WO2018003500A1 - Elevator control device - Google Patents

Elevator control device Download PDF

Info

Publication number
WO2018003500A1
WO2018003500A1 PCT/JP2017/021938 JP2017021938W WO2018003500A1 WO 2018003500 A1 WO2018003500 A1 WO 2018003500A1 JP 2017021938 W JP2017021938 W JP 2017021938W WO 2018003500 A1 WO2018003500 A1 WO 2018003500A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
torque
motor
speed
command signal
Prior art date
Application number
PCT/JP2017/021938
Other languages
French (fr)
Japanese (ja)
Inventor
英二 横山
大塚 康司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020187037191A priority Critical patent/KR102084917B1/en
Priority to DE112017003268.7T priority patent/DE112017003268B4/en
Priority to CN201780039216.0A priority patent/CN109328175B/en
Priority to JP2018525031A priority patent/JP6556353B2/en
Publication of WO2018003500A1 publication Critical patent/WO2018003500A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/12Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load

Definitions

  • the present invention relates to an elevator control device, and more particularly to an elevator control device that reduces a start-up shock that occurs when the elevator starts running.
  • a car and a counterweight are suspended by a rope through a sheave connected to a motor.
  • the car is held stationary by the brake, but at the start of traveling, the brake is released and the sheave is rotated by the motor to move up and down.
  • the unbalance torque of the weight difference between the car and the counterweight is transmitted to the motor through the sheave.
  • the unbalance torque acts as a stepped disturbance. Therefore, if the brake is released while the motor torque is zero, the motor (sheave) is affected by the stepped disturbance and Acceleration fluctuations (hereinafter referred to as starting shocks) and car rollback occur. Since both of them deteriorate the ride comfort, measures are required.
  • the load weight of the car is detected, the unbalance torque is estimated, and the torque (torque offset current) that cancels the unbalance torque is generated by the motor.
  • a start control method for releasing the brake is performed.
  • Patent Document 1 the differential calculation is not performed every motor encoder cycle, but is performed in units of a predetermined number of encoder pulses. Therefore, in principle, when the rollback amount is several millimeters to 10 millimeters and the unbalance torque is large, there is a problem that the start shock and the rollback of the car are not sufficiently reduced.
  • the present invention has been made in order to solve the above-mentioned problems, and it is possible to stably reduce the start shock and the rollback of the car by estimating and correcting the unbalance torque after the brake is released in a short time. It is an object to provide an elevator control device.
  • an elevator control apparatus includes a current detection unit that detects a drive current of a motor that rotationally drives a sheave in which a car and a counterweight are suspended by a rope, and the motor.
  • a speed calculation unit that outputs a speed signal of the motor from an output of a rotation amount detection unit that detects a rotation amount of the motor, a speed command generation unit that generates a speed command signal for the motor, the speed command signal, and the speed signal
  • a speed control unit that outputs a torque current command signal; a current control unit that drives the motor so that the drive current follows the torque current command signal; and an amplifier that is a weight difference between the car and the counterweight.
  • An unbalance torque estimator for estimating a balance torque based on the drive current or the torque current command signal and the speed signal; and a torque offset
  • a signal obtained by adding the output signal of the unbalance torque estimator and a value proportional to the speed signal is output, or the unbalance torque is released after the brake that brakes the rotation of the motor is released.
  • a switching unit that selects whether to output an output signal of the estimator; and an addition unit that adds the torque offset current command signal output from the switching unit to the torque current command signal that is an input of the current control unit; I have.
  • the unbalance torque which is the weight difference between the car and the counterweight
  • the unbalance torque estimator based on the motor drive current or the motor torque current command signal and the motor speed detection signal
  • a signal obtained by adding the estimated unbalance torque and a value proportional to the speed signal is output as a torque offset current command signal, or after the brake that brakes the rotation of the motor is released
  • the estimated unbalance torque is Since it is configured to include a switching unit that selects whether to output as a torque offset current command signal, and an addition unit that adds the torque offset current command signal output from the switching unit to the torque current command signal that is input to the current control unit Even if there is unbalance torque when the brake is released, the unbalance torque can be accurately measured in a short time. Since the car vibration with activating the elevator estimated stable state by correcting quickly the suppressing convergence, there is an effect that it is possible to stably reduce the rollback.
  • FIG. 3 is a complex plan view showing the movement of the pole arrangement of the disturbance observer shown in FIGS. 1 and 2.
  • the effect of feedback control using a disturbance estimation signal as a torque offset current signal is a waveform diagram shown in (b) of the figure, where (a) in the figure is the above It is a wave form diagram when there is no feedback control.
  • the effect of the speed feedback control is a waveform diagram shown in (b) of the figure, where (a) is the waveform when there is no speed feedback control.
  • FIG. 1 of the present invention the effect of the change in the pole placement of the disturbance observer is a waveform shown in (b) in the figure, and (a) in the figure shows the case where there is no change in the pole arrangement. It is a waveform diagram. It is a concrete time-axis waveform diagram of the pole arrangement change of the disturbance observer shown in FIG.1 and FIG.2.
  • FIG. 2B is a waveform diagram showing the effect of holding the waveform of the torque offset current signal shown in FIG.
  • FIG. 4A is a waveform diagram when there is no waveform holding.
  • FIG. 10 is an enlarged view of the time axis of FIG. 9, and is a waveform diagram illustrating waveform holding timing.
  • FIG. 12 is an equivalent circuit diagram obtained by modeling the disturbance observer illustrated in FIG. 11.
  • It is a time-axis waveform diagram which shows the difference in the behavior by the timing which stops the speed feedback control by Embodiment 3 of this invention.
  • It is a block diagram which shows the structure of the passage / holding switching part by Embodiment 3 of this invention.
  • It is a figure which shows the timing of the magnification change of the speed feedback gain by Embodiment 3 of this invention.
  • It is the equivalent circuit diagram which modeled the disturbance observer by Embodiment 4 of this invention.
  • FIG. 17 is a specific time axis waveform diagram for changing the cutoff frequency of the band limiting filter of FIG. 16.
  • Embodiment 1 FIG.
  • a sheave 2 is connected to the rotating shaft of the motor 1.
  • a rope 3 is hung on the sheave 2
  • a car 4 is suspended at one end
  • a counterweight 5 is suspended through the rope 3 at the other end.
  • the motor 1 is provided with a pulse encoder 11 for detecting an angle, and speed control described below is executed based on the angle information.
  • a motor angle detection signal that is an output of the pulse encoder 11 is input to the speed calculation unit 12.
  • the speed calculation unit 12 has a function of converting a motor angle detection signal into an angular speed signal of the motor 1 and outputs a speed signal ⁇ .
  • a process of subtracting the speed signal ⁇ from the speed command signal ⁇ _ref which is the output of the speed command generator 13 is performed by the subtractor 14 to obtain a speed error signal ⁇ _err.
  • This speed error signal ⁇ _err is input to the speed control unit 15 and is a speed control that is a result of proportional (P), integral (I), and differential (D) operations so that the speed control is stable and a predetermined performance is obtained.
  • the signal iq_ ⁇ _cont is output.
  • the adding unit 16 generates a torque current command signal iq_t * obtained by adding a speed control signal iq_ ⁇ _cont and a torque offset current signal iq_t * _off described later.
  • the torque current command signal iq_t * is input to the current control unit 9.
  • the current control unit 9 controls the motor drive current signal iq from the current detection unit 10 to be the torque current command signal iq_t * input from the addition unit 16. Therefore, the current control unit 9 supplies the motor drive current iq so as to become the torque current command signal iq_t * to the motor 1.
  • a speed control system is realized in which the speed ⁇ of the motor 1 functions so that the speed error signal ⁇ _err follows the speed command signal ⁇ _ref within a predetermined value.
  • the brake 6 has a state of braking and brake release (hereinafter referred to as release) with respect to the motor 1, and changes state via the brake control unit 8 in response to a brake control command signal BK_cont from the controller 7.
  • release a state of braking and brake release
  • BK_cont a brake control command signal
  • unbalance torque When there is a torque difference from both ends of the rope 3 hung on the sheave 2 (hereinafter referred to as unbalance torque), the torque applied from the rope 3 applied to the sheave 2 when the brake 6 is released is not balanced. This is equivalent to a so-called stepped disturbance acting on the control system, and rollback and startup shocks, and in some cases, car vibrations, occur until the tracking operation of the speed control system is settled.
  • a disturbance observer 17 for estimating the unbalance torque and a pass / hold switching unit 18 are provided, and a function for generating a torque that cancels the unbalance torque based on the unbalance torque estimated by the disturbance observer 17.
  • Torque offset current signal iq_t * _off is generated.
  • the generation of the torque offset current signal iq_t * _off is performed as follows. First, a method for estimating the unbalance torque will be described.
  • the unbalance torque is estimated by the disturbance observer 17.
  • the disturbance observer 17 receives the motor drive current iq and the speed signal ⁇ , and outputs a disturbance estimation signal Di ⁇ .
  • this is a configuration in which the pole arrangement which is a parameter for determining the estimated frequency characteristic (disturbance estimation band) of the disturbance observer 17 is changed by the brake control command signal BK_cont.
  • FIG. 2 shows an equivalent circuit in which the disturbance observer 17 is modeled, and the disturbance observer 17 corresponds to a portion surrounded by a dotted line.
  • Blocks 200 to 203 are models in which the current control unit 9, the motor 1 and the sheave 2 of FIG. 1 are modeled and displayed as a transfer function, and the coefficient K ⁇ of the block 200 indicates a force constant for converting the motor drive current iq into torque.
  • Di is an unbalance torque transmitted from the rope 3 hung on the sheave 2, and is applied to the motor 1 as a step-like disturbance by releasing the brake 6.
  • block 201 represents the addition of unbalance torque Di. 1 / J of the block 202 indicates the amount of torque converted into angular acceleration, and J is defined as the sum of the moment of inertia of the motor 1 and the sheave 2.
  • Block 203 is an integrator that converts angular acceleration into angular velocity.
  • the block 204 models the pulse encoder 11 and the speed calculation unit 12 shown in FIG. 1, and models the encoder resolution characteristics of the pulse encoder 11 and the calculation characteristics for calculating the angular velocity ⁇ from the speed calculation unit 12. .
  • the disturbance observer 17 is a disturbance observer of the minimum dimension type, has the above-described blocks 200 to 203 as an internal model, and is configured to be able to be estimated by defining the unbalance torque Di as a state.
  • the configuration of the disturbance observer 17 may be the same dimensional format.
  • the block 171 is modeled as a coefficient K ⁇ n corresponding to the coefficient K ⁇ of the block 200, the block 172 is an addition block, and the block 173 is a coefficient Jn that models the sum J of the moments of inertia of the motor 1 and the sheave 2 and disturbance.
  • a block which gives a coefficient having the eigenvalue ⁇ (t) of the observer as a parameter a block 174 is a first-order low-pass filter using the eigenvalue ⁇ (t) as a parameter, and a block 175 is an addition block.
  • the eigenvalue ⁇ (t) is defined as a time-dependent function and corresponds to the above-described pole arrangement.
  • the disturbance estimation signal Di ⁇ is input to the sample hold unit 182 after being multiplied by the inverse of the coefficient K ⁇ n in the coefficient block 181 and input to the block 185. Is done.
  • the speed signal ⁇ is multiplied by ⁇ in the coefficient block 184, input to the block 185, and the result added to the output of the coefficient block 181 is given as one input signal of the switch unit 183.
  • the signal holding control of the sample hold unit 182 and the switch switching control of the switch unit 183 are performed based on a signal obtained by delaying the brake control command signal BK_cont by a predetermined time (T1) by the delay unit 186.
  • the output of the switch unit 183 is output as the torque offset current signal iq_t * _off to the adding unit 16 shown in FIG.
  • the torque offset current signal iq_t * _off is set to the signal A obtained by adding the signal obtained by multiplying the disturbance estimation signal Di ⁇ by 1 / K ⁇ n and the signal obtained by multiplying the speed signal ⁇ by ⁇ in the block 185, Alternatively, the signal obtained by multiplying the disturbance estimation signal Di ⁇ by 1 / K ⁇ n to the signal B sampled and held by the sample hold unit 182 at a timing delayed by a predetermined time (T1) by the delay unit 186 from the brake release timing by the brake control command signal BK_cont.
  • T1 a predetermined time
