WO2018003663A1 - Method for producing polymer coagulant powder, and sludge dewatering method - Google Patents

Method for producing polymer coagulant powder, and sludge dewatering method Download PDF

Info

Publication number
WO2018003663A1
WO2018003663A1 PCT/JP2017/023079 JP2017023079W WO2018003663A1 WO 2018003663 A1 WO2018003663 A1 WO 2018003663A1 JP 2017023079 W JP2017023079 W JP 2017023079W WO 2018003663 A1 WO2018003663 A1 WO 2018003663A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
polymer
powder
emulsion
drying
Prior art date
Application number
PCT/JP2017/023079
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 賢司
剛 鶴岡
山本 和男
Original Assignee
Mtアクアポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016127083A external-priority patent/JP6770348B2/en
Priority claimed from JP2016127084A external-priority patent/JP6770349B2/en
Application filed by Mtアクアポリマー株式会社 filed Critical Mtアクアポリマー株式会社
Priority to KR1020197000085A priority Critical patent/KR102357817B1/en
Priority to CN201780038268.6A priority patent/CN109328099B/en
Publication of WO2018003663A1 publication Critical patent/WO2018003663A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/16Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a method for producing a polymer flocculant powder and a method for dewatering sludge. More specifically, the present invention provides a method for producing a high-performance polymer flocculant powder capable of effectively dehydrating hardly dewaterable sludge and obtaining a dehydrated cake with a low water content, and sludge using the same. It relates to a dehydration method.
  • Polymer flocculants are used to agglomerate, settle and separate suspensions contained in domestic wastewater and industrial wastewater, and as a yield improver in the paper industry and as an admixture and a mudifier in civil engineering. It is used.
  • the polymer flocculant has nonionic, anionic, cationic, and amphoteric ionic properties. Which ionic polymer flocculant is selected depends on the properties of the water to be treated and the treatment method. Among these, cationic polymer flocculants are used to flocate and dewater surplus sludge after activated sludge treatment of industrial wastewater and domestic wastewater, or as a yield improver in the paper industry. It is often done.
  • the amphoteric polymer flocculant is used to coarsely flocculate suspended particles that have been neutralized with a coagulant, and can be applied to sludge that is difficult to dewater or agglomerate.
  • polymer flocculants are known in the form of products such as powders and water-in-oil emulsions.
  • water-in-oil emulsions have the advantage of being excellent in solubility and being able to dissolve uniformly in a short time, but they are transported due to their higher production costs and lower active ingredient content of polymer flocculants than powders.
  • the cost was high.
  • Patent Document 1 discloses a first particle having a particle size of at least 90% by weight of 10 ⁇ m or less by reverse phase polymerization of a water-soluble monomer mixture containing a cationic monomer and 5-2000 ppm of a crosslinking agent in a non-aqueous liquid.
  • a method for producing a spray-dried granule wherein an inverse emulsion of the next polymer particles is prepared, and then the inverse emulsion is spray-dried to produce a spray-dried granule having a particle size of at least 90% by weight of 20 ⁇ m or more.
  • spray drying is not preferable because the drying efficiency is poor and a large amount of energy is required to sufficiently dry and powderize.
  • an aqueous monomer mixture containing a cationic monomer and 20 to 300 ppm of a crosslinking agent is used as a dispersed phase, and emulsified with a surfactant so that water and an immiscible hydrocarbon become a continuous phase.
  • a drying sludge dehydrating agent is obtained by drying at 105 ° C.
  • Patent Document 3 discloses a step of forming an emulsion of a cationic monomer in a non-aqueous liquid having a primary particle size of less than 20 ⁇ m in the presence of an emulsifier; a step of starting and completing polymerization; and water from the emulsion.
  • a manufacturing method is disclosed.
  • Patent Document 3 is a method for producing a polymer powder for forming a homogeneous and transparent gel by dissolving or swelling in water for personal care compositions such as cosmetic compositions and topical pharmaceutical compositions. Therefore, it is different from the technical field of polymer flocculants.
  • the process of washing the non-aqueous liquid and the emulsifier with the volatile organic solvent mixes the non-aqueous liquid and the volatile organic solvent, thus preventing reuse of the non-aqueous liquid and generating a lot of unnecessary waste liquid. Therefore, it is not preferable.
  • it does not suggest a production method for improving the performance of the polymer flocculant.
  • the object of the present invention is to dry a cationic or amphoteric water-in-oil polymer emulsion having branches or crosslinks into a powder, thereby reducing transportation costs and excellent dewatering performance even for hardly dewatered sludge And providing a method for producing a high-performance polymer flocculant powder that can be used using a general-purpose automatic powder-dissolving apparatus.
  • the present inventors have found a method for producing a polymer flocculant containing a crosslinked polymer obtained by subjecting a specific monomer mixture to water-in-oil emulsion polymerization and then drying.
  • a method for producing a polymer flocculant powder including a specific emulsification step, a polymerization step, a reflux dehydration step, and a drying step was established.
  • the polymer flocculant powder obtained by this production method not only reduces the transportation cost, but also exhibits excellent dehydration performance and can be used with a general-purpose powder automatic dissolution apparatus, etc. completed.
  • the present invention [1] A method for producing a polymer flocculant powder for drying a polymer emulsion obtained by emulsion polymerization of a monomer mixture containing at least a cationic monomer and a crosslinkable monomer, comprising the following steps: (A) to (D) Step (A): An aqueous phase containing an aqueous solution of the monomer mixture is mixed with an oil phase containing water and a substantially immiscible hydrocarbon and surfactant, so that the median diameter of the emulsified particles is An emulsification step for producing a water-in-oil monomer emulsion of 10 ⁇ m or less, Step (B): The monomer mixture in the water-in-oil monomer emulsion is polymerized in the presence of a radical polymerization initiator to produce a water-in-oil polymer emulsion containing a polymer in the dispersed phase.
  • This is a method for producing a polymer flocculant granulated powder.
  • a sludge dewatering method in which an aqueous solution of the polymer flocculant powder obtained by the production method according to any one of [1] to [13] is added to the sludge for dewatering.
  • the polymer flocculant powder obtained by the production method of the present invention not only reduces the transportation cost, but also exhibits excellent dewatering performance against difficult-to-dehydrate sludge and is used with a general-purpose powder automatic dissolving device etc. can do.
  • the polymer flocculant powder obtained by the production method of the present invention is a flocculant for domestic and industrial wastewater sludge; a drainage yield improver for papermaking, a drainage improver, a formation aid, and a paper strength enhancer.
  • agrochemicals for papermaking such as drilling and muddy water treatment, additives for increasing crude oil production, organic coagulants, thickeners, dispersants, scale inhibitors, antistatic agents, and textile treatment agents Is possible.
  • acrylate and / or methacrylate is represented as (meth) acrylate
  • acrylamide and / or methacrylamide is represented as (meth) acrylamide
  • acrylic acid and / or methacrylic acid is represented as (meth) acrylic acid.
  • the present invention is a method for producing a polymer flocculant powder for drying a polymer emulsion obtained by emulsion polymerization of an aqueous solution of a monomer mixture containing at least a cationic monomer and a crosslinkable monomer, It comprises the following steps (A) to (D).
  • Emulsifying step of producing a water-in-oil monomer emulsion having a thickness of 10 ⁇ m or less Polymerization step (B): Polymerizing the monomer mixture in the water-in-oil monomer emulsion in the presence of a radical polymerization initiator to produce a water-in-oil polymer emulsion containing a polymer in the dispersed phase. Polymerization process to make, Reflux dehydration step (C): Out of the condensate composed of water and hydrocarbons obtained by condensing vapor separated from the water-in-oil polymer emulsion by evaporating water and hydrocarbons, water is discharged out of the system.
  • Emulsification step (A) In the emulsification step (A), an aqueous phase composed of an aqueous solution of a monomer mixture containing at least a cationic monomer and a crosslinkable monomer, a hydrocarbon and a surfactant substantially immiscible with water And an oil phase containing water to prepare a water-in-oil monomer emulsion.
  • the aqueous phase constitutes the dispersed phase of the emulsion and the oil phase constitutes the continuous phase of the emulsion.
  • any monomer having a radical polymerizable double bond and a cationic group capable of radical polymerization can be used.
  • diallyldialkylammonium halides such as diallyldimethylammonium chloride can be exemplified.
  • the radical polymerization reactivity is excellent, the molecular weight is easily increased, and the performance of the resulting polymer as a polymer flocculant is excellent. Therefore, the following general formula (2) The compound represented by these is preferable.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 and R 3 are each independently an alkyl group or benzyl group having 1 to 3 carbon atoms
  • R 4 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a benzyl group. Yes, it may be the same or different.
  • X represents an oxygen atom or NH
  • Q represents an alkylene group having 1 to 4 carbon atoms or a hydroxyalkylene group having 2 to 4 carbon atoms
  • Z ⁇ represents a counter anion
  • Z ⁇ represents a halide ion such as a chloride ion.
  • sulfate ion
  • cationic monomer represented by the general formula (2) include dialkyl such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and dimethylamino-2-hydroxypropyl (meth) acrylate.
  • dialkyl such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and dimethylamino-2-hydroxypropyl (meth) acrylate.
  • hydrochlorides and sulfates of aminoalkyl (meth) acrylates and dialkylaminoalkyl (meth) acrylamides such as dimethylaminopropyl (meth) acrylamide.
  • dialkylaminoalkyl (meth) acrylates and dialkylaminoalkyl (meth) acrylamides such as methyl halide addition products such as methyl chloride, benzyl halide addition products such as benzyl chloride, dialkyl sulfate addition products such as dimethyl sulfate, etc. Quaternary salts are exemplified.
  • quaternary salts and methyl chloride adducts of dimethylaminoethyl methacrylate which are methyl chloride adducts of dimethylaminoethyl acrylate, which are particularly easy to increase the molecular weight required for polymer flocculants.
  • the quaternary salt is most preferred.
  • These cationic monomers may be used alone or in combination of two or more.
  • a monomer copolymerizable with the aforementioned cationic monomer may be used in combination.
  • these monomers nonionic monomers and anionic monomers are exemplified below.
  • Nonionic monomers include (meth) acrylamide compounds, (meth) methacrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and hydroxyethyl (meth) acrylate. Examples include alkyl acrylate, styrene, acrylonitrile, and vinyl acetate.
  • (meth) acrylamide is preferred because it is easy to increase the molecular weight required as a polymer flocculant and has excellent performance as a polymer flocculant. Most preferred is acrylamide, which is particularly excellent in performance as a molecular flocculant.
  • These nonionic monomers may be used alone or in combination of two or more.
  • anionic monomer examples include (meth) acrylic acid and salts thereof, vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, maleic acid, and salts thereof.
  • (meth) acrylic acid and salts thereof are preferable because they can easily achieve a high molecular weight as a polymer flocculant and have excellent performance as a polymer flocculant.
  • the salts alkali metal salts such as ammonium salt, sodium salt and potassium salt are preferable. These anionic monomers may be used alone or in combination of two or more.
  • the mixing ratio (molar ratio) of each monomer in the monomer mixture is not particularly limited.
  • the content of the nonionic monomer in the monomer mixture is preferably 3 to 98 mol%, particularly preferably 5 to 95 mol%.
  • the crosslinkable monomer is used for the purpose of introducing a branched or crosslinked structure into the polymer chain.
  • methylenebisacrylamide or di (meth) acrylate represented by the following formula (3) is preferable.
  • the latter is preferably di (meth) acrylate modified with ethylene oxide and / or propylene glycol having high water solubility.
  • methylenebisacrylamide having a low molecular weight, water solubility and high reactivity is particularly preferable.
  • R 5 and R 6 are each independently H or CH 3
  • Y is O (C 2 H 4 O) n or O (C 3 H 6 O) n
  • n is an integer of 1 to 10.
  • the amount of the crosslinkable monomer is preferably 1 to 1000 ppm, more preferably 1 to 500 ppm based on the total monomer mass of the monomer mixture. If it is added in excess of 1000 ppm, the degree of crosslinking is too high, and the agglomeration performance as a polymer flocculant is remarkably lowered.
  • the hydrocarbon used in the present invention is substantially immiscible with water.
  • being substantially immiscible with water means that the solubility in water at 25 ° C. is less than 1000 mg / L.
  • the hydrocarbon used in the present invention preferably has a boiling point in the range of 65 to 180 ° C., more preferably in the range of 65 to 130 ° C. at normal pressure. Specific examples include hydrocarbons such as n-hexane, cyclohexane, n-heptane, n-octane, isooctane, paraffins, various mineral oils, and mixtures thereof.
  • n-heptane is advantageous in that it is azeotroped with water in the reflux dehydration process, can be dried at a relatively low temperature of 40 to 90 ° C. in the drying process, and is easy to collect and reuse. Is most preferred.
  • the hydrocarbon content in the emulsification step (A) and the polymerization step (B) is preferably 15 to 50% by mass relative to the total amount of the water-in-oil emulsion.
  • the surfactant is used for the purpose of imparting emulsion stability of the emulsion and dispersion stability of the slurry in the emulsification step (A), the polymerization step (B), and the reflux dehydration step (C).
  • the preferable HLB value of the surfactant in the emulsification step (A) and the polymerization step (B) is 3.0 to 9.0, and more preferably 3.0 to 5.0.
  • Two or more surfactants having different HLB values may be used in combination. When two or more surfactants are used in combination, it is preferable to use the surfactant so that the weighted average of the HLB values of each surfactant is in the range of 3.0 to 9.0. A range of 5.0 is more preferred.
  • the HLB value indicates the molecular weight of the hydrophilic group portion in the total molecular weight of the surfactant
  • the nonionic surfactant is obtained by the Griffin equation shown in the following general formula (4).
  • the HLB value of the mixed surfactant composed of two or more kinds of nonionic surfactants can be obtained as follows.
  • the HLB value of the mixed surfactant is a load-averaged HLB value of each nonionic surfactant based on the blending ratio.
  • Mixed HLB value ⁇ (HLB S ⁇ W S ) / ⁇ W S (Formula 4)
  • HLB S in the general formula (4) indicates the HLB value of the nonionic surfactant S.
  • W S represents the mass (g) of the nonionic surfactant S having a value of HLB S.
  • surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkylene alkyl ether, sorbitan monooleate, sorbitan sesquioleate, sorbitan monolaur Rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitol tetraoleate, polyethylene glycol monooleate, polyethylene glycol dioleate, oleic acid diethanolamide, lauric acid monoethanolamide, stearic acid mono
  • Nonionic surfactants such as ethanolamide can be mentioned.
  • the effective addition amount of these surfactants is preferably 0.25 to 15% by mass, more preferably 0.5 to 10% by mass with respect to the total amount of the water-in-oil emulsion.
  • the emulsification conditions are appropriately set according to the composition of the water phase and the oil phase and the emulsifier to be used.
  • the median diameter of the emulsified particles made of an aqueous solution of the monomer mixture is 10 ⁇ m or less.
  • the median diameter of the particle size distribution of the emulsified particles in the emulsification step (A) needs to be 10 ⁇ m or less.
  • the median diameter of the emulsified particles is preferably 0.3 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, and most preferably 0.7 to 3 ⁇ m.
  • the median diameter of the emulsified particles exceeds 10 ⁇ m, the aggregation performance of the polymer flocculant is significantly lowered.
  • the emulsified particle diameter means a volume average particle diameter measured by a laser light scattering method.
  • Polymerization conditions are appropriately set according to the monomers and initiators used and the physical properties of the polymer.
  • the polymerization temperature is 0 to 100 ° C, preferably 10 to 80 ° C.
  • the monomer concentration is preferably 20 to 50% by mass, more preferably 25 to 45% by mass.
  • the polymerization time is preferably 1 to 10 hours.
  • polymerization initiator examples include persulfates such as sodium persulfate and potassium persulfate; organic peroxides such as benzoyl peroxide, t-butyl hydroperoxide and paramentane hydroperoxide; 2,2′-azobis- ( Amidinopropane) hydrochloride, azobiscyanovaleric acid, 2,2′-azobisisobutyronitrile and 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide] And known ones such as a redox catalyst comprising a combination of hydrogen peroxide, persulfate, sodium bisulfite, ferrous sulfate and the like. These polymerization initiators may be used alone or in combination of two or more.
  • Chain transfer agents include thiol compounds such as mercaptoethanol and mercaptopropionic acid; reducing inorganic salts such as sodium sulfite, sodium bisulfite and sodium hypophosphite; alcohols such as ethanol and isopropyl alcohol; sodium methallyl sulfonate And allyl compounds.
  • additives such as a stabilizer, a pH adjuster, and an antioxidant may be added as long as the effects of the present invention are not impaired.
  • Reflux dehydration step (C) In the reflux dehydration step (C), out of the condensate composed of water and hydrocarbons obtained by condensing vapor separated from the water-in-oil polymer emulsion by evaporating water and hydrocarbons, water is removed from the system. While discharging, returning the hydrocarbon to the system, a part of the water is removed from the water-in-oil polymer emulsion to prepare a polymer dispersion.
  • the emulsion is not destroyed in the reflux dehydration step (C). Water needs to be removed.
  • the reflux dehydration step (C) is not carried out or the drying step (D) is carried out with insufficient removal of water, the drying of hydrocarbons proceeds before water, and emulsification of the water-in-oil polymer emulsion.
  • the particles merge to form a huge hydrogel deposit. In that case, since the gel deposit has a small surface area, the drying property of the remaining water is deteriorated.
  • the dehydration rate represented by the following formula (1) is in the range of 65 to 99%, and then in the drying step (D) Dry under reduced pressure.
  • the drying step (D) before the dehydration rate reaches 65%, as in the case described above, the emulsified particles of the water-in-oil polymer emulsion are united to form a huge hydrogel deposit.
  • problems such as poor drying properties and difficulty in taking out the solidified product after drying. If reflux dehydration is continued until the dehydration rate exceeds 99%, the polymer may be thermally deteriorated.
  • a more preferable dehydration rate range is 75 to 97%, and a most preferable dehydration rate range is 80 to 95%.
  • the reflux dehydration step (C) is usually performed under a reduced pressure condition from normal pressure to an absolute pressure of 4 kPa, and preferably performed under a reduced pressure condition from normal pressure to an absolute pressure of 40 kPa.
  • the lower the pressure the higher the evaporation rate of the heterogeneous azeotrope of hydrocarbons and water, so that the time for the reflux dehydration step (C) can be shortened.
  • reflux dehydration is performed under a pressure lower than an absolute pressure of 40 kPa, the amount of unintended deposits may increase, for example, the polymer may adhere to the gas-liquid interface near the liquid level on the reactor wall and solidify.
  • the amount of hydrocarbons in the step is 0.6 to 0.6 of the mass of solid content (referring to the total amount of components other than water and solvent) contained in the water-in-oil polymer emulsion. 2.0 times. If the hydrocarbon content is less than 0.6 times the mass of the cross-linked polymer, the cross-linked polymer particles formed by substantially drying the emulsified particles before moving to the next drying step (D) are intended. They may agglomerate to form huge agglomerates. In the case of mass production equipment, the reflux dehydration step (C) and the drying step (D) may be carried out in separate apparatuses such as a stirred tank reactor and a vacuum mixing dryer, for example.
  • hydrocarbon content is more than 2.0 times the mass of the cross-linked polymer, and the amount of the desired polymer flocculant is reduced, which is useless.
  • a more preferable hydrocarbon content is 0.7 to 1.5 times the mass of the crosslinked polymer.
  • the reflux dehydration step (C) is preferably performed in the presence of a surfactant having an HLB value of 3.0 to 9.0 in a slurry state in which cross-linked polymer particles are dispersed in a continuous phase.
  • a more preferable surfactant has an HLB value of 3.0 to 5.0.
  • Two or more surfactants having different HLB values may be used in combination. When two or more kinds of surfactants are used in combination, it is preferable to adjust the HLB value of each surfactant so that the HLB value is 3.0 to 9.0. A range of ⁇ 5.0 is more preferable.
  • the reflux dehydration step (C) is performed under the condition of HLB> 9.0, the cross-linked polymer particles formed by substantially drying the emulsified particles before moving to the next drying step (D) are formed as described above. It may unintentionally aggregate to form huge aggregates, which is not preferable because it cannot be transferred to the next apparatus.
  • drying step (D) In the drying step (D), hydrocarbons and water are removed from the slurry (dispersion liquid) of the crosslinked polymer particles to produce a crosslinked polymer powder.
  • the drying step (D) is preferably carried out under a reduced pressure condition of 2 to 20 kPa in absolute pressure.
  • the amount of evaporation of the hydrocarbon is too large to condense in the condenser, and the vacuum pump is carbonized. Hydrogen may be inhaled.
  • Granulation process (E) In the manufacturing method of this invention, it is preferable to perform a granulation process (E) after a drying process (D).
  • the granulation step (E) is performed in order to further improve the powder characteristics of the polymer flocculant powdered in the drying step (D).
  • the same handleability as a general-purpose powder product can be obtained.
  • the dry powder of the cross-linked polymer obtained in the drying step (D) is stirred and mixed while adding a binder, wet stirring and granulating, and then drying again. It can be carried out.
  • the binder examples include water, an aqueous solution in which other water-soluble polymer is dissolved, and a water-in-oil emulsion in which water-containing gel-like fine particles are dispersed. Two or more of these binders can be used in combination.
  • the binder is preferably added while stirring the cross-linked polymer powder. By adding with stirring, the powder and the binder can be mixed more uniformly, and a granulated product having high granulation strength can be obtained.
  • the addition rate of the binder is preferably 3 to 70% by mass, more preferably 4 to 65% by mass with respect to the polymer flocculant powder.
  • the addition rate of water contained in the binder is preferably 3 to 30% by mass, more preferably 4 to 20% by mass with respect to the mass of the polymer flocculant powder. If the addition rate of the binder and the water contained in the binder is too small, it may not be sufficiently granulated. If it is too much, too much granulation may occur and a lot of coarse particles may be generated, or subsequent re-drying may take a long time. is there. In the granulation step (E), in order to adjust the particle size of the obtained granulated product as necessary, the granulated product after drying is sieved or the coarse particles generated by sieving are crushed. May be.
  • the polymer flocculant powder obtained in the drying step (D) is weighed into a polycup and stirred with a stirring blade, with respect to the mass of the polymer flocculant powder.
  • Granulation process (F) In the production method of the present invention, it is also preferable to perform the granulation step (F) after the completion of the reflux dehydration step (C) and before the start of the drying step (D) or during the drying step (D). .
  • the granulation step (F) is performed in order to further improve the powder characteristics of the polymer flocculant powdered in the drying step (D).
  • a binder is added as necessary between the end of the reflux dehydration step (C) and before the start of the drying step (D) or during the drying step (D). It can carry out by drying with stirring in a drying process (D).
  • the stirring conditions and drying conditions so that the powder characteristics of the powdery polymer flocculant are preferably improved.
  • the crosslinked polymer After the addition of the binder, the crosslinked polymer must be dried with stirring. By drying with stirring, the powder and the binder can be mixed more uniformly, and a granulated product having high granulation strength can be obtained. As a result of such granulation, the powder characteristics are improved to the same as those of a general-purpose powder product, and can be handled in the same manner with existing equipment such as an automatic melting device for general-purpose powder.
  • the binder examples include water, an aqueous solution in which a water-soluble polymer is dissolved, and a water-in-oil emulsion in which water-containing gel-like fine particles are dispersed. Two or more of these binders can be used in combination. Moreover, the water-in-oil polymer emulsion obtained in the polymerization process can also be used as a binder.
  • the addition rate of the binder is preferably 3 to 70% by mass, and more preferably 4 to 65% by mass with respect to the total mass of the solid content of the water-in-oil polymer emulsion.
  • the addition rate of water contained in the binder is preferably 3 to 30% by mass, and more preferably 4 to 20% by mass with respect to the total mass of the solid content of the crosslinked polymer. If the addition rate of the binder and the water contained in the binder is too small, it may not be sufficiently granulated. If it is too much, too much granulation may occur and a lot of coarse particles may be generated, or subsequent re-drying may take a long time. is there. After the drying step (D) including granulation, in order to adjust the particle size of the obtained granulated product, if necessary, the dried granulated product is sieved or coarsely generated by sieving. The grains may be crushed.
  • drying step (D) including granulation for example, in the reflux dehydration step (C), a separable flask equipped with a stirrer, a reflux condenser, a vacuum pump and a liquid receiving tank at the tip of the vacuum line is used. A slurry in which particles of the obtained almost dry cross-linked polymer are dispersed is charged, and a part of the water-in-oil polymer emulsion obtained in the polymerization step (B) is added as a binder at the above-mentioned preferable addition rate.
  • Other water-soluble polymers used in the granulation steps (E) and (F) are preferably poval having a saponification degree of 78.0 to 95.0 mol% and an average molecular weight of 10,000 to 70,000. By using the poval, a granulated product having a high granulation strength can be obtained.
  • the sludge to be treated is not particularly limited.
  • sludge generated in sewage treatment human waste treatment and domestic wastewater treatment
  • sludge generated in various industrial wastewater treatment such as food factories, meat processing and chemical factories
  • manure and wastewater generated in livestock relations such as pig farms
  • Various sludges such as sludge generated in the treatment, pulp or sludge generated in the paper industry are to be treated.
  • the sludge dewatering method of the present invention is characterized in that at least one polymer flocculant obtained by the production method of the present invention is added to the above-mentioned various sludges for dehydration.
  • the following method is illustrated as a specific example of the dehydration method. That is, an inorganic flocculant is added to the sludge as necessary, and the pH is preferably adjusted to 4-7. Thereafter, the polymer flocculant of the present invention is added to the sludge, and the suspension in the sludge and the polymer flocculant are allowed to act by stirring and / or mixing by a known method to form a sludge floc.
  • the formed sludge floc is mechanically dehydrated by known means to separate into treated water and dehydrated cake.
  • a crosslinkable amphoteric polymer as a polymer flocculent of this invention, it is preferable to use the said inorganic flocculant together.
  • limit especially as an inorganic flocculant A sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate, polyferric sulfate, etc. are illustrated.
  • limit especially as a dehydration apparatus A screw press type dehydrator, a belt press type dehydrator, a filter press type dehydrator, a screw decanter, a multiple disk etc. are illustrated.
  • the measuring method of various physical properties is as follows.
  • the temperature condition for measuring various physical properties is 25 ° C. unless otherwise specified.
  • the sample (powder sample) was sieved with a stainless steel test sieve, and particles having a particle size of 1.0 to 1.7 mm were taken out.
  • the granulation strength was measured by the following method. First, the first particle for measuring the granulation strength was sandwiched between an experimental table and a glass plate, a load was applied from above the glass plate to compress the particle, and the load was gradually increased until the particle was broken. Then, the load at the moment when the particles were broken was measured with a hardness meter (trade name “Tecrock Durometer GS-720G” manufactured by Tecrock Co., Ltd.). Care was taken to keep the experimental table and the glass plate as parallel as possible.
  • the load was applied to the particles from directly above the particles with a push pin of a hardness meter through a glass plate. After measuring the load at the time of compressive fracture of the first particle, the same operation is repeated, the load at the time of compressive fracture of a total of 10 particles is measured, and the average value of the load is obtained and the granulation strength (N) It was.
  • [Moisture content of dehydrated cake] Appropriate part (about 12g) of the sludge-containing water cake after gravity filtration remaining on the stainless steel test sieve after evaluating the gravity filterability described above, and centrifuge with a nylon filter cloth having an opening of 180 ⁇ m set inside A dewatering cake was obtained by centrifugal dewatering at 2000 rpm for 10 minutes using a settling tube. The obtained dehydrated cake was taken out, weighed in an aluminum pan, dried in a hot air dryer at 105 ° C. for 16 hours, then measured for the mass after drying, and the water content was determined from the mass ratio between the amount reduced by drying and the mass before drying. The rate was determined.
  • the water phase was added while stirring the oil phase in a separable flask, and the mixture was stirred at high speed with a homogenizer to prepare a water-in-oil monomer emulsion having a median diameter of 1.5 ⁇ m.
  • a separable cover equipped with a nitrogen gas blowing tube, a reflux condenser, and a thermometer was set in the flask, and degassing was started with nitrogen gas while stirring with a stirring blade. After sufficiently degassing, while supplying nitrogen gas, nitrogen gas containing 0.02 vol% of sulfur dioxide was further blown into the water-in-oil monomer emulsion at a supply rate of 11.6 ml / min to start polymerization. I let you. After reaching 50 ° C.
  • the supply amount of nitrogen gas containing sulfur dioxide is increased to 312.2 ml / min, and further holding at 50 ° C. for 1 hour, followed by containing nitrogen gas and sulfur dioxide Nitrogen gas was stopped to complete the polymerization. Thereafter, 4.0 g of a 1% by mass aqueous solution of sodium pyrosulfite and 9.7 g of a 50% by mass aqueous solution of malic acid were added and mixed to obtain a water-in-oil polymer emulsion containing a crosslinked polymer.
  • the component ratio of the obtained water-in-oil polymer emulsion was such that normal heptane and water were slightly volatilized during the polymerization, resulting in a solid content of 45.4% by mass, normal heptane of 24.5% by mass and water of 30%. It was 1 mass%.
  • the obtained slurry having a dehydration rate of 92% had a solid content of 46.5% by mass, normal heptane of 51.1% by mass, and water of 2.4% by mass.
  • the boiling point increased as the reflux dehydration process progressed and the amount of water contained in the water-in-oil polymer emulsion in the flask decreased, and gradually approached the normal heptane boiling point of 98 ° C.
  • the cock under the straight pipe part was always opened and accumulated in the liquid receiving tank below it.
  • the condensate accumulated in the liquid receiving tank increased, the cock under the straight pipe part was closed, the vacuum of the liquid receiving tank was returned with nitrogen, the condensate was discharged, and this operation was repeated until the drying process was completed. .
  • the drying step was completed, and the product temperature was cooled to 40 ° C. or lower to obtain polymer flocculant powder A1.
  • the slurry after dehydration and the powder after drying were both good.
  • the physical properties of the obtained powder sample were evaluated and are shown in Table 1.
  • the solid content of the powder sample was 97.0% by mass.
  • the mixture was charged with 100.0 g of a water-in-oil polymer emulsion, 1.44 g of a predetermined amount of normal heptane and 1.44 g of polyethylene glycol oleic acid monoester having an HLB of 13.5, and reflux dehydration was performed. After reaching the dehydration rate end point shown in Table 1, the same operation as in Production Example 1 was performed to obtain polymer flocculant powders B2 to B3.
  • DAC dimethylaminoethyl acrylate methyl chloride quaternary salt
  • AM acrylamide
  • MBAM N, N′-methylenebisacrylamide
  • IPA isopropyl alcohol
  • Isopar G hydrocarbon solvent manufactured by ExxonMobil; "IsoparG”
  • Polymer flocculant powders C2 to C4 were obtained in the same manner as in Production Example 12 except that the type of poval for preparing the binder, the concentration of the aqueous solution, and the addition amount of the binder were changed as shown in Table 2. It was. In addition, powder characteristics and physical properties of the obtained powder sample were evaluated and are shown in Table 2.
  • the polymer flocculants C1 to C6 with the binder added have a larger bulk specific gravity, stronger granulation strength, and powder characteristics compared to D1 without the binder added. outstanding. Moreover, the tendency for both bulk specific gravity and granulation strength to improve was seen, so that there was much addition amount of binder. And in C4 which added poval aqueous solution as a binder, although the addition amount of the binder was less than C5 which added only water, the granulation strength was high. It seems to be the effect of Poval.
  • the powder characteristics can be improved while maintaining the excellent performance of the polymer flocculant.
  • ⁇ Production Example 18> As in Production Example 12, except that 20 g of a water-in-oil polymer emulsion containing the crosslinked polymer obtained in the polymerization step of Production Example 1 was added as a binder over a period of about 15 minutes using a syringe pump. To obtain a polymer flocculant powder E1. At this time, the moisture contained in the binder was 10.5% with respect to the total mass of the solid content of the polymer flocculant A1 and the binder. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 3.
  • the funnel was set so that the filtrate entered the 200 mL graduated cylinder, and the volume of the filtrate was measured every predetermined time to evaluate the gravity filterability. Further, the appearance of the filtrate was visually evaluated.
  • an appropriate amount (about 12 g) of the sludge-containing water cake after gravity filtration remaining on the stainless steel test sieve after evaluating gravity filterability was taken out and centrifuged with a nylon filter cloth having an opening of 180 ⁇ m inside. Using a settling tube, centrifugal dehydration was performed at 2000 rpm for 10 minutes, and the water content of the obtained dehydrated cake was measured. The test results are shown in Table 4.
  • the polymer flocculants A1, A3, and C1 obtained in Production Example 1, Production Example 3, and Production Example 12 were polymerized without adding a crosslinking agent to the sludge of the public sewage treatment plant 1.
  • the amount of the polymer flocculant is slightly increased, but the floc diameter is large, the gravity filterability is excellent, and the suspension component (SS) does not flow out at all in the filtrate.
  • the moisture content of the dehydrated cake was both low and excellent at 82% or less.
  • A1 having a median diameter smaller than A3 and C1 obtained by granulating A1 the water content of the dehydrated cake was less than 80%, and the dewatering performance was superior to A3.
  • the flocs are not formed at any addition amount of 200 to 400 ppm in the sludge of the public sewage treatment plant 2 in the polymer flocculant B4 of Comparative Production Example 4 in which no crosslinking agent was added. It was.
  • the polymer flocculants A6, A11, E1 obtained in Production Example 6, Production Example 11, and Production Example 18 all formed flocs and were extremely effective as polymer flocculants for hardly dewatered sludge. .
  • the amount of the polymer flocculant is slightly increased compared to A11 and E1, but the floc diameter is large and the gravity filterability is excellent when the appropriate amount is added.
  • the suspension component (SS) did not flow out, and the moisture content of the dehydrated cake was as low as about 74%, and the dewatering performance was excellent. As described above, when the polymer flocculant obtained by the production method of the present invention is used, it exhibits excellent dewatering performance even for hardly dewatered sludge.
  • ⁇ Production Example 22> Almost dry with a dehydration rate of 92% obtained in the reflux dehydration step of Production Example 1 in a 300 mL stainless separable flask with stainless steel anchor blades set so that the clearance between the bottom surface and the wall surface is about 1 mm.
  • the water content in the binder was 9.5% by mass with respect to the total mass of the slurry having a dehydration rate of 92% and the solid content of the binder.
  • the temperature of the slurry in which the particles of the cross-linked polymer were dispersed reached the boiling point at about 40 to 43 ° C., and steam containing normal heptane and the remaining water began to come out.
  • the degree of vacuum was adjusted while observing the flow rate of the condensate, 80% by mass or more of the total amount of solvent was evaporated, and after confirming that the product temperature started to rise, finish drying was performed for 30 minutes at an absolute pressure of 4 kPa. .
  • a white slurry with dispersed polymer particles before drying becomes a highly viscous clay as drying progresses and the normal heptane content decreases. It was dissolved into an aggregate having a distribution of less than mm, and finally changed to a dry granulated product having a high granulation strength. Further, the product temperature reached the maximum range of 55 to 70 ° C. After finishing the drying step, the product temperature was cooled to 40 ° C. or lower, and then sieved with a stainless steel test sieve having an opening of 2.36 mm to remove coarse particles. The coarse particles were crushed so as to pass through a sieve to obtain a granulated product 2. The granulated product 1 and the granulated product 2 were mixed to obtain a polymer flocculant granulated powder F1. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 6.
  • ⁇ Production Example 26> As a binder, the same procedure as in Production Example 1 was performed except that 7 g of water was added instead of the water-in-oil polymer emulsion containing the crosslinked polymer obtained in the polymerization step of Production Example 1. Molecular flocculant granulated powder F5 was obtained. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 6.
  • the polymer flocculant granulated powders F1 to F6 with the binder added have a larger bulk specific gravity and a stronger granulation strength than the G1 without the binder added. Excellent body characteristics. Moreover, the tendency for both bulk specific gravity and granulation strength to improve was seen, so that there was much addition amount of binder. Furthermore, as a result of physical property evaluation, physical properties such as 0.5% aqueous solution viscosity and 0.1% salt viscosity were hardly changed regardless of the presence or absence of the binder and the amount of the binder added. Therefore, by adding a binder, drying and granulating while stirring, the powder characteristics can be improved while maintaining the excellent performance of the polymer flocculant.
  • the funnel was set so that the filtrate entered the 200 mL graduated cylinder, and the volume of the filtrate was measured every predetermined time to evaluate the gravity filterability. Further, the appearance of the filtrate was visually evaluated.
  • an appropriate amount (about 12 g) of the sludge-containing water cake after gravity filtration remaining on the stainless steel test sieve after evaluating gravity filterability was taken out and centrifuged with a nylon filter cloth having an opening of 180 ⁇ m inside. Using a settling tube, centrifugal dehydration was performed at 2000 rpm for 10 minutes, and the water content of the obtained dehydrated cake was measured. The test results are shown in Table 7.
  • the flocs are not formed at all in the amount of 200 to 400 ppm in the polymer flocculant B4 of Comparative Production Example 4 in which no crosslinking agent was added to the sludge of the public sewage treatment plant 2. It was.
  • the polymer flocculant granulated powders A6, A11, and F5 obtained in Production Example 6, Production Example 11, and Production Example 26 all form flocs and are extremely effective as polymer flocculants for hardly dewatered sludge. Met.
  • the amount of the polymer flocculant is slightly increased compared to A11 and F5, but the floc diameter is large and the gravity filterability is excellent when the appropriate amount is added.
  • the filtrate no outflow of the suspended component (SS) was observed, and the water content of the dehydrated cake was as low as about 74%, and the dewatering performance was excellent.
  • the polymer flocculant obtained by the production method of the present invention when used, it exhibits excellent dewatering performance even for hardly dewatered sludge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Provided is a method for producing a polymer coagulant powder by drying a polymer emulsion obtained by emulsion polymerization of a monomer mixture containing at least a cationic monomer and a crosslinkable monomer, the method including: a step (A) which is an emulsifying step of preparing a water-in-oil type monomer emulsion having an emulsified particle median diameter of 10 µm or less; a step (B) which is a polymerization step of preparing a water-in-oil type polymer emulsion; a step (C) which is a reflux dehydration step of preparing a polymer dispersion by discharging water contained in a condensate, which is obtained by evaporating off water and hydrocarbons from the water-in-oil type polymer emulsion and condensing the water vapor, to outside the system and returning the hydrocarbons to the system, thereby removing water until the dehydration rate is within the range 65-99%, with the mass of the hydrocarbons being 0.6-2.0 times the mass of solid content in the water-in-oil type polymer emulsion; and a step (D) which is a drying step of preparing a polymer powder by removing hydrocarbons and water from the dispersion.

