WO2023276517A1 - Resin composition, cured product, production method for cured product, electronic component, display device, and semiconductor device - Google Patents

Resin composition, cured product, production method for cured product, electronic component, display device, and semiconductor device Download PDF

Info

Publication number
WO2023276517A1
WO2023276517A1 PCT/JP2022/021888 JP2022021888W WO2023276517A1 WO 2023276517 A1 WO2023276517 A1 WO 2023276517A1 JP 2022021888 W JP2022021888 W JP 2022021888W WO 2023276517 A1 WO2023276517 A1 WO 2023276517A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
resin composition
group
cured product
carbon atoms
Prior art date
Application number
PCT/JP2022/021888
Other languages
French (fr)
Japanese (ja)
Inventor
荘司優
小笠原央
荒木斉
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020237037759A priority Critical patent/KR20240028331A/en
Priority to JP2022535492A priority patent/JPWO2023276517A1/ja
Publication of WO2023276517A1 publication Critical patent/WO2023276517A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/22Exposing sequentially with the same light pattern different positions of the same surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a resin composition, a cured product, a method for producing a cured product, an electronic component, a display device, and a semiconductor device.
  • polyimide resins and polybenzoxazole resins which are excellent in heat resistance and elongation at break, have been widely used for surface protective films and interlayer insulating films of semiconductor devices.
  • polyimide and polybenzoxazole are obtained by thermally dehydrating and ring-closing a coating film of these precursors to obtain a thin film having excellent heat resistance and elongation at break. In that case, high-temperature firing at around 350° C. is usually required.
  • MRAM Magneticoresistive Random Access Memory
  • the film after heat curing remains as a permanent film inside the device, so the physical properties of the cured product, especially the elongation, are very important. Also, when used as an insulating film between wiring layers in a wafer level package, it is necessary that no cracks or peeling occur in a reliability test such as a thermal cycle test.
  • Patent Document 1 a method using a polybenzoxazole precursor having an aliphatic group (Patent Document 1) or a photosensitive resin composition containing a novolac resin having a crosslinkable group has been proposed (Patent Document 2).
  • the polybenzoxazole precursor having an aliphatic group described in Patent Document 1 and the cured product of the photosensitive resin composition containing the novolac resin described in Patent Document 2 are included in the cured product after the thermal cycle test.
  • the resin deteriorates and cracks occur after the reliability test.
  • the novolak resin described in Patent Document 2 has a low breaking elongation when cured, cracks are likely to occur after a thermal cycle test.
  • the present invention relates to the following. That is, the resin composition of the present invention is a resin composition containing (A) a resin represented by formula (1) and (B) a resin represented by formula (2).
  • each X independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole or a precursor thereof, and R 1 is a monovalent represented by formula (3) or formula (4). is the base.
  • R a represents a group selected from the group consisting of R 1 , a hydrogen atom, and a monovalent organic group having 1 to 20 carbon atoms.
  • n 1 is an integer from 2 to 200;
  • each Y independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole, or a precursor thereof, and R2 is a monovalent group represented by formula (5).
  • R b represents a group selected from the group consisting of R 2 , a hydrogen atom and a monovalent organic group having 1 to 20 carbon atoms.
  • n2 is an integer from 2 to 200;
  • R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. * represents a joint.
  • the resin composition of the present invention comprises (A) a resin represented by formula (1) (hereinafter sometimes referred to as component (A) or (A) resin) and (B) represented by formula (2). containing a resin (hereinafter sometimes referred to as (B) component or (B) resin).
  • each X independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole or a precursor thereof, and R 1 is a monovalent represented by formula (3) or formula (4). is the base.
  • R a represents a group selected from the group consisting of R 1 , a hydrogen atom, and a monovalent organic group having 1 to 20 carbon atoms.
  • n 1 is an integer from 2 to 200;
  • each Y independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole, or a precursor thereof, and R2 is a monovalent group represented by formula (5).
  • R b represents a group selected from the group consisting of R 2 , a hydrogen atom and a monovalent organic group having 1 to 20 carbon atoms.
  • n2 is an integer from 2 to 200;
  • R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. * represents a joint.
  • the terminal of component (A) reacts with the terminal of component (B) in low-temperature curing at 250° C. or less, resulting in a cured product. Since the molecular weight of the resin inside can be increased, the elongation at break and the crack resistance after the thermal cycle test are improved.
  • X in component (A) and Y in component (B) are each independently repeating structural units of polyamide, polyimide, polybenzoxazole, or precursors thereof.
  • Polyimide is not particularly limited as long as it has an imide ring.
  • the polyimide precursor is not particularly limited as long as it has a structure that becomes a polyimide having an imide ring upon dehydration and ring closure, and may contain polyamic acid, polyamic acid ester, or the like.
  • the polyamide is not particularly limited as long as it has an amide bond.
  • Polybenzoxazole is not particularly limited as long as it has a benzoxazole ring.
  • the polybenzoxazole precursor is not particularly limited as long as it has a structure that becomes polybenzoxazole having a benzoxazole ring upon dehydration and ring closure, and may contain polyhydroxyamide or the like.
  • Components (A) and (B) are used because they can easily provide excellent properties as surface protective films for semiconductor devices, interlayer insulating films, insulating layers for display devices such as organic light-emitting devices, and flattening films for TFT substrates. It is preferable that the amount of outgas at a high temperature of 160° C. or higher after heat treatment is small.
  • component (A) and component (B) preferably contain at least one selected from the group consisting of polyamide, polyimide, polybenzoxazole, precursors thereof, and copolymers thereof.
  • the components (A) and (B) can be obtained, for example, by polycondensing dicarboxylic acids, dicarboxylic acid derivatives, acid dianhydrides, diamines, acid anhydrides, monoamines, and the like.
  • dicarboxylic acid derivatives include, but are not limited to, dicarboxylic acid dichlorides, active amide compounds such as hydroxybenzotriazole and imidazole.
  • R 1 in component (A) and R 2 in component (B) contain monoamines, acid anhydrides, monocarboxylic acids, monocarboxylic acid chloride compounds, monoactive ester compounds, etc. as main chain end caps. Obtained by condensation.
  • R 1 in component (A) and R 2 in component (B) are at least one hydrogen atom selected from maleimide, maleic acid monoalkyl ester, 2-aminostyrene, 3-aminostyrene, 4-aminostyrene, etc. , a structure in which the OH or amino group of the carboxyl group is removed (hereinafter sometimes referred to as "residue").
  • R a in components (A) and (B) represents a group selected from the group consisting of R 1 , a hydrogen atom, and an organic group having 1 to 20 carbon atoms
  • R b represents R 2 , a hydrogen atom.
  • organic groups having 1 to 20 carbon atoms include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1- Hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-amino naphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy -5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-
  • the repeating structural unit of the polyimide is a repeating structural unit represented by formula (6)
  • the repeating structural unit of the polyamide, polyimide precursor or polybenzoxazole precursor is a repeating structural unit represented by formula (7)
  • the repeating structural unit of the polybenzoxazole is represented by formula (8). is preferably a repeating structural unit.
  • R 4 represents a tetravalent organic group having 4 to 40 carbon atoms.
  • R 5 represents a divalent organic group having 4 to 40 carbon atoms.
  • R 6 represents a divalent to octavalent organic group having 4 to 40 carbon atoms.
  • R 7 represents a divalent to tetravalent organic group having 4 to 40 carbon atoms.
  • R 8 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • q and r are in the range of 0 ⁇ q ⁇ 4, 0 ⁇ r ⁇ 4 and represent integers satisfying 0 ⁇ q+r ⁇ 6.
  • s represents an integer from 0 to 2;
  • R 9 represents a divalent organic group having 4 to 40 carbon atoms.
  • R 10 represents a divalent organic group having 4 to 40 carbon atoms.
  • R 4 represents a tetravalent organic group having 4 to 40 carbon atoms.
  • examples of the tetravalent organic group having 4 to 40 carbon atoms include residues of aromatic tetracarboxylic acids and aliphatic tetracarboxylic acids.
  • the aliphatic tetracarboxylic acid residue is preferably an alicyclic tetracarboxylic acid residue.
  • residue of the aromatic tetracarboxylic acid include pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′-biphenyltetracarboxylic acid, 2 ,2′,3,3′-biphenyltetracarboxylic acid, 3,3′,4,4′-diphenylethertetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 2,2′,3 ,3′-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)propane, 2,2-bis(2,3-dicarboxyphenyl)propane, 1,1-bis(3,4 -dicarboxyphenyl)ethane, 1,1-bis(2,3-dicarboxyphenyl)ethane, bis(3,4-dicarboxyphenyl)methane
  • residue of the aliphatic tetracarboxylic acid include residues of cyclobutanetetracarboxylic acid and 1,2,3,4-cyclopentanetetracarboxylic acid.
  • pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 3,3′,4,4′-diphenylethertetracarboxylic acid, 2,2-bis(3,4-di carboxyphenyl) is the residue of hexafluoropropane. Two or more types of these residues may be included.
  • R 6 represents a divalent to octavalent organic group having 4 to 40 carbon atoms
  • R 10 represents a divalent organic group having 4 to 40 carbon atoms in formula (8).
  • divalent to octavalent organic groups having 4 to 40 carbon atoms include residues of aromatic dicarboxylic acids, aromatic tricarboxylic acids, aromatic tetracarboxylic acids, aliphatic dicarboxylic acids, aliphatic tetracarboxylic acids, and the like. be done.
  • aromatic dicarboxylic acid residue examples include residues of terephthalic acid, isophthalic acid, diphenyletherdicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyldicarboxylic acid, benzophenonedicarboxylic acid, triphenyldicarboxylic acid, and the like. be done.
  • aromatic tricarboxylic acid residue examples include residues of trimellitic acid, trimesic acid, diphenylethertricarboxylic acid, biphenyltricarboxylic acid, and the like.
  • aromatic tetracarboxylic acid residue examples include pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′-biphenyltetracarboxylic acid, 2, 2′,3,3′-biphenyltetracarboxylic acid, 3,3′,4,4′-diphenylethertetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 2,2′,3, 3′-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)propane, 2,2-bis(2,3-dicarboxyphenyl)propane, 1,1-bis(3,4- dicarboxyphenyl)ethane, 1,1-bis(2,3-dicarboxyphenyl)ethane, bis(3,4-dicarboxyphenyl)methane, bis(2,3-dicar
  • residues of aliphatic dicarboxylic acids include residues of adipic acid, sebacic acid, dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid, and the like.
  • aliphatic tetracarboxylic acids include residues of cyclobutanetetracarboxylic acid and 1,2,3,4-cyclopentanetetracarboxylic acid.
  • R6 and R10 may contain two or more of these residues.
  • R 8 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, such as a hydrocarbon group, a fluoroalkyl group, a phenyl group and a substituted phenyl group.
  • Substituents of the substituted phenyl group include hydrocarbon groups, fluoroalkyl groups, phenyl groups, nitro groups, cyano groups, carboxyl groups, hydroxyl groups, amino groups, sulfonic acid groups and the like.
  • R 5 in formula (6), R 7 in formula (7), and R 9 in formula (8) contain structures derived from diamine residues.
  • the diamine residue include 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 1,4-bis( 4-aminophenoxy)benzene, benzidine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxy)biphenyl, bis ⁇ 4-(4-amino phenoxy)phenyl ⁇ ether, 1,4-bis(4-aminophenoxy)benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-diethyl-4,4'-dia
  • R 4 in formula (6) and R 6 in formula (7) are structures represented by formula (9), and R 5 in formula (6) and R 7 in formula (7) are It preferably has a structure represented by formula (10).
  • R 11 represents a single bond, —O—, —C(CF 3 ) 2 —, or a structure represented by formula (11). * represents a joint.
  • R 12 is a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, and each R 13 is independently a hydrogen atom or a represents a monovalent organic group of ⁇ 20.
  • R 14 represents a structure represented by a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —. * represents a joint.
  • the resin composition contains (A) component and (B) component having the structural units of the formula (9) and the formula (10) in the formula (6) or (7). High breaking elongation and high crack resistance can be easily obtained in cured products.
  • R 9 in formula (8) is a structure represented by a single bond, a divalent hydrocarbon group having 1 to 6 carbon atoms, or a fluoroalkylene group having 1 to 6 carbon atoms
  • R 10 is represented by formula (12 ) preferably has a structure represented by
  • R 15 represents a structure represented by a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —. * represents a chemical bond.
  • R 1 and R 2 in the resin composition of the present invention have properties as an electron donor and an electron acceptor, respectively, and tend to form a charge transfer complex with each other. Therefore, the coexistence of R 1 and R 2 significantly improves the reactivity between the terminal groups compared to the presence of R 1 or R 2 alone.
  • M When M is within the above range, it becomes easier to form a charge transfer complex of R 1 and R 2 , and the reactivity between the terminal groups is significantly improved, so that the cured product has high elongation at break and high crack resistance. can get things.
  • M 0.25 or more and 4 or less, a cured product having sufficient mechanical strength can be obtained, and the cured product has high breaking elongation and high crack resistance.
  • the ratio M of the substance amount of terminal group R 1 of component (A) to the substance amount of terminal R 2 of component (B) can be determined by nuclear magnetic resonance (1H-NMR, 13C-NMR), infrared absorption spectroscopy (IR method), matrix-assisted laser desorption ionization method-time-of-flight mass spectrometry (MALDI-TOFMS) in a resin composition in which the molecular structures of components (A) and (B) have been identified, 1H-NMR. use.
  • the signal originating from the R 1 hydrogen atom appears at 5 to 6 ppm and the signal originating from the R 2 hydrogen atom appears at 6 to 6.5 ppm.
  • the total integrated value of the signal derived from the hydrogen atom of the amide bond appearing at 9 to 11 ppm is 100
  • the total integrated value of the signal derived from the hydrogen atom of the terminal group R 1 of the component (A) is r 1
  • the component (B) The total integral value of the signal derived from the hydrogen atom of the terminal group R 2 of is r 2
  • the weight average molecular weight of the resin composition of the present invention is preferably 5,000 or more and 35,000 or less.
  • a weight-average molecular weight of 5,000 or more in terms of polystyrene by GPC (gel permeation chromatography) is preferable because cracks do not occur in the film-forming process before curing, and 10,000 or more is more preferable.
  • the weight average molecular weight is more preferably 30,000 or less, even more preferably 25,000 or less.
  • the weight average molecular weight (Mw) can be confirmed using GPC (gel permeation chromatography).
  • NMP N-methyl-2-pyrrolidone
  • NMP is measured as a developing solvent and can be obtained in terms of polystyrene.
  • the resin composition of the present invention may contain a photoacid generator. Photosensitivity can be imparted to the resin composition by containing a photoacid generator.
  • the photoacid generator generates acid in the light-irradiated portion of the resin composition. As a result, the solubility of the light-irradiated portion in an alkaline developer increases, so that a positive pattern in which the light-irradiated portion dissolves can be obtained.
  • the photoacid generators mentioned above include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts, and the like.
  • the resin composition of the present invention can further contain a sensitizer and the like, if necessary.
  • quinonediazide compound a compound in which a sulfonic acid of naphthoquinonediazide is ester-bonded to a compound having a phenolic hydroxyl group is preferable.
  • Compounds having a phenolic hydroxyl group include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP -IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylenetris-FR-CR, BisRS-26X, DML-MBPC, DMLMBOC, DML-OCHP, DML-PCHP, DML- PC, DML-PTBP, DML-34X, DML-EP, DML-POP, Dimethylol-BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-BP, TML- HQ, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TP
  • Sulfonic acids of naphthoquinonediazide include 4-naphthoquinonediazide sulfonic acid and 5-naphthoquinonediazide sulfonic acid.
  • the affinity of the quinonediazide compound for an alkaline aqueous solution is lowered.
  • the solubility of the resin composition in the unexposed area in an alkaline aqueous solution is greatly reduced.
  • the quinonediazide sulfonyl group is converted to indenecarboxylic acid by exposure, and a high dissolution rate in an alkaline aqueous solution of the resin composition having photosensitivity in the exposed area can be obtained. That is, as a result, the dissolution rate ratio between the exposed area and the unexposed area of the composition can be increased, and a pattern with high resolution can be obtained.
  • a resin composition having positive-type photosensitivity that is sensitive to the i-line (365 nm), h-line (405 nm), g-line (436 nm) of a general mercury lamp and broadband including them. can get things.
  • the photoacid generator may be contained alone or in combination of two or more, and a resin composition having high sensitivity and photosensitivity can be obtained.
  • both a 5-naphthoquinonediazidesulfonyl group and a 4-naphthoquinonediazidesulfonyl group are preferably used.
  • a 5-naphthoquinonediazide sulfonyl ester compound has absorption extending to the g-line region of a mercury lamp, and is suitable for g-line exposure and full-wavelength exposure.
  • a 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure. It is preferable to select a 4-naphthoquinonediazide sulfonyl ester compound or a 5-naphthoquinone diazidesulfonyl ester compound depending on the wavelength of exposure.
  • a naphthoquinonediazidesulfonyl ester compound containing a 4-naphthoquinonediazidesulfonyl group and a 5-naphthoquinonediazidesulfonyl group in the same molecule can also be used in combination.
  • a quinonediazide compound can be synthesized by a known method through an esterification reaction between a compound having a phenolic hydroxyl group and a quinonediazide sulfonic acid compound. By using a quinonediazide compound, the resolution, sensitivity, and film retention rate are further improved.
  • sulfonium salts phosphonium salts and diazonium salts are preferable because they moderately stabilize the acid component generated by exposure. Among them, sulfonium salts are preferred.
  • the content of the photoacid generator is preferably 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass as the total amount of the components (A) and (B).
  • the content of the photoacid generator is 0.1 parts by mass or more and 100 parts by mass or less, photosensitivity can be imparted while maintaining the heat resistance, chemical resistance, and breaking elongation of the film after heat treatment. .
  • the content of the photoacid generator is more preferably 1 part by mass or more, and 3 parts by mass, relative to 100 parts by mass of the total amount of components (A) and (B).
  • the above is more preferable.
  • 100 mass parts or less are more preferable, and 80 mass parts or less are still more preferable.
  • the amount is 1 part by mass or more and 100 parts by mass or less, photosensitivity can be imparted while maintaining the heat resistance, chemical resistance and breaking elongation of the film after heat treatment.
  • the content of the photoacid generator is 0.1 parts by mass with respect to 100 parts by mass of the total amount of components (A) and (B).
  • the above is more preferable, 1 part by mass or more is more preferable, and 3 parts by mass or more is particularly preferable.
  • it is more preferably 100 parts by mass or less, even more preferably 80 parts by mass or less, and particularly preferably 50 parts by mass or less.
  • the amount is 0.1 parts by mass or more and 100 parts by mass or less, photosensitivity can be imparted while maintaining the heat resistance, chemical resistance and breaking elongation of the film after heat treatment.
  • the resin composition of the present invention preferably contains a photopolymerization initiator and a photopolymerizable compound.
  • the photopolymerization initiator and photopolymerizable compound polymerize in the light-irradiated portion of the resin composition and become insoluble in the developer. As a result, the solubility in the developing solution of the light-irradiated portion is drastically reduced, so that a negative pattern in which the light-unirradiated portion dissolves can be obtained.
  • Benzophenones such as benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, and 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone.
  • benzylidenes such as 3,5-bis(diethylaminobenzylidene)-N-methyl-4-piperidone and 3,5-bis(diethylaminobenzylidene)-N-ethyl-4-piperidone; 7-diethylamino-3-thenonylcoumarin, 4,6-dimethyl-3-ethylaminocoumarin, 3,3-carbonylbis(7-diethylaminocoumarin), 7-diethylamino-3-(1-methylbenzimidazolyl)coumarin, 3 - Coumarins such as (2-benzothiazolyl)-7-diethylaminocoumarin.
  • anthraquinones such as 2-t-butylanthraquinone, 2-ethylanthraquinone and 1,2-benzanthraquinone
  • benzoins such as benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether
  • mercaptos such as ethylene glycol di(3-mercaptopropionate), 2-mercaptobenzthiazole, 2-mercaptobenzoxazole and 2-mercaptobenzimidazole
  • glycines such as N-phenylglycine, N-methyl-N-phenylglycine, N-ethyl-N-(p-chlorophenyl)glycine, N-(4-cyanophenyl)glycine
  • 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime 1-phenyl-1,2-propanedione-2-(o(methoxycarbonyl)
  • Oximes 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one
  • A-aminoalkylphenones such as 2,2′-bis(o-chlorophenyl)-4,4′,5,5′-tetraphenylbiimidazole and the like.
  • oximes are preferred. More preferred are 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl)oxime, bis(A -isonitrosopropiophenone oxime) isophthal, 1,2-octanedione-1-[4-(phenylthio)phenyl]-2-(o-benzoyloxime), OXE02, NCI-831. These are used alone or in combination of two or more. The structures of OXE-02 and NCI-831 are shown in the following formulas.
  • the content of the photopolymerization initiator is preferably 0.1 to 60 parts by mass, more preferably 0.2 to 40 parts by mass with respect to 100 parts by mass as the total amount of components (A) and (B).
  • amount is 0.1 part by mass or more, sufficient radicals are generated by light irradiation, and sensitivity is improved.
  • the solubility in the developer is improved.
  • the photopolymerizable compound examples include compounds having unsaturated double bond-containing groups such as vinyl groups, allyl groups, acryloyl groups, and methacryloyl groups, and unsaturated triple bond-containing groups such as propargyl groups.
  • the photopolymerizable compound may contain two or more of these unsaturated bond-containing groups.
  • conjugated vinyl groups, acryloyl groups, and methacryloyl groups are preferred from the standpoint of polymerizability.
  • the number of unsaturated bonds in the photopolymerizable compound is preferably 1 to 6 from the viewpoint of suppressing cracks in the cured product caused by excessive cross-linking points due to the polymerization reaction.
  • photopolymerizable compounds include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, and trimethylolpropane.
  • photopolymerizable compounds include 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, isobornyl acrylate, isobornyl methacrylate, pentaerythritol tri Acrylates, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, methylenebisacrylamide, N,N-dimethylacrylamide, N-methylolacrylamide, 2,2,6 ,6-tetramethylpiperidinyl methacrylate, 2,2,6,6-tetramethylpiperidinyl acrylate, N-methyl-2,2,6,6-tetramethylpiperid
  • dipentaerythritol hexaacrylate dipentaerythritol hexamethacrylate, ethylene oxide-modified bisphenol A diacrylate, ethylene oxide-modified bisphenol A dimethacrylate, propylene oxide-modified bisphenol A diacrylate, and propylene oxide-modified bisphenol A dimethacrylate.
  • the content of the photopolymerizable compound in the resin composition of the present invention is 40 parts by mass with respect to 100 parts by mass of the total amount of components (A) and (B) from the viewpoint of improving the residual film rate after development. It is preferably 50 parts by mass or more, more preferably 50 parts by mass or more. On the other hand, from the viewpoint of improving the breaking elongation of the cured product, the content of the photopolymerizable compound is 150 parts by mass or less with respect to 100 parts by mass of the total amount of components (A) and (B). is preferred, and 100 parts by mass or less is more preferred.
  • the resin composition of the present invention may contain a thermal cross-linking agent.
  • the thermal cross-linking agent includes at least two groups selected from the group consisting of acrylic groups, methacrylic groups, epoxy groups, oxetanyl groups, benzoxazine structures, alkoxymethyl groups and methylol groups. is a compound.
  • Thermal cross-linking agents preferably include, but are not limited to, compounds having at least two alkoxymethyl or methylol groups.
  • "having at least two alkoxymethyl groups or methylol groups” means having two or more alkoxymethyl groups, having two or more methylol groups, and having a total of two or more alkoxymethyl groups and methylol groups.
  • a crosslinked structure can be formed by a condensation reaction with a resin and a molecule of the same kind.
  • a photoacid generator When used in combination with a photoacid generator, a wider range of designs is possible for improving sensitivity and breaking elongation of cured products.
  • thermal cross-linking agents include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP and DML-PSBP.
  • DML-POP DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DMLBisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML -P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM -BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (the above are trade names, manufactured by Honshu Chemical Industry Co., Ltd.), "NIKALAC (registered trademark)" MX-290, NIKALAC MX -280, NIKALAC MX-
  • the content of the compound having at least two alkoxymethyl groups or methylol groups is preferably 10 parts by mass or less with respect to 100 parts by mass as the total amount of components (A) and (B). Within this range, a wide range of designs can be made more appropriately for improving the sensitivity and breaking elongation of the cured product.
  • the resin composition of the present invention preferably contains (G) a compound represented by formula (13) (hereinafter sometimes referred to as component (G)).
  • component (G) a compound represented by formula (13)
  • These compounds have a structure that does not have an aromatic ring in the molecule, so that the solubility in an alkaline developer increases, and patterning can be performed with high sensitivity.
  • the decomposition of (G) in the resin cured product due to heat or light irradiation including ultraviolet rays can be suppressed, and three-dimensional cross-linking can be formed, so it has a high breaking elongation and high crack resistance even after a thermal cycle test. It is possible to obtain a cured product having.
  • L 1 represents a structure represented by an alkylene group having 1 to 8 carbon atoms.
  • Compounds represented by formula (13) include, for example, “TEPIC (registered trademark)”-S, “TEPIC”-L, “TEPIC”-VL, and “TEPIC”-FL. From the viewpoint of compatibility and curability, it is preferable to use these compounds. A product name (manufactured by Shikoku Kasei Co., Ltd.) may also be used.
  • the content of the compound represented by formula (13) is 5 parts by mass or more with respect to 100 parts by mass of the total amount of components (A) and (B) from the viewpoint of improving crack resistance in thermal cycles. preferably 10 parts by mass or more.
  • the total amount of component (A) and component (B) may be 100 parts by mass or less with respect to 100 parts by mass. preferable.
  • the resin composition of the present invention may contain an adhesion improver.
  • Adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy group-containing A compound obtained by reacting a silicon compound can be contained. You may contain 2 or more types of these.
  • adhesion to an underlying base material such as a silicon wafer, ITO, SiO 2 , or silicon nitride can be enhanced when developing a resin film.
  • resistance to oxygen plasma and UV ozone treatment used for cleaning can be enhanced.
  • the content of the adhesion improver in the resin composition is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass as the total amount of components (A) and (B). By setting it as such a range, the adhesiveness after image development is high, and the resin composition excellent in resistance to oxygen plasma and UV ozone treatment can be provided.
  • the resin composition of the present invention may contain a compound having a phenolic hydroxyl group in order to facilitate alkali developability. Since the resin composition contains a compound having a phenolic hydroxyl group, it is almost insoluble in an alkaline developer before exposure, and easily dissolved in an alkaline developer after exposure. Easier to develop in time. Therefore, it becomes easier to improve the sensitivity.
  • Compounds having a phenolic hydroxyl group selected from these points include, for example, Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, BisP -MZ, BisP-EZ, Bis26X-CP, BisP-PZ, BisP-IPZ, BisCRIPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (Tetrakis P-DO-BPA), TrisPHAP , TrisPPA, TrisP-PHBA, TrisP-SA, TrisOCR-PA, BisOFP-Z, BisRS-2P, BisPG-26X, BisRS-3P, BisOC-OCHP, BisPC-OCHP, Bis25X-OCHP, Bis26X-OCHP, BisOCHP-OC , Bis236T-OCHP, methylenetris-FR-CR, BisRS-
  • the resin composition of the present invention may contain a surfactant as necessary.
  • a surfactant By containing a surfactant, it is possible to improve the wettability with the substrate and improve the film thickness uniformity of the coating film.
  • Commercially available compounds can be used as surfactants.
  • the silicone-based surfactants include the SH series, SD series, and ST series of Toray Dow Corning Silicone Co., Ltd., the BYK series of BYK Chemie Japan, the KP series of Shin-Etsu Silicone Co., Ltd., the Disform series of NOF Corporation, Toshiba Silicone Co., Ltd.'s TSF series, etc.
  • fluorine-based surfactants include Dainippon Ink Industry's "Megafac (registered trademark)” series, Sumitomo 3M's Florard series, and Asahi Glass' “Surflon (registered trademark)” series.
  • Surfactants obtained from acrylic and/or methacrylic polymers include, but are not limited to, Polyflow series from Kyoeisha Chemical Co., Ltd., and "Disparon (registered trademark)” series from Kusumoto Kasei Co., Ltd.
  • the content of the surfactant is preferably 0.001 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass as the total amount of components (A) and (B).
  • the wettability between the resin composition and the substrate and the film thickness uniformity of the coating film can be improved without causing defects such as air bubbles and pinholes.
  • the resin composition of the present invention may contain a solvent.
  • Solvents include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2 - polar aprotic solvents such as imidazolidinone, N,N'-dimethylpropyleneurea, N,N-dimethylisobutyamide, methoxy-N,N-dimethylpropionamide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether, propylene ethers such as glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone and diisobutyl ketone; esters such as ethyl acetate, butyl acetate, isobutyl acetate,
  • the content of the solvent is preferably 100 parts by mass or more for the total amount of 100 parts by mass of the components (A) and (B), since the composition is easily dissolved. It is preferable to contain 1,500 parts by mass or less because it is easy to form.
  • the components (A) and (B) are mixed with, if necessary, a photoacid generator, a photopolymerization initiator, a thermal cross-linking agent, a compound having a phenolic hydroxyl group, an adhesion improver, a surfactant, a solvent, and the like.
  • the resin composition can be obtained by dissolving the resin composition.
  • Dissolution methods include heating and stirring.
  • the heating temperature is preferably set within a range that does not impair the performance of the resin composition, and is usually 25°C to 80°C.
  • the order of dissolving each component is not particularly limited, and for example, a method of dissolving compounds in order of low solubility can be mentioned.
  • the rotation speed is preferably set within a range that does not impair the performance of the resin composition, and is usually 200 rpm to 2000 rpm. Even when the mixture is stirred, it may be heated as necessary, and the temperature is usually 25°C to 80°C.
  • ingredients that tend to generate air bubbles during stirring and dissolution such as surfactants and some adhesion improvers
  • dissolving the other ingredients before adding them at the end will prevent poor dissolution of other ingredients due to air bubbles. can be prevented.
  • the viscosity of the resin composition of the present invention is preferably 2 to 5,000 mPa ⁇ s at 25°C.
  • a desired film thickness can be easily obtained by adjusting the solid content concentration so that the viscosity is 2 mPa ⁇ s or more.
  • the viscosity is 5,000 mPa ⁇ s or less, it becomes easy to obtain a highly uniform coating film.
  • the viscosity measurement here is a measurement using a TVE-25 type viscometer (manufactured by Toki Sangyo Co., Ltd.), a former E-type viscometer/DVE-type viscometer, and 1.1 mL of the resin composition of the present invention is sampled. and pour into the sample cup.
  • torque is selected in the range of 65-6000 ⁇ N ⁇ m and measured in the range of rotational speeds of 0.5-100 rpm.
  • the resin composition of the present invention having such a viscosity can easily be obtained by adjusting the combined content of component (A) and component (B) in 100% by mass of the resin composition of the present invention to 5 to 60% by mass. can get to
  • solid content concentration refers to components other than the solvent.
  • the obtained resin composition is preferably filtered using a filtration filter to remove dust and particles.
  • filter pore sizes include, but are not limited to, 0.5 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, 0.05 ⁇ m, and 0.02 ⁇ m.
  • Materials for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), etc., and polyethylene and nylon are preferred.
  • the cured product of the present invention is a cured product obtained by curing the resin composition of the present invention.
  • the curing reaction cross-linking reaction and ring closure reaction proceed by heat, light, etc.
  • the obtained cured product has improved heat resistance, elongation at break and chemical resistance.
  • the cured product is heat treated for 5 minutes to 2 hours between 50 ° C. and 200 ° C. where the solvent in the resin composition before curing volatilizes
  • the cured product film after heat treatment is compared to the cured product film thickness before heat treatment. If the film thickness change rate is within 10%, it is assumed that the film is cured.
  • the cured product of the present invention has high elongation at break and high crack resistance even after a thermal cycle test, and can improve the reliability of the semiconductor device, electronic component, and display device of the present invention.
  • the cured product of the present invention contains a resin having a structure represented by formula (14) or (15).
  • These structures are structures in which R 1 of component (A) and R 2 of component (B) in the resin composition of the present invention react after heat curing, and when the cured product contains a resin having these structures A cured product having high elongation at break and high crack resistance can be obtained due to the extension of the polymer chain due to the reaction between the polymer ends.
  • R 1 of component (A) and R 2 of component (B) in the resin composition of the present invention react after heat curing, they have a structure represented by formula (14) or formula (15) due to their bonding mode. It will be.
  • the cured product of the present invention may have only the structure represented by formula (14), may have only the structure represented by formula (15), or may have formula (14) You may have the structure represented by the formula (15) and the structure represented by the formula (15) at the same time.
  • These structures in the cured product are obtained by hydrolyzing the cured product with an alkali or the like, or the cured product itself, by nuclear magnetic resonance spectroscopy (1H-NMR, 13C-NMR), It can be identified using infrared absorption spectroscopy (IR method), matrix-assisted laser desorption/ionization method-time-of-flight mass spectrometry (MALDI-TOFMS), and the like.
  • the cured product of the present invention preferably contains a resin having a trifluoromethyl group. Having a trifluoromethyl group improves the hydrophobicity of the cured product and improves the crack resistance in a thermal cycle test.
  • the cured product may contain a resin having a structure represented by formula (14) or formula (15) and a trifluoromethyl group.
  • the cured product may contain a resin that does not have the structure represented by the formula (14) or (15) and has a trifluoromethyl group. From the viewpoint of compatibility, the cured product preferably contains a resin having a structure represented by formula (14) or formula (15) and a trifluoromethyl group.
  • the method for producing a cured product of the present invention includes a step of applying the resin composition of the present invention, a step of forming a pattern through an ultraviolet irradiation step and a developing step, and a step of heating to form a relief pattern layer of the cured product. is preferably included.
  • resin film refers to a film obtained by coating the resin composition of the present invention on a substrate and drying it.
  • the resin composition of the present invention is applied onto a substrate and dried to obtain a resin film.
  • a resin composition containing the above photoacid generator, or a resin composition containing the above photopolymerization initiator and a photopolymerizable compound it is preferable to use a resin composition containing the above photoacid generator, or a resin composition containing the above photopolymerization initiator and a photopolymerizable compound. Drying is preferably carried out using an oven, hot plate, infrared rays, or the like, at a temperature of 50° C. to 140° C. for 1 minute to 2 hours.
  • substrates include silicon wafers, ceramics, gallium arsenide, organic circuit substrates, inorganic circuit substrates, and circuit-forming materials disposed on these substrates, but are not limited to these.
  • coating methods include a spin coating method, a slit coating method, a dip coating method, a spray coating method, and a printing method.
  • the coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, etc., but the coating is usually applied so that the film thickness after drying is 0.1 to 150 ⁇ m.
  • the base material to be coated with the resin composition may be pretreated with the above-described adhesion improver.
  • a solution obtained by dissolving 0.5 to 20 parts by mass of an adhesion improver in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate is used.
  • a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate.
  • examples thereof include methods of treating the surface of the base material by spin coating, slit die coating, bar coating, dip coating, spray coating, vapor treatment, and the like.
  • After treating the surface of the base material it may be dried under reduced
  • the process of forming a pattern through an ultraviolet irradiation process and a development process may include an exposure process of irradiating chemical warfare through a mask having a desired pattern on a photosensitive resin film.
  • Chemical warfare used for exposure includes ultraviolet rays, visible rays, electron beams, X-rays, and the like. is preferably used.
  • Developers include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, Aqueous solutions of alkaline compounds such as dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone , polar solvents such as dimethylacrylamide, alcohols such as methanol, ethanol and isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopen
  • Solvents include, but are not limited to.
  • the developer may be a mixed solution of two or more selected from the above solvents.
  • the film can be rinsed with water, ethanol, alcohol such as isopropyl alcohol, ethyl lactate, ester such as propylene glycol monomethyl ether acetate, but not limited thereto.
  • the solution used for the rinse treatment may be a mixed solution of two or more selected from the above solvents.
  • the relief pattern layer of the cured product is formed by heat-treating the resin film to promote thermal cross-linking reaction and thermal ring-closing reaction.
  • the heat treatment of the resin film may be performed by gradually increasing the temperature, or may be performed while continuously increasing the temperature.
  • the heat treatment is preferably carried out for 5 minutes to 5 hours.
  • heat treatment is performed at 140° C. for 30 minutes, followed by heat treatment at 320° C. for 60 minutes.
  • the heat treatment temperature is preferably 140° C. or higher and 400° C. or lower.
  • the heat treatment temperature is preferably 140° C. or higher, more preferably 160° C. or higher, in order to advance the thermal crosslinking reaction and the thermal ring-closing reaction.
  • the heat treatment temperature is preferably 400° C. or lower, more preferably 350° C. or lower, in order to provide an excellent cured product and improve the yield.
  • the electronic component, display device or semiconductor device of the present invention comprises the cured product of the present invention.
  • the cured product of the present invention By having the cured product of the present invention, it is possible to obtain a highly reliable electronic component, display device or semiconductor device that does not generate cracks even after a thermal cycle test.
  • Examples of the configuration of the electronic component, display device, or semiconductor device of the present invention include, for example, the electronic component, display device, or semiconductor device described in JP-A-2020-66651 and WO 2021/085321. is not limited to
  • the present invention will be described below with reference to examples, etc., but the present invention is not limited to these examples.
  • the resin compositions in the examples were evaluated by the following methods.
  • a resin composition hereinafter referred to as varnish
  • a 1 ⁇ m polytetrafluoroethylene filter manufactured by Sumitomo Electric Industries, Ltd.
  • Terminal group R 1 of component (A) and terminal R 2 of component (B) in the resin composition 2 was calculated using 1H-NMR.
  • the measurement conditions are as follows. Measuring equipment: JNM-ECZ400R manufactured by JEOL RESONANCE Magnetic field strength: 400MHz Reference substance: Tetramethylsilane (TMS) Solvent: dimethyl sulfoxide (DMSO) Measurement temperature: 40°C In the obtained 1 H-NMR spectrum, the signal originating from the R 1 hydrogen atom appears at 5 to 6 ppm and the signal originating from the R 2 hydrogen atom appears at 6 to 6.5 ppm.
  • the total integrated value of the signal derived from the hydrogen atom of the amide bond appearing at 9 to 11 ppm is 100
  • the total integrated value of the signal derived from the hydrogen atom of the terminal group R 1 of the component (A) is r 1
  • the component (B) The total integral value of the signal derived from the hydrogen atom of the terminal group R 2 of is r 2
  • the weight-average molecular weight of the resin composition was obtained by standard polystyrene conversion using gel permeation chromatography (GPC).
  • the weight average molecular weight was measured using the following apparatus and conditions.
  • Measuring device Alliance e2695 manufactured by System Waters Detector: 2489 UV/Vis Detector (measurement wavelength 260 nm)
  • Measurement conditions column TOSOH TSK Guard column TOSOH TSK-GEL ⁇ -4000 TOSOH TSK-GEL ⁇ -2500
  • Developing solution NMP (containing 0.05 M lithium chloride and 0.05 M phosphoric acid)
  • Flow rate 0.4 ml/min
  • detector UV270 nm
  • the resin composition may be diluted with a solvent (NMP (containing 0.05 M lithium chloride and 0.05 M phosphoric acid)) for measurement so that detection can be performed with an analyzable peak intensity.
  • NMP containing 0.05 M lithium chloride and 0.05 M phosphoric acid
  • This film was cut into strips with a width of 1.5 cm and a length of 5 cm.
  • the elongation at break was measured by pulling at 5 mm/min. Measurement was performed on 10 strips per sample, and the average value of the top 5 points was obtained from the results.
  • a value of breaking elongation of 40% or more was rated as very good (3), a value of 20% or more and less than 40% was rated as good (2), and a value of less than 20% was rated as poor (1).
  • the varnish was applied on the evaluation substrate by a spin coating method using a coating and developing apparatus ACT-8 (manufactured by Tokyo Electron Ltd.) so that the film thickness after heat treatment at 120° C. for 3 minutes would be 8 to 12 ⁇ m.
  • Pre-baking was performed to produce a resin film. All pre-baking was performed at 120° C. for 3 minutes.
  • the resin film was heated from 50° C. to 250° C. at a rate of 3.5° C./min under a nitrogen stream using an inert oven (CLH-21CD-S, manufactured by Koyo Thermo Systems Co., Ltd.). After heating, heat treatment was performed at 250° C. for 1 hour to cure the resin film and obtain a cured product.
  • the film thickness after pre-baking is measured using a light interference film thickness measuring device Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. with a refractive index of 1.629. Measured at a refractive index of 1.773.
  • the evaluation substrate (hereinafter referred to as the sample) was taken out.
  • the sample was put into a thermal cycle tester (conditions: -65°C/30min to 150°C/30min) and subjected to 200 cycles. After that, the sample was taken out and the presence or absence of cracks in the cured product was observed using an optical microscope. A total of 10 observations were made at 2 locations each at the center of the substrate and 4 edges of the substrate, with 0 cracks being evaluated as very good, 1-2 cracks being evaluated as good, and 3 or more cracks being generated. A sample with 4 cracks was rated as 2 as slightly defective, and a sample with 5 to 10 cracks was rated as 1 as defective. A smaller number of cracks indicates better crack resistance. The evaluation result is preferably 3 or 4, most preferably 4.
  • the photosensitive varnishes of Examples 17 to 20 were applied onto an 8-inch silicon wafer by spin coating using a coating and developing apparatus ACT-8 so that the film thickness after prebaking at 120° C. for 3 minutes was 12 ⁇ m.
  • exposure machine i-line stepper manufactured by Nikon Corporation, NSR-2005i9C was used with a mask capable of forming a circular opening pattern of 3 to 50 ⁇ m on the cylindrical copper wiring. It was exposed with an exposure dose of cm 2 .
  • the film was developed using a 2.38% by mass tetramethylammonium (TMAH) aqueous solution (manufactured by Tama Kagaku Kogyo), rinsed with pure water, shaken off and dried to obtain a relief pattern film.
  • TMAH tetramethylammonium
  • CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.
  • the temperature was raised to 250° C. at an oxygen concentration of 20 ppm or less at 3.5° C./min, and heat treatment was performed at 250° C. for 1 hour. .
  • the wafer was taken out and immersed in 45 mass % hydrofluoric acid for 1 minute to peel off the cured product from the wafer.
  • a diluted HCl aqueous solution was prepared by diluting 20 g of concentrated hydrochloric acid (35% HCl aqueous solution) with 400 ml of deionized water.
  • the diluted HCl aqueous solution was gradually added to neutralize the alkaline hydrolysis aqueous solution.
  • a precipitate generated after the neutralization was collected by filtration, and the separated precipitate was washed with about 850 ml of ion-exchanged water.
  • the precipitate after washing was put into a hot air dryer and dried at 80° C. for 24 hours.
  • the precipitate obtained after drying was subjected to structural analysis of the cured product using 1H-NMR and FT-IR.
  • the measurement conditions are as follows. Measurement: 1H-NMR Measuring equipment: JNM-ECZ400R manufactured by JEOL RESONANCE Magnetic field strength: 400MHz Reference substance: Tetramethylsilane (TMS) Solvent: dimethyl sulfoxide (DMSO) Measurement temperature: 40°C.
  • FT-IR Measuring equipment INVENIO S manufactured by BRUKER Mode: Transmission Specimen: KBr plate Accumulation times: 16
  • the structure of formula (14) or formula (15) can be calculated from the integral ratio of each hydrogen atom, and in the obtained FT-IR spectrum, the structure of formula (14) or formula (15) Since a characteristic peak derived from a carbonyl group appears, the chemical structure of formula (14) or formula (15) can be identified.
  • a characteristic signal derived from a hydrogen atom directly connected to the tertiary carbon of Formula (14) or Formula (15) appears at 2 to 4 ppm. A cured product in which the signal was observed was evaluated as 1, and a cured product in which the signal was not observed was evaluated as 0.
  • Examples 1 to 12, 23, 24 As shown in Table 1, a varnish was prepared by adding 20 g of NMP as a solvent to 5 g of component (A) and 5 g of component (B).
  • Example 13 A varnish was prepared by adding 20 g of NMP as a solvent to 2.5 g of A-2 and 7.5 g of B-2.
  • Example 14 A varnish was prepared by adding 20 g of NMP as a solvent to 7.5 g of A-2 and 2.5 g of B-2.
  • Example 15 A varnish was prepared by adding 20 g of NMP as a solvent to 2.5 g of A-12 and 7.5 g of B-12.
  • Example 16 A varnish was prepared by adding 20 g of NMP as a solvent to 7.5 g of A-12 and 2.5 g of B-12.
  • Example 17 and 18 As shown in Table 1, to 5 g of component (A) and 5 g of component (B), 2.0 g of the following (C) photoacid generator, 3.0 g of (D) thermal cross-linking agent, and 20 g of ⁇ -butyrolactone as a solvent were added. A varnish was produced by
  • Example 19 and 20 As shown in Table 1, for 5 g of component (A) and 5 g of component (B), 1.5 g of the following (E) photopolymerization initiator, 4.5 g of (F) photopolymerizable compound, and 20 g of ⁇ -butyrolactone as a solvent. In addition, a varnish was produced.
  • Example 21 A varnish was prepared by adding 20 g of NMP as a solvent to 1.5 g of A-2 and 8.5 g of B-2.
  • Example 22 A varnish was prepared by adding 20 g of NMP as a solvent to 8.5 g of A-2 and 1.5 g of B-2.
  • Table 1 shows the material amount ratio, molecular weight, breaking elongation, and crack evaluation results of the resin compositions obtained in Examples and Comparative Examples.
  • Example 25 A varnish was prepared by adding 1 g of G-1 and 20 g of NMP as a solvent to 5 g of A-2 and 5 g of B-2.
  • Example 26 A varnish was prepared by adding 1 g of G-2 and 20 g of NMP as a solvent to 5 g of A-2 and 5 g of B-2.
  • Example 27 A varnish was prepared by adding 1 g of G-2 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
  • Example 28 A varnish was prepared by adding 1 g of G-2 and 20 g of NMP as a solvent to 5 g of A-12 and 5 g of B-12.
  • Example 29 A varnish was prepared by adding 0.5 g of G-2 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
  • Example 30 A varnish was prepared by adding 10 g of G-2 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
  • Example 31 A varnish was prepared by adding 0.5 g of G-3 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
  • Example 32 A varnish was prepared by adding 0.5 g of G-4 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
  • a varnish was prepared by adding 0.3 g of G-3 and 20 g of NMP as a solvent to 10 g of A-11.
  • a varnish was prepared by adding 1 g of G-3 and 20 g of NMP as a solvent to 10 g of A-11.
  • Table 2 shows the breaking elongation and crack evaluation results of the resin compositions obtained in each example and comparative example.
  • the resin composition of the present invention can be used for surface protective films such as semiconductor elements, interlayer insulating films, insulating layers of display devices such as organic light-emitting elements, flattening films of thin film transistor (hereinafter referred to as TFT) substrates, and wiring protective insulating films of circuit boards. , on-chip microlenses of solid-state imaging devices, flattening films for various displays and solid-state imaging devices, and solder resists for circuit boards.
  • surface protective films such as semiconductor elements, interlayer insulating films, insulating layers of display devices such as organic light-emitting elements, flattening films of thin film transistor (hereinafter referred to as TFT) substrates, and wiring protective insulating films of circuit boards.
  • TFT thin film transistor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are a resin composition that has a high breaking elongation and that has high crack resistance even after a thermal cycling test, a cured product obtained from said resin composition, and an electronic component, a display device, and a semiconductor device. This resin composition contains an (A) resin and a (B) resin, each of which has a specified structure at the ends thereof, said (A) resin and (B) resin containing at least one selected from the group consisting of a polyamide, a polyimide, a polybenzoxazole, precursors thereof, and copolymers thereof.

