 37 ° C. for 15 minutes. After incubation, the solution was washed twice with 200 μL PBS. The washed solution was suspended in 400 μL of PBS and filtered with a cell strainer. Thereafter, the fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG. 38 and Table 13. For comparison, the results of Example 16 are also shown in Table 13.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表13中「-」で示した部分は、測定を実施していないことを意味する。 The portion indicated by “- * ” in Table 13 means that no measurement is performed.
[細胞毒性試験]
 実施例55~57、及び実施例59~63、66で得られた脂質化タンパク質の反応溶液(未反応の脂溶性ビタミンを有する化合物を含む)を用いて、WSTアッセイによって脂質化タンパク質の細胞毒性を評価した。評価方法は、上記実施例3と同様にして行った。結果を図39に示す。
[Cytotoxicity test]
Cytotoxicity of lipidated proteins by WST assay using the reaction solutions of lipidated proteins obtained in Examples 55 to 57 and Examples 59 to 63 and 66 (containing compounds having unreacted fat-soluble vitamins) Evaluated. The evaluation method was performed in the same manner as in Example 3 above. The results are shown in FIG.
(実施例67)
[融合タンパク質と脂質ペプチドとの反応]
 脂質化タンパク質を係留させる対象となる細胞の存在下で、融合タンパク質と脂質ペプチドとの反応を行った。
(Example 67)
[Reaction between fusion protein and lipid peptide]
The reaction between the fusion protein and the lipid peptide was carried out in the presence of the cells to be anchored with the lipidated protein.
 上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を10μM、上記脂質ペプチド24を5μM、微生物由来トランスグルタミナーゼを0.1U/mL、及び浮遊細胞SNU-1を2.0×10個、を10mLのD-PBS中で混合させ、37℃の条件下で、60分間反応させた。このとき、脂質ペプチドにおける第二のペプチドに含まれる1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を0.5とした。 10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2, 5 μM of the lipid peptide 24, 0.1 U / mL of the microorganism-derived transglutaminase, and 2.0 × 10 5 floating cells SNU-1. Were mixed in 10 mL of D-PBS and reacted at 37 ° C. for 60 minutes. At this time, the molar ratio between the primary amino group (here, lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein. (K / Q ratio) was set to 0.5.
[細胞膜への係留能力解析(フローサイトメトリー解析)]
 実施例67で得られた脂質化タンパク質の反応溶液(未反応の脂質ペプチドを含む)を用いて、脂質化タンパク質の細胞膜への係留能力を評価した。上記反応溶液を200μLのPBSで2回洗浄した後、400μLのPBSに懸濁させた。得られた懸濁液を対象として、セルアナライザー(製品名「セルアナライザーEC800」)によって細胞一個あたりの蛍光を定量した。結果を図40に示す。
[Mounting ability analysis to cell membrane (flow cytometry analysis)]
Using the lipidated protein reaction solution (including unreacted lipid peptide) obtained in Example 67, the ability of the lipidated protein to anchor to the cell membrane was evaluated. The reaction solution was washed twice with 200 μL of PBS and then suspended in 400 μL of PBS. Using the obtained suspension as a target, fluorescence per cell was quantified with a cell analyzer (product name “Cell Analyzer EC800”). The results are shown in FIG.
(実施例68)
[融合タンパク質と脂質ペプチドとの反応]
 脂質化タンパク質を係留させる対象となる細胞の存在下で、融合タンパク質と脂質ペプチドとの反応を行った。
Example 68
[Reaction between fusion protein and lipid peptide]