Description

高分子凝集剤粉末の製造方法及び汚泥の脱水方法Method for producing polymer flocculant powder and method for dewatering sludge
 本発明は、高分子凝集剤粉末の製造方法及び汚泥の脱水方法に関する。さらに詳しくは、本発明は、難脱水性汚泥を効果的に脱水することができ、含水率の低い脱水ケーキを得ることができる高性能な高分子凝集剤粉末の製造方法及びそれを用いる汚泥の脱水方法に関する。 The present invention relates to a method for producing a polymer flocculant powder and a method for dewatering sludge. More specifically, the present invention provides a method for producing a high-performance polymer flocculant powder capable of effectively dehydrating hardly dewaterable sludge and obtaining a dehydrated cake with a low water content, and sludge using the same. It relates to a dehydration method.
 高分子凝集剤は生活排水、産業排水等に含まれる懸濁物を凝集・沈降・分離させることを目的として、また、製紙産業における歩留向上剤や土木建築における混和剤や加泥剤などとして用いられている。高分子凝集剤はノニオン、アニオン、カチオン、両性の各イオン性を有しているが、どのイオン性の高分子凝集剤を選択するかは被処理水の性状、処理方法によって異なる。これらのうち、カチオン性を有する高分子凝集剤は、産業排水及び生活排水を活性汚泥処理した後の余剰汚泥を、フロック化して脱水するために用いられたり、製紙産業における歩留向上剤として用いられることが多い。前者では、脱水が難しい汚泥に関しては、分岐や架橋を有するポリマーが用いられる。また、両性の高分子凝集剤は、凝結剤で荷電中和された懸濁粒子を粗大フロック化するために用いられ、脱水や凝集が難しい汚泥にも適用できる。 Polymer flocculants are used to agglomerate, settle and separate suspensions contained in domestic wastewater and industrial wastewater, and as a yield improver in the paper industry and as an admixture and a mudifier in civil engineering. It is used. The polymer flocculant has nonionic, anionic, cationic, and amphoteric ionic properties. Which ionic polymer flocculant is selected depends on the properties of the water to be treated and the treatment method. Among these, cationic polymer flocculants are used to flocate and dewater surplus sludge after activated sludge treatment of industrial wastewater and domestic wastewater, or as a yield improver in the paper industry. It is often done. In the former, for sludge that is difficult to dewater, a polymer having branching or crosslinking is used. In addition, the amphoteric polymer flocculant is used to coarsely flocculate suspended particles that have been neutralized with a coagulant, and can be applied to sludge that is difficult to dewater or agglomerate.
 高分子凝集剤は、従来、粉末や油中水型エマルション等の製品形態が知られている。そのうち、油中水型エマルションは溶解性に優れ、短時間で均一に溶解できるという利点があるが、粉末よりも製造コストが高いことや高分子凝集剤の有効成分の含有率が低いことから輸送コストが割高になるという欠点があった。 Conventional polymer flocculants are known in the form of products such as powders and water-in-oil emulsions. Among them, water-in-oil emulsions have the advantage of being excellent in solubility and being able to dissolve uniformly in a short time, but they are transported due to their higher production costs and lower active ingredient content of polymer flocculants than powders. There was a drawback that the cost was high.
 このような状況下、最近では、分岐や架橋を有するカチオン性又は両性の油中水型エマルションポリマーを乾燥して粉末にした、難脱水汚泥に対しても優れた脱水性能を示し、輸送コストの欠点を解消し、汎用の粉末用の自動溶解装置等の既存設備で使用できる高性能な高分子凝集剤粉末の開発が行われている。 Under these circumstances, recently, cationic or amphoteric water-in-oil emulsion polymers having branching or cross-linking have been dried into powder, exhibiting excellent dewatering performance even for difficult-to-dewater sludge, and reducing transportation costs. Development of high-performance polymer flocculant powder that eliminates the drawbacks and can be used in existing facilities such as a general-purpose powder automatic dissolution apparatus has been carried out.
 例えば、特許文献1には、カチオン性モノマー及び5~2000ppmの架橋剤を含む水溶性のモノマー混合物を非水性液体中で逆相重合により、少なくとも90重量%が10μm以下の粒径を持つ第1次ポリマー粒子の逆相エマルションを作成し、次いで、該逆相エマルションをスプレー乾燥して、少なくとも90重量%が20μm以上の粒径のスプレー乾燥顆粒を作成するスプレー乾燥顆粒の製造方法が開示されている。しかし、スプレー乾燥では、乾燥効率が悪く、十分に乾燥して粉末化するのに多くのエネルギーを必要とするため、好ましくない。また、スプレー乾燥機の特性上、少量ずつ短時間で乾燥する必要があることから、非常に高温で乾燥する必要があり、高分子量のポリマーが熱劣化を受け易く、同じ条件で製造しても品質がバラつくという問題があった。 For example, Patent Document 1 discloses a first particle having a particle size of at least 90% by weight of 10 μm or less by reverse phase polymerization of a water-soluble monomer mixture containing a cationic monomer and 5-2000 ppm of a crosslinking agent in a non-aqueous liquid. Disclosed is a method for producing a spray-dried granule, wherein an inverse emulsion of the next polymer particles is prepared, and then the inverse emulsion is spray-dried to produce a spray-dried granule having a particle size of at least 90% by weight of 20 μm or more. Yes. However, spray drying is not preferable because the drying efficiency is poor and a large amount of energy is required to sufficiently dry and powderize. In addition, because of the characteristics of spray dryers, it is necessary to dry in small portions in a short time, so it is necessary to dry at very high temperatures. High molecular weight polymers are susceptible to thermal degradation and can be manufactured under the same conditions. There was a problem that the quality varied.
 また、特許文献2には、カチオン性モノマー及び20~300ppmの架橋剤を含むモノマー混合物水溶液を分散相とし、水と非混和性の炭化水素が連続相となるように、界面活性剤によって乳化して重合したカチオン性又は両性水性高分子の油中水型エマルションを得、次いでこの油中水型エマルションをエマルションブレイクして塊状化させ、ミートチョッパーを用いてこの塊状物を4~6mmに細断した後、棚式通風乾燥機を用いて105℃で1時間乾燥し、孔径2mmのスクリーンで解砕して粉末状の汚泥脱水剤を得る実施例が開示されている。しかし、使用する炭化水素の沸点が高いと乾燥時間が長くなり生産性が低下したり、高温乾燥によって高分子量のポリマーが熱劣化を受け易い等の問題があった。 In Patent Document 2, an aqueous monomer mixture containing a cationic monomer and 20 to 300 ppm of a crosslinking agent is used as a dispersed phase, and emulsified with a surfactant so that water and an immiscible hydrocarbon become a continuous phase. A water-in-oil emulsion of a cationic or amphoteric aqueous polymer polymerized, and then the emulsion-in-water emulsion is agglomerated and agglomerated, and this agglomerate is chopped to 4-6 mm using a meat chopper After that, an example is disclosed in which a drying sludge dehydrating agent is obtained by drying at 105 ° C. for 1 hour using a shelf-type ventilation dryer and crushing with a screen having a pore diameter of 2 mm. However, if the boiling point of the hydrocarbon used is high, the drying time becomes long and the productivity is lowered, and the high molecular weight polymer is susceptible to thermal degradation due to high temperature drying.
 一方、沸点が100℃以下の炭化水素を使用するには、揮発性や引火性が高いので取り扱い時に厳重な注意が必要であり、通常は外気の混入を完全に遮断できる設備内で、常に炭化水素の燃焼範囲外の条件で処理される。しかし、特許文献2には、エマルションブレイク以外の工程の詳細な記載がなく、炭化水素の種類も不明であり、炭化水素を安全な方法で乾燥して粉末化できるのか不明である。特に、塊状化したポリマーをミートチョッパーで4~6mmに細断したり、細断品をミートチョッパーから棚式通風乾燥機に移送する際に、外気を完全に遮断して行う設備は、設備全体が極めて煩雑になると思われる。また、棚式通風乾燥機を使用する場合には、多量に使用する熱風を窒素等の不活性ガスで作成しなければならないため非経済的であり、炭化水素を回収して再利用することも難しい等の問題があった。 On the other hand, when using hydrocarbons with a boiling point of 100 ° C or lower, volatile and flammable properties are required, so strict caution is required during handling. Normally, carbonization is always performed in facilities that can completely block outside air. Processed under conditions outside the hydrogen combustion range. However, in Patent Document 2, there is no detailed description of processes other than emulsion break, the type of hydrocarbon is unknown, and it is unknown whether the hydrocarbon can be dried and powdered by a safe method. In particular, when the agglomerated polymer is shredded to 4 to 6 mm with a meat chopper, or when the shredded product is transferred from the meat chopper to a shelf-type ventilation dryer, the equipment that completely shuts off the outside air is the entire equipment. Seems to be extremely complicated. In addition, when using a shelf-type ventilation dryer, it is uneconomical because hot air to be used in large quantities must be created with an inert gas such as nitrogen, and hydrocarbons can be recovered and reused. There were problems such as difficulties.
 特許文献3には、一次粒子の大きさが20μm未満であり、乳化剤の存在下で非水性の液体中にカチオン性モノマーのエマルションを形成する工程;重合を開始及び完了する工程;エマルションから水を蒸留してエマルションを略乾燥させる工程;略乾燥したエマルション又はこれから分離した乾燥ポリマー粒子のスラリー若しくは固体を、揮発性有機溶媒で洗浄することで非水性の液体とポリマー粒子とを分離する工程;洗浄したポリマー粒子を前記揮発性有機溶媒で湿潤したポリマー粒子の固体又はスラリーとして分離する工程;固体又はスラリーから溶媒を蒸発させて乾燥粉末を得る工程を含むポリマーの一次粒子集合体からなる乾燥粉末の製造方法が開示されている。 Patent Document 3 discloses a step of forming an emulsion of a cationic monomer in a non-aqueous liquid having a primary particle size of less than 20 μm in the presence of an emulsifier; a step of starting and completing polymerization; and water from the emulsion. A step of substantially drying the emulsion by distillation; a step of separating the non-aqueous liquid and the polymer particles by washing the substantially dried emulsion or a slurry or solid of the dried polymer particles separated therefrom with a volatile organic solvent; Separating the polymer particles as a solid or slurry of polymer particles wetted with the volatile organic solvent; and evaporating the solvent from the solid or slurry to obtain a dry powder. A manufacturing method is disclosed.
 しかし、特許文献3は、化粧組成物や局所用医薬組成物等のパーソナルケア組成物を対象とする、水に溶解又は膨潤して均質で透明なゲルを形成するためのポリマー粉末の製造方法であって、高分子凝集剤の技術分野とは異なる。また、非水性液体や乳化剤を揮発性有機溶媒で洗浄する工程は、非水性液体と揮発性有機溶剤とが混合してしまうので、非水性液体の再利用を妨げ、不要な廃液を多く発生させるため好ましくない。さらには、高分子凝集剤の性能を向上させる製造方法について示唆していない。 However, Patent Document 3 is a method for producing a polymer powder for forming a homogeneous and transparent gel by dissolving or swelling in water for personal care compositions such as cosmetic compositions and topical pharmaceutical compositions. Therefore, it is different from the technical field of polymer flocculants. In addition, the process of washing the non-aqueous liquid and the emulsifier with the volatile organic solvent mixes the non-aqueous liquid and the volatile organic solvent, thus preventing reuse of the non-aqueous liquid and generating a lot of unnecessary waste liquid. Therefore, it is not preferable. Furthermore, it does not suggest a production method for improving the performance of the polymer flocculant.
特許4043517号公報Japanese Patent No. 4043517 特許5700534号公報Japanese Patent No. 5700534 特許4143604号公報Japanese Patent No. 4143604
 本発明の課題は、分岐や架橋を有するカチオン性又は両性の油中水型重合体エマルションを乾燥して粉末とすることにより、輸送コストを低減し、難脱水汚泥に対しても優れた脱水性能を示し、汎用の粉末自動溶解装置等を用いて使用できる高性能な高分子凝集剤粉末の製造方法を提供することである。 The object of the present invention is to dry a cationic or amphoteric water-in-oil polymer emulsion having branches or crosslinks into a powder, thereby reducing transportation costs and excellent dewatering performance even for hardly dewatered sludge And providing a method for producing a high-performance polymer flocculant powder that can be used using a general-purpose automatic powder-dissolving apparatus.
 本発明者らは上記課題について鋭意検討を進めた結果、特定の単量体混合物を油中水型エマルション重合した後に乾燥して得られる架橋型重合体を含む高分子凝集剤の製造方法であって、特定の乳化工程、重合工程、還流脱水工程、乾燥工程を含む高分子凝集剤粉末の製造方法を確立した。そして、この製造方法で得られる高分子凝集剤粉末は、輸送コストを低減できるだけでなく、優れた脱水性能を発揮し、かつ汎用の粉末自動溶解装置等を用いて使用できることを見い出し、本発明を完成した。 As a result of diligent investigations on the above problems, the present inventors have found a method for producing a polymer flocculant containing a crosslinked polymer obtained by subjecting a specific monomer mixture to water-in-oil emulsion polymerization and then drying. Thus, a method for producing a polymer flocculant powder including a specific emulsification step, a polymerization step, a reflux dehydration step, and a drying step was established. The polymer flocculant powder obtained by this production method not only reduces the transportation cost, but also exhibits excellent dehydration performance and can be used with a general-purpose powder automatic dissolution apparatus, etc. completed.
 すなわち、本発明は、
〔1〕 少なくともカチオン性単量体と架橋性単量体とを含む単量体混合物をエマルション重合して得られる重合体エマルションを乾燥する高分子凝集剤粉末の製造方法であって、以下の工程(A)乃至(D)
工程(A): 前記単量体混合物の水溶液を含む水相と、水と実質的に非混和性の炭化水素及び界面活性剤を含む油相と、を混合して、乳化粒子のメジアン径が10μm以下の油中水型単量体エマルションを作製する乳化工程、
工程(B): 前記油中水型単量体エマルション中の前記単量体混合物をラジカル重合開始剤の存在下で重合して、分散相に重合体を含む油中水型重合体エマルションを作製する重合工程、
工程(C): 前記油中水型重合体エマルションから水及び炭化水素を蒸発させて分離した蒸気を凝縮して得られる水及び炭化水素から成る凝縮液のうち、水を系外に排出するとともに、炭化水素を系内に戻すことにより、下記式(1)で表される脱水率が65~99%の範囲になるまで前記油中水型重合体エマルションから水の一部を除去して重合体の分散液を作製する還流脱水工程であって、用いる前記炭化水素の質量が、前記油中水型重合体エマルションの固形分の質量に対して0.6~2.0倍である還流脱水工程、
工程(D): 前記分散液から、炭化水素及び水を除去して前記重合体の粉末を作製する乾燥工程、
を含むことを特徴とする高分子凝集剤粉末の製造方法である。
That is, the present invention
[1] A method for producing a polymer flocculant powder for drying a polymer emulsion obtained by emulsion polymerization of a monomer mixture containing at least a cationic monomer and a crosslinkable monomer, comprising the following steps: (A) to (D)
Step (A): An aqueous phase containing an aqueous solution of the monomer mixture is mixed with an oil phase containing water and a substantially immiscible hydrocarbon and surfactant, so that the median diameter of the emulsified particles is An emulsification step for producing a water-in-oil monomer emulsion of 10 μm or less,
Step (B): The monomer mixture in the water-in-oil monomer emulsion is polymerized in the presence of a radical polymerization initiator to produce a water-in-oil polymer emulsion containing a polymer in the dispersed phase. A polymerization process,
Step (C): Among the condensate composed of water and hydrocarbons obtained by condensing vapor separated from the water-in-oil polymer emulsion by evaporating water and hydrocarbons, water is discharged out of the system. Then, by returning the hydrocarbon to the system, a part of water is removed from the water-in-oil polymer emulsion until the dehydration rate represented by the following formula (1) is in the range of 65 to 99%. A reflux dehydration step for preparing a dispersion of coalescence, wherein the mass of the hydrocarbon used is 0.6 to 2.0 times the mass of the solid content of the water-in-oil polymer emulsion. Process,
Step (D): A drying step in which hydrocarbons and water are removed from the dispersion to produce the polymer powder.
It is a manufacturing method of the polymer flocculent powder characterized by including this.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
〔2〕前記単量体混合物が、ノニオン性単量体を含む〔1〕に記載の高分子凝集剤粉末の製造方法である。 [2] The method for producing a polymer flocculant powder according to [1], wherein the monomer mixture contains a nonionic monomer.
〔3〕前記カチオン性単量体が、下記一般式(2)で表されるカチオン性単量体の1種又は2種以上を含む〔1〕に記載の高分子凝集剤粉末の製造方法である。
 
 CH=CR-CO-X-Q-N・Z   ・・・化(2)
 
(但し、Rは水素原子又はメチル基、R及びRはそれぞれ独立に炭素数1~3のアルキル基又はベンジル基、Rは水素原子、炭素数1~3のアルキル基又はベンジル基であり、同種でも異種でもよい。Xは酸素原子又はNH、Qは炭素数1~4のアルキレン基又は炭素数2~4のヒドロキシアルキレン基、Zは対アニオンをそれぞれ表す。)
[3] The method for producing a polymer flocculant powder according to [1], wherein the cationic monomer includes one or more of the cationic monomers represented by the following general formula (2). is there.

CH 2 = CR 1 -CO-X -Q-N + R 2 R 3 R 4 · Z - ··· of (2)

(However, R 1 is a hydrogen atom or methyl group, R 2 and R 3 are each independently an alkyl group or benzyl group having 1 to 3 carbon atoms, R 4 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a benzyl group. , and the good be the same or different .X is oxygen or NH, Q is hydroxy alkylene group of the alkylene group or a C 2-4 1 to 4 carbon atoms, Z - represents each pair anion).
〔4〕前記カチオン性単量体が、ジメチルアミノエチルアクリレートの塩化メチル第4級塩及びジメチルアミノエチルメタクリレートの塩化メチル第4級塩の少なくとも1種である〔1〕に記載の高分子凝集剤粉末の製造方法である。 [4] The polymer flocculant according to [1], wherein the cationic monomer is at least one of methyl chloride quaternary salt of dimethylaminoethyl acrylate and methyl chloride quaternary salt of dimethylaminoethyl methacrylate. It is a manufacturing method of powder.
〔5〕前記炭化水素が、常圧における沸点が65~180℃の範囲の炭化水素である〔1〕に記載の高分子凝集剤粉末の製造方法である。 [5] The method for producing a polymer flocculant powder according to [1], wherein the hydrocarbon is a hydrocarbon having a boiling point of 65 to 180 ° C. at normal pressure.
〔6〕前記炭化水素が、ノルマルヘプタンである〔1〕に記載の高分子凝集剤粉末の製造方法である。 [6] The method for producing a polymer flocculant powder according to [1], wherein the hydrocarbon is normal heptane.
〔7〕前記界面活性剤のHLB値が、3.0~9.0である〔1〕に記載の高分子凝集剤粉末の製造方法である。 [7] The method for producing a polymer flocculant powder according to [1], wherein the surfactant has an HLB value of 3.0 to 9.0.
〔8〕前記工程(C)の還流脱水工程が、常圧乃至絶対圧40kPaの減圧条件下で行われる〔1〕に記載の高分子凝集剤粉末の製造方法である。 [8] The method for producing a polymer flocculant powder according to [1], wherein the reflux dehydration step of the step (C) is performed under a reduced pressure condition of normal pressure to absolute pressure of 40 kPa.
〔9〕前記工程(D)の乾燥工程が、絶対圧2~20kPaの減圧条件下で行われる〔1〕に記載の高分子凝集剤粉末の製造方法である。 [9] The method for producing a polymer flocculant powder according to [1], wherein the drying step (D) is performed under a reduced pressure condition of 2 to 20 kPa in absolute pressure.
〔10〕前記工程(D)の乾燥工程が、前記粉末の品温が50℃以上に到達するまで行う〔1〕に記載の高分子凝集剤造粒粉末の製造方法である。 [10] The method for producing a polymer flocculant granulated powder according to [1], wherein the drying step of the step (D) is performed until the product temperature of the powder reaches 50 ° C. or higher.
〔11〕前記工程(D)の乾燥工程の後に、以下の工程(E)
工程(E): 前記重合体の粉末を撹拌して混合しながら結合剤を添加し、湿式撹拌造粒した後に乾燥して前記重合体の粉末を造粒する造粒工程、
を含む〔1〕に記載の高分子凝集剤粉末の製造方法である。
[11] After the drying step of the step (D), the following step (E)
Step (E): A granulating step of adding the binder while stirring and mixing the polymer powder, drying and granulating the polymer powder after wet stirring granulation,
The method for producing a polymer flocculant powder according to [1].
〔12〕前記結合剤が、けん化度が78.0~95.0mol%、平均分子量が10000~70000のポバール水溶液である〔11〕に記載の高分子凝集剤粉末の製造方法である。 [12] The method for producing a polymer flocculant powder according to [11], wherein the binder is a poval aqueous solution having a saponification degree of 78.0 to 95.0 mol% and an average molecular weight of 10,000 to 70000.
〔13〕前記工程(C)の終了後から前記工程(D)の開始前までの間、又は前記工程(D)において、造粒工程(F)を含むことを特徴とする〔1〕に記載の高分子凝集剤造粒粉末の製造方法である。 [13] The period from the end of the step (C) to before the start of the step (D), or in the step (D), includes a granulation step (F). This is a method for producing a polymer flocculant granulated powder.
〔14〕汚泥に、〔1〕~〔13〕のいずれかに記載の製造方法により得られる高分子凝集剤粉末の水溶液を添加して脱水する汚泥の脱水方法である。 [14] A sludge dewatering method in which an aqueous solution of the polymer flocculant powder obtained by the production method according to any one of [1] to [13] is added to the sludge for dewatering.
 本発明の製造方法で得られる高分子凝集剤粉末は、輸送コストを低減できるだけでなく、難脱水汚泥に対しても優れた脱水性能を発揮するとともに、汎用の粉末自動溶解装置等を用いて使用することができる。 The polymer flocculant powder obtained by the production method of the present invention not only reduces the transportation cost, but also exhibits excellent dewatering performance against difficult-to-dehydrate sludge and is used with a general-purpose powder automatic dissolving device etc. can do.
 本発明の製造方法により得られる高分子凝集剤粉末は、生活排水及び産業排水の汚泥の凝集剤;製紙用濾水歩留向上剤、濾水性向上剤、地合形成助剤及び紙力増強剤等の製紙用薬剤;掘削・泥水処理用凝集剤;原油増産用添加剤;有機凝結剤;増粘剤;分散剤;スケール防止剤;帯電防止剤;及び繊維用処理剤等の幅広い用途に応用することが可能である。 The polymer flocculant powder obtained by the production method of the present invention is a flocculant for domestic and industrial wastewater sludge; a drainage yield improver for papermaking, a drainage improver, a formation aid, and a paper strength enhancer. Application to a wide range of applications such as agrochemicals for papermaking such as drilling and muddy water treatment, additives for increasing crude oil production, organic coagulants, thickeners, dispersants, scale inhibitors, antistatic agents, and textile treatment agents Is possible.
 以下に本発明について詳細に説明する。
 なお、本明細書において、アクリレート及び/又はメタクリレートを(メタ)アクリレートと表し、アクリルアミド及び/又はメタクリルアミドを(メタ)アクリルアミドと表し、アクリル酸及び/又はメタクリル酸を(メタ)アクリル酸と表す。
The present invention is described in detail below.
In the present specification, acrylate and / or methacrylate is represented as (meth) acrylate, acrylamide and / or methacrylamide is represented as (meth) acrylamide, and acrylic acid and / or methacrylic acid is represented as (meth) acrylic acid.
 本発明は、少なくともカチオン性単量体と架橋性単量体とを含む単量体混合物の水溶液をエマルション重合して得られる重合体エマルションを乾燥する高分子凝集剤粉末の製造方法であって、以下の工程(A)乃至(D)を含んで成る。
乳化工程(A): 前記単量体混合物の水溶液を含む水相と、水と実質的に非混和性の炭化水素及び界面活性剤を含む油相と、を混合して、乳化粒子のメジアン径が10μm以下の油中水型単量体エマルションを作製する乳化工程、
重合工程(B): 前記油中水型単量体エマルション中の前記単量体混合物をラジカル重合開始剤の存在下で重合して、分散相に重合体を含む油中水型重合体エマルションを作製する重合工程、
還流脱水工程(C): 前記油中水型重合体エマルションから水及び炭化水素を蒸発させて分離した蒸気を凝縮して得られる水及び炭化水素から成る凝縮液のうち、水を系外に排出するとともに、炭化水素を系内に戻すことにより、前記式(1)で表される脱水率が65~99%の範囲になるまで前記油中水型重合体エマルションから水の一部を除去して重合体の分散液を作製する還流脱水工程であって、用いる前記炭化水素の質量が、前記油中水型重合体エマルションの固形分の質量に対して0.6~2.0倍である還流脱水工程、
乾燥工程(D): 前記分散液から、炭化水素及び水を除去して前記重合体の粉末を作製する乾燥工程。
The present invention is a method for producing a polymer flocculant powder for drying a polymer emulsion obtained by emulsion polymerization of an aqueous solution of a monomer mixture containing at least a cationic monomer and a crosslinkable monomer, It comprises the following steps (A) to (D).
Emulsification step (A): The aqueous phase containing an aqueous solution of the monomer mixture and the oil phase containing water and a substantially immiscible hydrocarbon and surfactant are mixed to obtain the median diameter of the emulsified particles. Emulsifying step of producing a water-in-oil monomer emulsion having a thickness of 10 μm or less,
Polymerization step (B): Polymerizing the monomer mixture in the water-in-oil monomer emulsion in the presence of a radical polymerization initiator to produce a water-in-oil polymer emulsion containing a polymer in the dispersed phase. Polymerization process to make,
Reflux dehydration step (C): Out of the condensate composed of water and hydrocarbons obtained by condensing vapor separated from the water-in-oil polymer emulsion by evaporating water and hydrocarbons, water is discharged out of the system. In addition, by returning the hydrocarbon to the system, a part of water is removed from the water-in-oil polymer emulsion until the dehydration rate represented by the formula (1) is in the range of 65 to 99%. A reflux dehydration step for preparing a polymer dispersion, wherein the mass of the hydrocarbon used is 0.6 to 2.0 times the mass of the solid content of the water-in-oil polymer emulsion. Reflux dehydration step,
Drying step (D): A drying step of removing the hydrocarbon and water from the dispersion to produce the polymer powder.
(1)乳化工程(A)
 乳化工程(A)においては、少なくともカチオン性単量体と架橋性単量体とを含む単量体混合物の水溶液から成る水相と、水と実質的に非混和性の炭化水素及び界面活性剤を含む油相と、を混合して乳化し、油中水型単量体エマルションを作製する。水相はエマルションの分散相を構成し、油相はエマルションの連続相を構成する。
(1) Emulsification step (A)
In the emulsification step (A), an aqueous phase composed of an aqueous solution of a monomer mixture containing at least a cationic monomer and a crosslinkable monomer, a hydrocarbon and a surfactant substantially immiscible with water And an oil phase containing water to prepare a water-in-oil monomer emulsion. The aqueous phase constitutes the dispersed phase of the emulsion and the oil phase constitutes the continuous phase of the emulsion.
 本発明で使用するカチオン性単量体は、ラジカル重合し得るラジカル重合性の二重結合及びカチオン基を有する単量体であれば使用できる。具体的には、下記一般式(2)で表される化合物の他、ジアリルジメチルアンモニウムクロライド等のジアリルジアルキルアンモニウムハロゲン化物等を挙げることができる。これらのカチオン性単量体の中でも、ラジカル重合反応性に優れており、高分子量化が容易であり、得られる重合体の高分子凝集剤としての性能が優れることから、下記一般式(2)で表される化合物が好ましい。
 
 CH=CR-CO-X-Q-N・Z   ・・・化(2)
 
 但し、Rは水素原子又はメチル基、R及びRはそれぞれ独立に炭素数1~3のアルキル基又はベンジル基、Rは水素原子、炭素数1~3のアルキル基又はベンジル基であり、同種でも異種でもよい。Xは酸素原子又はNH、Qは炭素数1~4のアルキレン基又は炭素数2~4のヒドロキシアルキレン基、Zは対アニオンをそれぞれ表し、Zとしては、塩化物イオン等のハロゲン化物イオンや硫酸イオンが例示される。
As the cationic monomer used in the present invention, any monomer having a radical polymerizable double bond and a cationic group capable of radical polymerization can be used. Specifically, in addition to the compound represented by the following general formula (2), diallyldialkylammonium halides such as diallyldimethylammonium chloride can be exemplified. Among these cationic monomers, the radical polymerization reactivity is excellent, the molecular weight is easily increased, and the performance of the resulting polymer as a polymer flocculant is excellent. Therefore, the following general formula (2) The compound represented by these is preferable.