Description

樹脂組成物、硬化物、硬化物の製造方法、電子部品、表示装置および半導体装置Resin composition, cured product, method for producing cured product, electronic component, display device and semiconductor device
 本発明は、樹脂組成物、硬化物、硬化物の製造方法、電子部品、表示装置および半導体装置に関する。 The present invention relates to a resin composition, a cured product, a method for producing a cured product, an electronic component, a display device, and a semiconductor device.
 従来、半導体装置の表面保護膜や層間絶縁膜等には、耐熱性や破断伸度等に優れたポリイミド樹脂、ポリベンゾオキサゾール樹脂などが広く使用されている。通常、ポリイミドやポリベンゾオキサゾールは、これらの前駆体の塗膜を熱的に脱水閉環させて優れた耐熱性および破断伸度を有する薄膜を得る。その場合、通常350℃前後の高温焼成を必要とする。ところが、例えば次世代メモリとして有望なMRAM(Magnetoresistive Random Access Memory;磁気抵抗メモリ)や、封止樹脂は、高温に弱い。そのため、このような素子の表面保護膜や、封止樹脂上に再配線構造を形成するファンアウトウエハレベルパッケージの層間絶縁膜に用いるために、約250℃以下の低温での焼成で硬化し、従来の材料を350℃前後の高温で焼成した場合と遜色ない特性が得られるポリイミド樹脂またはポリベンゾオキサゾール樹脂が求められている。 Conventionally, polyimide resins and polybenzoxazole resins, which are excellent in heat resistance and elongation at break, have been widely used for surface protective films and interlayer insulating films of semiconductor devices. Generally, polyimide and polybenzoxazole are obtained by thermally dehydrating and ring-closing a coating film of these precursors to obtain a thin film having excellent heat resistance and elongation at break. In that case, high-temperature firing at around 350° C. is usually required. However, for example, MRAM (Magnetoresistive Random Access Memory), which is promising as a next-generation memory, and sealing resin are vulnerable to high temperatures. Therefore, in order to be used as a surface protective film for such devices and an interlayer insulating film for a fan-out wafer level package in which a rewiring structure is formed on a sealing resin, it is cured by baking at a low temperature of about 250° C. or less, There is a demand for polyimide resins or polybenzoxazole resins that can provide properties comparable to those obtained by baking conventional materials at a high temperature of around 350°C.
 樹脂組成物を半導体等の用途に用いる場合、加熱硬化後の膜はデバイス内に永久膜として残るため、硬化物の物性、特に伸度は非常に重要である。また、ウエハレベルパッケージの配線層間の絶縁膜などの用途として用いる場合は、冷熱サイクル試験などの信頼性試験においてクラックや剥離が発生しないことが必要となる。 When the resin composition is used for applications such as semiconductors, the film after heat curing remains as a permanent film inside the device, so the physical properties of the cured product, especially the elongation, are very important. Also, when used as an insulating film between wiring layers in a wafer level package, it is necessary that no cracks or peeling occur in a reliability test such as a thermal cycle test.
 これらの課題に対して、脂肪族基を有するポリベンゾオキサゾール前駆体(特許文献1)や、架橋性基を有するノボラック樹脂を含有する感光性樹脂組成物を用いる方法が提案されている(特許文献2)。 To solve these problems, a method using a polybenzoxazole precursor having an aliphatic group (Patent Document 1) or a photosensitive resin composition containing a novolac resin having a crosslinkable group has been proposed (Patent Document 2).
特開2008-224984号公報JP 2008-224984 A 特開2011-197362号公報JP 2011-197362 A
 しかしながら、特許文献1に記載の脂肪族基を有するポリベンゾオキサゾール前駆体や、特許文献2に記載のノボラック樹脂を含有する感光性樹脂組成物の硬化物は、冷熱サイクル試験後に硬化物中に含まれる樹脂の劣化が見られ、信頼性試験後にクラックが生じるという問題がある。特に、特許文献2に記載のノボラック樹脂は、硬化物としたときに破断伸度が低いため、冷熱サイクル試験後においてクラックが発生しやすい。 However, the polybenzoxazole precursor having an aliphatic group described in Patent Document 1 and the cured product of the photosensitive resin composition containing the novolac resin described in Patent Document 2 are included in the cured product after the thermal cycle test. There is a problem that the resin deteriorates and cracks occur after the reliability test. In particular, since the novolak resin described in Patent Document 2 has a low breaking elongation when cured, cracks are likely to occur after a thermal cycle test.
 上記課題を解決するため、本発明は次のものに関する。すなわち、本発明の樹脂組成物は、(A)式(1)で表される樹脂と(B)式(2)で表される樹脂を含有する樹脂組成物である。 In order to solve the above problems, the present invention relates to the following. That is, the resin composition of the present invention is a resin composition containing (A) a resin represented by formula (1) and (B) a resin represented by formula (2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
式(1)中、Xはそれぞれ独立に、ポリアミド、ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体の繰り返し構造単位を表し、Rは式(3)または式(4)で表される1価の基である。RはR、水素原子、および炭素数1~20の1価の有機基からなる群より選択される基を表す。nは2~200の整数である。 In formula (1), each X independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole or a precursor thereof, and R 1 is a monovalent represented by formula (3) or formula (4). is the base. R a represents a group selected from the group consisting of R 1 , a hydrogen atom, and a monovalent organic group having 1 to 20 carbon atoms. n 1 is an integer from 2 to 200;
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
式(2)中、Yはそれぞれ独立に、ポリアミド、ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体の繰り返し構造単位を表し、Rは式(5)で表される1価の基である。RはR、水素原子、および炭素数1~20の1価の有機基からなる群より選択される基を表す。nは2~200の整数である。 In formula (2), each Y independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole, or a precursor thereof, and R2 is a monovalent group represented by formula (5). R b represents a group selected from the group consisting of R 2 , a hydrogen atom and a monovalent organic group having 1 to 20 carbon atoms. n2 is an integer from 2 to 200;
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
式(3)中、*は結合部を表す。 In formula (3), * represents a bond.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
式(4)中、Rは水素原子、炭素数1~6の1価の炭化水素基である。*は結合部を表す。 In formula (4), R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. * represents a joint.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
式(5)中、*は結合部を表す。 In formula (5), * represents a bond.
 本発明によれば、高い破断伸度を有し、冷熱サイクル試験後においても高いクラック耐性を有する硬化物が得られる、樹脂組成物を得ることができる。 According to the present invention, it is possible to obtain a resin composition that has a high elongation at break and gives a cured product that has high crack resistance even after a thermal cycle test.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明の樹脂組成物は、(A)式(1)で表される樹脂(以下、(A)成分または(A)樹脂と呼称する場合がある)と(B)式(2)で表される樹脂(以下、(B)成分または(B)樹脂と呼称する場合がある)を含有する。 The resin composition of the present invention comprises (A) a resin represented by formula (1) (hereinafter sometimes referred to as component (A) or (A) resin) and (B) represented by formula (2). containing a resin (hereinafter sometimes referred to as (B) component or (B) resin).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
式(1)中、Xはそれぞれ独立に、ポリアミド、ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体の繰り返し構造単位を表し、Rは式(3)または式(4)で表される1価の基である。RはR、水素原子、および炭素数1~20の1価の有機基からなる群より選択される基を表す。nは2~200の整数である。 In formula (1), each X independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole or a precursor thereof, and R 1 is a monovalent represented by formula (3) or formula (4). is the base. R a represents a group selected from the group consisting of R 1 , a hydrogen atom, and a monovalent organic group having 1 to 20 carbon atoms. n 1 is an integer from 2 to 200;
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
式(2)中、Yはそれぞれ独立に、ポリアミド、ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体の繰り返し構造単位を表し、Rは式(5)で表される1価の基である。RはR、水素原子、および炭素数1~20の1価の有機基からなる群より選択される基を表す。nは2~200の整数である。 In formula (2), each Y independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole, or a precursor thereof, and R2 is a monovalent group represented by formula (5). R b represents a group selected from the group consisting of R 2 , a hydrogen atom and a monovalent organic group having 1 to 20 carbon atoms. n2 is an integer from 2 to 200;
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
式(3)中、*は結合部を表す。 In formula (3), * represents a bond.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
式(4)中、Rは水素原子、炭素数1~6の1価の炭化水素基である。*は結合部を表す。 In formula (4), R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. * represents a joint.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
式(5)中、*は結合部を表す。 In formula (5), * represents a bond.
 本発明の樹脂組成物が、(A)成分と(B)成分を含有することにより、250℃以下の低温硬化において、(A)成分の末端と(B)成分の末端が反応し、硬化物中の樹脂の分子量を増大させることができるため、破断伸度および冷熱サイクル試験後のクラック耐性が向上する。 When the resin composition of the present invention contains component (A) and component (B), the terminal of component (A) reacts with the terminal of component (B) in low-temperature curing at 250° C. or less, resulting in a cured product. Since the molecular weight of the resin inside can be increased, the elongation at break and the crack resistance after the thermal cycle test are improved.
 (A)成分中のX、および(B)成分中のYは、それぞれ独立に、ポリアミド、ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体の繰り返し構造単位である。ポリイミドはイミド環を有するものであれば、特に限定されない。またポリイミド前駆体は、脱水閉環することによりイミド環を有するポリイミドとなる構造を有していれば、特に限定されず、ポリアミド酸やポリアミド酸エステルなどを含有することができる。ポリアミドはアミド結合を有するものであれば、特に限定されない。ポリベンゾオキサゾールはベンゾオキサゾール環を有するものであれば、特に限定されない。ポリベンゾオキサゾール前駆体は、脱水閉環することによりベンゾオキサゾール環を有するポリベンゾオキサゾールとなる構造を有していれば、特に限定されず、ポリヒドロキシアミドなどを含有することができる。 X in component (A) and Y in component (B) are each independently repeating structural units of polyamide, polyimide, polybenzoxazole, or precursors thereof. Polyimide is not particularly limited as long as it has an imide ring. The polyimide precursor is not particularly limited as long as it has a structure that becomes a polyimide having an imide ring upon dehydration and ring closure, and may contain polyamic acid, polyamic acid ester, or the like. The polyamide is not particularly limited as long as it has an amide bond. Polybenzoxazole is not particularly limited as long as it has a benzoxazole ring. The polybenzoxazole precursor is not particularly limited as long as it has a structure that becomes polybenzoxazole having a benzoxazole ring upon dehydration and ring closure, and may contain polyhydroxyamide or the like.
 (A)成分および(B)成分は、半導体素子等の表面保護膜、層間絶縁膜、有機発光素子などの表示装置の絶縁層やTFT基板の平坦化膜として優れた特性が得られやすい点から、熱処理後の160℃以上の高温下におけるアウトガス量が少ないものが好ましい。具体的には、(A)成分および(B)成分が、ポリアミド、ポリイミド、ポリベンゾオキサゾール、これらの前駆体、およびそれらの共重合体からなる群から選ばれる少なくとも1種類を含むことが好ましい。 Components (A) and (B) are used because they can easily provide excellent properties as surface protective films for semiconductor devices, interlayer insulating films, insulating layers for display devices such as organic light-emitting devices, and flattening films for TFT substrates. It is preferable that the amount of outgas at a high temperature of 160° C. or higher after heat treatment is small. Specifically, component (A) and component (B) preferably contain at least one selected from the group consisting of polyamide, polyimide, polybenzoxazole, precursors thereof, and copolymers thereof.
 (A)成分および(B)成分は、例えば、ジカルボン酸、ジカルボン酸誘導体、酸二無水物、ジアミン、酸無水物、モノアミンなどを重縮合させて得ることができる。ジカルボン酸誘導体の具体例としては、ジカルボン酸ジクロリド、ヒドロキシベンゾトリアゾールやイミダゾールなどの活性アミド化合物が挙げられるが、これらに限定されない。 The components (A) and (B) can be obtained, for example, by polycondensing dicarboxylic acids, dicarboxylic acid derivatives, acid dianhydrides, diamines, acid anhydrides, monoamines, and the like. Specific examples of dicarboxylic acid derivatives include, but are not limited to, dicarboxylic acid dichlorides, active amide compounds such as hydroxybenzotriazole and imidazole.
 (A)成分中のRおよび(B)成分中のRは、主鎖末端の末端封止として、モノアミン、酸無水物、モノカルボン酸、モノカルボン酸クロリド化合物、モノ活性エステル化合物などを縮合させることにより得られる。(A)成分中のRおよび(B)成分中のRは、マレイミドや、マレイン酸モノアルキルエステル、2-アミノスチレン、3-アミノスチレン、4-アミノスチレンなどから少なくとも1つの、水素原子、カルボキシル基のOHまたはアミノ基を除いた構造(以下、「残基」と呼ぶ場合がある。)が挙げられる。 R 1 in component (A) and R 2 in component (B) contain monoamines, acid anhydrides, monocarboxylic acids, monocarboxylic acid chloride compounds, monoactive ester compounds, etc. as main chain end caps. Obtained by condensation. R 1 in component (A) and R 2 in component (B) are at least one hydrogen atom selected from maleimide, maleic acid monoalkyl ester, 2-aminostyrene, 3-aminostyrene, 4-aminostyrene, etc. , a structure in which the OH or amino group of the carboxyl group is removed (hereinafter sometimes referred to as "residue").
 さらに、(A)成分および(B)成分中のRはR、水素原子、および炭素数1~20の有機基からなる群より選択される基を表し、RはR、水素原子、および炭素数1~20の1価の有機基からなる群より選択される基を表す。炭素数1~20の有機基とは、例えば、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどモノアミン類の残基、フタルイミド、ナジイミド、ヘキサヒドロフタルイミド、3-ヒドロキシフタルイミドなどのイミド類の残基、3-カルボキシフェノール、4-カルボキシフェノール、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレン、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸などのモノカルボン酸類の残基およびテレフタル酸、フタル酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレンなどのジカルボン酸類の一方のカルボキシル基の残基が挙げられるが、これらに限定されない。 Furthermore, R a in components (A) and (B) represents a group selected from the group consisting of R 1 , a hydrogen atom, and an organic group having 1 to 20 carbon atoms, and R b represents R 2 , a hydrogen atom. , and a group selected from the group consisting of monovalent organic groups having 1 to 20 carbon atoms. Examples of organic groups having 1 to 20 carbon atoms include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1- Hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-amino naphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy -5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzenesulfonic acid, 3-aminobenzene sulfonic acid, 4-aminobenzenesulfonic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-aminothiophenol, 3-aminothiophenol, 4- Residues of monoamines such as aminothiophenol, residues of imides such as phthalimide, nadimide, hexahydrophthalimide, 3-hydroxyphthalimide, 3-carboxyphenol, 4-carboxyphenol, 3-carboxythiophenol, 4-carboxythio Phenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto - Residues of monocarboxylic acids such as 5-carboxynaphthalene, 3-carboxybenzenesulfonic acid and 4-carboxybenzenesulfonic acid, and terephthalic acid, phthalic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6- Examples include, but are not limited to, residues of one carboxyl group of dicarboxylic acids such as dicarboxynaphthalene, 1,7-dicarboxynaphthalene, and 2,6-dicarboxynaphthalene.
 (A)成分、および(B)成分中のX、およびYのうち、
前記ポリイミドの繰り返し構造単位が、式(6)で表される繰り返し構造単位であり、
前記ポリアミド、ポリイミド前駆体またはポリベンゾオキサゾール前駆体の繰り返し構造単位が、式(7)で表される繰り返し構造単位であり、および
前記ポリベンゾオキサゾールの繰り返し構造単位が、式(8)で表される繰り返し構造単位であることが好ましい。
Of X and Y in component (A) and component (B),
The repeating structural unit of the polyimide is a repeating structural unit represented by formula (6),
The repeating structural unit of the polyamide, polyimide precursor or polybenzoxazole precursor is a repeating structural unit represented by formula (7), and the repeating structural unit of the polybenzoxazole is represented by formula (8). is preferably a repeating structural unit.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
式(6)中、Rは炭素数4~40の4価の有機基を表す。Rは炭素数4~40の2価の有機基を表す。 In formula (6), R 4 represents a tetravalent organic group having 4 to 40 carbon atoms. R 5 represents a divalent organic group having 4 to 40 carbon atoms.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
式(7)中、Rは炭素数4~40の2~8価の有機基を表す。Rは炭素数4~40の2~4価の有機基を表す。Rは水素原子または炭素数1~20の1価の有機基を表す。qおよびrは、0≦q≦4、0≦r≦4の範囲内であり、0≦q+r≦6を満たす整数を表す。sは0~2の整数を表す。 In formula (7), R 6 represents a divalent to octavalent organic group having 4 to 40 carbon atoms. R 7 represents a divalent to tetravalent organic group having 4 to 40 carbon atoms. R 8 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. q and r are in the range of 0≤q≤4, 0≤r≤4 and represent integers satisfying 0≤q+r≤6. s represents an integer from 0 to 2;
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
式(8)中、Rは炭素数4~40の2価の有機基を表す。R10は炭素数4~40の2価の有機基を表す。 In formula (8), R 9 represents a divalent organic group having 4 to 40 carbon atoms. R 10 represents a divalent organic group having 4 to 40 carbon atoms.
 式(6)中、Rは炭素数4~40の4価の有機基を示す。炭素数4~40の4価の有機基の例としては、芳香族テトラカルボン酸、脂肪族テトラカルボン酸の残基などが挙げられる。脂肪族テトラカルボン酸の残基は、脂環式テトラカルボン酸の残基であることが好ましい。 In formula (6), R 4 represents a tetravalent organic group having 4 to 40 carbon atoms. Examples of the tetravalent organic group having 4 to 40 carbon atoms include residues of aromatic tetracarboxylic acids and aliphatic tetracarboxylic acids. The aliphatic tetracarboxylic acid residue is preferably an alicyclic tetracarboxylic acid residue.
 前記芳香族テトラカルボン酸の残基の具体例としては、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン、2,3,6,7-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンなどの残基が挙げられる。 Specific examples of the residue of the aromatic tetracarboxylic acid include pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′-biphenyltetracarboxylic acid, 2 ,2′,3,3′-biphenyltetracarboxylic acid, 3,3′,4,4′-diphenylethertetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 2,2′,3 ,3′-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)propane, 2,2-bis(2,3-dicarboxyphenyl)propane, 1,1-bis(3,4 -dicarboxyphenyl)ethane, 1,1-bis(2,3-dicarboxyphenyl)ethane, bis(3,4-dicarboxyphenyl)methane, bis(2,3-dicarboxyphenyl)methane, bis(3 ,4-dicarboxyphenyl)ether, 1,2,5,6-naphthalenetetracarboxylic acid, 9,9-bis(3,4-dicarboxyphenyl)fluorene, 9,9-bis{4-(3,4 -dicarboxyphenoxy)phenyl}fluorene, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,5,6-pyridinetetracarboxylic acid, 3, Examples include residues of 4,9,10-perylenetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane, and the like.
 前記脂肪族テトラカルボン酸の残基の具体例としては、シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸などの残基が挙げられる。中でも好ましいのは、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンの残基である。これらの残基は2種類以上含んでもよい。 Specific examples of the residue of the aliphatic tetracarboxylic acid include residues of cyclobutanetetracarboxylic acid and 1,2,3,4-cyclopentanetetracarboxylic acid. Among them, pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 3,3′,4,4′-diphenylethertetracarboxylic acid, 2,2-bis(3,4-di carboxyphenyl) is the residue of hexafluoropropane. Two or more types of these residues may be included.
 式(7)中、Rは炭素数4~40の2~8価の有機基を示し、式(8)中、R10は炭素数4~40の2価の有機基を示す。炭素数4~40の2~8価の有機基の例としては、芳香族ジカルボン酸、芳香族トリカルボン酸、芳香族テトラカルボン酸、脂肪族ジカルボン酸、脂肪族テトラカルボン酸などの残基が挙げられる。 In formula (7), R 6 represents a divalent to octavalent organic group having 4 to 40 carbon atoms, and R 10 represents a divalent organic group having 4 to 40 carbon atoms in formula (8). Examples of divalent to octavalent organic groups having 4 to 40 carbon atoms include residues of aromatic dicarboxylic acids, aromatic tricarboxylic acids, aromatic tetracarboxylic acids, aliphatic dicarboxylic acids, aliphatic tetracarboxylic acids, and the like. be done.
 前記芳香族ジカルボン酸の残基の例としては、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸などの残基が挙げられる。 Examples of the aromatic dicarboxylic acid residue include residues of terephthalic acid, isophthalic acid, diphenyletherdicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyldicarboxylic acid, benzophenonedicarboxylic acid, triphenyldicarboxylic acid, and the like. be done.
 前記芳香族トリカルボン酸の残基の例としては、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸などの残基が挙げられる。 Examples of the aromatic tricarboxylic acid residue include residues of trimellitic acid, trimesic acid, diphenylethertricarboxylic acid, biphenyltricarboxylic acid, and the like.
 前記芳香族テトラカルボン酸の残基の例としては、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン、2,3,6,7-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンなどの残基が挙げられる。 Examples of the aromatic tetracarboxylic acid residue include pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′-biphenyltetracarboxylic acid, 2, 2′,3,3′-biphenyltetracarboxylic acid, 3,3′,4,4′-diphenylethertetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, 2,2′,3, 3′-benzophenonetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)propane, 2,2-bis(2,3-dicarboxyphenyl)propane, 1,1-bis(3,4- dicarboxyphenyl)ethane, 1,1-bis(2,3-dicarboxyphenyl)ethane, bis(3,4-dicarboxyphenyl)methane, bis(2,3-dicarboxyphenyl)methane, bis(3, 4-dicarboxyphenyl)ether, 1,2,5,6-naphthalenetetracarboxylic acid, 9,9-bis(3,4-dicarboxyphenyl)fluorene, 9,9-bis{4-(3,4- dicarboxyphenoxy)phenyl}fluorene, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 2,3,5,6-pyridinetetracarboxylic acid, 3,4 , 9,10-perylenetetracarboxylic acid, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane, and the like.
 脂肪族ジカルボン酸の残基の例としては、アジピン酸、セバシン酸、ドデカン二酸、1,4-シクロヘキサンジカルボン酸などの残基が挙げられる。 Examples of residues of aliphatic dicarboxylic acids include residues of adipic acid, sebacic acid, dodecanedioic acid, 1,4-cyclohexanedicarboxylic acid, and the like.
 脂肪族テトラカルボン酸としては、シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸などの残基が挙げられる。 Examples of aliphatic tetracarboxylic acids include residues of cyclobutanetetracarboxylic acid and 1,2,3,4-cyclopentanetetracarboxylic acid.
 RおよびR10は、これらの残基を2種類以上含んでいてもよい。 R6 and R10 may contain two or more of these residues.
 Rは水素原子または炭素数1~20の1価の有機基であり、炭化水素基、フルオロアルキル基、フェニル基、置換フェニル基などが挙げられる。置換フェニル基の置換基は、炭化水素基、フルオロアルキル基、フェニル基、ニトロ基、シアノ基、カルボキシル基、水酸基、アミノ基、スルホン酸基などが挙げられる。 R 8 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, such as a hydrocarbon group, a fluoroalkyl group, a phenyl group and a substituted phenyl group. Substituents of the substituted phenyl group include hydrocarbon groups, fluoroalkyl groups, phenyl groups, nitro groups, cyano groups, carboxyl groups, hydroxyl groups, amino groups, sulfonic acid groups and the like.
 式(6)中のR、式(7)中のR、および式(8)中のRは、ジアミン残基から得られる構造を含有してなる。前記ジアミン残基の具体的な例としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレンの残基、あるいはこれらの芳香族環の水素原子の少なくとも一部をアルキル基やハロゲン原子で置換した化合物の残基や、脂肪族のシクロヘキシルジアミン、メチレンビスシクロヘキシルアミンの残基および下記に示した構造の残基などが挙げられる。R、R、Rは、これらの残基を2種以上含んでいてもよい。 R 5 in formula (6), R 7 in formula (7), and R 9 in formula (8) contain structures derived from diamine residues. Specific examples of the diamine residue include 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 1,4-bis( 4-aminophenoxy)benzene, benzidine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxy)biphenyl, bis{4-(4-amino phenoxy)phenyl} ether, 1,4-bis(4-aminophenoxy)benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-diethyl-4,4'-diaminobiphenyl, 3 ,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2′,3,3′-tetramethyl-4,4′-diaminobiphenyl, 3,3′,4,4′-tetramethyl-4,4′-diaminobiphenyl, 2,2′-di(trifluoromethyl)-4,4′-diaminobiphenyl, 9,9-bis(4-amino Phenyl)fluorene residues, residues of compounds in which at least part of the hydrogen atoms of these aromatic rings are substituted with alkyl groups or halogen atoms, residues of aliphatic cyclohexyldiamine, methylenebiscyclohexylamine, and the following and the residues of the structures shown in . R 5 , R 7 and R 9 may contain two or more of these residues.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
*は結合部を表す。 * represents a joint.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
*は結合部を表す。 * represents a joint.
 式(6)中のRおよび式(7)中のRは、式(9)で表される構造であり、式(6)中のRおよび式(7)中のRは、式(10)で表される構造を有することが好ましい。 R 4 in formula (6) and R 6 in formula (7) are structures represented by formula (9), and R 5 in formula (6) and R 7 in formula (7) are It preferably has a structure represented by formula (10).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
式(9)中、R11は単結合、-O-、-C(CF-または式(11)で表される構造を示す。*は結合部を表す。 In formula (9), R 11 represents a single bond, —O—, —C(CF 3 ) 2 —, or a structure represented by formula (11). * represents a joint.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
式(10)中、R12は単結合、-O-、-C(CH-または-C(CF-で表され、R13はそれぞれ独立に、水素原子または炭素数1~20の1価の有機基を表す。tおよびuはそれぞれ独立に0~4の整数を示し、t+u=4を満たす。*は結合部を表す。 In formula (10), R 12 is a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, and each R 13 is independently a hydrogen atom or a represents a monovalent organic group of ∼20. t and u each independently represent an integer of 0 to 4 and satisfy t+u=4. * represents a joint.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