  • the selection by the switch unit 183 is performed by a signal obtained by delaying the brake release signal by the brake control command signal BK_cont by the delay unit 186 by a predetermined time (T1). Accordingly, the passage / hold switching unit 18 passes the signal A obtained by adding the signal obtained by multiplying the disturbance estimation signal Di ⁇ by 1 / K ⁇ n and the signal obtained by multiplying the speed signal ⁇ by ⁇ for a predetermined time (T1) from the release of the brake. Alternatively, whether the signal B sampled and held at a timing delayed by a predetermined time (T1) by the delay unit 186 from the time of brake release of the brake control command signal BK_cont is passed through the signal obtained by multiplying the disturbance estimation signal Di ⁇ by 1 / K ⁇ n. , And a function to be selected by the switch unit 183.
  • the basic configuration of the present invention has been described above. Below, the meaning and effect of this structure are demonstrated.
  • ⁇ Pole arrangement of disturbance observer> The pole (eigenvalue) of the disturbance observer 17 is a time-dependent function ⁇ (t).
  • the disturbance estimation characteristic of the disturbance observer 17 is determined by the arrangement of the poles on the complex plane.
  • the disturbance observer 17 is required to function as an unbalance torque estimator. Therefore, it is necessary to accurately and quickly estimate the unbalance torque Di acting as a step disturbance as viewed from the speed control system.
  • the estimation characteristic of the disturbance observer 17 for estimating this may be set in a wide band as long as the stability of the system permits. That is, in the present embodiment, the eigenvalue ⁇ (t) of the disturbance observer 17 is arranged at a point ⁇ 1 on the real axis far from the origin 0 on the left half surface of the complex plane, as shown in FIG.
  • the coefficient ⁇ of the coefficient block 184 of the pass / hold switching unit 18 in FIG. FIG. 6 shows the result of setting to zero and further disabling the sample hold unit 182 and the switch unit 183 so that the torque offset current signal iq_t * _off is only a signal obtained by multiplying the disturbance estimation signal Di ⁇ by 1 / K ⁇ n.
  • the waveform when there is no feedback control of the disturbance estimation signal Di ⁇ is also shown in FIG.
  • the upper waveform indicates the time variation of the car acceleration
  • ⁇ Effect of speed feedback control> 6 (a) and 6 (b) show waveforms for explaining the effect of reducing the startup shock generated when the disturbance estimation signal Di ⁇ is feedback-controlled by speed feedback (feedback) control.
  • (A) in the figure is a waveform under the same conditions as in (a) of FIG. 5, and is enlarged and displayed in the vertical axis direction.
  • FIG. 6B shows a waveform when ⁇ of the coefficient block 184 is set to a predetermined value (in this case, ⁇ 16 times). It can be seen that the feedback of the speed ⁇ reduces the amplitude of the car acceleration (start-up shock), but persistent vibration remains.
  • the torque offset current signal iq_t * _off is macroscopically a stepped waveform but a waveform on which high-frequency vibration is superimposed.
  • ⁇ Effect of changing pole arrangement> 7A and 7B show waveforms for explaining the effect when the complex plane arrangement of the poles (eigenvalues) of the disturbance observer 17 is changed with time.
  • (A) in the figure shows the same conditions as in (a) in FIG. 6, and shows a waveform when the pole of the disturbance observer 17 is fixed at ⁇ 1 in FIG. 4, and a large starting shock occurs.
  • FIG. 7B shows a waveform when the pole of the disturbance observer 17 is moved to ⁇ 1 after T0 [sec] from the brake release timing as shown in FIG.
  • is a coefficient of 0 or more and less than 1
  • ⁇ 1 indicates that ⁇ 1 is moved to the origin side on the real axis of the left half surface (lower half surface in FIG. 8) of the complex plane.
  • FIG. 8 is a waveform showing an example of the time axis characteristic of the eigenvalue ⁇ (t) of the disturbance observer 17.
  • ⁇ (t) The definition of ⁇ (t) in FIG.
  • (B) of FIG. 7 is a waveform when the eigenvalue ⁇ (t) of the disturbance observer 17 is changed according to the definition of the above formula (1). Compared to (a) in the figure, the upper car vibration amplitude is smaller, but the vibration is sustained. In the lower torque offset current signal iq_t * _off, vibration noise after pole movement is reduced, but low-frequency vibration remains.
  • FIG. (A) in the figure is the same condition as in (b) of FIG. 7 and is the same waveform as in (b) of FIG. 7 and is a waveform when the waveform sample hold of iq_t * _off is not performed.
  • FIG. 9B shows a waveform when the waveform sample and hold of iq_t * _off is performed.
  • the waveform sample hold is performed after a delay time T1 [sec] by the delay unit 186 from the brake release timing. This delay time T1 is selected at the timing when iq_t * _off becomes the convergence value of the stepped waveform.
  • 10A and 10B show waveforms obtained by enlarging the time axis of FIG.
  • the relationship between the pole arrangement change timing (T0) and the waveform sample hold timing (T1) is added.
  • the predetermined time T0 during which the pole (eigenvalue) is moved from the brake release timing has a function of suppressing the vibration component of iq_t * _off that is vibrational. Therefore, it is desirable to set the delay time T1 at a timing after suppressing the vibration at T0.
  • the relationship between T0 and T1 is as follows. T1> T0 Equation (2)
  • the torque offset current signal iq_t * _off is sampled and held T1 hours after the brake release timing, and the car acceleration amplitude becomes small. Further, it can be confirmed that the vibration becomes a convergence vibration and the low-frequency vibration disappears.
  • the disturbance observer 17 is required to function as an estimator of the unbalance torque Di. Since the disturbance observer 17 includes an integral element (functional block 174) inside as shown in FIG. 2, it holds past information. Therefore, if the brake 6 is braked after the car is moved and the previous information remains in the integral element at the next start-up, accurate estimation is hindered.
  • the outputs of the disturbance observer 17 and the pass / hold switching unit 18 may be initialized. If initialization is performed before starting in this way, it is possible to accurately estimate the unbalance torque Di of the disturbance observer 17, and an accurate torque offset current signal iq_t * _off is output, thereby reducing start shock and rollback. Can be suppressed.
  • the disturbance observer 17 estimates the step-like unbalance torque acting on the speed control after releasing the brake at high speed and accurately, and cancels the disturbance estimation signal Di ⁇ , the speed signal ⁇ , and the brake.
  • the disturbance observer 17 By generating and returning a torque offset current signal based on the control command signal, it is possible to suppress the starting shock and the rollback amount.
  • Embodiment 2 the motor drive current signal iq is used as the input signal to the disturbance observer 17, but instead of this, a torque current command signal iq_t * may be used as shown in FIG. According to this configuration, since the calculation of the disturbance observer 17 is configured only with the internal signal of the calculation unit, the system can be created more easily.
  • the disturbance observer 17 in this case is as shown in FIG. Only the input signal of the disturbance observer 17 is changed from the motor drive current signal iq to the torque current command signal iq_t *, and the configuration is the same as that of the first embodiment shown in FIG. 1 and FIG.
  • the disturbance observer 17 is described and explained as an analog system.
  • the disturbance observer 17 may be digitized and configured using a digital operation element such as a digital signal processor and a microcomputer.
  • Embodiment 3 FIG.
  • the end timing of the speed feedback control is limited, thereby enabling higher performance and stable operation.
  • the speed of the motor 1 is obtained by inputting detection information of the pulse encoder 11 that detects the rotation angle of the motor 1 to the speed calculation unit 12.
  • the pulse encoder 11 outputs and detects a 1-pulse waveform every time the rotation angle of the motor 1 reaches a predetermined value.
  • the pulse detection period of the pulse encoder 11 becomes long. Therefore, since the detection update cycle of the motor angle detection signal that is an input signal of the speed calculation unit 12 becomes longer, a detection time delay occurs in the speed signal ⁇ that is the output of the speed calculation unit 12.
  • FIG. 13 shows the transient behavior when the speed feedback gain is set large with respect to the configuration described in the first or second embodiment of the present invention in order to improve the starting shock immediately after the brake is released. From the top of the waveform, the time axis waveform of the car acceleration, torque offset current signal, and motor speed ⁇ is shown.
  • the speed feedback control may be stopped before the stability of the control is impaired. Therefore, the present embodiment has a configuration in which the speed feedback control is stopped at the timing when the speed ⁇ of the motor 1 converges to near zero.
  • the configuration of the pass / hold switching unit 18 according to the present embodiment shown in FIG. 14 is different from the configuration described with reference to FIG. 3 in the first or second embodiment of the present invention in the signal path of the speed signal ⁇ .
  • the speed signal ⁇ is multiplied by ⁇ in the coefficient block 184 and input to the second switch unit 187.
  • the second switch unit 187 is switched ON / OFF by the output signal of the second delay unit 188.
  • FIG. 15 is a time waveform showing the relationship between the delay amount T2 of the second delay unit 188 and the delay amount T0 for determining the polar movement timing of the disturbance observer 17.
  • the input to the second delay unit 188 is a brake control command signal BK_cont, which is a signal delayed by T0 from the brake release timing.
  • the switch unit 187 adds the speed signal ⁇ having the gain ⁇ of the coefficient block 184 to the output of the coefficient block 181 in the addition block 185 until the period T2 elapses from the brake release timing. Is done. When the period T2 has elapsed, the speed signal ⁇ is set to zero. The output of the adder 185 is given as one input signal A of the switch 183.
  • the other configuration is the same as the configuration shown in FIG.
  • a signal A obtained by adding the signal obtained by multiplying the disturbance estimation signal Di ⁇ by 1 / K ⁇ n and the signal obtained by multiplying the speed signal ⁇ by ⁇ by the adder 185 is set as the torque offset current signal iq_t * _off, or
  • the signal A obtained by multiplying the disturbance estimation signal Di ⁇ by 1 / K ⁇ n is used as the torque offset current signal iq_t * _off, or the signal obtained by multiplying the disturbance estimation signal Di ⁇ by 1 / K ⁇ n is delayed from the brake release timing by the brake control command signal BK_cont.
  • the selection by the switch unit 183 and the second switch unit 187 is performed by a signal obtained by delaying the brake release signal by the brake control command signal BK_cont by a predetermined time (T1, T2).
  • the delay amount T2 for determining the end timing of the speed feedback control may be set as follows, for example.
  • FIG. 13B shows a transient response waveform when the delay amount T2 for determining the speed feedback control end timing is shorter than the pole movement timing T0.
  • T2 at this time is selected in a period in which the motor speed ⁇ converges to approximately zero after the peak of the motor speed ⁇ exceeds the peak from the brake release timing.
  • the delay time T2 sets a threshold value at a speed higher than the motor speed ⁇ at which the speed feedback control becomes oscillating with respect to the motor speed ⁇ , and the motor speed ⁇ has a peak after the brake release timing. It is set to the time from exceeding the threshold value to below the above threshold. With this setting, it is possible to suppress the vibration of the torque offset current signal and the motor speed ⁇ and the increase in the car acceleration (starting shock) resulting therefrom during the period T0 seen in FIG. This is shown in the upper waveform of FIG.
  • control system By configuring the control system in this way, it is possible to exert the effect of suppressing the starting shock by speed feedback control, and to avoid an unstable phenomenon due to speed detection delay in the vicinity of the zero speed of speed feedback control. Can do.
  • the disturbance observer 17 has a configuration in which the pole arrangement is changed. Instead, a similar function can be realized only by adding a simple low-pass filter to the output stage of the disturbance observer 17. it can. According to this configuration, it is not necessary to change the pole arrangement of the disturbance observer 17 which is a complicated calculation process, and it is only necessary to change the cutoff frequency of the low-pass filter, so that the system can be created more easily.
  • the disturbance observer 17 in this case is as shown in FIG.
  • Reference numeral 17a denotes a disturbance observer calculation function block, and the pole is a fixed pole that is ⁇ 1 and does not vary with time.
  • Reference numeral 17b denotes a band limiting filter connected in series to the output of the disturbance observer calculation function block 17a, which is a primary low-pass filter in this example.
  • the parameter that determines the cutoff band of the band limiting filter 17b is the cutoff frequency ⁇ (t).
  • ⁇ (t) is changed to a small value after T0 [sec] from the brake control command signal BK_cont, and as a result, the passband is lowered.
  • T0 is the same as in the first to third embodiments. With this configuration, the disturbance estimation band of the disturbance observer 17 can be changed.
  • FIG. 17 shows a specific time axis waveform diagram of the time change of the cutoff frequency of the band limiting filter 17b.
  • ⁇ (t) The definition of ⁇ (t) in FIG.
  • ⁇ (t)
  • T0 ⁇ t ⁇ (t)
  • ⁇ 2 is selected to be a value that can ignore the influence around the phase with respect to ⁇ 1, which is the pole of the disturbance observer 17 described in the first to third embodiments. For example, it may be set to 10 times with respect to ⁇ 1. ⁇ is the same as that described in the first to third embodiments.
  • the disturbance estimation band is changed from the high frequency side to the low frequency side in the same manner as the pole placement change of the disturbance observer 17 described in the first to third embodiments.
  • the effect of changing to can be obtained.
  • the brake control command signal BK_cont is used.
  • any other signal may be used as long as it detects that the brake 6 has been released.
  • a speed signal ⁇ that changes synchronously when the brake is released may be used, and a signal based on this may be substituted. More specifically, the speed signal ⁇ changes to zero when the brake 6 is functioning and changes abruptly when the brake 6 is released. Can be substituted.