CH 2 = CR 1 -CO-X -Q-N + R 2 R 3 R 4 · Z - ··· of (2)

Wherein R 1 is a hydrogen atom or a methyl group, R 2 and R 3 are each independently an alkyl group or benzyl group having 1 to 3 carbon atoms, R 4 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a benzyl group. Yes, it may be the same or different. X represents an oxygen atom or NH, Q represents an alkylene group having 1 to 4 carbon atoms or a hydroxyalkylene group having 2 to 4 carbon atoms, Z represents a counter anion, and Z represents a halide ion such as a chloride ion. And sulfate ion.
 前記一般式(2)で表されるカチオン性単量体の具体例としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノ-2-ヒドロキシプロピル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレートや、ジメチルアミノプロピル(メタ)アクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミドの塩酸塩及び硫酸塩が例示される。また、ジアルキルアミノアルキル(メタ)アクリレートやジアルキルアミノアルキル(メタ)アクリルアミドの塩化メチル等のハロゲン化アルキル付加物、塩化ベンジル等のハロゲン化ベンジル付加物、硫酸ジメチル等の硫酸ジアルキル付加物等である第4級塩が例示される。 Specific examples of the cationic monomer represented by the general formula (2) include dialkyl such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, and dimethylamino-2-hydroxypropyl (meth) acrylate. Examples thereof include hydrochlorides and sulfates of aminoalkyl (meth) acrylates and dialkylaminoalkyl (meth) acrylamides such as dimethylaminopropyl (meth) acrylamide. In addition, dialkylaminoalkyl (meth) acrylates and dialkylaminoalkyl (meth) acrylamides such as methyl halide addition products such as methyl chloride, benzyl halide addition products such as benzyl chloride, dialkyl sulfate addition products such as dimethyl sulfate, etc. Quaternary salts are exemplified.
 これらの好ましいカチオン性単量体の中でも、特に高分子凝集剤に必要な高分子量化が容易なジメチルアミノエチルアクリレートの塩化メチル付加物である第4級塩及びジメチルアミノエチルメタクリレートの塩化メチル付加物である第4級塩が最も好ましい。これらのカチオン性単量体は、単独で使用してもよく、2種以上を併用してもよい。 Among these preferable cationic monomers, quaternary salts and methyl chloride adducts of dimethylaminoethyl methacrylate, which are methyl chloride adducts of dimethylaminoethyl acrylate, which are particularly easy to increase the molecular weight required for polymer flocculants. The quaternary salt is most preferred. These cationic monomers may be used alone or in combination of two or more.
 本発明においては、前述のカチオン性単量体と共重合可能な単量体を併用することもできる。これらの単量体のうち、ノニオン性単量体及びアニオン性単量体は以下に例示される。 In the present invention, a monomer copolymerizable with the aforementioned cationic monomer may be used in combination. Among these monomers, nonionic monomers and anionic monomers are exemplified below.
 ノニオン性単量体としては、(メタ)アクリルアミド系化合物の他、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル及び(メタ)アクリル酸ヒドロキシエチル等の(メタ)アクリル酸アルキルや、スチレン、アクリロニトリル、及び酢酸ビニル等を挙げることができる。これらのノニオン性単量体の中でも、高分子凝集剤として必要な高分子量化が容易であり、高分子凝集剤としての性能が優れることから、(メタ)アクリルアミドが好ましく、水溶性であり、高分子凝集剤としての性能が特に優れるアクリルアミドが最も好ましい。これらのノニオン性単量体は単独で使用してもよく、2種以上を併用してもよい。 Nonionic monomers include (meth) acrylamide compounds, (meth) methacrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and hydroxyethyl (meth) acrylate. Examples include alkyl acrylate, styrene, acrylonitrile, and vinyl acetate. Among these nonionic monomers, (meth) acrylamide is preferred because it is easy to increase the molecular weight required as a polymer flocculant and has excellent performance as a polymer flocculant. Most preferred is acrylamide, which is particularly excellent in performance as a molecular flocculant. These nonionic monomers may be used alone or in combination of two or more.
 アニオン性単量体としては、(メタ)アクリル酸及びこれらの塩類の他、ビニルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、マレイン酸、及びこれらの塩類を挙げることができる。これらのアニオン性単量体の中でも、高分子凝集剤として必要な高分子量化が容易であり、高分子凝集剤としての性能が優れることから(メタ)アクリル酸及びこれらの塩類が好ましい。塩類としては、アンモニウム塩、ナトリウム塩及びカリウム塩等のアルカリ金属塩が好ましい。これらのアニオン性単量体は単独で使用してもよく、2種以上を併用してもよい。 Examples of the anionic monomer include (meth) acrylic acid and salts thereof, vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, maleic acid, and salts thereof. Among these anionic monomers, (meth) acrylic acid and salts thereof are preferable because they can easily achieve a high molecular weight as a polymer flocculant and have excellent performance as a polymer flocculant. As the salts, alkali metal salts such as ammonium salt, sodium salt and potassium salt are preferable. These anionic monomers may be used alone or in combination of two or more.
 本発明において、単量体混合物中の各単量体の配合比(モル比)には特に制限がない。単量体混合物中の各単量体の配合比(モル比)は、カチオン性単量体:アニオン性単量体:ノニオン性単量体=1~100:0~99:0~99である。ノニオン性単量体を用いる場合、単量体混合物中におけるノニオン性単量体の含有量は、3~98モル%が好ましく、5~95モル%が特に好ましい。 In the present invention, the mixing ratio (molar ratio) of each monomer in the monomer mixture is not particularly limited. The mixing ratio (molar ratio) of each monomer in the monomer mixture is cationic monomer: anionic monomer: nonionic monomer = 1 to 100: 0 to 99: 0 to 99. . When a nonionic monomer is used, the content of the nonionic monomer in the monomer mixture is preferably 3 to 98 mol%, particularly preferably 5 to 95 mol%.
 本発明において、架橋性単量体はポリマー鎖に分岐や架橋構造を導入する目的で使用される。架橋性単量体としては、メチレンビスアクリルアミド又は下記式(3)で示されるジ(メタ)アクリレートが好ましい。特に、後者は水溶性の高いエチレンオキサイド及び/又はプロピレングリコール変性されたジ(メタ)アクリレートが好ましい。これらの中でも分子量が小さく、水溶性であって反応性が高いメチレンビスアクリルアミドが特に好ましい。
 CH=CR-CO-Y-CO-CR=CH     ・・・化(3)
 但し、R及びRはそれぞれ独立にH又はCH、YはO(CO)又はO(CO)であり、nは1~10の整数を示す。
In the present invention, the crosslinkable monomer is used for the purpose of introducing a branched or crosslinked structure into the polymer chain. As the crosslinkable monomer, methylenebisacrylamide or di (meth) acrylate represented by the following formula (3) is preferable. In particular, the latter is preferably di (meth) acrylate modified with ethylene oxide and / or propylene glycol having high water solubility. Among these, methylenebisacrylamide having a low molecular weight, water solubility and high reactivity is particularly preferable.
CH 2 = CR 5 —CO—Y—CO—CR 6 = CH 2 ... (3)
However, R 5 and R 6 are each independently H or CH 3 , Y is O (C 2 H 4 O) n or O (C 3 H 6 O) n , and n is an integer of 1 to 10.
 架橋性単量体の量としては、単量体混合物の全単量体質量に対して1~1000ppmが好ましく、1~500ppmがさらに好ましい。1000ppmを超えて添加すると架橋度が高過ぎて、高分子凝集剤としての凝集性能が著しく低下する。 The amount of the crosslinkable monomer is preferably 1 to 1000 ppm, more preferably 1 to 500 ppm based on the total monomer mass of the monomer mixture. If it is added in excess of 1000 ppm, the degree of crosslinking is too high, and the agglomeration performance as a polymer flocculant is remarkably lowered.
 本発明で使用する炭化水素は、水と実質的に非混和性である。本発明において、水と実質的に非混和性であるとは、25℃の水に対する溶解度が1000mg/L未満であることをいう。本発明で使用する炭化水素は、常圧における沸点が65~180℃の範囲のものが好ましく、65~130℃の範囲のものがさらに好ましい。具体的には、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン、イソオクタン等の炭化水素のほか、パラフィン類や各種鉱油及びそれらの混合物等を挙げることができる。これらの中でも、還流脱水工程で水と共沸すること、乾燥工程における品温を40~90℃の範囲の比較的低温で乾燥できること、回収しやすく再利用しやすい等の利点から、n-ヘプタンが最も好ましい。
 乳化工程(A)及び重合工程(B)における炭化水素の含量は、油中水型エマルション全量に対して15~50質量%が好ましい。
The hydrocarbon used in the present invention is substantially immiscible with water. In the present invention, being substantially immiscible with water means that the solubility in water at 25 ° C. is less than 1000 mg / L. The hydrocarbon used in the present invention preferably has a boiling point in the range of 65 to 180 ° C., more preferably in the range of 65 to 130 ° C. at normal pressure. Specific examples include hydrocarbons such as n-hexane, cyclohexane, n-heptane, n-octane, isooctane, paraffins, various mineral oils, and mixtures thereof. Among these, n-heptane is advantageous in that it is azeotroped with water in the reflux dehydration process, can be dried at a relatively low temperature of 40 to 90 ° C. in the drying process, and is easy to collect and reuse. Is most preferred.
The hydrocarbon content in the emulsification step (A) and the polymerization step (B) is preferably 15 to 50% by mass relative to the total amount of the water-in-oil emulsion.
 本発明において界面活性剤は、乳化工程(A)、重合工程(B)、還流脱水工程(C)におけるエマルションの乳化安定性及びスラリーの分散安定性を付与する目的で使用する。また、本発明の製造方法では、重合後、すぐに乾燥して粉末にすることが多いので、エマルションの長期保存を前提とした分離安定性の向上は必ずしも必要ではない。
 乳化工程(A)及び重合工程(B)における好ましい界面活性剤のHLB値は3.0~9.0であり、3.0~5.0がより好ましい。また、HLB値の異なる2種以上の界面活性剤を併用してもよい。2種以上の界面活性剤を併用する場合には、各界面活性剤のHLB値の加重平均で3.0~9.0の範囲になるように調整して用いることが好ましく、3.0~5.0の範囲がさらに好ましい。
In the present invention, the surfactant is used for the purpose of imparting emulsion stability of the emulsion and dispersion stability of the slurry in the emulsification step (A), the polymerization step (B), and the reflux dehydration step (C). Further, in the production method of the present invention, since the powder is often dried immediately after polymerization, it is not always necessary to improve the separation stability on the premise of long-term storage of the emulsion.
The preferable HLB value of the surfactant in the emulsification step (A) and the polymerization step (B) is 3.0 to 9.0, and more preferably 3.0 to 5.0. Two or more surfactants having different HLB values may be used in combination. When two or more surfactants are used in combination, it is preferable to use the surfactant so that the weighted average of the HLB values of each surfactant is in the range of 3.0 to 9.0. A range of 5.0 is more preferred.
 ここで、HLB値は、界面活性剤の全分子量に占める親水基部分の分子量を示すものであり、非イオン界面活性剤については、下記一般式(4)に示すグリフィン(Griffin)の式により求められるものである。2種以上の非イオン界面活性剤から構成される混合界面活性剤のHLB値は、次のようにして求められる。混合界面活性剤のHLB値は、各非イオン界面活性剤のHLB値をその配合比率に基づいて荷重平均したものである。
 混合HLB値 = Σ(HLB×W)/Σ W    ・・・式(4)
 但し、一般式(4)のHLBは非イオン界面活性剤SのHLB値を示す。また、WはHLBの値を有する非イオン界面活性剤Sの質量(g)を示す。
Here, the HLB value indicates the molecular weight of the hydrophilic group portion in the total molecular weight of the surfactant, and the nonionic surfactant is obtained by the Griffin equation shown in the following general formula (4). It is The HLB value of the mixed surfactant composed of two or more kinds of nonionic surfactants can be obtained as follows. The HLB value of the mixed surfactant is a load-averaged HLB value of each nonionic surfactant based on the blending ratio.
Mixed HLB value = Σ (HLB S × W S ) / Σ W S (Formula 4)
However, HLB S in the general formula (4) indicates the HLB value of the nonionic surfactant S. W S represents the mass (g) of the nonionic surfactant S having a value of HLB S.
 界面活性剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレアルキレンアルキルエーテル、ソルビタンモノオレート、ソルビタンセスキオレート、ソルビタンモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタントリオレート、テトラオレイン酸ポリオキシエチレンソルビット、ポリエチレングリコールモノオレート、ポリエチレングリコールジオレエート、オレイン酸ジエタノールアミド、ラウリン酸モノエタノールアミド、ステアリン酸モノエタノールアミド等のノニオン性界面活性剤を挙げることができる。これら界面活性剤の有効な添加量は、油中水型エマルション全量に対して0.25~15質量%が好ましく、0.5~10質量%がより好ましい。 Examples of surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkylene alkyl ether, sorbitan monooleate, sorbitan sesquioleate, sorbitan monolaur Rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitol tetraoleate, polyethylene glycol monooleate, polyethylene glycol dioleate, oleic acid diethanolamide, lauric acid monoethanolamide, stearic acid mono Nonionic surfactants such as ethanolamide can be mentioned. The effective addition amount of these surfactants is preferably 0.25 to 15% by mass, more preferably 0.5 to 10% by mass with respect to the total amount of the water-in-oil emulsion.
 乳化条件は、水相及び油相の組成や、用いる乳化機に応じて適宜設定される。
 本発明において、上記単量体混合物の水溶液から成る乳化粒子のメジアン径は10μm以下とする。また、本発明においては、油中水型単量体エマルションにおける乳化粒子と、それを重合して得られる油中水型重合体エマルションにおける乳化粒子とは、ほぼ同一の粒度分布であることが好ましい。よって、重合体の粉末の一次粒子の粒度分布のメジアン径を10μm以下にするためには、乳化工程(A)における乳化粒子の粒径分布のメジアン径も10μm以下にしておく必要がある。乳化粒子のメジアン径は、0.3~10μmが好ましく、0.5~5μmがさらに好ましく、0.7~3μmが最も好ましい。乳化粒子のメジアン径が10μmを超えると、高分子凝集剤の凝集性能が著しく低下する。メジアン径を0.3μmより小さくしても高分子凝集剤の性能は向上せず、界面活性剤の増量が必要になったり、乳化機でより高せん断を加える処理が必要になるので好ましくない。
 なお、本発明において乳化粒子径は、レーザー光散乱法により測定される体積平均粒子径を意味する。
The emulsification conditions are appropriately set according to the composition of the water phase and the oil phase and the emulsifier to be used.
In the present invention, the median diameter of the emulsified particles made of an aqueous solution of the monomer mixture is 10 μm or less. In the present invention, it is preferable that the emulsified particles in the water-in-oil monomer emulsion and the emulsified particles in the water-in-oil polymer emulsion obtained by polymerization thereof have substantially the same particle size distribution. . Therefore, in order to make the median diameter of the particle size distribution of the primary particles of the polymer powder 10 μm or less, the median diameter of the particle size distribution of the emulsified particles in the emulsification step (A) needs to be 10 μm or less. The median diameter of the emulsified particles is preferably 0.3 to 10 μm, more preferably 0.5 to 5 μm, and most preferably 0.7 to 3 μm. When the median diameter of the emulsified particles exceeds 10 μm, the aggregation performance of the polymer flocculant is significantly lowered. Even if the median diameter is smaller than 0.3 μm, the performance of the polymer flocculant is not improved, and an increase in the amount of the surfactant is required, or a process of applying higher shear with an emulsifier is not preferable.
In the present invention, the emulsified particle diameter means a volume average particle diameter measured by a laser light scattering method.
(2)重合工程(B)
 重合工程(B)においては、油中水型単量体エマルション中の前述の単量体混合物をラジカル重合開始剤の存在下で重合し、得られる重合体を分散相に含む油中水型重合体エマルションを作製する。
(2) Polymerization step (B)
In the polymerization step (B), the above-mentioned monomer mixture in the water-in-oil monomer emulsion is polymerized in the presence of a radical polymerization initiator, and the water-in-oil heavy weight containing the resulting polymer in the dispersed phase. Make a coalesced emulsion.
 重合条件は使用する単量体や開始剤、重合体の物性に応じて適宜設定される。重合温度は0~100℃で行い、10~80℃が好ましい。単量体濃度は20~50質量%が好ましく、25~45質量%がより好ましい。重合時間は1~10時間が好ましい。 Polymerization conditions are appropriately set according to the monomers and initiators used and the physical properties of the polymer. The polymerization temperature is 0 to 100 ° C, preferably 10 to 80 ° C. The monomer concentration is preferably 20 to 50% by mass, more preferably 25 to 45% by mass. The polymerization time is preferably 1 to 10 hours.
 重合開始剤としては、過硫酸ナトリウム及び過硫酸カリウム等の過硫酸塩;ベンゾイルパーオキシドやt-ブチルハイドロパーオキシド、パラメンタンハイドロパーオキシド等の有機過酸化物;2,2’-アゾビス-(アミジノプロパン)ハイドロクロライド、アゾビスシアノ吉草酸、2,2’-アゾビスイソブチロニトリル及び2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]等のアゾ系化合物;並びに過酸化水素、過硫酸塩、重亜硫酸ナトリウム及び硫酸第一鉄などの組み合わせからなるレドックス触媒など公知のものが挙げられる。これらの重合開始剤は単独で使用してもよいし、2種以上を併用してもよい。 Examples of the polymerization initiator include persulfates such as sodium persulfate and potassium persulfate; organic peroxides such as benzoyl peroxide, t-butyl hydroperoxide and paramentane hydroperoxide; 2,2′-azobis- ( Amidinopropane) hydrochloride, azobiscyanovaleric acid, 2,2′-azobisisobutyronitrile and 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide] And known ones such as a redox catalyst comprising a combination of hydrogen peroxide, persulfate, sodium bisulfite, ferrous sulfate and the like. These polymerization initiators may be used alone or in combination of two or more.
 分子量を調節する方法としては、公知の連鎖移動剤を使用することができる。連鎖移動剤としては、メルカプトエタノール、メルカプトプロピオン酸等のチオール化合物;亜硫酸ナトリウム、亜硫酸水素ナトリウム及び次亜リン酸ナトリウム等の還元性無機塩類;エタノール、イソプロピルアルコール等のアルコール類;メタリルスルホン酸ナトリウム等のアリル化合物が挙げられる。 As a method for adjusting the molecular weight, a known chain transfer agent can be used. Chain transfer agents include thiol compounds such as mercaptoethanol and mercaptopropionic acid; reducing inorganic salts such as sodium sulfite, sodium bisulfite and sodium hypophosphite; alcohols such as ethanol and isopropyl alcohol; sodium methallyl sulfonate And allyl compounds.
 この他、本発明の効果を阻害しない範囲で、安定剤やpH調整剤、酸化防止剤等の添加物を追加しても良い。 In addition, additives such as a stabilizer, a pH adjuster, and an antioxidant may be added as long as the effects of the present invention are not impaired.
(3)還流脱水工程(C)
 還流脱水工程(C)においては、油中水型重合体エマルションから水及び炭化水素を蒸発させて分離した蒸気を凝縮して得られる水及び炭化水素から成る凝縮液のうち、水を系外に排出するとともに、炭化水素を系内に戻すことにより、前記油中水型重合体エマルションから水の一部を除去し、重合体の分散液を作製する。
(3) Reflux dehydration step (C)
In the reflux dehydration step (C), out of the condensate composed of water and hydrocarbons obtained by condensing vapor separated from the water-in-oil polymer emulsion by evaporating water and hydrocarbons, water is removed from the system. While discharging, returning the hydrocarbon to the system, a part of the water is removed from the water-in-oil polymer emulsion to prepare a polymer dispersion.
 本発明の製造方法では、重合工程(B)で得られた油中水型重合体エマルションを乾燥工程(D)で減圧乾燥する前に、還流脱水工程(C)で当該エマルションが破壊されないように水を除去する必要がある。還流脱水工程(C)を実施せず、又は水の除去が不十分のまま乾燥工程(D)を実施すると、水よりも先に炭化水素の乾燥が進み、油中水型重合体エマルションの乳化粒子同士が合一して巨大な含水ゲル状の堆積物になる。その場合、ゲル状堆積物は表面積が小さくなるので、残りの水の乾燥性が悪くなる。引き続き、時間を掛けて残りの水を減圧乾燥すると、重合体がビーカーや反応器の底に堆積して付着したままガラス状に固化する。そのため、これを取り出して粉末化することが難しくなる。 In the production method of the present invention, before the water-in-oil polymer emulsion obtained in the polymerization step (B) is dried under reduced pressure in the drying step (D), the emulsion is not destroyed in the reflux dehydration step (C). Water needs to be removed. When the reflux dehydration step (C) is not carried out or the drying step (D) is carried out with insufficient removal of water, the drying of hydrocarbons proceeds before water, and emulsification of the water-in-oil polymer emulsion. The particles merge to form a huge hydrogel deposit. In that case, since the gel deposit has a small surface area, the drying property of the remaining water is deteriorated. Subsequently, when the remaining water is dried under reduced pressure over a period of time, the polymer is deposited on the bottom of the beaker or the reactor and solidified into a glass state while adhering. For this reason, it is difficult to take out the powder and pulverize it.
 還流脱水工程(C)では、下記式(1)で表される脱水率が65~99%の範囲になるまで油中水型重合体エマルションから水を除去し、その後、乾燥工程(D)で減圧乾燥する。脱水率が65%に到達する前に乾燥工程(D)に進むと、前記と同様、油中水型重合体エマルションの乳化粒子同士が合一して巨大な含水ゲル状の堆積物になったり、乾燥性が悪くなったり、乾燥後の固化物の取り出しが困難になる等の不具合がある。脱水率が99%を超えるまで還流脱水を続けると、重合体が熱劣化する場合がある。さらに好ましい脱水率の範囲は75~97%であり、最も好ましい脱水率の範囲は80~95%である。 In the reflux dehydration step (C), water is removed from the water-in-oil polymer emulsion until the dehydration rate represented by the following formula (1) is in the range of 65 to 99%, and then in the drying step (D) Dry under reduced pressure. When the process proceeds to the drying step (D) before the dehydration rate reaches 65%, as in the case described above, the emulsified particles of the water-in-oil polymer emulsion are united to form a huge hydrogel deposit. There are problems such as poor drying properties and difficulty in taking out the solidified product after drying. If reflux dehydration is continued until the dehydration rate exceeds 99%, the polymer may be thermally deteriorated. A more preferable dehydration rate range is 75 to 97%, and a most preferable dehydration rate range is 80 to 95%.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 還流脱水工程(C)は、通常は常圧から絶対圧4kPaの減圧条件で行い、好ましくは常圧から絶対圧40kPaの減圧条件で行う。圧力が低いほど炭化水素及び水の不均一共沸混合物の蒸発速度が上がるので、還流脱水工程(C)の時間を短縮できる。しかし、絶対圧40kPaより低い圧力下で還流脱水すると、重合体が反応器壁面における液面付近の気液界面に付着して固化する等、意図しない付着物の発生量が増える場合がある。 The reflux dehydration step (C) is usually performed under a reduced pressure condition from normal pressure to an absolute pressure of 4 kPa, and preferably performed under a reduced pressure condition from normal pressure to an absolute pressure of 40 kPa. The lower the pressure, the higher the evaporation rate of the heterogeneous azeotrope of hydrocarbons and water, so that the time for the reflux dehydration step (C) can be shortened. However, if reflux dehydration is performed under a pressure lower than an absolute pressure of 40 kPa, the amount of unintended deposits may increase, for example, the polymer may adhere to the gas-liquid interface near the liquid level on the reactor wall and solidify.
 還流脱水工程(C)は、その工程中における炭化水素の量が、油中水型重合体エマルションに含まれる固形分(水及び溶媒以外の成分の合計量をいう)の質量の0.6~2.0倍である。炭化水素の含量が架橋型重合体の質量の0.6倍より少ないと、次の乾燥工程(D)に移行する前に、乳化粒子がほぼ乾燥して成る架橋型重合体粒子同士が意図せず凝集して巨大な凝集物を生じる場合がある。量産設備の場合、還流脱水工程(C)と乾燥工程(D)とを、例えば、撹拌槽型反応器と真空混合乾燥機のように別々の装置で実施することがあり、巨大な凝集物を生じると次の装置に移液できなくなるので好ましくない。また、炭化水素の含量を架橋型重合体の質量の2.0倍より多くしてもメリットはなく、目的の高分子凝集剤の取得量が減るので無駄である。より好ましい炭化水素の含量は、架橋型重合体の質量の0.7~1.5倍である。さらに、重合工程(B)ではより少量の炭化水素の含量で実施した後、還流脱水工程(C)を始める前及び/又は途中に炭化水素を追加で添加してもよい。 In the reflux dehydration step (C), the amount of hydrocarbons in the step is 0.6 to 0.6 of the mass of solid content (referring to the total amount of components other than water and solvent) contained in the water-in-oil polymer emulsion. 2.0 times. If the hydrocarbon content is less than 0.6 times the mass of the cross-linked polymer, the cross-linked polymer particles formed by substantially drying the emulsified particles before moving to the next drying step (D) are intended. They may agglomerate to form huge agglomerates. In the case of mass production equipment, the reflux dehydration step (C) and the drying step (D) may be carried out in separate apparatuses such as a stirred tank reactor and a vacuum mixing dryer, for example. If it occurs, it cannot be transferred to the next apparatus, which is not preferable. Further, there is no merit even if the hydrocarbon content is more than 2.0 times the mass of the cross-linked polymer, and the amount of the desired polymer flocculant is reduced, which is useless. A more preferable hydrocarbon content is 0.7 to 1.5 times the mass of the crosslinked polymer. Furthermore, after the polymerization step (B) is carried out with a smaller hydrocarbon content, additional hydrocarbons may be added before and / or during the start of the reflux dehydration step (C).