式(11)中、R14は単結合、-O-、-C(CH-または-C(CF-で表される構造を示す。*は結合部を表す。 In formula (11), R 14 represents a structure represented by a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —. * represents a joint.
 樹脂組成物が、前記式(6)または式(7)中に、前記式(9)、式(10)の構造単位を有する(A)成分および(B)成分を含有することで、樹脂組成物の硬化物における、高い破断伸度、高クラック耐性が得られやすくなる。 The resin composition contains (A) component and (B) component having the structural units of the formula (9) and the formula (10) in the formula (6) or (7). High breaking elongation and high crack resistance can be easily obtained in cured products.
 前記式(9)の具体例としては、下記に示した構造単位を有することが好ましい。 As a specific example of the formula (9), it is preferable to have the structural units shown below.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
*は結合部を表す。 * represents a joint.
 前記式(10)の具体例としては、下記に示した構造を有することが好ましい。 As a specific example of the formula (10), it is preferable to have the structure shown below.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
*は結合部を表す。 * represents a joint.
 式(8)のRは、単結合、炭素数1~6の2価の炭化水素基、または炭素数1~6のフルオロアルキレン基で表される構造であり、R10は、式(12)で表される構造を有することが好ましい。 R 9 in formula (8) is a structure represented by a single bond, a divalent hydrocarbon group having 1 to 6 carbon atoms, or a fluoroalkylene group having 1 to 6 carbon atoms, and R 10 is represented by formula (12 ) preferably has a structure represented by
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
式(12)中、R15は単結合、-O-、-C(CH-または-C(CF-で表される構造を示す。*は化学結合を表す。 In formula (12), R 15 represents a structure represented by a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —. * represents a chemical bond.
 前記樹脂組成物が、これらの構造単位を有する(A)成分および(B)成分を含有することで、樹脂組成物の硬化物における、高伸度性、高クラック耐性が得られやすくなる。 By containing the (A) component and (B) component having these structural units in the resin composition, it becomes easier to obtain high elongation and high crack resistance in the cured product of the resin composition.
 本発明の樹脂組成物におけるRおよびRは、それぞれ電子供与体および電子受容体としての性質を有し、互いに電荷移動錯体を形成しやすいことに着目した。したがって、RもしくはRが単独で存在するよりも、RおよびRが共存することで末端基同士の反応性が格段に向上する。 It was noted that R 1 and R 2 in the resin composition of the present invention have properties as an electron donor and an electron acceptor, respectively, and tend to form a charge transfer complex with each other. Therefore, the coexistence of R 1 and R 2 significantly improves the reactivity between the terminal groups compared to the presence of R 1 or R 2 alone.
 末端反応成長活性点において、電子的な相互作用から、Rの成長活性点はRと、Rの成長活性点はRと選択的に反応する交互共重合体を形成する傾向にあるため、本発明の樹脂組成物における(A)成分の末端基Rの物質量と(B)成分の末端Rの物質量の比をM(算出方法の詳細は後述)としたとき、つまり、(A)成分および(B)成分の、H-NMRスペクトルにおける9から11ppmに現れるアミド結合の水素原子由来のシグナルの総積分値を100としたときの(A)成分の末端基Rの水素原子由来のシグナルの総積分値をrおよび(B)成分の末端基Rの水素原子由来のシグナルの総積分値をrとし、M=3r/2rとして定義されるMが0.25以上かつ4以下であることが好ましく、0.7以上かつ2以下であることがより好ましい。Mが前記範囲内であることで、RおよびRの電荷移動錯体がより形成しやすくなり、末端基同士の反応性が格段に向上するため、高い破断伸度、高クラック耐性を有する硬化物を得ることができる。Mが0.25以上かつ4以下であることで、充分な機械強度を有する硬化物が得られ、破断伸度が高く、クラック耐性も高い硬化物となる。 At the terminal reaction growth active sites, due to electronic interaction, the growth active sites of R1 tend to react selectively with R2 , and the growth active sites of R2 with R1 tend to form alternating copolymers. Therefore, when the ratio of the amount of terminal group R 1 of component (A) to the amount of terminal R 2 of component (B) in the resin composition of the present invention is M (details of the calculation method will be described later), , the terminal group R 1 of the component (A) when the total integral value of the signals derived from the hydrogen atoms of the amide bonds appearing at 9 to 11 ppm in the 1 H-NMR spectrum of the components (A) and (B) is taken as 100 M is defined as M = 3r 1 / 2r 2 , where r 2 is the total integral value of the signal derived from the hydrogen atom of the component (B) and r 2 is the total integral value of the signal derived from the hydrogen atom of the terminal group R 2 of the component (B) is preferably 0.25 or more and 4 or less, more preferably 0.7 or more and 2 or less. When M is within the above range, it becomes easier to form a charge transfer complex of R 1 and R 2 , and the reactivity between the terminal groups is significantly improved, so that the cured product has high elongation at break and high crack resistance. can get things. When M is 0.25 or more and 4 or less, a cured product having sufficient mechanical strength can be obtained, and the cured product has high breaking elongation and high crack resistance.
 (A)成分の末端基Rの物質量と(B)成分の末端Rの物質量の比Mは、核磁気共鳴法(1H-NMR、13C-NMR)、赤外吸収分光法(IR法)、マトリックス支援レーザー脱離イオン化法―飛行時間型質量分析法(MALDI―TOFMS)を用いて(A)成分および(B)成分の分子構造が同定された樹脂組成物において、1H-NMRを用いる。 The ratio M of the substance amount of terminal group R 1 of component (A) to the substance amount of terminal R 2 of component (B) can be determined by nuclear magnetic resonance (1H-NMR, 13C-NMR), infrared absorption spectroscopy (IR method), matrix-assisted laser desorption ionization method-time-of-flight mass spectrometry (MALDI-TOFMS) in a resin composition in which the molecular structures of components (A) and (B) have been identified, 1H-NMR. use.
 得られたH-NMRスペクトルにおいて、Rの水素原子由来のシグナルは5から6ppmに現れ、Rの水素原子由来のシグナルは6から6.5ppmに現れる。9から11ppmに現れるアミド結合の水素原子由来のシグナルの総積分値を100としたときの(A)成分の末端基Rの水素原子由来のシグナルの総積分値をrおよび(B)成分の末端基Rの水素原子由来のシグナルの総積分値をrとし、樹脂組成物中の(A)成分の末端基Rと(B)成分の末端Rの物質量比Mは、M=3r/2rとして算出できる。 In the obtained 1 H-NMR spectrum, the signal originating from the R 1 hydrogen atom appears at 5 to 6 ppm and the signal originating from the R 2 hydrogen atom appears at 6 to 6.5 ppm. When the total integrated value of the signal derived from the hydrogen atom of the amide bond appearing at 9 to 11 ppm is 100, the total integrated value of the signal derived from the hydrogen atom of the terminal group R 1 of the component (A) is r 1 and the component (B) The total integral value of the signal derived from the hydrogen atom of the terminal group R 2 of is r 2 , and the material amount ratio M between the terminal group R 1 of the component (A) and the terminal R 2 of the component (B) in the resin composition is It can be calculated as M=3r 1 /2r 2 .
 本発明の樹脂組成物の重量平均分子量は5,000以上かつ35,000以下であることが好ましい。重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算で5,000以上とすることにより、硬化前の製膜過程においてクラックが生じないため好ましく、10,000以上がさらに好ましい。一方、重量平均分子量を35,000以下とすることにより、末端同士の反応効率向上させることができ、硬化物の破断伸度が向上する。さらに高い破断伸度を得るため、重量平均分子量は、30,000以下がより好ましく、25,000以下がさらに好ましい。 The weight average molecular weight of the resin composition of the present invention is preferably 5,000 or more and 35,000 or less. A weight-average molecular weight of 5,000 or more in terms of polystyrene by GPC (gel permeation chromatography) is preferable because cracks do not occur in the film-forming process before curing, and 10,000 or more is more preferable. On the other hand, by setting the weight average molecular weight to 35,000 or less, the reaction efficiency between the ends can be improved, and the breaking elongation of the cured product is improved. In order to obtain a higher elongation at break, the weight average molecular weight is more preferably 30,000 or less, even more preferably 25,000 or less.
 重量平均分子量(Mw)は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて確認できる。例えば展開溶剤をN-メチル-2-ピロリドン(以下、NMPと省略する場合がある)として測定し、ポリスチレン換算で求めることができる。 The weight average molecular weight (Mw) can be confirmed using GPC (gel permeation chromatography). For example, N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP) is measured as a developing solvent and can be obtained in terms of polystyrene.
 本発明の樹脂組成物は、光酸発生剤を含有してもよい。光酸発生剤を含有することで樹脂組成物に感光性を付与できる。
光酸発生剤は、樹脂組成物の光照射部で酸を発生させる。その結果、光照射部のアルカリ現像液に対する溶解性が増大するため、光照射部が溶解するポジ型のパターンを得ることができる。
The resin composition of the present invention may contain a photoacid generator. Photosensitivity can be imparted to the resin composition by containing a photoacid generator.
The photoacid generator generates acid in the light-irradiated portion of the resin composition. As a result, the solubility of the light-irradiated portion in an alkaline developer increases, so that a positive pattern in which the light-irradiated portion dissolves can be obtained.
 上記した光酸発生剤としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。本発明の樹脂組成物は、さらに増感剤などを必要に応じて含むことができる。 The photoacid generators mentioned above include quinonediazide compounds, sulfonium salts, phosphonium salts, diazonium salts, iodonium salts, and the like. The resin composition of the present invention can further contain a sensitizer and the like, if necessary.
 キノンジアジド化合物としては、フェノール性水酸基を有する化合物にナフトキノンジアジドのスルホン酸がエステル結合した化合物が好ましい。 As the quinonediazide compound, a compound in which a sulfonic acid of naphthoquinonediazide is ester-bonded to a compound having a phenolic hydroxyl group is preferable.
 フェノール性水酸基を有する化合物としては、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-SA、TrisOCR-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、DML-MBPC、DMLMBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP,DML-POP、ジメチロール-BisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC、TriML-P、TriML-35XL、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP(商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A、46DMOC、46DMOEP、TM-BIP-A(商品名、旭有機材工業(株)製)、2,6-ジメトキシメチル-4-tert-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA、ビスフェノールE、メチレンビスフェノール、BisP-AP(商品名、本州化学工業(株)製)などの化合物が挙げられる。 Compounds having a phenolic hydroxyl group include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP -IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylenetris-FR-CR, BisRS-26X, DML-MBPC, DMLMBOC, DML-OCHP, DML-PCHP, DML- PC, DML-PTBP, DML-34X, DML-EP, DML-POP, Dimethylol-BisOC-P, DML-PFP, DML-PSBP, DML-MTrisPC, TriML-P, TriML-35XL, TML-BP, TML- HQ, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, HML-TPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR- PTBP, BIR-PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A, 46DMOC, 46DMOEP, TM-BIP-A (trade name, manufactured by Asahi Organic Chemicals Industry Co., Ltd.), 2 ,6-dimethoxymethyl-4-tert-butylphenol, 2,6-dimethoxymethyl-p-cresol, 2,6-diacetoxymethyl-p-cresol, naphthol, tetrahydroxybenzophenone, gallic acid methyl ester, bisphenol A, bisphenol compounds such as E, methylenebisphenol, and BisP-AP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.).
 ナフトキノンジアジドのスルホン酸としては、4-ナフトキノンジアジドスルホン酸、5-ナフトキノンジアジドスルホン酸などが挙げられる。 Sulfonic acids of naphthoquinonediazide include 4-naphthoquinonediazide sulfonic acid and 5-naphthoquinonediazide sulfonic acid.
 また、フェノール性水酸基を有する化合物の官能基全体の50モル%以上がキノンジアジドで置換されていることが好ましい。50モル%以上置換されているキノンジアジド化合物を使用することで、キノンジアジド化合物のアルカリ水溶液に対する親和性が低下する。その結果、未露光部の樹脂組成物のアルカリ水溶液に対する溶解性を大きく低下させる。さらに、露光によりキノンジアジドスルホニル基がインデンカルボン酸に変化し、露光部の感光性を有する樹脂組成物のアルカリ水溶液に対する大きな溶解速度を得ることができる。すなわち、結果として組成物の露光部と未露光部の溶解速度比を大きくして、高い解像度でパターンを得ることができる。 In addition, it is preferable that 50 mol% or more of all the functional groups of the compound having a phenolic hydroxyl group are substituted with quinonediazide. By using a quinonediazide compound substituted by 50 mol % or more, the affinity of the quinonediazide compound for an alkaline aqueous solution is lowered. As a result, the solubility of the resin composition in the unexposed area in an alkaline aqueous solution is greatly reduced. Furthermore, the quinonediazide sulfonyl group is converted to indenecarboxylic acid by exposure, and a high dissolution rate in an alkaline aqueous solution of the resin composition having photosensitivity in the exposed area can be obtained. That is, as a result, the dissolution rate ratio between the exposed area and the unexposed area of the composition can be increased, and a pattern with high resolution can be obtained.
 このようなキノンジアジド化合物を含有することで、一般的な水銀灯のi線(365nm)、h線(405nm)、g線(436nm)やそれらを含むブロードバンドで感光するポジ型の感光性を有する樹脂組成物を得ることができる。また、光酸発生剤は1種のみ含有しても、2種以上組み合わせて含有してもよく、高感度な感光性を有する樹脂組成物を得ることができる。 By containing such a quinonediazide compound, a resin composition having positive-type photosensitivity that is sensitive to the i-line (365 nm), h-line (405 nm), g-line (436 nm) of a general mercury lamp and broadband including them. can get things. Further, the photoacid generator may be contained alone or in combination of two or more, and a resin composition having high sensitivity and photosensitivity can be obtained.
 キノンジアジドとしては、5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光および全波長露光に適している。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、または5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。 As the quinonediazide, both a 5-naphthoquinonediazidesulfonyl group and a 4-naphthoquinonediazidesulfonyl group are preferably used. A 5-naphthoquinonediazide sulfonyl ester compound has absorption extending to the g-line region of a mercury lamp, and is suitable for g-line exposure and full-wavelength exposure. A 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure. It is preferable to select a 4-naphthoquinonediazide sulfonyl ester compound or a 5-naphthoquinone diazidesulfonyl ester compound depending on the wavelength of exposure.
 また、同一分子中に4-ナフトキノンジアジドスルホニル基および5-ナフトキノンジアジドスルホニル基を含むナフトキノンジアジドスルホニルエステル化合物を得ることもできる。4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を併用することもできる。キノンジアジド化合物は、フェノール性水酸基を有する化合物と、キノンジアジドスルホン酸化合物とのエステル化反応によって、公知の方法により合成することができる。キノンジアジド化合物を使用することで解像度、感度、残膜率がより向上する。 It is also possible to obtain a naphthoquinonediazidesulfonyl ester compound containing a 4-naphthoquinonediazidesulfonyl group and a 5-naphthoquinonediazidesulfonyl group in the same molecule. A 4-naphthoquinonediazide sulfonyl ester compound and a 5-naphthoquinone diazidesulfonyl ester compound can also be used in combination. A quinonediazide compound can be synthesized by a known method through an esterification reaction between a compound having a phenolic hydroxyl group and a quinonediazide sulfonic acid compound. By using a quinonediazide compound, the resolution, sensitivity, and film retention rate are further improved.
 光酸発生剤のうち、スルホニウム塩、ホスホニウム塩およびジアゾニウム塩は、露光によって発生した酸成分を適度に安定化させるため好ましい。中でもスルホニウム塩が好ましい。 Among the photoacid generators, sulfonium salts, phosphonium salts and diazonium salts are preferable because they moderately stabilize the acid component generated by exposure. Among them, sulfonium salts are preferred.
 光酸発生剤の含有量は、(A)成分と(B)成分の総量100質量部に対して0.1質量部以上100質量部以下が好ましい。光酸発生剤の含有量が0.1質量部以上100質量部以下であれば、熱処理後の膜の耐熱性、耐薬品性および破断伸度を維持しつつ、感光性を付与することができる。 The content of the photoacid generator is preferably 0.1 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass as the total amount of the components (A) and (B). When the content of the photoacid generator is 0.1 parts by mass or more and 100 parts by mass or less, photosensitivity can be imparted while maintaining the heat resistance, chemical resistance, and breaking elongation of the film after heat treatment. .
 光酸発生剤がキノンジアジド化合物を含有する場合、光酸発生剤の含有量は、(A)成分と(B)成分の総量100質量部に対して、1質量部以上がより好ましく、3質量部以上がさらに好ましい。また、100質量部以下がより好ましく、80質量部以下がさらに好ましい。1質量部以上100質量部以下であれば、熱処理後の膜の耐熱性、耐薬品性および破断伸度を維持しつつ、感光性を付与することができる。 When the photoacid generator contains a quinonediazide compound, the content of the photoacid generator is more preferably 1 part by mass or more, and 3 parts by mass, relative to 100 parts by mass of the total amount of components (A) and (B). The above is more preferable. Moreover, 100 mass parts or less are more preferable, and 80 mass parts or less are still more preferable. When the amount is 1 part by mass or more and 100 parts by mass or less, photosensitivity can be imparted while maintaining the heat resistance, chemical resistance and breaking elongation of the film after heat treatment.
 光酸発生剤がスルホニウム塩、ホスホニウム塩またはジアゾニウム塩を含有する場合、光酸発生剤の含有量は、(A)成分と(B)成分の総量100質量部に対して、0.1質量部以上がより好ましく、1質量部以上がさらに好ましく、3質量部以上が特に好ましい。また、100質量部以下がより好ましく、80質量部以下がさらに好ましく、50質量部以下が特に好ましい。0.1質量部以上100質量部以下であれば、熱処理後の膜の耐熱性、耐薬品性および破断伸度を維持しつつ、感光性を付与することができる。 When the photoacid generator contains a sulfonium salt, phosphonium salt or diazonium salt, the content of the photoacid generator is 0.1 parts by mass with respect to 100 parts by mass of the total amount of components (A) and (B). The above is more preferable, 1 part by mass or more is more preferable, and 3 parts by mass or more is particularly preferable. Moreover, it is more preferably 100 parts by mass or less, even more preferably 80 parts by mass or less, and particularly preferably 50 parts by mass or less. When the amount is 0.1 parts by mass or more and 100 parts by mass or less, photosensitivity can be imparted while maintaining the heat resistance, chemical resistance and breaking elongation of the film after heat treatment.
 本発明の樹脂組成物は、光重合開始剤と、光重合性化合物を含有することが好ましい。 The resin composition of the present invention preferably contains a photopolymerization initiator and a photopolymerizable compound.
 光重合開始剤と光重合性化合物は、樹脂組成物の光照射部で重合し現像液に不溶化する。その結果、光照射部の現像液に対する溶解性が激減するため、光未照射部が溶解するネガ型のパターンを得ることができる。 The photopolymerization initiator and photopolymerizable compound polymerize in the light-irradiated portion of the resin composition and become insoluble in the developer. As a result, the solubility in the developing solution of the light-irradiated portion is drastically reduced, so that a negative pattern in which the light-unirradiated portion dissolves can be obtained.
 光重合開始剤としては以下のものが挙げられる。 The following are examples of photopolymerization initiators.
 ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン類。3,5-ビス(ジエチルアミノベンジリデン)-N-メチル-4-ピペリドン、3,5-ビス(ジエチルアミノベンジリデン)-N-エチル-4-ピペリドンなどのベンジリデン類。7-ジエチルアミノ-3-テノニルクマリン、4,6-ジメチル-3-エチルアミノクマリン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、7-ジエチルアミノ-3-(1-メチルベンゾイミダゾリル)クマリン、3-(2-ベンゾチアゾリル)-7-ジエチルアミノクマリンなどのクマリン類。2-t-ブチルアントラキノン、2-エチルアントラキノン、1,2-ベンズアントラキノンなどのアントラキノン類。ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾイン類。エチレングリコールジ(3-メルカプトプロピオネート)、2-メルカプトベンズチアゾール、2-メルカプトベンゾキサゾール、2-メルカプトベンズイミダゾールなどのメルカプト類。N-フェニルグリシン、N-メチル-N-フェニルグリシン、N-エチル-N-(p-クロロフェニル)グリシン、N-(4-シアノフェニル)グリシンなどのグリシン類。1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o(メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(A-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)、OXE02(商品名、チバスペシャルティケミカルズ(株)製)、NCI-831(商品名、株式会社ADEKA製)などのオキシム類。2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オンなどのA-アミノアルキルフェノン類、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾールなど。 Benzophenones such as benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, and 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone. benzylidenes such as 3,5-bis(diethylaminobenzylidene)-N-methyl-4-piperidone and 3,5-bis(diethylaminobenzylidene)-N-ethyl-4-piperidone; 7-diethylamino-3-thenonylcoumarin, 4,6-dimethyl-3-ethylaminocoumarin, 3,3-carbonylbis(7-diethylaminocoumarin), 7-diethylamino-3-(1-methylbenzimidazolyl)coumarin, 3 - Coumarins such as (2-benzothiazolyl)-7-diethylaminocoumarin. anthraquinones such as 2-t-butylanthraquinone, 2-ethylanthraquinone and 1,2-benzanthraquinone; benzoins such as benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether; mercaptos such as ethylene glycol di(3-mercaptopropionate), 2-mercaptobenzthiazole, 2-mercaptobenzoxazole and 2-mercaptobenzimidazole; glycines such as N-phenylglycine, N-methyl-N-phenylglycine, N-ethyl-N-(p-chlorophenyl)glycine, N-(4-cyanophenyl)glycine; 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o(methoxycarbonyl)oxime, 1-phenyl-1,2-propane dione-2-(o-ethoxycarbonyl) oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl) oxime, bis(A-isonitrosopropiophenone oxime) isophthal, 1,2-octane Dione-1-[4-(phenylthio)phenyl]-2-(o-benzoyloxime), OXE02 (trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.), NCI-831 (trade name, manufactured by ADEKA Corporation), etc. Oximes: 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one A-aminoalkylphenones such as 2,2′-bis(o-chlorophenyl)-4,4′,5,5′-tetraphenylbiimidazole and the like.
 これらのうち上記オキシム類が好ましい。さらに好ましいものとしては、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、ビス(A-イソニトロソプロピオフェノンオキシム)イソフタル、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(o-ベンゾイルオキシム)、OXE02、NCI-831である。これらは単独でまたは2種類以上を組み合わせて使用される。下記式にOXE-02とNCI-831の構造を示す。 Of these, the above oximes are preferred. More preferred are 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl)oxime, bis(A -isonitrosopropiophenone oxime) isophthal, 1,2-octanedione-1-[4-(phenylthio)phenyl]-2-(o-benzoyloxime), OXE02, NCI-831. These are used alone or in combination of two or more. The structures of OXE-02 and NCI-831 are shown in the following formulas.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 これらの中で、上記のベンゾフェノン類、グリシン類、メルカプト類、オキシム類、A-アミノルキルフェノン類、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾールから選択される組み合わせが光反応の点から好適である。 Among these, the above benzophenones, glycines, mercaptos, oximes, A-aminoalkylphenones, 2,2′-bis(o-chlorophenyl)-4,4′,5,5′-tetraphenyl A combination selected from biimidazoles is preferred in terms of photoreactivity.
 光重合開始剤の含有量は、(A)成分と(B)成分の総量100質量部に対して、0.1~60質量部が好ましく、より好ましくは0.2~40質量部である。0.1質量部以上であると、光照射により十分なラジカルが発生し、感度が向上する点で好ましく、60質量部以下であると、過度なラジカルの発生によって光未照射部が硬化することなく現像液への溶解性が向上する。 The content of the photopolymerization initiator is preferably 0.1 to 60 parts by mass, more preferably 0.2 to 40 parts by mass with respect to 100 parts by mass as the total amount of components (A) and (B). When the amount is 0.1 part by mass or more, sufficient radicals are generated by light irradiation, and sensitivity is improved. The solubility in the developer is improved.
 前記光重合性化合物は、例えば、ビニル基、アリル基、アクリロイル基、メタクリロイル基などの不飽和二重結合含有基、プロパギル基などの不飽和三重結合含有基などを有する化合物が挙げられる。光重合性化合物は、これらの不飽和結合含有基を2種以上含有してもよい。これらの中でも、共役型のビニル基、アクリロイル基、メタクリロイル基が、重合性の面で好ましい。また、重合反応による過剰な架橋点に起因する硬化物のクラックを抑制するという観点から、光重合性化合物の不飽和結合の数は、1~6が好ましい。 Examples of the photopolymerizable compound include compounds having unsaturated double bond-containing groups such as vinyl groups, allyl groups, acryloyl groups, and methacryloyl groups, and unsaturated triple bond-containing groups such as propargyl groups. The photopolymerizable compound may contain two or more of these unsaturated bond-containing groups. Among these, conjugated vinyl groups, acryloyl groups, and methacryloyl groups are preferred from the standpoint of polymerizability. Moreover, the number of unsaturated bonds in the photopolymerizable compound is preferably 1 to 6 from the viewpoint of suppressing cracks in the cured product caused by excessive cross-linking points due to the polymerization reaction.
