WO2018003725A1 - Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for producing laminate, method for producing semiconductor device, and polyimide precursor - Google Patents

Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for producing laminate, method for producing semiconductor device, and polyimide precursor Download PDF

Info

Publication number
WO2018003725A1
WO2018003725A1 PCT/JP2017/023341 JP2017023341W WO2018003725A1 WO 2018003725 A1 WO2018003725 A1 WO 2018003725A1 JP 2017023341 W JP2017023341 W JP 2017023341W WO 2018003725 A1 WO2018003725 A1 WO 2018003725A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
resin composition
photosensitive resin
negative photosensitive
Prior art date
Application number
PCT/JP2017/023341
Other languages
French (fr)
Japanese (ja)
Inventor
健太 吉田
悠 岩井
渋谷 明規
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020187036825A priority Critical patent/KR102187513B1/en
Priority to JP2018525148A priority patent/JP6837063B2/en
Publication of WO2018003725A1 publication Critical patent/WO2018003725A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/065Polyamides; Polyesteramides; Polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a negative photosensitive resin composition, a cured film, a method for producing a cured film, a semiconductor device, a method for producing a laminate, a method for producing a semiconductor device, and a polyimide precursor.
  • Thermosetting resins that are cured by cyclization are used for insulating layers of semiconductor devices and the like because they are excellent in heat resistance and insulation. Moreover, since polyimide resin has low solubility in a solvent, it is used in the state of a precursor (polyimide precursor) before cyclization reaction, applied to a substrate, etc., and then heated to cyclize the polyimide precursor. A cured film is also formed.
  • Patent Document 1 discloses (A) a substituent having a repeating unit represented by the general formula (1) in the main chain and a photopolymerizable carbon-carbon double bond at both molecular ends.
  • a polyimide precursor having an actinic functional group having a structure modified with an aminobenzene or a trimellitic acid derivative (B) a photo-assisting agent having a photopolymerizable functional group, and (C) N-aryl
  • a resin composition containing a photopolymerization initiator containing an ⁇ -amino acid and a thioxanthone, wherein the content of the photopolymerization initiator is 7 to 15 parts by mass with respect to 100 parts by mass of the polyimide precursor Part of the photosensitive resin composition is described.
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group.
  • Patent Document 1 Since Patent Document 1 has a polyamic acid structure, it is susceptible to hydrolysis by water. Therefore, the stability over time is low, and furthermore, the synthesized resin cannot be purified in an aqueous system, so that it is difficult to apply it in semiconductor applications that require high quality.
  • an object of the present invention is to provide a negative photosensitive resin composition excellent in resolution. Moreover, it is providing the cured film using said negative photosensitive resin composition, the manufacturing method of a cured film, a semiconductor device, the manufacturing method of a laminated body, the manufacturing method of a semiconductor device, and a polyimide precursor.
  • the present inventors can improve the resolution by providing a polymerizable group at the end of the polyimide precursor and setting the weight average molecular weight of the polyimide precursor to 50000 or less.
  • the present invention has been completed. Accordingly, the present invention provides the following.
  • ⁇ 1> includes a polyimide precursor, a photopolymerization initiator, and a solvent,
  • the polyimide precursor has a repeating unit represented by the formula (1), has a structure represented by the formula (2) at at least one end, and has a weight average molecular weight of 50000 or less, and is a negative photosensitive.
  • Resin composition In formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, and R 1 and R 2 are each independently a non-polymerizable organic group; (A) l -L 1- * (2) In the formula (2), A represents a polymerizable group, L 1 represents a single bond or an l + 1 valent organic group, l represents an integer of 1 to 10, and * represents a bonding site with another site. ⁇ 2> The negative photosensitive resin composition according to ⁇ 1>, wherein l in formula (2) is an integer of 2 to 5.
  • ⁇ 6> The negative photosensitive resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the polyimide precursor has a weight average molecular weight of 5000 or more.
  • ⁇ 7> The negative photosensitive resin composition according to any one of ⁇ 1> to ⁇ 6>, further comprising a polyfunctional radical polymerizable monomer.
  • ⁇ 8> The negative photosensitive resin composition according to any one of ⁇ 1> to ⁇ 7>, further comprising a thermal base generator.
  • ⁇ 9> The negative photosensitive resin composition according to any one of ⁇ 1> to ⁇ 8>, wherein the photopolymerization initiator is at least one selected from an oxime compound and a metallocene compound.
  • ⁇ 10> The negative photosensitive resin composition according to any one of ⁇ 1> to ⁇ 9>, which is used for forming an interlayer insulating film for a rewiring layer.
  • ⁇ 11> A cured film obtained by curing the negative photosensitive resin composition according to any one of ⁇ 1> to ⁇ 10>.
  • ⁇ 12> The cured film according to ⁇ 11>, wherein the film thickness is 1 to 30 ⁇ m.
  • ⁇ 13> a photosensitive resin composition layer forming step in which the negative photosensitive resin composition according to any one of ⁇ 1> to ⁇ 10> is applied to a substrate to form a layer; An exposure step of exposing the negative photosensitive resin composition layer; A development processing step of performing development processing on the exposed photosensitive resin composition layer; The manufacturing method of the cured film which has this.
  • ⁇ 15> A semiconductor device having the cured film according to ⁇ 11> or ⁇ 12>.
  • ⁇ 16> A method for producing a laminate including the method for producing a cured film according to ⁇ 13> or ⁇ 14>.
  • ⁇ 17> A method for producing a semiconductor device, comprising the method for producing a cured film according to ⁇ 13> or ⁇ 14>.
  • X represents a divalent organic group
  • Y represents a tetravalent organic group
  • R 1 and R 2 are each independently a non-polymerizable organic group;
  • A represents a polymerizable group
  • L 1 represents a single bond or an l + 1 valent organic group
  • l represents an integer of 1 to 10
  • * represents a bonding site with another site.
  • a negative photosensitive resin composition excellent in resolution.
  • a cured film, a cured film manufacturing method, a semiconductor device, a laminate manufacturing method, a semiconductor device manufacturing method, and a polyimide precursor using the negative photosensitive resin composition.
  • the description of the components in the present invention described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the notation which does not describe substitution and unsubstituted includes the group which has a substituent with the group which does not have a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams.
  • the light used for exposure generally includes active rays or radiation such as an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
  • active rays or radiation such as an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • “(meth) acrylate” represents both and / or “acrylate” and “methacrylate”
  • (meth) acryl” represents both “acryl” and “methacryl”
  • (Meth) acryloyl” represents either or both of “acryloyl” and “methacryloyl”.
  • solid content concentration is the mass percentage of the other component except a solvent with respect to the gross mass of a composition. Moreover, solid content concentration says the density
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are defined as polystyrene conversion values according to gel permeation chromatography (GPC) measurement unless otherwise specified.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are HLC-8220 (manufactured by Tosoh Corporation), and guard columns TSK guard column Super AW-H and TSK Super AWM-H (Tosoh Corporation) ))).
  • the eluent was measured using N-methyl-2-pyrrolidone (NMP) unless otherwise stated.
  • NMP N-methyl-2-pyrrolidone
  • RI differential refractive index
  • the negative photosensitive resin composition of the present invention includes a polyimide precursor, a photopolymerization initiator, and a solvent. It has a structure represented by Formula (2) mentioned later at least at one terminal, and has a weight average molecular weight of 50000 or less.
  • the composition of this invention can be set as the negative photosensitive resin composition excellent in resolution. It is assumed that the mechanism for obtaining such an effect is as follows. According to the study by the present inventors, it was found that the glass transition temperature (Tg) can be improved by providing a polymerizable group at the terminal of the polyimide precursor. So far, polyimide precursors have generally been provided with a polymerizable group in the side chain because the polymerizable group can be introduced at a high density. However, it has been found that when a polymerizable group is added to the side chain of the polyimide precursor, the polymerizable group of the side chain may be detached during the cyclization of the polyimide precursor.
  • Tg glass transition temperature
  • the resolution during development was inferior. This was thought to be due to the relatively small amount of polymerizable groups relative to the polyimide precursor. Therefore, by setting the weight average molecular weight of the polyimide precursor to 50000 or less, the amount of the polymerizable group relative to the polyimide precursor can be relatively increased, and as a result, the resolution has been successfully improved. is there. Furthermore, according to the present invention, it is possible to improve the resolution while maintaining a high Tg of the cured film of the negative photosensitive resin composition.
  • R 1 and R 2 in the formula (1) are non-polymerizable groups having 1 to 4 carbon atoms, whereby the rate of remaining film after thermosetting can be improved. That is, when polyimide is cyclized, the R 1 and R 2 portions of the formula (1) are easily detached, and the film is reduced when it is detached.
  • the R 1 and R 2 portions of the formula (1) are non-polymerizable groups having 1 to 4 carbon atoms, so that even when these groups are eliminated by cyclization, the film can be more effectively reduced. Can be suppressed. That is, the remaining film ratio after thermosetting can be maintained higher.
  • the lower limit value of the glass transition temperature measured by the method described in Examples described later is preferably 226 ° C or higher, more preferably 228 ° C or higher, and 230 ° C or higher. Is more preferable. If the glass transition temperature is equal to or higher than the above value, an improvement in reliability in a high temperature process such as a vapor deposition process for forming a metal wiring or a bonding process between electrodes can be expected.
  • the upper limit value of the glass transition temperature is not particularly defined, but for example, the desired performance is sufficiently exhibited even at 350 ° C. or lower.
  • the exposed film residual film ratio is preferably 50% or more, more preferably 70% or more, and further preferably 90% or more.
  • the exposed portion residual film ratio is a value defined as follows. The details of the measurement method can be referred to the description of Examples described later.
  • Exposed part residual film ratio (%) [film thickness after development of exposed part / film thickness of unexposed part before development] ⁇ 100
  • the residual film ratio after thermosetting is preferably 70% or more, more preferably 80% or more, and further preferably 85% or more.
  • the composition of the present invention has a repeating unit represented by the formula (1), has a structure represented by the formula (2) at at least one end, and has a weight average molecular weight of 50,000 or less. Containing.
  • This polyimide precursor is also the polyimide precursor of the present invention.
  • X represents a divalent organic group
  • Y represents a tetravalent organic group
  • R 1 and R 2 are each independently a non-polymerizable organic group
  • A represents a polymerizable group
  • L 1 represents a single bond or an l + 1 valent organic group
  • l represents an integer of 1 to 10
  • * represents a bonding site with another site.
  • Examples of the divalent organic group represented by X in the formula (1) include a linear or branched aliphatic group, a group containing a cyclic aliphatic group, and an aromatic group.
  • a branched aliphatic group, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, or a combination thereof is preferable, and includes an aromatic group having 6 to 20 carbon atoms. Groups are more preferred.
  • a particularly preferred embodiment includes a group represented by “—Ar—L—Ar—”.
  • Ar is each independently an aromatic group
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S —, —SO 2 — or —NHCO—, and a group consisting of a combination of two or more of the above.
  • Ar is preferably a phenylene group.
  • L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S— or —SO 2 —.
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • the divalent organic group represented by X in the formula (1) is preferably a group derived from diamine.
  • the diamine used in the production of the polyimide precursor include linear or branched aliphatic, cyclic aliphatic or aromatic diamine.
  • One type of diamine may be used, or two or more types may be used.
  • the divalent organic group represented by X is a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 6 to 20 carbon atoms, or an aromatic group having 6 to 20 carbon atoms.
  • a diamine containing a group or a group consisting of a combination thereof is preferred, and a diamine containing an aromatic group having 6 to 20 carbon atoms is more preferred.
  • the following aromatic groups are mentioned as an example of an aromatic group.
  • A represents a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —C ( ⁇ O) —, —S—. , —S ( ⁇ O) 2 —, —NHCO—, and a group selected from a combination thereof, a single bond, an alkylene group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, It is more preferably a group selected from —O—, —C ( ⁇ O) —, —S—, —SO 2 —, —CH 2 —, —O—, —S—, —SO 2 —, More preferably, it is a divalent group selected from the group consisting of —C (CF 3 ) 2 — and —C (CH 3 ) 2 —.
  • diamine examples include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,2- or 1 , 3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4- Aminocyclohexyl) methane, bis- (3-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine; meta and paraphenylenediamine, diaminotoluene, 4,4'- and 3 , 3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether
  • diamines (DA-1) to (DA-18) shown below are also preferable.
  • a diamine having at least two alkylene glycol units in the main chain is also a preferred example.
  • Preferred is a diamine containing two or more ethylene glycol chains or propylene glycol chains in one molecule, and more preferred is a diamine containing no aromatic ring.
  • Specific examples include Jeffermin (registered trademark) KH-511, Jeffermin (registered trademark) ED-600, Jeffermin (registered trademark) ED-900, Jeffermin (registered trademark) ED-2003, Jeffermin (registered trademark).
  • EDR-148 Jeffamine (registered trademark) EDR-176, D-200, D-400, D-2000, D-4000 (above trade names, manufactured by HUNTSMAN), 1- (2- (2- (2- (2- Aminopropoxy) ethoxy) propoxy) propan-2-amine, 1- (1- (1- (2-aminopropoxy) propan-2-yl) oxy) propan-2-amine, and the like, but is not limited thereto. .
  • x, y, and z are average values.
  • the divalent organic group represented by X in the formula (1) is also preferably a divalent organic group represented by the following formula (51) or formula (61) from the viewpoint of i-line transmittance.
  • a divalent organic group represented by the formula (61) is more preferable from the viewpoint of i-line transmittance and availability.
  • Formula (51) In the formula (51), R 10 to R 17 are each independently a hydrogen atom, a fluorine atom or a monovalent organic group, and at least one of R 10 to R 17 is a fluorine atom, a methyl group or a trifluoromethyl group. It is.
  • Examples of the monovalent organic group represented by R 10 to R 17 include an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and a fluorine atom having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Alkyl group and the like.
  • Formula (61) In formula (61), R 18 and R 19 are each independently a fluorine atom or a trifluoromethyl group.
  • Examples of the diamine compound that gives the structure of formula (51) or (61) include 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diamino.
  • Biphenyl 2,2′-bis (fluoro) -4,4′-diaminobiphenyl, 4,4′-diaminooctafluorobiphenyl and the like can be mentioned. These may be used alone or in combination of two or more.
  • R 112 represents a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S—, —SO.
  • -, - NHCO- is preferably a group selected from these combinations, a single bond, an alkylene group which ⁇ 1 carbon atoms which may be 3-substituted by fluorine atoms, -O -, - CO- More preferably a group selected from -S- and -SO 2- , -CH 2- , -C (CF 3 ) 2- , -C (CH 3 ) 2- , -O-, -CO More preferred is a divalent group selected from the group consisting of —, —S— and —SO 2 —.
  • tetravalent organic group represented by Y in Formula (1) examples include a tetracarboxylic acid residue remaining after the removal of the acid dianhydride group from tetracarboxylic dianhydride. Only one tetracarboxylic dianhydride may be used, or two or more tetracarboxylic dianhydrides may be used.
  • the tetracarboxylic dianhydride is preferably a compound represented by the following formula (O).
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl sulfide tetra Carboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4 4'-diphenylmethanetetracarboxylic dianhydride, 2,2 ', 3,3'-diphenylmethanetetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 2,3 , 3 ′, 4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydi
  • tetracarboxylic dianhydrides (DAA-1) to (DAA-5) shown below are also preferable examples.
  • At least one of X and Y in the formula (1) has a hydroxyl group.
  • the non-polymerizable organic group represented by R 1 and R 2 in the formula (1) is preferably a group not containing a carbon-carbon unsaturated double bond.
  • a linear or branched alkyl group, a cyclic alkyl group, and an aromatic group are preferable.
  • the aromatic group include an aryl group and an aralkyl group.
  • the non-polymerizable organic group represented by R 1 and R 2 is more preferably a non-polymerizable organic group having 1 to 4 carbon atoms, and is a linear or branched alkyl group having 1 to 4 carbon atoms. Is more preferable.
  • non-polymerizable organic group examples include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, octadecyl group.
  • Group, sec-butyl group and tert-butyl group are preferable, methyl group and ethyl group are more preferable, and methyl group is more preferable.
  • the polyimide precursor of the present invention has a structure represented by the formula (2) at least at one end.
  • A represents a polymerizable group
  • L 1 represents a single bond or an l + 1 valent organic group
  • l represents an integer of 1 to 10
  • * represents a bonding site with another site.
  • the polymerizable group represented by A in the formula (2) is preferably a group containing a carbon-carbon unsaturated double bond. Specific examples include a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a group represented by the following formula (A-1), and a group represented by the formula (A-2).
  • * represents a bonding site with L 1 and equation (2).
  • R 3 represents a hydrogen atom or a methyl group
  • Z represents an oxygen atom or NH.
  • L 1 represents a single bond or an l + 1 valent organic group, preferably an l + 1 valent organic group.
  • the l + 1 valent organic group is composed of 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 to 20 sulfur atoms. Groups. Specific examples of the l + 1 valent organic group include the following structural units or a group formed by combining two or more of the following structural units (which may form a ring structure).
  • l represents an integer of 1 to 10, preferably an integer of 2 to 10, more preferably an integer of 2 to 8, and further preferably an integer of 2 to 5. According to this aspect, the remaining film ratio after development in the exposed portion can be increased.
  • the structure represented by Formula (2) is preferably a structure represented by Formula (3) or Formula (4), and more preferably a structure represented by Formula (3). According to this aspect, the remaining film ratio after development in the exposed portion can be increased.
  • R 3 represents a hydrogen atom or a methyl group
  • Z represents an oxygen atom or NH
  • L 2 represents a single bond or an m + 1 valent organic group
  • m represents an integer of 1 to 10.
  • * Indicates a binding site with another site.
  • L 3 represents a single bond or an n + 1 valent organic group
  • n represents an integer of 1 to 10
  • * represents a bonding site with another site.
  • the m + 1 valent organic group represented by L 2 in Formula (3) and the n + 1 valent organic group represented by L 3 in Formula (4) are the groups described for the l + 1 valent organic group represented by L 1 in Formula (2).
  • the preferable range is also the same.
  • m represents an integer of 1 to 10, preferably an integer of 2 to 10, more preferably an integer of 2 to 8, and further preferably an integer of 2 to 5. According to this aspect, the remaining film ratio in the exposed portion can be increased.
  • n represents an integer of 1 to 10, preferably an integer of 2 to 10, more preferably an integer of 2 to 8, and further preferably an integer of 2 to 5. According to this aspect, the remaining film ratio in the exposed portion can be increased.
  • the polyimide precursor of the present invention has a fluorine atom in the repeating unit.
  • the fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and more preferably 20% by mass or less.
  • the polyimide precursor of the present invention may further contain a repeating unit containing an aliphatic group having a siloxane structure for the purpose of improving adhesion to the substrate.
  • a repeating unit containing an aliphatic group having a siloxane structure for the purpose of improving adhesion to the substrate.
  • the diamine component for introducing an aliphatic group having a siloxane structure include bis (3-aminopropyl) tetramethyldisiloxane and bis (paraaminophenyl) octamethylpentasiloxane.
  • the repeating unit represented by the formula (1) may be one type or two or more types. Moreover, the polyimide precursor may contain the structural isomer of the repeating unit represented by Formula (1). The polyimide precursor may also contain other types of repeating units in addition to the repeating unit represented by the formula (1).
  • the polyimide precursor of the present invention preferably contains 50 mol% or more of the repeating units represented by the formula (1), more preferably 70 mol% or more, more preferably 90 mol% or more of all repeating units. More preferably.
  • the weight average molecular weight (Mw) of the polyimide precursor is 50000 or less, preferably 40000 or less, and more preferably 35000 or less.
  • the lower limit is preferably more than 2000, more preferably 5000 or more, further preferably 6000 or more, and further preferably 7000 or more. If the weight average molecular weight of a polyimide precursor is 50000 or less, it is excellent in developability. Moreover, if the weight average molecular weight of a polyimide precursor is 5000 or more, the mechanical strength of the obtained cured film is favorable.
  • the degree of dispersion (Mw / Mn) of the polyimide precursor is preferably 2.5 or more, more preferably 2.7 or more, and further preferably 2.8 or more.
  • the upper limit of the degree of dispersion of the polyimide precursor is not particularly defined, but is, for example, preferably 4.5 or less, more preferably 4.0 or less, still more preferably 3.8 or less, and still more preferably 3.2 or less, 3.1 or less is even more preferable, 3.0 or less is even more preferable, and 2.95 or less is even more preferable.
  • the content of the polyimide precursor in the composition of the present invention is preferably 10 to 99% by mass, more preferably 50 to 98% by mass, and further preferably 70 to 96% by mass of the total solid content of the composition of the present invention.
  • the composition of the present invention has a repeating unit represented by the formula (1), and has a structure represented by “(A) 1 -L 1- *” at least at one end;
  • the content of the polyimide precursor having a weight average molecular weight of 50000 or less is preferably 10 to 99% by mass, more preferably 50 to 98% by mass, and further 70 to 96% by mass based on the total solid content of the composition of the present invention. preferable.
  • the carboxyl group is esterified. Can be manufactured.
  • the reaction product is further reacted with a compound having a polymerizable group. it can.
  • the molar ratio of tetracarboxylic dianhydride or derivative thereof to the above alcohol is 0.9 to 1.1: 2.1 to 1.
  • the molar ratio of tetracarboxylic dianhydride or derivative thereof to diamine is 0.8 to 1.2: 1.2 to 0. .8 is preferable, and 1.001 to 1.2: 0.999 to 0.8 is more preferable.
  • the reaction temperature of the above reaction is preferably ⁇ 20 to 60 ° C.
  • the reaction time is preferably 30 minutes to 10 hours.
  • the molecular weight of the alcohol to be reacted with tetracarboxylic dianhydride is preferably 30 to 150, more preferably 30 to 80, and further preferably 30 to 65.
  • the alcohol to be reacted with tetracarboxylic dianhydride is preferably an alcohol having 1 to 8 carbon atoms, more preferably an alcohol having 1 to 4 carbon atoms, still more preferably an alcohol having 1 to 3 carbon atoms, and an alcohol having 1 or 2 carbon atoms.
  • Alcohol is more preferable, and alcohol having 1 carbon (methanol) is even more preferable.
  • Specific examples of the alcohol include methanol, ethanol, propanol, and n-butanol, and methanol is particularly preferable.
  • the compound having a polymerizable group is preferably a compound having 1 to 10 polymerizable groups, more preferably a compound having 2 to 8 polymerizable groups, and still more preferably a compound having 2 to 5 polymerizable groups.
  • a group containing a carbon-carbon unsaturated double bond is preferable.
  • a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a styryl group, a group represented by the above formula (A-1) and a group represented by the above formula (A-2) Is mentioned.
  • the molecular weight of the compound having a polymerizable group is preferably from 100 to 2000, more preferably from 100 to 1500, and further preferably from 100 to 1000. If the molecular weight of the compound having a polymerizable group is within the above range, specific examples of the compound in which a polyimide precursor excellent in resolution can be easily obtained include pentaerythritol trimethyl when an acid dianhydride is excessively used.
  • EO ethylene oxide
  • 2-isocyanatoethyl (meth) acrylate and 1,1- (bisacryloyloxymethyl) ethyl isocyanate are exemplified.
  • an organic solvent is preferably used for the reaction.
  • One or more organic solvents may be used.
  • the organic solvent can be appropriately determined according to the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone and N-ethylpyrrolidone.
  • one end of the main chain of the precursor is sealed with an end-capping agent such as an acid anhydride, monocarboxylic acid, monoacid chloride compound, or monoactive ester compound in order to further improve storage stability. You may stop. Of these, it is more preferable to use a monoamine.
  • the monoamine include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, and 1-hydroxy-7.
  • -Aminonaphthalene 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2, -Hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6- Aminonaphthalene, 2-carbo Ci-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-amino Benzenesulfonic acid, 4-amino
  • a step of depositing a solid may be included. Specifically, solid precipitation can be performed by precipitating the polyimide precursor in the reaction solution in a poor solvent such as water or alcohol. Then, a polyimide precursor can be dried and a powdery polyimide precursor can be obtained.
  • the composition of the present invention contains a photopolymerization initiator.
  • the photopolymerization initiator include a photocationic polymerization initiator and a photoradical polymerization initiator, and a photoradical polymerization initiator is preferred.
  • the composition of the present invention contains a photo radical polymerization initiator
  • the composition of the present invention is applied to a substrate such as a semiconductor wafer to form a negative photosensitive resin composition layer, and then irradiated with light. Curing due to radicals occurs, and the solubility in the light irradiation part can be reduced. For this reason, for example, by exposing a negative photosensitive resin composition layer through a photomask having a pattern for masking only the electrode portion, it is possible to easily produce regions having different solubility according to the electrode pattern. There are advantages.
  • a photoinitiator having photosensitivity to light in the ultraviolet region to the visible region is preferable. Further, it may be an activator that generates some active radicals by generating some action with the photoexcited sensitizer.
  • the photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 to 800 nm (preferably 330 to 500 nm). The molar extinction coefficient of the compound can be measured using a known method. For example, it is preferable to measure with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g / L.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, etc.
  • ketone compounds include the compounds described in paragraph 0087 of JP-A-2015-087611, the contents of which are incorporated herein.
  • Kaya Cure DETX manufactured by Nippon Kayaku Co., Ltd.
  • Nippon Kayaku Co., Ltd. is also preferably used.
  • hydroxyacetophenone compounds As the photopolymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898 can also be used.
  • hydroxyacetophenone-based initiator IRGACURE-184 (IRGACURE is a registered trademark), DAROCUR-1173, IRGACURE-500, IRGACURE-2959, and IRGACURE-127 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator compounds described in JP-A-2009-191179 in which the absorption maximum wavelength is matched with a wavelength light source of 365 nm or 405 nm can also be used.
  • the acylphosphine initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • IRGACURE-819 and IRGACURE-TPO which are commercially available products can be used.
  • the metallocene compound include IRGACURE-784 (manufactured by BASF).
  • More preferred examples of the photopolymerization initiator include oxime compounds.
  • the exposure latitude can be improved more effectively.
  • Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also act as a thermal base generator.
  • Specific examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
  • Preferable oxime compounds include, for example, compounds having the following structures, 3-benzooxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxy Iminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one And 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one.
  • IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (above, manufactured by BASF), Adekaoptomer N-1919 (manufactured by ADEKA Corporation, light described in JP2012-14052A) A polymerization initiator 2) is also preferably used.
  • TR-PBG-304 manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.
  • Adeka Arkles NCI-831 and Adeka Arkles NCI-930 made by ADEKA
  • DFI-091 manufactured by Daitokemix Co., Ltd.
  • an oxime compound having a fluorine atom examples include compounds described in JP 2010-262028 A, compounds 24, 36 to 40 described in paragraph 0345 of JP 2014-500852 A, and JP 2013. And the compound (C-3) described in paragraph 0101 of JP-A No. 164471.
  • oxime compounds having a specific substituent as disclosed in JP-A-2007-267979 there are oxime compounds having a thioaryl group as disclosed in JP-A-2009-191061, and the like.
  • Photopolymerization initiators are trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triaryls from the viewpoint of exposure sensitivity.
  • Selected from the group consisting of imidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds. are preferred.
  • More preferred photopolymerization initiators are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds, acetophenone compounds, At least one compound selected from the group consisting of a trihalomethyltriazine compound, an ⁇ -aminoketone compound, an oxime compound, a triarylimidazole dimer, and a benzophenone compound is more preferable, and a metallocene compound or an oxime compound is more preferable, and an oxime compound. Is particularly preferred.
  • Photopolymerization initiators include N, N′-tetraalkyl-4,4′-diaminobenzophenone, 2-benzyl-, such as benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), and the like.
  • Aromatic ketones such as 2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, alkyl anthraquinones, etc.
  • benzoin ether compounds such as benzoin alkyl ether
  • benzoin compounds such as benzoin and alkylbenzoin
  • benzyl derivatives such as benzyldimethyl ketal.
  • a compound represented by the following formula (I) can also be used.
  • R 50 represents an alkyl group having 1 to 20 carbon atoms; an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms; an alkoxy group having 1 to 12 carbon atoms; a phenyl group; An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a cyclopentyl group, a cyclohexyl group, an alkenyl group having 2 to 12 carbon atoms, and 2 to 2 carbon atoms interrupted by one or more oxygen atoms A phenyl group substituted with at least one of 18 alkyl groups and an alkyl group having 1 to 4 carbon atoms; or biphenylyl, and R 51 is the group represented by formula (II) or the same as R 50
  • Each of R 52 to R 54 is independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or halogen.
  • R 55 is the alkyl
  • the content of the photopolymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, and still more preferably 0.1 to 30% by mass with respect to the total solid content of the composition of the present invention. 10% by mass.
  • the photoinitiator may contain only 1 type and may contain 2 or more types. When two or more photopolymerization initiators are contained, the total is preferably in the above range.
  • the composition of the present invention contains a solvent.
  • a known solvent can be arbitrarily used as the solvent.
  • the solvent is preferably an organic solvent.
  • Examples of the organic solvent include compounds such as esters, ethers, ketones, aromatic hydrocarbons, sulfoxides, and amides.
  • esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, and ⁇ -caprolactone , ⁇ -valerolactone, alkyl oxyacetates (for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (for example, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.
  • alkyl oxyacetates for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl al
  • 3-alkyloxypropionic acid alkyl esters for example, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (for example, methyl 3-methoxypropionate, 3-methoxypropionate)) Ethyl acetate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.)
  • 2-alkyloxypropionic acid alkyl esters for example, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, 2 -Propyl alkyloxypropionate and the like (for example, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)
  • ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Preferred examples include monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate.
  • ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, and 3-heptanone.
  • aromatic hydrocarbons include toluene, xylene, anisole, limonene and the like.
  • Suitable examples of the sulfoxides include dimethyl sulfoxide.
  • Preferable examples of amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
  • the solvent is preferably in the form of a mixture of two or more from the viewpoint of improving the properties of the coated surface.
  • a mixed solution composed of two or more selected from dimethyl sulfoxide, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol methyl ether, and propylene glycol methyl ether acetate is preferable.
  • the combined use of dimethyl sulfoxide and ⁇ -butyrolactone is particularly preferred.
  • the content of the solvent is preferably such that the total solid concentration of the composition of the present invention is 5 to 80% by mass, more preferably 5 to 70% by mass, and more preferably 10 to 60% by mass from the viewpoint of applicability. % Is particularly preferred.
  • the solvent content may be adjusted depending on the desired thickness and coating method. For example, if the coating method is spin coating or slit coating, the content of the solvent having a solid content concentration in the above range is preferable. In the case of spray coating, the amount is preferably 0.1% by mass to 50% by mass, and more preferably 1.0% by mass to 25% by mass.
  • a photosensitive resin composition layer having a desired thickness can be uniformly formed by adjusting the amount of solvent by the coating method.
  • the solvent may contain only 1 type and may contain 2 or more types. When two or more solvents are contained, the total is preferably in the above range.
  • the composition of the present invention preferably contains a polyfunctional radically polymerizable monomer (hereinafter also referred to as a polymerizable monomer). By setting it as such a structure, the cured film excellent in heat resistance can be formed.
  • a polyfunctional radically polymerizable monomer hereinafter also referred to as a polymerizable monomer.
  • a compound having a radical polymerizable group can be used as the polymerizable monomer.
  • the radical polymerizable group include groups having an ethylenically unsaturated bond such as a styryl group, a vinyl group, a (meth) acryloyl group, and a (meth) allyl group.
  • the radical polymerizable group is preferably a (meth) acryloyl group.
  • the polymerizable monomer preferably has two or more radical polymerizable groups, more preferably three or more.
  • the upper limit is preferably 15 or less, more preferably 10 or less, and even more preferably 8 or less.
  • the molecular weight of the polymerizable monomer is preferably 2000 or less, more preferably 1500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the polymerizable monomer is preferably 100 or more.
  • the composition of the present invention preferably contains at least one bifunctional or higher polymerizable monomer containing two or more polymerizable groups, and preferably contains at least one trifunctional or higher polymerizable monomer. Is more preferable. Further, it may be a mixture of a bifunctional polymerizable monomer and a trifunctional or higher functional polymerizable monomer.
  • the number of functional groups of the polymerizable monomer means the number of radical polymerizable groups in one molecule.
  • the polymerizable monomer examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides. These are esters of saturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyvalent amine compounds. Also, addition reaction products of monofunctional or polyfunctional isocyanates or epoxies with unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxyl group, amino group, mercapto group, monofunctional or polyfunctional. A dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof are esters of saturated carboxylic acids and polyhydric alcohol compounds
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine, or thiol, and a halogen group A substitution reaction product of an unsaturated carboxylic acid ester or amide having a detachable substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable.
  • the description in paragraphs 0113 to 0122 of JP-A-2016-027357 can be referred to, and the contents thereof are incorporated in the present specification.
  • the polymerizable monomer is also preferably a compound having a boiling point of 100 ° C. or higher under normal pressure.
  • Examples include polyethylene glycol di (meth) acrylate, trimethylolethane tri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol.
  • polyfunctional acrylates and methacrylates such as polyester acrylates and epoxy acrylates which are reaction products of epoxy resins and (meth) acrylic acid, and mixtures thereof described in JP-B 52-30490. it can. Also suitable are the compounds described in paragraphs 0254 to 0257 of JP-A-2008-292970.
  • polyfunctional (meth) acrylate etc. which are obtained by making the compound which has cyclic ether groups, such as glycidyl (meth) acrylate, and an ethylenically unsaturated group, react with polyfunctional carboxylic acid can also be mentioned.
  • preferable polymerizable monomers include groups having a fluorene ring and an ethylenically unsaturated bond described in JP2010-160418A, JP2010-129825A, Japanese Patent No. 4364216, and the like. It is also possible to use a compound having two or more or a cardo resin. Other examples include specific unsaturated compounds described in JP-B-46-43946, JP-B-1-40337, JP-B-1-40336, and JP-A-2-25493. And vinyl phosphonic acid compounds. Also, compounds containing a perfluoroalkyl group described in JP-A-61-22048 can be used. Furthermore, Journal of Japan Adhesion Association vol. 20, no. 7, pages 300 to 308 (1984), which are introduced as photopolymerizable monomers and oligomers, can also be used.
  • polymerizable monomers represented by the following formulas (MO-1) to (MO-5) can also be suitably used.
  • T is an oxyalkylene group
  • the terminal on the carbon atom side is bonded to R.
  • n is an integer from 0 to 14, and m is an integer from 0 to 8.
  • a plurality of R and T present in the molecule may be the same or different.
  • the compounds described in paragraphs 0248 to 0251 of JP-A No. 2007-267979 can be used. .
  • dipentaerythritol triacrylate (as a commercially available product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, as KAYARAD D-320; Nippon Kayaku Co., Ltd.) ), A-TMMT: Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (As commercial products, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these (meth) acryloyl groups are bonded via ethylene glycol and prop
  • Examples of commercially available polymerizable monomers include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, SR-209, manufactured by Sartomer, which is a bifunctional methacrylate having four ethyleneoxy chains, DPCA-60, a 6-functional acrylate having 6 pentyleneoxy chains, TPA-330, a 3-functional acrylate having 3 isobutyleneoxy chains, urethane oligomer UAS-10, UAB-140 manufactured by Nippon Kayaku Co., Ltd.
  • NK ester M-40G (Manufactured by Sanyo Kokusaku Pulp), NK ester M-40G, NK ester 4G, NK ester M-9300, NK ester A-9300, UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (Nippon Kayaku ( UA-306H, UA-306T, UA-306I, AH-600 T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blemmer PME400 (NOF Co., Ltd.), and the like.
  • Polymerizable monomers include urethane acrylates such as those described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, and JP-B-2-16765.
  • Urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable.
  • compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 are used as polymerizable monomers. You can also.
  • the polymerizable monomer may be a polymerizable monomer having an acid group such as a carboxyl group, a sulfo group, or a phosphoric acid group.
  • the polymerizable monomer having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound. More preferred is a polymerizable monomer.
  • the aliphatic polyhydroxy compound is pentaerythritol and / or diester. It is a compound that is pentaerythritol.
  • examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
  • the polymerizable monomer having an acid group one kind may be used alone, or two or more kinds may be mixed and used.
  • a preferable acid value of the polymerizable monomer having an acid group is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g.
  • the acid value of the polymerizable monomer is within the above range, the production and handling properties are excellent, and further, the developability is excellent. Also, the polymerizability is good.
  • the content of the polymerizable monomer is preferably 1 to 50% by mass with respect to the total solid content of the composition of the present invention from the viewpoint of good polymerizability and heat resistance.
  • the lower limit is more preferably 5% by mass or more.
  • the upper limit is more preferably 30% by mass or less.
  • As the polymerizable monomer one kind may be used alone, or two or more kinds may be mixed and used.
  • the mass ratio of the polyimide precursor to the polymerizable monomer is preferably 98/2 to 10/90, more preferably 95/5 to 30/70, and 90/10 to 50 / 50 is most preferred. If the mass ratio of a polyimide precursor and a polymerizable monomer is in the above range, a cured film that is superior in polymerizability and heat resistance can be formed.
  • a monofunctional polymerizable monomer can be preferably used from the viewpoint of warpage suppression by controlling the elastic modulus of the cured film.
  • Monofunctional polymerizable monomers include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, carbitol (meth) acrylate, cyclohexyl (meth) ) Acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc.
  • N-vinyl compounds such as N-vinylpyrrolidone, N-vinylcaprolactam, allyl glycidyl ether, diallyl phthalate, triallyl trimellitate, etc. Goods and the like are preferably used.
  • the monofunctional polymerizable monomer a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable in order to suppress volatilization before exposure.
  • composition of this invention can further contain other polymerizable compounds other than the polyimide precursor and polymerizable monomer mentioned above.
  • Other polymerizable compounds include compounds having a hydroxymethyl group, alkoxymethyl group or acyloxymethyl group; epoxy compounds; oxetane compounds; benzoxazine compounds.
  • R 4 represents a t-valent organic group having 1 to 200 carbon atoms
  • R 5 represents a group represented by —OR 6 or —OCO—R 7.
  • R 6 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms
  • R 7 represents an organic group having 1 to 10 carbon atoms.
  • the content of the compound represented by the formula (AM1) is preferably 5 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor. More preferably, it is 10 to 35 parts by mass. Further, the compound represented by the following formula (AM4) is contained in the total amount of other polymerizable compounds in an amount of 10 to 90% by mass, and the compound represented by the following formula (AM5) is contained in an amount of 10 to 90% by mass. Is also preferable.
  • R 4 represents a divalent organic group having 1 to 200 carbon atoms
  • R 5 represents a group represented by —OR 6 or —OCO—R 7
  • R 6 represents a hydrogen atom or a carbon atom.
  • R 7 represents an organic group having 1 to 10 carbon atoms.
  • R 4 represents a u-valent organic group having 1 to 200 carbon atoms