Abstract

Provided is an elevator control device with which unbalance torque after brake release can be estimated in a short amount of time and corrected, whereby startup shock and car rollback can be stabilized and reduced. The present invention is provided with: a switching unit for estimating unbalance torque, which is the weight difference between a car and a balancing weight, using an unbalance torque estimator on the basis of motor drive current or a motor torque current command signal, and a motor speed detection signal, the switching unit selecting whether to output, as a torque offset current command signal, a signal obtained by adding the estimated unbalance torque and a value proportional to the speed signal, or to output, as the torque offset current command signal, the estimated unbalance torque after the brake for braking the rotation of the motor is released; and an addition unit for adding, to a torque current command signal which is the input of a current control unit, the torque offset current command signal output from the switching unit.

Description

エレベーターの制御装置Elevator control device
 本発明は、エレベーターの制御装置に関し、特にエレベーターの走行開始時に発生する起動ショックを低減するエレベーターの制御装置に関する。 The present invention relates to an elevator control device, and more particularly to an elevator control device that reduces a start-up shock that occurs when the elevator starts running.
 一般にロープ式エレベーターでは、かごと釣合おもりがモータに接続されたシーブを介してロープにて吊り下げられている。かごは、静止時には、ブレーキにより静止保持されているが、走行開始時にはブレーキを開放して、モータによりシーブを回転させることで昇降を行う。 Generally, in a rope type elevator, a car and a counterweight are suspended by a rope through a sheave connected to a motor. When the car is stationary, the car is held stationary by the brake, but at the start of traveling, the brake is released and the sheave is rotated by the motor to move up and down.
 このとき、ブレーキ開放に伴い、かごと釣合おもりの重量差分のアンバランストルクがシーブを介してモータに伝わる。モータの速度制御から見ると、アンバランストルクはステップ状の外乱として作用するため、モータトルクがゼロの状態でブレーキを開放すると、モータ(シーブ)がそのステップ状の外乱の影響を受け、かごの加速度変動(以下、起動ショックという。)及びかごのロールバックが発生する。両者によって乗り心地が悪化するため、対策が必要となる。 At this time, as the brake is released, the unbalance torque of the weight difference between the car and the counterweight is transmitted to the motor through the sheave. From the viewpoint of motor speed control, the unbalance torque acts as a stepped disturbance. Therefore, if the brake is released while the motor torque is zero, the motor (sheave) is affected by the stepped disturbance and Acceleration fluctuations (hereinafter referred to as starting shocks) and car rollback occur. Since both of them deteriorate the ride comfort, measures are required.
 そこで、起動ショック及びかごのロールバックを低減するために、かごの積載重量を検出し、アンバランストルクを推定し、さらにアンバランストルクを相殺するトルク(トルクオフセット電流)をモータにより発生させてからブレーキを開放する起動制御方式が一般的に行われている。 Therefore, in order to reduce the start shock and the rollback of the car, the load weight of the car is detected, the unbalance torque is estimated, and the torque (torque offset current) that cancels the unbalance torque is generated by the motor. Generally, a start control method for releasing the brake is performed.
 この方式は、かごの積載重量を検出する荷重検出装置が必要になりコストアップとなる。さらに、据付時に荷重検出装置の設置及び調整が必要となる。
 このため、荷重検出装置を用いることなく、起動ショック及びロールバックを低減する制御方式が提案されている(例えば、特許文献1参照)。
 この特許文献1では、起動時のアンバランストルクを、モータエンコーダの角度情報を2階微分演算して角加速度情報とし、さらにモータに掛る総慣性モーメント(かご、シーブ、釣合おもり、ロープなどの慣性モーメントの総和)情報を用いてトルクバイアス指令値として演算し、トルク指令値に加算することにより昇降機械駆動用電動機を制御している。
This method requires a load detection device for detecting the load weight of the car, which increases costs. Furthermore, installation and adjustment of the load detection device are required at the time of installation.
For this reason, the control system which reduces a starting shock and a rollback is proposed, without using a load detection apparatus (for example, refer patent document 1).
In this patent document 1, the unbalanced torque at the time of start-up is obtained by calculating the second-order differential operation of the angle information of the motor encoder to obtain the angular acceleration information. The sum of moment of inertia) information is used to calculate a torque bias command value and add it to the torque command value to control the lifting machine drive motor.
特開2005-132541号公報JP 2005-132541 A
 従来のエレベーターの制御装置は、モータのエンコーダ情報が量子化されているため、マイコンなどの演算手段で離散化された環境で微分演算を行うと、離散化タイミングの値が大きく誤る問題がある。 In conventional elevator control devices, since the encoder information of the motor is quantized, there is a problem that the value of the discretization timing is greatly mistaken when the differential calculation is performed in an environment discretized by a calculation means such as a microcomputer.
 そこで、特許文献1では、微分演算をモータエンコーダ周期毎に行うのではなく、所定のエンコーダパルス数単位に行う構成となっている。
 そのため、原理的にロールバック量が数ミリ乃至10ミリメートルとなり、アンバランストルクが大きい場合は、起動ショック及びかごのロールバックが十分に低減されない問題があった。
Therefore, in Patent Document 1, the differential calculation is not performed every motor encoder cycle, but is performed in units of a predetermined number of encoder pulses.
Therefore, in principle, when the rollback amount is several millimeters to 10 millimeters and the unbalance torque is large, there is a problem that the start shock and the rollback of the car are not sufficiently reduced.
 本発明は、上記の課題を解決するためになされたものであり、ブレーキ開放後のアンバランストルクを短時間に推定して補正することで、起動ショック及びかごのロールバックを安定して低減可能なエレベーターの制御装置を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and it is possible to stably reduce the start shock and the rollback of the car by estimating and correcting the unbalance torque after the brake is released in a short time. It is an object to provide an elevator control device.
 上記の目的を達成するため、本発明に係るエレベーターの制御装置は、かごと釣合おもりがロープにて吊り下げられたシーブを回転駆動するモータの駆動電流を検出する電流検出部と、前記モータの回転量を検出する回転量検出部の出力から前記モータの速度信号を出力する速度演算部と、前記モータに対する速度指令信号を発生する速度指令発生部と、前記速度指令信号及び前記速度信号からトルク電流指令信号を出力する速度制御部と、前記トルク電流指令信号に対し前記駆動電流が追従するように前記モータを駆動する電流制御部と、前記かごと前記釣合おもりの重量差分であるアンバランストルクを、前記駆動電流又は前記トルク電流指令信号と前記速度信号とに基づいて推定するアンバランストルク推定器と、トルクオフセット電流指令信号として、前記アンバランストルク推定器の出力信号と前記速度信号に比例する値とを加算した信号を出力するか、又は前記モータの回転を制動するブレーキが解除された後に前記アンバランストルク推定器の出力信号を出力するかを選択する切替部と、前記電流制御部の入力である前記トルク電流指令信号に前記切替部から出力される前記トルクオフセット電流指令信号を加える加算部と、を備えている。 In order to achieve the above object, an elevator control apparatus according to the present invention includes a current detection unit that detects a drive current of a motor that rotationally drives a sheave in which a car and a counterweight are suspended by a rope, and the motor. A speed calculation unit that outputs a speed signal of the motor from an output of a rotation amount detection unit that detects a rotation amount of the motor, a speed command generation unit that generates a speed command signal for the motor, the speed command signal, and the speed signal A speed control unit that outputs a torque current command signal; a current control unit that drives the motor so that the drive current follows the torque current command signal; and an amplifier that is a weight difference between the car and the counterweight. An unbalance torque estimator for estimating a balance torque based on the drive current or the torque current command signal and the speed signal; and a torque offset As the flow command signal, a signal obtained by adding the output signal of the unbalance torque estimator and a value proportional to the speed signal is output, or the unbalance torque is released after the brake that brakes the rotation of the motor is released. A switching unit that selects whether to output an output signal of the estimator; and an addition unit that adds the torque offset current command signal output from the switching unit to the torque current command signal that is an input of the current control unit; I have.
 本発明によれば、かごと釣合おもりの重量差分であるアンバランストルクを、モータ駆動電流又はモータのトルク電流指令信号とモータの速度検出信号とに基づいてアンバランストルク推定器で推定し、この推定したアンバランストルクと速度信号に比例する値とを加算した信号をトルクオフセット電流指令信号として出力するか、又はモータの回転を制動するブレーキが解除された後に、推定されたアンバランストルクをトルクオフセット電流指令信号として出力するかを選択する切替部と、電流制御部の入力であるトルク電流指令信号に切替部から出力されるトルクオフセット電流指令信号を加える加算部を備えるように構成したので、ブレーキ開放時にアンバランストルクが有る場合においても、アンバランストルクを短時間に正確に推定し補正することで安定した状態でエレベーターを起動させるとともにかご振動を抑制しその収束を迅速化できるので、ロールバックを安定して低減することができる効果がある。 According to the present invention, the unbalance torque, which is the weight difference between the car and the counterweight, is estimated by the unbalance torque estimator based on the motor drive current or the motor torque current command signal and the motor speed detection signal, A signal obtained by adding the estimated unbalance torque and a value proportional to the speed signal is output as a torque offset current command signal, or after the brake that brakes the rotation of the motor is released, the estimated unbalance torque is Since it is configured to include a switching unit that selects whether to output as a torque offset current command signal, and an addition unit that adds the torque offset current command signal output from the switching unit to the torque current command signal that is input to the current control unit Even if there is unbalance torque when the brake is released, the unbalance torque can be accurately measured in a short time. Since the car vibration with activating the elevator estimated stable state by correcting quickly the suppressing convergence, there is an effect that it is possible to stably reduce the rollback.
本発明の実施の形態1によるエレベーターの制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the elevator by Embodiment 1 of this invention. 図1に示す外乱オブザーバのモデル化した等価回路図である。It is the equivalent circuit diagram which modeled the disturbance observer shown in FIG. 図1に示す通過・保持切替部の構成を示すブロック図である。It is a block diagram which shows the structure of the passage / holding switching part shown in FIG. 図1及び図2に示す外乱オブザーバの極配置の移動を示す複素平面図である。FIG. 3 is a complex plan view showing the movement of the pole arrangement of the disturbance observer shown in FIGS. 1 and 2. 本発明の実施の形態1によるエレベーターの制御装置において、外乱推定信号をトルクオフセット電流信号として帰還制御した効果を図中の(b)に示す波形図であり、図中の(a)は、上記の帰還制御が無い場合の波形図である。In the elevator control apparatus according to Embodiment 1 of the present invention, the effect of feedback control using a disturbance estimation signal as a torque offset current signal is a waveform diagram shown in (b) of the figure, where (a) in the figure is the above It is a wave form diagram when there is no feedback control. 本発明の実施の形態1によるエレベーターの制御装置において、速度帰還制御の効果を図中の(b)に示す波形図であり、図中の(a)は、上記速度帰還制御が無い場合の波形図である。In the elevator control apparatus according to Embodiment 1 of the present invention, the effect of the speed feedback control is a waveform diagram shown in (b) of the figure, where (a) is the waveform when there is no speed feedback control. FIG. 本発明の実施の形態1によるエレベーターの制御装置において、外乱オブザーバの極配置変更の効果を図中の(b)に示す波形であり、図中の(a)は、極配置変更が無い場合の波形図である。In the elevator control apparatus according to Embodiment 1 of the present invention, the effect of the change in the pole placement of the disturbance observer is a waveform shown in (b) in the figure, and (a) in the figure shows the case where there is no change in the pole arrangement. It is a waveform diagram. 図1及び図2に示す外乱オブザーバの極配置変更の具体的な時間軸波形図である。It is a concrete time-axis waveform diagram of the pole arrangement change of the disturbance observer shown in FIG.1 and FIG.2. 図1に示すトルクオフセット電流信号の波形保持による効果を図中の(b)に示す波形図であり、図中の(a)は上記の波形保持がない場合の波形図である。FIG. 2B is a waveform diagram showing the effect of holding the waveform of the torque offset current signal shown in FIG. 1, and FIG. 4A is a waveform diagram when there is no waveform holding. 図9の時間軸拡大図であり、波形保持のタイミングを示した波形図である。FIG. 10 is an enlarged view of the time axis of FIG. 9, and is a waveform diagram illustrating waveform holding timing. 本発明の実施の形態2によるエレベーターの制御装置を示すブロック図である。It is a block diagram which shows the control apparatus of the elevator by Embodiment 2 of this invention. 図11に示す外乱オブザーバのモデル化した等価回路図である。FIG. 12 is an equivalent circuit diagram obtained by modeling the disturbance observer illustrated in FIG. 11. 本発明の実施の形態3による速度帰還制御を停止するタイミングによる挙動の違いを示す時間軸波形図である。It is a time-axis waveform diagram which shows the difference in the behavior by the timing which stops the speed feedback control by Embodiment 3 of this invention. 本発明の実施の形態3による通過・保持切替部の構成を示すブロック図である。It is a block diagram which shows the structure of the passage / holding switching part by Embodiment 3 of this invention. 本発明の実施の形態3による速度帰還ゲインの倍率変化のタイミングを示す図である。It is a figure which shows the timing of the magnification change of the speed feedback gain by Embodiment 3 of this invention. 本発明の実施の形態4による外乱オブザーバのモデル化した等価回路図である。It is the equivalent circuit diagram which modeled the disturbance observer by Embodiment 4 of this invention. 図16の帯域制限フィルタの遮断周波数変更の具体的な時間軸波形図である。FIG. 17 is a specific time axis waveform diagram for changing the cutoff frequency of the band limiting filter of FIG. 16.
 以下、本発明に係るエレベーター装置の各実施の形態を、上記の添付図面を参照して詳細に説明する。 Hereinafter, embodiments of an elevator apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
 実施の形態1.
 図1に示す実施の形態1によるエレベーターの制御装置において、モータ1の回転軸にはシーブ2が接続されている。シーブ2にはロープ3が掛けられており、その一端はかご4が吊るされており、他端には釣合おもり5がロープ3を介して吊るされている。モータ1には、角度を検出するパルスエンコーダ11が設置されており、この角度情報に基づいて以下に説明する速度制御が実行される。パルスエンコーダ11の出力であるモータ角度検出信号は速度演算部12に入力される。
Embodiment 1 FIG.