 光重合性化合物としては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、スチレン、α-メチルスチレン、1,2-ジヒドロナフタレン、1,3-ジイソプロペニルベンゼン、3-メチルスチレン、4-メチルスチレン、2-ビニルナフタレン、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、ヘキシルアクリレート、イソオクチルアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、シクロヘキシルメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、1,3-ジアクリロイルオキシ-2-ヒドロキシプロパン、1,3-ジメタクリロイルオキシ-2-ヒドロキシプロパン、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、プロピレンオキシド変性ビスフェノールAジアクリレート、プロピレンオキシド変性ビスフェノールAジメタクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジメタクリレート、N-ビニルピロリドン、N-ビニルカプロラクタムなどを含有することができる。光重合性化合物は、これらを2種以上含有してもよい。 Examples of photopolymerizable compounds include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, trimethylolpropane diacrylate, and trimethylolpropane. triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, styrene, α-methylstyrene, 1,2-dihydronaphthalene, 1,3-diisopropenylbenzene, 3-methylstyrene, 4-methylstyrene, 2- vinyl naphthalene, butyl acrylate, butyl methacrylate, isobutyl acrylate, hexyl acrylate, isooctyl acrylate, isobornyl acrylate, isobornyl methacrylate, cyclohexyl methacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, Neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate , 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 1,3-diacryloyloxy-2-hydroxypropane, 1,3-dimethacryloyloxy-2-hydroxypropane, methylenebisacrylamide, N,N-dimethylacrylamide, N -methylolacrylamide, 2,2,6,6-tetramethylpiperidinyl methacrylate, 2,2,6,6-tetramethylpiperidinyl acrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl Nil methacrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl acrylate, ethylene oxide-modified bisphenol A diacrylate, ethyl Len oxide modified bisphenol A dimethacrylate, propylene oxide modified bisphenol A diacrylate, propylene oxide modified bisphenol A dimethacrylate, propoxylated ethoxylated bisphenol A dimethacrylate, propoxylated ethoxylated bisphenol A dimethacrylate, N-vinylpyrrolidone, N-vinylcaprolactam etc. can be contained. The photopolymerizable compound may contain two or more of these.
 これらのうち、光重合性化合物としては、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、イソボルニルアクリレート、イソボルニルメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、2,2,6,6-テトラメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルメタクリレート、N-メチル-2,2,6,6-テトラメチルピペリジニルアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、プロピレンオキシド変性ビスフェノールAジアクリレート、プロピレンオキシド変性ビスフェノールAメタクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、プロポキシ化エトキシ化ビスフェノールAジメタクリレート、N-ビニルピロリドン、N-ビニルカプロラクタムが好ましい。中でも、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレート、プロピレンオキシド変性ビスフェノールAジアクリレート、プロピレンオキシド変性ビスフェノールAジメタクリレートを含有することがさらに好ましい。 Among these, photopolymerizable compounds include 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, isobornyl acrylate, isobornyl methacrylate, pentaerythritol tri Acrylates, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, methylenebisacrylamide, N,N-dimethylacrylamide, N-methylolacrylamide, 2,2,6 ,6-tetramethylpiperidinyl methacrylate, 2,2,6,6-tetramethylpiperidinyl acrylate, N-methyl-2,2,6,6-tetramethylpiperidinyl methacrylate, N-methyl-2, 2,6,6-tetramethylpiperidinyl acrylate, ethylene oxide-modified bisphenol A diacrylate, ethylene oxide-modified bisphenol A dimethacrylate, propylene oxide-modified bisphenol A diacrylate, propylene oxide-modified bisphenol A methacrylate, propoxylated ethoxylated bisphenol A diacrylate , propoxylated ethoxylated bisphenol A dimethacrylate, N-vinylpyrrolidone, N-vinylcaprolactam. Among them, it is more preferable to contain dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, ethylene oxide-modified bisphenol A diacrylate, ethylene oxide-modified bisphenol A dimethacrylate, propylene oxide-modified bisphenol A diacrylate, and propylene oxide-modified bisphenol A dimethacrylate. .
 本発明の樹脂組成物における光重合性化合物の含有量は、現像後の残膜率を向上させるという観点から、(A)成分および(B)成分の総量100質量部に対して、40質量部以上であることが好ましく、50質量部以上であることがより好ましい。一方、光重合性化合物の含有量は、硬化物の破断伸度を向上させるという観点から、(A)成分および(B)成分の総量の100質量部に対して、150質量部以下であることが好ましく、100質量部以下であることがより好ましい。 The content of the photopolymerizable compound in the resin composition of the present invention is 40 parts by mass with respect to 100 parts by mass of the total amount of components (A) and (B) from the viewpoint of improving the residual film rate after development. It is preferably 50 parts by mass or more, more preferably 50 parts by mass or more. On the other hand, from the viewpoint of improving the breaking elongation of the cured product, the content of the photopolymerizable compound is 150 parts by mass or less with respect to 100 parts by mass of the total amount of components (A) and (B). is preferred, and 100 parts by mass or less is more preferred.
 本発明の樹脂組成物は、熱架橋剤を含有してもよい。本発明において、熱架橋剤とは、アクリル基、メタクリル基、エポキシ基、オキセタニル基、ベンゾオキサジン構造、アルコキシメチル基およびメチロール基からなる群から選択される1種以上の基を少なくとも2つ以上含む化合物である。熱架橋剤は、アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物を含むことが好ましいが、これらに限定されない。ここで、「アルコキシメチル基またはメチロール基を少なくとも2つ有する」とは、アルコキシメチル基を2つ以上有すること、メチロール基を2つ以上有すること、アルコキシメチル基とメチロール基を合計2つ以上有することのいずれかを表す。これらの基を少なくとも2つ有することで、樹脂および同種分子と縮合反応して架橋構造体とすることができる。光酸発生剤と併用することで、感度や硬化物の破断伸度の向上のためにより幅広い設計が可能になる。 The resin composition of the present invention may contain a thermal cross-linking agent. In the present invention, the thermal cross-linking agent includes at least two groups selected from the group consisting of acrylic groups, methacrylic groups, epoxy groups, oxetanyl groups, benzoxazine structures, alkoxymethyl groups and methylol groups. is a compound. Thermal cross-linking agents preferably include, but are not limited to, compounds having at least two alkoxymethyl or methylol groups. Here, "having at least two alkoxymethyl groups or methylol groups" means having two or more alkoxymethyl groups, having two or more methylol groups, and having a total of two or more alkoxymethyl groups and methylol groups. Represents either By having at least two of these groups, a crosslinked structure can be formed by a condensation reaction with a resin and a molecule of the same kind. When used in combination with a photoacid generator, a wider range of designs is possible for improving sensitivity and breaking elongation of cured products.
 熱架橋剤の好ましい例としては、例えば、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DMLBisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、“NIKALAC(登録商標)”MX-290、NIKALAC MX-280、NIKALAC MX-270、NIKALAC MX-279、NIKALAC MW-100LM、NIKALAC MX-750LM(以上、商品名、(株)三和ケミカル製)を含有することが好ましい。これらを2種以上含有してもよい。この中でも、HMOM-TPHAP、MW-100LMを含有した場合、キュア時のリフローが起こりにくくなり、パターンが高矩形になるためより好ましい。 Preferred examples of thermal cross-linking agents include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP and DML-PSBP. , DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DMLBisOCHP-Z, DML-BPC, DML-BisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML -P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM -BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (the above are trade names, manufactured by Honshu Chemical Industry Co., Ltd.), "NIKALAC (registered trademark)" MX-290, NIKALAC MX -280, NIKALAC MX-270, NIKALAC MX-279, NIKALAC MW-100LM, NIKALAC MX-750LM (trade names, manufactured by Sanwa Chemical Co., Ltd.). You may contain 2 or more types of these. Among these, when HMOM-TPHAP and MW-100LM are contained, reflow hardly occurs during curing and the pattern becomes highly rectangular, which is more preferable.
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物の含有量は、(A)成分と(B)成分の総量100質量部に対して、10質量部以下とすることが好ましい。この範囲内であれば感度や硬化物の破断伸度の向上のために幅広い設計がより適切に行うことができる。 The content of the compound having at least two alkoxymethyl groups or methylol groups is preferably 10 parts by mass or less with respect to 100 parts by mass as the total amount of components (A) and (B). Within this range, a wide range of designs can be made more appropriately for improving the sensitivity and breaking elongation of the cured product.
 本発明の樹脂組成物は、(G)式(13)で表される化合物(以下、(G)成分と呼称する場合がある)を含有することが好ましい。これらの化合物は、分子内に芳香環を有さない構造とすることで、アルカリ現像液に対する溶解性が高まり、高い感度でパターン加工できる。さらに、熱または紫外線を含む光照射による樹脂硬化物中の(G)の分解を抑制でき、3次元架橋を形成できるため、高い破断伸度を有し、冷熱サイクル試験後においても高いクラック耐性を有する硬化物を得ることができる。 The resin composition of the present invention preferably contains (G) a compound represented by formula (13) (hereinafter sometimes referred to as component (G)). These compounds have a structure that does not have an aromatic ring in the molecule, so that the solubility in an alkaline developer increases, and patterning can be performed with high sensitivity. Furthermore, the decomposition of (G) in the resin cured product due to heat or light irradiation including ultraviolet rays can be suppressed, and three-dimensional cross-linking can be formed, so it has a high breaking elongation and high crack resistance even after a thermal cycle test. It is possible to obtain a cured product having.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(式(13)中、Lは炭素数1~8のアルキレン基で表される構造を示す。)
 (G)式(13)で表される化合物としては、例えば、“TEPIC(登録商標)”-S、“TEPIC”-L、“TEPIC”-VL、“TEPIC”-FLなどが挙げられる。相溶性、硬化性の観点から、これらの化合物を用いることが好ましいが、さらに硬化性を向上させるために“TEPIC”-UC(以上商品名、日産化学工業(株)製)、MA-DGIC(商品名、四国化成(株)製)などを用いてもよい。
(In formula (13), L 1 represents a structure represented by an alkylene group having 1 to 8 carbon atoms.)
(G) Compounds represented by formula (13) include, for example, “TEPIC (registered trademark)”-S, “TEPIC”-L, “TEPIC”-VL, and “TEPIC”-FL. From the viewpoint of compatibility and curability, it is preferable to use these compounds. A product name (manufactured by Shikoku Kasei Co., Ltd.) may also be used.
 (G)式(13)で表される化合物の含有量は、冷熱サイクルにおけるクラック耐性向上の観点から、(A)成分と(B)成分の総量100質量部に対して、5質量部以上とすることが好ましく、10質量部以上とすることがより好ましい。また、フィルム状にした際のフィルム膜表面のタック性がなく、ハンドリングし易くなる観点から、(A)成分と(B)成分の総量100質量部に対して、100質量部以下とすることが好ましい。 (G) The content of the compound represented by formula (13) is 5 parts by mass or more with respect to 100 parts by mass of the total amount of components (A) and (B) from the viewpoint of improving crack resistance in thermal cycles. preferably 10 parts by mass or more. In addition, from the viewpoint of ease of handling and lack of tackiness on the surface of the film when formed into a film, the total amount of component (A) and component (B) may be 100 parts by mass or less with respect to 100 parts by mass. preferable.
 本発明の樹脂組成物は、密着改良剤を含有してもよい。密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物などを含有することができる。これらを2種以上含有してもよい。 The resin composition of the present invention may contain an adhesion improver. Adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy group-containing A compound obtained by reacting a silicon compound can be contained. You may contain 2 or more types of these.
 密着改良剤を含有することにより、樹脂膜を現像する場合などに、シリコンウエハ、ITO、SiO、窒化ケイ素などの下地基材との密着性を高めることができる。また、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。 By containing an adhesion improver, adhesion to an underlying base material such as a silicon wafer, ITO, SiO 2 , or silicon nitride can be enhanced when developing a resin film. In addition, resistance to oxygen plasma and UV ozone treatment used for cleaning can be enhanced.
 樹脂組成物における密着改良剤の含有量は、(A)成分と(B)成分の総量100質量部に対して、0.1~10質量部が好ましい。このような範囲とすることで、現像後の密着性を高く、酸素プラズマやUVオゾン処理の耐性に優れた樹脂組成物を提供することができる。 The content of the adhesion improver in the resin composition is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass as the total amount of components (A) and (B). By setting it as such a range, the adhesiveness after image development is high, and the resin composition excellent in resistance to oxygen plasma and UV ozone treatment can be provided.
 本発明の樹脂組成物は、アルカリ現像性を補いやすくなる点から、フェノール性水酸基を有する化合物を含有してもよい。樹脂組成物がフェノール性水酸基を有する化合物を含有することにより、露光前はアルカリ現像液にほとんど溶解せず、露光すると容易にアルカリ現像液に溶解するために、現像による膜減りが少なく、かつ短時間で現像が容易になる。そのため、感度が向上しやすくなる。 The resin composition of the present invention may contain a compound having a phenolic hydroxyl group in order to facilitate alkali developability. Since the resin composition contains a compound having a phenolic hydroxyl group, it is almost insoluble in an alkaline developer before exposure, and easily dissolved in an alkaline developer after exposure. Easier to develop in time. Therefore, it becomes easier to improve the sensitivity.
 かかる点から選択されるフェノール性水酸基を有する化合物としては、例えば、Bis-Z、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTBP-Z、BisOCHP-Z、BisOCR-CP、BisP-MZ、BisP-EZ、Bis26X-CP、BisP-PZ、BisP-IPZ、BisCRIPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTBP-CP、TekP-4HBPA(テトラキスP-DO-BPA)、TrisPHAP、TrisPPA、TrisP-PHBA、TrisP-SA、TrisOCR-PA、BisOFP-Z、BisRS-2P、BisPG-26X、BisRS-3P、BisOC-OCHP、BisPC-OCHP、Bis25X-OCHP、Bis26X-OCHP、BisOCHP-OC、Bis236T-OCHP、メチレントリス-FR-CR、BisRS-26X、BisRS-OCHP、(商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A(商品名、旭有機材工業(株)製)、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,4-ジヒドロキシキノリン、2,6-ジヒドロキシキノリン、2,3-ジヒドロキシキノキサリン、アントラセン-1,2,10-トリオール、アントラセン-1,8,9-トリオール、8-キノリノールなどが挙げられる。フェノール性水酸基を有する化合物は、これらを2種以上含有してもよい。 Compounds having a phenolic hydroxyl group selected from these points include, for example, Bis-Z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, BisP -MZ, BisP-EZ, Bis26X-CP, BisP-PZ, BisP-IPZ, BisCRIPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP-4HBPA (Tetrakis P-DO-BPA), TrisPHAP , TrisPPA, TrisP-PHBA, TrisP-SA, TrisOCR-PA, BisOFP-Z, BisRS-2P, BisPG-26X, BisRS-3P, BisOC-OCHP, BisPC-OCHP, Bis25X-OCHP, Bis26X-OCHP, BisOCHP-OC , Bis236T-OCHP, methylenetris-FR-CR, BisRS-26X, BisRS-OCHP, (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, BIR-PC, BIR-PTBP, BIR -PCHP, BIP-BIOC-F, 4PC, BIR-BIPC-F, TEP-BIP-A (trade name, manufactured by Asahi Organic Chemicals Industry Co., Ltd.), 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,4-dihydroxyquinoline, 2,6-dihydroxyquinoline, 2 ,3-dihydroxyquinoxaline, anthracene-1,2,10-triol, anthracene-1,8,9-triol, 8-quinolinol and the like. The compound having a phenolic hydroxyl group may contain two or more of these.
 本発明の樹脂組成物は、必要に応じて、界面活性剤を含有してもよい。界面活性剤を含有することにより、基板との濡れ性を向上させたり、塗布膜の膜厚均一性を向上させたりすることができる。界面活性剤としては、市販の化合物を用いることができる。具体的にはシリコーン系界面活性剤としては、東レダウコーニングシリコーン社のSHシリーズ、SDシリーズ、STシリーズ、ビックケミー・ジャパン社のBYKシリーズ、信越シリコーン社のKPシリーズ、日本油脂社のディスフォームシリーズ、東芝シリコーン社のTSFシリーズなどが挙げられ、フッ素系界面活性剤としては、大日本インキ工業社の“メガファック(登録商標)”シリーズ、住友スリーエム社のフロラードシリーズ、旭硝子社の“サーフロン(登録商標)”シリーズ、“アサヒガード(登録商標)”シリーズ、新秋田化成社のEFシリーズ、オムノヴァ・ソルーション社のポリフォックスシリーズなどが挙げられる。アクリル系および/またはメタクリル系の重合物から得られる界面活性剤としては、共栄社化学社のポリフローシリーズ、楠本化成社の“ディスパロン(登録商標)”シリーズなどが挙げられるが、これらに限定されない。 The resin composition of the present invention may contain a surfactant as necessary. By containing a surfactant, it is possible to improve the wettability with the substrate and improve the film thickness uniformity of the coating film. Commercially available compounds can be used as surfactants. Specifically, the silicone-based surfactants include the SH series, SD series, and ST series of Toray Dow Corning Silicone Co., Ltd., the BYK series of BYK Chemie Japan, the KP series of Shin-Etsu Silicone Co., Ltd., the Disform series of NOF Corporation, Toshiba Silicone Co., Ltd.'s TSF series, etc., and fluorine-based surfactants include Dainippon Ink Industry's "Megafac (registered trademark)" series, Sumitomo 3M's Florard series, and Asahi Glass' "Surflon (registered trademark)" series. Trademark)" series, "Asahi Guard (registered trademark)" series, EF series of Shin-Akita Kasei Co., Ltd., Polyfox series of Omnova Solution Co., Ltd., and the like. Surfactants obtained from acrylic and/or methacrylic polymers include, but are not limited to, Polyflow series from Kyoeisha Chemical Co., Ltd., and "Disparon (registered trademark)" series from Kusumoto Kasei Co., Ltd.
 界面活性剤の含有量は、(A)成分と(B)成分の総量100質量部に対して0.001質量部以上1質量部以下が好ましい。上述の範囲とすることで、気泡やピンホールなどの不具合を生じることなく、樹脂組成物と基板との濡れ性や塗布膜の膜厚均一性を高めることができる。 The content of the surfactant is preferably 0.001 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass as the total amount of components (A) and (B). Within the above range, the wettability between the resin composition and the substrate and the film thickness uniformity of the coating film can be improved without causing defects such as air bubbles and pinholes.
 本発明の樹脂組成物は、溶剤を含有してもよい。溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、N,N‐ジメチルイソ酪酸アミド、メトキシ-N,N-ジメチルプロピオンアミドなどの極性の非プロトン性溶剤、テトラヒドロフラン、ジオキサン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトンなどのケトン類、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、プロピレングリコールモノメチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートなどのエステル類、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メチル-3-メトキシブタノールなどのアルコール類、トルエン、キシレンなどの芳香族炭化水素類等を含有することができる。これらを2種以上含有してもよい。 The resin composition of the present invention may contain a solvent. Solvents include N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2 - polar aprotic solvents such as imidazolidinone, N,N'-dimethylpropyleneurea, N,N-dimethylisobutyamide, methoxy-N,N-dimethylpropionamide, tetrahydrofuran, dioxane, propylene glycol monomethyl ether, propylene ethers such as glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone and diisobutyl ketone; esters such as ethyl acetate, butyl acetate, isobutyl acetate, propyl acetate, propylene glycol monomethyl ether acetate, and 3-methyl-3-methoxybutyl acetate; alcohols such as ethyl lactate, methyl lactate, diacetone alcohol and 3-methyl-3-methoxybutanol; and aromatic hydrocarbons such as toluene and xylene. You may contain 2 or more types of these.
 溶剤の含有量は、(A)成分と(B)成分の総量100質量部に対して、組成物を溶解させやすい点から、100質量部以上含有することが好ましく、膜厚1μm以上の塗膜を形成させやすい点から、1,500質量部以下含有することが好ましい。 The content of the solvent is preferably 100 parts by mass or more for the total amount of 100 parts by mass of the components (A) and (B), since the composition is easily dissolved. It is preferable to contain 1,500 parts by mass or less because it is easy to form.
 次に、本発明の樹脂組成物を製造する方法について説明する。例えば、前記(A)成分および(B)成分と、必要により、光酸発生剤、光重合開始剤、熱架橋剤、フェノール性水酸基を有する化合物、密着改良剤、界面活性剤、溶剤などを混合して溶解させることにより、樹脂組成物を得ることができる。 Next, a method for producing the resin composition of the present invention will be described. For example, the components (A) and (B) are mixed with, if necessary, a photoacid generator, a photopolymerization initiator, a thermal cross-linking agent, a compound having a phenolic hydroxyl group, an adhesion improver, a surfactant, a solvent, and the like. The resin composition can be obtained by dissolving the resin composition.
 溶解方法としては、加熱や撹拌などが挙げられる。加熱する場合、加熱温度は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、25℃~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法が挙げられる。撹拌する場合、回転数は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、200rpm~2000rpmである。撹拌する場合でも必要に応じて加熱してもよく、通常、25℃~80℃である。また、界面活性剤や一部の密着改良剤など、撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することで、気泡の発生による他成分の溶解不良を防ぐことができる。 Dissolution methods include heating and stirring. When heating, the heating temperature is preferably set within a range that does not impair the performance of the resin composition, and is usually 25°C to 80°C. In addition, the order of dissolving each component is not particularly limited, and for example, a method of dissolving compounds in order of low solubility can be mentioned. When stirring, the rotation speed is preferably set within a range that does not impair the performance of the resin composition, and is usually 200 rpm to 2000 rpm. Even when the mixture is stirred, it may be heated as necessary, and the temperature is usually 25°C to 80°C. In addition, for ingredients that tend to generate air bubbles during stirring and dissolution, such as surfactants and some adhesion improvers, dissolving the other ingredients before adding them at the end will prevent poor dissolution of other ingredients due to air bubbles. can be prevented.
 本発明の樹脂組成物の粘度は、25℃において2~5,000mPa・sが好ましい。粘度が2mPa・s以上となるように固形分濃度を調整することにより、所望の膜厚を得ることが容易になる。一方粘度が5,000mPa・s以下であれば、均一性の高い塗布膜を得ることが容易になる。ここでの粘度測定はTVE-25形粘度計(東機産業(株)製)の旧E形粘度計・DVE形粘度計を用いた測定であり、本発明の樹脂組成物を1.1mL採取し、サンプルカップへ注入する。粘度に応じて、65~6000μN・mの範囲でトルクを選択し、回転数0.5~100rpmの範囲で測定する。このような粘度を有する本発明の樹脂組成物は、本発明の樹脂組成物100質量%中の(A)成分および(B)成分をあわせた含有量を5~60質量%にすることで容易に得ることができる。ここで、固形分濃度とは溶剤以外の成分をいう。 The viscosity of the resin composition of the present invention is preferably 2 to 5,000 mPa·s at 25°C. A desired film thickness can be easily obtained by adjusting the solid content concentration so that the viscosity is 2 mPa·s or more. On the other hand, if the viscosity is 5,000 mPa·s or less, it becomes easy to obtain a highly uniform coating film. The viscosity measurement here is a measurement using a TVE-25 type viscometer (manufactured by Toki Sangyo Co., Ltd.), a former E-type viscometer/DVE-type viscometer, and 1.1 mL of the resin composition of the present invention is sampled. and pour into the sample cup. Depending on the viscosity, torque is selected in the range of 65-6000 μN·m and measured in the range of rotational speeds of 0.5-100 rpm. The resin composition of the present invention having such a viscosity can easily be obtained by adjusting the combined content of component (A) and component (B) in 100% by mass of the resin composition of the present invention to 5 to 60% by mass. can get to Here, solid content concentration refers to components other than the solvent.
 得られた樹脂組成物は、濾過フィルターを用いて濾過し、ゴミや粒子を除去することが好ましい。フィルター孔径は、例えば0.5μm、0.2μm、0.1μm、0.05μm、0.02μmなどがあるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンが好ましい。 The obtained resin composition is preferably filtered using a filtration filter to remove dust and particles. Examples of filter pore sizes include, but are not limited to, 0.5 μm, 0.2 μm, 0.1 μm, 0.05 μm, and 0.02 μm. Materials for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), etc., and polyethylene and nylon are preferred.
 本発明の硬化物は、本発明の樹脂組成物を硬化した硬化物である。硬化反応は、熱や光などによって架橋反応や閉環反応が進行し、得られた硬化物は、耐熱性、破断伸度および耐薬品性が向上する。硬化物は、硬化前の樹脂組成物中の溶剤が揮発する50℃から200℃の間で、5分から2時間熱処理した時、熱処理前の硬化物膜厚に対して熱処理後の硬化物の膜厚の膜厚変化率が10%以内であれば、硬化しているものとする。本発明の硬化物は、高い破断伸度を有し、冷熱サイクル試験後においても高いクラック耐性を有し、本発明の半導体装置、電子部品、表示装置の信頼性を向上させることができる。 The cured product of the present invention is a cured product obtained by curing the resin composition of the present invention. In the curing reaction, cross-linking reaction and ring closure reaction proceed by heat, light, etc., and the obtained cured product has improved heat resistance, elongation at break and chemical resistance. When the cured product is heat treated for 5 minutes to 2 hours between 50 ° C. and 200 ° C. where the solvent in the resin composition before curing volatilizes, the cured product film after heat treatment is compared to the cured product film thickness before heat treatment. If the film thickness change rate is within 10%, it is assumed that the film is cured. The cured product of the present invention has high elongation at break and high crack resistance even after a thermal cycle test, and can improve the reliability of the semiconductor device, electronic component, and display device of the present invention.
 本発明の硬化物は、式(14)または式(15)で表される構造を有する樹脂を含有する。これらの構造は、本発明の樹脂組成物における(A)成分のRおよび(B)成分のRが加熱硬化後に反応した構造であり、硬化物がこれらの構造を有する樹脂を含有する場合、高分子末端同士の反応による高分子鎖の分子鎖延長のため、高い破断伸度、高クラック耐性を有する硬化物を得ることができる。本発明の樹脂組成物における(A)成分のRおよび(B)成分のRが加熱硬化後に反応する場合、その結合様式から式(14)または式(15)で表される構造を有することになる。したがって、本発明の硬化物は、式(14)で表される構造のみを有してもよいし、式(15)で表される構造のみを有してもよいし、式(14)で表される構造と式(15)で表される構造を同時に有していてもよい。硬化物中のこれらの構造は、硬化物に対しアルカリなどを用いて加水分解して得られた生成物、もしくは硬化物そのものに対して、核磁気共鳴法(1H-NMR、13C-NMR)、赤外吸収分光法(IR法)、マトリックス支援レーザー脱離イオン化法―飛行時間型質量分析法(MALDI―TOFMS)などを用いて同定することができる。 The cured product of the present invention contains a resin having a structure represented by formula (14) or (15). These structures are structures in which R 1 of component (A) and R 2 of component (B) in the resin composition of the present invention react after heat curing, and when the cured product contains a resin having these structures A cured product having high elongation at break and high crack resistance can be obtained due to the extension of the polymer chain due to the reaction between the polymer ends. When R 1 of component (A) and R 2 of component (B) in the resin composition of the present invention react after heat curing, they have a structure represented by formula (14) or formula (15) due to their bonding mode. It will be. Therefore, the cured product of the present invention may have only the structure represented by formula (14), may have only the structure represented by formula (15), or may have formula (14) You may have the structure represented by the formula (15) and the structure represented by the formula (15) at the same time. These structures in the cured product are obtained by hydrolyzing the cured product with an alkali or the like, or the cured product itself, by nuclear magnetic resonance spectroscopy (1H-NMR, 13C-NMR), It can be identified using infrared absorption spectroscopy (IR method), matrix-assisted laser desorption/ionization method-time-of-flight mass spectrometry (MALDI-TOFMS), and the like.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