  • R 5 represents a group represented by —OR 6 or —OCO—R 7.
  • R 6 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms
  • R 7 represents an organic group having 1 to 10 carbon atoms.
  • the occurrence of cracks can be more effectively suppressed when the composition of the present invention is applied to an uneven substrate. Moreover, it is excellent in pattern workability and can form the cured film which has high heat resistance from which 5% mass reduction
  • Specific examples of the compound represented by the formula (AM4) include 46DMOC, 46DMOEP (trade name, manufactured by Asahi Organic Materials Co., Ltd.), DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML.
  • Specific examples of the compound represented by the formula (AM5) include TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), TM-BIP-A (trade name, manufactured by Asahi Organic Materials Co., Ltd.), NIKALAC MX-280, NIKALAC MX-270, NIKALAC MW-100LM (trade name, manufactured by Sanwa Chemical Co., Ltd.).
  • Epoxy compound compound having an epoxy group
  • the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy group undergoes a cross-linking reaction at 200 ° C. or less and does not cause a dehydration reaction derived from the cross-linking, so that film shrinkage hardly occurs. For this reason, containing an epoxy compound is effective for low-temperature curing and warping of the composition.
  • the epoxy compound preferably contains a polyethylene oxide group. Thereby, an elasticity modulus falls more and also curvature can be suppressed. Moreover, the film
  • the polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2 to 15.
  • epoxy compound examples include bisphenol A type epoxy resin; bisphenol F type epoxy resin; alkylene glycol type epoxy resin such as propylene glycol diglycidyl ether; polyalkylene glycol type epoxy resin such as polypropylene glycol diglycidyl ether; polymethyl (glycidyl Examples include, but are not limited to, epoxy group-containing silicones such as (roxypropyl) siloxane.
  • Epicron (registered trademark) 850-S Epicron (registered trademark) HP-4032, Epicron (registered trademark) HP-7200, Epicron (registered trademark) HP-820, Epicron (registered trademark) HP-4700, Epicron (registered trademark) EXA-4710, Epicron (registered trademark) HP-4770, Epicron (registered trademark) EXA-859CRP, Epicron (registered trademark) EXA-1514, Epicron (registered trademark) EXA-4880, Epicron (registered trademark) EXA-4850-150, Epicron EXA-4850-1000, Epicron (registered trademark) EXA-4816, Epicron (registered trademark) EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Rica Resin (registered trademark) ) BEO-60E (trade name, Shin Nippon Rika ( )), EP-4003S, EP-4000S (trade name, manufactured by
  • an epoxy resin containing a polyethylene oxide group is preferable in terms of suppressing warpage and excellent heat resistance.
  • Epicron (registered trademark) EXA-4880, Epicron (registered trademark) EXA-4822, and Licaredin (registered trademark) BEO-60E are preferable because they contain a polyethylene oxide group.
  • the content of the epoxy compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor. If the content of the epoxy compound is 5 parts by mass or more, warpage of the obtained cured film can be further suppressed, and if it is 50 parts by mass or less, pattern filling caused by reflow during curing can be further suppressed.
  • oxetane compound compound having oxetanyl group
  • examples of the oxetane compound include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, Examples include 3-ethyl-3- (2-ethylhexylmethyl) oxetane and 1,4-benzenedicarboxylic acid-bis [(3-ethyl-3-oxetanyl) methyl] ester.
  • Aron Oxetane series (for example, OXT-121, OXT-221, OXT-191, OXT-223) manufactured by Toagosei Co., Ltd. can be preferably used. Two or more kinds may be mixed.
  • the content of the oxetane compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor.
  • a benzoxazine compound (compound having a benzoxazolyl group))
  • a benzoxazine compound is preferable because it is a cross-linking reaction derived from a ring-opening addition reaction, so that degassing does not occur during curing, and thermal contraction is further reduced to suppress warpage.
  • benzoxazine compound examples include Ba type benzoxazine, Bm type benzoxazine (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), benzoxazine adduct of polyhydroxystyrene resin, phenol novolac type dihydrobenzoxazine. Compounds. These may be used alone or in combination of two or more.
  • the content of the benzoxazine compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor.
  • the composition of the present invention preferably further contains a metal discoloration inhibitor.
  • a metal discoloration prevention agent it can suppress effectively that the metal ion derived from a metal layer (metal wiring) moves into a negative photosensitive resin composition layer.
  • the metal discoloration inhibitor is not particularly limited, but a heterocyclic ring (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), compounds having thioureas and mercapto groups, hindered phenols Compounds, salicylic acid derivative compounds, and hydrazide derivative compounds.
  • triazole compounds such as triazole and benzotriazole, and tetrazole compounds such as tetrazole and benzotetrazole can be preferably used.
  • an ion trapping agent that traps anions such as halogen ions can be used.
  • Examples of other metal discoloration inhibitors include rust preventives described in paragraph 0094 of JP2013-15701A, compounds described in paragraphs 0073 to 0076 of JP2009-283711A, and JP2011-59656A. And the compounds described in paragraphs 0114, 0116 and 0118 of JP 2012-194520 A, and the like.
  • metal discoloration inhibitor examples include the following compounds.
  • the content of the metal discoloration inhibitor is preferably 0.01 to 5.0% by mass relative to the total solid content of the composition of the present invention. 05 to 2.0% by mass is more preferable, and 0.1 to 1.0% by mass is more preferable. Only one type of metal discoloration inhibitor may be used, or two or more types may be used. When two or more metal discoloration inhibitors are used, the total is preferably within the above range.
  • the composition of the present invention preferably contains a polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone, paramethoxyphenol, di-tert-butyl-paracresol, pyrogallol, para-tert-butylcatechol, parabenzoquinone, diphenyl-parabenzoquinone, 4,4′-thiobis (3-methyl).
  • a polymerization inhibitor described in paragraph 0060 of JP-A-2015-127817 and compounds described in paragraphs 0031 to 0046 of international publication WO2015 / 125469 can also be used. Further, the following compounds can be used (Me is a methyl group).
  • the content of the polymerization inhibitor is preferably 0.01 to 5% by mass relative to the total solid content of the composition of the present invention. Only one polymerization inhibitor may be used, or two or more polymerization inhibitors may be used. When two or more polymerization inhibitors are used, the total is preferably within the above range.
  • the composition of the present invention preferably contains a thermal base generator.
  • the type of the thermal base generator is not particularly defined, but is selected from an acidic compound that generates a base when heated to 40 ° C. or higher, and an ammonium salt having an anion having an pKa1 of 0 to 4 and an ammonium cation. It is preferable to include a thermal base generator containing at least one kind.
  • pKa1 represents the logarithm ( ⁇ Log 10 Ka) of the reciprocal of the dissociation constant (Ka) of the first proton of the acid, and will be described in detail later.
  • the base generated from these compounds can promote the cyclization reaction of the polyimide precursor and the like. Can be carried out at low temperatures. In addition, even if these compounds coexist with a polyimide precursor that is cured by cyclization with a base, since the cyclization of the polyimide precursor hardly proceeds unless heated, a composition having excellent storage stability can be obtained. Can be prepared.
  • the solution obtained by stirring means a compound having a value measured at 20 ° C. of less than 7 using a pH (power of hydrogen) meter.
  • the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is preferably 40 ° C. or higher, more preferably 120 to 200 ° C.
  • the upper limit of the base generation temperature is preferably 190 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 165 ° C. or lower.
  • the lower limit of the base generation temperature is preferably 130 ° C or higher, and more preferably 135 ° C or higher. If the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is 120 ° C. or higher, a base is unlikely to be generated during storage, so that a composition having excellent stability can be prepared.
  • the base generation temperature of the acidic compound (A1) and ammonium salt (A2) is 200 ° C. or lower, the cyclization temperature of the polyimide precursor or the like can be lowered.
  • the base generation temperature is measured, for example, by using differential scanning calorimetry, heating the compound to 250 ° C. at 5 ° C./min in a pressure capsule, reading the peak temperature of the lowest exothermic peak, and measuring the peak temperature as the base generation temperature. can do.
  • the base generated by the thermal base generator is preferably a secondary amine or a tertiary amine, more preferably a tertiary amine. Since tertiary amine has high basicity, cyclization temperature of a polyimide precursor, a polybenzoxazole precursor, etc. can be made lower.
  • the base generated by the thermal base generator preferably has a boiling point of 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 140 ° C. or higher.
  • the molecular weight of the generated base is preferably 80 to 2000.
  • the lower limit is more preferably 100 or more.
  • the upper limit is more preferably 500 or less.
  • the molecular weight value is a theoretical value obtained from the structural formula.
  • the acidic compound (A1) preferably contains one or more selected from an ammonium salt and a compound represented by the formula (101) or (102) described later.
  • the ammonium salt (A2) is preferably an acidic compound.
  • the ammonium salt (A2) may be a compound containing an acidic compound that generates a base when heated to 40 ° C. or higher (preferably 120 to 200 ° C.), or 40 ° C. or higher (preferably 120 to 200 ° C.). ) May be a compound excluding an acidic compound that generates a base when heated.
  • the ammonium salt means a salt of an ammonium cation represented by the following formula (101) or formula (102) and an anion.
  • the anion may be bonded to any part of the ammonium cation via a covalent bond, and may be outside the molecule of the ammonium cation, but may be outside the molecule of the ammonium cation. preferable.
  • numerator of an ammonium cation means the case where an ammonium cation and an anion are not couple
  • the anion outside the molecule of the cation moiety is also referred to as a counter anion.
  • R 1 to R 6 each independently represents a hydrogen atom or a hydrocarbon group
  • R 7 represents a hydrocarbon group
  • R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 5 and R 7 in Formula (101) and Formula (102) may be bonded to form a ring.
  • the ammonium cation is preferably represented by any of the following formulas (Y1-1) to (Y1-5).
  • R 101 represents an n-valent organic group
  • R 1 and R 7 have the same meanings as in formula (101) or formula (102).
  • Ar 101 and Ar 102 each independently represent an aryl group
  • n represents an integer of 1 or more
  • m represents an integer of 0 to 5 .
  • the ammonium salt preferably has an anion having an pKa1 of 0 to 4 and an ammonium cation.
  • the upper limit of the anion pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less.
  • the lower limit is preferably 0.5 or more, and more preferably 1.0 or more. If the pKa1 of the anion is in the above range, a polyimide precursor or the like can be cyclized at a low temperature, and the stability of the composition can be improved. If pKa1 is 4 or less, the stability of the thermal base generator is good, the generation of a base without heating can be suppressed, and the stability of the composition is good.
  • the kind of anion is preferably one selected from a carboxylate anion, a phenol anion, a phosphate anion, and a sulfate anion, and a carboxylate anion is more preferable because both the stability of the salt and the thermal decomposability can be achieved. That is, the ammonium salt is more preferably a salt of an ammonium cation and a carboxylate anion.
  • the carboxylic acid anion is preferably a divalent or higher carboxylic acid anion having two or more carboxyl groups, and more preferably a divalent carboxylic acid anion.
  • the stability, curability and developability of the composition can be further improved by using an anion of a divalent carboxylic acid.
  • the carboxylic acid anion is preferably a carboxylic acid anion having a pKa1 of 4 or less.
  • pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less.
  • the stability of the composition can be further improved.
  • pKa1 represents the logarithm of the reciprocal of the dissociation constant of the first proton of the acid, and the determination of Organic Structures by Physical Methods (author: Brown, HC, McDaniel, D.H., Hafliger Ed .: Braude, EA, Nachod, FC; Academic Press, New York, 1955), and Data for Biochemical Research (author: Dawson, R. M.). al; Oxford, Clarendon Press, 1959). For compounds not described in these documents, values calculated from the structural formula using software of ACD / pKa (manufactured by ACD / Labs) are used.
  • the carboxylate anion is preferably represented by the following formula (X1).
  • EWG represents an electron withdrawing group.
  • the electron-withdrawing group means a group in which Hammett's substituent constant ⁇ m exhibits a positive value.
  • ⁇ m is a review by Yusuke Tono, Journal of Synthetic Organic Chemistry, Vol. 23, No. 8 (1965) p. 631-642.
  • the electron withdrawing group in this embodiment is not limited to the substituent described in the said literature.
  • Me represents a methyl group
  • Ac represents an acetyl group
  • Ph represents a phenyl group.
  • EWG is preferably a group represented by the following formulas (EWG-1) to (EWG-6).
  • R x1 to R x3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group or a carboxyl group, and Ar represents an aromatic group Represents.
  • the carboxylate anion is preferably represented by the following formula (XA).
  • Formula (XA) In the formula (XA), L 10 represents a single bond or a divalent linking group selected from an alkylene group, an alkenylene group, an aromatic group, —NR X —, and a combination thereof, and R X represents a hydrogen atom Represents an alkyl group, an alkenyl group or an aryl group.
  • carboxylate anion examples include a maleate anion, a phthalate anion, an N-phenyliminodiacetic acid anion, and an oxalate anion. These can be preferably used.
  • thermal base generator examples include the following compounds.
  • the content of the thermal base generator is preferably 0.1 to 50% by mass relative to the total solid content of the composition of the present invention.
  • the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • 1 type (s) or 2 or more types can be used for a thermal base generator. When using 2 or more types, it is preferable that a total amount is the said range.
  • the composition of this invention contains the metal adhesive improvement agent for improving the adhesiveness with the metal material used for an electrode, wiring, etc.
  • metal adhesion improvers include silane coupling agents.
  • silane coupling agent examples include compounds described in paragraphs 0062 to 0073 of JP-A No. 2014-191002, compounds described in paragraphs 0063 to 0071 of international publication WO 2011 / 080992A1, and JP-A No. 2014-191252. Examples thereof include compounds described in paragraphs 0060 to 0061, compounds described in paragraphs 0045 to 0052 of JP 2014-41264 A, and compounds described in paragraph 0055 of international publication WO 2014/097594. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP2011-128358A. Moreover, it is also preferable to use the following compound for a silane coupling agent. In the following formula, Et represents an ethyl group.
  • the content of the metal adhesion improving agent is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the polyimide precursor. Adhesiveness between the cured film and the metal layer after the curing process becomes good by setting it to 0.1 parts by mass or more, and heat resistance and mechanical properties of the cured film after the curing process are good by setting it to 30 parts by mass or less. Become. Only one type of metal adhesion improver may be used, or two or more types may be used. When using 2 or more types, it is preferable that the sum total is the said range.
  • the composition of the present invention is various additives, for example, a photobase generator, a thermal polymerization initiator, a thermal acid generator, a sensitizing dye, a chain transfer, as necessary, as long as the effects of the present invention are not impaired.
  • An agent, a surfactant, a higher fatty acid derivative, inorganic particles, a curing agent, a curing catalyst, a filler, an antioxidant, an ultraviolet absorber, an aggregation inhibitor, and the like can be blended.
  • the total blending amount is preferably 3% by mass or less of the solid content of the composition.
  • the composition of the present invention may contain a photobase generator.
  • a photobase generator is a compound that generates a base upon exposure and does not exhibit activity under normal conditions of room temperature and normal pressure. However, when an electromagnetic wave is irradiated and heated as an external stimulus, a base (basic substance) is generated. If it is a compound which generate
  • the content of the photobase generator is not particularly limited as long as a desired resin pattern can be formed, and can be a general content.
  • the photobase generator is preferably in the range of 0.01 parts by weight to less than 30 parts by weight with respect to 100 parts by weight of the polyimide precursor, and is in the range of 0.05 parts by weight to 25 parts by weight. Is more preferable, and is more preferably in the range of 0.1 to 20 parts by mass. Only one photobase generator may be used, or two or more photobase generators may be used. When there are two or more photobase generators, the total is preferably in the above range.
  • a known compound can be used as a photobase generator.
  • M.M. Shirai, and M.M. Tsunooka Prog. Polym. Sci. , 21, 1 (1996); Masahiro Kadooka, polymer processing, 46, 2 (1997); Kutal, Coord. Chem. Rev. , 211, 353 (2001); Kaneko, A .; Sarker, and D. Neckers, Chem. Mater. 11, 170 (1999); Tachi, M .; Shirai, and M.M. Tsunooka, J. et al. Photopolym. Sci. Technol. , 13, 153 (2000); Winkle, and K.K. Graziano, J. et al.
  • An ionic compound neutralized by forming a salt with a base component, or a nonionic compound in which the base component is made latent by a urethane bond or an oxime bond such as a carbamate derivative, an oxime ester derivative, or an acyl compound can be mentioned.
  • the photobase generator carbamate derivatives, amide derivatives, imide derivatives, ⁇ -cobalt complexes, imidazole derivatives, cinnamic acid amide derivatives, oxime derivatives, and the like can also be used. Further, the photobase generator having a cinnamic acid amide structure described in Japanese Patent Application Laid-Open No. 2009-80452 and International Publication No. WO2009 / 123122, and Japanese Patent Application Laid-Open No. 2006-189591 and Japanese Patent Application Laid-Open No. 2008-247747.
  • a photobase generator having a carbamate structure, or a photobase generator having an oxime structure or a carbamoyloxime structure described in JP2007-249013A and JP2008-003581A can also be used.
  • Other photobase generators include compounds described in paragraphs 0185 to 0188, 0199 to 0200 and 0202 of JP2012-93746A, compounds described in paragraphs 0022 to 0069 of JP2013-194205, Examples thereof include the compounds described in paragraphs 0026 to 0074 of JP2013-204019A and the compound described in paragraph 0052 of WO2010 / 064631.
  • the composition of the present invention may contain a thermal polymerization initiator (preferably a thermal radical polymerization initiator).
  • a thermal radical polymerization initiator a known thermal radical polymerization initiator can be used.
  • the thermal radical polymerization initiator is a compound that generates radicals by heat energy and initiates or accelerates a polymerization reaction of a polymerizable compound. By adding the thermal radical polymerization initiator, the polymerization reaction of the polyimide precursor can be advanced together with the cyclization of the polyimide precursor, so that higher heat resistance can be achieved.
  • Specific examples of the thermal radical polymerization initiator include compounds described in paragraphs 0074 to 0118 of JP-A-2008-63554.
  • the content of the thermal radical polymerization initiator is preferably 0.1 to 50% by mass, based on the total solid content of the composition of the present invention, 0.1 to 30% by mass is more preferable, and 0.1-20% by mass is particularly preferable. Further, the thermal radical polymerization initiator is preferably contained in an amount of 0.1 to 50 parts by mass, more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the polyimide precursor. According to this aspect, it is easy to form a cured film having more excellent heat resistance. Only one type of thermal radical polymerization initiator may be used, or two or more types may be used. When there are two or more thermal radical polymerization initiators, the total is preferably in the above range.
  • the composition of the present invention may contain a thermal acid generator.
  • the thermal acid generator generates an acid by heating, promotes cyclization of the polyimide precursor, and further improves the mechanical properties of the cured film.
  • Examples of the thermal acid generator include compounds described in paragraph 0059 of JP2013-167742A.
  • 0.01 mass part or more is preferable with respect to 100 mass parts of polyimide precursors, and, as for content of a thermal acid generator, 0.1 mass part or more is more preferable.
  • the content of the thermal acid generator is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less from the viewpoint of electrical insulation of the cured film.
  • One type of thermal acid generator may be used, or two or more types may be used. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the composition of the present invention may contain a sensitizing dye.
  • a sensitizing dye absorbs specific actinic radiation and enters an electronically excited state.
  • the sensitizing dye in an electronically excited state comes into contact with a base generator, a thermal radical polymerization initiator, a photopolymerization initiator, and the like, and effects such as electron transfer, energy transfer, and heat generation occur.
  • the base generator, the thermal radical polymerization initiator, and the photopolymerization initiator are decomposed by causing a chemical change to generate radicals, acids, or bases. Details of the sensitizing dye can be referred to the descriptions in paragraphs 0161 to 0163 of JP-A-2016-027357, the contents of which are incorporated herein.
  • the content of the sensitizing dye is preferably 0.01 to 20% by mass, and preferably 0.1 to 15% by mass with respect to the total solid content of the composition of the present invention. Is more preferable, and 0.5 to 10% by mass is even more preferable.
  • a sensitizing dye may be used individually by 1 type, and may use 2 or more types together.
  • the composition of the present invention may contain a chain transfer agent.
  • the chain transfer agent is defined, for example, in Polymer Dictionary 3rd Edition (edited by the Polymer Society, 2005) pages 683-684.
  • As the chain transfer agent for example, a compound group having SH, PH, SiH, GeH in the molecule is used. These can generate hydrogen by donating hydrogen to a low activity radical to generate a radical, or after being oxidized and deprotonated.
  • thiol compounds for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc.
  • 2-mercaptobenzimidazoles for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc.
  • the content of the chain transfer agent is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the composition of the present invention, and 1 to 10 parts by mass. Part is more preferable, and 1 to 5 parts by mass is more preferable. Only one type of chain transfer agent may be used, or two or more types may be used. When there are two or more chain transfer agents, the total is preferably in the above range.
  • surfactant Various kinds of surfactants may be added to the composition of the present invention from the viewpoint of further improving applicability.
  • the surfactant various types of surfactants such as a fluorosurfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone surfactant can be used.
  • the following surfactants are also preferable.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0%, based on the total solid content of the composition of the present invention. 0.005 to 1.0 mass%. Only one surfactant may be used, or two or more surfactants may be used. When there are two or more surfactants, the total is preferably in the above range.
  • the composition of the present invention is added with a higher fatty acid derivative such as behenic acid or behenic acid amide, and is unevenly distributed on the surface of the composition in the process of drying after coating. May be.
  • a higher fatty acid derivative such as behenic acid or behenic acid amide
  • the content of the higher fatty acid derivative is preferably 0.1 to 10% by mass with respect to the total solid content of the composition of the present invention. Only one higher fatty acid derivative may be used, or two or more higher fatty acid derivatives may be used. When two or more higher fatty acid derivatives are used, the total is preferably within the above range.
  • the water content of the composition of the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and particularly preferably less than 0.6% by mass from the viewpoint of the coated surface properties.
  • the metal content of the composition of the present invention is preferably less than 5 ppm by weight (parts per million), more preferably less than 1 ppm by weight, and particularly preferably less than 0.5 ppm by weight from the viewpoint of insulation.
  • the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are included, the total of these metals is preferably in the above range.
  • a raw material having a low metal content is selected as a raw material constituting the composition of the present invention.
  • the raw material to be filtered may be filtered, or the inside of the apparatus may be lined with polytetrafluoroethylene or the like, and distillation may be performed under a condition in which contamination is suppressed as much as possible.
  • the halogen atom content is preferably less than 500 ppm by mass, more preferably less than 300 ppm by mass, and particularly preferably less than 200 ppm by mass from the viewpoint of wiring corrosion.
  • a halogen ion is less than 5 mass ppm, More preferably, it is less than 1 mass ppm, Especially less than 0.5 mass ppm is preferable.
  • the halogen atom include a chlorine atom and a bromine atom. The total of chlorine atoms and bromine atoms, or chloride ions and bromide ions is preferably in the above range.
  • the composition of the present invention can be prepared by mixing the above components.
  • the mixing method is not particularly limited, and can be performed by a conventionally known method.
  • the filter pore size is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon.
  • a filter that has been washed in advance with an organic solvent may be used.
  • a plurality of types of filters may be connected in series or in parallel.
  • filters having different pore diameters and / or materials may be used in combination.
  • Various materials may be filtered a plurality of times.
  • circulation filtration may be used.
  • you may pressurize and filter.
  • the pressure applied is preferably 0.05 MPa or more and 0.3 MPa or less.
  • impurities may be removed using an adsorbent. Filter filtration and impurity removal treatment using an adsorbent may be combined.
  • the adsorbent a known adsorbent can be used. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • the cured film of the present invention is formed by curing the composition of the present invention.
  • the thickness of the cured film of the present invention can be, for example, 1 ⁇ m or more, and can be 5 ⁇ m or more. Moreover, as an upper limit, it can be set to 100 micrometers or less, and can also be set to 30 micrometers or less.
  • a laminate may be obtained by laminating two or more cured films of the present invention.
  • Such a laminate preferably has a metal layer between the cured films.
  • Such a metal layer is preferably used as a metal wiring such as a rewiring layer.
  • Fields to which the cured film of the present invention can be applied include insulating films for semiconductor devices, interlayer insulating films for rewiring layers, and the like. Particularly, since the resolution is good, it can be preferably used for an interlayer insulating film for a rewiring layer in a three-dimensional mounting device.
  • the cured film in the present invention can also be used for electronic photoresists, galvanic resists, galvanic resists, etching resists, solder top resists, and the like.
  • the cured film of the present invention can also be used for the production of printing plates such as offset printing plates or screen printing plates, the use for etching molded parts, the production of protective lacquers and dielectric layers in electronics, in particular microelectronics.
  • the method for producing a cured film of the present invention includes using the composition of the present invention.
  • the negative photosensitive resin composition of the present invention is applied to a substrate to form a layer, a negative photosensitive resin composition layer forming step, an exposure step of exposing the negative photosensitive resin composition layer, And a development process for the exposed negative photosensitive resin composition layer.
  • the production method of the present invention may include a step of heating the developed negative photosensitive resin composition layer at a temperature of 50 to 500 ° C. after the development processing step. Since the cured film of the present invention has excellent heat resistance, good performance can be maintained even when heated at 150 to 500 ° C.
  • the method for producing a laminate of the present invention includes the method for producing a cured film of the present invention.
  • a negative photosensitive resin composition layer forming step, an exposure step, and a development processing step are performed again. It is preferable to carry out again in the above order.
  • the negative photosensitive resin composition layer forming step, the exposure step, and the development processing step are preferably performed 2 to 5 times in the above order (that is, 3 to 6 times in total).
  • a laminated body can be obtained by laminating a cured film.
  • the present invention also discloses a semiconductor device including the cured film of the present invention.
  • a semiconductor device including the cured film of the present invention.
  • an embodiment of a semiconductor device using the composition of the present invention as an interlayer insulating film for a rewiring layer will be described.
  • a semiconductor device 100 shown in FIG. 1 is a so-called three-dimensional mounting device, and a stacked body 101 in which a plurality of semiconductor elements (semiconductor chips) 101 a to 101 d are stacked is arranged on a wiring board 120.
  • the number of stacked semiconductor elements (semiconductor chips) is not particularly limited. It may be a layer, 8 layers, 16 layers, 32 layers, or the like. Moreover, one layer may be sufficient.
  • the plurality of semiconductor elements 101a to 101d are each made of a semiconductor wafer such as a silicon substrate.
  • the uppermost semiconductor element 101a does not have a through electrode, and an electrode pad (not shown) is formed on one surface thereof.
  • the semiconductor elements 101b to 101d have through electrodes 102b to 102d, and connection pads (not shown) provided integrally with the through electrodes are provided on both surfaces of each semiconductor element.
  • the stacked body 101 has a structure in which a semiconductor element 101a having no through electrode and flip-chip connection of semiconductor elements 101b to 101d having through electrodes 102b to 102d are connected. That is, the electrode pad of the semiconductor element 101a having no through electrode and the connection pad on the semiconductor element 101a side of the semiconductor element 101b having the adjacent through electrode 102b are connected by the metal bump 103a such as a solder bump, The connection pad on the other side of the semiconductor element 101b having the electrode 102b is connected to the connection pad on the semiconductor element 101b side of the semiconductor element 101c having the adjacent through electrode 102c by a metal bump 103b such as a solder bump.
  • connection pad on the other side of the semiconductor element 101c having the through electrode 102c is connected to the connection pad on the semiconductor element 101c side of the semiconductor element 101d having the adjacent through electrode 102d by the metal bump 103c such as a solder bump.
  • An underfill layer 110 is formed in the gaps between the semiconductor elements 101a to 101d, and the semiconductor elements 101a to 101d are stacked via the underfill layer 110.
  • the laminated body 101 is laminated on the wiring board 120.
  • the wiring substrate 120 for example, a multilayer wiring substrate using an insulating substrate such as a resin substrate, a ceramic substrate, or a glass substrate as a base material is used.
  • the wiring board 120 to which the resin board is applied include a multilayer copper-clad laminate (multilayer printed wiring board).
  • a surface electrode 120 a is provided on one surface of the wiring board 120.
  • An insulating layer 115 in which a rewiring layer 105 is formed is disposed between the wiring substrate 120 and the stacked body 101, and the wiring substrate 120 and the stacked body 101 are electrically connected via the rewiring layer 105. It is connected.
  • the insulating layer 115 is formed using the composition of the present invention. That is, one end of the rewiring layer 105 is connected to an electrode pad formed on the surface of the semiconductor element 101d on the rewiring layer 105 side through a metal bump 103d such as a solder bump.
  • the other end of the rewiring layer 105 is connected to the surface electrode 120a of the wiring board via a metal bump 103e such as a solder bump.
  • An underfill layer 110 a is formed between the insulating layer 115 and the stacked body 101.
  • an underfill layer 110 b is formed between the insulating layer 115 and the wiring substrate 120.
  • the cured film of the present invention can be widely used in various applications using polyimide.
  • polyimide is resistant to heat
  • the cured film in the present invention is used for plastic substrates and interlayer insulation films for liquid crystal displays, organic EL displays, electronic paper and other display devices, automotive parts, heat resistant paints, coating agents, and films. Can also be suitably used.
  • the polyimide precursor of this invention can also be used for a positive photosensitive resin composition.
  • ODPA 4,4′-oxydiphthalic dianhydride
  • the structure of the obtained polyimide precursor (P-1) was confirmed by 1 H-NMR (nuclear magnetic resonance spectrum) (DMSO (dimethyl sulfoxide) -d6 solution). 10.6 to 10.3 ppm (m, 2H), 8.2 to 6.7 ppm (m, 14 H), 6.4 to 6.2 ppm (m, 1 H), 6.2 to 6.0 ppm (m, 1 H) ), 6.0 to 5.8 ppm (m, 0.9H), 4.4 to 4.0 ppm (m, 3H), 3.9 to 3.6 ppm (s, 6H).
  • DMSO dimethyl sulfoxide
  • the weight average molecular weight of the obtained P-1 was 50,000.
  • the measurement conditions are as follows. Column: 1 TSK guardcolumn Super AW-H (4.6 mm ID. ⁇ 35 mm) 1 TSK Super AWM-H (6.0 mm ID.
  • the obtained mixed solution was diluted with NMP, and the weight average molecular weight measured by GPC was 50,000.
  • the polyimide precursor was precipitated in a mixed solvent of 3 liters of water and 3 liters of acetone. The polyimide precursor was filtered off and stirred again in 4 liters of water for 30 minutes and filtered again.
  • the obtained polyimide precursor was dried at room temperature under reduced pressure for 2 days.
  • the obtained solid was dissolved in NMP, and the weight average molecular weight measured by GPC was 20000. It was thought that it decomposed in the purification process.
  • ODPA Tokyo Chemical Industry BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, Tokyo Chemical Industry ODA: Tokyo Chemical Industry Benzidine (4,4′-diaminobiphenyl): Tokyo Chemical Industry Manufactured by Ethanol: Wako Pure Chemical Industries, Ltd. n-Butanol: Wako Pure Chemical Industries, Ltd. n-Octanol: Wako Pure Chemical Industries, Ltd.
  • DPHA Nippon Kayaku
  • KAYARAD DPHA M-305 Pentaerythritol triacrylate, manufactured by Toagosei Co., Ltd.
  • Aronix M-305 701 Glycerol dimethacrylate, Shin-Nakamura Chemical Co., Ltd.
  • Hydroxyethyl acrylate Wako Pure Chemical Industries, Ltd.
  • M-215 Isocyanuric acid ethylene oxide (EO) modified diacrylate, manufactured by Toagosei Co., Ltd., Aronix M-215 Karenz BEI: 1,1- (bisacryloyloxymethyl) ethyl isocyanate, manufactured by Showa Denko Karenz MOI: 2-isocyanatoethyl methacrylate, manufactured by Showa Denko 4-Aminostyrene: manufactured by Tokyo Chemical Industry
  • the negative photosensitive resin composition is filtered under pressure at a pressure of 3.0 MPa through a filter having a pore width of 0.8 ⁇ m, and then the negative photosensitive resin composition is applied onto a silicon wafer by spin coating.
  • a negative photosensitive resin composition layer was formed by applying in layers.
  • the obtained silicon wafer to which the negative photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a uniform negative photosensitive resin composition layer having a thickness of 15 ⁇ m on the silicon wafer. Obtained.
  • the negative photosensitive resin composition layer on the silicon wafer was exposed with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C).
  • Exposed part residual film ratio (%) [film thickness after development of exposed part / film thickness of unexposed part before development] ⁇ 100 5: 90% or more 4: 70% or more and less than 90% 3: 50% or more and less than 70% 2: 30% or more and less than 50% 1: less than 30% Evaluation of 3 or more is practically preferable.
  • the negative photosensitive resin composition is filtered under pressure at a pressure of 3.0 MPa through a filter having a pore width of 0.8 ⁇ m, and then the negative photosensitive resin composition is applied onto a silicon wafer by spin coating.
  • a negative photosensitive resin composition layer was formed by applying in layers.
  • the silicon wafer to which the obtained negative photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes, and a uniform negative photosensitive resin composition layer having a thickness of 15 ⁇ m was formed on the silicon wafer. did. This was developed with cyclopentanone for 60 seconds, and the unexposed portion residual film ratio was determined from the change in film thickness before and after development.
  • Unexposed area remaining film ratio (%) [(film thickness after development of unexposed area) / film thickness before development of unexposed area] ⁇ 100 5: Less than 5% 4: 5% or more but less than 20% 3: 20% or more but less than 50% 2: 50% or more but less than 90% 1: 90% or more Evaluation of 3 or more is practically preferable.
  • the negative photosensitive resin composition is filtered under pressure at a pressure of 3.0 MPa through a filter having a pore width of 0.8 ⁇ m, and then the negative photosensitive resin composition is applied onto a silicon wafer by spin coating.
  • a negative photosensitive resin composition layer was formed by applying in layers.
  • the silicon wafer to which the obtained negative photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes, and a uniform negative photosensitive resin composition layer having a thickness of 15 ⁇ m was formed on the silicon wafer. did.
  • the negative photosensitive resin composition layer on the silicon wafer was exposed at an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C), and the exposed negative photosensitive resin composition layer (resin layer) was heated at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere, and was maintained for 3 hours after reaching 230 ° C., and the remaining film ratio after heating was determined from the change in film thickness before and after heating.
  • Residual film ratio after thermosetting (%) [film thickness after thermosetting / film thickness before thermosetting] ⁇ 100 5: 85% or more 4: 80% or more and less than 85% 3: 70% or more and less than 80% 2: 60% or more and less than 70% 1: less than 60% Evaluation of 2 or more is practically preferable.
  • the negative photosensitive resin composition is filtered under pressure at a pressure of 3.0 MPa through a filter having a pore width of 0.8 ⁇ m, and then the negative photosensitive resin composition is applied onto a silicon wafer by spin coating.
  • a negative photosensitive resin composition layer was formed by applying in layers.
  • the obtained silicon wafer to which the negative photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a uniform negative photosensitive resin composition layer having a thickness of 15 ⁇ m on the silicon wafer. Obtained.
  • the negative photosensitive resin composition layer on the silicon wafer was exposed at an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C), and the exposed negative photosensitive resin composition layer (resin layer) was heated at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere, and was maintained for 3 hours after reaching 230 ° C.
  • the cured resin layer was immersed in a 4.9% by mass hydrofluoric acid solution, and the resin layer was peeled off from the silicon wafer to obtain a resin film.
  • the obtained resin film was set in a viscoelasticity measuring device (Rhegel E4000, manufactured by UBM Co., Ltd.), and the temperature was increased from 0 ° C. to 350 ° C. at a frequency of 1 Hz and a temperature increase rate of 10 ° C./min. , Tg (° C.) was determined from the peak temperature of tan ⁇ .
  • Example 1 ⁇ Other Examples and Comparative Examples>
  • one or more of the polyimide precursor, photopolymerization initiator, radical polymerizable monomer, polymerization inhibitor, metal discoloration inhibitor, silane coupling agent, and solvent are changed as shown in Table 4 or Table 5.
  • some examples were blended with a thermal base generator, and others were performed in the same manner.
  • G-1 the following compound
  • G-2 the following compound
  • G-3 the following compound
  • G-4 the following compound
  • DMSO dimethyl sulfoxide
  • GBL ⁇ -butyrolactone
  • NMP N-methyl-2-pyrrolidone ethyl lactate
  • the Tg was high and the resolution was excellent.
  • the glass transition temperature was 230 ° C. or higher, which was 5 ° C. higher than those of Comparative Examples 1 and 2.
  • An increase in Tg of 5 ° C. can be said to be a very remarkable effect from the viewpoint of improving reliability in a high-temperature process such as a vapor deposition process for forming a metal wiring or a bonding process between electrodes.
  • R 1 and R 2 of formula (1) an organic group of a non-polymerizable group having 1 to 4 carbon atoms
  • Example 100 Manufacture of laminated body 1>
  • the photosensitive resin composition of Example 3 was subjected to pressure filtration through a filter having a pore width of 0.8 ⁇ m, and then a photosensitive resin composition layer was formed on a silicon wafer by spin coating.
  • the obtained silicon wafer to which the photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to obtain a uniform photosensitive resin composition layer having a thickness of 15 ⁇ m on the silicon wafer.
  • the photosensitive resin composition layer on the silicon wafer was exposed with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C), and the exposed photosensitive resin composition layer (resin layer) was Development was performed with cyclopentanone for 60 seconds to form a 10 ⁇ m diameter hole.
  • the temperature was raised at a rate of 10 ° C./min in a nitrogen atmosphere, and after reaching 230 ° C., the temperature was maintained for 3 hours.
  • After cooling to room temperature again using the same type of photosensitive resin composition as the photosensitive resin composition on the surface of the resin layer, filtration of the photosensitive resin composition in the same manner as described above, 3 of the patterned film was performed.
  • the procedure up to the time heating was performed again to form a laminate 1 having two resin layers.
  • Example 3 The photosensitive resin composition of Example 3 was subjected to pressure filtration through a filter having a pore width of 0.8 ⁇ m, and then a photosensitive resin composition layer was formed on a silicon wafer by spin coating. The obtained silicon wafer to which the photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to obtain a uniform photosensitive resin composition layer having a thickness of 15 ⁇ m on the silicon wafer.
  • the photosensitive resin composition layer on the silicon wafer was exposed with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C), and the exposed photosensitive resin composition layer (resin layer) was subjected to cyclopenta
  • a hole having a diameter of 10 ⁇ m was formed by developing for 60 seconds in a non-process.
  • the temperature was raised at a rate of 10 ° C./min in a nitrogen atmosphere, and after reaching 230 ° C., the temperature was maintained for 3 hours.
  • a 2 ⁇ m thick copper thin film (metal layer) was applied to a part of the surface of the photosensitive resin composition layer by vapor deposition so as to cover the hole portion.
  • the photosensitive resin composition of Example 3 was filtered in the same manner as described above, and then the patterned film was used for 3 hours. The procedure up to the heating was performed again to produce a laminate 3 composed of resin layer / metal layer / resin layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Provided is a negative photosensitive resin composition having excellent resolution. Also provided are a cured film using the negative photosensitive resin composition, a method for producing cured film, a semiconductor device, a method for producing a laminate, a method for producing a semiconductor device, and a polyimide precursor. The negative photosensitive composition contains a polyimide precursor, a photo polymerization initiator, and a solvent. The polyimide precursor has a repeating unit represented by formula (1), has a structure represented by "(A)l-L1-*" on at least one of the terminals, and a weight-average molecular weight not exceeding 50000. In formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, and R1 and R2 each independently represent nonpolymerizable organic groups. In the abovementioned structure, A represents a polymerizable group, L1 represents a single bond or an l+1-valent organic group, l represents an integer from 1 to 10, and * represents a binding site with another site.

