WO2018003353A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2018003353A1
WO2018003353A1 PCT/JP2017/019295 JP2017019295W WO2018003353A1 WO 2018003353 A1 WO2018003353 A1 WO 2018003353A1 JP 2017019295 W JP2017019295 W JP 2017019295W WO 2018003353 A1 WO2018003353 A1 WO 2018003353A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
support substrate
cap
insulating film
Prior art date
Application number
PCT/JP2017/019295
Other languages
French (fr)
Japanese (ja)
Inventor
伸彦 若林
英一 竹谷
テツヲ 吉岡
純也 西田
ヨーク フロメル
ダーク ヴンシュ
クラウス フォーゲル
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016131710A external-priority patent/JP2018004448A/en
Priority claimed from JP2016131708A external-priority patent/JP2018004447A/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018003353A1 publication Critical patent/WO2018003353A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present disclosure relates to a semiconductor device in which a cavity is formed between a cap substrate and a support substrate, and a sensing unit that outputs a sensor signal corresponding to a physical quantity is provided in the cavity.
  • a semiconductor layer serving as a sensing unit is provided in an airtight chamber (cavity) formed by a cap substrate and a support substrate.
  • a movable portion and a peripheral portion are partitioned by a groove portion.
  • the movable part is movable relative to the cap substrate and the support substrate so that the facing distance between the movable part and the cap substrate changes.
  • the movable portion includes a rectangular frame-shaped frame portion in which an opening portion is formed, and a torsion beam provided so as to connect opposite sides of the opening portion.
  • the torsion beam is supported on the support substrate via the anchor part.
  • the movable part is inclined with respect to the cap substrate about the torsion beam as a rotation axis, and as a result, the opposing distance changes.
  • a fixed electrode is formed on the cap substrate.
  • the physical quantity sensor described in Patent Document 1 converts acceleration applied in the normal direction of the semiconductor layer into rotational movement of the movable portion, and detects acceleration applied to the physical quantity sensor based on a change in capacitance. This is a so-called inertia sensor.
  • the change in electrostatic capacitance formed by the semiconductor layer and the fixed electrode is calculated based on the potential difference between the potential of the semiconductor layer and the potential of the fixed electrode.
  • the potential of the semiconductor layer can be detected by contacting and electrically connecting a pad portion provided on the anchor and a through electrode provided on the cap substrate at a position facing the pad portion.
  • the through electrode for taking out the potential of the semiconductor layer is located immediately above the anchor.
  • the through electrode is larger in size than the pad portion provided on the anchor, and the thermal stress due to thermal expansion or contraction with respect to temperature change is also relatively large, which causes the movable portion to be deformed by the thermal stress.
  • deformation such as warpage occurs in the movable part
  • the distance between the movable part and the fixed electrode changes, so that the capacitance changes. That is, the capacitance is easily affected by thermal noise.
  • an electrode for taking out the potential of the fixed electrode and the semiconductor layer to the outside is provided as a through electrode (TSV).
  • TSV through electrode
  • the through electrode is formed in a through hole that penetrates the cap substrate to which the fixed electrode is bonded.
  • the cap substrate When forming through holes for TSV in the cap substrate, it is preferable that the cap substrate is made as thin as possible from the viewpoint of workability of the holes and size reduction of the sensor. On the other hand, if the cap substrate is too thin, the cap substrate may be distorted in accordance with changes in the surrounding environment such as temperature and stress.
  • the fixed electrode is formed on the cap substrate, there is a risk that the capacitance formed by the semiconductor layer and the fixed electrode may change when thermal strain or stress strain occurs. That is, there is a risk that noise superimposed on acceleration increases.
  • This disclosure is intended to provide a semiconductor device that includes a sensing unit that outputs a sensor signal corresponding to a physical quantity in a cavity and can reduce noise caused by temperature.
  • the semiconductor device has a support substrate having a first surface and a second surface, and the second surface is bonded to the support substrate in a state of facing the first surface.
  • the sensing unit includes a second pad unit that has the same potential as the sensing unit. When the support substrate is viewed from the thickness direction, the first pad portion and the second pad portion are arranged to be shifted from each other.
  • the relay wiring electrically connects the first pad part and the second pad part to each other.
  • the first pad portion connected to the through electrode and the second pad portion connected to the sensing portion are not directly joined but connected via the relay wiring. For this reason, even when the through electrode expands or contracts due to the temperature, it is possible to suppress the thermal stress from being directly transmitted to the second pad portion and thus the sensing portion. Therefore, noise caused by temperature superimposed on the sensor signal output from the sensing unit can be reduced.
  • the semiconductor device includes a support substrate having a first surface and a second surface, and the second surface is bonded to the support substrate in a state of facing the first surface.
  • the through electrode is formed on the support substrate separate from the cap substrate on which the fixed electrode is formed. That is, it is not necessary to form a through hole in the cap substrate. Therefore, the plate thickness of the cap substrate can be arbitrarily set without depending on the specification of the through electrode. As a result, the plate
  • substrate can be set so that the superimposition of the noise to a sensor signal by the distortion resulting from a heat
  • FIG. 1 is a diagram showing the configuration of the inertial sensor according to the first embodiment, and is a cross-sectional view taken along the line II shown in FIG.
  • FIG. 2 is a top view showing the configuration of the inertial sensor according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a process of preparing a first substrate and forming an insulating film
  • FIG. 4 is a cross-sectional view showing a step of forming a recess
  • FIG. 5 is a cross-sectional view showing a process of forming the second substrate
  • FIG. 1 is a diagram showing the configuration of the inertial sensor according to the first embodiment, and is a cross-sectional view taken along the line II shown in FIG.
  • FIG. 2 is a top view showing the configuration of the inertial sensor according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a process of preparing a first substrate and forming an insulating film
  • FIG. 4 is a
  • FIG. 6 is a cross-sectional view showing a process of forming each pad portion.
  • FIG. 7 is a cross-sectional view showing a step of forming a groove and a slit
  • FIG. 8 is a cross-sectional view illustrating a process of forming a bonded substrate and an insulating film
  • FIG. 9 is a cross-sectional view showing a step of forming a recess
  • FIG. 10 is a cross-sectional view showing a process of forming each pad portion and relay wiring
  • FIG. 11 is a cross-sectional view illustrating a process of bonding the support substrate and the cap substrate
  • FIG. 12 is a cross-sectional view showing a process of thinning the bonded substrate
  • FIG. 13 is a cross-sectional view illustrating a process of forming a through hole in a bonded substrate;
  • FIG. 14 is a cross-sectional view showing a process of forming a through electrode,
  • FIG. 15 is a diagram showing a configuration of the inertial sensor according to the second embodiment, and is a cross-sectional view taken along line XV-XV shown in FIG.
  • FIG. 16 is a top view showing the configuration of the inertial sensor according to the second embodiment.
  • FIG. 17 is a cross-sectional view showing the configuration of the inertial sensor according to the third embodiment.
  • 18 is a diagram showing a configuration of the inertial sensor according to the fourth embodiment, and is a cross-sectional view taken along line XVIII-XVIII shown in FIG.
  • FIG. 19 is a top view showing the configuration of the inertial sensor (second substrate) according to the fourth embodiment.
  • FIG. 20 is a cross-sectional view illustrating a process of preparing a first substrate and forming an insulating film
  • FIG. 21 is a cross-sectional view showing a process of forming the second substrate
  • FIG. 22 is a cross-sectional view showing a step of forming a part of each joined body
  • FIG. 23 is a cross-sectional view showing a step of forming a groove and a slit
  • FIG. 24 is a cross-sectional view illustrating a process of forming a bonded substrate and an insulating film and forming a cap substrate side contact;
  • FIG. 20 is a cross-sectional view illustrating a process of preparing a first substrate and forming an insulating film
  • FIG. 21 is a cross-sectional view showing a process of forming the second substrate
  • FIG. 22 is a cross-sectional view showing a step
  • FIG. 25 is a cross-sectional view showing a process of forming a part of each joined body and a relay wiring
  • FIG. 26 is a cross-sectional view showing a process of bonding the support substrate and the cap substrate
  • FIG. 27 is a cross-sectional view showing a process of forming a through-hole while thinning the bonded substrate and the support substrate
  • FIG. 28 is a cross-sectional view showing a step of forming an insulating film in the through hole
  • FIG. 29 is a cross-sectional view showing a step of forming a support substrate side contact.
  • the semiconductor device in the present embodiment is an inertial sensor that detects acceleration, for example.
  • the inertial sensor 100 as a semiconductor device is configured by stacking a support substrate 10 and a cap substrate 40.
  • FIG. 1 is a cross-sectional view taken along the line II shown in FIG.
  • FIG. 2 is a top view of the second substrate 13 of the support substrate 10.
  • the support substrate 10 is an SOI (Silicon on Insulator) substrate in which a second substrate 13 is disposed on the first substrate 11 via an insulating film 12, and the first surface 10 a is an insulating film of the second substrate 12. It is composed of a surface on the side opposite to the 12 side.
  • the first substrate 11 is made of silicon or the like
  • the insulating film 12 is made of an oxide film or a nitride film
  • the second substrate 13 is made of polysilicon or the like.
  • the second substrate 13 is subjected to micromachining to form a groove portion 14, and the movable portion 20 and the peripheral portion 30 are partitioned by the groove portion 14.
  • the first substrate 11 has a portion facing the movable portion 20 in order to prevent the movable portion 20 and the frame portion 22 described later from coming into contact with the first substrate 11 and the insulating film 12.
  • a recess 15 is formed.
  • the recess 15 is formed by a method such as etching, and the insulating film 12 is not formed on the surface of the recess 15.
  • the movable portion 20 includes a rectangular frame-shaped frame portion 22 in which a planar rectangular opening portion 21 is formed, and a torsion beam 23 formed so as to connect opposite sides of the opening portion 21.
  • the movable portion 20 is supported on the first substrate 11 by connecting the torsion beam 23 to the anchor portion 24 on which the insulating film 12 is supported.
  • the extending direction of the torsion beam 23 is defined as the x-axis direction
  • the direction orthogonal to the x-axis is defined as the y-axis direction
  • a direction orthogonal to the xy plane is taken as a z-axis direction. That is, the z-axis direction is a normal direction of the first surface 10 a of the support substrate 10. In other words, the z-axis direction is the thickness direction of the support substrate 10 and the cap substrate 40.
  • the torsion beam 23 is a member serving as a rotation axis that becomes the rotation center of the movable portion 20 when an acceleration in the z-axis direction is applied.
  • the torsion beam 23 in the present embodiment is formed so as to divide the opening 21 into two.
  • the frame portion 22 has an asymmetric shape with respect to the torsion beam 23 so that it can rotate around the torsion beam 23 when an acceleration in the z-axis direction is applied.
  • the frame portion 22 in this embodiment is divided into a first portion 22a and a second portion 22b with the torsion beam 23 as a reference.
  • the frame 22 has a length in the y-axis direction from the torsion beam 23 in the first part 22a to the end of the part farthest from the torsion beam 23 to the end of the part farthest from the torsion beam 23 in the second part 22b. Is shorter than the length in the y-axis direction.
  • the frame portion 22 is configured such that the mass of the first portion 22a is smaller than the mass of the second portion 22b.
  • first pad portion 31, the second pad portion 32, the third pad portion 33, the fourth pad portion 34, and the fifth pad portion 35 are provided on the first surface 10 a of the support substrate 10, that is, the surface of the second substrate 13.
  • an airtight frame 36 are formed.
  • the pad portions 31 to 35 and the airtight frame 36 are made of aluminum, for example, and are formed between the support substrate 10 and the cap substrate 40. In FIG. 2, the formation positions of these elements are indicated by broken lines.
  • the first pad portion 31 is formed in the peripheral portion 30 and connected to a first through electrode 71 described later on the second surface 40a.
  • the second pad portion 32 is formed on the anchor portion 24 and is electrically connected to the movable portion 20.
  • the third pad portion 33 is formed in the peripheral portion 30 and connected to a second through electrode 72 described later on the second surface 40a.
  • the fourth pad portion 34 is formed in the peripheral portion 30 and connected to a third through electrode (not shown) on the second surface 40a.
  • the fifth pad portion 35 is formed in the peripheral portion 30 and connected to a fourth through electrode (not shown) on the second surface 40a.
  • the third through electrode and the fourth through electrode have the same configuration as the first through electrode 71 and are formed side by side along the y-axis direction.
  • the potentials of the first pad portion 31, the third pad portion 33, the fourth pad portion 34, and the fifth pad portion 35 are respectively the first through electrode 71, the second through electrode 72, the third through electrode, and the fourth. It has the same potential as the through electrode, and can be output to the outside through these electrodes. Conversely, if a voltage is applied to these electrodes, the corresponding pad portion can be brought to a desired potential.
  • first pad portion 31 and the second pad portion 32 are connected and electrically connected to each other by a relay wiring 63 described later. That is, the potential of the movable portion 20 can be taken out from the first through electrode 71.
  • the airtight frame 36 is formed in a frame shape so as to surround the movable portion 20 (groove portion 14). Since the hermetic frame 36 is formed between the support substrate 10 and the cap substrate 40, the region surrounded by the hermetic frame 36, the support substrate 10 and the cap substrate 40 is an airtight space isolated from the outside. ing. A cavity corresponds to the isolation space. Hereinafter, this isolation space is referred to as a cavity 80. A spacer that is outside the hermetic frame 35 and is sandwiched between the support substrate 10 and the cap substrate 40 may be separately formed. The spacer maintains the distance between the support substrate 10 and the cap substrate 40, and can be composed of an insulating film such as an oxide film.