*は化学結合を表す。 * represents a chemical bond.
 本発明の硬化物は、トリフルオロメチル基を有する樹脂を含有することが好ましい。トリフルオロメチル基を有することにより硬化物の疎水性が向上し、冷熱サイクル試験におけるクラック耐性が向上する。前記硬化物は、前記式(14)または式(15)で表される構造、およびトリフルオロメチル基を有する樹脂を含有してもよい。また、前記硬化物は、前記式(14)または式(15)で表される構造を有さず、かつトリフルオロメチル基を有する樹脂を含有してもよい。相溶性の観点から、前記硬化物は、前記式(14)または式(15)で表される構造、およびトリフルオロメチル基を有する樹脂を含有することが好ましい。 The cured product of the present invention preferably contains a resin having a trifluoromethyl group. Having a trifluoromethyl group improves the hydrophobicity of the cured product and improves the crack resistance in a thermal cycle test. The cured product may contain a resin having a structure represented by formula (14) or formula (15) and a trifluoromethyl group. Moreover, the cured product may contain a resin that does not have the structure represented by the formula (14) or (15) and has a trifluoromethyl group. From the viewpoint of compatibility, the cured product preferably contains a resin having a structure represented by formula (14) or formula (15) and a trifluoromethyl group.
 本発明の硬化物の製造方法について説明する。 The method for producing the cured product of the present invention will be explained.
 本発明の硬化物の製造方法は、本発明の樹脂組成物を塗布する工程と、紫外線照射工程と現像工程を経てパターンを形成する工程と、加熱して硬化物のレリーフパターン層を形成する工程を含むことが好ましい。 The method for producing a cured product of the present invention includes a step of applying the resin composition of the present invention, a step of forming a pattern through an ultraviolet irradiation step and a developing step, and a step of heating to form a relief pattern layer of the cured product. is preferably included.
 以下、樹脂膜とは、本発明の樹脂組成物を基板に塗布し、乾燥して得られた膜をいう。 Hereinafter, the term "resin film" refers to a film obtained by coating the resin composition of the present invention on a substrate and drying it.
 まず、本発明の樹脂組成物を塗布する工程は、本発明の樹脂組成物を基板上に塗布し、乾燥して樹脂膜を得る。本発明の樹脂組成物は、上記の光酸発生剤を含有する樹脂組成物、もしくは、上記の光重合開始剤と、光重合性化合物を含有する樹脂組成物を用いることが好ましい。乾燥はオーブン、ホットプレート、赤外線などを使用し、50℃~140℃の範囲で1分~2時間行うことが好ましい。基板としてはシリコンウエハ、セラミックス類、ガリウムヒ素、有機回路基板、無機回路基板、およびこれらの基板に回路の構成材料が配置されたものなどが用いられるが、これらに限定されない。塗布方法としては、スピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などの方法がある。また、塗布膜厚は、塗布手法、組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1~150μmになるように塗布される。 First, in the step of applying the resin composition of the present invention, the resin composition of the present invention is applied onto a substrate and dried to obtain a resin film. As the resin composition of the present invention, it is preferable to use a resin composition containing the above photoacid generator, or a resin composition containing the above photopolymerization initiator and a photopolymerizable compound. Drying is preferably carried out using an oven, hot plate, infrared rays, or the like, at a temperature of 50° C. to 140° C. for 1 minute to 2 hours. Examples of substrates include silicon wafers, ceramics, gallium arsenide, organic circuit substrates, inorganic circuit substrates, and circuit-forming materials disposed on these substrates, but are not limited to these. Examples of coating methods include a spin coating method, a slit coating method, a dip coating method, a spray coating method, and a printing method. The coating film thickness varies depending on the coating method, the solid content concentration of the composition, the viscosity, etc., but the coating is usually applied so that the film thickness after drying is 0.1 to 150 μm.
 塗布に先立ち、樹脂組成物を塗布する基材を予め前述した密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶剤に0.5~20質量部溶解させた溶液を用いて、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法で基材表面を処理する方法が挙げられる。基材表面を処理した後、必要に応じて、減圧乾燥処理を施してもよい。また、その後50℃~280℃の熱処理により基材と密着改良剤との反応を進行させてもよい。 Prior to application, the base material to be coated with the resin composition may be pretreated with the above-described adhesion improver. For example, a solution obtained by dissolving 0.5 to 20 parts by mass of an adhesion improver in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate is used. Examples thereof include methods of treating the surface of the base material by spin coating, slit die coating, bar coating, dip coating, spray coating, vapor treatment, and the like. After treating the surface of the base material, it may be dried under reduced pressure, if necessary. Further, after that, a heat treatment at 50° C. to 280° C. may be performed to advance the reaction between the substrate and the adhesion improver.
 紫外線照射工程と現像工程を経てパターンを形成する工程は、感光性を有する樹脂膜上に所望のパターンを有するマスクを通して化学戦を照射する露光工程を含んでいてもよい。露光に用いられる化学戦としては紫外線、可視光線、電子線、X線などがあるが、本発明では一般的な露光波長であるg線(436nm)、h線(405nm)またはi線(365nm)を用いることが好ましい。 The process of forming a pattern through an ultraviolet irradiation process and a development process may include an exposure process of irradiating chemical warfare through a mask having a desired pattern on a photosensitive resin film. Chemical warfare used for exposure includes ultraviolet rays, visible rays, electron beams, X-rays, and the like. is preferably used.
 続いて、露光された樹脂膜を現像する。現像液としては、テトラメチルアンモニムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶剤、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などの有機溶剤が挙げられるが、これらに限定されない。現像液は、前記溶剤から選ばれる2種以上の混合溶液を用いてもよい。現像後は水、エタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類にてリンス処理をすることができるが、これらに限定されない。リンス処理に用いる溶液は、前記溶剤から選ばれる2種以上の混合溶液を用いてもよい。 Then, the exposed resin film is developed. Developers include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, Aqueous solutions of alkaline compounds such as dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, hexamethylenediamine, N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, γ-butyrolactone , polar solvents such as dimethylacrylamide, alcohols such as methanol, ethanol and isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone. Solvents include, but are not limited to. The developer may be a mixed solution of two or more selected from the above solvents. After development, the film can be rinsed with water, ethanol, alcohol such as isopropyl alcohol, ethyl lactate, ester such as propylene glycol monomethyl ether acetate, but not limited thereto. The solution used for the rinse treatment may be a mixed solution of two or more selected from the above solvents.
 次に、加熱して硬化物のレリーフパターン層を形成する工程は、樹脂膜を熱処理して熱架橋反応や熱閉環反応を進行させることにより、硬化物のレリーフパターン層を形成する。 Next, in the step of heating to form a relief pattern layer of the cured product, the relief pattern layer of the cured product is formed by heat-treating the resin film to promote thermal cross-linking reaction and thermal ring-closing reaction.
 樹脂膜の熱処理は、段階的に昇温して行ってもよいし、連続的に昇温しながら行ってもよい。熱処理は5分間~5時間実施することが好ましい。一例としては、140℃で30分熱処理した後、さらに320℃で60分熱処理する例が挙げられる。熱処理温度としては、140℃以上400℃以下が好ましい。熱処理温度は、熱架橋反応や熱閉環反応を進行させるため、140℃以上が好ましく、160℃以上がより好ましい。また優れた硬化物を提供すること、収率向上させるため、熱処理温度は400℃以下が好ましく、350℃以下がより好ましい。 The heat treatment of the resin film may be performed by gradually increasing the temperature, or may be performed while continuously increasing the temperature. The heat treatment is preferably carried out for 5 minutes to 5 hours. As an example, heat treatment is performed at 140° C. for 30 minutes, followed by heat treatment at 320° C. for 60 minutes. The heat treatment temperature is preferably 140° C. or higher and 400° C. or lower. The heat treatment temperature is preferably 140° C. or higher, more preferably 160° C. or higher, in order to advance the thermal crosslinking reaction and the thermal ring-closing reaction. The heat treatment temperature is preferably 400° C. or lower, more preferably 350° C. or lower, in order to provide an excellent cured product and improve the yield.
 本発明の電子部品、表示装置または半導体装置は、本発明の硬化物を具備する。本発明の硬化物を有することにより、冷熱サイクル試験後においても、クラックの発生しない高信頼性の電子部品、表示装置または半導体装置を得ることができる。本発明の電子部品、表示装置または半導体装置の構成例として、例えば、特開2020-66651号公報や国際公開第2021/085321号に記載の電子部品、表示装置または半導体装置が挙げられるが、これらに限定されない。 The electronic component, display device or semiconductor device of the present invention comprises the cured product of the present invention. By having the cured product of the present invention, it is possible to obtain a highly reliable electronic component, display device or semiconductor device that does not generate cracks even after a thermal cycle test. Examples of the configuration of the electronic component, display device, or semiconductor device of the present invention include, for example, the electronic component, display device, or semiconductor device described in JP-A-2020-66651 and WO 2021/085321. is not limited to
 以下、実施例等を挙げて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の樹脂組成物の評価は以下の方法により行った。評価には、あらかじめ1μmのポリテトラフルオロエチレン製のフィルター(住友電気工業(株)製)で濾過した樹脂組成物(以下ワニスと呼ぶ)を用いた。 The present invention will be described below with reference to examples, etc., but the present invention is not limited to these examples. The resin compositions in the examples were evaluated by the following methods. For the evaluation, a resin composition (hereinafter referred to as varnish) filtered in advance through a 1 μm polytetrafluoroethylene filter (manufactured by Sumitomo Electric Industries, Ltd.) was used.
 (1)(A)成分の末端基Rと(B)成分の末端Rの物質量比Mの算出
 樹脂組成物中の(A)成分の末端基Rと(B)成分の末端Rの物質量比は、1H-NMRを用いて算出した。測定条件は、以下の通りである。
測定機器:JEOL RESONANCE社製 JNM-ECZ400R
磁場強度:400MHz
基準物質:テトラメチルシラン(TMS)
溶媒:ジメチルスルホキシド(DMSO)
測定温度:40℃
 得られたH-NMRスペクトルにおいて、Rの水素原子由来のシグナルは5から6ppmに現れ、Rの水素原子由来のシグナルは6から6.5ppmに現れる。9から11ppmに現れるアミド結合の水素原子由来のシグナルの総積分値を100としたときの(A)成分の末端基Rの水素原子由来のシグナルの総積分値をrおよび(B)成分の末端基Rの水素原子由来のシグナルの総積分値をrとし、樹脂組成物中の(A)成分の末端基Rと(B)成分の末端Rの物質量比Mは、M=3r/2rとして算出した。
(1) Calculation of substance amount ratio M between terminal group R 1 of component (A) and terminal R 2 of component (B) Terminal group R 1 of component (A) and terminal R of component (B) in the resin composition 2 was calculated using 1H-NMR. The measurement conditions are as follows.
Measuring equipment: JNM-ECZ400R manufactured by JEOL RESONANCE
Magnetic field strength: 400MHz
Reference substance: Tetramethylsilane (TMS)
Solvent: dimethyl sulfoxide (DMSO)
Measurement temperature: 40°C
In the obtained 1 H-NMR spectrum, the signal originating from the R 1 hydrogen atom appears at 5 to 6 ppm and the signal originating from the R 2 hydrogen atom appears at 6 to 6.5 ppm. When the total integrated value of the signal derived from the hydrogen atom of the amide bond appearing at 9 to 11 ppm is 100, the total integrated value of the signal derived from the hydrogen atom of the terminal group R 1 of the component (A) is r 1 and the component (B) The total integral value of the signal derived from the hydrogen atom of the terminal group R 2 of is r 2 , and the material amount ratio M between the terminal group R 1 of the component (A) and the terminal R 2 of the component (B) in the resin composition is Calculated as M=3r 1 /2r 2 .
 (2)分子量の測定
 樹脂組成物の重量平均分子量を、ゲル浸透クロマトグラフィー(GPC)法を用いて、標準ポリスチレン換算により求めた。
(2) Measurement of molecular weight The weight-average molecular weight of the resin composition was obtained by standard polystyrene conversion using gel permeation chromatography (GPC).
 具体的には、以下の装置及び条件にて重量平均分子量を測定した。
測定装置:システム ウォーターズ社製Alliance e2695
検出器:2489 UV/Vis Detector(測定波長260nm)
測定条件:カラム TOSOH TSK Guard column
         TOSOH TSK-GEL α―4000
         TOSOH TSK-GEL α―2500
展開溶液:NMP(塩化リチウム0.05M、リン酸0.05M入り)
流速:0.4ml/分、検出器:UV270nm
 解析可能なピーク強度で検出できるようにするため、必要に応じて、樹脂組成物を溶媒(NMP(塩化リチウム0.05M、リン酸0.05M入り))で希釈して測定してもよい。
Specifically, the weight average molecular weight was measured using the following apparatus and conditions.
Measuring device: Alliance e2695 manufactured by System Waters
Detector: 2489 UV/Vis Detector (measurement wavelength 260 nm)
Measurement conditions: column TOSOH TSK Guard column
TOSOH TSK-GEL α-4000
TOSOH TSK-GEL α-2500
Developing solution: NMP (containing 0.05 M lithium chloride and 0.05 M phosphoric acid)
Flow rate: 0.4 ml/min, detector: UV270 nm
If necessary, the resin composition may be diluted with a solvent (NMP (containing 0.05 M lithium chloride and 0.05 M phosphoric acid)) for measurement so that detection can be performed with an analyzable peak intensity.
 (3)破断伸度評価
 ワニスを8インチのシリコンウエハ上に、120℃で3分間のプリベーク後の膜厚が11μmとなるように塗布現像装置ACT-8を用いてスピンコート法で塗布およびプリベークした後、イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で250℃まで昇温し、250℃で1時間熱処理を行なった。温度が50℃以下になったところでウエハを取り出し、45質量%のフッ化水素酸に1分間浸漬することで、ウエハより硬化物を剥がした。この膜を幅1.5cm、長さ5cmの短冊状に切断し、テンシロンRTM-100((株)オリエンテック製)を用いて、室温23.0℃、湿度45.0%RH下で引張速度5mm/分で引っ張り、破断伸度の測定を行なった。測定は1検体につき10枚の短冊について行ない、結果から上位5点の平均値を求めた。破断伸度の値が、40%以上のものを非常に良好(3)、20%以上40%未満のものを良好(2)、20%未満のものを不良(1)とした。
(3) Breaking elongation evaluation A varnish is applied to an 8-inch silicon wafer by a spin coating method using a coating and developing device ACT-8 so that the film thickness after prebaking at 120 ° C. for 3 minutes is 11 μm and prebaked. After that, using an inert oven CLH-21CD-S (manufactured by Koyo Thermo Systems Co., Ltd.), the temperature was raised to 250° C. at 3.5° C./min at an oxygen concentration of 20 ppm or less, and heat treatment was performed at 250° C. for 1 hour. rice field. When the temperature became 50° C. or lower, the wafer was taken out and immersed in 45 mass % hydrofluoric acid for 1 minute to peel off the cured product from the wafer. This film was cut into strips with a width of 1.5 cm and a length of 5 cm. The elongation at break was measured by pulling at 5 mm/min. Measurement was performed on 10 strips per sample, and the average value of the top 5 points was obtained from the results. A value of breaking elongation of 40% or more was rated as very good (3), a value of 20% or more and less than 40% was rated as good (2), and a value of less than 20% was rated as poor (1).
 (4)クラック耐性評価
 銅配線での剥離評価を行うにあたり、以下の評価基板を準備した。8インチシリコンウエハ上に、厚み5μm、直径90μmの円柱型銅配線を、銅配線の中心間距離が150μmとなるように等間隔に作成した。これを評価基板として使用した。
(4) Evaluation of Crack Resistance The following evaluation substrates were prepared for evaluation of peeling on copper wiring. On an 8-inch silicon wafer, cylindrical copper wirings with a thickness of 5 μm and a diameter of 90 μm were formed at equal intervals so that the center-to-center distance of the copper wirings was 150 μm. This was used as an evaluation substrate.
 ワニスを上記評価基板上に、120℃で3分間の熱処理後の膜厚が8-12μmとなるよう、塗布現像装置ACT-8(東京エレクトロン(株)製)を用いてスピンコート法で塗布およびプリベークを行い、樹脂膜を作製した。プリベークはいずれも120℃で3分間行った。 The varnish was applied on the evaluation substrate by a spin coating method using a coating and developing apparatus ACT-8 (manufactured by Tokyo Electron Ltd.) so that the film thickness after heat treatment at 120° C. for 3 minutes would be 8 to 12 μm. Pre-baking was performed to produce a resin film. All pre-baking was performed at 120° C. for 3 minutes.
 その後、樹脂膜をイナートオーブン(光洋サーモシステム(株)製、CLH-21CD-S)を用いて、窒素気流下において酸素濃度20ppm以下で50℃から3.5℃/分で、250℃まで昇温し、続けて250℃で1時間熱処理を行ない、樹脂膜を硬化させて硬化物を得た。なお、プリベーク後の膜厚は、大日本スクリーン製造(株)製光干渉式膜厚測定装置ラムダエースSTM-602を使用し、屈折率を1.629として測定し、硬化物の膜厚は、屈折率1.773で測定した。 After that, the resin film was heated from 50° C. to 250° C. at a rate of 3.5° C./min under a nitrogen stream using an inert oven (CLH-21CD-S, manufactured by Koyo Thermo Systems Co., Ltd.). After heating, heat treatment was performed at 250° C. for 1 hour to cure the resin film and obtain a cured product. The film thickness after pre-baking is measured using a light interference film thickness measuring device Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd. with a refractive index of 1.629. Measured at a refractive index of 1.773.
 温度が50℃以下になったところで評価基板(以後試料とする)を取り出した。 When the temperature reached 50°C or less, the evaluation substrate (hereinafter referred to as the sample) was taken out.
 次に、試料を冷熱サイクル試験機(条件:-65℃/30min~150℃/30min)に投入し、200サイクル処理を行った。その後、試料を取り出し、光学顕微鏡を用いて硬化物のクラックの有無を観察した。基板中央、基板4端部を各2箇所ずつ計10箇所観察し、クラック発生数0個のものを極めて良好として4、クラック発生数1~2個のものを良好として3、クラック発生数3~4個のものをやや不良として2、クラック発生数5~10個のものを不良として1、と評価した。クラック発生数が少ないほどクラック耐性が良いことを示す。評価結果は、3または4であることが好ましく、4であることが最も好ましい。 Next, the sample was put into a thermal cycle tester (conditions: -65°C/30min to 150°C/30min) and subjected to 200 cycles. After that, the sample was taken out and the presence or absence of cracks in the cured product was observed using an optical microscope. A total of 10 observations were made at 2 locations each at the center of the substrate and 4 edges of the substrate, with 0 cracks being evaluated as very good, 1-2 cracks being evaluated as good, and 3 or more cracks being generated. A sample with 4 cracks was rated as 2 as slightly defective, and a sample with 5 to 10 cracks was rated as 1 as defective. A smaller number of cracks indicates better crack resistance. The evaluation result is preferably 3 or 4, most preferably 4.
 (5)硬化物中の樹脂の構造分析
 実施例1~16、21~24、比較例1~4の非感光性ワニスについては、8インチのシリコンウエハ上に、120℃で3分間のプリベーク後の膜厚が11μmとなるように塗布現像装置ACT-8を用いたスピンコート法で塗布およびプリベークした後、イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で250℃まで昇温し、250℃で1時間熱処理を行なった。温度が50℃以下になったところでウエハを取り出し、45質量%のフッ化水素酸に1分間浸漬することで、ウエハより硬化物を剥がした。
(5) Structural analysis of resin in cured product For the non-photosensitive varnishes of Examples 1 to 16, 21 to 24, and Comparative Examples 1 to 4, after prebaking on an 8-inch silicon wafer at 120 ° C. for 3 minutes After coating and pre-baking by a spin coating method using a coating and developing apparatus ACT-8 so that the film thickness of 11 μm, an inert oven CLH-21CD-S (manufactured by Koyo Thermo Systems Co., Ltd.) was used to reduce the oxygen concentration. The temperature was raised to 250° C. at 3.5° C./min at 20 ppm or less, and heat treatment was performed at 250° C. for 1 hour. When the temperature became 50° C. or lower, the wafer was taken out and immersed in 45 mass % hydrofluoric acid for 1 minute to peel off the cured product from the wafer.
 実施例17~20の感光性ワニスについては、8インチのシリコンウエハ上に、120℃で3分間のプリベーク後の膜厚が12μmとなるように塗布現像装置ACT-8を用いたスピンコート法で塗布およびプリベークした後、露光機i線ステッパー(ニコン(株)製、NSR-2005i9C)を用いて円柱型銅配線上に3~50μmの円形開口パターンが形成できるようなマスクを用いて、800mJ/cmの露光量で露光した。露光後、2.38質量%のテトラメチルアンモニウム(TMAH)水溶液(多摩化学工業製)を用いて現像し、次いで純水でリンスし、振り切り乾燥後レリーフパターン膜を得た。その後、イナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて、酸素濃度20ppm以下で3.5℃/分で250℃まで昇温し、250℃で1時間熱処理を行なった。温度が50℃以下になったところでウエハを取り出し、45質量%のフッ化水素酸に1分間浸漬することで、ウエハより硬化物を剥がした。 The photosensitive varnishes of Examples 17 to 20 were applied onto an 8-inch silicon wafer by spin coating using a coating and developing apparatus ACT-8 so that the film thickness after prebaking at 120° C. for 3 minutes was 12 μm. After coating and pre-baking, exposure machine i-line stepper (manufactured by Nikon Corporation, NSR-2005i9C) was used with a mask capable of forming a circular opening pattern of 3 to 50 μm on the cylindrical copper wiring. It was exposed with an exposure dose of cm 2 . After exposure, the film was developed using a 2.38% by mass tetramethylammonium (TMAH) aqueous solution (manufactured by Tama Kagaku Kogyo), rinsed with pure water, shaken off and dried to obtain a relief pattern film. After that, using an inert oven CLH-21CD-S (manufactured by Koyo Thermo Systems Co., Ltd.), the temperature was raised to 250° C. at an oxygen concentration of 20 ppm or less at 3.5° C./min, and heat treatment was performed at 250° C. for 1 hour. . When the temperature became 50° C. or lower, the wafer was taken out and immersed in 45 mass % hydrofluoric acid for 1 minute to peel off the cured product from the wafer.
 このようにして得られた硬化物2.0g、イオン交換水200g、NaOH10gを投入し、60℃で8時間攪拌した。続いて、この溶液を室温まで冷却し、イオン交換水を700ml添加し、30分攪拌した。 2.0 g of the cured product thus obtained, 200 g of deionized water and 10 g of NaOH were added and stirred at 60°C for 8 hours. Subsequently, this solution was cooled to room temperature, 700 ml of ion-exchanged water was added, and the mixture was stirred for 30 minutes.
 次に、濃塩酸(35%HCl水溶液)20gをイオン交換水400mlで希釈した希HCl水溶液を作製した。 Next, a diluted HCl aqueous solution was prepared by diluting 20 g of concentrated hydrochloric acid (35% HCl aqueous solution) with 400 ml of deionized water.
 前記アルカリ加水分解の水溶液に対し、前記希HCl水溶液を徐々に添加して中和した。中和後に発生した析出物を濾過で回収、さらに、イオン交換水を約850ml用いて、分離した析出物の洗浄を行った。洗浄後の析出物は、熱風乾燥機に投入して80℃で24hの乾燥処理を行った。 The diluted HCl aqueous solution was gradually added to neutralize the alkaline hydrolysis aqueous solution. A precipitate generated after the neutralization was collected by filtration, and the separated precipitate was washed with about 850 ml of ion-exchanged water. The precipitate after washing was put into a hot air dryer and dried at 80° C. for 24 hours.
 乾燥後に得られた析出物に対し、1H-NMR、FT-IRを用いて硬化物の構造分析を行った。測定条件は、以下の通りである。
測定:1H-NMR
測定機器:JEOL RESONANCE社製 JNM-ECZ400R
磁場強度:400MHz
基準物質:テトラメチルシラン(TMS)
溶媒:ジメチルスルホキシド(DMSO)
測定温度:40℃。
測定:FT-IR
測定機器:BRUKER社製 INVENIO S
モード:透過
試料:KBrプレート
積算回数:16
 得られた1H-NMRスペクトルにおいて、式(14)または式(15)の構造は各水素原子の積分比から算出でき、得られたFT-IRスペクトルにおいて、式(14)または式(15)のカルボニル基由来の特徴的なピークが現れるため、式(14)または式(15)の化学構造を同定できる。特に式(14)または式(15)の3級炭素に直結する水素原子由来の特徴的なシグナルは2から4ppmに現れる。前記シグナルが観察された硬化物は1、観察されない硬化物は0、として評価した。
The precipitate obtained after drying was subjected to structural analysis of the cured product using 1H-NMR and FT-IR. The measurement conditions are as follows.
Measurement: 1H-NMR
Measuring equipment: JNM-ECZ400R manufactured by JEOL RESONANCE
Magnetic field strength: 400MHz
Reference substance: Tetramethylsilane (TMS)
Solvent: dimethyl sulfoxide (DMSO)
Measurement temperature: 40°C.
Measurement: FT-IR
Measuring equipment: INVENIO S manufactured by BRUKER
Mode: Transmission Specimen: KBr plate Accumulation times: 16
In the obtained 1H-NMR spectrum, the structure of formula (14) or formula (15) can be calculated from the integral ratio of each hydrogen atom, and in the obtained FT-IR spectrum, the structure of formula (14) or formula (15) Since a characteristic peak derived from a carbonyl group appears, the chemical structure of formula (14) or formula (15) can be identified. In particular, a characteristic signal derived from a hydrogen atom directly connected to the tertiary carbon of Formula (14) or Formula (15) appears at 2 to 4 ppm. A cured product in which the signal was observed was evaluated as 1, and a cured product in which the signal was not observed was evaluated as 0.
 <合成例1 ポリイミド前駆体(A-1)の合成>
 乾燥窒素気流下、4,4’-オキシジフタル酸無水物(以下、ODPAと呼ぶ)4.96g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにp-フェニレンジアミン(以下、PDAと呼ぶ)2.16g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-1)(ポリアミド酸エステル)を得た。
<Synthesis Example 1 Synthesis of Polyimide Precursor (A-1)>
Under a stream of dry nitrogen, 4.96 g (0.016 mol) of 4,4′-oxydiphthalic anhydride (hereinafter referred to as ODPA) was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 2.16 g (0.02 mol) of p-phenylenediamine (hereinafter referred to as PDA) was added together with 25 g of NMP, reacted at 20° C. for 1 hour, and then reacted at 50° C. for 2 hours. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例2 ポリイミド前駆体(A-2)の合成>
 乾燥窒素気流下、ODPA4.96g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここに4,4’-ジアミノジフェニルエーテル(以下、DAEと呼ぶ)4.00g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-2)(ポリアミド酸エステル)を得た。
<Synthesis Example 2 Synthesis of Polyimide Precursor (A-2)>