Description

ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for producing laminate, method for producing semiconductor device, and polyimide precursor
 本発明は、ネガ型感光性樹脂組成物、硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体に関する。 The present invention relates to a negative photosensitive resin composition, a cured film, a method for producing a cured film, a semiconductor device, a method for producing a laminate, a method for producing a semiconductor device, and a polyimide precursor.
 ポリイミド樹脂などの環化して硬化する熱硬化性樹脂は、耐熱性および絶縁性に優れるため、半導体デバイスの絶縁層などに用いられている。また、ポリイミド樹脂は、溶剤への溶解性が低いため、環化反応前の前駆体(ポリイミド前駆体)の状態で使用し、基板などに適用した後、加熱してポリイミド前駆体を環化して硬化膜を形成することも行われている。 Thermosetting resins that are cured by cyclization, such as polyimide resins, are used for insulating layers of semiconductor devices and the like because they are excellent in heat resistance and insulation. Moreover, since polyimide resin has low solubility in a solvent, it is used in the state of a precursor (polyimide precursor) before cyclization reaction, applied to a substrate, etc., and then heated to cyclize the polyimide precursor. A cured film is also formed.
 例えば、特許文献1には、(A)主鎖中に、一般式(1)で表される繰り返し単位を有し、分子両末端に、光重合可能な炭素-炭素二重結合を有する置換基を有する、アミノベンゼン類またはトリメリット酸誘導体により末端変性された構造の化学線官能基を有するポリイミド前駆体、(B)光重合性官能基を有する感光助剤、および、(C)N-アリール-α-アミノ酸類とチオキサントン類とを含有する光重合開始剤、を含有する樹脂組成物であって、光重合開始剤の含有量が、ポリイミド前駆体100質量部に対して、7~15質量部である感光性樹脂組成物が記載されている。
Figure JPOXMLDOC01-appb-C000004
 式中、Rは4価の有機基であり、Rは2価の有機基である。
For example, Patent Document 1 discloses (A) a substituent having a repeating unit represented by the general formula (1) in the main chain and a photopolymerizable carbon-carbon double bond at both molecular ends. A polyimide precursor having an actinic functional group having a structure modified with an aminobenzene or a trimellitic acid derivative, (B) a photo-assisting agent having a photopolymerizable functional group, and (C) N-aryl A resin composition containing a photopolymerization initiator containing an α-amino acid and a thioxanthone, wherein the content of the photopolymerization initiator is 7 to 15 parts by mass with respect to 100 parts by mass of the polyimide precursor Part of the photosensitive resin composition is described.
Figure JPOXMLDOC01-appb-C000004
In the formula, R 1 is a tetravalent organic group, and R 2 is a divalent organic group.
特開2013-76845号公報JP 2013-76845 A
 特許文献1ではポリアミド酸構造を有するため、水による加水分解を受けやすい。そのため、経時安定性が低く、さらに、合成後の樹脂を水系で精製することができないため、高い品質が要求される半導体用途においては適用が難しい。 Since Patent Document 1 has a polyamic acid structure, it is susceptible to hydrolysis by water. Therefore, the stability over time is low, and furthermore, the synthesized resin cannot be purified in an aqueous system, so that it is difficult to apply it in semiconductor applications that require high quality.
 よって、本発明の目的は、解像性に優れたネガ型感光性樹脂組成物を提供することにある。また、上記のネガ型感光性樹脂組成物を用いた硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体を提供することにある。 Therefore, an object of the present invention is to provide a negative photosensitive resin composition excellent in resolution. Moreover, it is providing the cured film using said negative photosensitive resin composition, the manufacturing method of a cured film, a semiconductor device, the manufacturing method of a laminated body, the manufacturing method of a semiconductor device, and a polyimide precursor.
 本発明者らは鋭意検討した結果、ポリイミド前駆体の末端に重合性基を設け、かつ、ポリイミド前駆体の重量平均分子量を50000以下とすることにより、解像性を向上させることが可能であることを見出し、本発明を完成するに至った。よって、本発明は以下を提供する。
<1>ポリイミド前駆体と、光重合開始剤と、溶剤とを含み、
 ポリイミド前駆体は、式(1)で表される繰り返し単位を有し、少なくとも一方の末端に式(2)で表される構造を有し、重量平均分子量が50000以下である、ネガ型感光性樹脂組成物;
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、RおよびRはそれぞれ独立に、非重合性の有機基である;
(A)-L-*   (2)
 式(2)中、Aは重合性基を表し、Lは単結合またはl+1価の有機基を表し、lは1~10の整数を表し、*は他の部位との結合部位を示す。
<2>式(2)におけるlが、2~5の整数である、<1>に記載のネガ型感光性樹脂組成物。
<3>RおよびRはそれぞれ独立に、炭素数1~4の非重合性の有機基である、<1>または<2>に記載のネガ型感光性樹脂組成物。
<4>式(2)中のAは、炭素-炭素不飽和二重結合を含む基である、<1>~<3>のいずれか1つに記載のネガ型感光性樹脂組成物。
<5>式(2)で表される構造は、式(3)または式(4)で表わされる構造である、<1>~<4>のいずれか1つに記載のネガ型感光性樹脂組成物;
 式(3)中、Rは、水素原子またはメチル基を表し、Zは酸素原子またはNHを表し、Lは単結合またはm+1価の有機基を表し、mは1~10の整数を表し、*は他の部位との結合部位を示す;
 式(4)中、Lは単結合またはn+1価の有機基を表し、nは1~10の整数を表し、*は他の部位との結合部位を示す。
<6>ポリイミド前駆体の重量平均分子量が5000以上である、<1>~<5>のいずれか1つに記載のネガ型感光性樹脂組成物。
<7>さらに、多官能ラジカル重合性モノマーを含む、<1>~<6>のいずれか1つに記載のネガ型感光性樹脂組成物。
<8>さらに、熱塩基発生剤を含む、<1>~<7>のいずれか1つに記載のネガ型感光性樹脂組成物。
<9>光重合開始剤がオキシム化合物およびメタロセン化合物から選ばれる少なくとも1種である、<1>~<8>のいずれか1つに記載のネガ型感光性樹脂組成物。
<10>再配線層用層間絶縁膜形成用である、<1>~<9>のいずれか1つに記載のネガ型感光性樹脂組成物。
<11><1>~<10>のいずれか1つに記載のネガ型感光性樹脂組成物を硬化してなる硬化膜。
<12>膜厚が1~30μmである、<11>に記載の硬化膜。
<13><1>~<10>のいずれか1つに記載のネガ型感光性樹脂組成物を基板に適用して層状にする感光性樹脂組成物層形成工程と、
ネガ型感光性樹脂組成物層を露光する露光工程と、
露光された感光性樹脂組成物層に対して、現像処理を行う現像処理工程と、
を有する硬化膜の製造方法。
<14>現像処理工程後に、現像されたネガ型感光性樹脂組成物層を50~500℃の温度で加熱する加熱工程を含む、<13>に記載の硬化膜の製造方法。
<15><11>または<12>に記載の硬化膜を有する半導体デバイス。
<16><13>または<14>に記載の硬化膜の製造方法を含む、積層体の製造方法。
<17><13>または<14>に記載の硬化膜の製造方法を含む、半導体デバイスの製造方法。
<18>式(1)で表される繰り返し単位を有し、少なくとも一方の末端に式(2)で表される構造を有し、重量平均分子量が50000以下であるポリイミド前駆体;
Figure JPOXMLDOC01-appb-C000007
式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、RおよびRはそれぞれ独立に、非重合性の有機基である;
(A)-L-*   (2)
式(2)中、Aは重合性基を表し、Lは単結合またはl+1価の有機基を表し、lは1~10の整数を表し、*は他の部位との結合部位を示す。
<19>RおよびRはそれぞれ独立に、炭素数1~4の非重合性の有機基である、<18>に記載のポリイミド前駆体。
<20>式(2)中のAは、炭素-炭素不飽和二重結合を含む基である、<18>または<19>に記載のポリイミド前駆体。
<21>式(2)におけるlが、2~5の整数である、<18>~<20>のいずれか1つに記載のポリイミド前駆体。
As a result of intensive studies, the present inventors can improve the resolution by providing a polymerizable group at the end of the polyimide precursor and setting the weight average molecular weight of the polyimide precursor to 50000 or less. As a result, the present invention has been completed. Accordingly, the present invention provides the following.
<1> includes a polyimide precursor, a photopolymerization initiator, and a solvent,
The polyimide precursor has a repeating unit represented by the formula (1), has a structure represented by the formula (2) at at least one end, and has a weight average molecular weight of 50000 or less, and is a negative photosensitive. Resin composition;
Figure JPOXMLDOC01-appb-C000005
In formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, and R 1 and R 2 are each independently a non-polymerizable organic group;
(A) l -L 1- * (2)
In the formula (2), A represents a polymerizable group, L 1 represents a single bond or an l + 1 valent organic group, l represents an integer of 1 to 10, and * represents a bonding site with another site.
<2> The negative photosensitive resin composition according to <1>, wherein l in formula (2) is an integer of 2 to 5.
<3> The negative photosensitive resin composition according to <1> or <2>, wherein R 1 and R 2 are each independently a non-polymerizable organic group having 1 to 4 carbon atoms.
<4> The negative photosensitive resin composition according to any one of <1> to <3>, wherein A in the formula (2) is a group containing a carbon-carbon unsaturated double bond.
<5> The negative photosensitive resin according to any one of <1> to <4>, wherein the structure represented by formula (2) is a structure represented by formula (3) or formula (4): Composition;
In the formula (3), R 3 represents a hydrogen atom or a methyl group, Z represents an oxygen atom or NH, L 2 represents a single bond or an m + 1 valent organic group, and m represents an integer of 1 to 10. , * Indicates a binding site with another site;
In the formula (4), L 3 represents a single bond or an n + 1 valent organic group, n represents an integer of 1 to 10, and * represents a bonding site with another site.
<6> The negative photosensitive resin composition according to any one of <1> to <5>, wherein the polyimide precursor has a weight average molecular weight of 5000 or more.
<7> The negative photosensitive resin composition according to any one of <1> to <6>, further comprising a polyfunctional radical polymerizable monomer.
<8> The negative photosensitive resin composition according to any one of <1> to <7>, further comprising a thermal base generator.
<9> The negative photosensitive resin composition according to any one of <1> to <8>, wherein the photopolymerization initiator is at least one selected from an oxime compound and a metallocene compound.
<10> The negative photosensitive resin composition according to any one of <1> to <9>, which is used for forming an interlayer insulating film for a rewiring layer.
<11> A cured film obtained by curing the negative photosensitive resin composition according to any one of <1> to <10>.
<12> The cured film according to <11>, wherein the film thickness is 1 to 30 μm.
<13> a photosensitive resin composition layer forming step in which the negative photosensitive resin composition according to any one of <1> to <10> is applied to a substrate to form a layer;
An exposure step of exposing the negative photosensitive resin composition layer;
A development processing step of performing development processing on the exposed photosensitive resin composition layer;
The manufacturing method of the cured film which has this.
<14> The method for producing a cured film according to <13>, further comprising a heating step of heating the developed negative photosensitive resin composition layer at a temperature of 50 to 500 ° C. after the development processing step.
<15> A semiconductor device having the cured film according to <11> or <12>.
<16> A method for producing a laminate including the method for producing a cured film according to <13> or <14>.
<17> A method for producing a semiconductor device, comprising the method for producing a cured film according to <13> or <14>.
<18> A polyimide precursor having a repeating unit represented by formula (1), having a structure represented by formula (2) at at least one end, and having a weight average molecular weight of 50,000 or less;
Figure JPOXMLDOC01-appb-C000007
In formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, and R 1 and R 2 are each independently a non-polymerizable organic group;
(A) l -L 1- * (2)
In the formula (2), A represents a polymerizable group, L 1 represents a single bond or an l + 1 valent organic group, l represents an integer of 1 to 10, and * represents a bonding site with another site.
<19> The polyimide precursor according to <18>, wherein R 1 and R 2 are each independently a non-polymerizable organic group having 1 to 4 carbon atoms.
<20> The polyimide precursor according to <18> or <19>, wherein A in the formula (2) is a group containing a carbon-carbon unsaturated double bond.
<21> The polyimide precursor according to any one of <18> to <20>, wherein l in formula (2) is an integer of 2 to 5.
 本発明によれば、解像性に優れたネガ型感光性樹脂組成物を提供することが可能になった。また、上記のネガ型感光性樹脂組成物を用いた硬化膜、硬化膜の製造方法、半導体デバイス、積層体の製造方法、半導体デバイスの製造方法およびポリイミド前駆体を提供することが可能になった。 According to the present invention, it has become possible to provide a negative photosensitive resin composition excellent in resolution. Moreover, it has become possible to provide a cured film, a cured film manufacturing method, a semiconductor device, a laminate manufacturing method, a semiconductor device manufacturing method, and a polyimide precursor using the negative photosensitive resin composition. .
半導体デバイスの一実施形態の構成を示す概略図である。It is the schematic which shows the structure of one Embodiment of a semiconductor device.
 以下に記載する本発明における構成要素の説明は、本発明の代表的な実施形態に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基と共に置換基を有する基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、一般的に、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線または放射線が挙げられる。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」および「メタクリレート」の双方、または、いずれかを表し、「(メタ)アクリル」は、「アクリル」および「メタクリル」の双方、または、いずれかを表し、「(メタ)アクリロイル」は、「アクリロイル」および「メタクリロイル」の双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。また、固形分濃度は、特に述べない限り25℃における濃度をいう。
 本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィー(GPC)測定に従い、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、HLC-8220(東ソー(株)製)を用い、カラムとしてガードカラムTSKguardcolumn SuperAW-H、TSK SuperAWM-H(東ソー(株)製)を用いることによって求めることができる。溶離液は特に述べない限り、N-メチル-2-ピロリドン(NMP)を用いて測定したものとする。また、検出は特に述べない限り、示差屈折率(RI)検出器を使用したものとする。
The description of the components in the present invention described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In the notation of a group (atomic group) in this specification, the notation which does not describe substitution and unsubstituted includes the group which has a substituent with the group which does not have a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In this specification, unless otherwise specified, “exposure” includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams. The light used for exposure generally includes active rays or radiation such as an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present specification, “(meth) acrylate” represents both and / or “acrylate” and “methacrylate”, and “(meth) acryl” represents both “acryl” and “methacryl”, or “(Meth) acryloyl” represents either or both of “acryloyl” and “methacryloyl”.
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
In this specification, solid content concentration is the mass percentage of the other component except a solvent with respect to the gross mass of a composition. Moreover, solid content concentration says the density | concentration in 25 degreeC unless there is particular mention.
In the present specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are defined as polystyrene conversion values according to gel permeation chromatography (GPC) measurement unless otherwise specified. In this specification, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are HLC-8220 (manufactured by Tosoh Corporation), and guard columns TSK guard column Super AW-H and TSK Super AWM-H (Tosoh Corporation) ))). The eluent was measured using N-methyl-2-pyrrolidone (NMP) unless otherwise stated. Unless otherwise stated, a differential refractive index (RI) detector is used for detection.
<ネガ型感光性樹脂組成物>
 本発明のネガ型感光性樹脂組成物(以下、本発明の組成物ともいう)は、ポリイミド前駆体と、光重合開始剤と、溶剤とを含み、ポリイミド前駆体は、後述する式(1)で表される繰り返し単位を有し、少なくとも一方の末端に後述する式(2)で表される構造を有し、重量平均分子量が50000以下であることを特徴とする。
<Negative photosensitive resin composition>
The negative photosensitive resin composition of the present invention (hereinafter also referred to as the composition of the present invention) includes a polyimide precursor, a photopolymerization initiator, and a solvent. It has a structure represented by Formula (2) mentioned later at least at one terminal, and has a weight average molecular weight of 50000 or less.
 本発明の組成物によれば、解像性に優れたネガ型感光性樹脂組成物とすることができる。このような効果が得られるメカニズムは、次によるものであると推測する。
 本発明者らの検討によれば、ポリイミド前駆体の末端に重合性基を設けることにより、ガラス転移温度(Tg)を向上可能であることが分かった。これまで、ポリイミド前駆体は、重合性基を高密度に導入可能という理由から、側鎖に重合性基が設けられるのが一般的であった。しかしながら、ポリイミド前駆体の側鎖に重合性基を入れると、ポリイミド前駆体の環化の際に、上記側鎖の重合性基が脱離してしまう場合があることが分かった。これに対し、ポリイミド前駆体の末端に重合性基を導入すると、環化しても、重合性基の脱離は起こらない。
 しかしながら、末端に重合性基のみを設けると、現像時の解像性が劣ることが分かった。これは、ポリイミド前駆体に対する重合性基の量が相対的に少ないためであると考えられた。そこで、ポリイミド前駆体の重量平均分子量を50000以下とすることで、ポリイミド前駆体に対する重合性基の量を相対的に高めることができ、その結果、解像性を向上させることに成功したものである。
 さらに、本発明によれば、ネガ型感光性樹脂組成物の硬化膜の高いTgを維持しつつ、解像性を向上させることができる。
According to the composition of this invention, it can be set as the negative photosensitive resin composition excellent in resolution. It is assumed that the mechanism for obtaining such an effect is as follows.
According to the study by the present inventors, it was found that the glass transition temperature (Tg) can be improved by providing a polymerizable group at the terminal of the polyimide precursor. So far, polyimide precursors have generally been provided with a polymerizable group in the side chain because the polymerizable group can be introduced at a high density. However, it has been found that when a polymerizable group is added to the side chain of the polyimide precursor, the polymerizable group of the side chain may be detached during the cyclization of the polyimide precursor. In contrast, when a polymerizable group is introduced at the end of the polyimide precursor, the polymerizable group is not eliminated even when cyclized.
However, it was found that when only the polymerizable group was provided at the terminal, the resolution during development was inferior. This was thought to be due to the relatively small amount of polymerizable groups relative to the polyimide precursor. Therefore, by setting the weight average molecular weight of the polyimide precursor to 50000 or less, the amount of the polymerizable group relative to the polyimide precursor can be relatively increased, and as a result, the resolution has been successfully improved. is there.
Furthermore, according to the present invention, it is possible to improve the resolution while maintaining a high Tg of the cured film of the negative photosensitive resin composition.
 加えて、本発明では、式(1)のRおよびRを炭素数1~4の非重合性基とすることにより、熱硬化後の残膜率を向上させることができる。すなわち、ポリイミドの環化の際に、式(1)のRおよびRの部分が脱離しやすく、脱離すると膜減りが起きていた。本発明では、式(1)のRおよびRの部分を炭素数1~4の非重合性基とすることにより、環化によりこれらの基が脱離しても、より効果的に膜減りを抑制することができる。すなわち、熱硬化後の残膜率もより高く維持できる。 In addition, in the present invention, R 1 and R 2 in the formula (1) are non-polymerizable groups having 1 to 4 carbon atoms, whereby the rate of remaining film after thermosetting can be improved. That is, when polyimide is cyclized, the R 1 and R 2 portions of the formula (1) are easily detached, and the film is reduced when it is detached. In the present invention, the R 1 and R 2 portions of the formula (1) are non-polymerizable groups having 1 to 4 carbon atoms, so that even when these groups are eliminated by cyclization, the film can be more effectively reduced. Can be suppressed. That is, the remaining film ratio after thermosetting can be maintained higher.
 本発明の組成物は、後述する実施例に記載の方法で測定したガラス転移温度の下限値が226℃以上であることが好ましく、228℃以上であることがより好ましく、230℃以上であることがさらに好ましい。ガラス転移温度が上記値以上であれば、金属配線を形成するための蒸着処理工程や電極間の接合工程などの高温プロセスにおける信頼性向上が期待できる。上記ガラス転移温度の上限値は特に定めるものではないが、例えば、350℃以下でも所望の性能を十分に発揮する。 In the composition of the present invention, the lower limit value of the glass transition temperature measured by the method described in Examples described later is preferably 226 ° C or higher, more preferably 228 ° C or higher, and 230 ° C or higher. Is more preferable. If the glass transition temperature is equal to or higher than the above value, an improvement in reliability in a high temperature process such as a vapor deposition process for forming a metal wiring or a bonding process between electrodes can be expected. The upper limit value of the glass transition temperature is not particularly defined, but for example, the desired performance is sufficiently exhibited even at 350 ° C. or lower.
 本発明の組成物は、露光部残膜率は50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることがさらに好ましい。なお、露光部残膜率とは、以下により定義した値である。測定方法の詳細は、後述の実施例の記載を参酌できる。
 露光部残膜率(%)=[露光部の現像後の膜厚/未露光部の現像前の膜厚]×100
In the composition of the present invention, the exposed film residual film ratio is preferably 50% or more, more preferably 70% or more, and further preferably 90% or more. The exposed portion residual film ratio is a value defined as follows. The details of the measurement method can be referred to the description of Examples described later.
Exposed part residual film ratio (%) = [film thickness after development of exposed part / film thickness of unexposed part before development] × 100
 本発明の組成物は、熱硬化後の残膜率は70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。なお、熱硬化後の残膜率とは、以下により定義した値である。測定方法の詳細は、後述の実施例の記載を参酌できる。
 熱硬化後の残膜率(%)=[熱硬化後の膜厚/熱硬化前の膜厚]×100
In the composition of the present invention, the residual film ratio after thermosetting is preferably 70% or more, more preferably 80% or more, and further preferably 85% or more. In addition, the remaining film rate after thermosetting is a value defined by the following. The details of the measurement method can be referred to the description of Examples described later.
Residual film ratio after thermosetting (%) = [film thickness after thermosetting / film thickness before thermosetting] × 100
 以下、本発明の組成物の各成分について詳細に説明する。 Hereinafter, each component of the composition of the present invention will be described in detail.
<<ポリイミド前駆体>>
 本発明の組成物は、式(1)で表される繰り返し単位を有し、少なくとも一方の末端に式(2)で表される構造を有し、重量平均分子量が50000以下であるポリイミド前駆体を含有する。このポリイミド前駆体は、本発明のポリイミド前駆体でもある。
Figure JPOXMLDOC01-appb-C000008
 式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、RおよびRはそれぞれ独立に、非重合性の有機基である;
(A)-L-*   (2)
 式(2)中、Aは重合性基を表し、Lは単結合またはl+1価の有機基を表し、lは1~10の整数を表し、*は他の部位との結合部位を示す。
<< Polyimide precursor >>
The composition of the present invention has a repeating unit represented by the formula (1), has a structure represented by the formula (2) at at least one end, and has a weight average molecular weight of 50,000 or less. Containing. This polyimide precursor is also the polyimide precursor of the present invention.
Figure JPOXMLDOC01-appb-C000008
In formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, and R 1 and R 2 are each independently a non-polymerizable organic group;
(A) l -L 1- * (2)
In the formula (2), A represents a polymerizable group, L 1 represents a single bond or an l + 1 valent organic group, l represents an integer of 1 to 10, and * represents a bonding site with another site.
 式(1)のXが表す2価の有機基としては、直鎖または分岐の脂肪族基、環状の脂肪族基および芳香族基を含む基が例示され、炭素数2~20の直鎖または分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数6~20の芳香族基、または、これらの組み合わせからなる基が好ましく、炭素数6~20の芳香族基を含む基がより好ましい。特に好ましい実施形態として、「-Ar-L-Ar-」で表される基が挙げられる。ここで、Arは、それぞれ独立に、芳香族基であり、Lは、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-または-NHCO-、ならびに、上記の2つ以上の組み合わせからなる基である。Arは、フェニレン基が好ましい。Lは、フッ素原子で置換されていてもよい炭素数1または2の脂肪族炭化水素基、-O-、-CO-、-S-または-SO-が好ましい。ここでの脂肪族炭化水素基は、アルキレン基が好ましい。 Examples of the divalent organic group represented by X in the formula (1) include a linear or branched aliphatic group, a group containing a cyclic aliphatic group, and an aromatic group. A branched aliphatic group, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, or a combination thereof is preferable, and includes an aromatic group having 6 to 20 carbon atoms. Groups are more preferred. A particularly preferred embodiment includes a group represented by “—Ar—L—Ar—”. Here, Ar is each independently an aromatic group, L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S —, —SO 2 — or —NHCO—, and a group consisting of a combination of two or more of the above. Ar is preferably a phenylene group. L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S— or —SO 2 —. The aliphatic hydrocarbon group here is preferably an alkylene group.
 式(1)のXが表す2価の有機基は、ジアミンから誘導される基であることが好ましい。ポリイミド前駆体の製造に用いられるジアミンとしては、直鎖または分岐の脂肪族、環状の脂肪族または芳香族ジアミンなどが挙げられる。ジアミンは、1種のみ用いてもよいし、2種以上用いてもよい。
 具体的には、Xが表す2価の有機基は、炭素数2~20の直鎖または分岐の脂肪族基、炭素数6~20の環状の脂肪族基、炭素数6~20の芳香族基、または、これらの組み合わせからなる基を含むジアミンであることが好ましく、炭素数6~20の芳香族基を含むジアミンであることがより好ましい。芳香族基の例としては、下記の芳香族基が挙げられる。
The divalent organic group represented by X in the formula (1) is preferably a group derived from diamine. Examples of the diamine used in the production of the polyimide precursor include linear or branched aliphatic, cyclic aliphatic or aromatic diamine. One type of diamine may be used, or two or more types may be used.
Specifically, the divalent organic group represented by X is a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 6 to 20 carbon atoms, or an aromatic group having 6 to 20 carbon atoms. A diamine containing a group or a group consisting of a combination thereof is preferred, and a diamine containing an aromatic group having 6 to 20 carbon atoms is more preferred. The following aromatic groups are mentioned as an example of an aromatic group.
Figure JPOXMLDOC01-appb-C000009
 上記芳香族基中、Aは、単結合、または、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-、-NHCO-ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-C(=O)-、-S-、-SO-から選択される基であることがより好ましく、-CH-、-O-、-S-、-SO-、-C(CF-、および、-C(CH-からなる群から選択される2価の基であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000009
In the aromatic group, A represents a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —C (═O) —, —S—. , —S (═O) 2 —, —NHCO—, and a group selected from a combination thereof, a single bond, an alkylene group having 1 to 3 carbon atoms which may be substituted with a fluorine atom, It is more preferably a group selected from —O—, —C (═O) —, —S—, —SO 2 —, —CH 2 —, —O—, —S—, —SO 2 —, More preferably, it is a divalent group selected from the group consisting of —C (CF 3 ) 2 — and —C (CH 3 ) 2 —.
 ジアミンとしては、具体的には、1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタンおよび1,6-ジアミノヘキサン;1,2-または1,3-ジアミノシクロペンタン、1,2-、1,3-または1,4-ジアミノシクロヘキサン、1,2-、1,3-または1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタンおよびイソホロンジアミン;メタおよびパラフェニレンジアミン、ジアミノトルエン、4,4’-および3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、4,4’-および3,3’-ジアミノジフェニルメタン、4,4’-および3,3’-ジアミノジフェニルスルホン、4,4’-および3,3’-ジアミノジフェニルスルフィド、4,4’-および3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,4-および2,5-ジアミノクメン、2,5-ジメチル-パラフェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-パラフェニレンジアミン、2,4,6-トリメチル-メタフェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、パラビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリジンおよび4,4’’’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミンが挙げられる。 Specific examples of the diamine include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane and 1,6-diaminohexane; 1,2- or 1 , 3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4- Aminocyclohexyl) methane, bis- (3-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane and isophoronediamine; meta and paraphenylenediamine, diaminotoluene, 4,4'- and 3 , 3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3,3-diaminodiphenyl ether 4,4'- and 3,3'-diaminodiphenylmethane, 4,4'- and 3,3'-diaminodiphenyl sulfone, 4,4'- and 3,3'-diaminodiphenyl sulfide, 4,4 ' -And 3,3'-diaminobenzophenone, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2-bis (4-amino) Phenyl) propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2-bis (3-hydroxy-4-aminophenyl) propane, 2,2-bis (3-hydroxy-4-aminophenyl) ) Hexafluoropropane, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) Xafluoropropane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, 4,4′-diaminoparaterphenyl, 4,4′-bis (4-amino) Phenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (2-aminophenoxy) phenyl] sulfone, 1,4- Bis (4-aminophenoxy) benzene, 9,10-bis (4-aminophenyl) anthracene, 3,3′-dimethyl-4,4′-diaminodiphenylsulfone, 1,3-bis (4-aminophenoxy) benzene 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenyl) benzene, 3 , 3′-diethyl-4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 4,4′-diaminooctafluorobiphenyl, 2,2-bis [4- (4- Aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 9,9-bis (4-aminophenyl) -10-hydroanthracene, 3,3 ′, 4 , 4′-tetraaminobiphenyl, 3,3 ′, 4,4′-tetraaminodiphenyl ether, 1,4-diaminoanthraquinone, 1,5-diaminoanthraquinone, 3,3-dihydroxy-4,4′-diaminobiphenyl, 9,9'-bis (4-aminophenyl) fluorene, 4,4'-dimethyl-3,3'-diaminodiphenylsulfur 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, 2,4- and 2,5-diaminocumene, 2,5-dimethyl-paraphenylenediamine, acetoguanamine, 2, 3,5,6-tetramethyl-paraphenylenediamine, 2,4,6-trimethyl-metaphenylenediamine, bis (3-aminopropyl) tetramethyldisiloxane, 2,7-diaminofluorene, 2,5-diaminopyridine 1,2-bis (4-aminophenyl) ethane, diaminobenzanilide, ester of diaminobenzoic acid, 1,5-diaminonaphthalene, diaminobenzotrifluoride, 1,3-bis (4-aminophenyl) hexafluoropropane 1,4-bis (4-aminophenyl) octafluorobutane, 1,5-bis (4 Aminophenyl) decafluoropentane, 1,7-bis (4-aminophenyl) tetradecafluoroheptane, 2,2-bis [4- (3-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4 -(2-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] hexafluoropropane, 2,2-bis [4- (4- Aminophenoxy) -3,5-bis (trifluoromethyl) phenyl] hexafluoropropane, parabis (4-amino-2-trifluoromethylphenoxy) benzene, 4,4'-bis (4-amino-2-trifluoro) Methylphenoxy) biphenyl, 4,4'-bis (4-amino-3-trifluoromethylphenoxy) biphe Nyl, 4,4′-bis (4-amino-2-trifluoromethylphenoxy) diphenylsulfone, 4,4′-bis (3-amino-5-trifluoromethylphenoxy) diphenylsulfone, 2,2-bis [ 4- (4-Amino-3-trifluoromethylphenoxy) phenyl] hexafluoropropane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4, 4′-diaminobiphenyl, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 2,2 ′, 5,5 ′, 6,6′-hexafluorotolidine and 4,4 ″ And at least one diamine selected from '-diaminoquaterphenyl.
 また、下記に示すジアミン(DA-1)~(DA-18)も好ましい。 Further, diamines (DA-1) to (DA-18) shown below are also preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 また、少なくとも2つ以上のアルキレングリコール単位を主鎖にもつジアミンも好ましい例として挙げられる。好ましくは、エチレングリコール鎖、プロピレングリコール鎖のいずれかまたは両方を1分子中にあわせて2つ以上含むジアミン、より好ましくは芳香環を含まないジアミンである。具体例としては、ジェファーミン(登録商標)KH-511、ジェファーミン(登録商標)ED-600、ジェファーミン(登録商標)ED-900、ジェファーミン(登録商標)ED-2003、ジェファーミン(登録商標)EDR-148、ジェファーミン(登録商標)EDR-176、D-200、D-400、D-2000、D-4000(以上商品名、HUNTSMAN製)、1-(2-(2-(2-アミノプロポキシ)エトキシ)プロポキシ)プロパン-2-アミン、1-(1-(1-(2-アミノプロポキシ)プロパン-2-イル)オキシ)プロパン-2-アミンなどが挙げられるが、これらに限定されない。
 ジェファーミン(登録商標)KH-511、ジェファーミン(登録商標)ED-600、ジェファーミン(登録商標)ED-900、ジェファーミン(登録商標)ED-2003、ジェファーミン(登録商標)EDR-148、ジェファーミン(登録商標)EDR-176の構造を以下に示す。
A diamine having at least two alkylene glycol units in the main chain is also a preferred example. Preferred is a diamine containing two or more ethylene glycol chains or propylene glycol chains in one molecule, and more preferred is a diamine containing no aromatic ring. Specific examples include Jeffermin (registered trademark) KH-511, Jeffermin (registered trademark) ED-600, Jeffermin (registered trademark) ED-900, Jeffermin (registered trademark) ED-2003, Jeffermin (registered trademark). ) EDR-148, Jeffamine (registered trademark) EDR-176, D-200, D-400, D-2000, D-4000 (above trade names, manufactured by HUNTSMAN), 1- (2- (2- (2- (2- Aminopropoxy) ethoxy) propoxy) propan-2-amine, 1- (1- (1- (2-aminopropoxy) propan-2-yl) oxy) propan-2-amine, and the like, but is not limited thereto. .
Jeffermin (registered trademark) KH-511, Jeffermin (registered trademark) ED-600, Jeffermin (registered trademark) ED-900, Jeffermin (registered trademark) ED-2003, Jeffermin (registered trademark) EDR-148, The structure of Jeffamine (registered trademark) EDR-176 is shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記において、x、y、zは平均値である。 In the above, x, y, and z are average values.
 式(1)のXが表す2価の有機基は、i線透過率の観点から下記式(51)または式(61)で表わされる2価の有機基であることも好ましい。特に、i線透過率、入手のし易さの観点から式(61)で表わされる2価の有機基であることがより好ましい。
 式(51)
Figure JPOXMLDOC01-appb-C000013
 式(51)中、R10~R17は、それぞれ独立に水素原子、フッ素原子または1価の有機基であり、R10~R17の少なくとも1つはフッ素原子、メチル基またはトリフルオロメチル基である。
 R10~R17の1価の有機基として、炭素数1~10(好ましくは炭素数1~6)の無置換のアルキル基、炭素数1~10(好ましくは炭素数1~6)のフッ化アルキル基等が挙げられる。
 式(61)
Figure JPOXMLDOC01-appb-C000014
 式(61)中、R18およびR19は、それぞれ独立にフッ素原子またはトリフルオロメチル基である。
 式(51)または(61)の構造を与えるジアミン化合物としては、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(フルオロ)-4,4’-ジアミノビフェニル、4,4’-ジアミノオクタフルオロビフェニル等が挙げられる。これらは1種を用いるか、または2種以上を組み合わせて用いてもよい。
The divalent organic group represented by X in the formula (1) is also preferably a divalent organic group represented by the following formula (51) or formula (61) from the viewpoint of i-line transmittance. In particular, a divalent organic group represented by the formula (61) is more preferable from the viewpoint of i-line transmittance and availability.
Formula (51)
Figure JPOXMLDOC01-appb-C000013
In the formula (51), R 10 to R 17 are each independently a hydrogen atom, a fluorine atom or a monovalent organic group, and at least one of R 10 to R 17 is a fluorine atom, a methyl group or a trifluoromethyl group. It is.
Examples of the monovalent organic group represented by R 10 to R 17 include an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and a fluorine atom having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Alkyl group and the like.
Formula (61)
Figure JPOXMLDOC01-appb-C000014
In formula (61), R 18 and R 19 are each independently a fluorine atom or a trifluoromethyl group.
Examples of the diamine compound that gives the structure of formula (51) or (61) include 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diamino. Biphenyl, 2,2′-bis (fluoro) -4,4′-diaminobiphenyl, 4,4′-diaminooctafluorobiphenyl and the like can be mentioned. These may be used alone or in combination of two or more.
 式(1)のYが表す4価の有機基としては、芳香環を含む4価の有機基が好ましく、下記式(5)または式(6)で表される基がより好ましい。
式(5)
Figure JPOXMLDOC01-appb-C000015
 式(5)中、R112は、単結合、または、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-、-NHCO-ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-CO-、-S-および-SO-から選択される基であることがより好ましく、-CH-、-C(CF-、-C(CH-、-O-、-CO-、-S-および-SO-からなる群から選択される2価の基がさらに好ましい。
As a tetravalent organic group which Y of Formula (1) represents, the tetravalent organic group containing an aromatic ring is preferable, and group represented by following formula (5) or Formula (6) is more preferable.
Formula (5)
Figure JPOXMLDOC01-appb-C000015
In the formula (5), R 112 represents a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, —CO—, —S—, —SO. 2 -, - NHCO- and is preferably a group selected from these combinations, a single bond, an alkylene group which ~ 1 carbon atoms which may be 3-substituted by fluorine atoms, -O -, - CO- More preferably a group selected from -S- and -SO 2- , -CH 2- , -C (CF 3 ) 2- , -C (CH 3 ) 2- , -O-, -CO More preferred is a divalent group selected from the group consisting of —, —S— and —SO 2 —.
式(6)
Figure JPOXMLDOC01-appb-C000016
Formula (6)
Figure JPOXMLDOC01-appb-C000016
 式(1)のYが表す4価の有機基は、具体的には、テトラカルボン酸二無水物から酸二無水物基の除去後に残存するテトラカルボン酸残基などが挙げられる。テトラカルボン酸二無水物は、1種のみ用いても良いし、2種以上用いても良い。テトラカルボン酸二無水物は、下記式(O)で表される化合物が好ましい。
式(O)
Figure JPOXMLDOC01-appb-C000017
 式(O)中、R115は、4価の有機基を表す。R115は式(1)のYが表す4価の有機基と同義であり、好ましい範囲も同様である。
Specific examples of the tetravalent organic group represented by Y in Formula (1) include a tetracarboxylic acid residue remaining after the removal of the acid dianhydride group from tetracarboxylic dianhydride. Only one tetracarboxylic dianhydride may be used, or two or more tetracarboxylic dianhydrides may be used. The tetracarboxylic dianhydride is preferably a compound represented by the following formula (O).
Formula (O)
Figure JPOXMLDOC01-appb-C000017
In formula (O), R 115 represents a tetravalent organic group. R 115 has the same meaning as the tetravalent organic group represented by Y in Formula (1), and the preferred range is also the same.
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、および、これらの炭素数1~6のアルキル誘導体ならびに炭素数1~6のアルコキシ誘導体から選ばれる少なくとも1種が例示される。 Specific examples of tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl sulfide tetra Carboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4 4'-diphenylmethanetetracarboxylic dianhydride, 2,2 ', 3,3'-diphenylmethanetetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 2,3 , 3 ′, 4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,7- Naphthale Tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 1,3-diphenylhexafluoropropane-3,3,4,4-tetracarboxylic dianhydride, 1,4,5,6-naphthalenetetra Carboxylic dianhydride, 2,2 ', 3,3'-diphenyltetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 1,2,4,5-naphthalenetetra Carboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,8,9,10-phenanthrenetetracarboxylic dianhydride, 1,1-bis (2,3-dicarboxyl) Phenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, and those having 1 to Examples thereof include at least one selected from alkyl derivatives having 6 and alkoxy derivatives having 1 to 6 carbon atoms.
 また、下記に示すテトラカルボン酸二無水物(DAA-1)~(DAA-5)も好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000018
Further, tetracarboxylic dianhydrides (DAA-1) to (DAA-5) shown below are also preferable examples.
Figure JPOXMLDOC01-appb-C000018
 式(1)におけるXとYの少なくとも一方にヒドロキシル基を有することも好ましい。 It is also preferable that at least one of X and Y in the formula (1) has a hydroxyl group.
 式(1)のRおよびRが表す非重合性の有機基としては、炭素-炭素不飽和二重結合を含まない基であることが好ましい。例えば、直鎖または分岐のアルキル基、環状アルキル基、芳香族基が好ましい。芳香族基としては、アリール基、アラルキル基などが挙げられる。RおよびRが表す非重合性の有機基は、炭素数1~4の非重合性の有機基であることがより好ましく、炭素数1~4の直鎖または分岐のアルキル基であることがさらに好ましい。非重合性の有機基の好ましい具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-エチルペンチル基、および2-エチルヘキシル基などが挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が好ましく、メチル基およびエチル基がより好ましく、メチル基がさらに好ましい。 The non-polymerizable organic group represented by R 1 and R 2 in the formula (1) is preferably a group not containing a carbon-carbon unsaturated double bond. For example, a linear or branched alkyl group, a cyclic alkyl group, and an aromatic group are preferable. Examples of the aromatic group include an aryl group and an aralkyl group. The non-polymerizable organic group represented by R 1 and R 2 is more preferably a non-polymerizable organic group having 1 to 4 carbon atoms, and is a linear or branched alkyl group having 1 to 4 carbon atoms. Is more preferable. Preferred specific examples of the non-polymerizable organic group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, octadecyl group. Group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, 1-ethylpentyl group, and 2-ethylhexyl group. Group, sec-butyl group and tert-butyl group are preferable, methyl group and ethyl group are more preferable, and methyl group is more preferable.
 本発明のポリイミド前駆体は、少なくとも一方の末端に式(2)で表される構造を有する。
(A)-L-*   (2)
 式(2)中、Aは重合性基を表し、Lは単結合またはl+1価の有機基を表し、lは1~10の整数を表し、*は他の部位との結合部位を示す。
The polyimide precursor of the present invention has a structure represented by the formula (2) at least at one end.
(A) l -L 1- * (2)
In the formula (2), A represents a polymerizable group, L 1 represents a single bond or an l + 1 valent organic group, l represents an integer of 1 to 10, and * represents a bonding site with another site.
 式(2)のAが表す重合性基としては、炭素-炭素不飽和二重結合を含む基が好ましい。具体的には、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、下記式(A-1)で表される基および式(A-2)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 上記式中、*は式(2)とのLとの結合部位を示す。Rは、水素原子またはメチル基を表し、Zは、酸素原子またはNHを表す。
The polymerizable group represented by A in the formula (2) is preferably a group containing a carbon-carbon unsaturated double bond. Specific examples include a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a group represented by the following formula (A-1), and a group represented by the formula (A-2).
Figure JPOXMLDOC01-appb-C000019
In the above formulas, * represents a bonding site with L 1 and equation (2). R 3 represents a hydrogen atom or a methyl group, and Z represents an oxygen atom or NH.
 式(2)において、Lは単結合またはl+1価の有機基を表し、l+1価の有機基が好ましい。l+1価の有機基としては、1~100個の炭素原子、0~10個の窒素原子、0~50個の酸素原子、1~200個の水素原子、および0~20個の硫黄原子から成り立つ基が挙げられる。
 l+1価の有機基の具体例として、以下の構造単位または以下の構造単位が2以上組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。
In the formula (2), L 1 represents a single bond or an l + 1 valent organic group, preferably an l + 1 valent organic group. The l + 1 valent organic group is composed of 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 to 20 sulfur atoms. Groups.
Specific examples of the l + 1 valent organic group include the following structural units or a group formed by combining two or more of the following structural units (which may form a ring structure).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(2)において、lは1~10の整数を表し、2~10の整数が好ましく、2~8の整数がより好ましく、2~5の整数がさらに好ましい。この態様によれば、露光部における現像後の残膜率を高めることができる。 In the formula (2), l represents an integer of 1 to 10, preferably an integer of 2 to 10, more preferably an integer of 2 to 8, and further preferably an integer of 2 to 5. According to this aspect, the remaining film ratio after development in the exposed portion can be increased.