The reaction between the fusion protein and the lipid peptide was carried out in the presence of the cells to be anchored with the lipidated protein.
 上記配列番号2で表されるアミノ酸配列を有する融合タンパク質を10μM、上記脂質ペプチド24を5μM、微生物由来トランスグルタミナーゼを0.1U/mL、及び浮遊細胞SNU-1を5.0×10個、をD-PBS中で混合させ、合計体積が50μL/ウェルとなるように調製し、37℃の条件下で、30分間反応させた。このとき、脂質ペプチドにおける第二のペプチドに含まれる1級アミノ基(ここではリジン(K)残基)と、融合タンパク質における第一のペプチドに含まれるグルタミン(Q)残基と、のモル比(K/Q比率)を0.5とした。 10 μM of the fusion protein having the amino acid sequence represented by SEQ ID NO: 2, 5 μM of the lipid peptide 24, 0.1 U / mL of microorganism-derived transglutaminase, and 5.0 × 10 5 floating cell SNU-1 Were mixed in D-PBS to prepare a total volume of 50 μL / well, and reacted at 37 ° C. for 30 minutes. At this time, the molar ratio between the primary amino group (here, lysine (K) residue) contained in the second peptide in the lipid peptide and the glutamine (Q) residue contained in the first peptide in the fusion protein. (K / Q ratio) was set to 0.5.
[細胞毒性試験]
 実施例68で得られた脂質化タンパク質の反応溶液(未反応の脂溶性ビタミンを有する化合物を含む)を用いて、WSTアッセイによって脂質化タンパク質の細胞毒性を評価した。上記反応溶液を100μLのD-PBSで2回洗浄した後、Opti-MEMで6倍に希釈した発色剤(WST-8、同仁化学研究所製)を110μL/ウェルとなるように添加して、37℃の条件下で、90分間インキュベートした。そして、450nmにおける吸光度を測定して、細胞生存率を算出した。細胞生存率は実施例1に示したものと同じ式を用いて計算した。結果を図41に示す。
[Cytotoxicity test]
Using the lipidated protein reaction solution obtained in Example 68 (including a compound having unreacted fat-soluble vitamins), the cytotoxicity of the lipidated protein was evaluated by the WST assay. The reaction solution was washed twice with 100 μL of D-PBS, and then a color former (WST-8, manufactured by Dojindo Laboratories) diluted 6-fold with Opti-MEM was added to 110 μL / well. It incubated for 90 minutes on 37 degreeC conditions. Then, the absorbance at 450 nm was measured, and the cell viability was calculated. Cell viability was calculated using the same formula as shown in Example 1. The results are shown in FIG.
 実施例67及び実施例68の結果から、脂質化タンパク質を係留させる対象となる細胞の存在下で、融合タンパク質と脂質ペプチドとの反応を行う方法によっても、脂質化タンパク質を対象とする細胞の細胞膜へ係留させることができることが確認された。脂質化タンパク質を係留させる対象となる細胞の存在下で、融合タンパク質と脂質ペプチドとの反応を行う方法は、あらかじめ脂質化タンパク質の合成及び生成を行ってから、対象とする細胞の細胞膜へ脂質化タンパク質を係留させる方法に比べて、精製などの操作が不要であるため、有益である。 From the results of Example 67 and Example 68, the cell membrane of cells targeted for lipidated proteins can also be obtained by the method of reacting the fusion protein with the lipid peptide in the presence of cells targeted for anchoring the lipidated proteins. It has been confirmed that it can be moored at. The method of reacting the fusion protein with the lipid peptide in the presence of the cells to be moored with the lipidated protein is to synthesize and produce the lipidated protein in advance and then lipidate the cell membrane of the target cell. Compared to the method of tethering proteins, operations such as purification are unnecessary, which is beneficial.