Under a dry nitrogen stream, 4.96 g (0.016 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 4.00 g (0.02 mol) of 4,4'-diaminodiphenyl ether (hereinafter referred to as DAE) was added together with 25 g of NMP, and reacted at 20°C for 1 hour and then at 50°C for 2 hours. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例3 ポリイミド前駆体(A-3)の合成>
 乾燥窒素気流下、ODPA4.96g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここに2,2’-ビス(トリフルオロメチル)ベンジジン(以下、TFMBと呼ぶ)6.40g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-3)(ポリアミド酸エステル)を得た。
<Synthesis Example 3 Synthesis of Polyimide Precursor (A-3)>
Under a dry nitrogen stream, 4.96 g (0.016 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 6.40 g (0.02 mol) of 2,2'-bis(trifluoromethyl)benzidine (hereinafter referred to as TFMB) was added together with 25 g of NMP, reacted at 20°C for 1 hour, and then at 50°C for 2 hours. reacted. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例4 ポリイミド前駆体(A-4)の合成>
 乾燥窒素気流下、ODPA4.96g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここに2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン(以下、BIS-A-AFと呼ぶ)6.69g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-4)(ポリアミド酸エステル)を得た。
<Synthesis Example 4 Synthesis of Polyimide Precursor (A-4)>
Under a dry nitrogen stream, 4.96 g (0.016 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 6.69 g (0.02 mol) of 2,2'-bis(4-aminophenyl)hexafluoropropane (hereinafter referred to as BIS-A-AF) was added together with 25 g of NMP, and reacted at 20°C for 1 hour. and then reacted at 50° C. for 2 hours. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例5 ポリイミド前駆体(A-5)の合成>
 乾燥窒素気流下、ODPA4.96g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここに2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン(以下、BAPと呼ぶ)5.17g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-5)(ポリアミド酸エステル)を得た。
<Synthesis Example 5 Synthesis of Polyimide Precursor (A-5)>
Under a dry nitrogen stream, 4.96 g (0.016 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 5.17 g (0.02 mol) of 2,2'-bis(3-amino-4-hydroxyphenyl)propane (hereinafter referred to as BAP) was added together with 25 g of NMP, reacted at 20°C for 1 hour, and then The reaction was carried out at 50°C for 2 hours. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例6 ポリイミド前駆体(A-6)の合成>
 乾燥窒素気流下、ODPA4.96g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここに2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(以下、6FAPと呼ぶ)7.33g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-6)(ポリアミド酸エステル)を得た。
<Synthesis Example 6 Synthesis of Polyimide Precursor (A-6)>
Under a dry nitrogen stream, 4.96 g (0.016 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 7.33 g (0.02 mol) of 2,2'-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (hereinafter referred to as 6FAP) was added together with 25 g of NMP, and reacted at 20°C for 1 hour. and then reacted at 50° C. for 2 hours. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例7 ポリイミド前駆体(A-7)の合成>
 乾燥窒素気流下、4,4’-ビフタル酸無水物(以下、BPDAと呼ぶ)4.71g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE4.00g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-7)(ポリアミド酸エステル)を得た。
<Synthesis Example 7 Synthesis of Polyimide Precursor (A-7)>
Under a dry nitrogen stream, 4.71 g (0.016 mol) of 4,4'-biphthalic anhydride (hereinafter referred to as BPDA) was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 4.00 g (0.02 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例8 ポリイミド前駆体(A-8)の合成>
 乾燥窒素気流下、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以下、6FDAと呼ぶ)7.11g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE4.00g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-8)(ポリアミド酸エステル)を得た。
<Synthesis Example 8 Synthesis of Polyimide Precursor (A-8)>
Under a stream of dry nitrogen, 7.11 g (0.016 mol) of 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (hereinafter referred to as 6FDA) was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). let me 4.00 g (0.02 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例9 ポリイミド前駆体(A-9)の合成>
 乾燥窒素気流下、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物(以下、BSAAと呼ぶ)8.33g(0.016モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE4.00g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.78g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-9)(ポリアミド酸エステル)を得た。
<Synthesis Example 9 Synthesis of Polyimide Precursor (A-9)>
Under a stream of dry nitrogen, 8.33 g (0.016 mol) of 4,4′-(4,4′-isopropylidenediphenoxy)diphthalic anhydride (hereinafter referred to as BSAA) was added to N-methyl-2-pyrrolidone ( NMP) was dissolved in 100 g. 4.00 g (0.02 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Then, 0.78 g (0.008 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例10 ポリイミド(A-10)の合成>
 乾燥窒素気流下、DAE4.00g(0.02モル)をNMP180gに溶解させた。ここにODPA4.96g(0.016モル)をNMP20gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、反応溶液を60℃まで冷却し、無水マレイン酸0.78g(0.008モル)をNMP20gとともに加えて、60℃で1時間反応させた。反応溶液を水1Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリイミド(A-10)の粉末を得た。
<Synthesis Example 10 Synthesis of polyimide (A-10)>
4.00 g (0.02 mol) of DAE was dissolved in 180 g of NMP under a stream of dry nitrogen. 4.96 g (0.016 mol) of ODPA was added together with 20 g of NMP, reacted at 60° C. for 1 hour, and then stirred at 180° C. for 4 hours. After stirring, the reaction solution was cooled to 60° C., 0.78 g (0.008 mol) of maleic anhydride was added together with 20 g of NMP, and reacted at 60° C. for 1 hour. The reaction solution was poured into 1 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in a ventilation dryer at 50° C. for three days to obtain polyimide (A-10) powder.
 <合成例11 ポリイミド(A-11)の合成>
 乾燥窒素気流下、6FAP7.33g(0.02モル)をNMP180gに溶解させた。ここにODPA4.96g(0.016モル)をNMP20gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、反応溶液を60℃まで冷却し、無水マレイン酸0.78g(0.008モル)をNMP20gとともに加えて、60℃で1時間反応させた。反応溶液を水1Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリイミド(A-11)の粉末を得た。
<Synthesis Example 11 Synthesis of polyimide (A-11)>
Under a stream of dry nitrogen, 7.33 g (0.02 mol) of 6FAP was dissolved in 180 g of NMP. 4.96 g (0.016 mol) of ODPA was added together with 20 g of NMP, reacted at 60° C. for 1 hour, and then stirred at 180° C. for 4 hours. After stirring, the reaction solution was cooled to 60° C., 0.78 g (0.008 mol) of maleic anhydride was added together with 20 g of NMP, and reacted at 60° C. for 1 hour. The reaction solution was poured into 1 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in a ventilation dryer at 50° C. for three days to obtain polyimide (A-11) powder.
 <合成例12 ポリヒドロキシアミド(A-12)の合成>
 乾燥窒素気流下、N-メチルピロリドン100gを仕込み、6FAP(7.33g、0.02モル)を添加し、室温で攪拌溶解した後、反応溶液の温度を-10~0℃に保ちながら、4,4’-ジフェニルエーテルジカルボン酸ジクロリド(4.72g、0.016モル)を加え、室温で3時間攪拌を続けた。次いで、無水マレイン酸0.78g(0.008モル)をNMP20gとともに加えて、室温で1時間反応させた。反応溶液を1リットルの水に投入し、析出物を回収、純水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリヒドロキシアミド(A-12)の粉末を得た。
<Synthesis Example 12 Synthesis of polyhydroxyamide (A-12)>
Under a dry nitrogen stream, 100 g of N-methylpyrrolidone was charged, 6FAP (7.33 g, 0.02 mol) was added, and after stirring and dissolving at room temperature, the temperature of the reaction solution was maintained at -10 to 0 ° C., and 4 ,4′-Diphenyletherdicarboxylic acid dichloride (4.72 g, 0.016 mol) was added and stirring continued at room temperature for 3 hours. 0.78 g (0.008 mol) of maleic anhydride was then added along with 20 g of NMP and allowed to react for 1 hour at room temperature. The reaction solution was poured into 1 liter of water, and the precipitate was collected, washed with pure water three times, and dried in a ventilation dryer at 50°C for 3 days to obtain polyhydroxyamide (A-12) powder. .
 <合成例13 ポリイミド前駆体(A-13)の合成>
 乾燥窒素気流下、ODPA4.34g(0.014モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE4.00g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸1.18g(0.012モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-13)(ポリアミド酸エステル)を得た。
<Synthesis Example 13 Synthesis of Polyimide Precursor (A-13)>
Under a dry nitrogen stream, 4.34 g (0.014 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 4.00 g (0.02 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Then, 1.18 g (0.012 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例14 ポリイミド前駆体(A-14)の合成>
 乾燥窒素気流下、ODPA5.58g(0.018モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE4.00g(0.02モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に無水マレイン酸0.39g(0.004モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(A-14)(ポリアミド酸エステル)を得た。
<Synthesis Example 14 Synthesis of polyimide precursor (A-14)>
Under a dry nitrogen stream, 5.58 g (0.018 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 4.00 g (0.02 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Then, 0.39 g (0.004 mol) of maleic anhydride was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the solid polymer precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例15 ポリイミド前駆体(B-1)の合成>
 乾燥窒素気流下、ODPA6.20g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにPDA1.73g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-1)(ポリアミド酸エステル)を得た。
<Synthesis Example 15 Synthesis of Polyimide Precursor (B-1)>
Under a dry nitrogen stream, 6.20 g (0.02 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 1.73 g (0.016 mol) of PDA was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例16 ポリイミド前駆体(B-2)の合成>
 乾燥窒素気流下、ODPA6.20g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE3.20g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-2)(ポリアミド酸エステル)を得た。
<Synthesis Example 16 Synthesis of polyimide precursor (B-2)>
Under a dry nitrogen stream, 6.20 g (0.02 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 3.20 g (0.016 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例17 ポリイミド前駆体(B-3)の合成>
 乾燥窒素気流下、ODPA6.20g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにTFMB5.12g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-3)(ポリアミド酸エステル)を得た。
<Synthesis Example 17 Synthesis of polyimide precursor (B-3)>
Under a dry nitrogen stream, 6.20 g (0.02 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 5.12 g (0.016 mol) of TFMB was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例18 ポリイミド前駆体(B-4)の合成>
 乾燥窒素気流下、ODPA6.20g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにBIS-A-AF5.35g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-4)(ポリアミド酸エステル)を得た。
<Synthesis Example 18 Synthesis of polyimide precursor (B-4)>
Under a dry nitrogen stream, 6.20 g (0.02 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 5.35 g (0.016 mol) of BIS-A-AF was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例19 ポリイミド前駆体(B-5)の合成>
 乾燥窒素気流下、ODPA6.20g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにBAP4.13g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-5)(ポリアミド酸エステル)を得た。
<Synthesis Example 19 Synthesis of polyimide precursor (B-5)>
Under a dry nitrogen stream, 6.20 g (0.02 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 4.13 g (0.016 mol) of BAP was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例20 ポリイミド前駆体(B-6)の合成>
 乾燥窒素気流下、ODPA6.20g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここに6FAP5.86g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-6)(ポリアミド酸エステル)を得た。
<Synthesis Example 20 Synthesis of polyimide precursor (B-6)>
Under a dry nitrogen stream, 6.20 g (0.02 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 5.86 g (0.016 mol) of 6FAP was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例21 ポリイミド前駆体(B-7)の合成>
 乾燥窒素気流下、BPDA5.88g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE3.20g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-7)(ポリアミド酸エステル)を得た。
<Synthesis Example 21 Synthesis of polyimide precursor (B-7)>
Under a dry nitrogen stream, 5.88 g (0.02 mol) of BPDA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 3.20 g (0.016 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例22 ポリイミド前駆体(B-8)の合成>
 乾燥窒素気流下、6FDA8.88g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE3.20g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-8)(ポリアミド酸エステル)を得た。
<Synthesis Example 22 Synthesis of polyimide precursor (B-8)>
Under a stream of dry nitrogen, 8.88 g (0.02 mol) of 6FDA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 3.20 g (0.016 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例23 ポリイミド前駆体(B-9)の合成>
 乾燥窒素気流下、BSAA10.41g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE3.20g(0.016モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.95g(0.008モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-9)(ポリアミド酸エステル)を得た。
<Synthesis Example 23 Synthesis of polyimide precursor (B-9)>
Under a dry nitrogen stream, 10.41 g (0.02 mol) of BSAA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 3.20 g (0.016 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.95 g (0.008 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例24 ポリイミド(B-10)の合成>
 乾燥窒素気流下、DAE3.20g(0.016モル)をNMP180gに溶解させた。ここにODPA6.20g(0.02モル)をNMP20gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、反応溶液を60℃まで冷却し、4-アミノスチレン0.95g(0.008モル)をNMP20gとともに加えて、60℃で1時間反応させた。反応溶液を水1Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリイミド(B-10)の粉末を得た。
<Synthesis Example 24 Synthesis of polyimide (B-10)>
Under a stream of dry nitrogen, 3.20 g (0.016 mol) of DAE was dissolved in 180 g of NMP. 6.20 g (0.02 mol) of ODPA was added together with 20 g of NMP, reacted at 60° C. for 1 hour, and then stirred at 180° C. for 4 hours. After stirring, the reaction solution was cooled to 60° C., 0.95 g (0.008 mol) of 4-aminostyrene was added together with 20 g of NMP, and reacted at 60° C. for 1 hour. The reaction solution was poured into 1 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in an air drier at 50° C. for three days to obtain polyimide (B-10) powder.
 <合成例25 ポリイミド(B-11)の合成>
 乾燥窒素気流下、6FAP5.86g(0.016モル)をNMP180gに溶解させた。ここにODPA6.20g(0.02モル)をNMP20gとともに加えて、60℃で1時間反応させ、次いで180℃で4時間撹拌した。撹拌終了後、反応溶液を60℃まで冷却し、4-アミノスチレン0.95g(0.008モル)をNMP20gとともに加えて、60℃で1時間反応させた。反応溶液を水1Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリイミド(B-11)の粉末を得た。
<Synthesis Example 25 Synthesis of polyimide (B-11)>
5.86 g (0.016 mol) of 6FAP was dissolved in 180 g of NMP under a stream of dry nitrogen. 6.20 g (0.02 mol) of ODPA was added together with 20 g of NMP, reacted at 60° C. for 1 hour, and then stirred at 180° C. for 4 hours. After stirring, the reaction solution was cooled to 60° C., 0.95 g (0.008 mol) of 4-aminostyrene was added together with 20 g of NMP, and reacted at 60° C. for 1 hour. The reaction solution was poured into 1 L of water to obtain a white precipitate. This precipitate was collected by filtration, washed with water three times, and dried in an air drier at 50° C. for three days to obtain polyimide (B-11) powder.
 <合成例26 ポリヒドロキシアミド(B-12)の合成>
 乾燥窒素気流下、N-メチルピロリドン100gを仕込み、6FAP(5.86g、0.016モル)を添加し、室温で攪拌溶解した後、反応溶液の温度を-10~0℃に保ちながら、4,4’-ジフェニルエーテルジカルボン酸ジクロリド(5.90g、0.02モル)を加え、室温で3時間攪拌を続けた。次いで、4-アミノスチレン0.96g(0.008モル)をNMP20gとともに加えて、室温で1時間反応させた。反応溶液を1リットルの水に投入し、析出物を回収、純水で3回洗浄した後、50℃の通風乾燥機で3日間乾燥し、ポリヒドロキシアミド(B-12)の粉末を得た。
<Synthesis Example 26 Synthesis of polyhydroxyamide (B-12)>
Under a stream of dry nitrogen, 100 g of N-methylpyrrolidone was charged, 6FAP (5.86 g, 0.016 mol) was added, and dissolved with stirring at room temperature. ,4′-Diphenyletherdicarboxylic acid dichloride (5.90 g, 0.02 mol) was added and stirring continued at room temperature for 3 hours. Then, 0.96 g (0.008 mol) of 4-aminostyrene was added together with 20 g of NMP and reacted for 1 hour at room temperature. The reaction solution was poured into 1 liter of water, and the precipitate was collected, washed with pure water three times, and dried in a ventilation dryer at 50°C for 3 days to obtain polyhydroxyamide (B-12) powder. .
 <合成例27 ポリイミド前駆体(B-13)の合成>
 乾燥窒素気流下、ODPA6.20g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE2.80g(0.014モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン1.43g(0.012モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-13)(ポリアミド酸エステル)を得た。
<Synthesis Example 27 Synthesis of polyimide precursor (B-13)>
Under a dry nitrogen stream, 6.20 g (0.02 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 2.80 g (0.014 mol) of DAE was added together with 25 g of NMP, and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 1.43 g (0.012 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 <合成例28 ポリイミド前駆体(B-14)の合成>
 乾燥窒素気流下、ODPA6.20g(0.02モル)をN-メチル-2-ピロリドン(NMP)100gに溶解させた。ここにDAE3.60g(0.018モル)をNMP25gとともに加えて、20℃で1時間反応させ、次いで50℃で2時間反応させた。次に4-アミノスチレン0.48g(0.004モル)を加え50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジメチルアセタール7.15g(0.06モル)をNMP10gで希釈した溶液を滴下した。滴下後、50℃で3時間攪拌した。反応終了後、溶液を水1Lに投入して、ポリマー固体の沈殿をろ過で集め、水で3回洗浄した後、ポリマー固体を50℃の通風乾燥機で3日間乾燥し、ポリマー(B-14)(ポリアミド酸エステル)を得た。
<Synthesis Example 28 Synthesis of polyimide precursor (B-14)>
Under a dry nitrogen stream, 6.20 g (0.02 mol) of ODPA was dissolved in 100 g of N-methyl-2-pyrrolidone (NMP). 3.60 g (0.018 mol) of DAE was added thereto together with 25 g of NMP and reacted at 20° C. for 1 hour and then at 50° C. for 2 hours. Next, 0.48 g (0.004 mol) of 4-aminostyrene was added and reacted at 50° C. for 2 hours. Thereafter, a solution of 7.15 g (0.06 mol) of N,N-dimethylformamide dimethylacetal diluted with 10 g of NMP was added dropwise. After dropping, the mixture was stirred at 50°C for 3 hours. After completion of the reaction, the solution was poured into 1 L of water, and the polymer solid precipitate was collected by filtration and washed with water three times. ) (a polyamic acid ester) was obtained.
 [実施例1~12、23、24]
 表1に記載の通り(A)成分5gと(B)成分5gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Examples 1 to 12, 23, 24]
As shown in Table 1, a varnish was prepared by adding 20 g of NMP as a solvent to 5 g of component (A) and 5 g of component (B).
 [実施例13]
 上記A-2 2.5g、B-2 7.5gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Example 13]
A varnish was prepared by adding 20 g of NMP as a solvent to 2.5 g of A-2 and 7.5 g of B-2.
 [実施例14]
 上記A-2 7.5g、B-2 2.5gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Example 14]
A varnish was prepared by adding 20 g of NMP as a solvent to 7.5 g of A-2 and 2.5 g of B-2.
 [実施例15]
 上記A-12 2.5g、B-12 7.5gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Example 15]
A varnish was prepared by adding 20 g of NMP as a solvent to 2.5 g of A-12 and 7.5 g of B-12.
 [実施例16]
 上記A-12 7.5g、B-12 2.5gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Example 16]
A varnish was prepared by adding 20 g of NMP as a solvent to 7.5 g of A-12 and 2.5 g of B-12.
 [実施例17、18]
 表1に記載の通り(A)成分5gと(B)成分5gに対し、下記(C)光酸発生剤2.0g、(D)熱架橋剤3.0g、溶剤としてγ-ブチロラクトンを20g加えてワニスを作製した。
[Examples 17 and 18]
As shown in Table 1, to 5 g of component (A) and 5 g of component (B), 2.0 g of the following (C) photoacid generator, 3.0 g of (D) thermal cross-linking agent, and 20 g of γ-butyrolactone as a solvent were added. A varnish was produced by
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 [実施例19、20]
 表1に記載の通り(A)成分5g、(B)成分5gに対し、下記(E)光重合開始剤1.5g、(F)光重合性化合物4.5g、溶剤としてγ-ブチロラクトンを20g加えてワニスを作製した。
[Examples 19 and 20]
As shown in Table 1, for 5 g of component (A) and 5 g of component (B), 1.5 g of the following (E) photopolymerization initiator, 4.5 g of (F) photopolymerizable compound, and 20 g of γ-butyrolactone as a solvent. In addition, a varnish was produced.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 [比較例1、3]
 表1に記載の通り(A)成分10gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Comparative Examples 1 and 3]
As shown in Table 1, a varnish was prepared by adding 20 g of NMP as a solvent to 10 g of component (A).
 [比較例2、4]
 表1に記載の通り(B)成分10gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Comparative Examples 2 and 4]
As shown in Table 1, a varnish was prepared by adding 20 g of NMP as a solvent to 10 g of component (B).
 [実施例21]
 上記A-2 1.5g、B-2 8.5gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Example 21]
A varnish was prepared by adding 20 g of NMP as a solvent to 1.5 g of A-2 and 8.5 g of B-2.
 [実施例22]
 上記A-2 8.5g、B-2 1.5gに対し、溶剤としてNMPを20g加えてワニスを作製した。
[Example 22]
A varnish was prepared by adding 20 g of NMP as a solvent to 8.5 g of A-2 and 1.5 g of B-2.
 各実施例、比較例で得られた樹脂組成物の末端基の物質量比、分子量、破断伸度、クラック評価結果について表1に示す。 Table 1 shows the material amount ratio, molecular weight, breaking elongation, and crack evaluation results of the resin compositions obtained in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 [実施例25]
 上記A-2 5gとB-2 5gに対し、G-1 1g、溶剤としてNMPを20g加えてワニスを作製した。
[Example 25]
A varnish was prepared by adding 1 g of G-1 and 20 g of NMP as a solvent to 5 g of A-2 and 5 g of B-2.
 [実施例26]
 上記A-2 5gとB-2 5gに対し、G-2 1g、溶剤としてNMPを20g加えてワニスを作製した。
[Example 26]
A varnish was prepared by adding 1 g of G-2 and 20 g of NMP as a solvent to 5 g of A-2 and 5 g of B-2.
 [実施例27]
 上記A-11 5gとB-11 5gに対し、G-2 1g、溶剤としてNMPを20g加えてワニスを作製した。
[Example 27]
A varnish was prepared by adding 1 g of G-2 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
 [実施例28]
 上記A-12 5gとB-12 5gに対し、G-2 1g、溶剤としてNMPを20g加えてワニスを作製した。
[Example 28]
A varnish was prepared by adding 1 g of G-2 and 20 g of NMP as a solvent to 5 g of A-12 and 5 g of B-12.
 [実施例29]
 上記A-11 5gとB-11 5gに対し、G-2 0.5g、溶剤としてNMPを20g加えてワニスを作製した。
[Example 29]
A varnish was prepared by adding 0.5 g of G-2 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
 [実施例30]
 上記A-11 5gとB-11 5gに対し、G-2 10g、溶剤としてNMPを20g加えてワニスを作製した。
[Example 30]
A varnish was prepared by adding 10 g of G-2 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
 [実施例31]
 上記A-11 5gとB-11 5gに対し、G-3 0.5g、溶剤としてNMPを20g加えてワニスを作製した。
[Example 31]
A varnish was prepared by adding 0.5 g of G-3 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
 [実施例32]
 上記A-11 5gとB-11 5gに対し、G-4 0.5g、溶剤としてNMPを20g加えてワニスを作製した。
[Example 32]
A varnish was prepared by adding 0.5 g of G-4 and 20 g of NMP as a solvent to 5 g of A-11 and 5 g of B-11.
 [比較例5]
 上記A-11 10gに対し、G-3 0.3g、溶剤としてNMPを20g加えてワニスを作製した。
[Comparative Example 5]
A varnish was prepared by adding 0.3 g of G-3 and 20 g of NMP as a solvent to 10 g of A-11.
 [比較例6]
 上記A-11 10gに対し、G-3 1g、溶剤としてNMPを20g加えてワニスを作製した。
[Comparative Example 6]
A varnish was prepared by adding 1 g of G-3 and 20 g of NMP as a solvent to 10 g of A-11.
 [比較例7]
 上記とB-11 10gに対し、G-3 1g、溶剤としてNMPを20g加えてワニスを作製した。
[Comparative Example 7]
A varnish was prepared by adding 1 g of G-3 and 20 g of NMP as a solvent to 10 g of the above and B-11.
 [比較例8]
 上記A-11 10gに対し、G-4 1g、溶剤としてNMPを20g加えてワニスを作製した。
[Comparative Example 8]
A varnish was prepared by adding 1 g of G-4 and 20 g of NMP as a solvent to 10 g of A-11.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 各実施例、比較例で得られた樹脂組成物の破断伸度、クラック評価結果について表2に示す。 Table 2 shows the breaking elongation and crack evaluation results of the resin compositions obtained in each example and comparative example.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 本発明の樹脂組成物は、半導体素子等の表面保護膜、層間絶縁膜、有機発光素子などの表示装置の絶縁層や薄膜トランジスタ(以下、TFT)基板の平坦化膜、回路基板の配線保護絶縁膜、固体撮像素子のオンチップマイクロレンズや各種ディスプレイ・固体撮像素子用平坦化膜、および回路基板用ソルダーレジストなどに好適に用いることができる。 The resin composition of the present invention can be used for surface protective films such as semiconductor elements, interlayer insulating films, insulating layers of display devices such as organic light-emitting elements, flattening films of thin film transistor (hereinafter referred to as TFT) substrates, and wiring protective insulating films of circuit boards. , on-chip microlenses of solid-state imaging devices, flattening films for various displays and solid-state imaging devices, and solder resists for circuit boards.