 式(2)で表される構造は、式(3)または式(4)で表わされる構造であることが好ましく、式(3)で表される構造がより好ましい。この態様によれば、露光部における現像後の残膜率を高めることができる。
Figure JPOXMLDOC01-appb-C000021
 式(3)中、Rは、水素原子またはメチル基を表し、Zは酸素原子またはNHを表し、Lは単結合またはm+1価の有機基を表し、mは1~10の整数を表し、*は他の部位との結合部位を示す。
 式(4)中、Lは単結合またはn+1価の有機基を表し、nは1~10の整数を表し、*は他の部位との結合部位を示す。
The structure represented by Formula (2) is preferably a structure represented by Formula (3) or Formula (4), and more preferably a structure represented by Formula (3). According to this aspect, the remaining film ratio after development in the exposed portion can be increased.
Figure JPOXMLDOC01-appb-C000021
In the formula (3), R 3 represents a hydrogen atom or a methyl group, Z represents an oxygen atom or NH, L 2 represents a single bond or an m + 1 valent organic group, and m represents an integer of 1 to 10. , * Indicates a binding site with another site.
In the formula (4), L 3 represents a single bond or an n + 1 valent organic group, n represents an integer of 1 to 10, and * represents a bonding site with another site.
 式(3)のLが表すm+1価の有機基、式(4)のLが表すn+1価の有機基は、式(2)のLが表すl+1価の有機基で説明した基が挙げられ、好ましい範囲も同様である。 The m + 1 valent organic group represented by L 2 in Formula (3) and the n + 1 valent organic group represented by L 3 in Formula (4) are the groups described for the l + 1 valent organic group represented by L 1 in Formula (2). The preferable range is also the same.
 式(3)において、mは1~10の整数を表し、2~10の整数が好ましく、2~8の整数がより好ましく、2~5の整数がさらに好ましい。この態様によれば、露光部における残膜率を高めることができる。式(4)において、nは1~10の整数を表し、2~10の整数が好ましく、2~8の整数がより好ましく、2~5の整数がさらに好ましい。この態様によれば、露光部における残膜率を高めることができる。 In the formula (3), m represents an integer of 1 to 10, preferably an integer of 2 to 10, more preferably an integer of 2 to 8, and further preferably an integer of 2 to 5. According to this aspect, the remaining film ratio in the exposed portion can be increased. In the formula (4), n represents an integer of 1 to 10, preferably an integer of 2 to 10, more preferably an integer of 2 to 8, and further preferably an integer of 2 to 5. According to this aspect, the remaining film ratio in the exposed portion can be increased.
 本発明のポリイミド前駆体は、繰り返し単位中にフッ素原子を有することも好ましい。ポリイミド前駆体中のフッ素原子含有量は10質量%以上が好ましく、また、20質量%以下が好ましい。 It is also preferred that the polyimide precursor of the present invention has a fluorine atom in the repeating unit. The fluorine atom content in the polyimide precursor is preferably 10% by mass or more, and more preferably 20% by mass or less.
 本発明のポリイミド前駆体は、基板との密着性を向上させる目的で、シロキサン構造を有する脂肪族基を含む繰り返し単位をさらに含んでいてもよい。シロキサン構造を有する脂肪族基を導入するためのジアミン成分として、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(パラアミノフェニル)オクタメチルペンタシロキサンなどが挙げられる。 The polyimide precursor of the present invention may further contain a repeating unit containing an aliphatic group having a siloxane structure for the purpose of improving adhesion to the substrate. Examples of the diamine component for introducing an aliphatic group having a siloxane structure include bis (3-aminopropyl) tetramethyldisiloxane and bis (paraaminophenyl) octamethylpentasiloxane.
 ポリイミド前駆体において、式(1)で表される繰り返し単位は、1種であってもよいが、2種以上であってもよい。また、ポリイミド前駆体は、式(1)で表される繰り返し単位の構造異性体を含んでいてもよい。また、ポリイミド前駆体は、式(1)で表される繰り返し単位のほかに、他の種類の繰り返し単位も含んでよい。 In the polyimide precursor, the repeating unit represented by the formula (1) may be one type or two or more types. Moreover, the polyimide precursor may contain the structural isomer of the repeating unit represented by Formula (1). The polyimide precursor may also contain other types of repeating units in addition to the repeating unit represented by the formula (1).
 本発明のポリイミド前駆体は、式(1)で表される繰り返し単位を、全繰り返し単位の50モル%以上含有することが好ましく、70モル%以上含有することがより好ましく、90モル%以上含有することがさらに好ましい。 The polyimide precursor of the present invention preferably contains 50 mol% or more of the repeating units represented by the formula (1), more preferably 70 mol% or more, more preferably 90 mol% or more of all repeating units. More preferably.
 ポリイミド前駆体の重量平均分子量(Mw)は、50000以下であり、40000以下が好ましく、35000以下がより好ましい。下限は、2000を超えることが好ましく、5000以上がより好ましく、6000以上がさらに好ましく、7000以上がさらに好ましい。ポリイミド前駆体の重量平均分子量が50000以下であれば、現像性に優れる。また、ポリイミド前駆体の重量平均分子量が5000以上であれば、得られる硬化膜の機械強度が良好である。 The weight average molecular weight (Mw) of the polyimide precursor is 50000 or less, preferably 40000 or less, and more preferably 35000 or less. The lower limit is preferably more than 2000, more preferably 5000 or more, further preferably 6000 or more, and further preferably 7000 or more. If the weight average molecular weight of a polyimide precursor is 50000 or less, it is excellent in developability. Moreover, if the weight average molecular weight of a polyimide precursor is 5000 or more, the mechanical strength of the obtained cured film is favorable.
 ポリイミド前駆体の分散度(Mw/Mn)は、2.5以上が好ましく、2.7以上がより好ましく、2.8以上であることがさらに好ましい。ポリイミド前駆体の分散度の上限値は特に定めるものではないが、例えば、4.5以下が好ましく、4.0以下がより好ましく、3.8以下がさらに好ましく、3.2以下が一層好ましく、3.1以下がより一層好ましく、3.0以下がさらに一層好ましく、2.95以下が特に一層好ましい。 The degree of dispersion (Mw / Mn) of the polyimide precursor is preferably 2.5 or more, more preferably 2.7 or more, and further preferably 2.8 or more. The upper limit of the degree of dispersion of the polyimide precursor is not particularly defined, but is, for example, preferably 4.5 or less, more preferably 4.0 or less, still more preferably 3.8 or less, and still more preferably 3.2 or less, 3.1 or less is even more preferable, 3.0 or less is even more preferable, and 2.95 or less is even more preferable.
 本発明の組成物における、ポリイミド前駆体の含有量は、本発明の組成物の全固形分の10~99質量%が好ましく、50~98質量%がより好ましく、70~96質量%がさらに好ましい。
 また、本発明の組成物における、式(1)で表される繰り返し単位を有し、かつ、少なくとも一方の末端に「(A)-L-*」で表される構造を有し、重量平均分子量が50000以下であるポリイミド前駆体の含有量は、本発明の組成物の全固形分の10~99質量%が好ましく、50~98質量%がより好ましく、70~96質量%がさらに好ましい。
The content of the polyimide precursor in the composition of the present invention is preferably 10 to 99% by mass, more preferably 50 to 98% by mass, and further preferably 70 to 96% by mass of the total solid content of the composition of the present invention. .
The composition of the present invention has a repeating unit represented by the formula (1), and has a structure represented by “(A) 1 -L 1- *” at least at one end; The content of the polyimide precursor having a weight average molecular weight of 50000 or less is preferably 10 to 99% by mass, more preferably 50 to 98% by mass, and further 70 to 96% by mass based on the total solid content of the composition of the present invention. preferable.
 本発明のポリイミド前駆体は、テトラカルボン酸二無水物またはその誘導体に対し、ジアミンを反応させたのち、この反応物に対して重合性基を有する化合物をさらに反応させたのち、カルボキシル基をエステル化することで製造することができる。また、別の方法として、テトラカルボン酸二無水物等とアルコールとのエステルに対し、ジアミンを反応させたのち、この反応物に対して重合性基を有する化合物をさらに反応させて製造することができる。
 本発明では、テトラカルボン酸二無水物またはその誘導体と、上記アルコールの原料モル比(テトラカルボン酸二無水物またはその誘導体:アルコール)は、0.9~1.1:2.1~1.9が好ましい。
 本発明では、また、テトラカルボン酸二無水物またはその誘導体と、ジアミンの原料モル比(テトラカルボン酸二無水物またはその誘導体:ジアミン)は、0.8~1.2:1.2~0.8が好ましく、1.001~1.2:0.999~0.8がより好ましい。このように、テトラカルボン酸二無水物またはその誘導体をわずかにリッチにすることにより、重合性基を有する化合物添加前の末端は酸無水物構造となり、水酸基またはアミノ基と重合性基を有する化合物によって、重合性基を確実に導入することができる。
 上記の反応の反応温度は、-20~60℃が好ましい。また、反応時間は30分~10時間が好ましい。
In the polyimide precursor of the present invention, after reacting a diamine with tetracarboxylic dianhydride or a derivative thereof, and further reacting a compound having a polymerizable group with this reaction product, the carboxyl group is esterified. Can be manufactured. As another method, after reacting a diamine with an ester of a tetracarboxylic dianhydride or the like and an alcohol, the reaction product is further reacted with a compound having a polymerizable group. it can.
In the present invention, the molar ratio of tetracarboxylic dianhydride or derivative thereof to the above alcohol (tetracarboxylic dianhydride or derivative thereof: alcohol) is 0.9 to 1.1: 2.1 to 1. 9 is preferred.
In the present invention, the molar ratio of tetracarboxylic dianhydride or derivative thereof to diamine (tetracarboxylic dianhydride or derivative thereof: diamine) is 0.8 to 1.2: 1.2 to 0. .8 is preferable, and 1.001 to 1.2: 0.999 to 0.8 is more preferable. Thus, by slightly enriching the tetracarboxylic dianhydride or its derivative, the terminal before addition of the compound having a polymerizable group becomes an acid anhydride structure, and the compound having a hydroxyl group or an amino group and a polymerizable group Thus, the polymerizable group can be reliably introduced.
The reaction temperature of the above reaction is preferably −20 to 60 ° C. The reaction time is preferably 30 minutes to 10 hours.
 また、テトラカルボン酸二無水物と反応させるアルコールの分子量は、30~150が好ましく、30~80がより好ましく、30~65がさらに好ましい。テトラカルボン酸二無水物と反応させるアルコールの分子量が上述の範囲であれば、解像性に優れたポリイミド前駆体が得られやすい。
 テトラカルボン酸二無水物と反応させるアルコールは、炭素数1~8のアルコールが好ましく、炭素数1~4のアルコールがより好ましく、炭素数1~3のアルコールがさらに好ましく、炭素数1または2のアルコールが一層好ましく、炭素数1のアルコール(メタノール)がより一層好ましい。
 上記アルコールの具体例としては、メタノール、エタノール、プロパノール、n-ブタノールが挙げられ、メタノールが特に好ましい。
Further, the molecular weight of the alcohol to be reacted with tetracarboxylic dianhydride is preferably 30 to 150, more preferably 30 to 80, and further preferably 30 to 65. When the molecular weight of the alcohol to be reacted with tetracarboxylic dianhydride is in the above range, a polyimide precursor having excellent resolution is easily obtained.
The alcohol to be reacted with tetracarboxylic dianhydride is preferably an alcohol having 1 to 8 carbon atoms, more preferably an alcohol having 1 to 4 carbon atoms, still more preferably an alcohol having 1 to 3 carbon atoms, and an alcohol having 1 or 2 carbon atoms. Alcohol is more preferable, and alcohol having 1 carbon (methanol) is even more preferable.
Specific examples of the alcohol include methanol, ethanol, propanol, and n-butanol, and methanol is particularly preferable.
 重合性基を有する化合物は、重合性基を1~10個有する化合物が好ましく、重合性基を2~8個有する化合物がより好ましく、重合性基を2~5個有する化合物がさらに好ましい。重合性基としては、炭素-炭素不飽和二重結合を含む基が好ましい。具体的には、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、スチリル基、上述した式(A-1)で表される基および上述した式(A-2)で表される基が挙げられる。
 また、重合性基を有する化合物の分子量は、100~2000が好ましく、100~1500がより好ましく、100~1000がさらに好ましい。重合性基を有する化合物の分子量が上述の範囲であれば、解像性に優れたポリイミド前駆体が得られやすい化合物の具体例としては、酸二無水物を過剰に用いる場合は、ペンタエリスリトールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、イソシアヌル酸エチレンオキシド(EO)変性ジ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-アミノスチレンが例示され、ジアミンを過剰に用いる場合には、2-イソシアナトエチル(メタ)アクリレート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネートが例示される。
The compound having a polymerizable group is preferably a compound having 1 to 10 polymerizable groups, more preferably a compound having 2 to 8 polymerizable groups, and still more preferably a compound having 2 to 5 polymerizable groups. As the polymerizable group, a group containing a carbon-carbon unsaturated double bond is preferable. Specifically, a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a styryl group, a group represented by the above formula (A-1) and a group represented by the above formula (A-2) Is mentioned.
The molecular weight of the compound having a polymerizable group is preferably from 100 to 2000, more preferably from 100 to 1500, and further preferably from 100 to 1000. If the molecular weight of the compound having a polymerizable group is within the above range, specific examples of the compound in which a polyimide precursor excellent in resolution can be easily obtained include pentaerythritol trimethyl when an acid dianhydride is excessively used. (Meth) acrylate, glycerol di (meth) acrylate, isocyanuric acid ethylene oxide (EO) modified di (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) Examples include acrylate and 4-aminostyrene. When diamine is used in excess, 2-isocyanatoethyl (meth) acrylate and 1,1- (bisacryloyloxymethyl) ethyl isocyanate are exemplified.
 ポリイミド前駆体の製造方法では、反応に際し、有機溶剤を用いることが好ましい。有機溶剤は1種でもよいし、2種以上でもよい。
 有機溶剤としては、原料に応じて適宜定めることができるが、ピリジン、ジエチレングリコールジメチルエーテル(ジグリム)、N-メチルピロリドンおよびN-エチルピロリドンが例示される。
In the method for producing a polyimide precursor, an organic solvent is preferably used for the reaction. One or more organic solvents may be used.
The organic solvent can be appropriately determined according to the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone and N-ethylpyrrolidone.
 ポリイミド前駆体の製造に際し、保存安定性をより向上させるため、前駆体の主鎖末端の一方を酸無水物、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの末端封止剤で封止してもよい。これらのうち、モノアミンを用いることがより好ましく、モノアミンの好ましい化合物としては、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。 In the production of a polyimide precursor, one end of the main chain of the precursor is sealed with an end-capping agent such as an acid anhydride, monocarboxylic acid, monoacid chloride compound, or monoactive ester compound in order to further improve storage stability. You may stop. Of these, it is more preferable to use a monoamine. Preferred examples of the monoamine include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, and 1-hydroxy-7. -Aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2, -Hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6- Aminonaphthalene, 2-carbo Ci-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-amino Benzenesulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-aminothiophenol, 3-aminothiophenol, 4 -Aminothiophenol and the like. Two or more of these may be used, and a plurality of different terminal groups may be introduced by reacting a plurality of terminal blocking agents.
 ポリイミド前駆体の製造に際し、固体を析出する工程を含んでいても良い。具体的には、反応液中のポリイミド前駆体を、水やアルコールなどの貧溶媒中に沈殿させることによって、固体析出することができる。その後、ポリイミド前駆体を乾燥して、粉末状のポリイミド前駆体を得ることができる。 In the production of the polyimide precursor, a step of depositing a solid may be included. Specifically, solid precipitation can be performed by precipitating the polyimide precursor in the reaction solution in a poor solvent such as water or alcohol. Then, a polyimide precursor can be dried and a powdery polyimide precursor can be obtained.
<<光重合開始剤>>
 本発明の組成物は、光重合開始剤を含有する。光重合開始剤は、光カチオン重合開始剤、光ラジカル重合開始剤などが挙げられ、光ラジカル重合開始剤が好ましい。本発明の組成物が光ラジカル重合開始剤を含むことにより、本発明の組成物を半導体ウエハなどの基板に適用してネガ型感光性樹脂組成物層を形成した後、光を照射することで、ラジカルに起因する硬化が起こり、光照射部における溶解性を低下させることができる。このため、例えば、電極部のみをマスクするパターンを持つフォトマスクを介してネガ型感光性樹脂組成物層を露光することで、電極のパターンにしたがって、溶解性の異なる領域を簡便に作製できるという利点がある。
<< photopolymerization initiator >>
The composition of the present invention contains a photopolymerization initiator. Examples of the photopolymerization initiator include a photocationic polymerization initiator and a photoradical polymerization initiator, and a photoradical polymerization initiator is preferred. When the composition of the present invention contains a photo radical polymerization initiator, the composition of the present invention is applied to a substrate such as a semiconductor wafer to form a negative photosensitive resin composition layer, and then irradiated with light. Curing due to radicals occurs, and the solubility in the light irradiation part can be reduced. For this reason, for example, by exposing a negative photosensitive resin composition layer through a photomask having a pattern for masking only the electrode portion, it is possible to easily produce regions having different solubility according to the electrode pattern. There are advantages.
 光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよい。
 光重合開始剤は、約300~800nm(好ましくは330~500nm)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。
There is no restriction | limiting in particular as a photoinitiator, It can select suitably from well-known photoinitiators. For example, a photopolymerization initiator having photosensitivity to light in the ultraviolet region to the visible region is preferable. Further, it may be an activator that generates some active radicals by generating some action with the photoexcited sensitizer.
The photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 to 800 nm (preferably 330 to 500 nm). The molar extinction coefficient of the compound can be measured using a known method. For example, it is preferable to measure with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g / L.
 光重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノン、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182の記載を参酌でき、この内容は本明細書に組み込まれる。 As the photopolymerization initiator, known compounds can be arbitrarily used. For example, halogenated hydrocarbon derivatives (for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazoles, oxime derivatives, etc. Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, hydroxyacetophenone, azo compounds, azide compounds, metallocene compounds, organoboron compounds, iron arene complexes, etc. Can be mentioned. With respect to these details, reference can be made to the descriptions in paragraphs 0165 to 0182 of JP-A-2016-027357, the contents of which are incorporated herein.
 ケトン化合物としては、例えば、特開2015-087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュアーDETX(日本化薬(株)製)も好適に用いられる。 Examples of ketone compounds include the compounds described in paragraph 0087 of JP-A-2015-087611, the contents of which are incorporated herein. As a commercial product, Kaya Cure DETX (manufactured by Nippon Kayaku Co., Ltd.) is also preferably used.
 光重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、および、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号に記載のアシルホスフィンオキシド系開始剤も用いることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE-184(IRGACUREは登録商標)、DAROCUR-1173、IRGACURE-500、IRGACURE-2959、IRGACURE-127(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤としては、市販品であるIRGACURE-907、IRGACURE-369、および、IRGACURE-379(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤として、365nmまたは405nm等の波長光源に吸収極大波長がマッチングされた特開2009-191179号公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイドなどが挙げられる。また、市販品であるIRGACURE-819やIRGACURE-TPO(商品名:いずれもBASF社製)を用いることができる。
 メタロセン化合物としては、IRGACURE-784(BASF社製)などが例示される。
As the photopolymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, aminoacetophenone initiators described in JP-A-10-291969 and acylphosphine oxide initiators described in Japanese Patent No. 4225898 can also be used.
As the hydroxyacetophenone-based initiator, IRGACURE-184 (IRGACURE is a registered trademark), DAROCUR-1173, IRGACURE-500, IRGACURE-2959, and IRGACURE-127 (trade names: all manufactured by BASF) can be used.
As the aminoacetophenone-based initiator, commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379 (trade names: all manufactured by BASF) can be used.
As the aminoacetophenone-based initiator, compounds described in JP-A-2009-191179 in which the absorption maximum wavelength is matched with a wavelength light source of 365 nm or 405 nm can also be used.
Examples of the acylphosphine initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. Further, IRGACURE-819 and IRGACURE-TPO (trade names: both manufactured by BASF) which are commercially available products can be used.
Examples of the metallocene compound include IRGACURE-784 (manufactured by BASF).
 光重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く、かつ、熱塩基発生剤としても働くため、特に好ましい。
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-80068号公報に記載の化合物、特開2006-342166号公報に記載の化合物を用いることができる。
 好ましいオキシム化合物としては、例えば、下記の構造の化合物や、3-ベンゾオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、および2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000022
 市販品ではIRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-14052号公報に記載の光重合開始剤2)も好適に用いられる。また、TR-PBG-304(常州強力電子新材料有限公司製)、アデカアークルズNCI-831およびアデカアークルズNCI-930(ADEKA社製)も用いることができる。また、DFI-091(ダイトーケミックス株式会社製)を用いることができる。
 さらに、また、フッ素原子を有するオキシム化合物を用いることも可能である。そのようなオキシム化合物の具体例としては、特開2010-262028号公報に記載されている化合物、特表2014-500852号公報の段落0345に記載されている化合物24、36~40、特開2013-164471号公報の段落0101に記載されている化合物(C-3)などが挙げられる。
 最も好ましいオキシム化合物としては、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられる。
More preferred examples of the photopolymerization initiator include oxime compounds. By using the oxime compound, the exposure latitude can be improved more effectively. Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also act as a thermal base generator.
Specific examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
Preferable oxime compounds include, for example, compounds having the following structures, 3-benzooxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxy Iminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutan-2-one And 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one.
Figure JPOXMLDOC01-appb-C000022
Among the commercially available products, IRGACURE OXE 01, IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (above, manufactured by BASF), Adekaoptomer N-1919 (manufactured by ADEKA Corporation, light described in JP2012-14052A) A polymerization initiator 2) is also preferably used. Also, TR-PBG-304 (manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.), Adeka Arkles NCI-831 and Adeka Arkles NCI-930 (made by ADEKA) can be used. Further, DFI-091 (manufactured by Daitokemix Co., Ltd.) can be used.
Furthermore, it is also possible to use an oxime compound having a fluorine atom. Specific examples of such oxime compounds include compounds described in JP 2010-262028 A, compounds 24, 36 to 40 described in paragraph 0345 of JP 2014-500852 A, and JP 2013. And the compound (C-3) described in paragraph 0101 of JP-A No. 164471.
As the most preferred oxime compounds, there are oxime compounds having a specific substituent as disclosed in JP-A-2007-267979, oxime compounds having a thioaryl group as disclosed in JP-A-2009-191061, and the like.
 光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物およびその誘導体、シクロペンタジエン-ベンゼン-鉄錯体およびその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。
 さらに好ましい光重合開始剤は、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、オキシム化合物、トリアリールイミダゾールダイマー、ベンゾフェノン化合物からなる群より選ばれる少なくとも1種の化合物が一層好ましく、メタロセン化合物またはオキシム化合物を用いるのがより一層好ましく、オキシム化合物が特に好ましい。
 また、光重合開始剤は、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)等のN,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1等の芳香族ケトン、アルキルアントラキノン等の芳香環と縮環したキノン類、ベンゾインアルキルエーテル等のベンゾインエーテル化合物、ベンゾイン、アルキルベンゾイン等のベンゾイン化合物、ベンジルジメチルケタール等のベンジル誘導体などを用いることもできる。また、下記式(I)で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000023
 式(I)中、R50は、炭素数1~20のアルキル基;1個以上の酸素原子によって中断された炭素数2~20のアルキル基;炭素数1~12のアルコキシ基;フェニル基;炭素数1~20のアルキル基、炭素数1~12のアルコキシ基、ハロゲン原子、シクロペンチル基、シクロヘキシル基、炭素数2~12のアルケニル基、1個以上の酸素原子によって中断された炭素数2~18のアルキル基および炭素数1~4のアルキル基の少なくとも1つで置換されたフェニル基;またはビフェニリルであり、R51は、式(II)で表される基であるか、R50と同じ基であり、R52~R54は各々独立に炭素数1~12のアルキル、炭素数1~12のアルコキシまたはハロゲンである。
Figure JPOXMLDOC01-appb-C000024
式中、R55~R57は、上記式(I)のR52~R54と同じである。
Photopolymerization initiators are trihalomethyltriazine compounds, benzyldimethylketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triaryls from the viewpoint of exposure sensitivity. Selected from the group consisting of imidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds. Are preferred.
More preferred photopolymerization initiators are trihalomethyltriazine compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds, acetophenone compounds, At least one compound selected from the group consisting of a trihalomethyltriazine compound, an α-aminoketone compound, an oxime compound, a triarylimidazole dimer, and a benzophenone compound is more preferable, and a metallocene compound or an oxime compound is more preferable, and an oxime compound. Is particularly preferred.
Photopolymerization initiators include N, N′-tetraalkyl-4,4′-diaminobenzophenone, 2-benzyl-, such as benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), and the like. Aromatic ketones such as 2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, alkyl anthraquinones, etc. It is also possible to use quinones fused with an aromatic ring, benzoin ether compounds such as benzoin alkyl ether, benzoin compounds such as benzoin and alkylbenzoin, and benzyl derivatives such as benzyldimethyl ketal. A compound represented by the following formula (I) can also be used.
Figure JPOXMLDOC01-appb-C000023
In the formula (I), R 50 represents an alkyl group having 1 to 20 carbon atoms; an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms; an alkoxy group having 1 to 12 carbon atoms; a phenyl group; An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a cyclopentyl group, a cyclohexyl group, an alkenyl group having 2 to 12 carbon atoms, and 2 to 2 carbon atoms interrupted by one or more oxygen atoms A phenyl group substituted with at least one of 18 alkyl groups and an alkyl group having 1 to 4 carbon atoms; or biphenylyl, and R 51 is the group represented by formula (II) or the same as R 50 Each of R 52 to R 54 is independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or halogen.
Figure JPOXMLDOC01-appb-C000024
In the formula, R 55 to R 57 are the same as R 52 to R 54 in the above formula (I).
 また、光重合開始剤は、国際公開WO2015/125469号の段落0048~0055に記載の化合物を用いることもできる。 As the photopolymerization initiator, compounds described in paragraphs 0048 to 0055 of International Publication No. WO2015 / 125469 can also be used.
 光重合開始剤の含有量は、本発明の組成物の全固形分に対し0.1~30質量%が好ましく、より好ましくは0.1~20質量%であり、さらに好ましくは0.1~10質量%である。光重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光重合開始剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。 The content of the photopolymerization initiator is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, and still more preferably 0.1 to 30% by mass with respect to the total solid content of the composition of the present invention. 10% by mass. The photoinitiator may contain only 1 type and may contain 2 or more types. When two or more photopolymerization initiators are contained, the total is preferably in the above range.
<<溶剤>>
 本発明の組成物は、溶剤を含有する。溶剤は、公知の溶剤を任意に使用できる。溶剤は有機溶剤が好ましい。有機溶剤としては、エステル類、エーテル類、ケトン類、芳香族炭化水素類、スルホキシド類、アミド類などの化合物が挙げられる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチルおよび2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が好適に挙げられる。
 エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が好適に挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン等が好適に挙げられる。
 芳香族炭化水素類として、例えば、トルエン、キシレン、アニソール、リモネン等が好適に挙げられる。
 スルホキシド類として、例えば、ジメチルスルホキシドが好適に挙げられる。
 アミド類として、N-メチル-2-ピロリドン、N -エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等が好適に挙げられる。
<< Solvent >>
The composition of the present invention contains a solvent. A known solvent can be arbitrarily used as the solvent. The solvent is preferably an organic solvent. Examples of the organic solvent include compounds such as esters, ethers, ketones, aromatic hydrocarbons, sulfoxides, and amides.
Examples of esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, γ-butyrolactone, and ε-caprolactone , Δ-valerolactone, alkyl oxyacetates (for example, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (for example, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc. )), 3-alkyloxypropionic acid alkyl esters (for example, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (for example, methyl 3-methoxypropionate, 3-methoxypropionate)) Ethyl acetate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.)), 2-alkyloxypropionic acid alkyl esters (for example, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, 2 -Propyl alkyloxypropionate and the like (for example, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)), 2-alkyl Methyl oxy-2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate (for example, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate), methyl pyruvate , Pyruvic acid Chill, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, 2-ethyl-oxobutanoate can be preferably used.
Examples of ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol Preferred examples include monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate.
Preferred examples of ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, and 3-heptanone.
Preferable examples of aromatic hydrocarbons include toluene, xylene, anisole, limonene and the like.
Suitable examples of the sulfoxides include dimethyl sulfoxide.
Preferable examples of amides include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
 溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。なかでも、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、およびプロピレングリコールメチルエーテルアセテートから選択される2種以上で構成される混合溶液が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用が特に好ましい。 The solvent is preferably in the form of a mixture of two or more from the viewpoint of improving the properties of the coated surface. Among them, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, cyclopentanone, γ-butyrolactone A mixed solution composed of two or more selected from dimethyl sulfoxide, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol methyl ether, and propylene glycol methyl ether acetate is preferable. The combined use of dimethyl sulfoxide and γ-butyrolactone is particularly preferred.
 溶剤の含有量は、塗布性の観点から、本発明の組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~70質量%がさらに好ましく、10~60質量%が特に好ましい。溶剤含有量は、所望の厚さと塗布方法によって調節すればよい。例えば塗布方法がスピンコートやスリットコートであれば上記範囲の固形分濃度となる溶剤の含有量が好ましい。スプレーコートであれば0.1質量%~50質量%になる量とすることが好ましく、1.0質量%~25質量%とすることが好ましい。塗布方法によって溶剤量を調節することで、所望の厚さの感光性樹脂組成物層を均一に形成することができる。
 溶剤は1種のみ含有していてもよいし、2種以上含有していてもよい。溶剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
The content of the solvent is preferably such that the total solid concentration of the composition of the present invention is 5 to 80% by mass, more preferably 5 to 70% by mass, and more preferably 10 to 60% by mass from the viewpoint of applicability. % Is particularly preferred. The solvent content may be adjusted depending on the desired thickness and coating method. For example, if the coating method is spin coating or slit coating, the content of the solvent having a solid content concentration in the above range is preferable. In the case of spray coating, the amount is preferably 0.1% by mass to 50% by mass, and more preferably 1.0% by mass to 25% by mass. A photosensitive resin composition layer having a desired thickness can be uniformly formed by adjusting the amount of solvent by the coating method.
The solvent may contain only 1 type and may contain 2 or more types. When two or more solvents are contained, the total is preferably in the above range.
<<多官能ラジカル重合性モノマー>>
 本発明の組成物は、多官能ラジカル重合性モノマー(以下、重合性モノマーともいう)を含むことが好ましい。このような構成とすることにより、耐熱性に優れた硬化膜を形成することができる。
<< Polyfunctional radical polymerizable monomer >>
The composition of the present invention preferably contains a polyfunctional radically polymerizable monomer (hereinafter also referred to as a polymerizable monomer). By setting it as such a structure, the cured film excellent in heat resistance can be formed.
 重合性モノマーは、ラジカル重合性基を有する化合物を用いることができる。ラジカル重合性基としては、スチリル基、ビニル基、(メタ)アクリロイル基および(メタ)アリル基などのエチレン性不飽和結合を有する基が挙げられる。ラジカル重合性基は、(メタ)アクリロイル基が好ましい。 As the polymerizable monomer, a compound having a radical polymerizable group can be used. Examples of the radical polymerizable group include groups having an ethylenically unsaturated bond such as a styryl group, a vinyl group, a (meth) acryloyl group, and a (meth) allyl group. The radical polymerizable group is preferably a (meth) acryloyl group.
 重合性モノマーは、ラジカル重合性基を2個以上有することが好ましく、3個以上有することがより好ましい。上限は、15個以下が好ましく、10個以下がより好ましく、8個以下がさらに好ましい。 The polymerizable monomer preferably has two or more radical polymerizable groups, more preferably three or more. The upper limit is preferably 15 or less, more preferably 10 or less, and even more preferably 8 or less.
 重合性モノマーの分子量は、2000以下が好ましく、1500以下がより好ましく、900以下がさらに好ましい。重合性モノマーの分子量の下限は、100以上が好ましい。 The molecular weight of the polymerizable monomer is preferably 2000 or less, more preferably 1500 or less, and even more preferably 900 or less. The lower limit of the molecular weight of the polymerizable monomer is preferably 100 or more.
 本発明の組成物は、現像性の観点から、重合性基を2個以上含む2官能以上の重合性モノマーを少なくとも1種含むことが好ましく、3官能以上の重合性モノマーを少なくとも1種含むことがより好ましい。また、2官能の重合性モノマーと3官能以上の重合性モノマーとの混合物であってもよい。なお、重合性モノマーの官能基数は、1分子中におけるラジカル重合性基の数を意味する。 From the viewpoint of developability, the composition of the present invention preferably contains at least one bifunctional or higher polymerizable monomer containing two or more polymerizable groups, and preferably contains at least one trifunctional or higher polymerizable monomer. Is more preferable. Further, it may be a mixture of a bifunctional polymerizable monomer and a trifunctional or higher functional polymerizable monomer. The number of functional groups of the polymerizable monomer means the number of radical polymerizable groups in one molecule.
 重合性モノマーの具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、および不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシル基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、さらに、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016-027357号公報の段落0113~0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。 Specific examples of the polymerizable monomer include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides. These are esters of saturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyvalent amine compounds. Also, addition reaction products of monofunctional or polyfunctional isocyanates or epoxies with unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxyl group, amino group, mercapto group, monofunctional or polyfunctional. A dehydration condensation reaction product with a functional carboxylic acid is also preferably used. In addition, an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine, or thiol, and a halogen group A substitution reaction product of an unsaturated carboxylic acid ester or amide having a detachable substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable. As another example, it is also possible to use a compound group in which an unsaturated phosphonic acid, a vinylbenzene derivative such as styrene, vinyl ether, allyl ether or the like is used instead of the unsaturated carboxylic acid. As specific examples, the description in paragraphs 0113 to 0122 of JP-A-2016-027357 can be referred to, and the contents thereof are incorporated in the present specification.
 また、重合性モノマーは、常圧下で100℃以上の沸点を持つ化合物も好ましい。その例としては、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後、(メタ)アクリレート化した化合物、特公昭48-41708号公報、特公昭50-6034号公報、特開昭51-37193号各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタクリレートおよびこれらの混合物を挙げることができる。また、特開2008-292970号公報の段落0254~0257に記載の化合物も好適である。また、多官能カルボン酸にグリシジル(メタ)アクリレート等の環状エーテル基とエチレン性不飽和基を有する化合物を反応させて得られる多官能(メタ)アクリレートなども挙げることができる。
 また、その他の好ましい重合性モノマーとして、特開2010-160418号公報、特開2010-129825号公報、特許第4364216号等に記載される、フルオレン環を有し、エチレン性不飽和結合を有する基を2個以上有する化合物や、カルド樹脂も使用することが可能である。
 さらに、その他の例としては、特公昭46-43946号公報、特公平1-40337号公報、特公平1-40336号公報に記載の特定の不飽和化合物や、特開平2-25493号公報に記載のビニルホスホン酸系化合物等もあげることができる。また、特開昭61-22048号公報に記載のペルフルオロアルキル基を含む化合物を用いることもできる。さらに日本接着協会誌 vol.20、No.7、300~308ページ(1984年)に光重合性モノマーおよびオリゴマーとして紹介されているものも使用することができる。
The polymerizable monomer is also preferably a compound having a boiling point of 100 ° C. or higher under normal pressure. Examples include polyethylene glycol di (meth) acrylate, trimethylolethane tri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol. Many such as penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, hexanediol (meth) acrylate, trimethylolpropane tri (acryloyloxypropyl) ether, tri (acryloyloxyethyl) isocyanurate, glycerin and trimethylolethane A compound obtained by adding ethylene oxide or propylene oxide to a functional alcohol and then (meth) acrylated, JP-B-48-4170 Urethane (meth) acrylates, as described in JP-A Nos. 50-6034 and 51-37193, JP-A 48-64183, JP-B 49-43191, Mention may be made of polyfunctional acrylates and methacrylates such as polyester acrylates and epoxy acrylates which are reaction products of epoxy resins and (meth) acrylic acid, and mixtures thereof described in JP-B 52-30490. it can. Also suitable are the compounds described in paragraphs 0254 to 0257 of JP-A-2008-292970. Moreover, the polyfunctional (meth) acrylate etc. which are obtained by making the compound which has cyclic ether groups, such as glycidyl (meth) acrylate, and an ethylenically unsaturated group, react with polyfunctional carboxylic acid can also be mentioned.
Other preferable polymerizable monomers include groups having a fluorene ring and an ethylenically unsaturated bond described in JP2010-160418A, JP2010-129825A, Japanese Patent No. 4364216, and the like. It is also possible to use a compound having two or more or a cardo resin.
Other examples include specific unsaturated compounds described in JP-B-46-43946, JP-B-1-40337, JP-B-1-40336, and JP-A-2-25493. And vinyl phosphonic acid compounds. Also, compounds containing a perfluoroalkyl group described in JP-A-61-22048 can be used. Furthermore, Journal of Japan Adhesion Association vol. 20, no. 7, pages 300 to 308 (1984), which are introduced as photopolymerizable monomers and oligomers, can also be used.
 上記のほか、下記式(MO-1)~(MO-5)で表される、重合性モノマーも好適に用いることができる。なお、式中、Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。 In addition to the above, polymerizable monomers represented by the following formulas (MO-1) to (MO-5) can also be suitably used. In the formula, when T is an oxyalkylene group, the terminal on the carbon atom side is bonded to R.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記の各式において、nは0~14の整数であり、mは0~8の整数である。分子内に複数存在するR、T、は、各々同一であっても、異なっていてもよい。
 上記式(MO-1)~(MO-5)で表される重合性化合物の各々において、複数のRの内の少なくとも1つは、-OC(=O)CH=CH、または、-OC(=O)C(CH)=CHで表される基を表す。
 上記式(MO-1)~(MO-5)で表される、重合性モノマーの具体例としては、特開2007-269779号公報の段落0248~0251に記載されている化合物を用いることができる。
In the above formulas, n is an integer from 0 to 14, and m is an integer from 0 to 8. A plurality of R and T present in the molecule may be the same or different.
In each of the polymerizable compounds represented by the above formulas (MO-1) to (MO-5), at least one of a plurality of R is —OC (═O) CH═CH 2 or —OC (= O) represents a group represented by C (CH 3 ) ═CH 2 .
As specific examples of the polymerizable monomer represented by the above formulas (MO-1) to (MO-5), the compounds described in paragraphs 0248 to 0251 of JP-A No. 2007-267979 can be used. .
 また、特開平10-62986号公報において式(1)および式(2)としてその具体例と共に記載の、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後に(メタ)アクリレート化した化合物も、重合性モノマーとして用いることができる。 In addition, compounds described in JP-A-10-62986 as formulas (1) and (2) together with specific examples thereof, which are (meth) acrylated after adding ethylene oxide or propylene oxide to a polyfunctional alcohol, It can be used as a polymerizable monomer.
 さらに、特開2015-187211号公報の段落0104~0131に記載の化合物も重合性モノマーとして用いることができ、これらの内容は本明細書に組み込まれる。 Furthermore, the compounds described in paragraphs 0104 to 0131 of JP-A No. 2015-187211 can also be used as the polymerizable monomer, the contents of which are incorporated herein.
 重合性モノマーとしては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬(株)製、A-TMMT:新中村化学工業社製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬(株)製、A-DPH;新中村化学工業製)、およびこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。
 また、上記式(MO-1)、式(MO-2)のペンタエリスリトール誘導体および/またはジペンタエリスリトール誘導体も好ましい例として挙げられる。
As a polymerizable monomer, dipentaerythritol triacrylate (as a commercially available product, KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercially available product, as KAYARAD D-320; Nippon Kayaku Co., Ltd.) ), A-TMMT: Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol penta (meth) acrylate (as a commercial product, KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (As commercial products, KAYARAD DPHA; manufactured by Nippon Kayaku Co., Ltd., A-DPH; manufactured by Shin-Nakamura Chemical Co., Ltd.), and these (meth) acryloyl groups are bonded via ethylene glycol and propylene glycol residues. A structure is preferred. These oligomer types can also be used.