  • the second substrate 13 in the support substrate 10 has a plurality of slits 50 in the outer peripheral portion 30 as shown in FIGS.
  • the second substrate 13 in this embodiment has a first type slit 51 and a second type slit 52.
  • the first type slit 51 and the second type slit 52 may be collectively referred to as a slit 50.
  • the first type slit 51 is formed in a substantially annular shape so as to surround a contact portion of the second substrate 13 with the first pad portion 31, the third pad portion 33, the fourth pad portion 34, and the fifth pad portion 35. ing. As shown in FIG. 2, the first type slit 51 surrounding the contact portion with the first pad portion 31 is annular, and the region surrounded by the slit is hereinafter referred to as a joint portion 30a. That is, the peripheral portion 30 is partitioned by the first type slit 51 into a joint portion 30a and a base body portion 30b excluding the joint portion 30a. In the present embodiment, as shown in FIG. 1, the first type slit 51 does not reach the first substrate 11 or the insulating film 12, but the present invention is not limited to this.
  • the joint part 30 a and the base part 30 b are concepts including the first substrate 11 and the insulating film 12.
  • a first type slit 51 is formed so as to surround a contact portion of the second substrate 13 with the third pad portion 33.
  • the first type slit 51 corresponding to the third pad portion 33 does not form a complete ring, but forms a C shape with a part missing.
  • the first type slit 51 is formed so as to surround the contact portion with the fourth pad portion 34 of the second substrate 13, and the first type slit 51 is set so as to surround the contact portion with the fifth pad portion 35. Is formed.
  • the first type slit 51 corresponding to the fourth pad portion 34 and the fifth pad portion 35 has an annular shape, and divides the joint portion 30a and the base portion 30b.
  • the second type slit 52 is formed in a frame shape so as to include the movable portion 20 and contact portions of the peripheral portion 30 with the pad portions 31, 33 to 35 inside. Yes.
  • the second type slit 52 in this embodiment is formed in a rectangular shape along the airtight frame 36 in the frame where the airtight frame 36 is formed.
  • the second type slit 52 partitions the second substrate 13 into an outer peripheral part 30c that is outside the frame of the second type slit 52 and an inner peripheral part 30d that is inside the frame.
  • the outer peripheral portion 30c is a region of the support substrate 10 where the airtight frame 36 is joined.
  • the inner peripheral part 30d is an area including the movable part 20 and the above-described joint part 30a.
  • the cap substrate 40 includes a bonded substrate 41, an insulating film 42 formed on one surface of the bonded substrate 41 facing the support substrate 10, and the bonded substrate 41 on the support substrate 10 side. And an insulating film 43 formed on the opposite surface.
  • a second surface 40 a of the cap substrate 40 is formed on the surface of the insulating film 42 facing the support substrate 10.
  • the bonded substrate 41 is made of silicon
  • the insulating film 42 is made of an oxide film or a nitride film
  • the insulating film 43 is made of TEOS or the like.
  • the first fixed electrode 61 and the second fixed electrode 62 are formed on the second surface 40a of the cap substrate 40.
  • the first fixed electrode 61 and the second fixed electrode 62 may be collectively referred to as a fixed electrode 60.
  • the fixed electrode 60 is disposed so as to face the support substrate 10 and is formed so as not to contact the first surface 10a.
  • the first fixed electrode 61 is formed so as to overlap the first portion 22a in the frame portion 22 when viewed from the front in the z-axis direction. In other words, the first fixed electrode 61 faces the first portion 22a.
  • the first fixed electrode 61 and the first portion 22a constitute an electrostatic capacity, and the electrostatic capacity changes as the movable part 20 is displaced with the torsion beam 23 as a rotation axis.
  • the first fixed electrode 61 is electrically connected to the fifth pad portion 35 via the first wiring 61a. That is, the potential of the first fixed electrode 61 can be detected through the fourth through electrode.
  • the second fixed electrode 62 is formed so as to overlap with the second portion 22b in the frame portion 22 when viewed from the front in the z-axis direction. In other words, the second fixed electrode 62 faces the second portion 22b.
  • the second fixed electrode 62 and the second portion 22b constitute an electrostatic capacity, and the electrostatic capacity changes as the movable part 20 is displaced with the torsion beam 23 as a rotation axis.
  • the second fixed electrode 62 is electrically connected to the fourth pad portion 34 via the second wiring 62a. That is, the potential of the second fixed electrode 62 can be detected via the third through electrode.
  • the fixed electrode 60, the first wiring 61a, and the second wiring 62a are made of aluminum, for example. Further, the first fixed electrode 61 and the second fixed electrode 62 have the same planar shape, and form an equal capacitance between the first and second portions 22a and 22b in a state where no acceleration is applied. Yes.
  • a relay wiring 63 is formed on the second surface 40a of the cap substrate 40 along the second surface 40a.
  • the relay wiring 63 is made of, for example, aluminum, and electrically connects the first pad portion 31 and the second pad portion 32. With the relay wiring 63, the second pad portion 32 and the first pad portion 31, and thus the first through electrode 71 can be set to the same potential. Note that the relay wiring 63 in the present embodiment extends in the x-axis direction so as to face the torsion beam 23.
  • a sensing part is comprised by the movable part 20 and the fixed electrode 60, and the sensor signal according to acceleration can be output now by the 1st penetration electrode 71, the 3rd penetration electrode, and the 4th penetration electrode. ing.
  • a through electrode 70 penetrating in the thickness direction (z-axis direction) is formed in the cap substrate 40.
  • the through electrode 70 in the present embodiment includes the first through electrode 71 and the second through electrode 72 shown in FIG. 1, and the four through electrodes, a third through electrode and a fourth through electrode (not shown). These four through electrodes may be collectively referred to as a through electrode 70.
  • the four through electrodes 70 are equivalent to each other, and are formed in the through holes 41a penetrating the bonded substrate 41 and the insulating film 42 via the insulating film 41b.
  • the insulating film 41b is an integral insulating film connecting the insulating film 42 and the insulating film 43 on the inner wall surface of the through hole 41a.
  • the through electrode 70 is formed along the inner wall surface of the through hole 41 a, and the land portion 70 a is formed on the insulating film 43.
  • the first through electrode 71 passes through the insulating film 42 and reaches the first pad portion 31. That is, the first through electrode 71 is electrically connected to the movable portion 20 via the first pad portion 31, the relay wiring 63, and the second pad portion 32.
  • the second through electrode 72 penetrates the insulating film 42 and reaches the third pad portion 33.
  • a third through electrode and a fourth through electrode (not shown) penetrate the insulating film 42 and reach the fourth pad portion 34 and the fifth pad portion 35, respectively. That is, the third through electrode and the fourth through electrode are electrically connected to the second fixed electrode 62 and the first fixed electrode 61, respectively.
  • the frame portion 22 rotates according to the acceleration with the torsion beam 23 as a rotation axis.
  • part 22b and the 2nd fixed electrode 62 change according to an acceleration, this capacity
  • the acceleration is detected based on the change.
  • a first substrate 11 constituting a support substrate 10 is prepared, and an insulating film 12 is formed on the first substrate 11 by a generally known method such as CVD or thermal oxidation.
  • a mask resist (not shown) is formed on the insulating film 12 and etching or the like is performed to form a recess 15 in the first substrate 11.
  • the insulating film 12 and the second substrate 13 are joined to form the support substrate 10.
  • the bonding of the insulating film 12 and the second substrate 13 is not particularly limited, but can be performed as follows, for example.
  • the bonding surface of the insulating film 12 and the bonding surface of the second substrate 13 are irradiated with N 2 plasma, O 2 plasma, or an Ar ion beam to activate the bonding surfaces of the insulating film 12 and the second substrate 13. Then, alignment is performed by an infrared microscope or the like using an appropriately formed alignment mark, and the insulating film 12 and the second substrate 13 are bonded by so-called direct bonding at room temperature to 550 ° C.
  • the insulating film 12 and the second substrate 13 may be bonded by a bonding technique such as anodic bonding, intermediate layer bonding, or fusion bonding. Further, after the joining, a treatment for improving the joining quality such as high temperature annealing may be performed. Further, after bonding, the second substrate 13 may be processed to a desired thickness by grinding and polishing.
  • a metal film (aluminum) is formed on the first surface 10a of the support substrate 10 by a CVD method or the like. Then, by patterning the metal film by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film, the first pad portion 31 to the fifth pad portion 35 and a part of the airtight frame 36 are A metal layer is selectively formed.
  • the groove 14 and the slit 50 are formed in the second substrate 13 by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film.
  • a mask such as a resist or an oxide film.
  • a bonded substrate 41 is prepared as shown in FIG. 8, and an insulating film 42 is formed on the entire surface of the bonded substrate 41 by thermal oxidation or the like.
  • a mask resist (not shown) is formed on the insulating film 42 and etching or the like is performed to form the recess 16 in the bonded substrate 41.
  • a metal film (aluminum) is formed on a portion of the insulating film 42 facing the support substrate 10.
  • the first fixed electrode 61 and the second fixed electrode 62 are formed by patterning the metal film by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film.
  • the first pad portion 31 to the fifth pad portion 35 and the metal layer that becomes the remaining portion of the airtight frame 36 are selectively formed.
  • the relay wiring 63 is formed in this step.
  • the first pad portion 31, the second pad portion 32, and the relay wiring 63 are integrally illustrated.
  • the support substrate 10 and the cap substrate 40 are joined. Specifically, alignment is performed with an infrared microscope or the like using appropriately formed alignment marks, the first pad portion 31 to the fifth pad portion 35 and the airtight frame 36 formed on the support substrate 10, and the cap substrate 40.
  • the first pad portion 31 to the fifth pad portion 35 and the airtight frame 36 formed in the above are metal-bonded at 300 to 500 ° C.
  • the space between the support substrate 10 and the cap substrate 40 is sealed by the airtight frame 36 to form the cavity 80, and the frame portion 22, the first fixed electrode 61, and the second fixed electrode 62 are hermetically sealed to the cavity 80. Is done.
  • the insulating film 42 and the bonded substrate 41 are ground from the side opposite to the supporting substrate 10 side, the insulating film 42 on the side opposite to the supporting substrate 10 side is removed, and the bonded substrate 41 is thinned. To do.
  • two through holes 41a are formed. Further, in a cross section different from 13, two through holes 41 a are formed by removing the bonded substrate 41 and the insulating film 42 at locations corresponding to the fourth pad portion 34 and the fifth pad portion 35. That is, a total of four through holes 41a are formed. Then, an insulating film 41b such as TEOS is formed on the wall surface of each through hole 41a. At this time, the insulating film 43 is composed of an insulating film formed on the side of the bonded substrate 41 opposite to the support substrate 10 side.
  • the insulating film 43 and the insulating film 41b are formed in the same process. Thereafter, the insulating film 41b formed at the bottom of each through hole 41a is removed, and the first pad portion 31, the third pad portion 31, the fourth pad portion 34, and the fifth pad portion 35 are removed in each through hole 41a. Expose.
  • each through electrode 70 is formed by disposing a metal film in each through hole 41 a by sputtering or vapor deposition.
  • the first through electrode 71 is formed in the through hole 41 a corresponding to the first pad portion 31.
  • a second through electrode 72 is formed in the through hole 41 a corresponding to the third pad portion 33.
  • a third through electrode is formed in the through hole 41 a corresponding to the fourth pad portion 34.
  • a fourth through electrode is formed in the through hole 41 a corresponding to the fifth pad portion 35.
  • the metal film on the insulating film 43 is patterned to form the land portion 70a.
  • the inertial sensor 100 is manufactured through the processes described above. In addition, although the manufacturing method of the inertial sensor 100 which detects the acceleration applied to az-axis direction was demonstrated above, the sensing part which detects the acceleration applied to the direction along xy plane is provided in the same inertial sensor 100. FIG. You may do it. In the above description, the manufacturing method of one acceleration sensor has been described. However, the wafer-like support substrate 10 and the cap substrate 40 may be prepared, and after dicing and cutting, the wafer may be divided into chips.
  • the movable part 20 constituting the sensing part is connected to the first pad part 31 and the first through electrode 71 via the relay wiring without being directly connected to the through electrode 70. For this reason, even when the first through electrode 71 expands or contracts due to temperature, it is possible to prevent the thermal stress from being directly transmitted to the second pad portion, and hence the movable portion 20. Therefore, noise caused by temperature superimposed on the sensor signal output from the sensing unit can be reduced.
  • the inertial sensor 100 has a first type slit 51 formed therein. Specifically, the supporting substrate 10 and thus the peripheral portion 30 of the second substrate 13 are partitioned by the first type slit 51 into the joint portion 30a and the base portion 30b. For this reason, even if the joint portion 30a is deformed due to the thermal stress of the through electrode 70, the first type slit 51 becomes a clearance with the base body portion 30b, so that the influence of the thermal stress on the movable portion 20 is affected. It can be suppressed more.