Claims (16)

  1. (A)式(1)で表される樹脂と(B)式(2)で表される樹脂を含有する樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xはそれぞれ独立に、ポリアミド、ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体の繰り返し構造単位を表し、Rは式(3)または式(4)で表される1価の基である。RはR、水素原子、および炭素数1~20の1価の有機基からなる群より選択される基を表す。nは2~200の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Yはそれぞれ独立に、ポリアミド、ポリイミド、ポリベンゾオキサゾールまたはそれらの前駆体の繰り返し構造単位を表し、Rは式(5)で表される1価の基である。RはR、水素原子、および炭素数1~20の1価の有機基からなる群より選択される基を表す。nは2~200の整数である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、*は結合部を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Rは水素原子、炭素数1~6の1価の炭化水素基である。*は結合部を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、*は結合部を表す。)
    (A) A resin composition containing a resin represented by formula (1) and (B) a resin represented by formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), each X independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole or a precursor thereof, and R 1 is a monovalent represented by formula (3) or formula (4). R a represents a group selected from the group consisting of R 1 , a hydrogen atom, and a monovalent organic group having 1 to 20 carbon atoms, and n 1 is an integer of 2 to 200.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), each Y independently represents a repeating structural unit of polyamide, polyimide, polybenzoxazole, or a precursor thereof, and R2 is a monovalent group represented by formula (5). R b represents a group selected from the group consisting of R 2 , a hydrogen atom, and a monovalent organic group having 1 to 20 carbon atoms, and n 2 is an integer of 2 to 200.)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3), * represents a bond.)
    Figure JPOXMLDOC01-appb-C000004
    (In formula (4), R 3 is a hydrogen atom and a monovalent hydrocarbon group having 1 to 6 carbon atoms. * represents a bond.)
    Figure JPOXMLDOC01-appb-C000005
    (In formula (5), * represents a bond.)
  2. 前記(A)成分および前記(B)成分の、H-NMRスペクトルにおける9から11ppmに現れるアミド結合の水素原子由来のシグナルの総積分値を100としたときの(A)成分の末端基Rの水素原子由来のシグナルの総積分値をrおよび(B)成分の末端基Rの水素原子由来のシグナルの総積分値をrとし、M=3r/2rとして定義されるMが0.25以上かつ4以下である請求項1に記載の樹脂組成物。 The terminal group R of the component (A) when the total integral value of the signals derived from the hydrogen atoms of the amide bonds appearing at 9 to 11 ppm in the 1 H-NMR spectrum of the component (A) and the component (B) is taken as 100. The total integrated value of the signal derived from the hydrogen atom of 1 is defined as r 1 and the total integrated value of the signal derived from the hydrogen atom of the terminal group R 2 of component (B) is r 2 , and M = 3r 1 /2r 2 2. The resin composition according to claim 1, wherein M is 0.25 or more and 4 or less.
  3. 樹脂組成物の重量平均分子量が5,000以上かつ35,000以下である請求項1または2に記載の樹脂組成物。 3. The resin composition according to claim 1, wherein the resin composition has a weight average molecular weight of 5,000 or more and 35,000 or less.
  4. ポリイミドの繰り返し構造単位が、式(6)で表される繰り返し構造単位であり、
    ポリアミド、ポリイミド前駆体またはポリベンゾオキサゾール前駆体の繰り返し構造単位が、式(7)で表される繰り返し構造単位であり、および
    ポリベンゾオキサゾールの繰り返し構造単位が、式(8)で表される繰り返し構造単位である、請求項1~3のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、Rは炭素数4~40の4価の有機基を表す。Rは炭素数4~40の2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、Rは炭素数4~40の2~8価の有機基を表す。Rは炭素数4~40の2~4価の有機基を表す。Rは水素原子または炭素数1~20の1価の有機基を表す。qおよびrは、0≦q≦4、0≦r≦4の範囲内であり、0≦q+r≦6を満たす整数を表す。sは0~2の整数を表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(8)中、Rは炭素数4~40の2価の有機基を表す。R10は炭素数4~40の2価の有機基を表す。)
    The repeating structural unit of polyimide is a repeating structural unit represented by formula (6),
    The repeating structural unit of the polyamide, polyimide precursor or polybenzoxazole precursor is a repeating structural unit represented by formula (7), and the repeating structural unit of polybenzoxazole is a repeat represented by formula (8) The resin composition according to any one of claims 1 to 3, which is a structural unit.
    Figure JPOXMLDOC01-appb-C000006
    (In formula (6), R 4 represents a tetravalent organic group having 4 to 40 carbon atoms, and R 5 represents a divalent organic group having 4 to 40 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000007
    (In formula (7), R 6 represents a divalent to octavalent organic group having 4 to 40 carbon atoms. R 7 represents a divalent to tetravalent organic group having 4 to 40 carbon atoms. R 8 represents a hydrogen atom. or represents a monovalent organic group having 1 to 20 carbon atoms, q and r are within the ranges of 0 ≤ q ≤ 4 and 0 ≤ r ≤ 4, and represent integers satisfying 0 ≤ q + r ≤ 6. s represents an integer from 0 to 2.)
    Figure JPOXMLDOC01-appb-C000008
    (In formula (8), R 9 represents a divalent organic group having 4 to 40 carbon atoms, and R 10 represents a divalent organic group having 4 to 40 carbon atoms.)
  5. 式(6)中のRおよび式(7)中のRは、式(9)で表される構造であり、
    式(6)中のRおよび式(7)中のRは、式(10)で表される構造である請求項4に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000009
    (式(9)中、R11は単結合、-O-、-C(CF-または式(11)で表される構造を示す。*は結合部を表す。)
    Figure JPOXMLDOC01-appb-C000010
    (式(10)中、R12は単結合、-O-、-C(CH-または-C(CF-で表され、R13はそれぞれ独立に、水素原子または炭素数1~20の1価の有機基を表す。tおよびuはそれぞれ独立に0~4の整数を示し、t+u=4を満たす。*は結合部を表す。)
    Figure JPOXMLDOC01-appb-C000011
    (式(11)中、R14は単結合、-O-、-C(CH-または-C(CF-で表される構造を示す。*は結合部を表す。)
    R 4 in formula (6) and R 6 in formula (7) have a structure represented by formula (9),
    5. The resin composition according to claim 4, wherein R5 in formula (6) and R7 in formula (7) are structures represented by formula (10).
    Figure JPOXMLDOC01-appb-C000009
    (In formula (9), R 11 represents a single bond, —O—, —C(CF 3 ) 2 —, or the structure represented by formula (11). * represents a bond.)
    Figure JPOXMLDOC01-appb-C000010
    (In formula (10), R 12 is represented by a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —, and each R 13 is independently a hydrogen atom or a carbon number represents a monovalent organic group of 1 to 20. t and u each independently represent an integer of 0 to 4, satisfying t+u=4.* represents a bond.)
    Figure JPOXMLDOC01-appb-C000011
    (In formula (11), R 14 represents a structure represented by a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —. * represents a bond.)
  6. 式(8)のRは、単結合、炭素数1~6の2価の炭化水素基、または炭素数1~6のフルオロアルキレン基で表される構造であり、R10は、式(12)で表される構造である請求項4または5に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000012
    (式(12)中、R15は単結合、-O-、-C(CH-または-C(CF-で表される構造を示す。*は化学結合を表す。)
    R 9 in formula (8) is a structure represented by a single bond, a divalent hydrocarbon group having 1 to 6 carbon atoms, or a fluoroalkylene group having 1 to 6 carbon atoms, and R 10 is represented by formula (12 ). The resin composition according to claim 4 or 5, which has a structure represented by:
    Figure JPOXMLDOC01-appb-C000012
    (In formula (12), R 15 represents a structure represented by a single bond, —O—, —C(CH 3 ) 2 — or —C(CF 3 ) 2 —. * represents a chemical bond.)
  7. さらに光酸発生剤を含有する請求項1~6のいずれかに記載の樹脂組成物。 7. The resin composition according to any one of claims 1 to 6, further comprising a photoacid generator.
  8. さらに光重合開始剤と、光重合性化合物を含有する請求項1~6のいずれかに記載の樹脂組成物。 7. The resin composition according to any one of claims 1 to 6, further comprising a photopolymerization initiator and a photopolymerizable compound.
  9. さらに(G)式(13)で表される化合物を含む請求項1~8のいずれかに記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000013
    (式(13)中、Lは炭素数1~8のアルキレン基で表される構造を示す。)
    9. The resin composition according to any one of claims 1 to 8, further comprising (G) a compound represented by formula (13).
    Figure JPOXMLDOC01-appb-C000013
    (In formula (13), L 1 represents a structure represented by an alkylene group having 1 to 8 carbon atoms.)
  10. 請求項1~9のいずれかに記載の樹脂組成物を硬化した硬化物。 A cured product obtained by curing the resin composition according to any one of claims 1 to 9.
  11. 式(14)または式(15)で表される構造を有する樹脂を含有する硬化物。
    Figure JPOXMLDOC01-appb-C000014
    (*は化学結合を表す。)
    A cured product containing a resin having a structure represented by formula (14) or (15).
    Figure JPOXMLDOC01-appb-C000014
    (* represents a chemical bond.)
  12. トリフルオロメチル基を有する樹脂を含有する、請求項11に記載の硬化物。 12. The cured product according to claim 11, containing a resin having a trifluoromethyl group.
  13. 請求項7~9のいずれかに記載の樹脂組成物を塗布する工程と、紫外線照射工程と現像工程を経てパターンを形成する工程と、加熱して硬化物のレリーフパターン層を形成する工程を含む、硬化物の製造方法。 A step of applying the resin composition according to any one of claims 7 to 9, a step of forming a pattern through an ultraviolet irradiation step and a development step, and a step of heating to form a relief pattern layer of a cured product. , a method for producing a cured product.
  14. 請求項10~12のいずれかに記載の硬化物を具備する半導体装置。 A semiconductor device comprising the cured product according to any one of claims 10 to 12.
  15. 請求項10~12のいずれかに記載の硬化物を具備する電子部品。 An electronic component comprising the cured product according to any one of claims 10 to 12.
  16. 請求項10~12のいずれかに記載の硬化物を具備する表示装置。 A display device comprising the cured product according to any one of claims 10 to 12.
PCT/JP2022/021888 2021-07-02 2022-05-30 Resin composition, cured product, production method for cured product, electronic component, display device, and semiconductor device WO2023276517A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237037759A KR20240028331A (en) 2021-07-02 2022-05-30 Resin compositions, cured products, methods for producing cured products, electronic components, display devices, and semiconductor devices
JP2022535492A JPWO2023276517A1 (en) 2021-07-02 2022-05-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021110483 2021-07-02
JP2021-110483 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023276517A1 true WO2023276517A1 (en) 2023-01-05