Further, preferred examples include pentaerythritol derivatives and / or dipentaerythritol derivatives of the above formulas (MO-1) and (MO-2).
 重合性モノマーの市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、エチレンオキシ鎖を4個有する2官能メタクリレートであるサートマー社製のSR-209、日本化薬(株)製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330、ウレタンオリゴマーUAS-10、UAB-140(山陽国策パルプ社製)、NKエステルM-40G、NKエステル4G、NKエステルM-9300、NKエステルA-9300、UA-7200(新中村化学工業社製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学社製)、ブレンマーPME400(日油(株)製)などが挙げられる。 Examples of commercially available polymerizable monomers include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, SR-209, manufactured by Sartomer, which is a bifunctional methacrylate having four ethyleneoxy chains, DPCA-60, a 6-functional acrylate having 6 pentyleneoxy chains, TPA-330, a 3-functional acrylate having 3 isobutyleneoxy chains, urethane oligomer UAS-10, UAB-140 manufactured by Nippon Kayaku Co., Ltd. (Manufactured by Sanyo Kokusaku Pulp), NK ester M-40G, NK ester 4G, NK ester M-9300, NK ester A-9300, UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (Nippon Kayaku ( UA-306H, UA-306T, UA-306I, AH-600 T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blemmer PME400 (NOF Co., Ltd.), and the like.
 重合性モノマーは、特公昭48-41708号公報、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。さらに、重合性モノマーとして、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する化合物を用いることもできる。 Polymerizable monomers include urethane acrylates such as those described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, and JP-B-2-16765. Urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418 are also suitable. Further, compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 are used as polymerizable monomers. You can also.
 重合性モノマーは、カルボキシル基、スルホ基、リン酸基等の酸基を有する重合性モノマーであってもよい。酸基を有する重合性モノマーは、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせた重合性モノマーがより好ましい。特に好ましくは、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシル基に非芳香族カルボン酸無水物を反応させて酸基を持たせた重合性モノマーにおいて、脂肪族ポリヒドロキシ化合物がペンタエリスリトールおよび/またはジペンタエリスリトールである化合物である。市販品としては、例えば、東亞合成株式会社製の多塩基酸変性アクリルオリゴマーとして、M-510、M-520などが挙げられる。
 酸基を有する重合性モノマーは、1種を単独で用いてもよいが、2種以上を混合して用いてもよい。また、必要に応じて酸基を有しない重合性モノマーと酸基を有する重合性モノマーを併用してもよい。
 酸基を有する重合性モノマーの好ましい酸価は、0.1~40mgKOH/gであり、特に好ましくは5~30mgKOH/gである。重合性モノマーの酸価が上記範囲であれば、製造や取扱性に優れ、さらには、現像性に優れる。また、重合性が良好である。
The polymerizable monomer may be a polymerizable monomer having an acid group such as a carboxyl group, a sulfo group, or a phosphoric acid group. The polymerizable monomer having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound. More preferred is a polymerizable monomer. Particularly preferably, in the polymerizable monomer in which a non-aromatic carboxylic acid anhydride is reacted with an unreacted hydroxyl group of the aliphatic polyhydroxy compound to give an acid group, the aliphatic polyhydroxy compound is pentaerythritol and / or diester. It is a compound that is pentaerythritol. Examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
As the polymerizable monomer having an acid group, one kind may be used alone, or two or more kinds may be mixed and used. Moreover, you may use together the polymerizable monomer which does not have an acid group, and the polymerizable monomer which has an acid group as needed.
A preferable acid value of the polymerizable monomer having an acid group is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g. When the acid value of the polymerizable monomer is within the above range, the production and handling properties are excellent, and further, the developability is excellent. Also, the polymerizability is good.
 重合性モノマーの含有量は、良好な重合性と耐熱性の観点から、本発明の組成物の全固形分に対して、1~50質量%が好ましい。下限は5質量%以上がより好ましい。上限は、30質量%以下がより好ましい。重合性モノマーは1種を単独で用いてもよいが、2種以上を混合して用いてもよい。
 また、ポリイミド前駆体と重合性モノマーとの質量割合(ポリイミド前駆体/重合性モノマー)は、98/2~10/90が好ましく、95/5~30/70がより好ましく、90/10~50/50が最も好ましい。ポリイミド前駆体と重合性モノマーとの質量割合が上記範囲であれば、重合性および耐熱性により優れた硬化膜を形成できる。
The content of the polymerizable monomer is preferably 1 to 50% by mass with respect to the total solid content of the composition of the present invention from the viewpoint of good polymerizability and heat resistance. The lower limit is more preferably 5% by mass or more. The upper limit is more preferably 30% by mass or less. As the polymerizable monomer, one kind may be used alone, or two or more kinds may be mixed and used.
The mass ratio of the polyimide precursor to the polymerizable monomer (polyimide precursor / polymerizable monomer) is preferably 98/2 to 10/90, more preferably 95/5 to 30/70, and 90/10 to 50 / 50 is most preferred. If the mass ratio of a polyimide precursor and a polymerizable monomer is in the above range, a cured film that is superior in polymerizability and heat resistance can be formed.
 本発明の組成物は、硬化膜の弾性率制御による反り抑制の観点から、単官能重合性モノマーを好ましく用いることができる。単官能重合性モノマーとしては、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸誘導体、N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニル化合物類、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物類等が好ましく用いられる。単官能重合性モノマーとしては、露光前の揮発を抑制するため、常圧下で100℃以上の沸点を持つ化合物も好ましい。 In the composition of the present invention, a monofunctional polymerizable monomer can be preferably used from the viewpoint of warpage suppression by controlling the elastic modulus of the cured film. Monofunctional polymerizable monomers include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, carbitol (meth) acrylate, cyclohexyl (meth) ) Acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc. Allylation of acrylic acid derivatives, N-vinyl compounds such as N-vinylpyrrolidone, N-vinylcaprolactam, allyl glycidyl ether, diallyl phthalate, triallyl trimellitate, etc. Goods and the like are preferably used. As the monofunctional polymerizable monomer, a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable in order to suppress volatilization before exposure.
<<他の重合性化合物>>
 本発明の組成物は、上述したポリイミド前駆体および重合性モノマー以外の他の重合性化合物をさらに含むことができる。他の重合性化合物としては、ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物;エポキシ化合物;オキセタン化合物;ベンゾオキサジン化合物が挙げられる。
<< Other polymerizable compounds >>
The composition of this invention can further contain other polymerizable compounds other than the polyimide precursor and polymerizable monomer mentioned above. Other polymerizable compounds include compounds having a hydroxymethyl group, alkoxymethyl group or acyloxymethyl group; epoxy compounds; oxetane compounds; benzoxazine compounds.
(ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物)
 ヒドロキシメチル基、アルコキシメチル基またはアシルオキシメチル基を有する化合物としては、下記式(AM1)で示される化合物が好ましい。
(Compound having a hydroxymethyl group, an alkoxymethyl group or an acyloxymethyl group)
As the compound having a hydroxymethyl group, an alkoxymethyl group or an acyloxymethyl group, a compound represented by the following formula (AM1) is preferable.
Figure JPOXMLDOC01-appb-C000027
(式中、tは、1~20の整数を示し、Rは炭素数1~200のt価の有機基を示し、Rは、-ORまたは、-OCO-Rで示される基を示し、Rは、水素原子または炭素数1~10の有機基を示し、Rは、炭素数1~10の有機基を示す。)
Figure JPOXMLDOC01-appb-C000027
(Wherein t represents an integer of 1 to 20, R 4 represents a t-valent organic group having 1 to 200 carbon atoms, and R 5 represents a group represented by —OR 6 or —OCO—R 7. R 6 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms, and R 7 represents an organic group having 1 to 10 carbon atoms.)
 ポリイミド前駆体100質量部に対して、式(AM1)で示される化合物の含有量は、5~40質量部であることが好ましい。さらに好ましくは、10~35質量部である。また、他の重合性化合物の全量中に、下記式(AM4)で表される化合物を10~90質量%含有し、下記式(AM5)で表される化合物を10~90質量%含有することも好ましい。 The content of the compound represented by the formula (AM1) is preferably 5 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor. More preferably, it is 10 to 35 parts by mass. Further, the compound represented by the following formula (AM4) is contained in the total amount of other polymerizable compounds in an amount of 10 to 90% by mass, and the compound represented by the following formula (AM5) is contained in an amount of 10 to 90% by mass. Is also preferable.
Figure JPOXMLDOC01-appb-C000028
(式中、Rは炭素数1~200の2価の有機基を示し、Rは、-ORまたは、-OCO-Rで示される基を示し、Rは、水素原子または炭素数1~10の有機基を示し、Rは、炭素数1~10の有機基を示す。)
Figure JPOXMLDOC01-appb-C000028
(Wherein R 4 represents a divalent organic group having 1 to 200 carbon atoms, R 5 represents a group represented by —OR 6 or —OCO—R 7 , and R 6 represents a hydrogen atom or a carbon atom. An organic group having 1 to 10 carbon atoms, and R 7 represents an organic group having 1 to 10 carbon atoms.
Figure JPOXMLDOC01-appb-C000029
(式中uは3~8の整数を示し、Rは炭素数1~200のu価の有機基を示し、Rは、-ORまたは、-OCO-Rで示される基を示し、Rは、水素原子または炭素数1~10の有機基を示し、Rは、炭素数1~10の有機基を示す。)
Figure JPOXMLDOC01-appb-C000029
(Wherein u represents an integer of 3 to 8, R 4 represents a u-valent organic group having 1 to 200 carbon atoms, and R 5 represents a group represented by —OR 6 or —OCO—R 7. R 6 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms, and R 7 represents an organic group having 1 to 10 carbon atoms.)
 上述のヒドロキシメチル基等を有する化合物を用いることで、凹凸のある基板上に本発明の組成物を適用した際に、クラックの発生をより効果的に抑制できる。また、パターン加工性に優れ、5%質量減少温度が350℃以上、より好ましくは380℃以上となる高い耐熱性を有する硬化膜を形成することができる。式(AM4)で示される化合物の具体例としては、46DMOC、46DMOEP(以上、商品名、旭有機材工業(株)製)、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、dimethylolBisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC(以上、商品名、本州化学工業(株)製)、NIKALAC MX-290(商品名、(株)三和ケミカル製)、2,6-dimethoxymethyl-4-t-buthylphenol、2,6-dimethoxymethyl-p-cresol、2,6-diacethoxymethyl-p-cresolなどが挙げられる。 By using the above-mentioned compound having a hydroxymethyl group or the like, the occurrence of cracks can be more effectively suppressed when the composition of the present invention is applied to an uneven substrate. Moreover, it is excellent in pattern workability and can form the cured film which has high heat resistance from which 5% mass reduction | decrease temperature becomes 350 degreeC or more, More preferably, it is 380 degreeC or more. Specific examples of the compound represented by the formula (AM4) include 46DMOC, 46DMOEP (trade name, manufactured by Asahi Organic Materials Co., Ltd.), DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML. -PC, DML-PTBP, DML-34X, DML-EP, DML-POP, dimethylolBisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC (above, trade name, manufactured by Honshu Chemical Industry Co., Ltd.), NIKACALAC MX-290 (trade name, manufactured by Sanwa Chemical Co., Ltd.), 2,6-dimethylmethyl-4-t-butylphenol, 2,6-dimethylmethyl-p-cresol, 2,6-diaxymethyl-p-cresol, etc. It is done.
 また、式(AM5)で示される化合物の具体例としては、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、TM-BIP-A(商品名、旭有機材工業(株)製)、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MW-100LM(以上、商品名、(株)三和ケミカル製)が挙げられる。 Specific examples of the compound represented by the formula (AM5) include TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), TM-BIP-A (trade name, manufactured by Asahi Organic Materials Co., Ltd.), NIKALAC MX-280, NIKALAC MX-270, NIKALAC MW-100LM (trade name, manufactured by Sanwa Chemical Co., Ltd.).
(エポキシ化合物(エポキシ基を有する化合物))
 エポキシ化合物としては、一分子中にエポキシ基を2以上有する化合物であることが好ましい。エポキシ基は、200℃以下で架橋反応し、かつ、架橋に由来する脱水反応が起こらないため膜収縮が起きにくい。このため、エポキシ化合物を含有することは、組成物の低温硬化および反りの抑制に効果的である。
(Epoxy compound (compound having an epoxy group))
The epoxy compound is preferably a compound having two or more epoxy groups in one molecule. The epoxy group undergoes a cross-linking reaction at 200 ° C. or less and does not cause a dehydration reaction derived from the cross-linking, so that film shrinkage hardly occurs. For this reason, containing an epoxy compound is effective for low-temperature curing and warping of the composition.
 エポキシ化合物は、ポリエチレンオキサイド基を含有することが好ましい。これにより、より弾性率が低下し、また反りを抑制することができる。また膜の柔軟性を高くして、伸度等にも優れた硬化膜を得ることができる。ポリエチレンオキサイド基は、エチレンオキサイドの繰り返し単位数が2以上のものを意味し、繰り返し単位数が2~15であることが好ましい。 The epoxy compound preferably contains a polyethylene oxide group. Thereby, an elasticity modulus falls more and also curvature can be suppressed. Moreover, the film | membrane flexibility can be made high and the cured film excellent in elongation etc. can be obtained. The polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2 to 15.
 エポキシ化合物の例としては、ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;プロピレングリコールジグリシジルエーテル等のアルキレングリコール型エポキシ樹脂;ポリプロピレングリコールジグリシジルエーテル等のポリアルキレングリコール型エポキシ樹脂;ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、これらに限定されない。具体的には、エピクロン(登録商標)850-S、エピクロン(登録商標)HP-4032、エピクロン(登録商標)HP-7200、エピクロン(登録商標)HP-820、エピクロン(登録商標)HP-4700、エピクロン(登録商標)EXA-4710、エピクロン(登録商標)HP-4770、エピクロン(登録商標)EXA-859CRP、エピクロン(登録商標)EXA-1514、エピクロン(登録商標)EXA-4880、エピクロン(登録商標)EXA-4850-150、エピクロンEXA-4850-1000、エピクロン(登録商標)EXA-4816、エピクロン(登録商標)EXA-4822(以上商品名、大日本インキ化学工業(株)製)、リカレジン(登録商標)BEO-60E(商品名、新日本理化(株))、EP-4003S、EP-4000S(以上商品名、ADEKA社製)などが挙げられる。この中でも、ポリエチレンオキサイド基を含有するエポキシ樹脂が、反りの抑制および耐熱性に優れる点で好ましい。例えば、エピクロン(登録商標)EXA-4880、エピクロン(登録商標)EXA-4822、リカレジン(登録商標)BEO-60Eは、ポリエチレンオキサイド基を含有するので好ましい。 Examples of the epoxy compound include bisphenol A type epoxy resin; bisphenol F type epoxy resin; alkylene glycol type epoxy resin such as propylene glycol diglycidyl ether; polyalkylene glycol type epoxy resin such as polypropylene glycol diglycidyl ether; polymethyl (glycidyl Examples include, but are not limited to, epoxy group-containing silicones such as (roxypropyl) siloxane. Specifically, Epicron (registered trademark) 850-S, Epicron (registered trademark) HP-4032, Epicron (registered trademark) HP-7200, Epicron (registered trademark) HP-820, Epicron (registered trademark) HP-4700, Epicron (registered trademark) EXA-4710, Epicron (registered trademark) HP-4770, Epicron (registered trademark) EXA-859CRP, Epicron (registered trademark) EXA-1514, Epicron (registered trademark) EXA-4880, Epicron (registered trademark) EXA-4850-150, Epicron EXA-4850-1000, Epicron (registered trademark) EXA-4816, Epicron (registered trademark) EXA-4822 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Rica Resin (registered trademark) ) BEO-60E (trade name, Shin Nippon Rika ( )), EP-4003S, EP-4000S (trade name, manufactured by ADEKA Corporation), and the like. Among these, an epoxy resin containing a polyethylene oxide group is preferable in terms of suppressing warpage and excellent heat resistance. For example, Epicron (registered trademark) EXA-4880, Epicron (registered trademark) EXA-4822, and Licaredin (registered trademark) BEO-60E are preferable because they contain a polyethylene oxide group.
 エポキシ化合物の含有量は、ポリイミド前駆体100質量部に対し、5~50質量部が好ましく、10~50質量部がより好ましく、10~40質量部がさらに好ましい。エポキシ化合物の含有量が5質量部以上であれば、得られる硬化膜の反りをより抑制でき、50質量部以下であれば、キュア時のリフローを原因とするパターン埋まりをより抑制できる。 The content of the epoxy compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor. If the content of the epoxy compound is 5 parts by mass or more, warpage of the obtained cured film can be further suppressed, and if it is 50 parts by mass or less, pattern filling caused by reflow during curing can be further suppressed.
(オキセタン化合物(オキセタニル基を有する化合物))
 オキセタン化合物としては、一分子中にオキセタン環を2つ以上有する化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル-3-(2-エチルヘキシルメチル)オキセタン、1,4-ベンゼンジカルボン酸-ビス[(3-エチル-3-オキセタニル)メチル]エステル等を挙げることができる。具体的な例としては、東亞合成株式会社製のアロンオキセタンシリーズ(例えば、OXT-121、OXT-221、OXT-191、OXT-223)が好適に使用することができ、これらは単独で、あるいは2種以上混合してもよい。
(Oxetane compound (compound having oxetanyl group))
Examples of the oxetane compound include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, Examples include 3-ethyl-3- (2-ethylhexylmethyl) oxetane and 1,4-benzenedicarboxylic acid-bis [(3-ethyl-3-oxetanyl) methyl] ester. As specific examples, Aron Oxetane series (for example, OXT-121, OXT-221, OXT-191, OXT-223) manufactured by Toagosei Co., Ltd. can be preferably used. Two or more kinds may be mixed.
 オキセタン化合物の含有量は、ポリイミド前駆体100質量部に対し、5~50質量部が好ましく、10~50質量部がより好ましく、10~40質量部がさらに好ましい。 The content of the oxetane compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor.
(ベンゾオキサジン化合物(ベンゾオキサゾリル基を有する化合物))
 ベンゾオキサジン化合物は、開環付加反応に由来する架橋反応のため、キュア時に脱ガスが発生せず、さらに熱収縮を小さくして反りの発生が抑えられることから好ましい。
(Benzoxazine compound (compound having a benzoxazolyl group))
A benzoxazine compound is preferable because it is a cross-linking reaction derived from a ring-opening addition reaction, so that degassing does not occur during curing, and thermal contraction is further reduced to suppress warpage.
 ベンゾオキサジン化合物の好ましい例としては、B-a型ベンゾオキサジン、B-m型ベンゾオキサジン(以上、商品名、四国化成工業製)、ポリヒドロキシスチレン樹脂のベンゾオキサジン付加物、フェノールノボラック型ジヒドロベンゾオキサジン化合物が挙げられる。これらは単独で、あるいは2種以上混合してもよい。 Preferred examples of the benzoxazine compound include Ba type benzoxazine, Bm type benzoxazine (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), benzoxazine adduct of polyhydroxystyrene resin, phenol novolac type dihydrobenzoxazine. Compounds. These may be used alone or in combination of two or more.
 ベンゾオキサジン化合物の含有量は、ポリイミド前駆体100質量部に対し、5~50質量部が好ましく、10~50質量部がより好ましく、10~40質量部がさらに好ましい。 The content of the benzoxazine compound is preferably 5 to 50 parts by mass, more preferably 10 to 50 parts by mass, and still more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor.
<<金属変色防止剤>>
 本発明の組成物は、さらに金属変色防止剤を含むことが好ましい。本発明の組成物が金属変色防止剤を含むことにより、金属層(金属配線)由来の金属イオンがネガ型感光性樹脂組成物層内へ移動することを効果的に抑制できる。
 金属変色防止剤としては、特に制限はないが、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環および6H-ピラン環、トリアジン環)を有する化合物、チオ尿素類およびメルカプト基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。特に、トリアゾール、ベンゾトリアゾール等のトリアゾール系化合物、テトラゾール、ベンゾテトラゾール等のテトラゾール系化合物が好ましく使用できる。
<< Metal discoloration inhibitor >>
The composition of the present invention preferably further contains a metal discoloration inhibitor. When the composition of this invention contains a metal discoloration prevention agent, it can suppress effectively that the metal ion derived from a metal layer (metal wiring) moves into a negative photosensitive resin composition layer.
The metal discoloration inhibitor is not particularly limited, but a heterocyclic ring (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), compounds having thioureas and mercapto groups, hindered phenols Compounds, salicylic acid derivative compounds, and hydrazide derivative compounds. In particular, triazole compounds such as triazole and benzotriazole, and tetrazole compounds such as tetrazole and benzotetrazole can be preferably used.
 また、ハロゲンイオンなどの陰イオンを捕捉するイオントラップ剤を使用することもできる。 Also, an ion trapping agent that traps anions such as halogen ions can be used.
 その他の金属変色防止剤としては、特開2013-15701号公報の段落0094に記載の防錆剤、特開2009-283711号公報の段落0073~0076に記載の化合物、特開2011-59656号公報の段落0052に記載の化合物、特開2012-194520号公報の段落0114、0116および0118に記載の化合物などを使用することができる。 Examples of other metal discoloration inhibitors include rust preventives described in paragraph 0094 of JP2013-15701A, compounds described in paragraphs 0073 to 0076 of JP2009-283711A, and JP2011-59656A. And the compounds described in paragraphs 0114, 0116 and 0118 of JP 2012-194520 A, and the like.
 金属変色防止剤の具体例としては、例えば下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000030
Specific examples of the metal discoloration inhibitor include the following compounds.
Figure JPOXMLDOC01-appb-C000030
 本発明の組成物が金属変色防止剤を有する場合、金属変色防止剤の含有量は、本発明の組成物の全固形分に対して、0.01~5.0質量%が好ましく、0.05~2.0質量%がより好ましく、0.1~1.0質量%がさらに好ましい。金属変色防止剤は1種のみでもよいし、2種以上であってもよい。金属変色防止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 When the composition of the present invention has a metal discoloration inhibitor, the content of the metal discoloration inhibitor is preferably 0.01 to 5.0% by mass relative to the total solid content of the composition of the present invention. 05 to 2.0% by mass is more preferable, and 0.1 to 1.0% by mass is more preferable. Only one type of metal discoloration inhibitor may be used, or two or more types may be used. When two or more metal discoloration inhibitors are used, the total is preferably within the above range.
<<重合禁止剤>>
 本発明の組成物は、重合禁止剤を含むことが好ましい。
 重合禁止剤としては、例えば、ヒドロキノン、パラメトキシフェノール、ジ-tert-ブチル-パラクレゾール、ピロガロール、パラ-tert-ブチルカテコール、パラベンゾキノン、ジフェニル-パラベンゾキノン、4,4′-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2′-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソ-N-フェニルヒドロキシアミンアルミニウム塩、フェノチアジン、N-ニトロソジフェニルアミン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-4-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-(1-ナフチル)ヒドロキシアミンアンモニウム塩、ビス(4-ヒドロキシ-3,5-tert-ブチル)フェニルメタンなどが好適に用いられる。また、特開2015-127817号公報の段落0060に記載の重合禁止剤、および、国際公開WO2015/125469号の段落0031~0046に記載の化合物を用いることもできる。
 また、下記化合物用いることができる(Meはメチル基である)。
Figure JPOXMLDOC01-appb-C000031
 本発明の組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、本発明の組成物の全固形分に対して、0.01~5質量%が好ましい。
 重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<< Polymerization inhibitor >>
The composition of the present invention preferably contains a polymerization inhibitor.
Examples of the polymerization inhibitor include hydroquinone, paramethoxyphenol, di-tert-butyl-paracresol, pyrogallol, para-tert-butylcatechol, parabenzoquinone, diphenyl-parabenzoquinone, 4,4′-thiobis (3-methyl). -6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), N-nitroso-N-phenylhydroxyamine aluminum salt, phenothiazine, N-nitrosodiphenylamine, N-phenylnaphthylamine, Ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol etherdiaminetetraacetic acid, 2,6-di-tert-butyl-4-methylphenol, 5-nitroso-8-hydroxyquinoline, 1-nitroso 2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl-N-sulfopropylamino) phenol, N-nitroso-N- (1-naphthyl) hydroxyamine ammonium salt, bis ( 4-hydroxy-3,5-tert-butyl) phenylmethane and the like are preferably used. In addition, a polymerization inhibitor described in paragraph 0060 of JP-A-2015-127817 and compounds described in paragraphs 0031 to 0046 of international publication WO2015 / 125469 can also be used.
Further, the following compounds can be used (Me is a methyl group).
Figure JPOXMLDOC01-appb-C000031
When the composition of the present invention has a polymerization inhibitor, the content of the polymerization inhibitor is preferably 0.01 to 5% by mass relative to the total solid content of the composition of the present invention.
Only one polymerization inhibitor may be used, or two or more polymerization inhibitors may be used. When two or more polymerization inhibitors are used, the total is preferably within the above range.
<<熱塩基発生剤>>
 本発明の組成物は、熱塩基発生剤を含むことが好ましい。
 熱塩基発生剤としては、その種類等は特に定めるものではないが、40℃以上に加熱すると塩基を発生する酸性化合物、および、pKa1が0~4のアニオンとアンモニウムカチオンとを有するアンモニウム塩から選ばれる少なくとも1種を含む熱塩基発生剤を含むことが好ましい。ここで、pKa1とは、酸の第一のプロトンの解離定数(Ka)の逆数の対数(-Log10Ka)を表し、詳細は後述する。
<< thermal base generator >>
The composition of the present invention preferably contains a thermal base generator.
The type of the thermal base generator is not particularly defined, but is selected from an acidic compound that generates a base when heated to 40 ° C. or higher, and an ammonium salt having an anion having an pKa1 of 0 to 4 and an ammonium cation. It is preferable to include a thermal base generator containing at least one kind. Here, pKa1 represents the logarithm (−Log 10 Ka) of the reciprocal of the dissociation constant (Ka) of the first proton of the acid, and will be described in detail later.
 上記酸性化合物(A1)および上記アンモニウム塩(A2)は、加熱すると塩基を発生するので、これらの化合物から発生した塩基により、ポリイミド前駆体などの環化反応を促進でき、ポリイミド前駆体などの環化を低温で行うことができる。また、これらの化合物は、塩基により環化して硬化するポリイミド前駆体などと共存させても、加熱しなければポリイミド前駆体などの環化が殆ど進行しないので、保存安定性に優れた組成物を調製することができる。
 なお、本明細書において、酸性化合物とは、化合物を容器に1g採取し、イオン交換水とテトラヒドロフランとの混合液(質量比は水/テトラヒドロフラン=1/4)を50mL加えて、室温で1時間撹拌して得られた溶液を、pH(power of hydrogen)メーターを用いて、20℃にて測定した値が7未満である化合物を意味する。
Since the acidic compound (A1) and the ammonium salt (A2) generate a base when heated, the base generated from these compounds can promote the cyclization reaction of the polyimide precursor and the like. Can be carried out at low temperatures. In addition, even if these compounds coexist with a polyimide precursor that is cured by cyclization with a base, since the cyclization of the polyimide precursor hardly proceeds unless heated, a composition having excellent storage stability can be obtained. Can be prepared.
In the present specification, an acidic compound means that 1 g of a compound is collected in a container, and 50 mL of a mixed solution of ion-exchanged water and tetrahydrofuran (mass ratio is water / tetrahydrofuran = 1/4) is added to the mixture at room temperature for 1 hour. The solution obtained by stirring means a compound having a value measured at 20 ° C. of less than 7 using a pH (power of hydrogen) meter.
 本実施形態において、酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度は、40℃以上が好ましく、120~200℃がより好ましい。塩基発生温度の上限は、190℃以下が好ましく、180℃以下がより好ましく、165℃以下がさらに好ましい。塩基発生温度の下限は、130℃以上が好ましく、135℃以上がより好ましい。
 酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が120℃以上であれば、保存中に塩基が発生しにくいので、安定性に優れた組成物を調製することができる。酸性化合物(A1)およびアンモニウム塩(A2)の塩基発生温度が200℃以下であれば、ポリイミド前駆体などの環化温度を低くできる。塩基発生温度は、例えば、示差走査熱量測定を用い、化合物を耐圧カプセル中5℃/分で250℃まで加熱し、最も温度が低い発熱ピークのピーク温度を読み取り、ピーク温度を塩基発生温度として測定することができる。
In this embodiment, the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is preferably 40 ° C. or higher, more preferably 120 to 200 ° C. The upper limit of the base generation temperature is preferably 190 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 165 ° C. or lower. The lower limit of the base generation temperature is preferably 130 ° C or higher, and more preferably 135 ° C or higher.
If the base generation temperature of the acidic compound (A1) and the ammonium salt (A2) is 120 ° C. or higher, a base is unlikely to be generated during storage, so that a composition having excellent stability can be prepared. If the base generation temperature of the acidic compound (A1) and ammonium salt (A2) is 200 ° C. or lower, the cyclization temperature of the polyimide precursor or the like can be lowered. The base generation temperature is measured, for example, by using differential scanning calorimetry, heating the compound to 250 ° C. at 5 ° C./min in a pressure capsule, reading the peak temperature of the lowest exothermic peak, and measuring the peak temperature as the base generation temperature. can do.
 本実施形態において、熱塩基発生剤により発生する塩基は、2級アミンまたは3級アミンが好ましく、3級アミンがより好ましい。3級アミンは、塩基性が高いので、ポリイミド前駆体およびポリベンゾオキサゾール前駆体などの環化温度をより低くできる。また、熱塩基発生剤により発生する塩基の沸点は、80℃以上であることが好ましく、100℃以上であることがより好ましく、140℃以上であることがさらに好ましい。また、発生する塩基の分子量は、80~2000が好ましい。下限は100以上がより好ましい。上限は500以下がより好ましい。なお、分子量の値は、構造式から求めた理論値である。 In this embodiment, the base generated by the thermal base generator is preferably a secondary amine or a tertiary amine, more preferably a tertiary amine. Since tertiary amine has high basicity, cyclization temperature of a polyimide precursor, a polybenzoxazole precursor, etc. can be made lower. The base generated by the thermal base generator preferably has a boiling point of 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 140 ° C. or higher. The molecular weight of the generated base is preferably 80 to 2000. The lower limit is more preferably 100 or more. The upper limit is more preferably 500 or less. The molecular weight value is a theoretical value obtained from the structural formula.
 本実施形態において、上記酸性化合物(A1)は、アンモニウム塩および後述する式(101)または(102)で表される化合物から選ばれる1種以上を含むことが好ましい。 In the present embodiment, the acidic compound (A1) preferably contains one or more selected from an ammonium salt and a compound represented by the formula (101) or (102) described later.
 本実施形態において、上記アンモニウム塩(A2)は、酸性化合物であることが好ましい。なお、上記アンモニウム塩(A2)は、40℃以上(好ましくは120~200℃)に加熱すると塩基を発生する酸性化合物を含む化合物であってもよいし、40℃以上(好ましくは120~200℃)に加熱すると塩基を発生する酸性化合物を除く化合物であってもよい。 In the present embodiment, the ammonium salt (A2) is preferably an acidic compound. The ammonium salt (A2) may be a compound containing an acidic compound that generates a base when heated to 40 ° C. or higher (preferably 120 to 200 ° C.), or 40 ° C. or higher (preferably 120 to 200 ° C.). ) May be a compound excluding an acidic compound that generates a base when heated.
 本実施形態において、アンモニウム塩とは、下記式(101)または式(102)で表されるアンモニウムカチオンと、アニオンとの塩を意味する。アニオンは、アンモニウムカチオンのいずれかの一部と共有結合を介して結合していてもよく、アンモニウムカチオンの分子外に有していてもよいが、アンモニウムカチオンの分子外に有していることが好ましい。なお、アニオンが、アンモニウムカチオンの分子外に有するとは、アンモニウムカチオンとアニオンが共有結合を介して結合していない場合をいう。以下、カチオン部の分子外のアニオンを対アニオンともいう。
式(101)    式(102)
Figure JPOXMLDOC01-appb-C000032
 式(101)および式(102)中、R~Rは、それぞれ独立に、水素原子または炭化水素基を表し、Rは炭化水素基を表す。式(101)および式(102)におけるRとR、RとR、RとR、RとRはそれぞれ結合して環を形成してもよい。
In the present embodiment, the ammonium salt means a salt of an ammonium cation represented by the following formula (101) or formula (102) and an anion. The anion may be bonded to any part of the ammonium cation via a covalent bond, and may be outside the molecule of the ammonium cation, but may be outside the molecule of the ammonium cation. preferable. In addition, that an anion has outside the molecule | numerator of an ammonium cation means the case where an ammonium cation and an anion are not couple | bonded through a covalent bond. Hereinafter, the anion outside the molecule of the cation moiety is also referred to as a counter anion.
Formula (101) Formula (102)
Figure JPOXMLDOC01-appb-C000032
In formula (101) and formula (102), R 1 to R 6 each independently represents a hydrogen atom or a hydrocarbon group, and R 7 represents a hydrocarbon group. R 1 and R 2 , R 3 and R 4 , R 5 and R 6 , R 5 and R 7 in Formula (101) and Formula (102) may be bonded to form a ring.
 アンモニウムカチオンは、下記式(Y1-1)~(Y1-5)のいずれかで表されることが好ましい。
Figure JPOXMLDOC01-appb-C000033
The ammonium cation is preferably represented by any of the following formulas (Y1-1) to (Y1-5).
Figure JPOXMLDOC01-appb-C000033
 式(Y1-1)~(Y1-5)において、R101は、n価の有機基を表し、RおよびRは、式(101)または式(102)におけるものと同義である。
 式(Y1-1)~(Y1-4)において、Ar101およびAr102は、それぞれ独立に、アリール基を表し、nは、1以上の整数を表し、mは、0~5の整数を表す。
In formulas (Y1-1) to (Y1-5), R 101 represents an n-valent organic group, and R 1 and R 7 have the same meanings as in formula (101) or formula (102).
In formulas (Y1-1) to (Y1-4), Ar 101 and Ar 102 each independently represent an aryl group, n represents an integer of 1 or more, and m represents an integer of 0 to 5 .
 本実施形態において、アンモニウム塩は、pKa1が0~4のアニオンとアンモニウムカチオンとを有することが好ましい。アニオンのpKa1の上限は、3.5以下がより好ましく、3.2以下が一層好ましい。下限は、0.5以上が好ましく、1.0以上がより好ましい。アニオンのpKa1が上記範囲であれば、ポリイミド前駆体などを低温で環化でき、さらには、組成物の安定性を向上できる。pKa1が4以下であれば、熱塩基発生剤の安定性が良好で、加熱なしに塩基が発生することを抑制でき、組成物の安定性が良好である。pKa1が0以上であれば、発生した塩基が中和されにくく、ポリイミド前駆体などの環化効率が良好である。
 アニオンの種類は、カルボン酸アニオン、フェノールアニオン、リン酸アニオンおよび硫酸アニオンから選ばれる1種が好ましく、塩の安定性と熱分解性を両立させられるという理由からカルボン酸アニオンがより好ましい。すなわち、アンモニウム塩は、アンモニウムカチオンとカルボン酸アニオンとの塩がより好ましい。
 カルボン酸アニオンは、2個以上のカルボキシル基を持つ2価以上のカルボン酸のアニオンが好ましく、2価のカルボン酸のアニオンがより好ましい。この態様によれば、組成物の安定性、硬化性および現像性をより向上できる熱塩基発生剤とすることができる。特に、2価のカルボン酸のアニオンを用いることで、組成物の安定性、硬化性および現像性をさらに向上できる。
 本実施形態において、カルボン酸アニオンは、pKa1が4以下のカルボン酸のアニオンであることが好ましい。pKa1は、3.5以下がより好ましく、3.2以下が一層好ましい。この態様によれば、組成物の安定性をより向上できる。
 ここでpKa1とは、酸の第一のプロトンの解離定数の逆数の対数を表し、Determination of Organic Structures by Physical Methods(著者:Brown, H. C., McDaniel, D. H., Hafliger, O., Nachod, F. C.; 編纂:Braude, E. A., Nachod, F. C.; Academic Press, New York, 1955)や、Data for Biochemical Research(著者:Dawson, R.M.C.et al; Oxford, Clarendon Press, 1959)に記載の値を参照することができる。これらの文献に記載の無い化合物については、ACD/pKa(ACD/Labs製)のソフトを用いて構造式より算出した値を用いることとする。
In this embodiment, the ammonium salt preferably has an anion having an pKa1 of 0 to 4 and an ammonium cation. The upper limit of the anion pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less. The lower limit is preferably 0.5 or more, and more preferably 1.0 or more. If the pKa1 of the anion is in the above range, a polyimide precursor or the like can be cyclized at a low temperature, and the stability of the composition can be improved. If pKa1 is 4 or less, the stability of the thermal base generator is good, the generation of a base without heating can be suppressed, and the stability of the composition is good. If pKa1 is 0 or more, the generated base is hardly neutralized, and the cyclization efficiency of the polyimide precursor or the like is good.
The kind of anion is preferably one selected from a carboxylate anion, a phenol anion, a phosphate anion, and a sulfate anion, and a carboxylate anion is more preferable because both the stability of the salt and the thermal decomposability can be achieved. That is, the ammonium salt is more preferably a salt of an ammonium cation and a carboxylate anion.
The carboxylic acid anion is preferably a divalent or higher carboxylic acid anion having two or more carboxyl groups, and more preferably a divalent carboxylic acid anion. According to this aspect, it is possible to provide a thermal base generator that can further improve the stability, curability and developability of the composition. In particular, the stability, curability and developability of the composition can be further improved by using an anion of a divalent carboxylic acid.
In the present embodiment, the carboxylic acid anion is preferably a carboxylic acid anion having a pKa1 of 4 or less. pKa1 is more preferably 3.5 or less, and even more preferably 3.2 or less. According to this aspect, the stability of the composition can be further improved.
Here, pKa1 represents the logarithm of the reciprocal of the dissociation constant of the first proton of the acid, and the determination of Organic Structures by Physical Methods (author: Brown, HC, McDaniel, D.H., Hafliger Ed .: Braude, EA, Nachod, FC; Academic Press, New York, 1955), and Data for Biochemical Research (author: Dawson, R. M.). al; Oxford, Clarendon Press, 1959). For compounds not described in these documents, values calculated from the structural formula using software of ACD / pKa (manufactured by ACD / Labs) are used.
 カルボン酸アニオンは、下記式(X1)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000034
 式(X1)において、EWGは、電子求引性基を表す。
The carboxylate anion is preferably represented by the following formula (X1).
Figure JPOXMLDOC01-appb-C000034
In the formula (X1), EWG represents an electron withdrawing group.
 本実施形態において電子求引性基とは、ハメットの置換基定数σmが正の値を示すものを意味する。ここでσmは、都野雄甫総説、有機合成化学協会誌第23巻第8号(1965)p.631-642に詳しく説明されている。なお、本実施形態における電子求引性基は、上記文献に記載された置換基に限定されるものではない。
 σmが正の値を示す置換基の例としては例えば、CF基(σm=0.43)、CFCO基(σm=0.63)、HC≡C基(σm=0.21)、CH=CH基(σm=0.06)、Ac基(σm=0.38)、MeOCO基(σm=0.37)、MeCOCH=CH基(σm=0.21)、PhCO基(σm=0.34)、HNCOCH基(σm=0.06)などが挙げられる。なお、Meはメチル基を表し、Acはアセチル基を表し、Phはフェニル基を表す。
In the present embodiment, the electron-withdrawing group means a group in which Hammett's substituent constant σm exhibits a positive value. Here, σm is a review by Yusuke Tono, Journal of Synthetic Organic Chemistry, Vol. 23, No. 8 (1965) p. 631-642. In addition, the electron withdrawing group in this embodiment is not limited to the substituent described in the said literature.
Examples of substituents in which σm has a positive value include, for example, CF 3 group (σm = 0.43), CF 3 CO group (σm = 0.63), HC≡C group (σm = 0.21), CH 2 ═CH group (σm = 0.06), Ac group (σm = 0.38), MeOCO group (σm = 0.37), MeCOCH═CH group (σm = 0.21), PhCO group (σm = 0.34), H 2 NCOCH 2 group (σm = 0.06), and the like. Me represents a methyl group, Ac represents an acetyl group, and Ph represents a phenyl group.
 EWGは、下記式(EWG-1)~(EWG-6)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000035
 式(EWG-1)~(EWG-6)中、Rx1~Rx3は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基、ヒドロキシル基またはカルボキシル基を表し、Arは芳香族基を表す。
EWG is preferably a group represented by the following formulas (EWG-1) to (EWG-6).
Figure JPOXMLDOC01-appb-C000035
In the formulas (EWG-1) to (EWG-6), R x1 to R x3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxyl group or a carboxyl group, and Ar represents an aromatic group Represents.
 本実施形態において、カルボン酸アニオンは、下記式(XA)で表されることが好ましい。
式(XA)
Figure JPOXMLDOC01-appb-C000036
 式(XA)において、L10は、単結合、または、アルキレン基、アルケニレン基、芳香族基、-NR-およびこれらの組み合わせから選ばれる2価の連結基を表し、Rは、水素原子、アルキル基、アルケニル基またはアリール基を表す。
In the present embodiment, the carboxylate anion is preferably represented by the following formula (XA).
Formula (XA)
Figure JPOXMLDOC01-appb-C000036
In the formula (XA), L 10 represents a single bond or a divalent linking group selected from an alkylene group, an alkenylene group, an aromatic group, —NR X —, and a combination thereof, and R X represents a hydrogen atom Represents an alkyl group, an alkenyl group or an aryl group.
 カルボン酸アニオンの具体例としては、マレイン酸アニオン、フタル酸アニオン、N-フェニルイミノ二酢酸アニオンおよびシュウ酸アニオンが挙げられる。これらを好ましく用いることができる。 Specific examples of the carboxylate anion include a maleate anion, a phthalate anion, an N-phenyliminodiacetic acid anion, and an oxalate anion. These can be preferably used.
 熱塩基発生剤の具体例としては、以下の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Specific examples of the thermal base generator include the following compounds.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 本発明の組成物が熱塩基発生剤を含む場合、熱塩基発生剤の含有量は、本発明の組成物の全固形分に対し、0.1~50質量%が好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上がさらに好ましい。上限は、30質量%以下がより好ましく、20質量%以下がさらに好ましい。
 熱塩基発生剤は、1種または2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
When the composition of the present invention contains a thermal base generator, the content of the thermal base generator is preferably 0.1 to 50% by mass relative to the total solid content of the composition of the present invention. The lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more. The upper limit is more preferably 30% by mass or less, and further preferably 20% by mass or less.
1 type (s) or 2 or more types can be used for a thermal base generator. When using 2 or more types, it is preferable that a total amount is the said range.
<<金属接着性改良剤>>
 本発明の組成物は、電極や配線などに用いられる金属材料との接着性を向上させるための金属接着性改良剤を含んでいることが好ましい。金属接着性改良剤としては、シランカップリング剤などが挙げられる。
<< Metal adhesion improver >>
It is preferable that the composition of this invention contains the metal adhesive improvement agent for improving the adhesiveness with the metal material used for an electrode, wiring, etc. Examples of metal adhesion improvers include silane coupling agents.
 シランカップリング剤の例としては、特開2014-191002号公報の段落0062~0073に記載の化合物、国際公開WO2011/080992A1号の段落0063~0071に記載の化合物、特開2014-191252号公報の段落0060~0061に記載の化合物、特開2014-41264号公報の段落0045~0052に記載の化合物、国際公開WO2014/097594号の段落0055に記載の化合物が挙げられる。また、特開2011-128358号公報の段落0050~0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。また、シランカップリング剤は、下記化合物を用いることも好ましい。以下の式中、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000040
Examples of the silane coupling agent include compounds described in paragraphs 0062 to 0073 of JP-A No. 2014-191002, compounds described in paragraphs 0063 to 0071 of international publication WO 2011 / 080992A1, and JP-A No. 2014-191252. Examples thereof include compounds described in paragraphs 0060 to 0061, compounds described in paragraphs 0045 to 0052 of JP 2014-41264 A, and compounds described in paragraph 0055 of international publication WO 2014/097594. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP2011-128358A. Moreover, it is also preferable to use the following compound for a silane coupling agent. In the following formula, Et represents an ethyl group.
Figure JPOXMLDOC01-appb-C000040
 また、金属接着性改良剤は、特開2014-186186号公報の段落0046~0049に記載の化合物、特開2013-072935号公報の段落0032~0043に記載のスルフィド系化合物を用いることもできる。 As the metal adhesion improver, compounds described in paragraphs 0046 to 0049 of JP-A-2014-186186 and sulfide-based compounds described in paragraphs 0032 to 0043 of JP-A-2013-072935 can also be used.