In the elevator control apparatus according to Embodiment 1 shown in FIG. 1, a sheave 2 is connected to the rotating shaft of the motor 1. A rope 3 is hung on the sheave 2, a car 4 is suspended at one end, and a counterweight 5 is suspended through the rope 3 at the other end. The motor 1 is provided with a pulse encoder 11 for detecting an angle, and speed control described below is executed based on the angle information. A motor angle detection signal that is an output of the pulse encoder 11 is input to the speed calculation unit 12.
 速度演算部12では、モータ角度検出信号をモータ1の角速度信号に変換する機能を持ち、速度信号ωを出力する。速度指令発生部13の出力である速度指令信号ω_refから速度信号ωを減算する処理を減算部14にて行い、速度エラー信号ω_errを得る。この速度エラー信号ω_errは、速度制御部15に入力され、速度制御が安定かつ所定の性能が得られるように比例(P)・積分(I)・微分(D)演算された結果である速度制御信号iq_ω_contを出力する。 The speed calculation unit 12 has a function of converting a motor angle detection signal into an angular speed signal of the motor 1 and outputs a speed signal ω. A process of subtracting the speed signal ω from the speed command signal ω_ref which is the output of the speed command generator 13 is performed by the subtractor 14 to obtain a speed error signal ω_err. This speed error signal ω_err is input to the speed control unit 15 and is a speed control that is a result of proportional (P), integral (I), and differential (D) operations so that the speed control is stable and a predetermined performance is obtained. The signal iq_ω_cont is output.
 加算部16では、速度制御信号iq_ω_contと、後述するトルクオフセット電流信号iq_t*_offとを加算したトルク電流指令信号iq_t*を生成する。このトルク電流指令信号iq_t*は電流制御部9に入力される。電流制御部9は、電流検出部10からのモータ駆動電流信号iqが、加算部16から入力されるトルク電流指令信号iq_t*になるように制御する。従って、電流制御部9は、モータ1に対して、トルク電流指令信号iq_t*になるようなモータ駆動電流iqを供給する。
 上記の構成にて、モータ1の速度ωが速度指令信号ω_refに対し速度エラー信号ω_errが所定値以内で追従するように機能する速度制御系が実現される。
The adding unit 16 generates a torque current command signal iq_t * obtained by adding a speed control signal iq_ω_cont and a torque offset current signal iq_t * _off described later. The torque current command signal iq_t * is input to the current control unit 9. The current control unit 9 controls the motor drive current signal iq from the current detection unit 10 to be the torque current command signal iq_t * input from the addition unit 16. Therefore, the current control unit 9 supplies the motor drive current iq so as to become the torque current command signal iq_t * to the motor 1.
With the above configuration, a speed control system is realized in which the speed ω of the motor 1 functions so that the speed error signal ω_err follows the speed command signal ω_ref within a predetermined value.
 ブレーキ6は、モータ1に対し制動と制動解除(以下、開放という。)の状態を持ち、コントローラ7からのブレーキ制御指令信号BK_contにてブレーキ制御部8を介して状態遷移する。かご4を現在階から所定階まで移動させる際は、ブレーキ6を制動状態から開放状態にし、さらにブレーキ開放タイミングにて上述の速度制御系をOFF状態からON状態とする。ON状態になった際の速度指令信号ω_refは零に設定される。 The brake 6 has a state of braking and brake release (hereinafter referred to as release) with respect to the motor 1, and changes state via the brake control unit 8 in response to a brake control command signal BK_cont from the controller 7. When the car 4 is moved from the current floor to the predetermined floor, the brake 6 is changed from the braking state to the released state, and the speed control system is changed from the OFF state to the ON state at the brake release timing. The speed command signal ω_ref at the time of the ON state is set to zero.
 シーブ2に掛けられたロープ3の両端からのトルク差が零の場合は、ブレーキ6の開放時にシーブ2に印加されるロープ3からのトルクが釣り合っているため、起動ショック及びにロールバックは無い。 When the torque difference from both ends of the rope 3 hung on the sheave 2 is zero, the torque from the rope 3 applied to the sheave 2 when the brake 6 is released is balanced, so there is no starting shock and no rollback. .
 シーブ2に掛けられたロープ3の両端からのトルク差(以下、アンバランストルクという。)が存在する場合は、ブレーキ6開放時にシーブ2に印加されるロープ3からのトルクが釣り合っていないため速度制御系にとって所謂ステップ状の外乱が作用したことと等価となり、速度制御系の追従動作が静定するまでの期間、ロールバック及び起動ショック、場合によってはかご振動が発生する。 When there is a torque difference from both ends of the rope 3 hung on the sheave 2 (hereinafter referred to as unbalance torque), the torque applied from the rope 3 applied to the sheave 2 when the brake 6 is released is not balanced. This is equivalent to a so-called stepped disturbance acting on the control system, and rollback and startup shocks, and in some cases, car vibrations, occur until the tracking operation of the speed control system is settled.
 その対策として、アンバランストルクを推定する外乱オブザーバ17と、通過・保持切替部18とを設け、外乱オブザーバ17で推定したアンバランストルクに基づいて、このアンバランストルクを相殺するトルクを発生させる機能を持つトルクオフセット電流信号iq_t*_offを生成する。 As a countermeasure, a disturbance observer 17 for estimating the unbalance torque and a pass / hold switching unit 18 are provided, and a function for generating a torque that cancels the unbalance torque based on the unbalance torque estimated by the disturbance observer 17. Torque offset current signal iq_t * _off is generated.
 トルクオフセット電流信号iq_t*_offの生成は、以下のように行われる。
 まずアンバランストルクを推定する方法について述べる。
 アンバランストルクは、外乱オブザーバ17にて推定する。外乱オブザーバ17は、モータ駆動電流iqと速度信号ωを入力し、外乱推定信号Di^を出力する。また、これは、ブレーキ制御指令信号BK_contによって、外乱オブザーバ17の推定周波数特性(外乱推定帯域)を決定するパラメータである極配置を変化させる構成となっている。
The generation of the torque offset current signal iq_t * _off is performed as follows.
First, a method for estimating the unbalance torque will be described.
The unbalance torque is estimated by the disturbance observer 17. The disturbance observer 17 receives the motor drive current iq and the speed signal ω, and outputs a disturbance estimation signal Di ^. In addition, this is a configuration in which the pole arrangement which is a parameter for determining the estimated frequency characteristic (disturbance estimation band) of the disturbance observer 17 is changed by the brake control command signal BK_cont.
 図2は、外乱オブザーバ17をモデル化した等価回路を示しており、外乱オブザーバ17は点線で囲われた部分に相当する。ブロック200~203は、図1の電流制御部9とモータ1とシーブ2をモデル化し伝達関数表示したものであり、ブロック200の係数Kτはモータ駆動電流iqをトルクに変換する力定数を示し、Diはシーブ2に掛けられたロープ3から伝達されるアンバランストルクであり、ブレーキ6の開放によってステップ状の外乱としてモータ1に印加されるものである。 FIG. 2 shows an equivalent circuit in which the disturbance observer 17 is modeled, and the disturbance observer 17 corresponds to a portion surrounded by a dotted line. Blocks 200 to 203 are models in which the current control unit 9, the motor 1 and the sheave 2 of FIG. 1 are modeled and displayed as a transfer function, and the coefficient Kτ of the block 200 indicates a force constant for converting the motor drive current iq into torque. Di is an unbalance torque transmitted from the rope 3 hung on the sheave 2, and is applied to the motor 1 as a step-like disturbance by releasing the brake 6.
 このブロック図では、ブロック201でアンバランストルクDiの加算を表現している。ブロック202の1/Jはトルクを角加速度に変換する量を示し、Jはモータ1とシーブ2の慣性モーメントとの和で定義したものである。ブロック203は角加速度を角速度に変換する積分器である。ブロック204は、図1に示すパルスエンコーダ11及び速度演算部12をモデル化したもので、パルスエンコーダ11のエンコーダ分解能特性と速度演算部12から角速度ωを演算する演算特性をモデル化したものである。 In this block diagram, block 201 represents the addition of unbalance torque Di. 1 / J of the block 202 indicates the amount of torque converted into angular acceleration, and J is defined as the sum of the moment of inertia of the motor 1 and the sheave 2. Block 203 is an integrator that converts angular acceleration into angular velocity. The block 204 models the pulse encoder 11 and the speed calculation unit 12 shown in FIG. 1, and models the encoder resolution characteristics of the pulse encoder 11 and the calculation characteristics for calculating the angular velocity ω from the speed calculation unit 12. .
 外乱オブザーバ17は、最少次元形式の外乱オブザーバであり、上記のブロック200から203を内部モデルとして有し、かつアンバランストルクDiを状態として定義して推定可能とした構成となっている。なお、外乱オブザーバ17の構成は、同一次元形式でも良い。ブロック171は、ブロック200の係数Kτに対応して係数Kτnとしてモデル化したもの、ブロック172は加算ブロック、ブロック173は、モータ1とシーブ2の慣性モーメントの和Jをモデル化した係数Jnと外乱オブザーバの固有値λ(t)をパラメータとした係数を与えるもの、ブロック174は固有値λ(t)をパラメータとした1次ローパスフィルタ、そして、ブロック175は加算ブロックである。なお、固有値λ(t)は、時間依存の関数として定義されたもので、上記の極配置に相当する。 The disturbance observer 17 is a disturbance observer of the minimum dimension type, has the above-described blocks 200 to 203 as an internal model, and is configured to be able to be estimated by defining the unbalance torque Di as a state. The configuration of the disturbance observer 17 may be the same dimensional format. The block 171 is modeled as a coefficient Kτn corresponding to the coefficient Kτ of the block 200, the block 172 is an addition block, and the block 173 is a coefficient Jn that models the sum J of the moments of inertia of the motor 1 and the sheave 2 and disturbance. A block which gives a coefficient having the eigenvalue λ (t) of the observer as a parameter, a block 174 is a first-order low-pass filter using the eigenvalue λ (t) as a parameter, and a block 175 is an addition block. The eigenvalue λ (t) is defined as a time-dependent function and corresponds to the above-described pole arrangement.
 図3に示す通過・保持切替部18の内部構成において、外乱推定信号Di^は、係数ブロック181にて前記係数Kτnの逆数倍されてサンプルホールド部182に入力されるとともに、ブロック185に入力される。速度信号ωは係数ブロック184にてα倍され、ブロック185に入力され、係数ブロック181の出力と加算された結果がスイッチ部183の一方の入力信号として与えられる。 In the internal configuration of the pass / hold switching unit 18 shown in FIG. 3, the disturbance estimation signal Di ^ is input to the sample hold unit 182 after being multiplied by the inverse of the coefficient Kτn in the coefficient block 181 and input to the block 185. Is done. The speed signal ω is multiplied by α in the coefficient block 184, input to the block 185, and the result added to the output of the coefficient block 181 is given as one input signal of the switch unit 183.
 サンプルホールド部182の信号保持制御とスイッチ部183のスイッチ切替制御は、ブレーキ制御指令信号BK_contを遅延部186にて所定時間(T1)だけ遅延した信号に基づいて行われる。スイッチ部183の出力は、トルクオフセット電流信号iq_t*_offとして、図1に示す加算部16に出力する。 The signal holding control of the sample hold unit 182 and the switch switching control of the switch unit 183 are performed based on a signal obtained by delaying the brake control command signal BK_cont by a predetermined time (T1) by the delay unit 186. The output of the switch unit 183 is output as the torque offset current signal iq_t * _off to the adding unit 16 shown in FIG.
 上記のような構成によって、トルクオフセット電流信号iq_t*_offを、外乱推定信号Di^を1/Kτn倍した信号と速度信号ωをα倍した信号とをブロック185で加算した信号Aとするか、或いは外乱推定信号Di^を1/Kτn倍した信号をブレーキ制御指令信号BK_contによるブレーキ開放タイミングから遅延部186で所定時間(T1)だけ遅延させたタイミングでサンプルホールド部182でサンプルホールドした信号Bにするかを、スイッチ部183により選択する切替機能が実現する。 With the configuration as described above, the torque offset current signal iq_t * _off is set to the signal A obtained by adding the signal obtained by multiplying the disturbance estimation signal Di ^ by 1 / Kτn and the signal obtained by multiplying the speed signal ω by α in the block 185, Alternatively, the signal obtained by multiplying the disturbance estimation signal Di ^ by 1 / Kτn to the signal B sampled and held by the sample hold unit 182 at a timing delayed by a predetermined time (T1) by the delay unit 186 from the brake release timing by the brake control command signal BK_cont. A switching function for selecting whether to perform the switching by the switch unit 183 is realized.
 上記スイッチ部183による選択は、ブレーキ制御指令信号BK_contによるブレーキ開放信号を遅延部186で所定時間(T1)だけ遅延させた信号で行う。従って、通過・保持切替部18は、ブレーキ開放から所定時間(T1)は外乱推定信号Di^を1/Kτn倍した信号と速度信号ωをα倍した信号とを加算した信号Aを通過させるか、或いは外乱推定信号Di^を1/Kτn倍した信号をブレーキ制御指令信号BK_contのブレーキ開放時から遅延部186によって所定時間(T1)だけ遅延させたタイミングでサンプルホールドした信号Bを通過させるかを、スイッチ部183によって選択する機能を有する。 The selection by the switch unit 183 is performed by a signal obtained by delaying the brake release signal by the brake control command signal BK_cont by the delay unit 186 by a predetermined time (T1). Accordingly, the passage / hold switching unit 18 passes the signal A obtained by adding the signal obtained by multiplying the disturbance estimation signal Di ^ by 1 / Kτn and the signal obtained by multiplying the speed signal ω by α for a predetermined time (T1) from the release of the brake. Alternatively, whether the signal B sampled and held at a timing delayed by a predetermined time (T1) by the delay unit 186 from the time of brake release of the brake control command signal BK_cont is passed through the signal obtained by multiplying the disturbance estimation signal Di ^ by 1 / Kτn. , And a function to be selected by the switch unit 183.
 以上は、本発明の基本構成について説明した。以下に、本構成の意味と効果について説明する。
<外乱オブザーバの極配置>
 外乱オブザーバ17の極(固有値)は時間依存の関数λ(t)である。この極の複素平面上の配置によって、外乱オブザーバ17の外乱推定特性が決定される。
The basic configuration of the present invention has been described above. Below, the meaning and effect of this structure are demonstrated.
<Pole arrangement of disturbance observer>
The pole (eigenvalue) of the disturbance observer 17 is a time-dependent function λ (t). The disturbance estimation characteristic of the disturbance observer 17 is determined by the arrangement of the poles on the complex plane.
 本実施の形態において、外乱オブザーバ17は、アンバランストルク推定器としての機能を要求される。従って、速度制御系から見てステップ外乱として作用するアンバランストルクDiを正確かつ高速に推定する必要がある。これを推定する外乱オブザーバ17の推定特性は、系の安定性が許す範囲で広帯域に設定すればよい。すなわち、本実施の形態においては、外乱オブザーバ17の固有値λ(t)を、図4に示す通り、複素平面の左半面において原点0から遠い実軸上の点λ1に配置するものとする。 In the present embodiment, the disturbance observer 17 is required to function as an unbalance torque estimator. Therefore, it is necessary to accurately and quickly estimate the unbalance torque Di acting as a step disturbance as viewed from the speed control system. The estimation characteristic of the disturbance observer 17 for estimating this may be set in a wide band as long as the stability of the system permits. That is, in the present embodiment, the eigenvalue λ (t) of the disturbance observer 17 is arranged at a point λ1 on the real axis far from the origin 0 on the left half surface of the complex plane, as shown in FIG.