  • a second type slit 52 is formed in the inertial sensor 100. Specifically, the peripheral portion 30 of the support substrate 10 and thus the second substrate 13 is partitioned into an outer peripheral portion 30 c and an inner peripheral portion 30 d by the second type slit 52. For this reason, even when the penetration electrode 70 formed on the inner peripheral portion 30d side in the frame of the second type slit 52 expands or contracts due to the temperature, the second electrode 52 is formed between the inner peripheral portion 30d and the outer peripheral portion 30c. Since the two types of slits 52 serve as a clearance, the influence of thermal stress on the outer peripheral portion 30c can be further suppressed.
  • the inertial sensor 100 in which the first pad portion 31 overlaps the peripheral portion 30 when viewed from the front in the z-axis direction has been described.
  • the formation position of the first pad portion 31 does not necessarily overlap the peripheral portion 30.
  • the first pad portion 31 in the inertial sensor 110 in the second embodiment is formed so as to overlap the movable portion 20 as shown in FIGS. 15 and 16. Specifically, the first pad portion 31 is formed on the second surface 40 a of the cap substrate 40 so as not to contact the second substrate 13 while facing the second substrate 13. The first pad portion 31 and the second pad portion 32 are electrically connected by the relay wiring 63. The 1st penetration electrode 71 is connected to the 1st pad part 31 like a 1st embodiment.
  • FIG. 15 is a cross-sectional view taken along line XV-XV shown in FIG.
  • the first through electrode 71 and the second pad portion 32 formed on the movable portion 20 are not directly connected but are electrically connected via the relay wiring 63. For this reason, even when the first through electrode 71 expands or contracts due to temperature, it is possible to prevent the thermal stress from being directly transmitted to the second pad portion, and hence the movable portion 20.
  • the through electrode 70 in the first embodiment and the second embodiment is formed on the same cap substrate 40 side as the substrate on which the fixed electrode 60 is provided.
  • the inertial sensor 130 in the third embodiment is formed on a support substrate 10 different from the substrate on which the fixed electrode 60 is provided, as shown in FIG.
  • the inertial sensor 130 has substantially the same configuration as that of the inertial sensor 100 of the first embodiment except for the position where the through electrode 70 is formed.
  • the through electrode 70 in the present embodiment is formed in a mirror-symmetrical position with respect to the through electrode 70 in the first embodiment, with the xy plane as a symmetry plane.
  • a fifth through electrode 75 is formed corresponding to the first through electrode 71
  • a sixth through electrode 76 is formed corresponding to the second through electrode 72.
  • the penetration electrode 70 corresponding to the 3rd penetration electrode and the 4th penetration electrode is also formed, illustration is abbreviate
  • the fifth through electrode 75 and the sixth through electrode 76 are formed so as to penetrate the first substrate 11 and the insulating film 12 in the support substrate 10.
  • the through electrode 70 in the present embodiment is formed in the through hole 11a penetrating the first substrate 11 and the insulating film 12 via the insulating film 11b.
  • the insulating film 11b is connected to the insulating film 12 on the inner wall surface of the through hole 11a to form an integral insulating film.
  • the through electrode 70 is formed along the inner wall surface of the through hole 11a.
  • the fifth through electrode 75 penetrates the insulating film 12 and reaches the first pad portion 31. That is, the fifth through electrode 75 is electrically connected to the movable portion 20 via the first pad portion 31, the relay wiring 63, and the second pad portion 32.
  • the sixth through electrode 76 penetrates the insulating film 12 and reaches the third pad portion 33.
  • the remaining two through electrodes 70 (not shown) are electrically connected to the first fixed electrode 61 and the second fixed electrode 62, respectively.
  • the fifth through electrode 75 and the second pad portion 32 formed on the movable portion 20 are electrically connected via the relay wiring 63 without being directly connected. For this reason, even when the fifth through electrode 75 expands or contracts due to temperature, it is possible to prevent the thermal stress from being directly transmitted to the second pad portion, and hence the movable portion 20.
  • the through electrode 70 is formed on the substrate (support substrate 10) that is paired with the substrate (cap substrate 40) on which the fixed electrode 60 is formed. It is no longer necessary to form the through hole 41a. Thereby, since it is not necessary to reduce the thickness of the bonded substrate 41, the strength of the cap substrate 40 against the stress can be increased. That is, it is possible to suppress the occurrence of warpage with respect to the temperature. Therefore, compared with 1st Embodiment and 2nd Embodiment, the precision of the opposing distance between the fixed electrode 60 and the movable part 20 can be made high, and the precision of a sensor signal can be improved.
  • the slit 50 of the support substrate 11 is provided and the slit 50 is used as a clearance against thermal strain has been described.
  • the slit 50 is not necessarily provided.
  • only the first type slit 51 may be formed, or only the second type slit 52 may be formed.
  • a void-shaped buffer region may be provided in a portion corresponding to the formation position of the first type slit 51 or the second type slit 52.
  • the semiconductor device in the present embodiment is an inertial sensor that detects acceleration, for example.
  • the inertial sensor 2100 as a semiconductor device is configured by stacking a support substrate 210 and a cap substrate 240.
  • FIG. 18 is a cross-sectional view taken along line XVIII-XVIII shown in FIG.
  • FIG. 19 is a top view of the second substrate 213 in the support substrate 210.
  • the support substrate 210 is an SOI (Silicon on Insulator) substrate in which the second substrate 213 is disposed on the first substrate 211 via the insulating film 212, and the first surface 210 a is the insulating film of the second substrate 213. It is composed of a surface opposite to the 212 side.
  • the first substrate 211 is made of a semiconductor such as silicon
  • the insulating film 212 is made of an oxide film or a nitride film
  • the second substrate 213 is made of polysilicon or the like.
  • an insulating film 212 a is formed on the first substrate 211 on the surface opposite to the surface on which the insulating film 212 is formed.
  • the second substrate 213 is subjected to micromachining to form a groove portion 214, and the movable portion 220 and the peripheral portion 230 are partitioned by the groove portion 214.
  • the first substrate 211 of the support substrate 210 has a portion facing the movable portion 220 in order to prevent the movable portion 220 and a frame portion 222 described later from coming into contact with the first substrate 211 and the insulating film 212.
  • a recess 215 is formed.
  • the recess 215 is formed by a method such as etching, and the insulating film 212 is formed over the surface of the recess 215.
  • the movable part 220 has a rectangular frame-shaped frame part 222 in which a planar rectangular opening part 221 is formed, and a torsion beam 223 formed so as to connect opposite sides of the opening part 221.
  • the movable part 220 is supported by the first substrate 211 by connecting the torsion beam 223 to the anchor part 224 supported by the insulating film 212.
  • This movable part 220 corresponds to a sensing part.
  • the extending direction of the torsion beam 223 is defined as the x-axis direction
  • the direction orthogonal to the x-axis is defined as the y-axis direction
  • a direction orthogonal to the xy plane is taken as a z-axis direction. That is, the z-axis direction is a normal direction of the first surface 210 a of the support substrate 210. In other words, the z-axis direction is the thickness direction of the support substrate 210 and the cap substrate 240.
  • the torsion beam 223 is a member that becomes the rotation center axis of the movable portion 220 when an acceleration in the z-axis direction is applied. That is, the torsion beam 223 rotates with the extending direction as a rotation axis.
  • the torsion beam 223 in this embodiment is formed so that the opening 221 is divided into two.
  • the frame portion 222 has an asymmetric shape with respect to the torsion beam 223 so that it can rotate about the torsion beam 223 when the acceleration in the z-axis direction is applied.
  • the frame portion 222 in this embodiment is divided into a first portion 222a and a second portion 222b with the torsion beam 223 as a reference.
  • the frame portion 222 has a length in the y-axis direction from the torsion beam 223 in the first part 222a to the end of the part farthest from the torsion beam 223, to the end of the part farthest from the torsion beam 223 in the second part 222b. Is shorter than the length in the y-axis direction. That is, in the frame part 222, the mass of the first part 222a is smaller than the mass of the second part 222b.
  • first bonded body 231, the second bonded body 232, the third bonded body 233, the fourth bonded body 234, and the fifth bonded body 235 are formed on the first surface 210 a of the support substrate 210, that is, the surface of the second substrate 213.
  • a sixth joined body 236 that functions as an airtight frame is formed.
  • these joined bodies 231 to 236 are made of aluminum, for example, and are formed between the support substrate 210 and the cap substrate 240. In FIG. 19, the formation positions of these elements are indicated by broken lines.
  • the first bonded body 231 is formed on the first surface 210 a that is the surface of the peripheral portion 230, and is connected to a first through electrode 271 described later via the peripheral portion 230.
  • the second joined body 232 is formed on the anchor portion 224 and is electrically connected to the movable portion 220.
  • the third bonded body 233 is formed on the first surface 210 a that is the surface of the peripheral portion 230, and is connected to a second through electrode 272 described later via the peripheral portion 230.
  • the third bonded body 233 is electrically connected to the bonded substrate 241 via a cap substrate-side contact 242a provided on the insulating film 242.
  • the fourth bonded body 234 is formed on the first surface 210 a that is the surface of the peripheral portion 230, and is connected to a third through electrode (not shown) via the peripheral portion 230.
  • the fifth bonded body 235 is formed on the first surface 210 a that is the surface of the peripheral portion 230, and is connected to a fourth through electrode (not shown) via the peripheral portion 230.
  • the third through electrode and the fourth through electrode have the same configuration as the first through electrode 271 and are formed side by side along the y-axis direction. That is, the potentials of the first bonded body 231, the third bonded body 233, the fourth bonded body 234, and the fifth bonded body 235 are the first through electrode 271, the second through electrode 272, the third through electrode, and the fourth, respectively. It has the same potential as the through electrode, and can be output to the outside through these electrodes. Conversely, when a voltage is applied to these electrodes, the corresponding bonded body can be brought to a desired potential.
  • first joined body 231 and the second joined body 232 are connected and electrically connected to each other by a relay wiring 263 described later. That is, the potential of the movable part 220 as a sensing part can be taken out from the first through electrode 71.
  • the sixth joined body 236 that functions as an airtight frame is formed in a frame shape so as to surround the movable portion 220 (groove portion 214). Since the sixth bonded body 236 is formed between the support substrate 210 and the cap substrate 240, the region surrounded by the sixth bonded body 236, the support substrate 210, and the cap substrate 240 is isolated from the outside. It is an airtight space. A cavity corresponds to this isolated space. Hereinafter, this isolation space is referred to as a cavity 280.
  • substrate 213 in the support substrate 210 has the some slit 250 in the outer peripheral part 230, as shown in FIG.18 and FIG.19.
  • the second substrate 213 in this embodiment has a first type slit 251 and a second type slit 252.
  • the first type slit 251 and the second type slit 252 may be collectively referred to as a slit 250.
  • the first type slit 251 is formed in a substantially annular shape so as to surround a contact portion of the second substrate 213 with the first bonded body 231, the third bonded body 233, the fourth bonded body 234, and the fifth bonded body 235. ing. As shown in FIG. 19, the first type slit 251 surrounding the contact portion with the first joined body 231 is annular, and hereinafter, the region surrounded by the slit is referred to as an island portion 230a. That is, the peripheral part 230 is divided into the island part 230a and the base part 230b excluding the island part 230a by the first type slit 251. In the present embodiment, as shown in FIG.
  • the first type slit 251 does not reach the first substrate 211 or the insulating film 212, but the present invention is not limited to this.
  • the island part 230 a and the base part 230 b are concepts including the first substrate 211 and the insulating film 212.
  • a first type slit 251 is formed so as to surround a contact portion of the second substrate 213 with the third bonded body 233.
  • the first type slit 251 corresponding to the third joined body 233 does not form a complete ring shape, but forms a C shape with a part missing. That is, the third bonded body 233 is electrically connected to the base body part 230b, and is connected to the bonded substrate 241 via the cap substrate side contact 242a penetrating the insulating film 242 described later.
  • the first type slit 251 is formed so as to surround the contact portion with the fourth bonded body 234 in the second substrate 213, and the first type slit 251 is surrounded so as to surround the contact portion with the fifth bonded body 235. Is formed.
  • the first type slit 251 corresponding to the fourth joined body 234 and the fifth joined body 235 has an annular shape, and divides the island portion 230a and the base portion 230b.
  • the second type slit 252 is formed in a frame shape so as to include the movable portion 220 and the contact portions of the peripheral portion 230 with the joined bodies 231, 233 to 235 inside. Yes.
  • the second type slit 252 in the present embodiment is formed in a rectangular shape along the sixth joined body 236 in the frame in which the sixth joined body 236 is formed.
  • the second type slit 252 partitions the second substrate 213 into an outer peripheral part 230c that is outside the frame of the second type slit 252 and an inner peripheral part 230d that is inside the frame.
  • the outer peripheral portion 230c is a region of the support substrate 210 where the sixth joined body 236 is joined.
  • the inner peripheral part 230d is an area including the movable part 220 and the above-described island part 230a.
  • the cap substrate 240 includes a bonded substrate 241 and an insulating film 242 formed on one surface of the bonded substrate 241 that faces the support substrate 210.
  • a cap substrate side contact 242 a that penetrates the insulating film 242 and reaches the bonded substrate 241 is formed in a portion of the insulating film 242 that contacts the third bonded body 233.
  • the third bonded body 233 is formed so as to enter the inside of the cap substrate side contact 242 a and is in electrical contact with the bonded substrate 241.
  • a second surface 240 a of the cap substrate 240 is formed on the surface of the insulating film 242 facing the support substrate 210.
  • the bonded substrate 241 is made of silicon or the like
  • the insulating film 242 is made of an oxide film or a nitride film.