 金属接着性改良剤の含有量はポリイミド前駆体100質量部に対して好ましくは0.1~30質量部であり、さらに好ましくは0.5~15質量部の範囲である。0.1質量部以上とすることで硬化工程後の硬化膜と金属層との接着性が良好となり、30質量部以下とすることで硬化工程後の硬化膜の耐熱性、機械特性が良好となる。金属接着性改良剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。 The content of the metal adhesion improving agent is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the polyimide precursor. Adhesiveness between the cured film and the metal layer after the curing process becomes good by setting it to 0.1 parts by mass or more, and heat resistance and mechanical properties of the cured film after the curing process are good by setting it to 30 parts by mass or less. Become. Only one type of metal adhesion improver may be used, or two or more types may be used. When using 2 or more types, it is preferable that the sum total is the said range.
<<その他の添加剤>>
 本発明の組成物は、本発明の効果を損なわない範囲で、必要に応じて、各種の添加物、例えば、光塩基発生剤、熱重合開始剤、熱酸発生剤、増感色素、連鎖移動剤、界面活性剤、高級脂肪酸誘導体、無機粒子、硬化剤、硬化触媒、充填剤、酸化防止剤、紫外線吸収剤、凝集防止剤等を配合することができる。これらの添加剤を配合する場合、その合計配合量は組成物の固形分の3質量%以下とすることが好ましい。
<< Other additives >>
The composition of the present invention is various additives, for example, a photobase generator, a thermal polymerization initiator, a thermal acid generator, a sensitizing dye, a chain transfer, as necessary, as long as the effects of the present invention are not impaired. An agent, a surfactant, a higher fatty acid derivative, inorganic particles, a curing agent, a curing catalyst, a filler, an antioxidant, an ultraviolet absorber, an aggregation inhibitor, and the like can be blended. When these additives are blended, the total blending amount is preferably 3% by mass or less of the solid content of the composition.
(光塩基発生剤)
 本発明の組成物は、光塩基発生剤を含んでいてもよい。光塩基発生剤とは、露光により塩基を発生する化合物であり、常温常圧の通常の条件下では活性を示さないが、外部刺激として電磁波の照射と加熱が行なわれると、塩基(塩基性物質)を発生する化合物であれば特に限定されない。露光により発生した塩基はポリイミド前駆体などを加熱により硬化させる際の触媒として働くため、ネガ型において好適に用いることができる。
(Photobase generator)
The composition of the present invention may contain a photobase generator. A photobase generator is a compound that generates a base upon exposure and does not exhibit activity under normal conditions of room temperature and normal pressure. However, when an electromagnetic wave is irradiated and heated as an external stimulus, a base (basic substance) is generated. If it is a compound which generate | occur | produces), it will not specifically limit. Since the base generated by exposure works as a catalyst for curing the polyimide precursor or the like by heating, it can be suitably used in a negative type.
 光塩基発生剤の含有量としては、所望の樹脂パターンを形成できる量であれば特に限定されるものではなく、一般的な含有量とすることができる。光塩基発生剤が、ポリイミド前駆体100質量部に対して、0.01質量部以上30質量部未満の範囲内であることが好ましく、0.05質量部~25質量部の範囲内であることがより好ましく、0.1質量部~20質量部の範囲内であることがさらに好ましい。
 光塩基発生剤は1種のみでもよいし、2種以上であってもよい。光塩基発生剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
The content of the photobase generator is not particularly limited as long as a desired resin pattern can be formed, and can be a general content. The photobase generator is preferably in the range of 0.01 parts by weight to less than 30 parts by weight with respect to 100 parts by weight of the polyimide precursor, and is in the range of 0.05 parts by weight to 25 parts by weight. Is more preferable, and is more preferably in the range of 0.1 to 20 parts by mass.
Only one photobase generator may be used, or two or more photobase generators may be used. When there are two or more photobase generators, the total is preferably in the above range.
 本発明においては、光塩基発生剤として公知の化合物を用いることができる。例えば、M.Shirai, and M.Tsunooka, Prog.Polym.Sci.,21,1(1996);角岡正弘,高分子加工,46,2(1997);C.Kutal,Coord.Chem.Rev.,211,353(2001);Y.Kaneko,A.Sarker, and D.Neckers,Chem.Mater.,11,170(1999);H.Tachi,M.Shirai, and M.Tsunooka,J.Photopolym.Sci.Technol.,13,153(2000);M.Winkle, and K.Graziano,J.Photopolym.Sci.Technol.,3,419(1990);M.Tsunooka,H.Tachi, and S.Yoshitaka,J.Photopolym.Sci.Technol.,9,13(1996);K.Suyama,H.Araki,M.Shirai,J.Photopolym.Sci.Technol.,19,81(2006)に記載されているように、遷移金属化合物錯体や、アンモニウム塩などの構造を有するものや、アミジン部分がカルボン酸と塩を形成することで潜在化されたもののように、塩基成分が塩を形成することにより中和されたイオン性の化合物や、カルバメート誘導体、オキシムエステル誘導体、アシル化合物などのウレタン結合やオキシム結合などにより塩基成分が潜在化された非イオン性の化合物を挙げることができる。 In the present invention, a known compound can be used as a photobase generator. For example, M.M. Shirai, and M.M. Tsunooka, Prog. Polym. Sci. , 21, 1 (1996); Masahiro Kadooka, polymer processing, 46, 2 (1997); Kutal, Coord. Chem. Rev. , 211, 353 (2001); Kaneko, A .; Sarker, and D. Neckers, Chem. Mater. 11, 170 (1999); Tachi, M .; Shirai, and M.M. Tsunooka, J. et al. Photopolym. Sci. Technol. , 13, 153 (2000); Winkle, and K.K. Graziano, J. et al. Photopolym. Sci. Technol. 3,419 (1990); Tsunooka, H .; Tachi, and S. Yoshitaka, J. et al. Photopolym. Sci. Technol. , 9, 13 (1996); Suyama, H .; Araki, M .; Shirai, J. et al. Photopolym. Sci. Technol. , 19, 81 (2006), such as those having a structure such as a transition metal compound complex, an ammonium salt, or the like that is latentized by forming a salt with a carboxylic acid in the amidine moiety. An ionic compound neutralized by forming a salt with a base component, or a nonionic compound in which the base component is made latent by a urethane bond or an oxime bond such as a carbamate derivative, an oxime ester derivative, or an acyl compound Can be mentioned.
 また、光塩基発生剤は、カルバメート誘導体、アミド誘導体、イミド誘導体、αコバルト錯体類、イミダゾール誘導体、桂皮酸アミド誘導体、オキシム誘導体等を用いることもできる。また、特開2009-80452号公報および国際公開WO2009/123122号に記載された桂皮酸アミド構造を有する光塩基発生剤、特開2006-189591号公報および特開2008-247747号公報に記載されたカルバメート構造を有する光塩基発生剤、特開2007-249013号公報および特開2008-003581号公報に記載されたオキシム構造、カルバモイルオキシム構造を有する光塩基発生剤を用いることもできる。
 その他、光塩基発生剤としては、特開2012-93746号公報の段落0185~0188、0199~0200および0202に記載の化合物、特開2013-194205号公報の段落0022~0069に記載の化合物、特開2013-204019号公報の段落0026~0074に記載の化合物、ならびに国際公開WO2010/064631号の段落0052に記載の化合物が例として挙げられる。
As the photobase generator, carbamate derivatives, amide derivatives, imide derivatives, α-cobalt complexes, imidazole derivatives, cinnamic acid amide derivatives, oxime derivatives, and the like can also be used. Further, the photobase generator having a cinnamic acid amide structure described in Japanese Patent Application Laid-Open No. 2009-80452 and International Publication No. WO2009 / 123122, and Japanese Patent Application Laid-Open No. 2006-189591 and Japanese Patent Application Laid-Open No. 2008-247747. A photobase generator having a carbamate structure, or a photobase generator having an oxime structure or a carbamoyloxime structure described in JP2007-249013A and JP2008-003581A can also be used.
Other photobase generators include compounds described in paragraphs 0185 to 0188, 0199 to 0200 and 0202 of JP2012-93746A, compounds described in paragraphs 0022 to 0069 of JP2013-194205, Examples thereof include the compounds described in paragraphs 0026 to 0074 of JP2013-204019A and the compound described in paragraph 0052 of WO2010 / 064631.
(熱重合開始剤)
 本発明の組成物は、熱重合開始剤(好ましくは熱ラジカル重合開始剤)を含んでいてもよい。熱ラジカル重合開始剤としては、公知の熱ラジカル重合開始剤を用いることができる。
 熱ラジカル重合開始剤は、熱のエネルギーによってラジカルを発生し、重合性を有する化合物の重合反応を開始または促進させる化合物である。熱ラジカル重合開始剤を添加することによって、ポリイミド前駆体の環化と共に、ポリイミド前駆体の重合反応を進行させることもできるので、より高度な耐熱化が達成できることとなる。
 熱ラジカル重合開始剤として、具体的には、特開2008-63554号公報の段落0074~0118に記載されている化合物が挙げられる。
(Thermal polymerization initiator)
The composition of the present invention may contain a thermal polymerization initiator (preferably a thermal radical polymerization initiator). As the thermal radical polymerization initiator, a known thermal radical polymerization initiator can be used.
The thermal radical polymerization initiator is a compound that generates radicals by heat energy and initiates or accelerates a polymerization reaction of a polymerizable compound. By adding the thermal radical polymerization initiator, the polymerization reaction of the polyimide precursor can be advanced together with the cyclization of the polyimide precursor, so that higher heat resistance can be achieved.
Specific examples of the thermal radical polymerization initiator include compounds described in paragraphs 0074 to 0118 of JP-A-2008-63554.
 本発明の組成物が熱ラジカル重合開始剤を有する場合、熱ラジカル重合開始剤の含有量は、本発明の組成物の全固形分に対し0.1~50質量%が好ましく、0.1~30質量%がより好ましく、0.1~20質量%が特に好ましい。また、ポリイミド前駆体100質量部に対し、熱ラジカル重合開始剤を0.1~50質量部含むことが好ましく、0.5~30質量部含むことがより好ましい。この態様によれば、より耐熱性に優れた硬化膜を形成しやすい。熱ラジカル重合開始剤は1種のみでもよいし、2種以上であってもよい。熱ラジカル重合開始剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 When the composition of the present invention has a thermal radical polymerization initiator, the content of the thermal radical polymerization initiator is preferably 0.1 to 50% by mass, based on the total solid content of the composition of the present invention, 0.1 to 30% by mass is more preferable, and 0.1-20% by mass is particularly preferable. Further, the thermal radical polymerization initiator is preferably contained in an amount of 0.1 to 50 parts by mass, more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the polyimide precursor. According to this aspect, it is easy to form a cured film having more excellent heat resistance. Only one type of thermal radical polymerization initiator may be used, or two or more types may be used. When there are two or more thermal radical polymerization initiators, the total is preferably in the above range.
(熱酸発生剤)
 本発明の組成物は、熱酸発生剤を含んでいてもよい。熱酸発生剤は、加熱により酸を発生し、ポリイミド前駆体の環化を促進し硬化膜の機械特性をより向上させる。熱酸発生剤は、特開2013-167742号公報の段落0059に記載の化合物などが挙げられる。
(Thermal acid generator)
The composition of the present invention may contain a thermal acid generator. The thermal acid generator generates an acid by heating, promotes cyclization of the polyimide precursor, and further improves the mechanical properties of the cured film. Examples of the thermal acid generator include compounds described in paragraph 0059 of JP2013-167742A.
 熱酸発生剤の含有量は、ポリイミド前駆体100質量部に対して0.01質量部以上が好ましく、0.1質量部以上がより好ましい。熱酸発生剤を0.01質量部以上含有することで、架橋反応およびポリイミド前駆体の環化が促進されるため、硬化膜の機械特性および耐薬品性をより向上させることができる。また、熱酸発生剤の含有量は、硬化膜の電気絶縁性の観点から、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が特に好ましい。
 熱酸発生剤は、1種のみ用いても、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
0.01 mass part or more is preferable with respect to 100 mass parts of polyimide precursors, and, as for content of a thermal acid generator, 0.1 mass part or more is more preferable. By containing 0.01 parts by mass or more of the thermal acid generator, the cross-linking reaction and the cyclization of the polyimide precursor are promoted, so that the mechanical properties and chemical resistance of the cured film can be further improved. In addition, the content of the thermal acid generator is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and particularly preferably 10 parts by mass or less from the viewpoint of electrical insulation of the cured film.
One type of thermal acid generator may be used, or two or more types may be used. When using 2 or more types, it is preferable that a total amount becomes the said range.
(増感色素)
 本発明の組成物は、増感色素を含んでいてもよい。増感色素は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感色素は、塩基発生剤、熱ラジカル重合開始剤、光重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、塩基発生剤、熱ラジカル重合開始剤、光重合開始剤は化学変化を起こして分解し、ラジカル、酸或いは塩基を生成する。増感色素の詳細については、特開2016-027357号公報の段落0161~0163の記載を参酌でき、この内容は本明細書に組み込まれる。
(Sensitizing dye)
The composition of the present invention may contain a sensitizing dye. A sensitizing dye absorbs specific actinic radiation and enters an electronically excited state. The sensitizing dye in an electronically excited state comes into contact with a base generator, a thermal radical polymerization initiator, a photopolymerization initiator, and the like, and effects such as electron transfer, energy transfer, and heat generation occur. Thereby, the base generator, the thermal radical polymerization initiator, and the photopolymerization initiator are decomposed by causing a chemical change to generate radicals, acids, or bases. Details of the sensitizing dye can be referred to the descriptions in paragraphs 0161 to 0163 of JP-A-2016-027357, the contents of which are incorporated herein.
 本発明の組成物が増感色素を含む場合、増感色素の含有量は、本発明の組成物の全固形分に対し、0.01~20質量%が好ましく、0.1~15質量%がより好ましく、0.5~10質量%がさらに好ましい。増感色素は、1種単独で用いてもよいし、2種以上を併用してもよい。 When the composition of the present invention contains a sensitizing dye, the content of the sensitizing dye is preferably 0.01 to 20% by mass, and preferably 0.1 to 15% by mass with respect to the total solid content of the composition of the present invention. Is more preferable, and 0.5 to 10% by mass is even more preferable. A sensitizing dye may be used individually by 1 type, and may use 2 or more types together.
(連鎖移動剤)
 本発明の組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内にSH、PH、SiH、GeHを有する化合物群が用いられる。これらは、低活性のラジカルに水素を供与して、ラジカルを生成するか、もしくは、酸化された後、脱プロトンすることによりラジカルを生成しうる。特に、チオール化合物(例えば、2-メルカプトベンズイミダゾール類、2-メルカプトベンズチアゾール類、2-メルカプトベンズオキサゾール類、3-メルカプトトリアゾール類、5-メルカプトテトラゾール類等)を好ましく用いることができる。
(Chain transfer agent)
The composition of the present invention may contain a chain transfer agent. The chain transfer agent is defined, for example, in Polymer Dictionary 3rd Edition (edited by the Polymer Society, 2005) pages 683-684. As the chain transfer agent, for example, a compound group having SH, PH, SiH, GeH in the molecule is used. These can generate hydrogen by donating hydrogen to a low activity radical to generate a radical, or after being oxidized and deprotonated. In particular, thiol compounds (for example, 2-mercaptobenzimidazoles, 2-mercaptobenzthiazoles, 2-mercaptobenzoxazoles, 3-mercaptotriazoles, 5-mercaptotetrazoles, etc.) can be preferably used.
 本発明の組成物が連鎖移動剤を有する場合、連鎖移動剤の含有量は、本発明の組成物の全固形分100質量部に対し、0.01~20質量部が好ましく、1~10質量部がより好ましく、1~5質量部がさらに好ましい。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 When the composition of the present invention has a chain transfer agent, the content of the chain transfer agent is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the composition of the present invention, and 1 to 10 parts by mass. Part is more preferable, and 1 to 5 parts by mass is more preferable. Only one type of chain transfer agent may be used, or two or more types may be used. When there are two or more chain transfer agents, the total is preferably in the above range.
(界面活性剤)
 本発明の組成物には、塗布性をより向上させる観点から、各種類の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種類の界面活性剤を使用できる。また、下記界面活性剤も好ましい。
Figure JPOXMLDOC01-appb-C000041
(Surfactant)
Various kinds of surfactants may be added to the composition of the present invention from the viewpoint of further improving applicability. As the surfactant, various types of surfactants such as a fluorosurfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone surfactant can be used. The following surfactants are also preferable.
Figure JPOXMLDOC01-appb-C000041
 本発明の組成物が界面活性剤を有する場合、界面活性剤の含有量は、本発明の組成物の全固形分に対して、0.001~2.0質量%が好ましく、より好ましくは0.005~1.0質量%である。界面活性剤は1種のみでもよいし、2種以上であってもよい。界面活性剤が2種以上の場合は、その合計が上記範囲であることが好ましい。 When the composition of the present invention has a surfactant, the content of the surfactant is preferably 0.001 to 2.0% by mass, more preferably 0%, based on the total solid content of the composition of the present invention. 0.005 to 1.0 mass%. Only one surfactant may be used, or two or more surfactants may be used. When there are two or more surfactants, the total is preferably in the above range.
(高級脂肪酸誘導体)
 本発明の組成物は、酸素に起因する重合阻害を防止するために、ベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体を添加して、塗布後の乾燥の過程で組成物の表面に偏在させてもよい。
 本発明の組成物が高級脂肪酸誘導体を有する場合、高級脂肪酸誘導体の含有量は、本発明の組成物の全固形分に対して、0.1~10質量%が好ましい。高級脂肪酸誘導体は1種のみでもよいし、2種以上であってもよい。高級脂肪酸誘導体が2種以上の場合は、その合計が上記範囲であることが好ましい。
(Higher fatty acid derivatives)
In order to prevent polymerization inhibition due to oxygen, the composition of the present invention is added with a higher fatty acid derivative such as behenic acid or behenic acid amide, and is unevenly distributed on the surface of the composition in the process of drying after coating. May be.
When the composition of the present invention has a higher fatty acid derivative, the content of the higher fatty acid derivative is preferably 0.1 to 10% by mass with respect to the total solid content of the composition of the present invention. Only one higher fatty acid derivative may be used, or two or more higher fatty acid derivatives may be used. When two or more higher fatty acid derivatives are used, the total is preferably within the above range.
<<その他の含有物質についての制限>>
 本発明の組成物の水分含有量は、塗布面性状の観点から、5質量%未満が好ましく、1質量%未満がさらに好ましく、0.6質量%未満が特に好ましい。
<< Restrictions on other contained substances >>
The water content of the composition of the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and particularly preferably less than 0.6% by mass from the viewpoint of the coated surface properties.
 本発明の組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がさらに好ましく、0.5質量ppm未満が特に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、クロム、ニッケルなどが挙げられる。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。
 また、本発明の組成物に意図せずに含まれる金属不純物を低減する方法としては、本発明の組成物を構成する原料として金属含有量が少ない原料を選択する、本発明の組成物を構成する原料に対してフィルターろ過を行う、装置内をポリテトラフロロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。
The metal content of the composition of the present invention is preferably less than 5 ppm by weight (parts per million), more preferably less than 1 ppm by weight, and particularly preferably less than 0.5 ppm by weight from the viewpoint of insulation. Examples of the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are included, the total of these metals is preferably in the above range.
Further, as a method for reducing metal impurities unintentionally contained in the composition of the present invention, a raw material having a low metal content is selected as a raw material constituting the composition of the present invention. For example, the raw material to be filtered may be filtered, or the inside of the apparatus may be lined with polytetrafluoroethylene or the like, and distillation may be performed under a condition in which contamination is suppressed as much as possible.
 本発明の組成物は、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満が特に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がさらに好ましく、0.5質量ppm未満が特に好ましい。ハロゲン原子としては、塩素原子および臭素原子が挙げられる。塩素原子および臭素原子、あるいは塩化物イオンおよび臭化物イオンの合計がそれぞれ上記範囲であることが好ましい。 In the composition of the present invention, the halogen atom content is preferably less than 500 ppm by mass, more preferably less than 300 ppm by mass, and particularly preferably less than 200 ppm by mass from the viewpoint of wiring corrosion. Especially, what exists in the state of a halogen ion is less than 5 mass ppm, More preferably, it is less than 1 mass ppm, Especially less than 0.5 mass ppm is preferable. Examples of the halogen atom include a chlorine atom and a bromine atom. The total of chlorine atoms and bromine atoms, or chloride ions and bromide ions is preferably in the above range.
<組成物の調製>
 本発明の組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
 また、組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下がさらに好ましい。フィルターの材質は、ポリテトラフロロエチレン、ポリエチレンまたはナイロンが好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列または並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径および/または材質が異なるフィルターを組み合わせて使用しても良い。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であっても良い。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は0.05MPa以上0.3MPa以下が好ましい。
 フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行っても良い。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせても良い。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
<Preparation of composition>
The composition of the present invention can be prepared by mixing the above components. The mixing method is not particularly limited, and can be performed by a conventionally known method.
Moreover, it is preferable to perform filtration using a filter for the purpose of removing foreign substances such as dust and fine particles in the composition. The filter pore size is preferably 1 μm or less, more preferably 0.5 μm or less, and even more preferably 0.1 μm or less. The material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon. A filter that has been washed in advance with an organic solvent may be used. In the filter filtration step, a plurality of types of filters may be connected in series or in parallel. When a plurality of types of filters are used, filters having different pore diameters and / or materials may be used in combination. Various materials may be filtered a plurality of times. When filtering a plurality of times, circulation filtration may be used. Moreover, you may pressurize and filter. When the pressure is applied for filtration, the pressure applied is preferably 0.05 MPa or more and 0.3 MPa or less.
In addition to filtration using a filter, impurities may be removed using an adsorbent. Filter filtration and impurity removal treatment using an adsorbent may be combined. As the adsorbent, a known adsorbent can be used. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
<硬化膜、半導体デバイス、硬化膜の製造方法、半導体デバイス、積層体の製造方法および半導体デバイスの製造方法>
 次に、本発明の硬化膜、半導体デバイス、硬化膜の製造方法、半導体デバイス、積層体の製造方法および半導体デバイスの製造方法について説明する。
 本発明の硬化膜は、本発明の組成物を硬化してなる。本発明の硬化膜の厚さは、例えば、1μm以上とすることができ、5μm以上とすることができる。また、上限値としては、100μm以下とすることができ、30μm以下とすることもできる。
<Curing Film, Semiconductor Device, Cured Film Manufacturing Method, Semiconductor Device, Laminate Manufacturing Method, and Semiconductor Device Manufacturing Method>
Next, a cured film, a semiconductor device, a cured film manufacturing method, a semiconductor device, a laminate manufacturing method, and a semiconductor device manufacturing method of the present invention will be described.
The cured film of the present invention is formed by curing the composition of the present invention. The thickness of the cured film of the present invention can be, for example, 1 μm or more, and can be 5 μm or more. Moreover, as an upper limit, it can be set to 100 micrometers or less, and can also be set to 30 micrometers or less.
 本発明の硬化膜を2層以上積層して積層体としてもよい。このような積層体は、硬化膜の間に金属層を有する態様が好ましい。このような金属層は、再配線層などの金属配線として好ましく用いられる。 A laminate may be obtained by laminating two or more cured films of the present invention. Such a laminate preferably has a metal layer between the cured films. Such a metal layer is preferably used as a metal wiring such as a rewiring layer.
 本発明の硬化膜の適用可能な分野としては、半導体デバイスの絶縁膜、再配線層用層間絶縁膜などが挙げられる。特に、解像性が良好であるため、3次元実装デバイスにおける再配線層用層間絶縁膜などに好ましく用いることができる。
 また、本発明における硬化膜は、エレクトロニクス用のフォトレジスト、ガルバニック(電解)レジスト(galvanic resist)、エッチングレジスト、ソルダートップレジスト(solder top resist)などに用いることもできる。
 また、本発明における硬化膜は、オフセット版面またはスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特にマイクロエレクトロニクスにおける保護ラッカーおよび誘電層の製造などに用いることもできる。
Fields to which the cured film of the present invention can be applied include insulating films for semiconductor devices, interlayer insulating films for rewiring layers, and the like. Particularly, since the resolution is good, it can be preferably used for an interlayer insulating film for a rewiring layer in a three-dimensional mounting device.
The cured film in the present invention can also be used for electronic photoresists, galvanic resists, galvanic resists, etching resists, solder top resists, and the like.
The cured film of the present invention can also be used for the production of printing plates such as offset printing plates or screen printing plates, the use for etching molded parts, the production of protective lacquers and dielectric layers in electronics, in particular microelectronics.
 本発明の硬化膜の製造方法は、本発明の組成物を用いることを含む。好ましくは、本発明のネガ型感光性樹脂組成物を基板に適用して層状にする、ネガ型感光性樹脂組成物層形成工程と、ネガ型感光性樹脂組成物層を露光する露光工程と、露光されたネガ型感光性樹脂組成物層に対して、現像処理を行う工程とを有する。本発明の製造方法では、現像処理工程後に、現像されたネガ型感光性樹脂組成物層を50~500℃の温度で加熱する工程を含む態様とすることもできる。本発明の硬化膜は耐熱性に優れるため、150~500℃で加熱しても良好な性能を維持可能である。 The method for producing a cured film of the present invention includes using the composition of the present invention. Preferably, the negative photosensitive resin composition of the present invention is applied to a substrate to form a layer, a negative photosensitive resin composition layer forming step, an exposure step of exposing the negative photosensitive resin composition layer, And a development process for the exposed negative photosensitive resin composition layer. The production method of the present invention may include a step of heating the developed negative photosensitive resin composition layer at a temperature of 50 to 500 ° C. after the development processing step. Since the cured film of the present invention has excellent heat resistance, good performance can be maintained even when heated at 150 to 500 ° C.
 本発明の積層体の製造方法は、本発明の硬化膜の製造方法を含む。本発明の積層体の製造方法は、本発明の硬化膜の製造方法に従って、硬化膜を形成後、さらに、再度、ネガ型感光性樹脂組成物層形成工程、露光工程、および、現像処理工程を、上記順に再度行うことが好ましい。特に、ネガ型感光性樹脂組成物層形成工程、露光工程、および、現像処理工程を、さらに、上記順に2~5回(すなわち、合計で3~6回)行うことが好ましい。このように硬化膜を積層することにより、積層体とすることができる。本発明では特に、硬化膜を設けた後、現像した後、現像除去された部分に金属層を設けることが好ましい。 The method for producing a laminate of the present invention includes the method for producing a cured film of the present invention. According to the method for producing a laminate of the present invention, after forming a cured film according to the method for producing a cured film of the present invention, a negative photosensitive resin composition layer forming step, an exposure step, and a development processing step are performed again. It is preferable to carry out again in the above order. In particular, the negative photosensitive resin composition layer forming step, the exposure step, and the development processing step are preferably performed 2 to 5 times in the above order (that is, 3 to 6 times in total). Thus, a laminated body can be obtained by laminating a cured film. In the present invention, in particular, it is preferable to provide a metal layer in a portion that has been developed and removed after providing a cured film.
 本発明は、本発明の硬化膜を含む半導体デバイスも開示する。以下、本発明の組成物を再配線層用層間絶縁膜に用いた半導体デバイスの一実施形態について説明する。 The present invention also discloses a semiconductor device including the cured film of the present invention. Hereinafter, an embodiment of a semiconductor device using the composition of the present invention as an interlayer insulating film for a rewiring layer will be described.
 図1に示す半導体デバイス100は、いわゆる3次元実装デバイスであり、複数の半導体素子(半導体チップ)101a~101dが積層した積層体101が、配線基板120に配置されている。なお、この実施形態では、半導体素子(半導体チップ)の積層数が4層である場合を中心に説明するが、半導体素子(半導体チップ)の積層数は特に限定されるものではなく、例えば、2層、8層、16層、32層等であってもよい。また、1層であってもよい。 A semiconductor device 100 shown in FIG. 1 is a so-called three-dimensional mounting device, and a stacked body 101 in which a plurality of semiconductor elements (semiconductor chips) 101 a to 101 d are stacked is arranged on a wiring board 120. In this embodiment, the case where the number of stacked semiconductor elements (semiconductor chips) is four will be mainly described. However, the number of stacked semiconductor elements (semiconductor chips) is not particularly limited. It may be a layer, 8 layers, 16 layers, 32 layers, or the like. Moreover, one layer may be sufficient.
 複数の半導体素子101a~101dは、いずれもシリコン基板等の半導体ウエハからなる。最上段の半導体素子101aは、貫通電極を有さず、その一方の面に電極パッド(図示せず)が形成されている。半導体素子101b~101dは、貫通電極102b~102dを有し、各半導体素子の両面には、貫通電極に一体に設けられた接続パッド(図示せず)が設けられている。 The plurality of semiconductor elements 101a to 101d are each made of a semiconductor wafer such as a silicon substrate. The uppermost semiconductor element 101a does not have a through electrode, and an electrode pad (not shown) is formed on one surface thereof. The semiconductor elements 101b to 101d have through electrodes 102b to 102d, and connection pads (not shown) provided integrally with the through electrodes are provided on both surfaces of each semiconductor element.
 積層体101は、貫通電極を有さない半導体素子101aと、貫通電極102b~102dを有する半導体素子101b~101dとをフリップチップ接続した構造を有している。すなわち、貫通電極を有さない半導体素子101aの電極パッドと、これに隣接する貫通電極102bを有する半導体素子101bの半導体素子101a側の接続パッドが、半田バンプ等の金属バンプ103aで接続され、貫通電極102bを有する半導体素子101bの他方の側の接続パッドが、それに隣接する貫通電極102cを有する半導体素子101cの半導体素子101b側の接続パッドと、半田バンプ等の金属バンプ103bで接続されている。同様に、貫通電極102cを有する半導体素子101cの他方の側の接続パッドが、それに隣接する貫通電極102dを有する半導体素子101dの半導体素子101c側の接続パッドと、半田バンプ等の金属バンプ103cで接続されている。 The stacked body 101 has a structure in which a semiconductor element 101a having no through electrode and flip-chip connection of semiconductor elements 101b to 101d having through electrodes 102b to 102d are connected. That is, the electrode pad of the semiconductor element 101a having no through electrode and the connection pad on the semiconductor element 101a side of the semiconductor element 101b having the adjacent through electrode 102b are connected by the metal bump 103a such as a solder bump, The connection pad on the other side of the semiconductor element 101b having the electrode 102b is connected to the connection pad on the semiconductor element 101b side of the semiconductor element 101c having the adjacent through electrode 102c by a metal bump 103b such as a solder bump. Similarly, the connection pad on the other side of the semiconductor element 101c having the through electrode 102c is connected to the connection pad on the semiconductor element 101c side of the semiconductor element 101d having the adjacent through electrode 102d by the metal bump 103c such as a solder bump. Has been.
 各半導体素子101a~101dの間隙には、アンダーフィル層110が形成されており、各半導体素子101a~101dは、アンダーフィル層110を介して積層している。 An underfill layer 110 is formed in the gaps between the semiconductor elements 101a to 101d, and the semiconductor elements 101a to 101d are stacked via the underfill layer 110.
 積層体101は、配線基板120に積層されている。配線基板120としては、例えば樹脂基板、セラミックス基板、ガラス基板等の絶縁基板を基材として用いた多層配線基板が使用される。樹脂基板を適用した配線基板120としては、多層銅張積層板(多層プリント配線板)等が挙げられる。 The laminated body 101 is laminated on the wiring board 120. As the wiring substrate 120, for example, a multilayer wiring substrate using an insulating substrate such as a resin substrate, a ceramic substrate, or a glass substrate as a base material is used. Examples of the wiring board 120 to which the resin board is applied include a multilayer copper-clad laminate (multilayer printed wiring board).
 配線基板120の一方の面には、表面電極120aが設けられている。
 配線基板120と積層体101との間には、再配線層105が形成された絶縁層115が配置されており、配線基板120と積層体101とは、再配線層105を介して電気的に接続されている。絶縁層115は、本発明の組成物を用いて形成してなるものである。
 すなわち、再配線層105の一端は、半田バンプ等の金属バンプ103dを介して、半導体素子101dの再配線層105側の面に形成された電極パッドに接続されている。また、再配線層105の他端は、配線基板の表面電極120aと、半田バンプ等の金属バンプ103eを介して接続している。
 そして、絶縁層115と積層体101との間には、アンダーフィル層110aが形成されている。また、絶縁層115と配線基板120との間には、アンダーフィル層110bが形成されている。
A surface electrode 120 a is provided on one surface of the wiring board 120.
An insulating layer 115 in which a rewiring layer 105 is formed is disposed between the wiring substrate 120 and the stacked body 101, and the wiring substrate 120 and the stacked body 101 are electrically connected via the rewiring layer 105. It is connected. The insulating layer 115 is formed using the composition of the present invention.
That is, one end of the rewiring layer 105 is connected to an electrode pad formed on the surface of the semiconductor element 101d on the rewiring layer 105 side through a metal bump 103d such as a solder bump. The other end of the rewiring layer 105 is connected to the surface electrode 120a of the wiring board via a metal bump 103e such as a solder bump.
An underfill layer 110 a is formed between the insulating layer 115 and the stacked body 101. In addition, an underfill layer 110 b is formed between the insulating layer 115 and the wiring substrate 120.
 上記の他、本発明の硬化膜は、ポリイミドを用いる各種用途に広く採用できる。
 また、ポリイミドは熱に強いため、本発明における硬化膜等は、液晶ディスプレイ、有機ELディスプレイ、電子ペーパーなどの表示装置用のプラスチック基板や層間絶縁膜、自動車部品、耐熱塗料、コーティング剤、フィルム用途としても好適に利用できる。
 さらに、本発明のポリイミド前駆体をポジ型感光性樹脂組成物に用いることもできる。
In addition to the above, the cured film of the present invention can be widely used in various applications using polyimide.
In addition, since polyimide is resistant to heat, the cured film in the present invention is used for plastic substrates and interlayer insulation films for liquid crystal displays, organic EL displays, electronic paper and other display devices, automotive parts, heat resistant paints, coating agents, and films. Can also be suitably used.
Furthermore, the polyimide precursor of this invention can also be used for a positive photosensitive resin composition.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。「部」、「%」は特に述べない限り、質量基準である。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. “Parts” and “%” are based on mass unless otherwise specified.
ポリイミド前駆体の合成
<ポリイミド前駆体P-1の合成>
 20.00g(64.5ミリモル)の4,4’-オキシジフタル酸二無水物(ODPA、4,4’-オキシジフタル酸を140℃で12時間乾燥したもの、二官能酸無水物)と、4.13g(129ミリモル)のメタノール(側鎖用化合物)と、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライム(ジエチレングリコールジメチルエーテル)と混合し、60℃の温度で18時間撹拌して、4,4’-オキシジフタル酸二無水物とメタノールのジエステルを製造した。次いで、反応混合物を-10℃に冷却し、温度を-10±4℃に保ちながら16.12g(135.5ミリモル)のSOClを10分かけて加えた。50mLのN-メチルピロリドンで希釈した後、反応混合物を室温で2時間撹拌した。次いで、100mLのN-メチルピロリドンに11.88g(59.3ミリモル)の4,4’-オキシジアニリン(ODA、ジアミン)を溶解させた溶液を、20~23℃で20分かけて反応混合物に滴下した。次いで、反応混合物に23.9g(15.5ミリモル)のジペンタエリスリトールヘキサアクリレート(DPHA、日本化薬製、末端用化合物)を添加し、反応混合物を室温で1晩撹拌した。次いで、3リットルの水と3リットルのアセトンの混合溶媒中でポリイミド前駆体を沈殿させた。ポリイミド前駆体を濾過して除き、4リットルの水の中で再度30分間撹拌し再び濾過した。次いで、得られたポリイミド前駆体を減圧下室温で2日間乾燥し、ポリイミド前駆体(P-1)を得た。得られたポリイミド前駆体(P-1)の構造はH-NMR(核磁気共鳴スペクトル)(DMSO(ジメチルスルホキシド)-d6溶液)で確認した。
10.6~10.3ppm(m,2H)、8.2~6.7ppm(m,14H)、6.4~6.2ppm(m,1H)、6.2~6.0ppm(m,1H)、6.0~5.8ppm(m,0.9H)、4.4~4.0ppm(m,3H)、3.9~3.6ppm(s,6H)。
 得られたP-1の重量平均分子量(ゲルパーミエーションクロマトグラフィー(溶離液:NMP(N-メチル-2-ピロリドン)のポリスチレン換算値)は50000であった。
測定条件は以下の通りである。
カラム:TSKguardcolumn SuperAW-H(4.6mmID.×35mm)1本
    TSK SuperAWM-H(6.0mmID.×150mm) 2本
展開溶媒:NMP(10mmol/L臭化リチウム、10mmol/Lリン酸溶液)
カラム温度:50℃
流量:0.35mL/分
サンプル注入量:20μL
サンプル濃度:0.1質量%
装置名:HLC-8220GPC(東ソー製)
検量線ベース樹脂:ポリスチレン
Synthesis of polyimide precursor <Synthesis of polyimide precursor P-1>
2. 20.00 g (64.5 mmol) of 4,4′-oxydiphthalic dianhydride (ODPA, 4,4′-oxydiphthalic acid dried at 140 ° C. for 12 hours, bifunctional anhydride); 13 g (129 mmol) of methanol (side chain compound), 0.05 g of hydroquinone, 10.7 g of pyridine and 140 g of diglyme (diethylene glycol dimethyl ether) are mixed and stirred at a temperature of 60 ° C. for 18 hours. 4,4′-oxydiphthalic dianhydride and methanol diester were prepared. The reaction mixture was then cooled to −10 ° C. and 16.12 g (135.5 mmol) of SOCl 2 was added over 10 minutes while maintaining the temperature at −10 ± 4 ° C. After dilution with 50 mL of N-methylpyrrolidone, the reaction mixture was stirred at room temperature for 2 hours. Next, a solution of 11.88 g (59.3 mmol) of 4,4′-oxydianiline (ODA, diamine) dissolved in 100 mL of N-methylpyrrolidone was added to the reaction mixture at 20-23 ° C. over 20 minutes. It was dripped in. Next, 23.9 g (15.5 mmol) of dipentaerythritol hexaacrylate (DPHA, Nippon Kayaku, compound for terminal) was added to the reaction mixture, and the reaction mixture was stirred at room temperature overnight. Next, the polyimide precursor was precipitated in a mixed solvent of 3 liters of water and 3 liters of acetone. The polyimide precursor was filtered off and stirred again in 4 liters of water for 30 minutes and filtered again. Next, the obtained polyimide precursor was dried at room temperature under reduced pressure for 2 days to obtain a polyimide precursor (P-1). The structure of the obtained polyimide precursor (P-1) was confirmed by 1 H-NMR (nuclear magnetic resonance spectrum) (DMSO (dimethyl sulfoxide) -d6 solution).
10.6 to 10.3 ppm (m, 2H), 8.2 to 6.7 ppm (m, 14 H), 6.4 to 6.2 ppm (m, 1 H), 6.2 to 6.0 ppm (m, 1 H) ), 6.0 to 5.8 ppm (m, 0.9H), 4.4 to 4.0 ppm (m, 3H), 3.9 to 3.6 ppm (s, 6H).
The weight average molecular weight of the obtained P-1 (gel permeation chromatography (eluent: NMP (N-methyl-2-pyrrolidone) converted to polystyrene)) was 50,000.
The measurement conditions are as follows.
Column: 1 TSK guardcolumn Super AW-H (4.6 mm ID. × 35 mm) 1 TSK Super AWM-H (6.0 mm ID. × 150 mm) 2 developing solvents: NMP (10 mmol / L lithium bromide, 10 mmol / L phosphoric acid solution)
Column temperature: 50 ° C
Flow rate: 0.35 mL / min Sample injection volume: 20 μL
Sample concentration: 0.1% by mass
Device name: HLC-8220GPC (manufactured by Tosoh)
Calibration curve base resin: polystyrene
<ポリイミド前駆体P-2~P-16、P-18の合成>
 上記ポリイミド前駆体P-1の合成において、二官能酸無水物、ジアミン、側鎖用化合物および末端用化合物を、それぞれ、下記表1に示すように変更し、他は同様に行って、ポリイミド前駆体P-2~P-16、P-18をそれぞれ合成した。
<Synthesis of polyimide precursors P-2 to P-16, P-18>
In the synthesis of the polyimide precursor P-1, the bifunctional acid anhydride, the diamine, the side chain compound and the terminal compound were changed as shown in Table 1 below, and others were performed in the same manner. Forms P-2 to P-16 and P-18 were respectively synthesized.
<P-17の合成>
 温度計、攪拌機、塩化カルシウム管を備えた3つ口フラスコに、4,4’-オキシジフタル酸二無水物(15.51g)、N-メチルピロリドン(114g)を加え、室温で攪拌した。この懸濁液に4,4’-オキシジアニリン(9.21g)を添加し、30℃で攪拌した。1時間後、N-メチルピロリドン(15.27g)とDPHA(18.51g)の混合液を添加し、30℃で攪拌した。6時間後、室温まで冷却した。得られた混合液をNMPで希釈し、GPCにて測定した重量平均分子量は50000であった。次いで、3リットルの水と3リットルのアセトンの混合溶媒中でポリイミド前駆体を沈殿させた。ポリイミド前駆体を濾過して除き、4リットルの水の中で再度30分間撹拌し再び濾過した。次いで、得られたポリイミド前駆体を減圧下室温で2日間乾燥した。得られた固体をNMPに溶解させ、GPCにて測定した
重量平均分子量は20000であった。精製工程において分解したと考えられた。
<Synthesis of P-17>
To a three-necked flask equipped with a thermometer, a stirrer and a calcium chloride tube, 4,4′-oxydiphthalic dianhydride (15.51 g) and N-methylpyrrolidone (114 g) were added and stirred at room temperature. To this suspension, 4,4′-oxydianiline (9.21 g) was added and stirred at 30 ° C. After 1 hour, a mixture of N-methylpyrrolidone (15.27 g) and DPHA (18.51 g) was added and stirred at 30 ° C. After 6 hours, it was cooled to room temperature. The obtained mixed solution was diluted with NMP, and the weight average molecular weight measured by GPC was 50,000. Next, the polyimide precursor was precipitated in a mixed solvent of 3 liters of water and 3 liters of acetone. The polyimide precursor was filtered off and stirred again in 4 liters of water for 30 minutes and filtered again. Next, the obtained polyimide precursor was dried at room temperature under reduced pressure for 2 days. The obtained solid was dissolved in NMP, and the weight average molecular weight measured by GPC was 20000. It was thought that it decomposed in the purification process.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 ODPA:東京化成工業製
 BPDA: 3,3’,4,4’-ビフェニルテトラカルボン酸ニ無水物、東京化成工業製
 ODA:東京化成工業製
 ベンジジン(4,4’-ジアミノビフェニル):東京化成工業製
 エタノール:和光純薬工業製
 n-ブタノール:和光純薬工業製
 n-オクタノール:和光純薬工業製
 DPHA:日本化薬製、KAYARAD DPHA
 M-305:ペンタエリスリトールトリアクリレート、東亞合成社製、アロニックスM-305
 701:グリセロールジメタクリレート、新中村化学工業製
 ヒドロキシエチルアクリレート:和光純薬工業製
 M-215:イソシアヌル酸エチレンオキシド(EO)変性ジアクリレート、東亞合成社製、アロニックスM-215
カレンズBEI:1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート、昭和電工製
 カレンズMOI: 2-イソシアナトエチルメタクリレート、昭和電工製
 4-アミノスチレン:東京化成工業製
ODPA: Tokyo Chemical Industry BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, Tokyo Chemical Industry ODA: Tokyo Chemical Industry Benzidine (4,4′-diaminobiphenyl): Tokyo Chemical Industry Manufactured by Ethanol: Wako Pure Chemical Industries, Ltd. n-Butanol: Wako Pure Chemical Industries, Ltd. n-Octanol: Wako Pure Chemical Industries, Ltd. DPHA: Nippon Kayaku, KAYARAD DPHA
M-305: Pentaerythritol triacrylate, manufactured by Toagosei Co., Ltd., Aronix M-305
701: Glycerol dimethacrylate, Shin-Nakamura Chemical Co., Ltd. Hydroxyethyl acrylate: Wako Pure Chemical Industries, Ltd. M-215: Isocyanuric acid ethylene oxide (EO) modified diacrylate, manufactured by Toagosei Co., Ltd., Aronix M-215
Karenz BEI: 1,1- (bisacryloyloxymethyl) ethyl isocyanate, manufactured by Showa Denko Karenz MOI: 2-isocyanatoethyl methacrylate, manufactured by Showa Denko 4-Aminostyrene: manufactured by Tokyo Chemical Industry
 得られたポリイミド前駆体の構造を下記に示す。以下において、[ ]は、繰り返し単位であることを意味する。Meは、メチル基を表す。
Figure JPOXMLDOC01-appb-T000043
 