 還流脱水工程(C)は、HLB値が3.0~9.0の界面活性剤の存在下、連続相に架橋型重合体粒子が分散したスラリーの状態で行われることが好ましい。より好ましい界面活性剤のHLB値は3.0~5.0である。また、HLB値の異なる2種以上の界面活性剤を併用してもよい。2種以上の界面活性剤を併用する場合には、各界面活性剤のHLB値の加重平均でHLB値が3.0~9.0になるように調整して用いることが好ましく、3.0~5.0の範囲がさらに好ましい。HLB>9.0の条件で還流脱水工程(C)を行うと、前記と同様、次の乾燥工程(D)に移行する前に、乳化粒子がほぼ乾燥して成る架橋型重合体粒子同士が意図せず凝集して巨大な凝集物を生じる場合があり、次の装置に移液できなくなるので好ましくない。 The reflux dehydration step (C) is preferably performed in the presence of a surfactant having an HLB value of 3.0 to 9.0 in a slurry state in which cross-linked polymer particles are dispersed in a continuous phase. A more preferable surfactant has an HLB value of 3.0 to 5.0. Two or more surfactants having different HLB values may be used in combination. When two or more kinds of surfactants are used in combination, it is preferable to adjust the HLB value of each surfactant so that the HLB value is 3.0 to 9.0. A range of ˜5.0 is more preferable. When the reflux dehydration step (C) is performed under the condition of HLB> 9.0, the cross-linked polymer particles formed by substantially drying the emulsified particles before moving to the next drying step (D) are formed as described above. It may unintentionally aggregate to form huge aggregates, which is not preferable because it cannot be transferred to the next apparatus.
(4)乾燥工程(D)
 乾燥工程(D)においては、架橋型重合体粒子のスラリー(分散液)から、炭化水素及び水を除去して架橋型重合体の粉末を作製する。
(4) Drying step (D)
In the drying step (D), hydrocarbons and water are removed from the slurry (dispersion liquid) of the crosslinked polymer particles to produce a crosslinked polymer powder.
 乾燥工程(D)は、絶対圧2~20kPaの減圧条件を含んで行うことが好ましい。圧力が低いほど炭化水素及び水の蒸発速度が上がり、乾燥工程(D)の時間を短縮できるので好ましい。しかし、初めから絶対圧2kPaより低い圧力下で減圧乾燥すると、炭化水素の種類や含量、乾燥温度にも依るが、炭化水素の蒸発量が多過ぎて凝縮器で凝縮しきれず、真空ポンプに炭化水素が吸入される場合がある。その場合は、凝縮器の冷媒温度と凝縮液温度との温度差や凝縮の状態に応じて、段階的に圧力を下げて乾燥するのが好ましい。また、乾燥工程(D)の最初から最後まで絶対圧20kPaより高い圧力で乾燥すると乾燥時間が長く掛かるので好ましくない。 The drying step (D) is preferably carried out under a reduced pressure condition of 2 to 20 kPa in absolute pressure. The lower the pressure, the higher the evaporation rate of hydrocarbons and water, which is preferable because the time of the drying step (D) can be shortened. However, when drying under reduced pressure at a pressure lower than 2 kPa from the beginning, although depending on the type, content and drying temperature of the hydrocarbon, the amount of evaporation of the hydrocarbon is too large to condense in the condenser, and the vacuum pump is carbonized. Hydrogen may be inhaled. In that case, it is preferable to reduce the pressure stepwise in accordance with the temperature difference between the refrigerant temperature of the condenser and the condensate temperature and the state of condensation. In addition, drying at a pressure higher than the absolute pressure of 20 kPa from the beginning to the end of the drying step (D) is not preferable because it takes a long time to dry.
 本発明の製造方法では、以下に説明する造粒工程(E)又は(F)を行うことが好ましい。 In the production method of the present invention, it is preferable to perform the granulation step (E) or (F) described below.
(5)造粒工程(E)
 本発明の製造方法では、乾燥工程(D)の後、造粒工程(E)を行うことが好ましい。造粒工程(E)は、乾燥工程(D)で粉末化した高分子凝集剤の粉体特性をさらに改善するために行う。造粒工程(E)を行うことにより、汎用の粉末品と同様の取り扱い性を得ることができる。造粒工程(E)は、乾燥工程(D)で得られた架橋型重合体の乾燥粉末を撹拌して混合しながら、結合剤を添加し、湿式撹拌造粒した後、再度乾燥することにより行うことができる。結合剤としては、水、他の水溶性ポリマーを溶解した水溶液、含水ゲル状の微粒子を分散した油中水型エマルションが例示される。これらの結合剤は2種以上を併用することもできる。結合剤は、架橋型重合体の粉末を撹拌しながら添加することが好ましい。撹拌しながら添加することで、粉末と結合剤とをより均一に混合することができて、かつ造粒強度の強い造粒品を得ることができる。
 結合剤の添加率は、高分子凝集剤粉末に対して、3~70質量%が好ましく、4~65質量%がさらに好ましい。また、結合剤に含まれる水分の添加率は、高分子凝集剤粉末の質量に対して、3~30質量%が好ましく、4~20質量%がさらに好ましい。結合剤及びそれに含まれる水分の添加率が少な過ぎると十分に造粒できない場合があり、多過ぎると造粒し過ぎて粗粒が多く発生したり、その後の再乾燥が長時間になる場合がある。
 造粒工程(E)では、必要に応じて、得られた造粒品の粒度を調節するために、乾燥後の造粒品を篩分したり、篩分で生じた粗粒を解砕してもよい。
(5) Granulation process (E)
In the manufacturing method of this invention, it is preferable to perform a granulation process (E) after a drying process (D). The granulation step (E) is performed in order to further improve the powder characteristics of the polymer flocculant powdered in the drying step (D). By performing the granulation step (E), the same handleability as a general-purpose powder product can be obtained. In the granulation step (E), the dry powder of the cross-linked polymer obtained in the drying step (D) is stirred and mixed while adding a binder, wet stirring and granulating, and then drying again. It can be carried out. Examples of the binder include water, an aqueous solution in which other water-soluble polymer is dissolved, and a water-in-oil emulsion in which water-containing gel-like fine particles are dispersed. Two or more of these binders can be used in combination. The binder is preferably added while stirring the cross-linked polymer powder. By adding with stirring, the powder and the binder can be mixed more uniformly, and a granulated product having high granulation strength can be obtained.
The addition rate of the binder is preferably 3 to 70% by mass, more preferably 4 to 65% by mass with respect to the polymer flocculant powder. The addition rate of water contained in the binder is preferably 3 to 30% by mass, more preferably 4 to 20% by mass with respect to the mass of the polymer flocculant powder. If the addition rate of the binder and the water contained in the binder is too small, it may not be sufficiently granulated. If it is too much, too much granulation may occur and a lot of coarse particles may be generated, or subsequent re-drying may take a long time. is there.
In the granulation step (E), in order to adjust the particle size of the obtained granulated product as necessary, the granulated product after drying is sieved or the coarse particles generated by sieving are crushed. May be.
 造粒工程(E)の具体例としては、例えば、乾燥工程(D)で得られた高分子凝集剤粉末をポリカップに量り取り、撹拌翼で撹拌しながら、高分子凝集剤粉末の質量に対して0.1~0.2倍量の8質量%ポバール水溶液をシリンジポンプで数分間掛けて添加・混合し、90℃で1時間真空乾燥後、目開き2.36mmのステンレス製試験篩で篩分し、さらにオン品は解砕し、サンプル全量を同試験篩に通過させて造粒品を得る方法が挙げられる。 As a specific example of the granulation step (E), for example, the polymer flocculant powder obtained in the drying step (D) is weighed into a polycup and stirred with a stirring blade, with respect to the mass of the polymer flocculant powder. Add 0.1 to 0.2 times the 8% by weight aqueous solution of PVA with a syringe pump for several minutes, mix and dry at 90 ° C for 1 hour, and then sieve through a stainless steel test sieve with an aperture of 2.36 mm. And the ON product is crushed, and the whole sample is passed through the same test sieve to obtain a granulated product.
(6)造粒工程(F)
 本発明の製造方法では、還流脱水工程(C)の終了後から乾燥工程(D)の開始前までの間、又は乾燥工程(D)の途中において、造粒工程(F)を行うことも好ましい。造粒工程(F)は、乾燥工程(D)で粉末化した高分子凝集剤の粉体特性をさらに改善するために行う。造粒工程(F)は、還流脱水工程(C)の終了後から乾燥工程(D)の開始前までの間、又は乾燥工程(D)の途中において、必要に応じて結合剤を添加し、乾燥工程(D)において撹拌しながら乾燥することにより行うことができる。このとき、粉末状の高分子凝集剤の粉体特性が好ましく改善するように、撹拌条件や乾燥条件を適宜調整することが好ましい。結合剤の添加後には、架橋型重合体を撹拌しながら乾燥しなければならない。撹拌しながら乾燥することで、粉末と結合剤をより均一に混合することができて、かつ造粒強度の強い造粒品を得ることができる。このように好適に造粒した結果、汎用の粉末品と同様の粉体特性に改善され、汎用の粉末用の自動溶解装置等の既存設備でも同様に取り扱うことができるようになる。
(6) Granulation process (F)
In the production method of the present invention, it is also preferable to perform the granulation step (F) after the completion of the reflux dehydration step (C) and before the start of the drying step (D) or during the drying step (D). . The granulation step (F) is performed in order to further improve the powder characteristics of the polymer flocculant powdered in the drying step (D). In the granulation step (F), a binder is added as necessary between the end of the reflux dehydration step (C) and before the start of the drying step (D) or during the drying step (D). It can carry out by drying with stirring in a drying process (D). At this time, it is preferable to appropriately adjust the stirring conditions and drying conditions so that the powder characteristics of the powdery polymer flocculant are preferably improved. After the addition of the binder, the crosslinked polymer must be dried with stirring. By drying with stirring, the powder and the binder can be mixed more uniformly, and a granulated product having high granulation strength can be obtained. As a result of such granulation, the powder characteristics are improved to the same as those of a general-purpose powder product, and can be handled in the same manner with existing equipment such as an automatic melting device for general-purpose powder.
 結合剤としては、水、水溶性ポリマーを溶解した水溶液、含水ゲル状の微粒子を分散した油中水型エマルションが例示される。これらの結合剤は2種以上を併用することもできる。また、重合工程において得られた油中水型重合体エマルションを結合剤として使用することもできる。
 結合剤の添加率は、油中水型重合体エマルションの固形分の合計質量に対して、3~70質量%が好ましく、4~65質量%がさらに好ましい。また、結合剤に含まれる水分の添加率は、架橋型重合体の固形分の合計質量に対して、3~30質量%が好ましく、4~20質量%がさらに好ましい。結合剤及びそれに含まれる水分の添加率が少な過ぎると十分に造粒できない場合があり、多過ぎると造粒し過ぎて粗粒が多く発生したり、その後の再乾燥が長時間になる場合がある。
 造粒を含む乾燥工程(D)の後には、必要に応じて、得られた造粒品の粒度を調節するために、乾燥後の造粒品を篩分したり、篩分で生じた粗粒を解砕してもよい。
Examples of the binder include water, an aqueous solution in which a water-soluble polymer is dissolved, and a water-in-oil emulsion in which water-containing gel-like fine particles are dispersed. Two or more of these binders can be used in combination. Moreover, the water-in-oil polymer emulsion obtained in the polymerization process can also be used as a binder.
The addition rate of the binder is preferably 3 to 70% by mass, and more preferably 4 to 65% by mass with respect to the total mass of the solid content of the water-in-oil polymer emulsion. The addition rate of water contained in the binder is preferably 3 to 30% by mass, and more preferably 4 to 20% by mass with respect to the total mass of the solid content of the crosslinked polymer. If the addition rate of the binder and the water contained in the binder is too small, it may not be sufficiently granulated. If it is too much, too much granulation may occur and a lot of coarse particles may be generated, or subsequent re-drying may take a long time. is there.
After the drying step (D) including granulation, in order to adjust the particle size of the obtained granulated product, if necessary, the dried granulated product is sieved or coarsely generated by sieving. The grains may be crushed.
 造粒を含む乾燥工程(D)の具体例としては、例えば、撹拌装置、真空ラインの先に還流冷却器、真空ポンプ及び受液槽を備えたセパラブルフラスコに、還流脱水工程(C)で得られたほぼ乾燥した架橋型重合体の粒子が分散したスラリーを仕込み、結合剤として重合工程(B)で得られた油中水型重合体エマルションの一部を、前記の好ましい添加率で添加した後、撹拌翼で撹拌しながら、90℃のオイルバス中で炭化水素及び残りの水が留出しなくなるまで減圧乾燥した後、引き続き、品温が50℃以上に到達するまで撹拌しながら減圧乾燥後、目開き2.36mmのステンレス製試験篩で篩分し、さらにオン品は解砕し、サンプル全量を同試験篩に通過させて造粒品を得る方法が挙げられる。 As a specific example of the drying step (D) including granulation, for example, in the reflux dehydration step (C), a separable flask equipped with a stirrer, a reflux condenser, a vacuum pump and a liquid receiving tank at the tip of the vacuum line is used. A slurry in which particles of the obtained almost dry cross-linked polymer are dispersed is charged, and a part of the water-in-oil polymer emulsion obtained in the polymerization step (B) is added as a binder at the above-mentioned preferable addition rate. After drying under reduced pressure in a 90 ° C oil bath until no hydrocarbons and the remaining water are distilled off, the mixture is then dried under reduced pressure while stirring until the product temperature reaches 50 ° C or higher. Thereafter, a method of sieving with a stainless steel test sieve having a mesh opening of 2.36 mm, further crushing the ON product, and passing the entire amount of the sample through the test sieve, a granulated product is obtained.
 造粒工程(E)、(F)で使用する他の水溶性ポリマーとしては、けん化度が78.0~95.0mol%で、平均分子量が10,000~70,000のポバールが好ましい。当該ポバールを使用することで、造粒強度の強い造粒品を得ることができる。 Other water-soluble polymers used in the granulation steps (E) and (F) are preferably poval having a saponification degree of 78.0 to 95.0 mol% and an average molecular weight of 10,000 to 70,000. By using the poval, a granulated product having a high granulation strength can be obtained.
 本発明の製造方法により得られる高分子凝集剤の少なくとも1種を添加して脱水する汚泥の脱水方法では、処理対象の汚泥は特に制限されない。下水処理、し尿処理及び生活廃水処理等で発生する汚泥の他、食品工場、食肉加工及び化学工場等の各種産業廃水処理で発生する汚泥、養豚場等の畜産関係で発生する生し尿及びその廃水処理で発生する汚泥、パルプ又は製紙工業で発生する汚泥等の各種汚泥が処理対象になる。汚泥の種類にも制限はなく、初沈汚泥、余剰汚泥及びこれらの混合汚泥、濃縮汚泥及び嫌気性微生物処理した消化汚泥等が何れも処理対象になる。 In the sludge dewatering method in which at least one polymer flocculant obtained by the production method of the present invention is added and dehydrated, the sludge to be treated is not particularly limited. In addition to sludge generated in sewage treatment, human waste treatment and domestic wastewater treatment, sludge generated in various industrial wastewater treatment such as food factories, meat processing and chemical factories, manure and wastewater generated in livestock relations such as pig farms Various sludges such as sludge generated in the treatment, pulp or sludge generated in the paper industry are to be treated. There is no restriction | limiting also in the kind of sludge, and all are sludge sludge, excess sludge, and these mixed sludge, concentrated sludge, digested sludge treated by anaerobic microorganisms, etc.
 本発明の汚泥の脱水方法は、上記各種汚泥に、本発明の製造方法により得られる高分子凝集剤の少なくとも1種を添加して脱水することを特徴とする。脱水方法の具体例としては、以下の方法が例示される。
 すなわち、汚泥に、必要に応じて無機凝集剤を添加し、好ましくはpHを4~7に調節する。その後、この汚泥に本発明の高分子凝集剤を添加し、公知の方法で撹拌及び/又は混合することで汚泥中の懸濁物と高分子凝集剤を作用させて、汚泥フロックを形成させる。形成された汚泥フロックを、公知の手段により機械的に脱水処理することで、処理水と脱水ケーキに分離する。なお、本発明の高分子凝集剤として架橋型両性重合体を使用する場合は、前記無機凝集剤を併用することが好ましい。また、脱臭、脱リン及び脱窒等を目的とする場合は、汚泥のpHを5未満にすることが好ましい。
 無機凝集剤としては、特に制限されないが、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄、ポリ硫酸第二鉄等が例示される。
 脱水装置としては、特に制限されないが、スクリュープレス型脱水機、ベルトプレス型脱水機、フィルタープレス型脱水機、スクリューデカンター、多重円盤等が例示される。
The sludge dewatering method of the present invention is characterized in that at least one polymer flocculant obtained by the production method of the present invention is added to the above-mentioned various sludges for dehydration. The following method is illustrated as a specific example of the dehydration method.
That is, an inorganic flocculant is added to the sludge as necessary, and the pH is preferably adjusted to 4-7. Thereafter, the polymer flocculant of the present invention is added to the sludge, and the suspension in the sludge and the polymer flocculant are allowed to act by stirring and / or mixing by a known method to form a sludge floc. The formed sludge floc is mechanically dehydrated by known means to separate into treated water and dehydrated cake. In addition, when using a crosslinkable amphoteric polymer as a polymer flocculent of this invention, it is preferable to use the said inorganic flocculant together. Moreover, when aiming at deodorization, dephosphorization, denitrification, etc., it is preferable to make the pH of sludge less than 5.
Although it does not restrict | limit especially as an inorganic flocculant, A sulfuric acid band, polyaluminum chloride, ferric chloride, ferrous sulfate, polyferric sulfate, etc. are illustrated.
Although it does not restrict | limit especially as a dehydration apparatus, A screw press type dehydrator, a belt press type dehydrator, a filter press type dehydrator, a screw decanter, a multiple disk etc. are illustrated.
 以下、実施例によりさらに具体的に本発明を説明するが、本発明はこれらの実施例により限定されるものではない。各種物性の測定方法は以下の通りである。各種物性の測定における温度条件は、特に断りのない限り25℃である。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The measuring method of various physical properties is as follows. The temperature condition for measuring various physical properties is 25 ° C. unless otherwise specified.
〔0.5%水溶液粘度〕
 純水400mLに、0.50質量%となる量の試料(粉末サンプル)を加えて十分に溶解し、試料溶液を調製した。B型回転式粘度計を用いて、この試料溶液の25℃、ローター回転数12rpmにおける粘度を測定した。
[0.5% aqueous solution viscosity]
A sample solution (powder sample) in an amount of 0.50% by mass was added to 400 mL of pure water and dissolved sufficiently to prepare a sample solution. Using a B-type rotary viscometer, the viscosity of this sample solution at 25 ° C. and a rotor rotational speed of 12 rpm was measured.
〔0.1%塩粘度〕
 塩化ナトリウム5.84gを純水に溶解して全容量を80.0mLに調製した塩化ナトリウム水溶液に、前記0.5%水溶液粘度を測定後の試料溶液20.0mLを加えて十分に溶解し試料溶液を調製した。BLアダプタ及び専用のBLローターを装着したB型回転式粘度計を用いて、この試料溶液の25℃、ローター回転数60rpmにおける粘度を測定した。
[0.1% salt viscosity]
To a sodium chloride aqueous solution in which 5.84 g of sodium chloride was dissolved in pure water to adjust the total volume to 80.0 mL, 20.0 mL of the sample solution after measuring the 0.5% aqueous solution viscosity was added and sufficiently dissolved. A solution was prepared. Using a B-type rotary viscometer equipped with a BL adapter and a dedicated BL rotor, the viscosity of this sample solution at 25 ° C. and at a rotor rotational speed of 60 rpm was measured.
〔嵩比重〕
 容量25mLの円筒型容器の上にセットしたロートから容器に試料(粉末サンプル)を溢れるまで投入した後、山盛りとなった余剰分を綺麗に取り除き、円筒型容器にぴったりと入った試料の質量と容量の比から嵩比重を求めた。
[Bulk specific gravity]
After charging the sample (powder sample) from the funnel set on the cylindrical container with a capacity of 25 mL until the container overflows, remove the piled excess and clean the mass of the sample exactly in the cylindrical container. The bulk specific gravity was determined from the volume ratio.
〔造粒強度〕
 試料(粉末サンプル)をステンレス製試験篩で篩分し、粒子径が1.0~1.7mmの粒子を取り出した。これらの粒子について、以下の方法で造粒強度を測定した。
 まず、造粒強度を測定する1粒目の粒子を実験台とガラスプレートで挟み、ガラスプレートの上から荷重を加えて粒子を圧縮し、粒子が破壊されるまで徐々に荷重を増加した。そして、粒子が破壊される瞬間の荷重を硬度計(株式会社テクロック製の商品名「テクロック・デュロメータGS-720G」)で測定した。なお、実験台とガラスプレートができるだけ平行を保つように注意した。また、硬度計の押針でガラスプレートを介して粒子の真上から粒子に荷重を加えて測定した。
 1粒目の粒子の圧縮破壊時の荷重を測定後、同じ操作を繰り返して、合計10個の粒子の圧縮破壊時の荷重を測定し、その荷重の平均値を求めて造粒強度(N)とした。
[Granulation strength]
The sample (powder sample) was sieved with a stainless steel test sieve, and particles having a particle size of 1.0 to 1.7 mm were taken out. For these particles, the granulation strength was measured by the following method.
First, the first particle for measuring the granulation strength was sandwiched between an experimental table and a glass plate, a load was applied from above the glass plate to compress the particle, and the load was gradually increased until the particle was broken. Then, the load at the moment when the particles were broken was measured with a hardness meter (trade name “Tecrock Durometer GS-720G” manufactured by Tecrock Co., Ltd.). Care was taken to keep the experimental table and the glass plate as parallel as possible. Further, the load was applied to the particles from directly above the particles with a push pin of a hardness meter through a glass plate.
After measuring the load at the time of compressive fracture of the first particle, the same operation is repeated, the load at the time of compressive fracture of a total of 10 particles is measured, and the average value of the load is obtained and the granulation strength (N) It was.
〔フロック径〕
 凝集した汚泥中のフロックの大きさ(フロック径)を目視で測定した。
[Flock diameter]
The size of floc (floc diameter) in the aggregated sludge was measured visually.
〔重力ろ過性〕
 内径80mm、深さ50mm、目開き250μmのステンレス製試験篩に、凝集した汚泥を一気にそそぎ込み、重力ろ過した。このとき、ろ液が200mLのメスシリンダーに入るようにロートをセットしておき、汚泥投入後、5秒、10秒、20秒、30秒経過後のろ液の容量を計測して、重力ろ過性を評価した。このうち、10秒経過後のろ液の容量を10秒後ろ液量(mL)とした。
(Gravity filterability)
Aggregated sludge was poured into a stainless steel test sieve having an inner diameter of 80 mm, a depth of 50 mm, and an opening of 250 μm, and gravity filtered. At this time, set the funnel so that the filtrate enters the 200 mL measuring cylinder, measure the volume of the filtrate after elapse of 5 seconds, 10 seconds, 20 seconds, and 30 seconds after the sludge is charged. Gravity filtration Sex was evaluated. Among these, the volume of the filtrate after 10 seconds was defined as the amount of liquid after 10 seconds (mL).
〔ろ液の外観〕
 前記の重力ろ過性の評価後のろ液の外観について、下記の基準により目視で評価した。
   ◎: ろ液に懸濁成分(SS)の流出が全く見られない
   〇: ろ液に懸濁成分(SS)の流出がほとんど見られない
   △: ろ液に懸濁成分(SS)の流出が若干量見られる
   ×: ろ液に懸濁成分(SS)の流出が多量に見られる
[Appearance of filtrate]
The appearance of the filtrate after the evaluation of the gravity filterability was visually evaluated according to the following criteria.
◎: Suspension component (SS) outflow is not observed at all in the filtrate 〇: Suspension component (SS) outflow is hardly observed in the filtrate △: Suspension component (SS) outflow is present in the filtrate Slight amount is seen ×: Suspension component (SS) outflow is seen in a large amount in the filtrate
〔脱水ケーキの含水率〕
 前記の重力ろ過性を評価後のステンレス製試験篩上に残った重力ろ過後の汚泥の含水ケーキの一部を適量(12g程度)取り出し、目開き180μmのナイロン製ろ布を内部にセットした遠心沈降管を用いて、2000rpmで10分間遠心脱水することで脱水ケーキを得た。得られた脱水ケーキを取り出し、アルミパンに秤量して、105℃の熱風乾燥機で16時間乾燥した後、乾燥後の質量を測定し、乾燥による減少量と乾燥前の質量の質量比から含水率を求めた。
[Moisture content of dehydrated cake]
Appropriate part (about 12g) of the sludge-containing water cake after gravity filtration remaining on the stainless steel test sieve after evaluating the gravity filterability described above, and centrifuge with a nylon filter cloth having an opening of 180 μm set inside A dewatering cake was obtained by centrifugal dewatering at 2000 rpm for 10 minutes using a settling tube. The obtained dehydrated cake was taken out, weighed in an aluminum pan, dried in a hot air dryer at 105 ° C. for 16 hours, then measured for the mass after drying, and the water content was determined from the mass ratio between the amount reduced by drying and the mass before drying. The rate was determined.
<製造例1>
 容量2Lの円筒形のセパラブルフラスコにHLBが3.7のソルビタンセスキオレート17.1gを計りとり、256.0gのノルマルヘプタンを添加して溶解し、油相を調製した。一方、別のビーカーに79質量%ジメチルアミノエチルアクリレート塩化メチル4級塩水溶液463.8gと50質量%アクリルアミド水溶液67.2gを混合し、架橋剤としてメチレンビスアクリルアミドの0.1質量%水溶液3.6g、イソプロピルアルコール0.8g、キレート剤のEDTA・二ナトリウムの5質量%水溶液を4.0g、開始剤としてt-ブチルハイドロパーオキサイドの0.35質量%水溶液2.0gを添加後、イオン交換水を添加し、98%硫酸でpH4.0に調整し、682.6gの水相を調製した。
<Production Example 1>