  • a first fixed electrode 261 and a second fixed electrode 262 are formed on the second surface 240 a of the cap substrate 240.
  • the first fixed electrode 261 and the second fixed electrode 262 may be collectively referred to as a fixed electrode 260.
  • the fixed electrode 260 is disposed opposite to the support substrate 210 and is formed so as not to contact the first surface 210a.
  • the first fixed electrode 261 is formed so as to overlap the first portion 222a in the frame portion 222 when viewed from the front in the z-axis direction. In other words, the first fixed electrode 61 faces the first part 222a.
  • the first fixed electrode 261 and the first portion 222a constitute an electrostatic capacity, and the electrostatic capacity changes as the movable part 220 is displaced with the torsion beam 223 as a rotation axis.
  • the first fixed electrode 261 is electrically connected to the fifth joined body 235 through the first wiring 261a. That is, the potential of the first fixed electrode 261 can be detected through the fourth through electrode.
  • the second fixed electrode 262 is formed so as to overlap the second portion 222b in the frame portion 222 when viewed from the front in the z-axis direction. In other words, the second fixed electrode 262 faces the second portion 222b.
  • the second fixed electrode 262 and the second portion 222b constitute an electrostatic capacity, and the electrostatic capacity changes as the movable part 220 is displaced with the torsion beam 223 as a rotation axis.
  • the second fixed electrode 262 is electrically connected to the fourth joined body 234 through the second wiring 262a. That is, the potential of the second fixed electrode 262 can be detected through the third through electrode. As described above, the potential of the first fixed electrode 261 is extracted by the fourth through electrode, and the potential of the second fixed electrode 262 is extracted by the third through electrode.
  • the fixed electrode 260, the first wiring 261a, and the second wiring 262a are made of aluminum, for example.
  • the first fixed electrode 261 and the second fixed electrode 262 have the same planar shape, and form an equal capacitance between the first and second portions 222a and 222b when no acceleration is applied. is doing.
  • a relay wiring 263 is formed on the second surface 240a of the cap substrate 240 along the second surface 240a.
  • the relay wiring 263 is made of, for example, aluminum, and electrically connects the first joined body 231 and the second joined body 232. With the relay wiring 263, the second joined body 232 and the first joined body 231, and thus the first through electrode 271 can be set to the same potential.
  • the relay wiring 263 in this embodiment extends in the x-axis direction so as to face the torsion beam 223.
  • the first wiring 261a, the second wiring 262a, and the relay wiring 263 described above are wirings formed in the cavity 280, and are so-called inner layer wirings.
  • These inner layer wirings 261 a, 262 a, and 263 are formed on the insulating film 242 in the cap substrate 240, and have a structure that does not come into direct contact with the bonded substrate 241 mainly composed of silicon.
  • the movable unit 220 and the fixed electrode 260 constitute a sensing unit, and the first through electrode 271, the third through electrode, and the fourth through electrode can output a sensor signal corresponding to the acceleration. ing.
  • the first substrate 211 of the support substrate 210 is formed with a through electrode 270 that penetrates in the thickness direction (z-axis direction).
  • the through electrode 270 in the present embodiment includes the first through electrode 271 and the second through electrode 272 shown in FIG. 18, and the four through electrodes, a third through electrode and a fourth through electrode (not shown). These four through electrodes may be collectively referred to as a through electrode 270.
  • the four through electrodes 270 are formed in the through hole 211a penetrating the insulating film 212a, the first substrate 211, and the insulating film 212 via the insulating film 211b.
  • the insulating film 211b is formed as an integral insulating film by connecting the insulating film 212 and the insulating film 212a on the inner wall surface of the through hole 211a.
  • the through electrode 270 is formed along the inner wall surface of the through hole 211a, and the land portion 270a is formed on the insulating film 212a.
  • the first through electrode 271 passes through the insulating film 212 a, the first substrate 211, and the insulating film 212 and reaches the first bonded body 231 through the second substrate 213. That is, the first through electrode 271 is electrically connected to the movable portion 220 via the first joined body 231, the relay wiring 263, and the second joined body 232.
  • the first through electrode 271 is a through electrode corresponding to a B-type through electrode.
  • the first through electrode 271 may be formed immediately below the anchor portion 224 in the z-axis direction and connected to the movable portion 220 without using the relay wiring 263.
  • the second through electrode 272 passes through the insulating film 212a, the first substrate 211, and the insulating film 212 and reaches the peripheral portion 230 of the second substrate 213.
  • the second through electrode 272 is also in electrical contact with the support substrate 211 via a support substrate side contact 212b provided on the insulating film 212a.
  • the peripheral portion 230 of the second substrate 213 is connected to the third bonded body 233, and the third bonded body 233 is in electrical contact with the bonded substrate 241 through the cap substrate side contact 242a. That is, the second through electrode 272 has the same potential as the support substrate 211, the peripheral portion 230 of the second substrate 213, the third bonded body 233, and the bonded substrate 241.
  • the second through electrode 272 when the second through electrode 272 is set to the ground potential in the inertial sensor 2100, the bonded substrate 241, the peripheral portion 230, and the support substrate 211 can be set to the ground potential.
  • the second through electrode 272 is a through electrode corresponding to a C-type through electrode.
  • the third through electrode and the fourth through electrode penetrate the insulating film 212a, the first substrate 211, and the insulating film 212, and reach the fourth bonded body 234 and the fifth bonded body 235 through the second substrate 213, respectively. . That is, the third through electrode and the fourth through electrode are electrically connected to the second fixed electrode 262 and the first fixed electrode 261, respectively.
  • the 3rd penetration electrode and the 4th penetration electrode are penetration electrodes equivalent to the A class penetration electrode.
  • inertial sensor 2100 in the present embodiment.
  • the frame portion 222 rotates according to the acceleration with the torsion beam 223 as a rotation axis.
  • part 222b and the 2nd fixed electrode 262 change according to an acceleration, this capacity
  • the acceleration is detected based on the change. That is, inertial sensor 2100 is a Z-axis inertial sensor.
  • a first substrate 211 constituting the support substrate 210 is prepared, a mask resist (not shown) is formed, and etching is performed to form a recess 215 in the first substrate 211. Thereafter, the insulating film 12 is formed on the first substrate 211 by a generally known method such as CVD or thermal oxidation.
  • the insulating film 212 and the second substrate 213 are joined to form a support substrate 210.
  • the bonding of the insulating film 212 and the second substrate 213 is not particularly limited, but can be performed as follows, for example.
  • the bonding surface of the insulating film 212 and the bonding surface of the second substrate 213 are irradiated with N 2 plasma, O 2 plasma, or an Ar ion beam to activate the bonding surfaces of the insulating film 212 and the second substrate 213.
  • alignment is performed by an infrared microscope or the like using an appropriately formed alignment mark, and the insulating film 212 and the second substrate 213 are bonded by so-called direct bonding at room temperature to 550 ° C.
  • the insulating film 212 and the second substrate 213 may be bonded by a bonding technique such as anodic bonding, intermediate layer bonding, or fusion bonding. Further, after the joining, a treatment for improving the joining quality such as high temperature annealing may be performed. Further, after bonding, the second substrate 13 may be processed to a desired thickness by grinding and polishing.
  • a metal film (aluminum) is formed on the first surface 210a of the support substrate 210 by a CVD method or the like. Then, by patterning the metal film by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film, a metal layer that becomes a part of the first bonded body 231 to the sixth bonded body 236 is selectively selected. To form.
  • the fourth joined body 234 and the fifth joined body 235 are not shown, but are formed in this step.
  • a step of forming a spacer for determining the height when the cap substrate 240 is bonded which will be described later, may be inserted. Further, the bonded bodies 231 to 236 in the present embodiment are assumed to be aluminum, but gold or copper may be adopted.
  • grooves 214 and slits 250 are formed in the second substrate 213 by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film.
  • a mask such as a resist or an oxide film.
  • a bonded substrate 241 is prepared, a mask resist (not shown) is formed, and etching or the like is performed to form a recess 216 in the bonded substrate 241. To do. Thereafter, an insulating film 242 is formed on the entire surface of the bonded substrate 241 by thermal oxidation or the like. Thereafter, the insulating film 242 is partially removed to form a contact hole to be the cap substrate side contact 242a.
  • a metal film (aluminum) is formed on a portion of the insulating film 242 that should face the support substrate 210.
  • the first fixed electrode 261 and the second fixed electrode 262 are formed by patterning the metal film by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film.
  • a metal layer to be the remaining part of the first joined body 231 to the sixth joined body 236 is selectively formed.
  • the relay wiring 263, the first wiring 261a, and the second wiring 262a are formed.
  • a metal film is formed so that the contact hole formed in the previous step is filled with the third bonded body 233 to become the cap substrate side contact 242a.
  • first fixed electrode 261 and the second fixed electrode 262 may be formed of polysilicon.
  • the second wiring 262a may be formed using aluminum.
  • the support substrate 210 and the cap substrate 240 are joined. Specifically, alignment is performed by an infrared microscope or the like using an appropriately formed alignment mark, and a part of the first bonded body 231 to the sixth bonded body 236 formed on the support substrate 210 and the cap substrate 240 are aligned.
  • the formed first bonded body 231 to a part of the sixth bonded body 236 are metal bonded at 300 to 500 ° C.
  • the space between the support substrate 210 and the cap substrate 240 is sealed by the sixth joined body 236 to form the cavity 280, and the frame portion 222, the first fixed electrode 261, and the second fixed electrode 262 pass through the cavity 280. Hermetically sealed.
  • the bonded substrate 241 is ground from the side opposite to the support substrate 210 side to adjust the bonded substrate 241 to a desired thickness.
  • the fixed electrode 260 is formed on the cap substrate 240 including the bonded substrate 241.
  • the thickness of the bonded substrate 241 is not affected by the stress or cooling / heating change assumed to be applied to the inertial sensor 2100 so that the facing distance between the movable part 220 and the fixed electrode 260 does not change unintentionally.
  • the thickness should be set to ensure sufficient strength.
  • the through electrode 270 in order to form the through electrode 270 on the cap substrate 240 side, it is necessary to reduce the thickness of the bonded substrate 241.
  • the through electrode 270 since the through electrode 270 is not formed on the cap substrate 240 side, it can be set to a thickness that can secure a sufficient strength against a stress and a change in cooling.
  • the first substrate 211 is ground from the side opposite to the cap substrate 240 side to adjust the first substrate 211 to a desired thickness.
  • the thickness of the first substrate 211 is determined in consideration of the ease of forming the through electrode 270.
  • a through hole 211c is formed from one surface of the first substrate 211 opposite to the cap substrate 240 as shown in FIG.
  • the through hole 211c is formed by etching, for example.
  • the through hole 211c is formed at a position corresponding to the first joined body 231, the third joined body 233, the fourth joined body 234, and the fifth joined body 235.
  • an insulating film 211b such as TEOS is formed on the wall surface of each through hole 211c.
  • the insulating film 212a is configured by an insulating film formed on the first substrate 211 on the side opposite to the cap substrate 240 side. That is, the insulating film 212a and the insulating film 211b are formed in the same process.
  • the inner wall surface of the insulating film 211b is referred to as a through hole 211a.
  • the insulating film 211b formed at the bottom of each through hole 211a is partially removed, and the first joined body 231, the third joined body 233, the fourth inside the through hole 211a.
  • the second substrate 213 that is in electrical contact with the bonded body 234 and the fifth bonded body 235 is exposed.
  • the insulating film 212a in the vicinity of the through hole 211a connected to the third bonded body 233 is etched to provide a contact hole to be the support substrate side contact 212b.
  • the insulating film 212a is partially removed and the first substrate 211 is exposed.
  • a metal film electrode is formed on the inner wall surface of each through hole 211a and in the vicinity of each through hole 211a.
  • the first through electrode 271 is formed in the through hole 211 a corresponding to the first joined body 231.
  • a second through electrode 272 is formed in the through hole 211 a corresponding to the third joined body 233.
  • a third through electrode is formed in the through hole 211 a corresponding to the fourth joined body 234.
  • a fourth through electrode is formed in the through hole 211 a corresponding to the fifth joined body 235.
  • the metal film on the insulating film 243 is patterned to form the land portion 270a. Thereby, the inertial sensor 2100 shown in FIG. 18 can be manufactured.
  • the metal film constituting the land 270a in the second through electrode 272 is filled in the contact hole provided in the insulating film 212a to form the support substrate side contact 212b, and the second through electrode 272 and the support substrate 210 are formed.
  • the first substrate 211 is electrically connected.
  • the manufacturing method of the inertial sensor 2100 which detects the acceleration applied to az axis direction was demonstrated above, the sensing part which detects the acceleration applied to the direction along xy plane is provided in the same inertial sensor 2100. You may do it.
  • the manufacturing method of one acceleration sensor has been described. However, a wafer-like support substrate 210 and a cap substrate 240 may be prepared, and after dicing and cutting, the wafer may be divided into chips.
  • the through electrode 270 and the fixed electrode 260 are formed on the same substrate, for example, the cap substrate 240.
  • the cap substrate 240 In such a form, there is a demand for manufacturing the cap substrate 240 as thin as possible in order to form the through electrode 270, while the electrostatic capacitance between the fixed electrode 260 and the movable part 220 due to the deformation of the cap substrate 240. From the viewpoint of suppressing the change in capacitance, there has been a contradictory request to manufacture the cap substrate 240 as thick as possible.