Family

ID=84691190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021888 WO2023276517A1 (en) 2021-07-02 2022-05-30 Resin composition, cured product, production method for cured product, electronic component, display device, and semiconductor device

Country Status (4)

Country Link
JP (1) JPWO2023276517A1 (en)
KR (1) KR20240028331A (en)
TW (1) TW202302710A (en)
WO (1) WO2023276517A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224894A (en) * 2003-01-22 2004-08-12 Nippon Shokubai Co Ltd Maleimide copolymer
JP2010159402A (en) * 2008-12-12 2010-07-22 Chisso Corp Inkjet ink
WO2012133429A1 (en) * 2011-03-29 2012-10-04 日産化学工業株式会社 Negative photosensitive resin composition
JP2016132736A (en) * 2015-01-20 2016-07-25 日立化成株式会社 Polyimide resin composition and adhesive sheet
WO2018003725A1 (en) * 2016-06-29 2018-01-04 富士フイルム株式会社 Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for producing laminate, method for producing semiconductor device, and polyimide precursor
WO2018037997A1 (en) * 2016-08-22 2018-03-01 旭化成株式会社 Photosensitive resin composition and method for producing cured relief pattern
JP2020020975A (en) * 2018-08-01 2020-02-06 Jsr株式会社 Radiation-sensitive composition and use therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386781B2 (en) 2007-03-12 2014-01-15 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition, method for producing patterned cured film using the resin composition, and electronic component
JP5640413B2 (en) 2010-03-19 2014-12-17 東レ株式会社 Positive photosensitive resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224894A (en) * 2003-01-22 2004-08-12 Nippon Shokubai Co Ltd Maleimide copolymer
JP2010159402A (en) * 2008-12-12 2010-07-22 Chisso Corp Inkjet ink
WO2012133429A1 (en) * 2011-03-29 2012-10-04 日産化学工業株式会社 Negative photosensitive resin composition
JP2016132736A (en) * 2015-01-20 2016-07-25 日立化成株式会社 Polyimide resin composition and adhesive sheet
WO2018003725A1 (en) * 2016-06-29 2018-01-04 富士フイルム株式会社 Negative photosensitive resin composition, cured film, method for producing cured film, semiconductor device, method for producing laminate, method for producing semiconductor device, and polyimide precursor
WO2018037997A1 (en) * 2016-08-22 2018-03-01 旭化成株式会社 Photosensitive resin composition and method for producing cured relief pattern
JP2020020975A (en) * 2018-08-01 2020-02-06 Jsr株式会社 Radiation-sensitive composition and use therefor

Also Published As

Publication number Publication date
TW202302710A (en) 2023-01-16
KR20240028331A (en) 2024-03-05
JPWO2023276517A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
JP6939564B2 (en) Resin composition
JP7003659B2 (en) Resin composition
JP6252174B2 (en) Positive photosensitive resin composition and method for manufacturing semiconductor device including cured film using the same
JP5477527B2 (en) Positive photosensitive resin composition containing terminal functional group-containing polyimide
KR102373030B1 (en) photosensitive resin composition
TWI714570B (en) Heat-resistant resin composition, heat-resistant resin film manufacturing method, interlayer insulating film or surface protection film manufacturing method, and electronic component or semiconductor component manufacturing method
CN109313387B (en) Photosensitive resin composition
KR101969197B1 (en) Positive photosensitive resin composition
TWI832989B (en) Photosensitive resin composition, photosensitive resin sheet, cured film, cured film manufacturing method, organic EL display device, and electronic components
JP2010210851A (en) Photosensitive resin composition
JP5875209B2 (en) Thermosetting resin composition
JP5617279B2 (en) Photosensitive resin composition
JP7263925B2 (en) Resin composition, cured film, method for producing cured film, interlayer insulating film or semiconductor protective film, thin film transistor, and liquid crystal display device or organic EL display device
WO2022181419A1 (en) Photosensitive resin composition, cured product, display device, organic el display device, and semiconductor device
WO2023276517A1 (en) Resin composition, cured product, production method for cured product, electronic component, display device, and semiconductor device
JP2021155466A (en) Resin composition, cured film, production method of cured film, organic el display device
JP2009227697A (en) Cross-linking agent and photosensitive resin composition using it
JP5439640B2 (en) Negative photosensitive resin composition capable of alkali development, method for producing cured relief pattern, and semiconductor device
JP7180459B2 (en) Method for producing alkali-soluble resin solution
TW202337970A (en) Resin composition, cured product, electronic component, and display device
JP2023023822A (en) Photosensitive resin composition, cured film, and electronic component
KR20230104869A (en) Resin composition, cured film, insulating film or protective film, antenna element, and electronic component, display device or semiconductor device and manufacturing method thereof
TW201413387A (en) Positive photosensitive resin composition
JP2012237784A (en) Positive photosensitive resin composition, and semiconductor device using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535492

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22832675

Country of ref document: EP

Kind code of ref document: A1