17.1 g of sorbitan sesquiolate having an HLB of 3.7 was measured in a cylindrical separable flask having a volume of 2 L, and 256.0 g of normal heptane was added and dissolved to prepare an oil phase. On the other hand, 463.8 g of a 79% by mass dimethylaminoethyl acrylate methyl chloride quaternary salt solution and 67.2 g of a 50% by mass acrylamide aqueous solution were mixed in another beaker, and a 0.1% by mass aqueous solution of methylene bisacrylamide as a crosslinking agent. 6 g, 0.8 g of isopropyl alcohol, 4.0 g of a 5% by weight aqueous solution of EDTA / disodium as a chelating agent, and 2.0 g of a 0.35% by weight aqueous solution of t-butyl hydroperoxide as an initiator were added, followed by ion exchange Water was added and adjusted to pH 4.0 with 98% sulfuric acid to prepare 682.6 g of aqueous phase.
 次いで、セパラブルフラスコ中で油相を撹拌しながら、水相を添加し、ホモジナイザーで高速撹拌してメジアン径が1.5μmの油中水型単量体エマルションを調製した。窒素ガス吹き込み管、還流冷却器、温度計を備えたセパラブルカバーをフラスコにセットし、撹拌翼で撹拌しながら、窒素ガスで脱気を開始した。十分に脱気した後、窒素ガスを供給しながら、さらに二酸化硫黄を0.02vol%含む窒素ガスを11.6ml/分の供給量で油中水型単量体エマルション中に吹き込み、重合を開始させた。50℃に到達後、この温度で2時間保持した後、二酸化硫黄を含む窒素ガスの供給量を312.2ml/分に増やし、さらに50℃で1時間保持した後、窒素ガス及び二酸化硫黄を含む窒素ガスを停止し、重合を終了した。その後、ピロ亜硫酸ナトリウムの1質量%水溶液を4.0g、リンゴ酸の50質量%水溶液9.7gを添加し、混合して架橋型重合体を含む油中水型重合体エマルションを得た。得られた油中水型重合体エマルションの成分比率は、重合中にノルマルヘプタンと水が僅かに揮発した結果、固形分が45.4質量%、ノルマルヘプタンが24.5質量%、水が30.1質量%であった。 Next, the water phase was added while stirring the oil phase in a separable flask, and the mixture was stirred at high speed with a homogenizer to prepare a water-in-oil monomer emulsion having a median diameter of 1.5 μm. A separable cover equipped with a nitrogen gas blowing tube, a reflux condenser, and a thermometer was set in the flask, and degassing was started with nitrogen gas while stirring with a stirring blade. After sufficiently degassing, while supplying nitrogen gas, nitrogen gas containing 0.02 vol% of sulfur dioxide was further blown into the water-in-oil monomer emulsion at a supply rate of 11.6 ml / min to start polymerization. I let you. After reaching 50 ° C. and holding at this temperature for 2 hours, the supply amount of nitrogen gas containing sulfur dioxide is increased to 312.2 ml / min, and further holding at 50 ° C. for 1 hour, followed by containing nitrogen gas and sulfur dioxide Nitrogen gas was stopped to complete the polymerization. Thereafter, 4.0 g of a 1% by mass aqueous solution of sodium pyrosulfite and 9.7 g of a 50% by mass aqueous solution of malic acid were added and mixed to obtain a water-in-oil polymer emulsion containing a crosslinked polymer. The component ratio of the obtained water-in-oil polymer emulsion was such that normal heptane and water were slightly volatilized during the polymerization, resulting in a solid content of 45.4% by mass, normal heptane of 24.5% by mass and water of 30%. It was 1 mass%.
 続いて、窒素ガスの吹き込み口、上部に還流冷却器を取り付けたディーン・スターク装置、温度計、さらに還流冷却器の上に真空計、圧力調整弁、真空ポンプを備えた容量300mLのセパラブルフラスコに、ノルマルヘプタンの含有量が固形分の質量の1.1倍となるように、上記で得られた架橋型重合体を含む油中水型重合体エマルション100.0gとノルマルヘプタン25.4gとを仕込み、さらに還流冷却器の下の直管部に枝のところまでノルマルヘプタンを仕込み、フラスコ内を撹拌翼で撹拌しながら、窒素ガスを流して系内の気相を窒素置換した。 Next, a 300 mL separable flask equipped with a nitrogen gas inlet, a Dean-Stark device with a reflux condenser attached to the top, a thermometer, and a vacuum gauge, pressure control valve, and vacuum pump on the reflux condenser. In addition, 100.0 g of the water-in-oil polymer emulsion containing the cross-linked polymer obtained above and 25.4 g of normal heptane so that the content of normal heptane is 1.1 times the mass of the solid content. In addition, normal heptane was charged up to the branch in the straight pipe part under the reflux condenser, and the gas phase in the system was replaced with nitrogen by flowing nitrogen gas while stirring the inside of the flask with a stirring blade.
 その後、オイルバスの温度を130℃に昇温し始めたところ、油中水型重合体エマルションの温度も上昇しておよそ84℃で共沸点に達し、ノルマルヘプタンと水を含む共沸の蒸気が出始めた。共沸の蒸気は還流冷却器まで上がり、凝縮して液体となって直管部に落下する。そこで水はノルマルヘプタンと相分離し、直管部の下相に水が溜まる。一方、直管部の上相にはノルマルヘプタンがあるので、直管部からオーバーフローして溢れるノルマルヘプタンは枝管を通ってフラスコに戻る。こうして直管部に溜まった水が多くなったら、直管部の下のコックを開けて水を抜き取り、還流脱水工程が終了するまでこの操作を繰り返す。そして、脱水率が92%に到達した後、油中水型重合体エマルションを40℃以下に冷却して還流脱水工程を終了した。得られた脱水率92%のスラリーの成分比率は、固形分が46.5質量%、ノルマルヘプタンが51.1質量%、水が2.4質量%であった。
 なお、還流脱水工程が進んでフラスコ内の油中水型重合体エマルションに含まれる水量が減るに連れて沸点が上昇し、次第にノルマルヘプタンの沸点98℃に近付いた。
Thereafter, when the temperature of the oil bath started to rise to 130 ° C., the temperature of the water-in-oil polymer emulsion also increased and reached an azeotropic point at about 84 ° C., and azeotropic vapor containing normal heptane and water was generated. I started out. The azeotropic vapor rises to the reflux condenser, condenses into a liquid, and falls to the straight pipe section. Therefore, water is phase-separated from normal heptane, and water accumulates in the lower phase of the straight pipe section. On the other hand, since normal heptane is present in the upper phase of the straight pipe part, normal heptane overflowing and overflowing from the straight pipe part returns to the flask through the branch pipe. When the amount of water accumulated in the straight pipe portion increases in this way, the cock under the straight pipe portion is opened to drain water, and this operation is repeated until the reflux dehydration step is completed. Then, after the dehydration rate reached 92%, the water-in-oil polymer emulsion was cooled to 40 ° C. or lower to complete the reflux dehydration step. The obtained slurry having a dehydration rate of 92% had a solid content of 46.5% by mass, normal heptane of 51.1% by mass, and water of 2.4% by mass.
The boiling point increased as the reflux dehydration process progressed and the amount of water contained in the water-in-oil polymer emulsion in the flask decreased, and gradually approached the normal heptane boiling point of 98 ° C.
 引き続き、ディーン・スターク装置の直管部及びその下に設置した受液槽の残液を排出した後、撹拌下、絶対圧13kPaに減圧し、オイルバスを室温から90℃に昇温して減圧乾燥を行った。途中、油中水型重合体エマルションの温度が40~43℃くらいで沸点に達し、ノルマルヘプタンと残りの水を含む蒸気が出始めた。凝縮液の流量を見ながら真空度を調節し、全溶剤量の90%以上を蒸発させて、品温が上昇に転じたことを確認後、絶対圧4kPaで30分間の仕上げ乾燥を行った。凝縮液は直管部には溜めないように直管部の下のコックを常時開放し、その下の受液槽に溜めるようにした。受液槽に溜まった凝縮液が多くなったら、直管部の下のコックを閉めて受液槽の真空を窒素で戻して凝縮液を排出し、乾燥工程が終了するまでこの操作を繰り返した。30分後、乾燥工程を終了し、品温を40℃以下に冷却して高分子凝集剤粉末A1を得た。脱水後のスラリーの状態や乾燥後の粉末の状態はともに良好だった。また得られた粉末サンプルの物性評価を行い、表1に示した。なお、粉末サンプルの固形分は97.0質量%だった。 Subsequently, after draining the residual liquid from the straight pipe part of the Dean-Stark device and the liquid receiving tank installed thereunder, the pressure is reduced to 13 kPa with stirring and the oil bath is heated from room temperature to 90 ° C. Drying was performed. On the way, the temperature of the water-in-oil polymer emulsion reached the boiling point at about 40 to 43 ° C., and steam containing normal heptane and the remaining water began to come out. The degree of vacuum was adjusted while observing the flow rate of the condensate, 90% or more of the total amount of solvent was evaporated, and after confirming that the product temperature started to rise, finish drying was performed at an absolute pressure of 4 kPa for 30 minutes. In order to prevent the condensate from accumulating in the straight pipe part, the cock under the straight pipe part was always opened and accumulated in the liquid receiving tank below it. When the condensate accumulated in the liquid receiving tank increased, the cock under the straight pipe part was closed, the vacuum of the liquid receiving tank was returned with nitrogen, the condensate was discharged, and this operation was repeated until the drying process was completed. . After 30 minutes, the drying step was completed, and the product temperature was cooled to 40 ° C. or lower to obtain polymer flocculant powder A1. The slurry after dehydration and the powder after drying were both good. The physical properties of the obtained powder sample were evaluated and are shown in Table 1. The solid content of the powder sample was 97.0% by mass.
<比較製造例1>
 製造例1と同じ条件にて乳化及び重合を行い、架橋型重合体を含む油中水型重合体エマルションを得た。続いて、還流脱水を行わずに次工程の減圧乾燥を行ったところ、架橋型重合体がセパラブルフラスコの底面、壁面、撹拌翼等に付着して固化し、さらに減圧乾燥を続けると付着した固化物が強固になり、乾燥終点に達する頃には付着物が固くて剥がせず、最終的には乾燥品を回収できなくなった。
<Comparative Production Example 1>
Emulsification and polymerization were carried out under the same conditions as in Production Example 1 to obtain a water-in-oil polymer emulsion containing a crosslinked polymer. Subsequently, when drying under reduced pressure in the next step was performed without performing reflux dehydration, the cross-linked polymer adhered and solidified on the bottom surface, wall surface, stirring blade, etc. of the separable flask, and further adhered when continued under reduced pressure drying. When the solidified product became strong and reached the end of drying, the adhered material was hard and did not peel off, and eventually the dried product could not be recovered.
<製造例2~10、比較製造例4>
 単量体の組成、メジアン径、架橋剤の添加量等の重合条件及び炭化水素の含有量、脱水率終点等の還流脱水条件を表1に示すように変えたこと以外は、製造例1と同様に操作して、高分子凝集剤粉末A2~A10、B4を得た。脱水後のスラリーの状態や乾燥後の粉末の状態はともに良好だった。また得られた粉末サンプルの物性評価を行い、表1に示した。
<Production Examples 2 to 10, Comparative Production Example 4>
Except that the polymerization conditions such as monomer composition, median diameter, addition amount of crosslinking agent, and the reflux dehydration conditions such as hydrocarbon content and dehydration rate end point were changed as shown in Table 1, Production Example 1 and The same operation was performed to obtain polymer flocculant powders A2 to A10 and B4. The slurry after dehydration and the powder after drying were both good. The physical properties of the obtained powder sample were evaluated and are shown in Table 1.
<製造例11>
 製造例1と同じ条件にて乳化及び重合を行い、架橋型重合体を含む油中水型重合体エマルションを得た。重合終了後、製造例1と同様にして、容量300mLのセパラブルフラスコに、表1に示す炭化水素の含有量及び界面活性剤の配合比率に基づくHLBの荷重平均値が8.0となるように、油中水型重合体エマルション100.0g、ノルマルヘプタン25.4g及びHLBが13.5のポリエチレングリコールオレイン酸モノエステル1.44gを仕込んで還流脱水を行った。あとは製造例1と同様に操作して、高分子凝集剤粉末A11を得た。脱水後のスラリーの状態や乾燥後の粉末の状態はともに良好だった。また、得られた粉末サンプルの物性評価を行い、表1に示した。
<Production Example 11>
Emulsification and polymerization were carried out under the same conditions as in Production Example 1 to obtain a water-in-oil polymer emulsion containing a crosslinked polymer. After completion of the polymerization, in the same manner as in Production Example 1, the load average value of HLB based on the hydrocarbon content and surfactant blending ratio shown in Table 1 is 8.0 in a separable flask having a capacity of 300 mL. Then, 100.0 g of a water-in-oil polymer emulsion, 25.4 g of normal heptane, and 1.44 g of polyethylene glycol oleate monoester having an HLB of 13.5 were charged for dehydration under reflux. Thereafter, the same operation as in Production Example 1 was performed to obtain polymer flocculant powder A11. The slurry after dehydration and the powder after drying were both good. In addition, physical properties of the obtained powder sample were evaluated and are shown in Table 1.
<比較製造例2~3>
 製造例1と同じ条件にて乳化及び重合を行い、架橋型重合体を含む油中水型重合体エマルションを得た。重合終了後、製造例1と同様にして、容量300mLのセパラブルフラスコに、表1に示す炭化水素の含有量及び界面活性剤の配合比率に基づくHLBの荷重平均値が8.0となるように、油中水型重合体エマルション100.0g、所定量のノルマルヘプタン及びHLBが13.5のポリエチレングリコールオレイン酸モノエステル1.44gを仕込んで還流脱水を行った。そして、表1に示す脱水率終点に到達した後は、製造例1と同様に操作して、高分子凝集剤粉末B2~B3を得た。
<Comparative Production Examples 2 to 3>
Emulsification and polymerization were carried out under the same conditions as in Production Example 1 to obtain a water-in-oil polymer emulsion containing a crosslinked polymer. After completion of the polymerization, in the same manner as in Production Example 1, the load average value of HLB based on the hydrocarbon content and surfactant blending ratio shown in Table 1 is 8.0 in a separable flask having a capacity of 300 mL. The mixture was charged with 100.0 g of a water-in-oil polymer emulsion, 1.44 g of a predetermined amount of normal heptane and 1.44 g of polyethylene glycol oleic acid monoester having an HLB of 13.5, and reflux dehydration was performed. After reaching the dehydration rate end point shown in Table 1, the same operation as in Production Example 1 was performed to obtain polymer flocculant powders B2 to B3.
 しかし、比較製造例2の還流脱水終了後のセパラブルフラスコには、スラリーの凝集物が多量に壁面に付着しており、脱水後のスラリーの状態は悪かった。
 一方、比較製造例3では、還流脱水終了後のセパラブルフラスコには、比較製造例2ほど壁面への付着はなかったものの、減圧乾燥後には、架橋型重合体の一部がセパラブルフラスコの底面、壁面、撹拌翼等に付着して固化するとともに、粉砕が必要な大きな塊が多量に発生して、乾燥後の粉末の状態は悪かった。しかし、そのような粗粒についても、適宜粉砕して粉末サンプルにした後、物性評価を行い、表1に示した。
However, in the separable flask after completion of reflux dehydration in Comparative Production Example 2, a large amount of slurry aggregates adhered to the wall surface, and the state of the slurry after dehydration was bad.
On the other hand, in Comparative Production Example 3, the separable flask after completion of reflux dehydration did not adhere to the wall as in Comparative Production Example 2, but after drying under reduced pressure, a part of the crosslinked polymer was separated from the separable flask. While adhering to the bottom surface, wall surface, stirring blade and the like and solidifying, a large amount of large lumps required to be crushed were generated, and the powder state after drying was bad. However, such coarse particles were also appropriately pulverized into powder samples, and then physical properties were evaluated and are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 但し、表1における略号については、下記のものを表す。
「DAC」:  ジメチルアミノエチルアクリレート塩化メチル4級塩
「AM」:   アクリルアミド
「MBAM」: N,N’-メチレンビスアクリルアミド
「IPA」:  イソプロピルアルコール
「IsoparG」:エクソンモービル製の炭化水素溶剤;商品名「IsoparG」
However, the abbreviations in Table 1 represent the following.
“DAC”: dimethylaminoethyl acrylate methyl chloride quaternary salt “AM”: acrylamide “MBAM”: N, N′-methylenebisacrylamide “IPA”: isopropyl alcohol “Isopar G”: hydrocarbon solvent manufactured by ExxonMobil; "IsoparG"
<製造例12>
 底面及び壁面とのクリアランスが約1mmとなるようにステンレス製のアンカー翼をセットした容量300mLのステンレス製のセパラブルフラスコに、製造例1で得られた高分子凝集剤粉末A1を50g仕込み、200rpmで撹拌しながら、結合剤としてポバール(株式会社クラレ製の商品名「クラレポバールPVA-203」(けん化度=87~89mol%、平均分子量=14,700))を予め溶解した8質量%水溶液9gをシリンジポンプを用いて約7分間かけて添加し、湿式撹拌造粒した。次いで、90℃の真空乾燥機で1時間乾燥した後、目開き2.36mmのステンレス製試験篩で篩分して粗粒を除去し、通過するものを造粒品1とした。粗粒については、篩を通過するように解砕して造粒品2とした。造粒品1と造粒品2を混合して高分子凝集剤粉末C1を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表2に示した。
<Production Example 12>
50 g of the polymer flocculant powder A1 obtained in Production Example 1 is placed in a 300 mL stainless separable flask in which stainless steel anchor blades are set so that the clearance between the bottom surface and the wall surface is about 1 mm, and 200 rpm 9 g of an 8% by weight aqueous solution in which POVAL (trade name “Kuraray Poval PVA-203” manufactured by Kuraray Co., Ltd. (degree of saponification = 87 to 89 mol%, average molecular weight = 14,700)) as a binder was previously dissolved with stirring. Was added over about 7 minutes using a syringe pump, and granulated by wet stirring. Next, after drying with a 90 ° C. vacuum dryer for 1 hour, coarse particles were removed by sieving with a stainless steel test sieve having an opening of 2.36 mm, and the product passed through was designated as granulated product 1. The coarse particles were crushed so as to pass through a sieve to obtain a granulated product 2. The granulated product 1 and the granulated product 2 were mixed to obtain a polymer flocculant powder C1. In addition, powder characteristics and physical properties of the obtained powder sample were evaluated and are shown in Table 2.
<製造例13~15>
 結合剤を作成するポバールの種類、水溶液濃度、結合剤の添加量を表2に示すように変えたこと以外は、製造例12と同様に操作して、高分子凝集剤粉末C2~C4を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表2に示した。
<Production Examples 13 to 15>
Polymer flocculant powders C2 to C4 were obtained in the same manner as in Production Example 12 except that the type of poval for preparing the binder, the concentration of the aqueous solution, and the addition amount of the binder were changed as shown in Table 2. It was. In addition, powder characteristics and physical properties of the obtained powder sample were evaluated and are shown in Table 2.
<製造例16~17>
 結合剤として、ポバール水溶液の代わりに水をそれぞれ8g及び2g添加したこと以外は、製造例12と同様に操作して、高分子凝集剤粉末C5~C6を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表2に示した。
<Production Examples 16 to 17>
Polymer flocculant powders C5 to C6 were obtained in the same manner as in Production Example 12 except that 8 g and 2 g of water were added as binders in place of the poval aqueous solution, respectively. In addition, powder characteristics and physical properties of the obtained powder sample were evaluated and are shown in Table 2.
<比較製造例5>
 結合剤を添加しなかったこと以外は、製造例12と同様に操作して、高分子凝集剤粉末D1を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表2及び表3に示した。
<Comparative Production Example 5>
A polymer flocculant powder D1 was obtained in the same manner as in Production Example 12 except that no binder was added. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 但し、表2における略号については、下記のものを表す。
「PVA203」: 株式会社クラレ製のポバール;商品名「PVA-203」
「PVA205」: 株式会社クラレ製のポバール;商品名「PVA-205」
However, the abbreviations in Table 2 represent the following.
“PVA203”: POVAL manufactured by Kuraray Co., Ltd .; trade name “PVA-203”
“PVA205”: POVAL manufactured by Kuraray Co., Ltd .; trade name “PVA-205”
 表2から明らかなように、結合剤を添加した高分子凝集剤C1~C6では、結合剤を添加しなかったD1と比較して嵩比重が大きく、造粒強度も強くなり、粉体特性が優れた。また、結合剤の添加量が多いほど、嵩比重、造粒強度の両者とも向上する傾向が見られた。そして、結合剤としてポバール水溶液を添加したC4では、水だけを添加したC5よりも結合剤の添加量が少ないにも関わらず造粒強度は高かった。ポバールの効果と思われる。
 さらに、物性評価の結果、結合剤の有無や結合剤の添加量に関わらず、0.5%水溶液粘度や0.1%塩粘度等の物性は殆ど変化しなかった。よって、本発明の造粒工程(E)では、高分子凝集剤の優れた性能を維持した上で粉体特性を改善することができる。
As is apparent from Table 2, the polymer flocculants C1 to C6 with the binder added have a larger bulk specific gravity, stronger granulation strength, and powder characteristics compared to D1 without the binder added. outstanding. Moreover, the tendency for both bulk specific gravity and granulation strength to improve was seen, so that there was much addition amount of binder. And in C4 which added poval aqueous solution as a binder, although the addition amount of the binder was less than C5 which added only water, the granulation strength was high. It seems to be the effect of Poval.
Furthermore, as a result of physical property evaluation, physical properties such as 0.5% aqueous solution viscosity and 0.1% salt viscosity were hardly changed regardless of the presence or absence of the binder and the amount of the binder added. Therefore, in the granulation step (E) of the present invention, the powder characteristics can be improved while maintaining the excellent performance of the polymer flocculant.
<製造例18>
 結合剤として、製造例1の重合工程で得られた架橋型重合体を含む油中水型重合体エマルション20gをシリンジポンプを用いて約15分間かけて添加したこと以外は、製造例12と同様に操作して、高分子凝集剤粉末E1を得た。このとき、結合剤に含まれる水分は高分子凝集剤A1及び結合剤の固形分の合計質量に対して10.5%であった。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表3に示した。
<Production Example 18>
As in Production Example 12, except that 20 g of a water-in-oil polymer emulsion containing the crosslinked polymer obtained in the polymerization step of Production Example 1 was added as a binder over a period of about 15 minutes using a syringe pump. To obtain a polymer flocculant powder E1. At this time, the moisture contained in the binder was 10.5% with respect to the total mass of the solid content of the polymer flocculant A1 and the binder. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 3.
<製造例19~21>
 結合剤として、製造例1の重合工程で得られた架橋型重合体を含む油中水型エマルションの添加量を表3に示すように変えたこと以外は、製造例18と同様に操作して、高分子凝集剤粉末E2~E4を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表3に示した。
<Production Examples 19 to 21>
The same operation as in Production Example 18 was performed except that the amount of water-in-oil emulsion containing the crosslinked polymer obtained in the polymerization step of Production Example 1 was changed as shown in Table 3 as the binder. Polymer flocculant powders E2 to E4 were obtained. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
 表3でも表2と同じ傾向が見られた。すなわち、結合剤を添加した高分子凝集剤E1~E4では、結合剤を添加しなかったD1と比較して嵩比重が大きく、造粒強度も強くなり、粉体特性が優れた。また、結合剤の添加量が多いほど、嵩比重、造粒強度の両者とも向上する傾向が見られた。
 さらに、物性評価の結果、結合剤の有無や結合剤の添加量に関わらず、0.5%水溶液粘度や0.1%塩粘度等の物性は殆ど変化しなかった。よって、本発明の造粒工程(E)では、高分子凝集剤の優れた性能を維持した上で粉体特性を改善することができる。
In Table 3, the same tendency as in Table 2 was observed. That is, the polymer flocculants E1 to E4 with the binder added have a larger bulk specific gravity, stronger granulation strength, and superior powder characteristics compared to D1 without the binder added. Moreover, the tendency for both bulk specific gravity and granulation strength to improve was seen, so that there was much addition amount of binder.
Furthermore, as a result of physical property evaluation, physical properties such as 0.5% aqueous solution viscosity and 0.1% salt viscosity were hardly changed regardless of the presence or absence of the binder and the amount of the binder added. Therefore, in the granulation step (E) of the present invention, the powder characteristics can be improved while maintaining the excellent performance of the polymer flocculant.
<実施例1~9、比較例1~3>
 公共下水処理場1から採取した汚泥について、フロック形成及び遠心脱水処理の卓上試験を実施した。なお、この汚泥の性状は、pH=5.0、TS=30,900mg/L、VTS/TS=84.3質量%、SS=21,100mg/L、VSS/SS=85.8質量%、粗浮遊物/SS=15.2質量%、電気伝導度=262mS/mであった。
 まず、300mLのビーカーに汚泥100mLを採取し、これに、製造例1、製造例3、製造例12、比較製造例4で製造した高分子凝集剤の0.2質量%水溶液を、高分子凝集剤が汚泥質量に対して表4に示す添加量となるように、シリンジでそれぞれ添加した。この汚泥を1000rpmで30秒間攪拌し、汚泥をフロック化させ、フロック径を目視で測定した。次に、この凝集した汚泥全量を内径80mm、深さ50mm、目開き250μmのステンレス製試験篩に一気にそそぎ込み、重力ろ過した。このとき、ろ液が200mLのメスシリンダーに入るようにロートをセットしておき、所定時間経過毎にろ液の容量を測定して、重力ろ過性を評価した。また、ろ液の外観を目視で評価した。
 次いで、重力ろ過性を評価後のステンレス製試験篩上に残った重力ろ過後の汚泥の含水ケーキの一部を適量(12g程度)取り出し、目開き180μmのナイロン製ろ布を内部にセットした遠心沈降管を用いて、2000rpmで10分間遠心脱水し、得られた脱水ケーキの含水率を測定した。これらの試験結果を表4に示した。
<Examples 1 to 9, Comparative Examples 1 to 3>