<外乱推定信号のみによる帰還制御の効果>
 図5の(b)に、本実施の形態の外乱推定信号Di^による帰還制御だけを行った場合の効果を見るため、図3における、通過・保持切替部18の係数ブロック184の係数αを零に設定し、さらにサンプルホールド部182とスイッチ部183を無効化して、トルクオフセット電流信号iq_t*_offが、外乱推定信号Di^を1/Kτn倍した信号のみとなるように設定した結果を示す。
 比較の為、外乱推定信号Di^の帰還制御が無い場合の波形を図5の(a)に併記している。
<Effect of feedback control using only disturbance estimation signal>
In FIG. 5B, in order to see the effect of performing feedback control only with the disturbance estimation signal Di ^ of the present embodiment, the coefficient α of the coefficient block 184 of the pass / hold switching unit 18 in FIG. FIG. 6 shows the result of setting to zero and further disabling the sample hold unit 182 and the switch unit 183 so that the torque offset current signal iq_t * _off is only a signal obtained by multiplying the disturbance estimation signal Di ^ by 1 / Kτn. .
For comparison, the waveform when there is no feedback control of the disturbance estimation signal Di ^ is also shown in FIG.
 図5の(a)及び(b)において、上側波形はかご加速度の時間変動を示し、下側波形は外乱推定信号(=トルクオフセット電流信号)を示す。図中の(a)に示すように、外乱推定信号Di^の帰還制御が無いと、ブレーキ開放時、かご加速度にピークが発生し、大きな起動ショックが発生していることが分かる。また、4cm程度の大きなロールバックが発生する。 5 (a) and 5 (b), the upper waveform indicates the time variation of the car acceleration, and the lower waveform indicates the disturbance estimation signal (= torque offset current signal). As shown in (a) in the figure, it can be seen that when there is no feedback control of the disturbance estimation signal Di ^, a peak occurs in the car acceleration when the brake is released, and a large starting shock occurs. In addition, a large rollback of about 4 cm occurs.
 外乱推定信号Di^の帰還制御を実行すると、(b)に示すように、トルクオフセット電流信号iq_t*_offとしてアンバランストルクDiを模擬したステップ状の波形が印加されるため、ブレーキ開放後の起動ショックは大幅に低減され、ロールバック量も1mm未満に改善される。 When the feedback control of the disturbance estimation signal Di ^ is executed, as shown in (b), a step-like waveform simulating the unbalance torque Di is applied as the torque offset current signal iq_t * _off. The shock is greatly reduced and the rollback amount is improved to less than 1 mm.
 しかしながら、ブレーキ開放後のかご加速度振動(上側)が持続しており、乗り心地の点で問題がある。これは、外乱オブザーバ17が、かご4並びに釣合おもり5の機構共振(ロープ3の伸び方向の弾性で発生)を外乱として推定する機能を持つものの、かご4の共振振動については観測しておらず制御できないことに起因する。この対策については、後述の極配置変更にて行う。 However, the car acceleration vibration (upper side) continues after the brake is released, which is problematic in terms of ride comfort. This is because the disturbance observer 17 has a function of estimating the mechanical resonance of the car 4 and the counterweight 5 (generated by elasticity in the direction of extension of the rope 3) as a disturbance, but the resonance vibration of the car 4 has not been observed. This is because it cannot be controlled. This countermeasure is performed by changing the pole arrangement described later.
<速度帰還制御の効果>
 図6の(a)及び(b)に、外乱推定信号Di^を帰還制御する際に発生する起動ショックを速度帰還(フィードバック)制御により小さくする効果を説明するための波形を示す。
 図中の(a)は、図5の(a)と同じ条件の波形であり、縦軸方向に拡大表示したものである。図6の(b)は係数ブロック184のαを所定値に設定した(この場合は-16倍)場合の波形である。速度ωの帰還によって、かご加速度の振幅(起動ショック)が小さくなることが判るが、持続的な振動は残留している。また、トルクオフセット電流信号iq_t*_offも、巨視的にはステップ状波形になっているが高周波振動が重畳した波形となっている。
<Effect of speed feedback control>
6 (a) and 6 (b) show waveforms for explaining the effect of reducing the startup shock generated when the disturbance estimation signal Di ^ is feedback-controlled by speed feedback (feedback) control.
(A) in the figure is a waveform under the same conditions as in (a) of FIG. 5, and is enlarged and displayed in the vertical axis direction. FIG. 6B shows a waveform when α of the coefficient block 184 is set to a predetermined value (in this case, −16 times). It can be seen that the feedback of the speed ω reduces the amplitude of the car acceleration (start-up shock), but persistent vibration remains. Also, the torque offset current signal iq_t * _off is macroscopically a stepped waveform but a waveform on which high-frequency vibration is superimposed.
<極配置変更の効果>
 図7の(a)及び(b)に、外乱オブザーバ17の極(固有値)の複素平面配置を時間とともに変更した場合の効果を説明するための波形を示す。
 図中の(a)は、図6の(a)と同じ条件であり、外乱オブザーバ17の極を、図4のλ1に固定した場合の波形を示しており、大きな起動ショックが発生している。図7の(b)は外乱オブザーバ17の極を、図8に示すように、ブレーキ開放タイミングからT0[sec]後にβλ1に移動した場合の波形である。なお、βは0以上1未満の係数であり、βλ1はλ1を複素平面の左半面(図8では下半面)の実軸上を原点側に移動させたものであることを示す。
<Effect of changing pole arrangement>
7A and 7B show waveforms for explaining the effect when the complex plane arrangement of the poles (eigenvalues) of the disturbance observer 17 is changed with time.
(A) in the figure shows the same conditions as in (a) in FIG. 6, and shows a waveform when the pole of the disturbance observer 17 is fixed at λ1 in FIG. 4, and a large starting shock occurs. . FIG. 7B shows a waveform when the pole of the disturbance observer 17 is moved to βλ1 after T0 [sec] from the brake release timing as shown in FIG. Note that β is a coefficient of 0 or more and less than 1, and βλ1 indicates that λ1 is moved to the origin side on the real axis of the left half surface (lower half surface in FIG. 8) of the complex plane.
 図8は、外乱オブザーバ17の固有値λ(t)の時間軸特性の一例を示した波形である。同図のλ(t)の定義は、次式となる。 FIG. 8 is a waveform showing an example of the time axis characteristic of the eigenvalue λ (t) of the disturbance observer 17. The definition of λ (t) in FIG.
 0≦t<T0のとき
   λ(t)=λ1
 T0≦tのとき
   λ(t)=βλ1
ただし、0≦β<1
                   ・・・・・式(1)
When 0 ≦ t <T0, λ (t) = λ1
When T0 ≦ t λ (t) = βλ1
However, 0 ≦ β <1
・ ・ ・ ・ ・ Formula (1)
 なお、図8に示す極配置変更、すなわち固有値λ(t)の変更については、図2において、ブレーキ制御指令信号BK_contが、ブロック173,174に与えられるタイミングを、所定時間T0を以て、外乱推定帯域を高周波側から低周波側に変化させることができる。 For the pole arrangement change shown in FIG. 8, that is, the change of the eigenvalue λ (t), the timing at which the brake control command signal BK_cont is given to the blocks 173 and 174 in FIG. Can be changed from the high frequency side to the low frequency side.
 図7の(b)は外乱オブザーバ17の固有値λ(t)を上記の式(1)の定義で変化させた場合の波形である。図中の(a)に比べ、上側のかご振動振幅が小さくなっているが振動は持続している。下側のトルクオフセット電流信号iq_t*_offは、極移動後の振動ノイズが低減されているが、低周波な振動が残留している。 (B) of FIG. 7 is a waveform when the eigenvalue λ (t) of the disturbance observer 17 is changed according to the definition of the above formula (1). Compared to (a) in the figure, the upper car vibration amplitude is smaller, but the vibration is sustained. In the lower torque offset current signal iq_t * _off, vibration noise after pole movement is reduced, but low-frequency vibration remains.
<波形サンプルホールドの効果>
 図9の(a)及び(b)に、サンプルホールド部182による、トルクオフセット電流信号iq_t*_offにおける波形サンプルホールドの効果を説明するための波形を示す。
 図中の(a)は、図7の(b)と同じ条件であり、図7の(b)と同一波形で、iq_t*_offの波形サンプルホールドを行わない場合の波形である。図9の(b)は、iq_t*_offの波形サンプルホールドを行った場合の波形である。波形サンプルホールドは、ブレーキ開放タイミングから、遅延部186による遅延時間T1[sec]後に行う。この遅延時間T1は、iq_t*_offがステップ状波形の収束値になるタイミングに選定される。
<Effect of waveform sample hold>
9A and 9B show waveforms for explaining the effect of the waveform sample hold on the torque offset current signal iq_t * _off by the sample hold unit 182. FIG.
(A) in the figure is the same condition as in (b) of FIG. 7 and is the same waveform as in (b) of FIG. 7 and is a waveform when the waveform sample hold of iq_t * _off is not performed. FIG. 9B shows a waveform when the waveform sample and hold of iq_t * _off is performed. The waveform sample hold is performed after a delay time T1 [sec] by the delay unit 186 from the brake release timing. This delay time T1 is selected at the timing when iq_t * _off becomes the convergence value of the stepped waveform.
 図10の(a)及び(b)に、図9の時間軸を拡大した波形を示す。極配置変更のタイミング(T0)と波形サンプルホールドのタイミング(T1)の関係を追記している。 10A and 10B show waveforms obtained by enlarging the time axis of FIG. The relationship between the pole arrangement change timing (T0) and the waveform sample hold timing (T1) is added.
 前述の通り、ブレーキ開放タイミングから極(固有値)を移動させる所定時間T0は、振動的であったiq_t*_offの振動成分を抑制する機能を持つ。従って、遅延時間T1は、T0にて振動を抑制した後のタイミングに設定することが望ましい。この場合のT0とT1の関係は次式の通りである。
   T1>T0              ・・・・・式(2)
As described above, the predetermined time T0 during which the pole (eigenvalue) is moved from the brake release timing has a function of suppressing the vibration component of iq_t * _off that is vibrational. Therefore, it is desirable to set the delay time T1 at a timing after suppressing the vibration at T0. In this case, the relationship between T0 and T1 is as follows.
T1> T0 Equation (2)
 図9の(b)に示すように、トルクオフセット電流信号iq_t*_offがブレーキ開放タイミングからT1時間後にサンプルホールドされており、かご加速度の振幅は小さくなる。また、収束振動となり、低周波の振動は無くなることが確認できる。 As shown in FIG. 9B, the torque offset current signal iq_t * _off is sampled and held T1 hours after the brake release timing, and the car acceleration amplitude becomes small. Further, it can be confirmed that the vibration becomes a convergence vibration and the low-frequency vibration disappears.
<外乱オブザーバ出力の初期化>
 外乱オブザーバ17は、アンバランストルクDiの推定器として機能することを要求される。外乱オブザーバ17は、図2に示すように内部に積分要素(機能ブロック174)を含むため、過去の情報を保持する。従って、かご移動後にブレーキ6を制動して、次の起動の際、前記積分要素に前回の情報が残っていると、正確な推定が阻害される。
<Initialization of disturbance observer output>
The disturbance observer 17 is required to function as an estimator of the unbalance torque Di. Since the disturbance observer 17 includes an integral element (functional block 174) inside as shown in FIG. 2, it holds past information. Therefore, if the brake 6 is braked after the car is moved and the previous information remains in the integral element at the next start-up, accurate estimation is hindered.
 これを防止するため、かご4移動後のブレーキ6を制動動作させた時、外乱オブザーバ17と通過・保持切替部18の出力を初期化すれば良い。
 このように起動前に初期化を行えば、外乱オブザーバ17の正確なアンバランストルクDiの推定が可能となるとともに、正確なトルクオフセット電流信号iq_t*_offが出力され、起動ショック並びにロールバックを小さく抑えることができる。
In order to prevent this, when the brake 6 is moved after the car 4 is moved, the outputs of the disturbance observer 17 and the pass / hold switching unit 18 may be initialized.
If initialization is performed before starting in this way, it is possible to accurately estimate the unbalance torque Di of the disturbance observer 17, and an accurate torque offset current signal iq_t * _off is output, thereby reducing start shock and rollback. Can be suppressed.
 以上の構成によれば、外乱オブザーバ17がブレーキ開放後に速度制御に作用するステップ状のアンバランストルクを高速かつ正確に推定し、これをキャンセルするように外乱推定信号Di^と速度信号ωとブレーキ制御指令信号とに基づいてトルクオフセット電流信号を生成し帰還することで、起動ショックとロールバック量を小さく抑えることができる。 According to the above configuration, the disturbance observer 17 estimates the step-like unbalance torque acting on the speed control after releasing the brake at high speed and accurately, and cancels the disturbance estimation signal Di ^, the speed signal ω, and the brake. By generating and returning a torque offset current signal based on the control command signal, it is possible to suppress the starting shock and the rollback amount.
 実施の形態2.
 上記の実施の形態1では、外乱オブザーバ17の入力信号として、モータ駆動電流信号iqを用いたが、この代わりに、図11に示すようにトルク電流指令信号iq_t*を用いても良い。この構成によれば、外乱オブザーバ17の演算が、演算部の内部信号のみで構成されるため、より簡便にシステムを作成することができる。
Embodiment 2. FIG.
In the first embodiment, the motor drive current signal iq is used as the input signal to the disturbance observer 17, but instead of this, a torque current command signal iq_t * may be used as shown in FIG. According to this configuration, since the calculation of the disturbance observer 17 is configured only with the internal signal of the calculation unit, the system can be created more easily.
 この場合の外乱オブザーバ17は図12のようになる。外乱オブザーバ17の入力信号が、モータ駆動電流信号iqからトルク電流指令信号iq_t*に替わっただけで、図1及び図2に示す実施の形態1と同じ構成であり、その効果も同様である。 The disturbance observer 17 in this case is as shown in FIG. Only the input signal of the disturbance observer 17 is changed from the motor drive current signal iq to the torque current command signal iq_t *, and the configuration is the same as that of the first embodiment shown in FIG. 1 and FIG.
 なお、上記の実施の形態では、外乱オブザーバ17をアナログ系で記述し説明したが、デジタル化してデジタルシグナルプロセッサ並びにマイクロコンピュータなどのデジタル演算素子を用いて構成してもよい。 In the above-described embodiment, the disturbance observer 17 is described and explained as an analog system. However, the disturbance observer 17 may be digitized and configured using a digital operation element such as a digital signal processor and a microcomputer.
 実施の形態3.
 本実施の形態は、速度帰還制御の終了タイミングを限定することで、さらに高性能かつ安定した動作を可能にするものである。
Embodiment 3 FIG.
In the present embodiment, the end timing of the speed feedback control is limited, thereby enabling higher performance and stable operation.
 すなわち、図1において、モータ1の速度は、モータ1の回転角度を検出するパルスエンコーダ11の検出情報を速度演算部12に入力して求められる。このパルスエンコーダ11は、モータ1の回転角度が所定値になる毎に1パルスの波形を出力して検出を行うものである。このような構成では、モータ1の回転速度が遅くなると、すなわち回転角度の変化が遅くなると、パルスエンコーダ11のパルス検出周期が長くなる。したがって、速度演算部12の入力信号であるモータ角度検出信号の検出更新周期が長くなるため、速度演算部12の出力である速度信号ωに検出時間遅れが発生する。 That is, in FIG. 1, the speed of the motor 1 is obtained by inputting detection information of the pulse encoder 11 that detects the rotation angle of the motor 1 to the speed calculation unit 12. The pulse encoder 11 outputs and detects a 1-pulse waveform every time the rotation angle of the motor 1 reaches a predetermined value. In such a configuration, when the rotational speed of the motor 1 is slow, that is, when the change of the rotational angle is slow, the pulse detection period of the pulse encoder 11 becomes long. Therefore, since the detection update cycle of the motor angle detection signal that is an input signal of the speed calculation unit 12 becomes longer, a detection time delay occurs in the speed signal ω that is the output of the speed calculation unit 12.