  • the through electrode 270 is formed on the support substrate 210 formed as a substrate different from the cap substrate 241 on which the fixed electrode 260 is formed.
  • the thickness of the bonded substrate 241 constituting the cap substrate 240 is set to a stress that is assumed to be applied to the inertial sensor 2100 so that the facing distance between the movable portion 220 and the fixed electrode 260 does not change unintentionally. It can be set to a thickness that can ensure sufficient strength against changes in cooling.
  • the thickness of the first substrate 211 can be determined in consideration of the ease of forming the through electrode 270.
  • the thickness of the support substrate 210 and the thickness of the cap substrate 240 can be arbitrarily set independently without considering contradictory requirements.
  • the inertial sensor 2100 includes the bonded substrate 241, the base body 230 b of the second substrate 213, the first substrate 242 a, and the support substrate side contact 212 b.
  • the substrate 211 and the second through electrode 272 can be set to the same potential. Since the support substrate 210 and the cap substrate 240 are set to the same potential, a disturbance electric field in the cavity 280 can be hardly generated, and the accuracy of the sensor signal can be improved.
  • the cap substrate side contact 242a can be formed only by patterning the insulating film 242 in the manufacturing process of the inertial sensor 2100, and can be shared with another process of etching the insulating film 242. . That is, it can be realized only by changing the etching mask for patterning.
  • the support substrate side contact 212b can be formed only by patterning the insulating film 212a in the manufacturing process of the inertial sensor 2100, and only by changing the etching mask for patterning the insulating film 212a.
  • a moisture-resistant passivation film may be formed on the entire surface of the support substrate 210 opposite to the first surface 210a.
  • the passivation film for example, PIQ (polyimide) or silicon nitride can be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pressure Sensors (AREA)

Abstract

A semiconductor device according to the present invention includes: a support substrate (10) having a first face (10a); a cap substrate (40) having a second face (40a) and joined with the support substrate; a sensing section (20, 30, 60) disposed in a cavity (80) between the support substrate and the cap substrate; a penetrating electrode (70) formed to penetrate the support substrate or the cap substrate in the thickness direction thereof; a first pad section (31) electrically connected to the penetrating electrode between the first face and the second face; and a relay wire (63). The sensing section has a second pad section (32) having the same potential as the sensing section. When the support substrate is viewed from the thickness direction, the first pad section and the second pad section are deviated from each other. The relay wire electrically connects the first pad section and the second pad section with each other.

Description

半導体装置Semiconductor device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年7月1日に出願された日本特許出願番号2016-131710号と、2016年7月1日に出願された日本特許出願番号2016-131708号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-131710 filed on July 1, 2016 and Japanese Patent Application No. 2016-131708 filed on July 1, 2016. The description is incorporated.
 本開示は、キャップ基板と支持基板との間にキャビティが形成され、キャビティ内に物理量に応じたセンサ信号を出力するセンシング部が備えられた半導体装置に関するものである。 The present disclosure relates to a semiconductor device in which a cavity is formed between a cap substrate and a support substrate, and a sensing unit that outputs a sensor signal corresponding to a physical quantity is provided in the cavity.
 例えば特許文献1に記載の物理量センサは、キャップ基板と支持基板とにより形成される気密室(キャビティ)にセンシング部たる半導体層が設けられている。半導体層は溝部によって可動部と周辺部が区画されている。可動部はキャップ基板および支持基板に対して相対的に可動して、可動部とキャップ基板との対向距離が変化するようになっている。具体的には、この可動部は、開口部が形成された矩形枠状の枠部と、開口部の対向辺を連結するように備えられたトーション梁とを有している。可動部はトーション梁がアンカー部を介して支持基板に支持されている。可動部はトーション梁を回転軸としてキャップ基板に対して傾斜し、その結果、互いの対向距離が変化する。 For example, in the physical quantity sensor described in Patent Document 1, a semiconductor layer serving as a sensing unit is provided in an airtight chamber (cavity) formed by a cap substrate and a support substrate. In the semiconductor layer, a movable portion and a peripheral portion are partitioned by a groove portion. The movable part is movable relative to the cap substrate and the support substrate so that the facing distance between the movable part and the cap substrate changes. Specifically, the movable portion includes a rectangular frame-shaped frame portion in which an opening portion is formed, and a torsion beam provided so as to connect opposite sides of the opening portion. In the movable part, the torsion beam is supported on the support substrate via the anchor part. The movable part is inclined with respect to the cap substrate about the torsion beam as a rotation axis, and as a result, the opposing distance changes.
 そして、キャップ基板には固定電極が形成されている。上記のように、センシング部たる半導体層とキャップ基板との対向距離が変化すると、半導体層と固定電極とにより成る静電容量が変化する。特許文献1に記載の物理量センサは、半導体層の法線方向に印加される加速度を可動部の回転運動に変換して、静電容量の変化に基づいて物理量センサに印加される加速度を検出する、いわゆる慣性センサである。 And a fixed electrode is formed on the cap substrate. As described above, when the facing distance between the semiconductor layer serving as the sensing unit and the cap substrate changes, the capacitance formed by the semiconductor layer and the fixed electrode changes. The physical quantity sensor described in Patent Document 1 converts acceleration applied in the normal direction of the semiconductor layer into rotational movement of the movable portion, and detects acceleration applied to the physical quantity sensor based on a change in capacitance. This is a so-called inertia sensor.
特開2014-232090号公報JP 2014-232090 A
 ところで、半導体層と固定電極とにより成る静電容量の変化は、半導体層の電位と、固定電極の電位との電位差に基づいて算出される。半導体層の電位は、アンカーに設けられたパッド部と、キャップ基板における、パッド部の対向位置に設けられた貫通電極とが接触して電気的に接続されることによって検出可能になっている。 By the way, the change in electrostatic capacitance formed by the semiconductor layer and the fixed electrode is calculated based on the potential difference between the potential of the semiconductor layer and the potential of the fixed electrode. The potential of the semiconductor layer can be detected by contacting and electrically connecting a pad portion provided on the anchor and a through electrode provided on the cap substrate at a position facing the pad portion.
 このような構成では、半導体層の電位を取り出すための貫通電極はアンカーの直上に位置する。貫通電極はアンカーに設けられたパッド部に較べて体格が大きく、温度変化に対する熱膨張あるいは収縮に起因する熱応力も比較的大きくなるため、熱応力によって可動部が変形する原因となる。可動部に反りなどの変形が発生すると、可動部と固定電極との間の距離が変化してしまうため静電容量が変化してしまう。すなわち、静電容量が熱ノイズの影響を受けやすい構成となっている。 In such a configuration, the through electrode for taking out the potential of the semiconductor layer is located immediately above the anchor. The through electrode is larger in size than the pad portion provided on the anchor, and the thermal stress due to thermal expansion or contraction with respect to temperature change is also relatively large, which causes the movable portion to be deformed by the thermal stress. When deformation such as warpage occurs in the movable part, the distance between the movable part and the fixed electrode changes, so that the capacitance changes. That is, the capacitance is easily affected by thermal noise.
 また、特許文献1に記載の物理量センサは、固定電極および半導体層の電位を外部に取り出すための電極が貫通電極(TSV)として設けられている。この貫通電極は固定電極が接合されたキャップ基板を貫通する貫通孔に形成されている。 Further, in the physical quantity sensor described in Patent Document 1, an electrode for taking out the potential of the fixed electrode and the semiconductor layer to the outside is provided as a through electrode (TSV). The through electrode is formed in a through hole that penetrates the cap substrate to which the fixed electrode is bonded.
 キャップ基板にTSV用の貫通孔を形成する際には、孔の加工性やセンサの省サイズ化の観点から、キャップ基板は可能な限り薄くされていることが好ましい。一方、キャップ基板が薄すぎると、温度や応力等の周辺環境の変化に応じてキャップ基板に歪みを生じてしまう虞がある。 When forming through holes for TSV in the cap substrate, it is preferable that the cap substrate is made as thin as possible from the viewpoint of workability of the holes and size reduction of the sensor. On the other hand, if the cap substrate is too thin, the cap substrate may be distorted in accordance with changes in the surrounding environment such as temperature and stress.
 キャップ基板には固定電極が形成されているため、熱歪や応力ひずみが生じると半導体層と固定電極とにより成る静電容量が変化してしまう虞がある。つまり、加速度に重畳するノイズが増大してしまう虞がある。 Since the fixed electrode is formed on the cap substrate, there is a risk that the capacitance formed by the semiconductor layer and the fixed electrode may change when thermal strain or stress strain occurs. That is, there is a risk that noise superimposed on acceleration increases.
 本開示は、キャビティ内に物理量に応じたセンサ信号を出力するセンシング部が備えられ、温度に起因するノイズを低減することのできる半導体装置を提供することを目的とする。 This disclosure is intended to provide a semiconductor device that includes a sensing unit that outputs a sensor signal corresponding to a physical quantity in a cavity and can reduce noise caused by temperature.
 本開示は、さらに、キャビティ内に物理量に応じたセンサ信号を出力するセンシング部が備えられた半導体装置において、基板の歪みによるノイズを抑制できる半導体装置を提供することを目的とする。 It is another object of the present disclosure to provide a semiconductor device that can suppress noise due to substrate distortion in a semiconductor device including a sensing unit that outputs a sensor signal corresponding to a physical quantity in a cavity.
 本開示の第一の態様において、半導体装置は、第1面を有する支持基板と、第2面を有し、前記第2面が前記第1面に対向する状態で前記支持基板に接合されるキャップ基板と、前記支持基板と前記キャップ基板との間に形成された気密性のキャビティ内に配置され、物理量に応じたセンサ信号を出力するセンシング部と、前記支持基板もしくは前記キャップ基板の厚さ方向に貫通して形成された貫通電極と、前記第1面と前記第2面との間に形成され、前記貫通電極の先端と電気的に接続された第1パッド部と、中継配線とを備える。前記センシング部は、前記センシング部と同電位とされた第2パッド部を有する。前記支持基板を前記厚さ方向から見たとき、前記第1パッド部と前記第2パッド部とが互いにずれて配置される。前記中継配線は、前記第1パッド部と前記第2パッド部とを互いに電気的に接続する。 In the first aspect of the present disclosure, the semiconductor device has a support substrate having a first surface and a second surface, and the second surface is bonded to the support substrate in a state of facing the first surface. A cap substrate, a sensing unit that is disposed in an airtight cavity formed between the support substrate and the cap substrate, and outputs a sensor signal corresponding to a physical quantity, and a thickness of the support substrate or the cap substrate A through electrode formed penetrating in a direction, a first pad portion formed between the first surface and the second surface and electrically connected to a tip of the through electrode, and a relay wiring Prepare. The sensing unit includes a second pad unit that has the same potential as the sensing unit. When the support substrate is viewed from the thickness direction, the first pad portion and the second pad portion are arranged to be shifted from each other. The relay wiring electrically connects the first pad part and the second pad part to each other.
 上記の半導体装置によれば、貫通電極と接続された第1パッド部と、センシング部と接続された第2パッド部とが直接接合されず、中継配線を介して接続される。このため、貫通電極が温度によって膨張あるいは収縮を生じた場合でも、その熱応力を直接第2パッド部、ひいてはセンシング部に伝達してしまうことを抑制することができる。したがって、センシング部において出力するセンサ信号に重畳する、温度に起因するノイズを低減することができる。 According to the above semiconductor device, the first pad portion connected to the through electrode and the second pad portion connected to the sensing portion are not directly joined but connected via the relay wiring. For this reason, even when the through electrode expands or contracts due to the temperature, it is possible to suppress the thermal stress from being directly transmitted to the second pad portion and thus the sensing portion. Therefore, noise caused by temperature superimposed on the sensor signal output from the sensing unit can be reduced.
 本開示の第二の態様において、半導体装置は、第1面を有する支持基板と、第2面を有し、前記第2面が前記第1面に対向する状態で前記支持基板に接合されるキャップ基板と、前記支持基板と前記キャップ基板との間に配置された、気密性のキャビティ内における前記第2面に固定された固定電極と、前記キャビティ内において前記固定電極に対向して形成されることにより静電容量を成し、前記静電容量の変化に応じたセンサ信号を出力するセンシング部と、前記支持基板を貫通して形成され、前記キャビティの内外を互いに電気的に接続する貫通電極とを備える。 In the second aspect of the present disclosure, the semiconductor device includes a support substrate having a first surface and a second surface, and the second surface is bonded to the support substrate in a state of facing the first surface. A cap substrate, a fixed electrode disposed between the support substrate and the cap substrate, fixed to the second surface in an airtight cavity, and formed to face the fixed electrode in the cavity. A sensing portion that forms a capacitance and outputs a sensor signal according to a change in the capacitance, and a penetration that is formed through the support substrate and electrically connects the inside and outside of the cavity to each other An electrode.