The sludge collected from the public sewage treatment plant 1 was subjected to desktop tests for floc formation and centrifugal dehydration. The properties of this sludge are pH = 5.0, TS = 30,900 mg / L, VTS / TS = 84.3% by mass, SS = 21,100 mg / L, VSS / SS = 85.8% by mass, Crude suspended matter / SS = 15.2% by mass, and electric conductivity = 262 mS / m.
First, 100 mL of sludge was collected in a 300 mL beaker, and 0.2 mass% aqueous solution of the polymer flocculant manufactured in Production Example 1, Production Example 3, Production Example 12 and Comparative Production Example 4 was polymerized. It added with the syringe so that the agent might become the addition amount shown in Table 4 with respect to the sludge mass. This sludge was stirred at 1000 rpm for 30 seconds to make the sludge floc, and the floc diameter was measured visually. Next, the total amount of the aggregated sludge was poured into a stainless steel test sieve having an inner diameter of 80 mm, a depth of 50 mm, and an opening of 250 μm, and gravity filtered. At this time, the funnel was set so that the filtrate entered the 200 mL graduated cylinder, and the volume of the filtrate was measured every predetermined time to evaluate the gravity filterability. Further, the appearance of the filtrate was visually evaluated.
Next, an appropriate amount (about 12 g) of the sludge-containing water cake after gravity filtration remaining on the stainless steel test sieve after evaluating gravity filterability was taken out and centrifuged with a nylon filter cloth having an opening of 180 μm inside. Using a settling tube, centrifugal dehydration was performed at 2000 rpm for 10 minutes, and the water content of the obtained dehydrated cake was measured. The test results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4から、公共下水処理場1の汚泥に対して、製造例1、製造例3、製造例12で得られた高分子凝集剤A1、A3、C1では、架橋剤を添加せずに重合した比較製造例4のB4と比較して、高分子凝集剤の添加量は少し増えるものの、フロック径が大きく、重力ろ過性に優れ、ろ液に懸濁成分(SS)の流出が全く見られず、脱水ケーキの含水率が何れも82%以下と低くて優れた。
 さらに、A3よりもメジアン径を小さくしたA1及びA1を造粒処理したC1では、脱水ケーキの含水率が何れも80%未満となり、A3よりも脱水性能に優れた。
From Table 4, the polymer flocculants A1, A3, and C1 obtained in Production Example 1, Production Example 3, and Production Example 12 were polymerized without adding a crosslinking agent to the sludge of the public sewage treatment plant 1. Compared with B4 of Comparative Production Example 4, the amount of the polymer flocculant is slightly increased, but the floc diameter is large, the gravity filterability is excellent, and the suspension component (SS) does not flow out at all in the filtrate. The moisture content of the dehydrated cake was both low and excellent at 82% or less.
Further, in A1 having a median diameter smaller than A3 and C1 obtained by granulating A1, the water content of the dehydrated cake was less than 80%, and the dewatering performance was superior to A3.
<実施例10~18、比較例4~7>
 公共下水処理場2から採取した汚泥について、フロック形成及び遠心脱水処理の卓上試験を実施した。なお、この汚泥の性状は、pH=5.1、TS=41,400mg/L、VTS/TS=72.1質量%、SS=35,300mg/L、VSS/SS=72.4質量%、粗浮遊物/SS=17.5質量%、電気伝導度=252mS/mであった。
 300mLのビーカーに汚泥100mLを採取し、これに、製造例6、製造例11、製造例18、比較製造例4で製造した高分子凝集剤の0.2質量%水溶液を、高分子凝集剤が汚泥質量に対して表5に示す添加量となるように、シリンジでそれぞれ添加した。あとは実施例1と同様に操作して、フロック径、重力ろ過性、ろ液の外観、脱水ケーキの含水率を測定した。これらの試験結果を表5に示した。
<Examples 10 to 18, Comparative Examples 4 to 7>
The sludge collected from the public sewage treatment plant 2 was subjected to desktop tests for floc formation and centrifugal dehydration. In addition, the property of this sludge is pH = 5.1, TS = 41,400 mg / L, VTS / TS = 72.1 mass%, SS = 35,300 mg / L, VSS / SS = 72.4 mass%, Coarse suspended matter / SS = 17.5% by mass, electric conductivity = 252 mS / m.
100 mL of sludge was collected in a 300 mL beaker, and 0.2% by mass aqueous solution of the polymer flocculant produced in Production Example 6, Production Example 11, Production Example 18 and Comparative Production Example 4 was added to the polymer flocculant. It added with the syringe so that it might become the addition amount shown in Table 5 with respect to sludge mass. Thereafter, the same operation as in Example 1 was performed, and the floc diameter, gravity filterability, the appearance of the filtrate, and the moisture content of the dehydrated cake were measured. The test results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5から、公共下水処理場2の汚泥に対しては、架橋剤を添加しなかった比較製造例4の高分子凝集剤B4では、200~400ppmの何れの添加量でも全くフロックが形成しなかった。一方、製造例6、製造例11、製造例18で得られた高分子凝集剤A6、A11、E1では、何れもフロックを形成し、難脱水汚泥用の高分子凝集剤として極めて有効であった。
 特に、架橋度の高い高分子凝集剤A6では、A11やE1と比較して高分子凝集剤の添加量が少し増えるものの、適正な添加量ではフロック径が大きく、重力ろ過性に優れ、ろ液に懸濁成分(SS)の流出が見られず、脱水ケーキの含水率が74%程度と低くて脱水性能に優れた。
 このように、本発明の製造方法により得られた高分子凝集剤を使用すると、難脱水汚泥に対しても優れた脱水性能を示す。
From Table 5, the flocs are not formed at any addition amount of 200 to 400 ppm in the sludge of the public sewage treatment plant 2 in the polymer flocculant B4 of Comparative Production Example 4 in which no crosslinking agent was added. It was. On the other hand, the polymer flocculants A6, A11, E1 obtained in Production Example 6, Production Example 11, and Production Example 18 all formed flocs and were extremely effective as polymer flocculants for hardly dewatered sludge. .
In particular, in the polymer flocculant A6 having a high degree of cross-linking, the amount of the polymer flocculant is slightly increased compared to A11 and E1, but the floc diameter is large and the gravity filterability is excellent when the appropriate amount is added. The suspension component (SS) did not flow out, and the moisture content of the dehydrated cake was as low as about 74%, and the dewatering performance was excellent.
As described above, when the polymer flocculant obtained by the production method of the present invention is used, it exhibits excellent dewatering performance even for hardly dewatered sludge.
<製造例22>
 底面及び壁面とのクリアランスが約1mmとなるようにステンレス製のアンカー翼をセットした容量300mLのステンレス製のセパラブルフラスコに、製造例1の還流脱水工程で得られた脱水率92%のほぼ乾燥した架橋型重合体の粒子が分散したスラリー105gと、結合剤として、製造例1の重合工程で得られた架橋型重合体を含む油中水型重合体エマルション(還流脱水工程前のもの)を重合体として18gを仕込み、200rpmで撹拌しながら、絶対圧13kPaに減圧し、オイルバスを室温から90℃に昇温して減圧乾燥を開始した。このとき、結合剤に含まれる水分は、脱水率92%のスラリー及び結合剤の固形分の合計質量に対して9.5質量%であった。
 途中、架橋型重合体の粒子が分散したスラリーの温度が40~43℃くらいで沸点に達し、ノルマルヘプタンと残りの水を含む蒸気が出始めた。凝縮液の流量を見ながら真空度を調節し、全溶剤量の80質量%以上を蒸発させて、品温が上昇に転じたことを確認後、絶対圧4kPaで30分間の仕上げ乾燥を行った。
<Production Example 22>
Almost dry with a dehydration rate of 92% obtained in the reflux dehydration step of Production Example 1 in a 300 mL stainless separable flask with stainless steel anchor blades set so that the clearance between the bottom surface and the wall surface is about 1 mm. 105 g of the slurry in which the particles of the crosslinked polymer dispersed are dispersed, and a water-in-oil polymer emulsion (before the reflux dehydration step) containing the crosslinked polymer obtained in the polymerization step of Production Example 1 as a binder. 18 g was charged as a polymer, and the pressure was reduced to 13 kPa with stirring at 200 rpm, and the oil bath was heated from room temperature to 90 ° C. to start drying under reduced pressure. At this time, the water content in the binder was 9.5% by mass with respect to the total mass of the slurry having a dehydration rate of 92% and the solid content of the binder.
On the way, the temperature of the slurry in which the particles of the cross-linked polymer were dispersed reached the boiling point at about 40 to 43 ° C., and steam containing normal heptane and the remaining water began to come out. The degree of vacuum was adjusted while observing the flow rate of the condensate, 80% by mass or more of the total amount of solvent was evaporated, and after confirming that the product temperature started to rise, finish drying was performed for 30 minutes at an absolute pressure of 4 kPa. .
 乾燥前にはポリマー粒子が分散した白色のスラリー状だったものが、乾燥が進んでノルマルヘプタンの含量が減ると高粘性の粘土状となり、さらに撹拌しながら乾燥を進めると自然に粒径が数mm以下の分布を持つ凝集物に解れ、最終的には造粒強度の強い乾燥した造粒品へと変化した。また、品温は最大で55~70℃の範囲に到達した。
 乾燥工程を終了後、品温を40℃以下に冷却した後、目開き2.36mmのステンレス製試験篩で篩分して粗粒を除去し、通過するものを造粒品1とした。粗粒については、篩を通過するように解砕して造粒品2とした。造粒品1と造粒品2を混合して高分子凝集剤造粒粉末F1を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表6に示した。
A white slurry with dispersed polymer particles before drying becomes a highly viscous clay as drying progresses and the normal heptane content decreases. It was dissolved into an aggregate having a distribution of less than mm, and finally changed to a dry granulated product having a high granulation strength. Further, the product temperature reached the maximum range of 55 to 70 ° C.
After finishing the drying step, the product temperature was cooled to 40 ° C. or lower, and then sieved with a stainless steel test sieve having an opening of 2.36 mm to remove coarse particles. The coarse particles were crushed so as to pass through a sieve to obtain a granulated product 2. The granulated product 1 and the granulated product 2 were mixed to obtain a polymer flocculant granulated powder F1. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 6.
<製造例24~25>
 結合剤として、製造例1の重合工程で得られた架橋型重合体を含む油中水型重合体エマルションの添加量を表6に示すように変えたこと以外は、製造例22と同様に操作して、高分子凝集剤造粒粉末F3~F4を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表6に示した。
<Production Examples 24 to 25>
The same operation as in Production Example 22 was conducted except that the amount of water-in-oil polymer emulsion containing the crosslinked polymer obtained in the polymerization step of Production Example 1 was changed as shown in Table 6 as the binder. Thus, polymer flocculant granulated powders F3 to F4 were obtained. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 6.
<製造例26>
 結合剤として、製造例1の重合工程で得られた架橋型重合体を含む油中水型重合体エマルションの代わりに水を7g添加したこと以外は、製造例1と同様に操作して、高分子凝集剤造粒粉末F5を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表6に示した。
<Production Example 26>
As a binder, the same procedure as in Production Example 1 was performed except that 7 g of water was added instead of the water-in-oil polymer emulsion containing the crosslinked polymer obtained in the polymerization step of Production Example 1. Molecular flocculant granulated powder F5 was obtained. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 6.
<製造例23>
 初めに結合剤を添加せず、製造例1の還流脱水工程で得られた脱水率92%のスラリー105gのみを仕込み、製造例22と同様に、200rpmで撹拌しながら、絶対圧13kPaに減圧し、オイルバスを室温から90℃に昇温して減圧乾燥を開始した。
 次に、減圧乾燥によって蒸発する予定の全溶剤量の約50質量%のノルマルヘプタン(約27g)が留出した時点で、結合剤として、製造例1の重合工程で得られた架橋型重合体を含む油中水型重合体エマルションを重合体として26gを仕込み、引き続き、200rpmで撹拌しながら、90℃のオイルバス中でノルマルヘプタン及び残りの水が留出しなくなるまで減圧乾燥した。そして、品温が上昇に転じたことを確認後、絶対圧4kPaで30分間の仕上げ乾燥を行った。
 あとは、製造例22と同様に操作して、高分子凝集剤造粒粉末F2を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表6に示した。
<Production Example 23>
First, without adding a binder, only 105 g of the slurry having a dehydration rate of 92% obtained in the reflux dehydration step of Production Example 1 was charged, and the pressure was reduced to 13 kPa with stirring at 200 rpm, as in Production Example 22. The oil bath was heated from room temperature to 90 ° C., and drying under reduced pressure was started.
Next, when about 50% by mass of normal heptane (about 27 g) of the total amount of solvent to be evaporated by drying under reduced pressure is distilled, the crosslinked polymer obtained in the polymerization step of Production Example 1 is used as a binder. 26 g of a water-in-oil polymer emulsion containing as a polymer was charged, followed by drying under reduced pressure in a 90 ° C. oil bath until normal heptane and the remaining water were not distilled while stirring at 200 rpm. And after confirming that the product temperature started to rise, finish drying was performed at an absolute pressure of 4 kPa for 30 minutes.
Thereafter, the same operation as in Production Example 22 was performed to obtain a polymer flocculant granulated powder F2. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 6.
<製造例27>
 初めに結合剤を添加せず、製造例1の還流脱水工程で得られた脱水率92%のスラリー105gのみを仕込み、製造例22と同様に、200rpmで撹拌しながら、絶対圧13kPaに減圧し、オイルバスを室温から90℃に昇温して減圧乾燥を開始した。
 次に、減圧乾燥によって蒸発する予定の全溶剤量の約50質量%のノルマルヘプタン(約27g)が留出した時点で、結合剤として水を3g添加し、スラリーの性状が安定するまで撹拌混合した後、引き続き、200rpmで撹拌しながら、90℃のオイルバス中でノルマルヘプタン及び残りの水が留出しなくなるまで減圧乾燥した。そして、品温が上昇に転じたことを確認後、絶対圧4kPaで30分間の仕上げ乾燥を行った。
 あとは、製造例22と同様に操作して、高分子凝集剤造粒粉末F6を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表6に示した。
<Production Example 27>
First, without adding a binder, only 105 g of the slurry having a dehydration rate of 92% obtained in the reflux dehydration step of Production Example 1 was charged, and the pressure was reduced to 13 kPa with stirring at 200 rpm, as in Production Example 22. The oil bath was heated from room temperature to 90 ° C., and drying under reduced pressure was started.
Next, when about 50% by mass of normal heptane (about 27 g) of the total amount of solvent to be evaporated by drying under reduced pressure is distilled, 3 g of water is added as a binder, and the mixture is stirred and stirred until the properties of the slurry are stabilized. After that, while stirring at 200 rpm, it was dried under reduced pressure in a 90 ° C. oil bath until normal heptane and the remaining water were not distilled. And after confirming that the product temperature started to rise, finish drying was performed at an absolute pressure of 4 kPa for 30 minutes.
Thereafter, the same operation as in Production Example 22 was performed to obtain a polymer flocculant granulated powder F6. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 6.
<比較製造例6>
 結合剤を添加しなかったこと以外は、製造例22と同様に操作して、粉末状の高分子凝集剤G1を得た。また、得られた粉末サンプルの粉体特性及び物性評価を行い、表6に示した。
<Comparative Production Example 6>
A powdery polymer flocculant G1 was obtained in the same manner as in Production Example 22 except that no binder was added. In addition, the powder characteristics and physical properties of the obtained powder samples were evaluated and are shown in Table 6.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表6から明らかなように、結合剤を添加した高分子凝集剤造粒粉末F1~F6では、結合剤を添加しなかったG1と比較して嵩比重が大きく、造粒強度も強くなり、粉体特性が優れた。また、結合剤の添加量が多いほど、嵩比重、造粒強度の両者とも向上する傾向が見られた。
 さらに、物性評価の結果、結合剤の有無や結合剤の添加量に関わらず、0.5%水溶液粘度や0.1%塩粘度等の物性は殆ど変化しなかった。よって、結合剤を添加し、撹拌しながら乾燥及び造粒することで、高分子凝集剤の優れた性能を維持した上で粉体特性を改善することができる。
As is apparent from Table 6, the polymer flocculant granulated powders F1 to F6 with the binder added have a larger bulk specific gravity and a stronger granulation strength than the G1 without the binder added. Excellent body characteristics. Moreover, the tendency for both bulk specific gravity and granulation strength to improve was seen, so that there was much addition amount of binder.
Furthermore, as a result of physical property evaluation, physical properties such as 0.5% aqueous solution viscosity and 0.1% salt viscosity were hardly changed regardless of the presence or absence of the binder and the amount of the binder added. Therefore, by adding a binder, drying and granulating while stirring, the powder characteristics can be improved while maintaining the excellent performance of the polymer flocculant.
<実施例19~27、比較例8~10>
 公共下水処理場1から採取した汚泥について、フロック形成及び遠心脱水処理の卓上試験を実施した。なお、この汚泥の性状は、pH=5.0、TS=30,900mg/L、VTS/TS=84.3質量%、SS=21,100mg/L、VSS/SS=85.8質量%、粗浮遊物/SS=15.2質量%、電気伝導度=262mS/mであった。
 まず300mLのビーカーに汚泥100mLを採取し、これに、製造例1、製造例3、製造例22、比較製造例4で製造した高分子凝集剤の0.2質量%水溶液を、高分子凝集剤が汚泥質量に対して表7に示す添加量となるように、シリンジでそれぞれ添加した。この汚泥を1000rpmで30秒間攪拌し、汚泥をフロック化させ、フロック径を目視で測定した。次に、この凝集した汚泥全量を内径80mm、深さ50mm、目開き250μmのステンレス製試験篩に一気にそそぎ込み、重力ろ過した。このとき、ろ液が200mLのメスシリンダーに入るようにロートをセットしておき、所定時間経過毎にろ液の容量を測定して、重力ろ過性を評価した。また、ろ液の外観を目視で評価した。
 次いで、重力ろ過性を評価後のステンレス製試験篩上に残った重力ろ過後の汚泥の含水ケーキの一部を適量(12g程度)取り出し、目開き180μmのナイロン製ろ布を内部にセットした遠心沈降管を用いて、2000rpmで10分間遠心脱水し、得られた脱水ケーキの含水率を測定した。これらの試験結果を表7に示した。
<Examples 19 to 27, Comparative Examples 8 to 10>
The sludge collected from the public sewage treatment plant 1 was subjected to desktop tests for floc formation and centrifugal dehydration. The properties of this sludge are pH = 5.0, TS = 30,900 mg / L, VTS / TS = 84.3% by mass, SS = 21,100 mg / L, VSS / SS = 85.8% by mass, Crude suspended matter / SS = 15.2% by mass, and electric conductivity = 262 mS / m.
First, 100 mL of sludge was collected in a 300 mL beaker, and a 0.2% by mass aqueous solution of the polymer flocculant produced in Production Example 1, Production Example 3, Production Example 22 and Comparative Production Example 4 was added thereto. Were added with syringes so that the amounts of addition shown in Table 7 with respect to the sludge mass. This sludge was stirred at 1000 rpm for 30 seconds to make the sludge floc, and the floc diameter was measured visually. Next, the total amount of the aggregated sludge was poured into a stainless steel test sieve having an inner diameter of 80 mm, a depth of 50 mm, and an opening of 250 μm, and gravity filtered. At this time, the funnel was set so that the filtrate entered the 200 mL graduated cylinder, and the volume of the filtrate was measured every predetermined time to evaluate the gravity filterability. Further, the appearance of the filtrate was visually evaluated.
Next, an appropriate amount (about 12 g) of the sludge-containing water cake after gravity filtration remaining on the stainless steel test sieve after evaluating gravity filterability was taken out and centrifuged with a nylon filter cloth having an opening of 180 μm inside. Using a settling tube, centrifugal dehydration was performed at 2000 rpm for 10 minutes, and the water content of the obtained dehydrated cake was measured. The test results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
 表7から、公共下水処理場1の汚泥に対して、製造例1、製造例3、製造例22で得られた高分子凝集剤造粒粉末A1、A3、F1では、架橋剤を添加せずに重合した比較製造例4のB4と比較して、高分子凝集剤の添加量は少し増えるものの、フロック径が大きく、重力ろ過性に優れ、ろ液に懸濁成分(SS)の流出が全く見られず、脱水ケーキの含水率が何れも82%以下と低くて優れた。
 さらに、A3よりもメジアン径を小さくしたA1、並びに、A1と同じ製造例1の条件で重合及び還流脱水したポリマーを用い、撹拌しながら乾燥及び造粒したF1では、脱水ケーキの含水率が何れも80%未満となり、A3よりも脱水性能に優れた。
From Table 7, the polymer flocculant granulated powders A1, A3, and F1 obtained in Production Example 1, Production Example 3, and Production Example 22 were not added to the sludge of the public sewage treatment plant 1 without adding a crosslinking agent. Compared with B4 of Comparative Production Example 4 polymerized in the same manner, although the amount of the polymer flocculant added is slightly increased, the floc diameter is large, the gravity filterability is excellent, and the suspension component (SS) flows out completely in the filtrate. The moisture content of the dehydrated cake was as low as 82% or less and was excellent.
Further, in F1, which was polymerized and refluxed and dehydrated under the same conditions of Production Example 1 as A1 with a median diameter smaller than A3, and dried and granulated while stirring, the water content of the dehydrated cake was Was less than 80%, and the dehydration performance was superior to A3.
<実施例28~36、比較例11~14>
 公共下水処理場2から採取した汚泥について、フロック形成及び遠心脱水処理の卓上試験を実施した。なお、この汚泥の性状は、pH=5.1、TS=41,400mg/L、VTS/TS=72.1質量%、SS=35,300mg/L、VSS/SS=72.4質量%、粗浮遊物/SS=17.5質量%、電気伝導度=252mS/mであった。
 300mLのビーカーに汚泥100mLを採取し、これに、製造例6、製造例11、製造例26、比較製造例4で製造した高分子凝集剤の0.2質量%水溶液を、高分子凝集剤が汚泥質量に対して表8に示す添加量となるように、シリンジでそれぞれ添加した。あとは実施例19と同様に操作して、フロック径、重力ろ過性、ろ液の外観、脱水ケーキの含水率を測定した。これらの試験結果を表8に示した。
<Examples 28 to 36, Comparative Examples 11 to 14>
The sludge collected from the public sewage treatment plant 2 was subjected to desktop tests for floc formation and centrifugal dehydration. In addition, the property of this sludge is pH = 5.1, TS = 41,400 mg / L, VTS / TS = 72.1 mass%, SS = 35,300 mg / L, VSS / SS = 72.4 mass%, Coarse suspended matter / SS = 17.5% by mass, electric conductivity = 252 mS / m.
100 mL of sludge was collected in a 300 mL beaker, and 0.2 mass% aqueous solution of the polymer flocculant produced in Production Example 6, Production Example 11, Production Example 26, and Comparative Production Example 4 was added to the polymer flocculant. It added with the syringe so that it might become the addition amount shown in Table 8 with respect to sludge mass. Thereafter, the same operation as in Example 19 was performed to measure the floc diameter, gravity filterability, the appearance of the filtrate, and the moisture content of the dehydrated cake. The test results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 表8から、公共下水処理場2の汚泥に対しては、架橋剤を添加しなかった比較製造例4の高分子凝集剤B4では、200~400ppmの何れの添加量でも全くフロックが形成しなかった。一方、製造例6、製造例11、製造例26で得られた高分子凝集剤造粒粉末A6、A11、F5では、何れもフロックを形成し、難脱水汚泥用の高分子凝集剤として極めて有効であった。
 特に、架橋度の高い高分子凝集剤造粒粉末A6では、A11やF5と比較して高分子凝集剤の添加量が少し増えるものの、適正な添加量ではフロック径が大きく、重力ろ過性に優れ、ろ液に懸濁成分(SS)の流出が見られず、脱水ケーキの含水率が74%程度と低くて脱水性能に優れた。
 このように、本発明の製造方法により得られた高分子凝集剤を使用すると、難脱水汚泥に対しても優れた脱水性能を示す。
From Table 8, the flocs are not formed at all in the amount of 200 to 400 ppm in the polymer flocculant B4 of Comparative Production Example 4 in which no crosslinking agent was added to the sludge of the public sewage treatment plant 2. It was. On the other hand, the polymer flocculant granulated powders A6, A11, and F5 obtained in Production Example 6, Production Example 11, and Production Example 26 all form flocs and are extremely effective as polymer flocculants for hardly dewatered sludge. Met.
In particular, in the polymer flocculant granulated powder A6 having a high degree of cross-linking, the amount of the polymer flocculant is slightly increased compared to A11 and F5, but the floc diameter is large and the gravity filterability is excellent when the appropriate amount is added. In the filtrate, no outflow of the suspended component (SS) was observed, and the water content of the dehydrated cake was as low as about 74%, and the dewatering performance was excellent.
As described above, when the polymer flocculant obtained by the production method of the present invention is used, it exhibits excellent dewatering performance even for hardly dewatered sludge.