 そして、モータ1の速度が零に近づくと、速度信号ωの検出時間遅れが大きくなり、速度信号ωに基づく速度帰還制御の安定性が損なわれる場合がある。この傾向は、速度帰還ゲイン(図3に示す係数ブロック184のαの絶対値)を大きくすればするほど顕著となる。一方、速度帰還ゲインを大きくすればするほど、起動ショックは小さくなる関係になっており、安定性と起動ショックはトレードオフの関係となっていた。
 従って、本実施の形態では、安定性と起動ショックの抑制を両立させる構成について説明する。
When the speed of the motor 1 approaches zero, the delay in the detection time of the speed signal ω increases, and the stability of the speed feedback control based on the speed signal ω may be impaired. This tendency becomes more prominent as the speed feedback gain (absolute value of α of the coefficient block 184 shown in FIG. 3) is increased. On the other hand, the larger the speed feedback gain is, the smaller the startup shock becomes, and the stability and the startup shock have a trade-off relationship.
Therefore, in the present embodiment, a configuration that achieves both stability and suppression of startup shock will be described.
 図13の(a)は、ブレーキ解放直後の起動ショックを改善するために、本発明の実施の形態1又は2で説明した構成に対し、速度帰還ゲインを大きく設定した場合の過渡挙動を示す。波形上から、かご加速度、トルクオフセット電流信号、及びモータ速度ωの時間軸波形を示す。 (A) of FIG. 13 shows the transient behavior when the speed feedback gain is set large with respect to the configuration described in the first or second embodiment of the present invention in order to improve the starting shock immediately after the brake is released. From the top of the waveform, the time axis waveform of the car acceleration, torque offset current signal, and motor speed ω is shown.
 ブレーキ開放直後のかご加速度は小さく抑えられているが、ブレーキ開放タイミングから極移動タイミングであるT0までの期間にかご加速度の振幅が増加している。この原因は、(a)の最下波形に示すように、モータ速度ωが零になり、速度帰還制御が不安定化したため、モータ速度ωが振動し、トルクオフセット電流信号iq_t*_offも振動したためである。 か Although the car acceleration immediately after the brake is released is kept small, the amplitude of the car acceleration increases during the period from the brake release timing to the pole movement timing T0. This is because, as shown in the bottom waveform of (a), the motor speed ω has become zero, the speed feedback control has become unstable, the motor speed ω has oscillated, and the torque offset current signal iq_t * _off has also oscillated. It is.
 この振動は、モータ1の速度が遅くなり、モータ速度ωの検出時間遅れが大きくなったため、制御の安定性が損なわれた結果である。従って、その対策として、制御の安定性が損なわれる前に速度帰還制御を停止すればよい。このことから、本実施の形態は、モータ1の速度ωが零近傍に収束したタイミングで、速度帰還制御を停止する構成を備える。 This vibration is a result of the stability of the control being impaired because the speed of the motor 1 is reduced and the detection time delay of the motor speed ω is increased. Therefore, as a countermeasure, the speed feedback control may be stopped before the stability of the control is impaired. Therefore, the present embodiment has a configuration in which the speed feedback control is stopped at the timing when the speed ω of the motor 1 converges to near zero.
 図14に示す本実施の形態による通過・保持切替部18の構成は、本発明の実施の形態1又は2において、図3により説明した構成と、速度信号ωの信号経路が異なっている。 The configuration of the pass / hold switching unit 18 according to the present embodiment shown in FIG. 14 is different from the configuration described with reference to FIG. 3 in the first or second embodiment of the present invention in the signal path of the speed signal ω.
 すなわち、速度信号ωは係数ブロック184でα倍され、第2のスイッチ部187に入力される。第2のスイッチ部187は、第2の遅延部188の出力信号により、ON/OFF切替が行われる。 That is, the speed signal ω is multiplied by α in the coefficient block 184 and input to the second switch unit 187. The second switch unit 187 is switched ON / OFF by the output signal of the second delay unit 188.
 図15は、上記第2の遅延部188の遅延量T2と外乱オブザーバ17の極移動タイミングを決定する遅延量T0との関係を示す時間波形である。この第2の遅延部188への入力は、図15の(a)に示すように、ブレーキ制御指令信号BK_contであり、ブレーキ開放タイミングからT0遅延される信号である。 FIG. 15 is a time waveform showing the relationship between the delay amount T2 of the second delay unit 188 and the delay amount T0 for determining the polar movement timing of the disturbance observer 17. As shown in FIG. 15A, the input to the second delay unit 188 is a brake control command signal BK_cont, which is a signal delayed by T0 from the brake release timing.
 スイッチ部187は、図15の(b)に示すように、ブレーキ開放タイミングから期間T2が経過するまでは係数ブロック184のゲインαを有する速度信号ωとして加算ブロック185で係数ブロック181の出力に加算される。そして、期間T2が経過した時点で、速度信号ωをゼロとする。そして、加算部185の出力は、スイッチ183の一方の入力信号Aとして与えられる。
 その他の構成は、図3で示した構成と同一であり、同様の動作を行うので説明を省略する。
As shown in FIG. 15B, the switch unit 187 adds the speed signal ω having the gain α of the coefficient block 184 to the output of the coefficient block 181 in the addition block 185 until the period T2 elapses from the brake release timing. Is done. When the period T2 has elapsed, the speed signal ω is set to zero. The output of the adder 185 is given as one input signal A of the switch 183.
The other configuration is the same as the configuration shown in FIG.
 このような構成により、外乱推定信号Di^を1/Kτn倍した信号と速度信号ωをα倍した信号とを加算部185で加算した信号Aをトルクオフセット電流信号iq_t*_offとするか、又は外乱推定信号Di^を1/Kτn倍した信号Aをトルクオフセット電流信号iq_t*_offとするか、或いは外乱推定信号Di^を1/Kτn倍した信号をブレーキ制御指令信号BK_contによるブレーキ開放タイミングから遅延部(第1の遅延部)186で所定時間(T1)だけ遅延させたタイミングでサンプルホールド部182でサンプルホールドした信号Bをトルクオフセット電流信号iq_t*_offとするかを、スイッチ部183と第2のスイッチ部187とにより選択する機能を実現する。 With such a configuration, a signal A obtained by adding the signal obtained by multiplying the disturbance estimation signal Di ^ by 1 / Kτn and the signal obtained by multiplying the speed signal ω by α by the adder 185 is set as the torque offset current signal iq_t * _off, or The signal A obtained by multiplying the disturbance estimation signal Di ^ by 1 / Kτn is used as the torque offset current signal iq_t * _off, or the signal obtained by multiplying the disturbance estimation signal Di ^ by 1 / Kτn is delayed from the brake release timing by the brake control command signal BK_cont. Whether the signal B sampled and held by the sample and hold unit 182 at the timing delayed by the unit (first delay unit) 186 by the predetermined time (T1) is used as the torque offset current signal iq_t * _off. A function to be selected by the switch unit 187 is realized.
 上記のスイッチ部183と上記の第2のスイッチ部187とによる選択は、ブレーキ制御指令信号BK_contによるブレーキ開放信号を所定時間(T1,T2)だけ遅延させた信号で行う。 The selection by the switch unit 183 and the second switch unit 187 is performed by a signal obtained by delaying the brake release signal by the brake control command signal BK_cont by a predetermined time (T1, T2).
 速度帰還制御は、外乱オブザーバ17の外乱に対する応答時間より高速に機能するように設定されるので、ステップ応答の収束時間は外乱オブザーバ17の収束時間より短くなる。従って、両者の遅延量の関係は、次式のとおりである。
   T2<T0              ・・・・・式(3)
Since the speed feedback control is set to function faster than the response time of the disturbance observer 17 to the disturbance, the convergence time of the step response becomes shorter than the convergence time of the disturbance observer 17. Therefore, the relationship between the delay amounts of the two is as follows.
T2 <T0 Equation (3)
 速度帰還制御の終了タイミングを決定する遅延量T2は、例えば以下のように設定すればよい。図13の(b)は、速度帰還制御終了タイミングを決定する遅延量T2が極移動タイミングT0より短い場合の過渡応答波形を示している。このときのT2は、ブレーキ開放タイミングを起点としてモータ速度ωがピークを超えてから略零に収束する期間に選択されている。 The delay amount T2 for determining the end timing of the speed feedback control may be set as follows, for example. FIG. 13B shows a transient response waveform when the delay amount T2 for determining the speed feedback control end timing is shorter than the pole movement timing T0. T2 at this time is selected in a period in which the motor speed ω converges to approximately zero after the peak of the motor speed ω exceeds the peak from the brake release timing.
 より具体的に言えば、遅延時間T2は、モータ速度ωに対し、速度帰還制御が振動的になるモータ速度ωより早い速度に閾値を設定し、上記モータ速度ωがブレーキ開放タイミング後のピークを越えてから上記閾値以下になるまでの時間に設定する。この設定にすれば、図13の(a)で見られた期間T0内におけるトルクオフセット電流信号及びモータ速度ωの振動とそれに起因するかご加速度(起動ショック)の増加を抑制することが出来る。これは、図13の(b)の上側波形に示されている。 More specifically, the delay time T2 sets a threshold value at a speed higher than the motor speed ω at which the speed feedback control becomes oscillating with respect to the motor speed ω, and the motor speed ω has a peak after the brake release timing. It is set to the time from exceeding the threshold value to below the above threshold. With this setting, it is possible to suppress the vibration of the torque offset current signal and the motor speed ω and the increase in the car acceleration (starting shock) resulting therefrom during the period T0 seen in FIG. This is shown in the upper waveform of FIG.
 このように制御系を構成すれば、速度帰還制御により起動ショックの抑制効果を発揮することが可能で、さらに速度帰還制御の零速度近傍の速度検出遅れに起因する不安定な現象を回避することができる。 By configuring the control system in this way, it is possible to exert the effect of suppressing the starting shock by speed feedback control, and to avoid an unstable phenomenon due to speed detection delay in the vicinity of the zero speed of speed feedback control. Can do.
 実施の形態4.
 上記の実施の形態1から3では、外乱オブザーバ17は極配置を変更する構成であったが、この代わりに、外乱オブザーバ17の出力段に簡便なローパスフィルタを追加するだけで同様の機能を実現できる。この構成によれば、複雑な演算処理となる外乱オブザーバ17の極配置変更が不要で、簡便なローパスフィルタの遮断周波数変更で済むため、より簡便にシステムを作成することができる。
Embodiment 4 FIG.
In the first to third embodiments, the disturbance observer 17 has a configuration in which the pole arrangement is changed. Instead, a similar function can be realized only by adding a simple low-pass filter to the output stage of the disturbance observer 17. it can. According to this configuration, it is not necessary to change the pole arrangement of the disturbance observer 17 which is a complicated calculation process, and it is only necessary to change the cutoff frequency of the low-pass filter, so that the system can be created more easily.
 この場合の外乱オブザーバ17は、図16のようになる。17aは、外乱オブザーバ演算機能ブロックであり、極はλ1で時間によって変動しない固定極となっている。17bは、外乱オブザーバ演算機能ブロック17a出力に直列接続させた帯域制限フィルタであり、この例では一次のローパスフィルタである。帯域制限フィルタ17bの遮断帯域を決定するパラメータは、遮断周波数λ(t)となる。λ(t)は、ブレーキ制御指令信号BK_contからT0[sec]後に小さい値に変更し、結果として通過帯域を低くする。なお、T0の定義は、実施の形態1から3と同じである。本構成で、外乱オブザーバ17の外乱推定帯域を変化させることができる。 The disturbance observer 17 in this case is as shown in FIG. Reference numeral 17a denotes a disturbance observer calculation function block, and the pole is a fixed pole that is λ1 and does not vary with time. Reference numeral 17b denotes a band limiting filter connected in series to the output of the disturbance observer calculation function block 17a, which is a primary low-pass filter in this example. The parameter that determines the cutoff band of the band limiting filter 17b is the cutoff frequency λ (t). λ (t) is changed to a small value after T0 [sec] from the brake control command signal BK_cont, and as a result, the passband is lowered. The definition of T0 is the same as in the first to third embodiments. With this configuration, the disturbance estimation band of the disturbance observer 17 can be changed.
 図17に、帯域制限フィルタ17bの遮断周波数の時間変更の具体的な時間軸波形図を示す。同図のλ(t)の定義は、次式となる。 FIG. 17 shows a specific time axis waveform diagram of the time change of the cutoff frequency of the band limiting filter 17b. The definition of λ (t) in FIG.
 0≦t<T0のとき
   λ(t)=|λ2|
 T0≦tのとき
   λ(t)=|βλ1|
 ここで、λ2は、実施の形態1から3で説明した外乱オブザーバ17の極であるλ1に対し、位相周りの影響を無視できる値に選ばれる。例えば、λ1に対し10倍に設定すれば良い。なお、βは実施の形態1から3で説明したものと同じである。
When 0 ≦ t <T0, λ (t) = | λ2 |
When T0 ≦ t λ (t) = | βλ1 |
Here, λ2 is selected to be a value that can ignore the influence around the phase with respect to λ1, which is the pole of the disturbance observer 17 described in the first to third embodiments. For example, it may be set to 10 times with respect to λ1. Β is the same as that described in the first to third embodiments.
 上記のような構成により、外乱オブザーバ17の出力は帯域制限されるため、実施の形態1から3で述べた外乱オブザーバ17の極配置変更と同様に、前記外乱推定帯域を高周波側から低周波側に変化させる効果を得ることができる。 Since the output of the disturbance observer 17 is band-limited by the configuration as described above, the disturbance estimation band is changed from the high frequency side to the low frequency side in the same manner as the pole placement change of the disturbance observer 17 described in the first to third embodiments. The effect of changing to can be obtained.
 なお、実施の形態1から4では、ブレーキ制御指令信号BK_contを用いているが、ブレーキ6が開放状態になったことを検出する信号であれば他の信号でも良いことは言うまでも無い。例えば、ブレーキ開放時に同期して変化する速度信号ωを利用して、これに基づいた信号で代用しても良い。より具体的には、速度信号ωは、ブレーキ6が機能しているときは零、ブレーキ6が開放状態になったときは急峻に波形変化するので、所定の閾値にて検出すればブレーキ開放信号として代用することができる。 In the first to fourth embodiments, the brake control command signal BK_cont is used. Needless to say, any other signal may be used as long as it detects that the brake 6 has been released. For example, a speed signal ω that changes synchronously when the brake is released may be used, and a signal based on this may be substituted. More specifically, the speed signal ω changes to zero when the brake 6 is functioning and changes abruptly when the brake 6 is released. Can be substituted.
 1 モータ、2 シーブ、3 ロープ、4 かご、5 釣合おもり、6 ブレーキ、7 コントローラ、8 ブレーキ制御部、9 電流制御部、10 電流検出部、11 パルスエンコーダ、12 速度演算部、13 速度指令発生部、14 減算部、15 速度制御部、16 加算部、17 外乱オブザーバ、18 通過・保持切替部。 1 motor, 2 sheaves, 3 ropes, 4 cages, 5 balancing weights, 6 brakes, 7 controllers, 8 brake control units, 9 current control units, 10 current detection units, 11 pulse encoders, 12 speed calculation units, 13 speed commands Generation unit, 14 subtraction unit, 15 speed control unit, 16 addition unit, 17 disturbance observer, 18 pass / hold switching unit.