Figure JPOXMLDOC01-appb-T000044
The structure of the obtained polyimide precursor is shown below. In the following, [] means a repeating unit. Me represents a methyl group.
Figure JPOXMLDOC01-appb-T000043

Figure JPOXMLDOC01-appb-T000044
<実施例1>
<<ネガ型感光性樹脂組成物の調製>>
 下記表4に示すとおり、ポリイミド前駆体、光重合開始剤、ラジカル重合性モノマー、重合禁止剤、金属変色防止剤、シランカップリング剤および溶剤を混合し、均一な溶液として、ネガ型感光性樹脂組成物を調製した。
<Example 1>
<< Preparation of negative photosensitive resin composition >>
As shown in the following Table 4, a polyimide precursor, a photopolymerization initiator, a radical polymerizable monomer, a polymerization inhibitor, a metal discoloration inhibitor, a silane coupling agent, and a solvent are mixed to form a negative photosensitive resin as a uniform solution. A composition was prepared.
<<解像性>>
<<<露光部残膜率>>>
 ネガ型感光性樹脂組成物を、細孔の幅が0.8μmのフィルターを通して、3.0MPaの圧力で加圧濾過した後、シリコンウェハ上にスピンコート法により、ネガ型感光性樹脂組成物を層状に適用して、ネガ型感光性樹脂組成物層を形成した。得られたネガ型感光性樹脂組成物層を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に15μmの厚さの均一なネガ型感光性樹脂組成物層を得た。シリコンウェハ上のネガ型感光性樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーで露光した。室温で30分間静置した後、シクロペンタノンで60秒間現像し、現像前後の膜厚変化から露光部残膜率を求めた。
 露光部残膜率(%)=[露光部の現像後の膜厚/未露光部の現像前の膜厚]×100
5: 90%以上
4: 70%以上90%未満
3: 50%以上70%未満
2: 30%以上50%未満
1: 30%未満
評価3以上が実用上好ましい。
<< Resolution >>
<<< exposed part remaining film ratio >>>
The negative photosensitive resin composition is filtered under pressure at a pressure of 3.0 MPa through a filter having a pore width of 0.8 μm, and then the negative photosensitive resin composition is applied onto a silicon wafer by spin coating. A negative photosensitive resin composition layer was formed by applying in layers. The obtained silicon wafer to which the negative photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a uniform negative photosensitive resin composition layer having a thickness of 15 μm on the silicon wafer. Obtained. The negative photosensitive resin composition layer on the silicon wafer was exposed with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C). After standing at room temperature for 30 minutes, development was performed with cyclopentanone for 60 seconds, and the exposed area remaining film ratio was determined from the change in film thickness before and after development.
Exposed part residual film ratio (%) = [film thickness after development of exposed part / film thickness of unexposed part before development] × 100
5: 90% or more 4: 70% or more and less than 90% 3: 50% or more and less than 70% 2: 30% or more and less than 50% 1: less than 30% Evaluation of 3 or more is practically preferable.
<<<未露光部残膜率>>>
 ネガ型感光性樹脂組成物を、細孔の幅が0.8μmのフィルターを通して、3.0MPaの圧力で加圧濾過した後、シリコンウェハ上にスピンコート法により、ネガ型感光性樹脂組成物を層状に適用して、ネガ型感光性樹脂組成物層を形成した。得られたネガ型感光性樹脂組成物層を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に15μmの厚さの均一なネガ型感光性樹脂組成物層とした。これをシクロペンタノンで60秒間現像し、現像前後の膜厚変化から未露光部残膜率を求めた。
未露光部残膜率(%)=[(未露光部の現像後の膜厚)/未露光部の現像前の膜厚]×100
5: 5%未満
4: 5%以上20%未満
3: 20%以上50%未満
2: 50%以上90%未満
1: 90%以上
評価3以上が実用上好ましい。
<<< Remaining film ratio of unexposed part >>>
The negative photosensitive resin composition is filtered under pressure at a pressure of 3.0 MPa through a filter having a pore width of 0.8 μm, and then the negative photosensitive resin composition is applied onto a silicon wafer by spin coating. A negative photosensitive resin composition layer was formed by applying in layers. The silicon wafer to which the obtained negative photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes, and a uniform negative photosensitive resin composition layer having a thickness of 15 μm was formed on the silicon wafer. did. This was developed with cyclopentanone for 60 seconds, and the unexposed portion residual film ratio was determined from the change in film thickness before and after development.
Unexposed area remaining film ratio (%) = [(film thickness after development of unexposed area) / film thickness before development of unexposed area] × 100
5: Less than 5% 4: 5% or more but less than 20% 3: 20% or more but less than 50% 2: 50% or more but less than 90% 1: 90% or more Evaluation of 3 or more is practically preferable.
<<熱硬化後の残膜率>>
 ネガ型感光性樹脂組成物を、細孔の幅が0.8μmのフィルターを通して、3.0MPaの圧力で加圧濾過した後、シリコンウェハ上にスピンコート法により、ネガ型感光性樹脂組成物を層状に適用して、ネガ型感光性樹脂組成物層を形成した。得られたネガ型感光性樹脂組成物層を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に15μmの厚さの均一なネガ型感光性樹脂組成物層とした。シリコンウェハ上のネガ型感光性樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーで露光し、露光したネガ型感光性樹脂組成物層(樹脂層)を、窒素雰囲気下で、10℃/分の昇温速度で昇温し、230℃に達した後、3時間保持し、加熱前後の膜厚変化から加熱後の残膜率を求めた。
 熱硬化後の残膜率(%)=[熱硬化後の膜厚/熱硬化前の膜厚]×100
5: 85%以上
4: 80%以上85%未満
3: 70%以上80%未満
2: 60%以上70%未満
1: 60%未満
評価2以上が実用上好ましい。
<< Residual film ratio after thermosetting >>
The negative photosensitive resin composition is filtered under pressure at a pressure of 3.0 MPa through a filter having a pore width of 0.8 μm, and then the negative photosensitive resin composition is applied onto a silicon wafer by spin coating. A negative photosensitive resin composition layer was formed by applying in layers. The silicon wafer to which the obtained negative photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes, and a uniform negative photosensitive resin composition layer having a thickness of 15 μm was formed on the silicon wafer. did. The negative photosensitive resin composition layer on the silicon wafer was exposed at an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C), and the exposed negative photosensitive resin composition layer (resin layer) Was heated at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere, and was maintained for 3 hours after reaching 230 ° C., and the remaining film ratio after heating was determined from the change in film thickness before and after heating.
Residual film ratio after thermosetting (%) = [film thickness after thermosetting / film thickness before thermosetting] × 100
5: 85% or more 4: 80% or more and less than 85% 3: 70% or more and less than 80% 2: 60% or more and less than 70% 1: less than 60% Evaluation of 2 or more is practically preferable.
<<ガラス転移温度(Tg)>>
 ネガ型感光性樹脂組成物を、細孔の幅が0.8μmのフィルターを通して、3.0MPaの圧力で加圧濾過した後、シリコンウェハ上にスピンコート法により、ネガ型感光性樹脂組成物を層状に適用して、ネガ型感光性樹脂組成物層を形成した。得られたネガ型感光性樹脂組成物層を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に15μmの厚さの均一なネガ型感光性樹脂組成物層を得た。シリコンウェハ上のネガ型感光性樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーで露光し、露光したネガ型感光性樹脂組成物層(樹脂層)を、窒素雰囲気下で、10℃/分の昇温速度で昇温し、230℃に達した後、3時間保持した。硬化後の樹脂層を4.9質量%フッ化水素酸溶液に浸漬し、シリコンウェハから樹脂層を剥離し、樹脂膜を得た。得られた樹脂膜を粘弾性測定装置(ユービーエム社製、Rheogel E4000)にセットし、引張法を用いて、周波数1Hzで、昇温速度10℃/分で0℃から350℃まで昇温し、tanδのピーク温度からTg(℃)を求めた。
<< Glass Transition Temperature (Tg) >>
The negative photosensitive resin composition is filtered under pressure at a pressure of 3.0 MPa through a filter having a pore width of 0.8 μm, and then the negative photosensitive resin composition is applied onto a silicon wafer by spin coating. A negative photosensitive resin composition layer was formed by applying in layers. The obtained silicon wafer to which the negative photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to form a uniform negative photosensitive resin composition layer having a thickness of 15 μm on the silicon wafer. Obtained. The negative photosensitive resin composition layer on the silicon wafer was exposed at an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C), and the exposed negative photosensitive resin composition layer (resin layer) Was heated at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere, and was maintained for 3 hours after reaching 230 ° C. The cured resin layer was immersed in a 4.9% by mass hydrofluoric acid solution, and the resin layer was peeled off from the silicon wafer to obtain a resin film. The obtained resin film was set in a viscoelasticity measuring device (Rhegel E4000, manufactured by UBM Co., Ltd.), and the temperature was increased from 0 ° C. to 350 ° C. at a frequency of 1 Hz and a temperature increase rate of 10 ° C./min. , Tg (° C.) was determined from the peak temperature of tan δ.
<他の実施例および比較例>
 実施例1において、ポリイミド前駆体、光重合開始剤、ラジカル重合性モノマー、重合禁止剤、金属変色防止剤、シランカップリング剤および溶剤の1つ以上を、表4または表5に示すように変更し、さらに一部の実施例については、表5に示すとおり、熱塩基発生剤を配合し、他は同様に行った。
<Other Examples and Comparative Examples>
In Example 1, one or more of the polyimide precursor, photopolymerization initiator, radical polymerizable monomer, polymerization inhibitor, metal discoloration inhibitor, silane coupling agent, and solvent are changed as shown in Table 4 or Table 5. In addition, as shown in Table 5, some examples were blended with a thermal base generator, and others were performed in the same manner.
 得られた結果を下記表4および表5に示す。 The obtained results are shown in Table 4 and Table 5 below.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 上記表4および表5の各成分の詳細は下記の通りである。
<光ラジカル重合開始剤>
OXE-01:IRGACURE OXE 01(オキシム化合物、BASF社製)
IRGACURE-784:IRGACURE-784(メタロセン化合物、BASF社製)
<ラジカル重合性モノマー>
SR209:SR-209(エチレンオキシ鎖を4個有する2官能メタクリレート、サートマー社製)
A-9300:NKエステルA-9300(イソブチレンオキシ鎖を3個有する3官能アクリレート、新中村化学工業社製)
A-TMMT:新中村化学工業製、ペンタエリスリトールテトラアクリレート
A-DPH:新中村化学工業製、ジペンタエリスリトールヘキサアクリレート
The detail of each component of the said Table 4 and Table 5 is as follows.
<Radical radical polymerization initiator>
OXE-01: IRGACURE OXE 01 (oxime compound, manufactured by BASF)
IRGACURE-784: IRGACURE-784 (metallocene compound, manufactured by BASF)
<Radically polymerizable monomer>
SR209: SR-209 (bifunctional methacrylate having four ethyleneoxy chains, manufactured by Sartomer)
A-9300: NK ester A-9300 (trifunctional acrylate having three isobutyleneoxy chains, manufactured by Shin-Nakamura Chemical Co., Ltd.)
A-TMMT: Shin-Nakamura Chemical, Pentaerythritol tetraacrylate A-DPH: Shin-Nakamura Chemical, Dipentaerythritol hexaacrylate
<熱塩基発生剤>
E-1:下記化合物
E-2:下記化合物
E-3:下記化合物
<Heat base generator>
E-1: The following compound E-2: The following compound E-3: The following compound
<重合禁止剤>
F-1:下記化合物
F-2:下記化合物
F-3:下記化合物
<Polymerization inhibitor>
F-1: the following compound F-2: the following compound F-3: the following compound
<金属変色防止剤>
G-1:下記化合物
G-2:下記化合物
G-3:下記化合物
G-4:下記化合物
<Metal discoloration inhibitor>
G-1: the following compound G-2: the following compound G-3: the following compound G-4: the following compound
<シランカップリング剤>
H-1:下記化合物
H-2:下記化合物
H-3:下記化合物
<Silane coupling agent>
H-1: the following compound H-2: the following compound H-3: the following compound
<溶剤>
DMSO:ジメチルスルホキシド
GBL:γ-ブチロラクトン
NMP:N-メチル-2-ピロリドン
乳酸エチル
<Solvent>
DMSO: dimethyl sulfoxide GBL: γ-butyrolactone NMP: N-methyl-2-pyrrolidone ethyl lactate
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 上記結果から明らかな通り、本発明のネガ型感光性樹脂組成物を用いた場合、Tgが高く、解像性に優れていた。
 また、本発明ではガラス転移温度も230℃以上と、比較例1および2よりも5℃も高くなった。Tgの5℃の上昇は、金属配線を形成するための蒸着処理工程や電極間の接合工程などの高温プロセスにおける信頼性向上という観点から非常に顕著な効果であるといえる。
 さらに、ポリイミド前駆体の側鎖の鎖を短くすることにより(式(1)のRおよびRを炭素数1~4の非重合性基の有機基とすることにより)、熱硬化後の残膜率が顕著に向上した。
As apparent from the above results, when the negative photosensitive resin composition of the present invention was used, the Tg was high and the resolution was excellent.
In the present invention, the glass transition temperature was 230 ° C. or higher, which was 5 ° C. higher than those of Comparative Examples 1 and 2. An increase in Tg of 5 ° C. can be said to be a very remarkable effect from the viewpoint of improving reliability in a high-temperature process such as a vapor deposition process for forming a metal wiring or a bonding process between electrodes.
Further, by shortening the side chain of the polyimide precursor (by making R 1 and R 2 of formula (1) an organic group of a non-polymerizable group having 1 to 4 carbon atoms), The remaining film rate was remarkably improved.
実施例100
<積層体1の製造>
 実施例3の感光性樹脂組成物を、細孔の幅が0.8μmのフィルターを通して加圧濾過した後、シリコンウェハ上にスピンコート法により、感光性樹脂組成物層を形成した。得られた感光性樹脂組成物層を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に15μmの厚さの均一な感光性樹脂組成物層とした。ついで、シリコンウェハ上の感光性樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーで露光し、露光した感光性樹脂組成物層(樹脂層)を、シクロペンタノンで60秒間を現像して、直径10μmのホールを形成した。次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、230℃に達した後、3時間保持した。室温まで冷却後、樹脂層の表面に、再度、感光性樹脂組成物と同じ種類の感光性樹脂組成物を用いて、上記と同様に感光性樹脂組成物の濾過から、パターン化した膜の3時間加熱までの手順を再度実施して、樹脂層を2層有する積層体1を形成した。
Example 100
<Manufacture of laminated body 1>
The photosensitive resin composition of Example 3 was subjected to pressure filtration through a filter having a pore width of 0.8 μm, and then a photosensitive resin composition layer was formed on a silicon wafer by spin coating. The obtained silicon wafer to which the photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to obtain a uniform photosensitive resin composition layer having a thickness of 15 μm on the silicon wafer. Next, the photosensitive resin composition layer on the silicon wafer was exposed with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C), and the exposed photosensitive resin composition layer (resin layer) was Development was performed with cyclopentanone for 60 seconds to form a 10 μm diameter hole. Next, the temperature was raised at a rate of 10 ° C./min in a nitrogen atmosphere, and after reaching 230 ° C., the temperature was maintained for 3 hours. After cooling to room temperature, again using the same type of photosensitive resin composition as the photosensitive resin composition on the surface of the resin layer, filtration of the photosensitive resin composition in the same manner as described above, 3 of the patterned film was performed. The procedure up to the time heating was performed again to form a laminate 1 having two resin layers.
<積層体2の製造>
 上記で得られた積層体1の表面に、実施例3の感光性樹脂組成物を用いて、積層体1の製造と同様の手順を再度実施することで、樹脂層を4層有する積層体2を作製した。
<Manufacture of laminated body 2>
On the surface of the laminate 1 obtained above, the same procedure as in the production of the laminate 1 is performed again using the photosensitive resin composition of Example 3, so that the laminate 2 having four resin layers. Was made.
<積層体3の製造>
 実施例3の感光性樹脂組成物を、細孔の幅が0.8μmのフィルターを通して加圧濾過した後、シリコンウェハ上にスピンコート法により、感光性樹脂組成物層を形成した。得られた感光性樹脂組成物層を適用したシリコンウェハをホットプレート上で、100℃で5分間乾燥し、シリコンウェハ上に15μmの厚さの均一な感光性樹脂組成物層とした。シリコンウェハ上の感光性樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、500mJ/cmの露光エネルギーで露光し、露光した感光性樹脂組成物層(樹脂層)を、シクロペンタノンで60秒間を現像して、直径10μmのホールを形成した。次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、230℃に達した後、3時間保持した。室温まで冷却後、上記ホール部分を覆うように、感光性樹脂組成物層の表面の一部に、蒸着法により厚さ2μmの銅薄膜(金属層)を適用した。さらに、金属層および感光性樹脂組成物層の表面に、再度、実施例3の感光性樹脂組成物を用いて、上記と同様に感光性樹脂組成物の濾過から、パターン化した膜の3時間加熱までの手順を再度実施して、樹脂層/金属層/樹脂層からなる積層体3を作製した。
<Manufacture of laminated body 3>
The photosensitive resin composition of Example 3 was subjected to pressure filtration through a filter having a pore width of 0.8 μm, and then a photosensitive resin composition layer was formed on a silicon wafer by spin coating. The obtained silicon wafer to which the photosensitive resin composition layer was applied was dried on a hot plate at 100 ° C. for 5 minutes to obtain a uniform photosensitive resin composition layer having a thickness of 15 μm on the silicon wafer. The photosensitive resin composition layer on the silicon wafer was exposed with an exposure energy of 500 mJ / cm 2 using a stepper (Nikon NSR 2005 i9C), and the exposed photosensitive resin composition layer (resin layer) was subjected to cyclopenta A hole having a diameter of 10 μm was formed by developing for 60 seconds in a non-process. Next, the temperature was raised at a rate of 10 ° C./min in a nitrogen atmosphere, and after reaching 230 ° C., the temperature was maintained for 3 hours. After cooling to room temperature, a 2 μm thick copper thin film (metal layer) was applied to a part of the surface of the photosensitive resin composition layer by vapor deposition so as to cover the hole portion. Further, again using the photosensitive resin composition of Example 3 on the surfaces of the metal layer and the photosensitive resin composition layer, the photosensitive resin composition was filtered in the same manner as described above, and then the patterned film was used for 3 hours. The procedure up to the heating was performed again to produce a laminate 3 composed of resin layer / metal layer / resin layer.
100:半導体デバイス
101a~101d:半導体素子
101:積層体
102b~102d:貫通電極
103a~103e:金属バンプ
105:再配線層
110、110a、110b:アンダーフィル層
115:絶縁層
120:配線基板
120a:表面電極
100: Semiconductor devices 101a to 101d: Semiconductor element 101: Stacked bodies 102b to 102d: Through electrodes 103a to 103e: Metal bump 105: Rewiring layers 110, 110a, 110b: Underfill layer 115: Insulating layer 120: Wiring substrate 120a: Surface electrode