 上記の半導体装置によれば、固定電極が形成されたキャップ基板とは別体の支持基板に貫通電極が形成される構成である。すなわち、キャップ基板に貫通孔を形成する必要がない。よって、キャップ基板の板厚は貫通電極の仕様に依存することなく、任意に設定することができる。ひいては、熱や応力に起因して生じる歪みによるセンサ信号へのノイズの重畳を抑制するようにキャップ基板の板厚を設定することができる。 According to the above semiconductor device, the through electrode is formed on the support substrate separate from the cap substrate on which the fixed electrode is formed. That is, it is not necessary to form a through hole in the cap substrate. Therefore, the plate thickness of the cap substrate can be arbitrarily set without depending on the specification of the through electrode. As a result, the plate | board thickness of a cap board | substrate can be set so that the superimposition of the noise to a sensor signal by the distortion resulting from a heat | fever and stress may be suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態にかかる慣性センサの構成を示す図であり、図2に示すI-I線の沿う断面図であり、 図2は、第1実施形態にかかる慣性センサの構成を示す上面図であり、 図3は、第1基板を用意し絶縁膜を形成する工程を示す断面図であり、 図4は、窪み部を形成する工程を示す断面図であり、 図5は、第2基板を形成する工程を示す断面図であり、 図6は、各パッド部を形成する工程を示す断面図であり、 図7は、溝部およびスリットを形成する工程を示す断面図であり、 図8は、貼り合わせ基板および絶縁膜を形成する工程を示す断面図であり、 図9は、窪み部を形成する工程を示す断面図であり、 図10は、各パッド部および中継配線を形成する工程を示す断面図であり、 図11は、支持基板とキャップ基板とを接合する工程を示す断面図であり、 図12は、貼り合わせ基板を薄肉化する工程を示す断面図であり、 図13は、貼り合わせ基板に貫通孔を形成する工程を示す断面図であり、 図14は、貫通電極を形成する工程を示す断面図であり、 図15は、第2実施形態にかかる慣性センサの構成を示す図であり、図16に示すXV-XV線の沿う断面図であり、 図16は、第2実施形態にかかる慣性センサの構成を示す上面図であり、 図17は、第3実施形態にかかる慣性センサの構成を示す断面図である。 図18は、第4実施形態にかかる慣性センサの構成を示す図であり、図19に示すXVIII-XVIII線の沿う断面図であり、 図19は、第4実施形態にかかる慣性センサ(第2基板)の構成を示す上面図であり、 図20は、第1基板を用意し絶縁膜を形成する工程を示す断面図であり、 図21は、第2基板を形成する工程を示す断面図であり、 図22は、各接合体の一部を形成する工程を示す断面図であり、 図23は、溝部およびスリットを形成する工程を示す断面図であり、 図24は、貼り合わせ基板および絶縁膜を形成するとともにキャップ基板側コンタクトを形成する工程を示す断面図であり、 図25は、「各接合体の一部および中継配線を形成する工程を示す断面図であり、 図26は、支持基板とキャップ基板とを接合する工程を示す断面図であり、 図27は、貼り合わせ基板および支持基板を薄肉化するとともに貫通孔を形成する工程を示す断面図であり、 図28は、貫通孔に絶縁膜を形成する工程を示す断面図であり、 図29は、支持基板側コンタクトを形成する工程を示す断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram showing the configuration of the inertial sensor according to the first embodiment, and is a cross-sectional view taken along the line II shown in FIG. FIG. 2 is a top view showing the configuration of the inertial sensor according to the first embodiment. FIG. 3 is a cross-sectional view illustrating a process of preparing a first substrate and forming an insulating film, FIG. 4 is a cross-sectional view showing a step of forming a recess, FIG. 5 is a cross-sectional view showing a process of forming the second substrate, FIG. 6 is a cross-sectional view showing a process of forming each pad portion. FIG. 7 is a cross-sectional view showing a step of forming a groove and a slit, FIG. 8 is a cross-sectional view illustrating a process of forming a bonded substrate and an insulating film, FIG. 9 is a cross-sectional view showing a step of forming a recess, FIG. 10 is a cross-sectional view showing a process of forming each pad portion and relay wiring, FIG. 11 is a cross-sectional view illustrating a process of bonding the support substrate and the cap substrate, FIG. 12 is a cross-sectional view showing a process of thinning the bonded substrate, FIG. 13 is a cross-sectional view illustrating a process of forming a through hole in a bonded substrate; FIG. 14 is a cross-sectional view showing a process of forming a through electrode, FIG. 15 is a diagram showing a configuration of the inertial sensor according to the second embodiment, and is a cross-sectional view taken along line XV-XV shown in FIG. FIG. 16 is a top view showing the configuration of the inertial sensor according to the second embodiment. FIG. 17 is a cross-sectional view showing the configuration of the inertial sensor according to the third embodiment. 18 is a diagram showing a configuration of the inertial sensor according to the fourth embodiment, and is a cross-sectional view taken along line XVIII-XVIII shown in FIG. FIG. 19 is a top view showing the configuration of the inertial sensor (second substrate) according to the fourth embodiment. FIG. 20 is a cross-sectional view illustrating a process of preparing a first substrate and forming an insulating film, FIG. 21 is a cross-sectional view showing a process of forming the second substrate, FIG. 22 is a cross-sectional view showing a step of forming a part of each joined body, FIG. 23 is a cross-sectional view showing a step of forming a groove and a slit, FIG. 24 is a cross-sectional view illustrating a process of forming a bonded substrate and an insulating film and forming a cap substrate side contact; FIG. 25 is a cross-sectional view showing a process of forming a part of each joined body and a relay wiring, FIG. 26 is a cross-sectional view showing a process of bonding the support substrate and the cap substrate, FIG. 27 is a cross-sectional view showing a process of forming a through-hole while thinning the bonded substrate and the support substrate, FIG. 28 is a cross-sectional view showing a step of forming an insulating film in the through hole, FIG. 29 is a cross-sectional view showing a step of forming a support substrate side contact.
 (第1実施形態)
 最初に、図1~図2を参照して、本実施形態に係る半導体装置の概略構成について説明する。
(First embodiment)
First, a schematic configuration of the semiconductor device according to the present embodiment will be described with reference to FIGS.
 本実施形態における半導体装置は、例えば加速度を検出する慣性センサである。図1に示すように、半導体装置たる慣性センサ100は、支持基板10とキャップ基板40とが積層されて構成されている。なお、図1は、図2に示すI-I線に沿う断面図である。図2は支持基板10のうち、第2基板13の上面図である。 The semiconductor device in the present embodiment is an inertial sensor that detects acceleration, for example. As shown in FIG. 1, the inertial sensor 100 as a semiconductor device is configured by stacking a support substrate 10 and a cap substrate 40. FIG. 1 is a cross-sectional view taken along the line II shown in FIG. FIG. 2 is a top view of the second substrate 13 of the support substrate 10.
 支持基板10は、第1基板11上に絶縁膜12を介して第2基板13が配置されたSOI(Silicon on Insulator)基板とされており、第1面10aが第2基板12のうち絶縁膜12側と反対側の表面で構成されている。なお、第1基板11はシリコン等で構成され、絶縁膜12は酸化膜や窒化膜として構成され、第2基板13はポリシリコン等で構成されている。 The support substrate 10 is an SOI (Silicon on Insulator) substrate in which a second substrate 13 is disposed on the first substrate 11 via an insulating film 12, and the first surface 10 a is an insulating film of the second substrate 12. It is composed of a surface on the side opposite to the 12 side. The first substrate 11 is made of silicon or the like, the insulating film 12 is made of an oxide film or a nitride film, and the second substrate 13 is made of polysilicon or the like.
 そして、第2基板13には、図1および図2に示されるように、マイクロマシン加工が施されて溝部14が形成され、溝部14によって可動部20と周辺部30とが区画されている。 As shown in FIGS. 1 and 2, the second substrate 13 is subjected to micromachining to form a groove portion 14, and the movable portion 20 and the peripheral portion 30 are partitioned by the groove portion 14.
 また、支持基板10のうち第1基板11には、可動部20ひいては後述の枠部22が第1基板11および絶縁膜12と接触することを防止するために、可動部20と対向する部分に窪み部15が形成されている。なお、窪み部15はエッチング等の方法により形成されるものであり、窪み部15の表面には絶縁膜12が形成されていない。 Further, in the support substrate 10, the first substrate 11 has a portion facing the movable portion 20 in order to prevent the movable portion 20 and the frame portion 22 described later from coming into contact with the first substrate 11 and the insulating film 12. A recess 15 is formed. The recess 15 is formed by a method such as etching, and the insulating film 12 is not formed on the surface of the recess 15.
 可動部20は、平面矩形状の開口部21が形成された矩形枠状の枠部22と、開口部21の対向辺を連結するように形成されたトーション梁23とを有している。そして、可動部20は、トーション梁23が絶縁膜12の支持されたアンカー部24と連結されることにより第1基板11に支持されている。 The movable portion 20 includes a rectangular frame-shaped frame portion 22 in which a planar rectangular opening portion 21 is formed, and a torsion beam 23 formed so as to connect opposite sides of the opening portion 21. The movable portion 20 is supported on the first substrate 11 by connecting the torsion beam 23 to the anchor portion 24 on which the insulating film 12 is supported.
 ここで、本実施形態における方向の定義について説明する。図1および図2に示すように、トーション梁23の延設方向をx軸方向とし、x軸に直交する方向をy軸方向とする。また、xy平面に直交する方向をz軸方向とする。すなわち、z軸方向は支持基板10の第1面10aの法線方向である。換言すれば、z軸方向は、支持基板10およびキャップ基板40の厚さ方向である。 Here, the definition of the direction in the present embodiment will be described. As shown in FIGS. 1 and 2, the extending direction of the torsion beam 23 is defined as the x-axis direction, and the direction orthogonal to the x-axis is defined as the y-axis direction. A direction orthogonal to the xy plane is taken as a z-axis direction. That is, the z-axis direction is a normal direction of the first surface 10 a of the support substrate 10. In other words, the z-axis direction is the thickness direction of the support substrate 10 and the cap substrate 40.
 トーション梁23は、z軸方向の加速度が印加されたとき、可動部20の回転中心となる回転軸となる部材である。本実施形態におけるトーション梁23は開口部21を2分割するように形成されている。 The torsion beam 23 is a member serving as a rotation axis that becomes the rotation center of the movable portion 20 when an acceleration in the z-axis direction is applied. The torsion beam 23 in the present embodiment is formed so as to divide the opening 21 into two.
 枠部22は、z軸方向の加速度が印加されたとき、トーション梁23を回転軸として回転できるように、トーション梁23を基準として非対称な形状とされている。本実施形態における枠部22は、トーション梁23を基準として第1部位22aと第2部位22bとに分けられる。枠部22は、第1部位22aにおけるトーション梁23から最も離れている部分の端部までのy軸方向の長さが、第2部位22bにおけるトーション梁23から最も離れている部分の端部までのy軸方向の長さより短くされている。つまり、枠部22は、第1部位22aの質量が第2部位22bの質量よりも小さくされている。 The frame portion 22 has an asymmetric shape with respect to the torsion beam 23 so that it can rotate around the torsion beam 23 when an acceleration in the z-axis direction is applied. The frame portion 22 in this embodiment is divided into a first portion 22a and a second portion 22b with the torsion beam 23 as a reference. The frame 22 has a length in the y-axis direction from the torsion beam 23 in the first part 22a to the end of the part farthest from the torsion beam 23 to the end of the part farthest from the torsion beam 23 in the second part 22b. Is shorter than the length in the y-axis direction. In other words, the frame portion 22 is configured such that the mass of the first portion 22a is smaller than the mass of the second portion 22b.
 また、支持基板10の第1面10a、すなわち第2基板13の表面には、第1パッド部31、第2パッド部32、第3パッド部33、第4パッド部34および第5パッド部35が形成されるとともに、気密フレーム36が形成されている。これらパッド部31~35および気密フレーム36は、本実施形態においては例えばアルミニウムで構成されており、支持基板10とキャップ基板40とに挟まれて形成されている。なお、図2では、これらの要素の形成位置を破線で示している。 Further, the first pad portion 31, the second pad portion 32, the third pad portion 33, the fourth pad portion 34, and the fifth pad portion 35 are provided on the first surface 10 a of the support substrate 10, that is, the surface of the second substrate 13. And an airtight frame 36 are formed. In the present embodiment, the pad portions 31 to 35 and the airtight frame 36 are made of aluminum, for example, and are formed between the support substrate 10 and the cap substrate 40. In FIG. 2, the formation positions of these elements are indicated by broken lines.
 具体的には、第1パッド部31は周辺部30に形成されて第2面40aにおいて後述の第1貫通電極71に接続されている。第2パッド部32はアンカー部24に形成されて可動部20と電気的に接続されている。第3パッド部33は周辺部30に形成されて第2面40aにおいて後述の第2貫通電極72に接続されている。第4パッド部34は周辺部30に形成されて第2面40aにおいて図示しない第3貫通電極に接続されている。第5パッド部35は周辺部30に形成されて第2面40aにおいて図示しない第4貫通電極に接続されている。第3貫通電極および第4貫通電極は、それぞれ第1貫通電極71と同一の構成を有しつつy軸方向に沿って並んで形成されている。すなわち、第1パッド部31、第3パッド部33、第4パッド部34、第5パッド部35の電位は、それぞれ、第1貫通電極71、第2貫通電極72、第3貫通電極、第4貫通電極と同電位となっており、これらの電極を介して外部に出力できるようになっている。逆に、これらの電極に電圧を印加すれば、対応するパッド部を所望の電位にすることができる。 Specifically, the first pad portion 31 is formed in the peripheral portion 30 and connected to a first through electrode 71 described later on the second surface 40a. The second pad portion 32 is formed on the anchor portion 24 and is electrically connected to the movable portion 20. The third pad portion 33 is formed in the peripheral portion 30 and connected to a second through electrode 72 described later on the second surface 40a. The fourth pad portion 34 is formed in the peripheral portion 30 and connected to a third through electrode (not shown) on the second surface 40a. The fifth pad portion 35 is formed in the peripheral portion 30 and connected to a fourth through electrode (not shown) on the second surface 40a. The third through electrode and the fourth through electrode have the same configuration as the first through electrode 71 and are formed side by side along the y-axis direction. That is, the potentials of the first pad portion 31, the third pad portion 33, the fourth pad portion 34, and the fifth pad portion 35 are respectively the first through electrode 71, the second through electrode 72, the third through electrode, and the fourth. It has the same potential as the through electrode, and can be output to the outside through these electrodes. Conversely, if a voltage is applied to these electrodes, the corresponding pad portion can be brought to a desired potential.