Claims (8)

  1.  かごと釣合おもりがロープにて吊り下げられたシーブを回転駆動するモータの駆動電流を検出する電流検出部と、
     前記モータの回転量を検出する回転量検出部の出力から前記モータの速度信号を出力する速度演算部と、
     前記モータに対する速度指令信号を発生する速度指令発生部と、
     前記速度指令信号及び前記速度信号からトルク電流指令信号を出力する速度制御部と、
     前記トルク電流指令信号に対し前記駆動電流が追従するように前記モータを駆動する電流制御部と、
     前記かごと前記釣合おもりの重量差分であるアンバランストルクを、前記駆動電流又は前記トルク電流指令信号と前記速度信号とに基づいて推定するアンバランストルク推定器と、
     トルクオフセット電流指令信号として、前記アンバランストルク推定器の出力信号と前記速度信号に比例する値とを加算した信号を出力するか、又は前記モータの回転を制動するブレーキが解除された後に前記アンバランストルク推定器の出力信号を出力するかを選択する切替部と、
     前記電流制御部の入力である前記トルク電流指令信号に前記切替部から出力される前記トルクオフセット電流指令信号を加える加算部と、を備えた
     エレベーターの制御装置。
    A current detection unit that detects a drive current of a motor that rotationally drives a sheave in which a car and a counterweight are suspended by a rope;
    A speed calculation unit that outputs a speed signal of the motor from an output of a rotation amount detection unit that detects the rotation amount of the motor;
    A speed command generator for generating a speed command signal for the motor;
    A speed control unit that outputs a torque current command signal from the speed command signal and the speed signal;
    A current controller that drives the motor such that the drive current follows the torque current command signal;
    An unbalance torque estimator that estimates an unbalance torque that is a weight difference between the car and the counterweight based on the drive current or the torque current command signal and the speed signal;
    As the torque offset current command signal, a signal obtained by adding the output signal of the unbalance torque estimator and a value proportional to the speed signal is output, or the unbalance torque estimator is output after the brake that brakes the rotation of the motor is released. A switching unit for selecting whether to output the output signal of the balance torque estimator;
    An elevator control device comprising: an addition unit that adds the torque offset current command signal output from the switching unit to the torque current command signal that is an input of the current control unit.
  2.  前記アンバランストルク推定器は、前記モータと前記シーブの電気特性及び機械特性をモデル化した外乱オブザーバであり、前記駆動電流又は前記トルク電流指令信号と前記速度信号とを入力し、前記アンバランストルクを外乱推定信号として出力し、さらに前記モータの回転を制動するブレーキが解除された後に、外乱推定帯域を変化させる機能を有する
     請求項1に記載のエレベーターの制御装置。
    The unbalance torque estimator is a disturbance observer that models electrical characteristics and mechanical characteristics of the motor and the sheave, and inputs the drive current or the torque current command signal and the speed signal, and the unbalance torque The elevator control device according to claim 1, further comprising a function of changing a disturbance estimation band after a brake that brakes rotation of the motor is released.
  3.  前記外乱オブザーバは、前記モータの回転を制動するブレーキが解除されたタイミングから第1の経過時間(T0)後に、前記外乱推定帯域を高周波側から低周波側に変化させる
     請求項2に記載のエレベーターの制御装置。
    The elevator according to claim 2, wherein the disturbance observer changes the disturbance estimation band from a high frequency side to a low frequency side after a first elapsed time (T0) from a timing at which a brake that brakes rotation of the motor is released. Control device.
  4.  前記切替部は、前記モータの回転を制動するブレーキが解除されたタイミングから、前記第1の経過時間(T0)より長い第2の経過時間(T1)後に前記外乱推定信号を保持する
     請求項3に記載のエレベーターの制御装置。
    The switching unit holds the disturbance estimation signal after a second elapsed time (T1) longer than the first elapsed time (T0) from a timing at which a brake that brakes rotation of the motor is released. The elevator control device described in 1.
  5.  前記切替部は、
     前記トルクオフセット電流指令信号として、前記アンバランストルク推定器の出力信号と前記速度信号に比例する値とを加算した信号を、前記モータの回転を制動するブレーキが解除されたタイミングから第3の経過時間(T2)後はゼロにする
     請求項1に記載のエレベーターの制御装置。
    The switching unit is
    As the torque offset current command signal, a signal obtained by adding the output signal of the unbalance torque estimator and a value proportional to the speed signal is used as a third time from the release timing of the brake that brakes the rotation of the motor. The elevator control device according to claim 1, wherein zero is set after time (T2).
  6.  前記アンバランストルク推定器は、前記モータと前記シーブの電気特性及び機械特性をモデル化した外乱オブザーバであり、前記駆動電流又は前記トルク電流指令信号と前記速度信号とを入力し、前記アンバランストルクを外乱推定信号として出力するものであり、
     さらに前記外乱オブザーバの出力に直列接続されたローパスフィルタを備え、
     前記ローパスフィルタは、前記モータの回転を制動するブレーキが解除された後に、前記外乱推定信号の外乱推定帯域を変化させる機能を有する
     請求項1に記載のエレベーターの制御装置。
    The unbalance torque estimator is a disturbance observer that models electrical characteristics and mechanical characteristics of the motor and the sheave, and inputs the drive current or the torque current command signal and the speed signal, and the unbalance torque Is output as a disturbance estimation signal,
    Furthermore, a low pass filter connected in series to the output of the disturbance observer is provided,
    The elevator control device according to claim 1, wherein the low-pass filter has a function of changing a disturbance estimation band of the disturbance estimation signal after a brake that brakes rotation of the motor is released.
  7.  前記ローパスフィルタは、前記モータの回転を制動するブレーキが解除された時点から第1の経過時間後、前記外乱推定帯域を高周波側から低周波側に変化させる
     請求項6に記載のエレベーターの制御装置。
    The elevator control device according to claim 6, wherein the low-pass filter changes the disturbance estimation band from a high frequency side to a low frequency side after a first elapsed time from the release of a brake that brakes rotation of the motor. .
  8.  前記アンバランストルク推定器に入力される前記トルク電流指令信号は、前記電流制御部に入力される信号である
     請求項1、2、5、又は6に記載のエレベーターの制御装置。
    The elevator control device according to claim 1, wherein the torque current command signal input to the unbalance torque estimator is a signal input to the current control unit.
PCT/JP2017/021938 2016-06-30 2017-06-14 Elevator control device WO2018003500A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187037191A KR102084917B1 (en) 2016-06-30 2017-06-14 Control device of elevator
DE112017003268.7T DE112017003268B4 (en) 2016-06-30 2017-06-14 ELEVATOR CONTROL DEVICE
CN201780039216.0A CN109328175B (en) 2016-06-30 2017-06-14 Control device for elevator
JP2018525031A JP6556353B2 (en) 2016-06-30 2017-06-14 Elevator control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016130043 2016-06-30
JP2016-130043 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003500A1 true WO2018003500A1 (en) 2018-01-04