Claims (12)

  1.  微生物由来トランスグルタミナーゼの存在下、融合タンパク質と、1級アミノ基を有する化合物とを反応させて、前記融合タンパク質と前記化合物とがイソペプチド結合によって架橋された脂質化タンパク質を得る工程を備え、
     前記融合タンパク質は、グルタミン残基を含有する第一のペプチド及びタンパク質を有し、
     前記化合物は、脂質部又は脂溶性ビタミン部を有する、脂質化タンパク質の製造方法。
    Comprising the step of reacting a fusion protein with a compound having a primary amino group in the presence of a microorganism-derived transglutaminase to obtain a lipidated protein in which the fusion protein and the compound are cross-linked by an isopeptide bond,
    The fusion protein has a first peptide and protein containing a glutamine residue,
    The said compound has a lipid part or a fat-soluble vitamin part, The manufacturing method of lipidated protein.
  2.  前記化合物は、リジン残基を含有する第二のペプチド、及び、脂質部又は脂溶性ビタミン部を有する脂質ペプチドを含み、前記1級アミノ基が前記リジン残基に由来するものである、請求項1に記載の脂質化タンパク質の製造方法。 The compound includes a second peptide containing a lysine residue and a lipid peptide having a lipid part or a fat-soluble vitamin part, wherein the primary amino group is derived from the lysine residue. 2. A method for producing a lipidated protein according to 1.
  3.  前記第二のペプチドは、前記第一のペプチドよりも親水性アミノ酸残基の割合が高い、請求項2に記載の脂質化タンパク質の製造方法。 The method for producing a lipidated protein according to claim 2, wherein the second peptide has a higher ratio of hydrophilic amino acid residues than the first peptide.
  4.  前記第二のペプチドは、ヒスチジン残基、プロリン残基、トリプトファン残基及びアルギニン残基からなる群から選ばれる少なくとも1種のアミノ酸残基を更に含有する、請求項2又は3に記載の脂質化タンパク質の製造方法。 The lipidation according to claim 2 or 3, wherein the second peptide further contains at least one amino acid residue selected from the group consisting of a histidine residue, a proline residue, a tryptophan residue, and an arginine residue. A method for producing a protein.
  5.  前記脂質部は、炭素数12~18の脂肪族炭化水素基を有する、請求項1~4のいずれか一項に記載の脂質化タンパク質の製造方法。 The method for producing a lipidated protein according to any one of claims 1 to 4, wherein the lipid part has an aliphatic hydrocarbon group having 12 to 18 carbon atoms.
  6.  前記第一のペプチドは、グリシン残基、アラニン残基、バリン残基、ロイシン残基、イソロイシン残基、チロシン残基、トリプトファン残基、及びフェニルアラニン残基からなる群から選ばれる少なくとも1種の疎水性アミノ酸残基を更に含有する、請求項1~5のいずれか一項に記載の脂質化タンパク質の製造方法。 The first peptide is at least one hydrophobic substance selected from the group consisting of a glycine residue, an alanine residue, a valine residue, a leucine residue, an isoleucine residue, a tyrosine residue, a tryptophan residue, and a phenylalanine residue. The method for producing a lipidated protein according to any one of claims 1 to 5, further comprising a functional amino acid residue.
  7.  グルタミン残基を含有する第一のペプチド及びタンパク質を有する融合タンパク質部と、脂質部又は脂溶性ビタミン部とを含み、
     前記脂質部又は前記脂溶性ビタミン部が、前記第一のペプチドのグルタミン残基とイソペプチド結合によって前記融合タンパク質部と結合している、脂質化タンパク質。
    A fusion protein part having a first peptide and protein containing a glutamine residue, and a lipid part or a fat-soluble vitamin part;
    The lipidated protein, wherein the lipid part or the fat-soluble vitamin part is bound to the fusion protein part through a glutamine residue of the first peptide and an isopeptide bond.
  8.  前記脂質部又は前記脂溶性ビタミン部は、リジン残基を含有する第二のペプチドを有する脂質ペプチド部を含み、
     前記イソペプチド結合が、前記リジン残基と前記グルタミン残基との結合である、請求項7に記載の脂質化タンパク質。
    The lipid part or the fat-soluble vitamin part includes a lipid peptide part having a second peptide containing a lysine residue,
    The lipidated protein according to claim 7, wherein the isopeptide bond is a bond between the lysine residue and the glutamine residue.
  9.  前記第二のペプチドは、前記第一のペプチドよりも親水性アミノ酸残基の割合が高い、請求項8に記載の脂質化タンパク質。 The lipidated protein according to claim 8, wherein the second peptide has a higher ratio of hydrophilic amino acid residues than the first peptide.
  10.  前記第二のペプチドは、ヒスチジン残基、プロリン残基、トリプトファン残基及びアルギニン残基からなる群から選ばれる少なくとも1種のアミノ酸残基を更に含有する、請求項8又は9に記載の脂質化タンパク質。 The lipidation according to claim 8 or 9, wherein the second peptide further contains at least one amino acid residue selected from the group consisting of a histidine residue, a proline residue, a tryptophan residue, and an arginine residue. protein.
  11.  前記脂質部は、炭素数12~18の脂肪族炭化水素基を有する、請求項7~10のいずれか一項に記載の脂質化タンパク質。 The lipidated protein according to any one of claims 7 to 10, wherein the lipid part has an aliphatic hydrocarbon group having 12 to 18 carbon atoms.
  12.  前記第一のペプチドは、グリシン残基、アラニン残基、バリン残基、ロイシン残基、イソロイシン残基、チロシン残基、トリプトファン残基、及びフェニルアラニン残基からなる群から選ばれる少なくとも1種の疎水性アミノ酸残基を更に含有する、請求項7~11のいずれか一項に記載の脂質化タンパク質。 The first peptide is at least one hydrophobic substance selected from the group consisting of a glycine residue, an alanine residue, a valine residue, a leucine residue, an isoleucine residue, a tyrosine residue, a tryptophan residue, and a phenylalanine residue. The lipidated protein according to any one of claims 7 to 11, further comprising a sex amino acid residue.
PCT/JP2019/003695 2018-03-19 2019-02-01 Method for producing lipidated protein, and lipidated protein WO2019181235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020507403A JPWO2019181235A1 (en) 2018-03-19 2019-02-01 Method for producing lipidated protein, and lipidated protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-051367 2018-03-19
JP2018051367 2018-03-19