Claims (14)

  1.  少なくともカチオン性単量体と架橋性単量体とを含む単量体混合物をエマルション重合して得られる重合体エマルションを乾燥する高分子凝集剤粉末の製造方法であって、以下の工程(A)乃至(D)
    工程(A): 前記単量体混合物の水溶液を含む水相と、水と実質的に非混和性の炭化水素及び界面活性剤を含む油相と、を混合して、乳化粒子のメジアン径が10μm以下の油中水型単量体エマルションを作製する乳化工程、
    工程(B): 前記油中水型単量体エマルション中の前記単量体混合物をラジカル重合開始剤の存在下で重合して、分散相に重合体を含む油中水型重合体エマルションを作製する重合工程、
    工程(C): 前記油中水型重合体エマルションから水及び炭化水素を蒸発させて分離した蒸気を凝縮して得られる水及び炭化水素から成る凝縮液のうち、水を系外に排出するとともに、炭化水素を系内に戻すことにより、下記式(1)で表される脱水率が65~99%の範囲になるまで前記油中水型重合体エマルションから水の一部を除去して重合体の分散液を作製する還流脱水工程であって、用いる前記炭化水素の質量が、前記油中水型重合体エマルションの固形分の質量に対して0.6~2.0倍である還流脱水工程、
    工程(D): 前記分散液から、炭化水素及び水を除去して前記重合体の粉末を作製する乾燥工程、
    を含むことを特徴とする高分子凝集剤粉末の製造方法。
    Figure JPOXMLDOC01-appb-M000001
    A method for producing a polymer flocculant powder for drying a polymer emulsion obtained by emulsion polymerization of a monomer mixture containing at least a cationic monomer and a crosslinkable monomer, comprising the following step (A): To (D)
    Step (A): An aqueous phase containing an aqueous solution of the monomer mixture is mixed with an oil phase containing water and a substantially immiscible hydrocarbon and surfactant, so that the median diameter of the emulsified particles is An emulsification step for producing a water-in-oil monomer emulsion of 10 μm or less,
    Step (B): The monomer mixture in the water-in-oil monomer emulsion is polymerized in the presence of a radical polymerization initiator to produce a water-in-oil polymer emulsion containing a polymer in the dispersed phase. A polymerization process,
    Step (C): Among the condensate composed of water and hydrocarbons obtained by condensing vapor separated from the water-in-oil polymer emulsion by evaporating water and hydrocarbons, water is discharged out of the system. Then, by returning the hydrocarbon to the system, a part of water is removed from the water-in-oil polymer emulsion until the dehydration rate represented by the following formula (1) is in the range of 65 to 99%. A reflux dehydration step for preparing a dispersion of coalescence, wherein the mass of the hydrocarbon used is 0.6 to 2.0 times the mass of the solid content of the water-in-oil polymer emulsion. Process,
    Step (D): A drying step in which hydrocarbons and water are removed from the dispersion to produce the polymer powder.
    A method for producing a polymer flocculant powder comprising:
    Figure JPOXMLDOC01-appb-M000001
  2.  前記単量体混合物が、ノニオン性単量体を含む請求項1に記載の高分子凝集剤粉末の製造方法。 The method for producing a polymer flocculant powder according to claim 1, wherein the monomer mixture contains a nonionic monomer.
  3.  前記カチオン性単量体が、下記一般式(2)で表されるカチオン性単量体の1種又は2種以上を含む請求項1に記載の高分子凝集剤粉末の製造方法。
     