 さらに、第1パッド部31と第2パッド部32とは、後述の中継配線63によって互いに結線され電気的に接続されている。つまり、可動部20の電位は第1貫通電極71から取り出すことができるようになっている。 Further, the first pad portion 31 and the second pad portion 32 are connected and electrically connected to each other by a relay wiring 63 described later. That is, the potential of the movable portion 20 can be taken out from the first through electrode 71.
 気密フレーム36は、可動部20(溝部14)を取り囲むように枠状に形成されている。気密フレーム36は、支持基板10とキャップ基板40とに挟まれて形成されているので、気密フレーム36と支持基板10とキャップ基板40とに囲まれた領域は外部から隔離された気密空間となっている。キャビティとは、該隔離空間に相当する。また、以降、この隔離空間をキャビティ80と称する。なお、気密フレーム35よりも外側であって支持基板10とキャップ基板40とに挟まれるスペーサを別途形成してもよい。スペーサは支持基板10とキャップ基板40との間隔を維持するものであり、酸化膜等の絶縁膜で構成することができる。 The airtight frame 36 is formed in a frame shape so as to surround the movable portion 20 (groove portion 14). Since the hermetic frame 36 is formed between the support substrate 10 and the cap substrate 40, the region surrounded by the hermetic frame 36, the support substrate 10 and the cap substrate 40 is an airtight space isolated from the outside. ing. A cavity corresponds to the isolation space. Hereinafter, this isolation space is referred to as a cavity 80. A spacer that is outside the hermetic frame 35 and is sandwiched between the support substrate 10 and the cap substrate 40 may be separately formed. The spacer maintains the distance between the support substrate 10 and the cap substrate 40, and can be composed of an insulating film such as an oxide film.
 支持基板10における第2基板13は、図1および図2に示すように、外周部30において複数のスリット50を有している。本実施形態における第2基板13は、第1種スリット51と第2種スリット52を有している。以降、第1種スリット51および第2種スリット52をまとめてスリット50ということがある。 The second substrate 13 in the support substrate 10 has a plurality of slits 50 in the outer peripheral portion 30 as shown in FIGS. The second substrate 13 in this embodiment has a first type slit 51 and a second type slit 52. Hereinafter, the first type slit 51 and the second type slit 52 may be collectively referred to as a slit 50.
 第1種スリット51は、第2基板13のうち、第1パッド部31、第3パッド部33、第4パッド部34および第5パッド部35との接触部分を取り囲むように略環状に形成されている。図2に示すように、第1パッド部31との接触部分を取り囲む第1種スリット51は環状であり、以降、スリットで囲まれた領域を接合部30aと称する。すなわち、周辺部30は、第1種スリット51によって接合部30aと、接合部30aを除く母体部30bとに区画される。なお、本実施形態では、図1に示すように、第1種スリット51が第1基板11や絶縁膜12にまで至っていないが、これに限定されるものではない。接合部30aおよび母体部30bは第1基板11や絶縁膜12を含む概念である。 The first type slit 51 is formed in a substantially annular shape so as to surround a contact portion of the second substrate 13 with the first pad portion 31, the third pad portion 33, the fourth pad portion 34, and the fifth pad portion 35. ing. As shown in FIG. 2, the first type slit 51 surrounding the contact portion with the first pad portion 31 is annular, and the region surrounded by the slit is hereinafter referred to as a joint portion 30a. That is, the peripheral portion 30 is partitioned by the first type slit 51 into a joint portion 30a and a base body portion 30b excluding the joint portion 30a. In the present embodiment, as shown in FIG. 1, the first type slit 51 does not reach the first substrate 11 or the insulating film 12, but the present invention is not limited to this. The joint part 30 a and the base part 30 b are concepts including the first substrate 11 and the insulating film 12.
 第1パッド部31と同様に、第2基板13のうち第3パッド部33との接触部分を取り囲むように第1種スリット51が形成されている。第3パッド部33に対応する第1種スリット51は完全な環状を成さず、一部が欠損したC字状を成している。さらに同様に、第2基板13のうち第4パッド部34との接触部分を取り囲むように第1種スリット51が形成され、第5パッド部35との接触部分を取り囲むように第1種スリット51が形成されている。第4パッド部34および第5パッド部35に対応する第1種スリット51は環状を成しており、接合部30aと母体部30bとを区画している。 Similarly to the first pad portion 31, a first type slit 51 is formed so as to surround a contact portion of the second substrate 13 with the third pad portion 33. The first type slit 51 corresponding to the third pad portion 33 does not form a complete ring, but forms a C shape with a part missing. Similarly, the first type slit 51 is formed so as to surround the contact portion with the fourth pad portion 34 of the second substrate 13, and the first type slit 51 is set so as to surround the contact portion with the fifth pad portion 35. Is formed. The first type slit 51 corresponding to the fourth pad portion 34 and the fifth pad portion 35 has an annular shape, and divides the joint portion 30a and the base portion 30b.
 第2種スリット52は、図2に示すように、可動部20、および、周辺部30のうち各パッド部31,33~35との接触部分とを内側に含むように枠状に形成されている。本実施形態における第2種スリット52は、気密フレーム36が形成される枠内であって、気密フレーム36に沿った矩形状に形成されている。第2種スリット52は、第2基板13を、第2種スリット52の枠外である外周部30cと、枠内である内周部30dとに区画している。z軸方向から正面視したとき、外周部30cは支持基板10うち気密フレーム36が接合部されている領域である。対して、内周部30dは、可動部20や上記した接合部30aを内包する領域である。 As shown in FIG. 2, the second type slit 52 is formed in a frame shape so as to include the movable portion 20 and contact portions of the peripheral portion 30 with the pad portions 31, 33 to 35 inside. Yes. The second type slit 52 in this embodiment is formed in a rectangular shape along the airtight frame 36 in the frame where the airtight frame 36 is formed. The second type slit 52 partitions the second substrate 13 into an outer peripheral part 30c that is outside the frame of the second type slit 52 and an inner peripheral part 30d that is inside the frame. When viewed from the front in the z-axis direction, the outer peripheral portion 30c is a region of the support substrate 10 where the airtight frame 36 is joined. On the other hand, the inner peripheral part 30d is an area including the movable part 20 and the above-described joint part 30a.
 キャップ基板40は、図1に示すように、貼り合わせ基板41と、貼り合わせ基板41のうち支持基板10と対向する一面に形成された絶縁膜42と、貼り合わせ基板41のうち支持基板10側と反対の他面に形成された絶縁膜43とを有している。そして、絶縁膜42のうち支持基板10と対向する面にてキャップ基板40における第2面40aが構成されている。なお、貼り合わせ基板41はシリコン等で構成され、絶縁膜42は酸化膜や窒化膜で構成され、絶縁膜43はTEOS等で構成されている。 As shown in FIG. 1, the cap substrate 40 includes a bonded substrate 41, an insulating film 42 formed on one surface of the bonded substrate 41 facing the support substrate 10, and the bonded substrate 41 on the support substrate 10 side. And an insulating film 43 formed on the opposite surface. A second surface 40 a of the cap substrate 40 is formed on the surface of the insulating film 42 facing the support substrate 10. The bonded substrate 41 is made of silicon, the insulating film 42 is made of an oxide film or a nitride film, and the insulating film 43 is made of TEOS or the like.
 そして、キャップ基板40の第2面40aには、第1固定電極61と第2固定電極62とが形成されている。以降、第1固定電極61と第2固定電極62とをまとめて固定電極60ということがある。固定電極60は支持基板10との対向配置されており、第1面10aに接触しないように形成されている。 The first fixed electrode 61 and the second fixed electrode 62 are formed on the second surface 40a of the cap substrate 40. Hereinafter, the first fixed electrode 61 and the second fixed electrode 62 may be collectively referred to as a fixed electrode 60. The fixed electrode 60 is disposed so as to face the support substrate 10 and is formed so as not to contact the first surface 10a.
 第1固定電極61は、図2に示すように、z軸方向から正面視したとき、枠部22における第1部位22aとオーバラップするように形成されている。換言すれば、第1固定電極61は第1部位22aに対向している。第1固定電極61と第1部位22aは静電容量を構成し、可動部20がトーション梁23を回転軸として変位することによって当該静電容量が変化するようになっている。第1固定電極61は、第1配線61aを介して第5パッド部35に電気的に接続されている。すなわち、第1固定電極61の電位は第4貫通電極を介して検出することができる。 As shown in FIG. 2, the first fixed electrode 61 is formed so as to overlap the first portion 22a in the frame portion 22 when viewed from the front in the z-axis direction. In other words, the first fixed electrode 61 faces the first portion 22a. The first fixed electrode 61 and the first portion 22a constitute an electrostatic capacity, and the electrostatic capacity changes as the movable part 20 is displaced with the torsion beam 23 as a rotation axis. The first fixed electrode 61 is electrically connected to the fifth pad portion 35 via the first wiring 61a. That is, the potential of the first fixed electrode 61 can be detected through the fourth through electrode.
 第2固定電極62は、図2に示すように、z軸方向から正面視したとき、枠部22における第2部位22bとオーバラップするように形成されている。換言すれば、第2固定電極62は第2部位22bに対向している。第2固定電極62と第2部位22bは静電容量を構成し、可動部20がトーション梁23を回転軸として変位することによって当該静電容量が変化するようになっている。第2固定電極62は、第2配線62aを介して第4パッド部34に電気的に接続されている。すなわち、第2固定電極62の電位は第3貫通電極を介して検出することができる。 As shown in FIG. 2, the second fixed electrode 62 is formed so as to overlap with the second portion 22b in the frame portion 22 when viewed from the front in the z-axis direction. In other words, the second fixed electrode 62 faces the second portion 22b. The second fixed electrode 62 and the second portion 22b constitute an electrostatic capacity, and the electrostatic capacity changes as the movable part 20 is displaced with the torsion beam 23 as a rotation axis. The second fixed electrode 62 is electrically connected to the fourth pad portion 34 via the second wiring 62a. That is, the potential of the second fixed electrode 62 can be detected via the third through electrode.
 なお、固定電極60、第1配線61aおよび第2配線62aは例えばアルミニウムにより構成されている。また、第1固定電極61および第2固定電極62は同じ平面形状とされ、加速度が印加されていない状態において、第1,第2部位22a,22bとの間に等しい静電容量を構成している。 Note that the fixed electrode 60, the first wiring 61a, and the second wiring 62a are made of aluminum, for example. Further, the first fixed electrode 61 and the second fixed electrode 62 have the same planar shape, and form an equal capacitance between the first and second portions 22a and 22b in a state where no acceleration is applied. Yes.
 さらに、キャップ基板40の第2面40aには、第2面40aに沿うように中継配線63が形成されている。中継配線63は、例えばアルミニウムにより構成され、第1パッド部31と第2パッド部32とを電気的に接続している。中継配線63により、第2パッド部32と第1パッド部31、ひいては第1貫通電極71とを同電位とすることができる。なお、本実施形態における中継配線63はトーション梁23に対向するようにx軸方向に延設されている。 Furthermore, a relay wiring 63 is formed on the second surface 40a of the cap substrate 40 along the second surface 40a. The relay wiring 63 is made of, for example, aluminum, and electrically connects the first pad portion 31 and the second pad portion 32. With the relay wiring 63, the second pad portion 32 and the first pad portion 31, and thus the first through electrode 71 can be set to the same potential. Note that the relay wiring 63 in the present embodiment extends in the x-axis direction so as to face the torsion beam 23.
 このように、可動部20と固定電極60とでセンシング部が構成され、第1貫通電極71、第3貫通電極および第4貫通電極によって加速度に応じたセンサ信号を出力することができるようになっている。 Thus, a sensing part is comprised by the movable part 20 and the fixed electrode 60, and the sensor signal according to acceleration can be output now by the 1st penetration electrode 71, the 3rd penetration electrode, and the 4th penetration electrode. ing.
 また、キャップ基板40には、厚さ方向(z軸方向)に貫通する貫通電極70が形成されている。本実施形態における貫通電極70は、図1に示す第1貫通電極71、第2貫通電極72および、図示しない第3貫通電極、第4貫通電極なる4つを含んでいる。これら4つの貫通電極を総称して貫通電極70ということがある。 Further, a through electrode 70 penetrating in the thickness direction (z-axis direction) is formed in the cap substrate 40. The through electrode 70 in the present embodiment includes the first through electrode 71 and the second through electrode 72 shown in FIG. 1, and the four through electrodes, a third through electrode and a fourth through electrode (not shown). These four through electrodes may be collectively referred to as a through electrode 70.