Family

ID=60786629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021938 WO2018003500A1 (en) 2016-06-30 2017-06-14 Elevator control device

Country Status (5)

Country Link
JP (1) JP6556353B2 (en)
KR (1) KR102084917B1 (en)
CN (1) CN109328175B (en)
DE (1) DE112017003268B4 (en)
WO (1) WO2018003500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210129158A (en) 2019-03-29 2021-10-27 미쓰비시덴키 가부시키가이샤 elevator control unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850712B (en) * 2019-04-02 2022-04-12 上海三菱电梯有限公司 Automatic correction method for elevator weighing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125945A (en) * 1993-11-08 1995-05-16 Mitsubishi Electric Corp Control device for elevator
JPH11171412A (en) * 1997-12-17 1999-06-29 Hitachi Ltd Elevator control system
JP2000226165A (en) * 1999-02-04 2000-08-15 Toshiba Corp Elevator control device
WO2014034461A1 (en) * 2012-08-29 2014-03-06 三菱電機株式会社 Elevator control apparatus, and elevator control method
CN104649087A (en) * 2013-11-20 2015-05-27 上海三菱电梯有限公司 Elevator control device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB807903A (en) * 1956-09-21 1959-01-21 Gen Electric Co Ltd Improvements in or relating to electric motor control systems
JPS6181375A (en) * 1984-09-29 1986-04-24 株式会社東芝 Controller for alternating current elevator
DE3863233D1 (en) * 1987-05-27 1991-07-18 Inventio Ag LIFT DRIVE WITH CONTROL DEVICE FOR JUMP-FREE MOVING.
JP2503712B2 (en) * 1990-03-08 1996-06-05 三菱電機株式会社 Elevator speed control device
JP2502167B2 (en) * 1990-05-24 1996-05-29 三菱電機株式会社 Elevator speed control device
CN1024336C (en) * 1990-08-29 1994-04-27 三菱电机株式会社 Control system for driving device in hydraulic lifts
US5467004A (en) * 1992-11-24 1995-11-14 Matsushita Electric Industrial Co., Ltd. Motor speed control apparatus for keeping the speed of the motor fixed in the presence of a disturbance torque
JPH06321440A (en) * 1993-05-11 1994-11-22 Mitsubishi Electric Corp Elevator controller
JP2887861B2 (en) * 1994-07-13 1999-05-10 株式会社日立製作所 Elevator control device
JP3260070B2 (en) * 1996-02-21 2002-02-25 フジテック株式会社 AC elevator control device
EP0884264A1 (en) 1997-06-09 1998-12-16 Inventio Ag Method and device for drive control
DE19960903A1 (en) 1999-12-17 2001-06-28 Lenze Gmbh & Co Kg Aerzen Procedure for starting a hoist under load
CN1625519A (en) * 2002-11-29 2005-06-08 三菱电机株式会社 Elevator control system
JP4419517B2 (en) 2003-10-29 2010-02-24 富士電機システムズ株式会社 Control method of motor for driving lifting machine
JP4701171B2 (en) * 2004-03-30 2011-06-15 三菱電機株式会社 Elevator control device
CN101765557B (en) * 2007-07-25 2012-07-25 三菱电机株式会社 Elevator
JP2010120453A (en) * 2008-11-18 2010-06-03 Mitsubishi Electric Corp Disturbance vibration suppressing controller
CN103287937B (en) * 2013-05-09 2015-09-09 深圳市海浦蒙特科技有限公司 Elevator starter torque Automatic adjustment method and system
CN103407850B (en) * 2013-07-31 2015-05-06 日立电梯(中国)有限公司 Elevator intelligent brake control method and device
DE112014005147B4 (en) * 2014-02-06 2020-06-10 Mitsubishi Electric Corporation Elevator control device and elevator control method
CN104176568A (en) * 2014-08-26 2014-12-03 四川建设机械(集团)股份有限公司 Lifter start-stop control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125945A (en) * 1993-11-08 1995-05-16 Mitsubishi Electric Corp Control device for elevator
JPH11171412A (en) * 1997-12-17 1999-06-29 Hitachi Ltd Elevator control system
JP2000226165A (en) * 1999-02-04 2000-08-15 Toshiba Corp Elevator control device
WO2014034461A1 (en) * 2012-08-29 2014-03-06 三菱電機株式会社 Elevator control apparatus, and elevator control method
CN104649087A (en) * 2013-11-20 2015-05-27 上海三菱电梯有限公司 Elevator control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210129158A (en) 2019-03-29 2021-10-27 미쓰비시덴키 가부시키가이샤 elevator control unit
CN113614014A (en) * 2019-03-29 2021-11-05 三菱电机株式会社 Elevator control device
DE112019007113T5 (en) 2019-03-29 2021-12-16 Mitsubishi Electric Corporation Elevator control device
CN113614014B (en) * 2019-03-29 2023-08-29 三菱电机株式会社 Elevator control device

Also Published As

Publication number Publication date
CN109328175B (en) 2021-01-05
CN109328175A (en) 2019-02-12
DE112017003268T5 (en) 2019-03-14
KR102084917B1 (en) 2020-03-05
JP6556353B2 (en) 2019-08-07
KR20190013873A (en) 2019-02-11
DE112017003268B4 (en) 2020-08-06
JPWO2018003500A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP3796261B1 (en) Motor load inertia estimation method
CN104276526B (en) Reduce method and the elevator device that elevator rope waves
JP3228342B2 (en) Elevator speed control
US8638058B2 (en) Positioning control device
JP4840442B2 (en) Suspended load stabilization device
KR101657020B1 (en) Elevator control apparatus, and elevator control method
JP5328940B2 (en) Elevator control device
JP6556353B2 (en) Elevator control device
JP4294344B2 (en) Electric motor control method and control apparatus
WO2019186788A1 (en) Electric motor control device and elevator control device
JP4862752B2 (en) Electric inertia control method
JP4591177B2 (en) Engine test equipment
JP5194660B2 (en) Crane steady rest control apparatus and crane steady rest control method
JP2011160574A (en) Speed control device for motor
JP2010112901A (en) Apparatus for controlling chassis dynamometer
WO2019008650A1 (en) Elevator control device and elevator control method
JP7384025B2 (en) Control equipment and inverter equipment for suspended cranes
JP6614384B1 (en) Servo amplifier and servo system
JP7058799B2 (en) Elevator control device
JP2019133537A (en) Actuator controller and actuator control method
WO2018042920A1 (en) Elevator system and control method therefor
JP5200714B2 (en) Electric inertia control device
JP6827565B2 (en) Electric motor control device
JP5391846B2 (en) Speed estimator design method and speed estimator using speed estimator designed by speed estimator design method
JP2003058256A (en) Active damping method and active damping device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525031

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037191

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17819860

Country of ref document: EP

Kind code of ref document: A1