Claims (21)

  1.  ポリイミド前駆体と、光重合開始剤と、溶剤とを含み、
     前記ポリイミド前駆体は、式(1)で表される繰り返し単位を有し、少なくとも一方の末端に式(2)で表される構造を有し、重量平均分子量が50000以下である、ネガ型感光性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、RおよびRはそれぞれ独立に、非重合性の有機基である;
    (A)-L-*   (2)
     式(2)中、Aは重合性基を表し、Lは単結合またはl+1価の有機基を表し、lは1~10の整数を表し、*は他の部位との結合部位を示す。
    Including a polyimide precursor, a photopolymerization initiator, and a solvent,
    The polyimide precursor has a repeating unit represented by the formula (1), has a structure represented by the formula (2) at least at one end, and has a weight average molecular weight of 50000 or less. Functional resin composition;
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, and R 1 and R 2 are each independently a non-polymerizable organic group;
    (A) l -L 1- * (2)
    In the formula (2), A represents a polymerizable group, L 1 represents a single bond or an l + 1 valent organic group, l represents an integer of 1 to 10, and * represents a bonding site with another site.
  2.  式(2)におけるlが、2~5の整数である、請求項1に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, wherein l in formula (2) is an integer of 2 to 5.
  3.  前記RおよびRはそれぞれ独立に、炭素数1~4の非重合性の有機基である、請求項1または2に記載のネガ型感光性樹脂組成物。 3. The negative photosensitive resin composition according to claim 1, wherein R 1 and R 2 are each independently a non-polymerizable organic group having 1 to 4 carbon atoms.
  4.  前記式(2)中のAは、炭素-炭素不飽和二重結合を含む基である、請求項1~3のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 3, wherein A in the formula (2) is a group containing a carbon-carbon unsaturated double bond.
  5.  前記式(2)で表される構造は、式(3)または式(4)で表わされる構造である、請求項1~4のいずれか1項に記載のネガ型感光性樹脂組成物;
    Figure JPOXMLDOC01-appb-C000002
     式(3)中、Rは、水素原子またはメチル基を表し、Zは酸素原子またはNHを表し、Lは単結合またはm+1価の有機基を表し、mは1~10の整数を表し、*は他の部位との結合部位を示す;
     式(4)中、Lは単結合またはn+1価の有機基を表し、nは1~10の整数を表し、*は他の部位との結合部位を示す。
    The negative photosensitive resin composition according to any one of claims 1 to 4, wherein the structure represented by the formula (2) is a structure represented by the formula (3) or the formula (4);
    Figure JPOXMLDOC01-appb-C000002
    In the formula (3), R 3 represents a hydrogen atom or a methyl group, Z represents an oxygen atom or NH, L 2 represents a single bond or an m + 1 valent organic group, and m represents an integer of 1 to 10. , * Indicates a binding site with another site;
    In the formula (4), L 3 represents a single bond or an n + 1 valent organic group, n represents an integer of 1 to 10, and * represents a bonding site with another site.
  6.  前記ポリイミド前駆体の重量平均分子量が5000以上である、請求項1~5のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 5, wherein the polyimide precursor has a weight average molecular weight of 5,000 or more.
  7.  さらに、多官能ラジカル重合性モノマーを含む、請求項1~6のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, further comprising a polyfunctional radical polymerizable monomer.
  8.  さらに、熱塩基発生剤を含む、請求項1~7のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 7, further comprising a thermal base generator.
  9.  前記光重合開始剤がオキシム化合物およびメタロセン化合物から選ばれる少なくとも1種である、請求項1~8のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 8, wherein the photopolymerization initiator is at least one selected from an oxime compound and a metallocene compound.
  10.  再配線層用層間絶縁膜形成用である、請求項1~9のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 9, which is used for forming an interlayer insulating film for a rewiring layer.
  11.  請求項1~10のいずれか1項に記載のネガ型感光性樹脂組成物を硬化してなる硬化膜。 A cured film obtained by curing the negative photosensitive resin composition according to any one of claims 1 to 10.
  12.  膜厚が1~30μmである、請求項11に記載の硬化膜。 The cured film according to claim 11, wherein the film thickness is 1 to 30 μm.
  13.  請求項1~10のいずれか1項に記載のネガ型感光性樹脂組成物を基板に適用して層状にする感光性樹脂組成物層形成工程と、
     前記ネガ型感光性樹脂組成物層を露光する露光工程と、
     前記露光された感光性樹脂組成物層に対して、現像処理を行う現像処理工程と、
     を有する硬化膜の製造方法。
    A photosensitive resin composition layer forming step of applying a negative photosensitive resin composition according to any one of claims 1 to 10 to a substrate to form a layer,
    An exposure step of exposing the negative photosensitive resin composition layer;
    A development processing step of performing development processing on the exposed photosensitive resin composition layer;
    The manufacturing method of the cured film which has this.
  14.  前記現像処理工程後に、現像されたネガ型感光性樹脂組成物層を50~500℃の温度で加熱する加熱工程を含む、請求項13に記載の硬化膜の製造方法。 The method for producing a cured film according to claim 13, further comprising a heating step of heating the developed negative photosensitive resin composition layer at a temperature of 50 to 500 ° C after the development processing step.
  15.  請求項11または12に記載の硬化膜を有する半導体デバイス。 A semiconductor device having the cured film according to claim 11 or 12.
  16.  請求項13または14に記載の硬化膜の製造方法を含む、積層体の製造方法。 The manufacturing method of a laminated body containing the manufacturing method of the cured film of Claim 13 or 14.
  17.  請求項13または14に記載の硬化膜の製造方法を含む、半導体デバイスの製造方法。 A method for manufacturing a semiconductor device, including the method for manufacturing a cured film according to claim 13 or 14.
  18.  式(1)で表される繰り返し単位を有し、少なくとも一方の末端に式(2)で表される構造を有し、重量平均分子量が50000以下であるポリイミド前駆体;
    Figure JPOXMLDOC01-appb-C000003
     式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、RおよびRはそれぞれ独立に、非重合性の有機基である;
    (A)-L-*   (2)
     式(2)中、Aは重合性基を表し、Lは単結合またはl+1価の有機基を表し、lは1~10の整数を表し、*は他の部位との結合部位を示す。
    A polyimide precursor having a repeating unit represented by the formula (1), having a structure represented by the formula (2) at at least one end, and having a weight average molecular weight of 50,000 or less;
    Figure JPOXMLDOC01-appb-C000003
    In formula (1), X represents a divalent organic group, Y represents a tetravalent organic group, and R 1 and R 2 are each independently a non-polymerizable organic group;
    (A) l -L 1- * (2)
    In the formula (2), A represents a polymerizable group, L 1 represents a single bond or an l + 1 valent organic group, l represents an integer of 1 to 10, and * represents a bonding site with another site.
  19.  前記RおよびRはそれぞれ独立に、炭素数1~4の非重合性の有機基である、請求項18に記載のポリイミド前駆体。 The polyimide precursor according to claim 18, wherein R 1 and R 2 are each independently a non-polymerizable organic group having 1 to 4 carbon atoms.
  20.  前記式(2)中のAは、炭素-炭素不飽和二重結合を含む基である、請求項18または19に記載のポリイミド前駆体。 The polyimide precursor according to claim 18 or 19, wherein A in the formula (2) is a group containing a carbon-carbon unsaturated double bond.
  21.  式(2)におけるlが、2~5の整数である、請求項18~20のいずれか1項に記載のポリイミド前駆体。 The polyimide precursor according to any one of claims 18 to 20, wherein l in formula (2) is an integer of 2 to 5.
PCT/JP2017/023341 2016-06-29 2017-06-26 Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for producing laminate, method for producing semiconductor device, and polyimide precursor WO2018003725A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187036825A KR102187513B1 (en) 2016-06-29 2017-06-26 Negative photosensitive resin composition, cured film, cured film manufacturing method, semiconductor device, laminate manufacturing method, semiconductor device manufacturing method, and polyimide precursor
JP2018525148A JP6837063B2 (en) 2016-06-29 2017-06-26 Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for manufacturing laminate, method for manufacturing semiconductor device and polyimide precursor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-129366 2016-06-29
JP2016129366 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018003725A1 true WO2018003725A1 (en) 2018-01-04

Family

ID=60787309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023341 WO2018003725A1 (en) 2016-06-29 2017-06-26 Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for producing laminate, method for producing semiconductor device, and polyimide precursor

Country Status (4)

Country Link
JP (1) JP6837063B2 (en)
KR (1) KR102187513B1 (en)
TW (1) TWI728137B (en)
WO (1) WO2018003725A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246349A1 (en) 2019-06-03 2020-12-10 三菱瓦斯化学株式会社 Photosensitive resin composition and cured film thereof
WO2021059917A1 (en) * 2019-09-25 2021-04-01 富士フイルム株式会社 Organic film and manufacturing method therefor, composition, laminate, and semiconductor device
WO2021198793A1 (en) * 2020-03-31 2021-10-07 Kaneka Corporation Thermoplastic-thermoset hybrid resins, methods, and uses thereof
WO2022203071A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Curable resin composition and cured resin layer using same
WO2023276517A1 (en) * 2021-07-02 2023-01-05 東レ株式会社 Resin composition, cured product, production method for cured product, electronic component, display device, and semiconductor device
KR20230136738A (en) * 2022-03-18 2023-09-26 닛산 가가쿠 가부시키가이샤 Photosensitive resin composition for forming an insulating film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808143B (en) * 2018-03-29 2023-07-11 日商富士軟片股份有限公司 Photosensitive resin composition, cured film, laminate and their manufacturing method, semiconductor device and thermal alkali generator used therefor
TWI668515B (en) * 2018-05-22 2019-08-11 臻鼎科技股份有限公司 Photosensitive resin compositon, method for manufacturing the same, polymer film, and copper clad plate
CN110515269B (en) 2018-05-22 2022-12-20 臻鼎科技股份有限公司 Photosensitive resin composition and preparation method thereof, polymer film and copper-clad plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281671A (en) * 1998-10-30 2000-10-10 Hitachi Chemical Dupont Microsystems Ltd Tetracarboxylic dianhydride, its derivative and production, polyimide precursor, polyimide, resin composition, photosensitive resin composition, production of relief pattern, and electronic part
JP2003167337A (en) * 2001-12-04 2003-06-13 Hitachi Chemical Dupont Microsystems Ltd Method for manufacturing multilayer wiring structure
JP2004124054A (en) * 2002-06-07 2004-04-22 Toray Ind Inc Heat resistant resin precursor composition
WO2012165448A1 (en) * 2011-06-01 2012-12-06 日本ゼオン株式会社 Resin composition and semiconductor element substrate
WO2015199219A1 (en) * 2014-06-27 2015-12-30 富士フイルム株式会社 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193691A (en) * 2005-01-17 2006-07-27 Nippon Kayaku Co Ltd Photosensitive polyamic acid and photosensitive composition including the same
JP2007056196A (en) * 2005-08-26 2007-03-08 Tokyo Institute Of Technology Polyimide precursor composition, method for producing polyimide film and semiconductor device
JP4826415B2 (en) * 2005-10-12 2011-11-30 東レ株式会社 Photosensitive resin composition
JP4923656B2 (en) * 2006-03-22 2012-04-25 日立化成デュポンマイクロシステムズ株式会社 Negative photosensitive resin composition, pattern manufacturing method, and electronic component
JP4840014B2 (en) * 2006-07-31 2011-12-21 日立化成デュポンマイクロシステムズ株式会社 Positive photosensitive resin composition, method for producing patterned cured film, and electronic component
JP5076390B2 (en) * 2006-07-31 2012-11-21 日立化成デュポンマイクロシステムズ株式会社 Negative photosensitive resin composition, method for producing patterned cured film, and electronic component
JP5021337B2 (en) * 2007-02-28 2012-09-05 旭化成イーマテリアルズ株式会社 Resin composition containing thermal base generator
JP5942348B2 (en) * 2011-07-04 2016-06-29 Jnc株式会社 Thermosetting inkjet ink and use thereof
JP2013076845A (en) 2011-09-30 2013-04-25 Nippon Zeon Co Ltd Photosensitive resin composition
WO2015064280A1 (en) * 2013-10-30 2015-05-07 太陽インキ製造株式会社 Photosensitive heat-curable resin composition and flexible printed wiring board
JP6300491B2 (en) * 2013-11-08 2018-03-28 オリンパス株式会社 Solid-state imaging device and imaging device
JP6278817B2 (en) * 2014-04-24 2018-02-14 Jfeケミカル株式会社 Polyamic acid composition and polyimide composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281671A (en) * 1998-10-30 2000-10-10 Hitachi Chemical Dupont Microsystems Ltd Tetracarboxylic dianhydride, its derivative and production, polyimide precursor, polyimide, resin composition, photosensitive resin composition, production of relief pattern, and electronic part
JP2003167337A (en) * 2001-12-04 2003-06-13 Hitachi Chemical Dupont Microsystems Ltd Method for manufacturing multilayer wiring structure
JP2004124054A (en) * 2002-06-07 2004-04-22 Toray Ind Inc Heat resistant resin precursor composition
WO2012165448A1 (en) * 2011-06-01 2012-12-06 日本ゼオン株式会社 Resin composition and semiconductor element substrate
WO2015199219A1 (en) * 2014-06-27 2015-12-30 富士フイルム株式会社 Thermal base generator, thermosetting resin composition, cured film, cured film manufacturing method, and semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246349A1 (en) 2019-06-03 2020-12-10 三菱瓦斯化学株式会社 Photosensitive resin composition and cured film thereof
KR20220016450A (en) 2019-06-03 2022-02-09 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Photosensitive resin composition and cured film thereof
WO2021059917A1 (en) * 2019-09-25 2021-04-01 富士フイルム株式会社 Organic film and manufacturing method therefor, composition, laminate, and semiconductor device
JPWO2021059917A1 (en) * 2019-09-25 2021-04-01
JP7204937B2 (en) 2019-09-25 2023-01-16 富士フイルム株式会社 Organic film and its manufacturing method, composition, laminate, and semiconductor device
JP7478806B2 (en) 2019-09-25 2024-05-07 富士フイルム株式会社 Organic film and its manufacturing method, composition, laminate, and semiconductor device
WO2021198793A1 (en) * 2020-03-31 2021-10-07 Kaneka Corporation Thermoplastic-thermoset hybrid resins, methods, and uses thereof
JP7447303B2 (en) 2020-03-31 2024-03-11 株式会社カネカ Thermoplastic-thermosetting hybrid resins, methods and uses thereof
WO2022203071A1 (en) * 2021-03-26 2022-09-29 リンテック株式会社 Curable resin composition and cured resin layer using same
WO2023276517A1 (en) * 2021-07-02 2023-01-05 東レ株式会社 Resin composition, cured product, production method for cured product, electronic component, display device, and semiconductor device
KR20230136738A (en) * 2022-03-18 2023-09-26 닛산 가가쿠 가부시키가이샤 Photosensitive resin composition for forming an insulating film
KR102628683B1 (en) 2022-03-18 2024-01-25 닛산 가가쿠 가부시키가이샤 Photosensitive resin composition for forming an insulating film

Also Published As

Publication number Publication date
TWI728137B (en) 2021-05-21
JPWO2018003725A1 (en) 2019-05-16
TW201807497A (en) 2018-03-01
KR20190010614A (en) 2019-01-30
KR102187513B1 (en) 2020-12-07
JP6837063B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6782298B2 (en) Resin composition and its applications
JP6813602B2 (en) Photosensitive resin compositions, heterocyclic-containing polymer precursors, cured films, laminates, methods for producing cured films, and semiconductor devices.
WO2018003725A1 (en) Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for producing laminate, method for producing semiconductor device, and polyimide precursor
WO2018025738A1 (en) Photosensitive resin composition, cured film, laminate, method for producing cured film, method for producing laminate, and semiconductor device
JP6808831B2 (en) Photosensitive resin compositions, cured films, laminates, methods for producing cured films, semiconductor devices and compounds
JP6704048B2 (en) Negative-type photosensitive resin composition, cured film, cured film manufacturing method, semiconductor device, laminated body manufacturing method, semiconductor device manufacturing method, and polyimide precursor
JP6808829B2 (en) Photosensitive resin compositions, polymer precursors, cured films, laminates, cured film manufacturing methods and semiconductor devices
JP6751159B2 (en) Photosensitive resin composition, cured film, laminate, method for producing cured film, method for producing laminate, and semiconductor device
JP7277572B2 (en) Curable resin composition, cured film, laminate, method for producing cured film, and semiconductor device
JP6745344B2 (en) Pattern forming method, laminated body manufacturing method, and electronic device manufacturing method
JP7008732B2 (en) Photosensitive resin composition, resin, cured film, laminate, method for manufacturing cured film, semiconductor device
JP7065120B2 (en) Photosensitive resin composition, cured film, laminate, method for manufacturing cured film, method for manufacturing laminate, semiconductor device
WO2020066416A1 (en) Photosensitive resin composition, cured film, laminate, method for producing cured film, and semiconductor device
WO2020066975A1 (en) Resin composition, cured film, laminate, cured film production method, and semiconductor device
WO2020054226A1 (en) Photosensitive resin composition, cured film, laminate, method for producing cured film, and semiconductor device
JP7254194B2 (en) Curable resin composition, cured film, laminate, method for producing cured film, semiconductor device, resin, and method for producing resin
WO2021002383A1 (en) Curable resin composition, method for producing curable resin composition, cured film, multilayer body, method for producing cured film, and semiconductor device
WO2021039782A1 (en) Curable resin composition, cured film, layered product, method for producing cured film, semiconductor device, resin, and method for producing resin
WO2020170997A1 (en) Curable resin composition, cured film, laminate, method for producing cured film, semiconductor device, and thermal base generator
WO2019189111A1 (en) Photosensitive resin composition, cured film, laminate, method for manufacturing these, semiconductor device, and thermal base generator used in these
WO2020066244A1 (en) Photosensitive resin composition, cured film, layered product, production method for cured film, semiconductor device, and thermal base generator
JPWO2019013241A1 (en) Thermosetting resin composition, cured film thereof, laminate, semiconductor device, and methods for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525148

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187036825

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820081

Country of ref document: EP

Kind code of ref document: A1