Publications (1)

Publication Number Publication Date
WO2019181235A1 true WO2019181235A1 (en) 2019-09-26

Family

ID=67987057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003695 WO2019181235A1 (en) 2018-03-19 2019-02-01 Method for producing lipidated protein, and lipidated protein

Country Status (2)

Country Link
JP (1) JPWO2019181235A1 (en)
WO (1) WO2019181235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038407A1 (en) * 2022-08-19 2024-02-22 Seqirus Inc. Lipid nanoparticle comprising a dna-binding protein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054658A (en) * 2006-08-02 2008-03-13 Kyushu Univ Site-specific binding of extraneous molecule to protein, and utilization of the binding
WO2018004014A1 (en) * 2016-07-01 2018-01-04 国立大学法人九州大学 Recombinant protein having transglutaminase activity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054658A (en) * 2006-08-02 2008-03-13 Kyushu Univ Site-specific binding of extraneous molecule to protein, and utilization of the binding
WO2018004014A1 (en) * 2016-07-01 2018-01-04 国立大学法人九州大学 Recombinant protein having transglutaminase activity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABE, H. ET AL.: "Protein lipidation catalyzed by microbial transglutaminase", CHEM. EUR. J., vol. 17, 2011, pages 14004 - 14008, XP055636138 *
TAKAHARA, M. ET AL.: "Design of lipid-protein conjugates using amphiphilic peptide substrates of microbial transglutaminase", ACS APPL. BIO MATER., vol. 1, 30 October 2018 (2018-10-30), pages 1823 - 1829, XP055636141 *
TANAKA, Y.: "Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase- mediatied protein immobilization", ORG. BIOMOL. CHEM., vol. 5, 2007, pages 1764 - 1770, XP055118154 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024038407A1 (en) * 2022-08-19 2024-02-22 Seqirus Inc. Lipid nanoparticle comprising a dna-binding protein

Also Published As

Publication number Publication date
JPWO2019181235A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
CN110577564B (en) Polypeptides and methods
US20210214401A1 (en) Manufacturing method of nanodisc comprising an olfactory receptor protein and nanodisc comprising an olfactory receptor protein manufactured by the same
US20110059159A1 (en) Nanoscale bound bilayers, methods of use and production
WO2012174423A1 (en) Stabilized polypeptides as regulators of rab gtpase function
Peng et al. A system for purification of recombinant proteins in Escherichia coli via artificial oil bodies constituted with their oleosin-fused polypeptides
JP2019533999A (en) Archaeal pyrrolidyl-tRNA synthetase for orthogonal use
Miyamoto et al. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants
AU2017257203A1 (en) Streptavidin muteins and methods of using them
TWI630213B (en) Process for purifying recombinant plasmodium falciparum circumsporozoite protein
WO2019181235A1 (en) Method for producing lipidated protein, and lipidated protein
EP2528935B1 (en) Peptide domains that bind small molecules of industrial significance
US20100322977A1 (en) Biomaterials, compositions, and methods
JPWO2008123180A1 (en) Target substance detection method, tag, DNA, vector, probe and detection kit used therefor
JP5865002B2 (en) Recombinant plasmid vector and protein production method using the same
JPWO2017022696A1 (en) Membrane protein production method and use thereof
KR20070046392A (en) The protein nano-particles that are formed by fusing probe protein to template protein with high affinity for dnak
WO2021136734A1 (en) Carrier matrix comprising dodecin protein
US20190358333A1 (en) Endocytosis enhancer for drug delivery system
Argentinian AntiCovid Consortium et al. Production of a highly immunogenic antigen from SARS-CoV-2 by covalent coupling of the receptor binding domain of spike protein to a multimeric carrier
KR102121121B1 (en) A peptide that specifically binds to alkyl paraben
WO2008024311A2 (en) Purification of low-abundant recombinant proteins from cell culture
Tyler et al. Sneaking in SpyCatcher using cell penetrating peptides for in vivo imaging
AMANO et al. A new fluorescent reagent for the detection of proteins having histidine-tag (his-tag)
CA3214614A1 (en) Polypeptides that interact with peptide tags at loops or termini and uses thereof
CA3140144A1 (en) Expression of modified proteins in a peroxisome

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771197

Country of ref document: EP

Kind code of ref document: A1