      CH=CR-CO-X-Q-N・Z       ・・・化(2)
     
    (但し、Rは水素原子又はメチル基、R及びRはそれぞれ独立に炭素数1~3のアルキル基又はベンジル基、Rは水素原子、炭素数1~3のアルキル基又はベンジル基であり、同種でも異種でもよい。Xは酸素原子又はNH、Qは炭素数1~4のアルキレン基又は炭素数2~4のヒドロキシアルキレン基、Zは対アニオンをそれぞれ表す。)
    The manufacturing method of the polymer flocculent powder of Claim 1 in which the said cationic monomer contains the 1 type (s) or 2 or more types of the cationic monomer represented by following General formula (2).

    CH 2 = CR 1 -CO-X -Q-N + R 2 R 3 R 4 · Z - ··· of (2)

    (However, R 1 is a hydrogen atom or methyl group, R 2 and R 3 are each independently an alkyl group or benzyl group having 1 to 3 carbon atoms, R 4 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a benzyl group. , and the good be the same or different .X is oxygen or NH, Q is hydroxy alkylene group of the alkylene group or a C 2-4 1 to 4 carbon atoms, Z - represents each pair anion).
  4.  前記カチオン性単量体が、ジメチルアミノエチルアクリレートの塩化メチル第4級塩及びジメチルアミノエチルメタクリレートの塩化メチル第4級塩の少なくとも1種である請求項1に記載の高分子凝集剤粉末の製造方法。 The polymer flocculant powder according to claim 1, wherein the cationic monomer is at least one of methyl chloride quaternary salt of dimethylaminoethyl acrylate and methyl chloride quaternary salt of dimethylaminoethyl methacrylate. Method.
  5.  前記炭化水素が、常圧における沸点が65~180℃の範囲の炭化水素である請求項1に記載の高分子凝集剤粉末の製造方法。 The method for producing a polymer flocculant powder according to claim 1, wherein the hydrocarbon is a hydrocarbon having a boiling point of 65 to 180 ° C at normal pressure.
  6.  前記炭化水素が、ノルマルヘプタンである請求項1に記載の高分子凝集剤粉末の製造方法。 The method for producing a polymer flocculant powder according to claim 1, wherein the hydrocarbon is normal heptane.
  7.  前記界面活性剤のHLB値が3.0~9.0である請求項1に記載の高分子凝集剤粉末の製造方法。 The method for producing a polymer flocculant powder according to claim 1, wherein the surfactant has an HLB value of 3.0 to 9.0.
  8.  前記工程(C)の還流脱水工程が、常圧乃至絶対圧40kPaの減圧条件下で行われる請求項1に記載の高分子凝集剤粉末の製造方法。 The method for producing a polymer flocculant powder according to claim 1, wherein the reflux dehydration step of the step (C) is performed under a reduced pressure condition of normal pressure to absolute pressure of 40 kPa.
  9.  前記工程(D)の乾燥工程が、絶対圧2~20kPaの減圧条件下で行われる請求項1に記載の高分子凝集剤粉末の製造方法。 The method for producing a polymer flocculant powder according to claim 1, wherein the drying step (D) is performed under a reduced pressure condition of 2 to 20 kPa in absolute pressure.
  10.  前記工程(D)の乾燥工程が、前記粉末の品温が50℃以上に到達するまで行う請求項1に記載の高分子凝集剤造粒粉末の製造方法。 The method for producing a polymer flocculant granulated powder according to claim 1, wherein the drying step of the step (D) is performed until the product temperature of the powder reaches 50 ° C or higher.
  11.  前記工程(D)の乾燥工程の後に、以下の工程(E)
    工程(E): 前記重合体の粉末を撹拌して混合しながら結合剤を添加し、湿式撹拌造粒した後に乾燥して前記重合体の粉末を造粒する造粒工程、
    を含む請求項1に記載の高分子凝集剤粉末の製造方法。
    After the drying step of the step (D), the following step (E)
    Step (E): A granulating step of adding the binder while stirring and mixing the polymer powder, drying and granulating the polymer powder after wet stirring granulation,
    The manufacturing method of the polymer flocculent powder of Claim 1 containing this.
  12.  前記結合剤が、けん化度が78.0~95.0mol%、平均分子量が10000~70000のポバール水溶液である請求項11に記載の高分子凝集剤粉末の製造方法。 The method for producing a polymer flocculant powder according to claim 11, wherein the binder is a poval aqueous solution having a saponification degree of 78.0 to 95.0 mol% and an average molecular weight of 10,000 to 70000.
  13.  前記工程(C)の終了後から前記工程(D)の開始前までの間、又は前記工程(D)において、造粒工程(F)を含むことを特徴とする請求項1に記載の高分子凝集剤造粒粉末の製造方法。 2. The polymer according to claim 1, comprising a granulation step (F) from the end of the step (C) to before the start of the step (D), or in the step (D). Method for producing flocculant granulated powder.
  14.  汚泥に、請求項1~請求項13のいずれか1項に記載の製造方法により得られる高分子凝集剤粉末の水溶液を添加して脱水する汚泥の脱水方法。 A method for dewatering sludge, wherein an aqueous solution of the polymer flocculant powder obtained by the production method according to any one of claims 1 to 13 is added to the sludge for dehydration.
PCT/JP2017/023079 2016-06-27 2017-06-22 Method for producing polymer coagulant powder, and sludge dewatering method WO2018003663A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197000085A KR102357817B1 (en) 2016-06-27 2017-06-22 Method for producing polymer flocculant powder and dewatering method of sludge
CN201780038268.6A CN109328099B (en) 2016-06-27 2017-06-22 Method for producing polymer flocculant powder and method for dewatering sludge

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-127083 2016-06-27
JP2016-127084 2016-06-27
JP2016127083A JP6770348B2 (en) 2016-06-27 2016-06-27 Method for producing polymer flocculant powder and method for dehydrating sludge
JP2016127084A JP6770349B2 (en) 2016-06-27 2016-06-27 Method for producing polymer flocculant granulated powder and method for dehydrating sludge

Publications (1)

Publication Number Publication Date
WO2018003663A1 true WO2018003663A1 (en) 2018-01-04

Family

ID=60786384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023079 WO2018003663A1 (en) 2016-06-27 2017-06-22 Method for producing polymer coagulant powder, and sludge dewatering method

Country Status (3)

Country Link
KR (1) KR102357817B1 (en)
CN (1) CN109328099B (en)
WO (1) WO2018003663A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566911A (en) * 1978-11-10 1980-05-20 Hoechst France Powdery cationic high polymer electrolyte based on acrylamide and quaternated or salified dimethylaminoethylacrylate and its manufacture and use
JPH0517509A (en) * 1991-07-11 1993-01-26 Mitsubishi Petrochem Co Ltd Production of highly water-absorbable polymer
JPH0977810A (en) * 1995-09-11 1997-03-25 Mitsubishi Chem Corp Production of water-absorbing resin
JP2001516773A (en) * 1997-09-12 2001-10-02 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド Polymerization methods and products and use of the products
JP2006505653A (en) * 2002-11-04 2006-02-16 ジーイー・ベッツ・インコーポレイテッド Modified polymer flocculant with improved performance characteristics
JP4143604B2 (en) * 2002-08-02 2008-09-03 イオニック ソリューションズ リミテッド Polymer composition, its manufacture and use
JP2010053234A (en) * 2008-08-28 2010-03-11 Hymo Corp Powdered ionic water-soluble polymer and application thereof
JP2012254430A (en) * 2011-06-10 2012-12-27 Hymo Corp Flocculant, and sludge dehydration method using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57534B2 (en) 1973-12-18 1982-01-07
GB9605420D0 (en) 1996-03-15 1996-05-15 Allied Colloids Ltd Polymeric compositions their production and their use
WO2008015769A1 (en) * 2006-08-03 2008-02-07 Hymo Corporation Flocculant composition and process for producing the same
JP2009280648A (en) * 2008-05-20 2009-12-03 Hymo Corp Ionic water-soluble polymer comprising powder, method for producing the same and its application
KR20140080480A (en) * 2011-08-29 2014-06-30 하이모 가부시키가이샤 Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566911A (en) * 1978-11-10 1980-05-20 Hoechst France Powdery cationic high polymer electrolyte based on acrylamide and quaternated or salified dimethylaminoethylacrylate and its manufacture and use
JPH0517509A (en) * 1991-07-11 1993-01-26 Mitsubishi Petrochem Co Ltd Production of highly water-absorbable polymer
JPH0977810A (en) * 1995-09-11 1997-03-25 Mitsubishi Chem Corp Production of water-absorbing resin
JP2001516773A (en) * 1997-09-12 2001-10-02 チバ スペシャルティ ケミカルズ ウォーター トリートメント リミテッド Polymerization methods and products and use of the products
JP4143604B2 (en) * 2002-08-02 2008-09-03 イオニック ソリューションズ リミテッド Polymer composition, its manufacture and use
JP2006505653A (en) * 2002-11-04 2006-02-16 ジーイー・ベッツ・インコーポレイテッド Modified polymer flocculant with improved performance characteristics
JP2010053234A (en) * 2008-08-28 2010-03-11 Hymo Corp Powdered ionic water-soluble polymer and application thereof
JP2012254430A (en) * 2011-06-10 2012-12-27 Hymo Corp Flocculant, and sludge dehydration method using the same

Also Published As

Publication number Publication date
CN109328099A (en) 2019-02-12
KR20190022613A (en) 2019-03-06
KR102357817B1 (en) 2022-01-28
CN109328099B (en) 2021-12-21

Similar Documents

Publication Publication Date Title
KR100399335B1 (en) Amphoteric water-soluble polymer dispersion, preparation method thereof and treating agent containing same
KR101204283B1 (en) Dewatering process
JP6516354B2 (en) Composition comprising non-ionic surfactant and ionic polymer
DK1274652T3 (en) A process for the purification of water by the use of cationic dispersion polymers of low molecular weight
JP2002526253A (en) Dewatering method for hardly dewaterable sludge
JP5700354B2 (en) Sludge dewatering agent and sludge dewatering treatment method
JP5649279B2 (en) Dewatering method for sewage digested sludge
JP6770348B2 (en) Method for producing polymer flocculant powder and method for dehydrating sludge
JP6486006B2 (en) Polymer flocculant and sludge dewatering method using the same
JP6839979B2 (en) A polymer flocculant and a method for producing the same, a method for dehydrating sludge using the polymer flocculant, and a method for evaluating the flocculation performance of the polymer flocculant.
JP6770349B2 (en) Method for producing polymer flocculant granulated powder and method for dehydrating sludge
JP4201419B2 (en) Sludge dewatering agent
JP5906672B2 (en) Sludge dewatering agent and organic sludge dewatering method using the same
JP7362620B2 (en) Polymer flocculant and sludge dewatering method
WO2018003663A1 (en) Method for producing polymer coagulant powder, and sludge dewatering method
JP2020025939A (en) Sludge dewatering method
JP3813366B2 (en) Emulsion and its use
JP6649762B2 (en) Crosslinked polymer flocculant, method for producing the same, and method for treating wastewater using the same
JP5038587B2 (en) Dewatering method for sewage digested sludge
JP2002540941A (en) More active dispersing polymer to aid purification, dewatering and retention and drainage
JP6819718B2 (en) Sludge dewatering agent and sludge dewatering method
JP2022020525A (en) Polymer flocculant composition and sludge treatment method using the same
JP4198252B2 (en) Sludge dewatering agent
JP3458453B2 (en) Sludge dewatering method
JP2017000914A (en) Polymer flocculant, method for production thereof, and dewatering method for sludge using the flocculant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197000085

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17820020

Country of ref document: EP

Kind code of ref document: A1