 4つの貫通電極70は互いに等価であり、貼り合わせ基板41および絶縁膜42を貫通する貫通孔41aに、絶縁膜41bを介して形成されている。絶縁膜41bは貫通孔41aの内壁面において絶縁膜42と絶縁膜43とを連結して一体的な絶縁膜となっている。貫通電極70は貫通孔41aの内壁面に沿って形成されるとともに、絶縁膜43上にランド部70aが形成された構成とされている。 The four through electrodes 70 are equivalent to each other, and are formed in the through holes 41a penetrating the bonded substrate 41 and the insulating film 42 via the insulating film 41b. The insulating film 41b is an integral insulating film connecting the insulating film 42 and the insulating film 43 on the inner wall surface of the through hole 41a. The through electrode 70 is formed along the inner wall surface of the through hole 41 a, and the land portion 70 a is formed on the insulating film 43.
 図1に示すように、第1貫通電極71は絶縁膜42を貫通して第1パッド部31に至る。つまり、第1貫通電極71は、第1パッド部31、中継配線63、第2パッド部32を経由して可動部20に電気的に接続されている。第2貫通電極72は絶縁膜42を貫通して第3パッド部33に至る。図示しない第3貫通電極および第4貫通電極は絶縁膜42を貫通してそれぞれ第4パッド部34および第5パッド部35に至る。つまり、第3貫通電極および第4貫通電極は、それぞれ第2固定電極62および第1固定電極61と電気的に接続されている。 As shown in FIG. 1, the first through electrode 71 passes through the insulating film 42 and reaches the first pad portion 31. That is, the first through electrode 71 is electrically connected to the movable portion 20 via the first pad portion 31, the relay wiring 63, and the second pad portion 32. The second through electrode 72 penetrates the insulating film 42 and reaches the third pad portion 33. A third through electrode and a fourth through electrode (not shown) penetrate the insulating film 42 and reach the fourth pad portion 34 and the fifth pad portion 35, respectively. That is, the third through electrode and the fourth through electrode are electrically connected to the second fixed electrode 62 and the first fixed electrode 61, respectively.
 以上が本実施形態における慣性センサ100の構造である。このような慣性センサ100は、z軸方向の加速度が印加されると、枠部22がトーション梁23を回転軸として加速度に応じて回転する。そして、第1部位22aと第1固定電極61との間の静電容量と、第2部位22bと第2固定電極62との間の静電容量とが加速度に応じて変化するため、この容量変化に基づいて加速度の検出が行われる。 The above is the structure of the inertial sensor 100 in the present embodiment. In such an inertial sensor 100, when an acceleration in the z-axis direction is applied, the frame portion 22 rotates according to the acceleration with the torsion beam 23 as a rotation axis. And since the electrostatic capacitance between the 1st site | part 22a and the 1st fixed electrode 61 and the electrostatic capacitance between the 2nd site | part 22b and the 2nd fixed electrode 62 change according to an acceleration, this capacity | capacitance. The acceleration is detected based on the change.
 次に、図3~図14を参照して、慣性センサ100の製造方法について説明する。 Next, a method for manufacturing the inertial sensor 100 will be described with reference to FIGS.
 先ず、図3に示すように、支持基板10を構成する第1基板11を用意し、第1基板11上にCVDや熱酸化等の一般的に知られた方法で絶縁膜12を形成する。 First, as shown in FIG. 3, a first substrate 11 constituting a support substrate 10 is prepared, and an insulating film 12 is formed on the first substrate 11 by a generally known method such as CVD or thermal oxidation.
 次いで、図4に示すように、絶縁膜12上に図示しないマスクレジストを形成してエッチング等を行い、第1基板11に窪み部15を形成する。 Next, as shown in FIG. 4, a mask resist (not shown) is formed on the insulating film 12 and etching or the like is performed to form a recess 15 in the first substrate 11.
 次いで、図5に示すように、絶縁膜12と第2基板13とを接合して支持基板10を形成する。絶縁膜12と第2基板13とを接合は、特に限定されるものではないが、例えば、次のように行うことができる。 Next, as shown in FIG. 5, the insulating film 12 and the second substrate 13 are joined to form the support substrate 10. The bonding of the insulating film 12 and the second substrate 13 is not particularly limited, but can be performed as follows, for example.
 まず、絶縁膜12の接合面および第2基板13の接合面にNプラズマ、Oプラズマ、またはArイオンビームを照射し、絶縁膜12および第2基板13の各接合面を活性化する。そして、適宜形成されたアライメントマークを用いて赤外顕微鏡等によるアライメントを行い、室温~550℃で絶縁膜12および第2基板13をいわゆる直接接合により接合する。 First, the bonding surface of the insulating film 12 and the bonding surface of the second substrate 13 are irradiated with N 2 plasma, O 2 plasma, or an Ar ion beam to activate the bonding surfaces of the insulating film 12 and the second substrate 13. Then, alignment is performed by an infrared microscope or the like using an appropriately formed alignment mark, and the insulating film 12 and the second substrate 13 are bonded by so-called direct bonding at room temperature to 550 ° C.
 なお、ここでは直接接合を例に挙げて説明したが、絶縁膜12と第2基板13とは、陽極接合や中間層接合、フージョン接合等の接合技術によって接合されてもよい。また、接合後に、高温アニール等の接合品質を向上させる処理を行ってもよい。さらに、接合後に、第2基板13を研削研磨によって所望の厚さに加工してもよい。 Although the direct bonding is described as an example here, the insulating film 12 and the second substrate 13 may be bonded by a bonding technique such as anodic bonding, intermediate layer bonding, or fusion bonding. Further, after the joining, a treatment for improving the joining quality such as high temperature annealing may be performed. Further, after bonding, the second substrate 13 may be processed to a desired thickness by grinding and polishing.
 次いで、図6に示すように、支持基板10の第1面10aにCVD法等によって金属膜(アルミニウム)を形成する。そして、レジストや酸化膜等の図示しないマスクを用いて反応性イオンエッチング等で当該金属膜をパターニングすることにより、第1パッド部31~第5パッド部35、および、気密フレーム36の一部となる金属層を選択的に形成する。 Next, as shown in FIG. 6, a metal film (aluminum) is formed on the first surface 10a of the support substrate 10 by a CVD method or the like. Then, by patterning the metal film by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film, the first pad portion 31 to the fifth pad portion 35 and a part of the airtight frame 36 are A metal layer is selectively formed.
 次いで、図7に示すように、レジストや酸化膜等の図示しないマスクを用いて反応性イオンエッチング等で第2基板13に溝部14およびスリット50を形成する。これにより、可動部20が形成され、且つ、周辺部30が接合部30aと母体部30b、あるいは、外周部30cと内周部30dに区画された第1基板10が用意される。 Next, as shown in FIG. 7, the groove 14 and the slit 50 are formed in the second substrate 13 by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film. Thereby, the movable substrate 20 is formed, and the first substrate 10 in which the peripheral portion 30 is partitioned into the joint portion 30a and the base portion 30b, or the outer peripheral portion 30c and the inner peripheral portion 30d is prepared.
 上記図3~図7とは別工程において、図8に示すように、貼り合わせ基板41を用意し、熱酸化等によって貼り合わせ基板41の全面に絶縁膜42を形成する。 3 to 7, a bonded substrate 41 is prepared as shown in FIG. 8, and an insulating film 42 is formed on the entire surface of the bonded substrate 41 by thermal oxidation or the like.
 次いで、図9に示すように、絶縁膜42上に図示しないマスクレジストを形成してエッチング等を行い、貼り合わせ基板41に窪み部16を形成する。 Next, as shown in FIG. 9, a mask resist (not shown) is formed on the insulating film 42 and etching or the like is performed to form the recess 16 in the bonded substrate 41.
 次いで、図10に示すように、絶縁膜42のうち支持基板10と対向する部分に金属膜(アルミニウム)を形成する。そして、レジストや酸化膜等の図示しないマスクを用いて反応性イオンエッチング等で当該金属膜をパターニングすることにより、第1固定電極61、第2固定電極62を形成する。また、この工程において、第1パッド部31~第5パッド部35、および、気密フレーム36の残りの部分となる金属層を選択的に形成する。さらに、この工程において中継配線63を形成する。なお、図10においては、第1パッド部31、第2パッド部32および中継配線63を一体的に図示している。 Next, as shown in FIG. 10, a metal film (aluminum) is formed on a portion of the insulating film 42 facing the support substrate 10. Then, the first fixed electrode 61 and the second fixed electrode 62 are formed by patterning the metal film by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film. In this step, the first pad portion 31 to the fifth pad portion 35 and the metal layer that becomes the remaining portion of the airtight frame 36 are selectively formed. Further, the relay wiring 63 is formed in this step. In FIG. 10, the first pad portion 31, the second pad portion 32, and the relay wiring 63 are integrally illustrated.
 次いで、図11に示すように、支持基板10とキャップ基板40とを接合する。具体的には、適宜形成されたアライメントマークを用いて赤外顕微鏡等によるアライメントを行い、支持基板10に形成された第1パッド部31~第5パッド部35および気密フレーム36と、キャップ基板40に形成された第1パッド部31~第5パッド部35および気密フレーム36とを300~500℃で金属接合する。これにより、支持基板10とキャップ基板40との間の空間が気密フレーム36により封止されてキャビティ80となり、枠部22および第1固定電極61、第2固定電極62がキャビティ80に気密封止される。 Next, as shown in FIG. 11, the support substrate 10 and the cap substrate 40 are joined. Specifically, alignment is performed with an infrared microscope or the like using appropriately formed alignment marks, the first pad portion 31 to the fifth pad portion 35 and the airtight frame 36 formed on the support substrate 10, and the cap substrate 40. The first pad portion 31 to the fifth pad portion 35 and the airtight frame 36 formed in the above are metal-bonded at 300 to 500 ° C. As a result, the space between the support substrate 10 and the cap substrate 40 is sealed by the airtight frame 36 to form the cavity 80, and the frame portion 22, the first fixed electrode 61, and the second fixed electrode 62 are hermetically sealed to the cavity 80. Is done.
 次いで、図12に示すように、絶縁膜42および貼り合わせ基板41を支持基板10側と反対側から研削し、支持基板10側と反対側の絶縁膜42を除去すると共に貼り合わせ基板41を薄くする。 Next, as shown in FIG. 12, the insulating film 42 and the bonded substrate 41 are ground from the side opposite to the supporting substrate 10 side, the insulating film 42 on the side opposite to the supporting substrate 10 side is removed, and the bonded substrate 41 is thinned. To do.
 次いで、図13に示すように、第1パッド部31、第3パッド部33に対応する場所における貼り合わせ基板41および絶縁膜42を除去することにより、2つの貫通孔41aを形成する。また、13とは別断面において、第4パッド部34、第5パッド部35に対応する場所における貼り合わせ基板41および絶縁膜42を除去することにより、2つの貫通孔41aを形成する。すなわち、合計で4つの貫通孔41aを形成する。そして、各貫通孔41aの壁面にTEOS等の絶縁膜41bを成膜する。このとき、貼り合わせ基板41のうち支持基板10側と反対側に形成された絶縁膜にて絶縁膜43が構成される。つまり、絶縁膜43と絶縁膜41bとは同じ工程で形成される。その後、各貫通孔41aの底部に形成された絶縁膜41bを除去し、各貫通孔41a内において、第1パッド部31、第3パッド部31、第4パッド部34および第5パッド部35を露出させる。 Next, as shown in FIG. 13, by removing the bonded substrate 41 and the insulating film 42 at locations corresponding to the first pad portion 31 and the third pad portion 33, two through holes 41a are formed. Further, in a cross section different from 13, two through holes 41 a are formed by removing the bonded substrate 41 and the insulating film 42 at locations corresponding to the fourth pad portion 34 and the fifth pad portion 35. That is, a total of four through holes 41a are formed. Then, an insulating film 41b such as TEOS is formed on the wall surface of each through hole 41a. At this time, the insulating film 43 is composed of an insulating film formed on the side of the bonded substrate 41 opposite to the support substrate 10 side. That is, the insulating film 43 and the insulating film 41b are formed in the same process. Thereafter, the insulating film 41b formed at the bottom of each through hole 41a is removed, and the first pad portion 31, the third pad portion 31, the fourth pad portion 34, and the fifth pad portion 35 are removed in each through hole 41a. Expose.
 次いで、図14に示すように、各貫通孔41aにスパッタ法や蒸着法等によって金属膜を配置して各貫通電極70を形成する。具体的には、第1パッド部31に対応する貫通孔41aに第1貫通電極71を形成する。第3パッド部33に対応する貫通孔41aに第2貫通電極72を形成する。また、第4パッド部34に対応する貫通孔41aに第3貫通電極を形成する。第5パッド部35に対応する貫通孔41aに第4貫通電極を形成する。その後、絶縁膜43上の金属膜をパターニングしてランド部70aを形成する。 Next, as shown in FIG. 14, each through electrode 70 is formed by disposing a metal film in each through hole 41 a by sputtering or vapor deposition. Specifically, the first through electrode 71 is formed in the through hole 41 a corresponding to the first pad portion 31. A second through electrode 72 is formed in the through hole 41 a corresponding to the third pad portion 33. A third through electrode is formed in the through hole 41 a corresponding to the fourth pad portion 34. A fourth through electrode is formed in the through hole 41 a corresponding to the fifth pad portion 35. Thereafter, the metal film on the insulating film 43 is patterned to form the land portion 70a.
 以上記載した工程を経て、慣性センサ100を製造する。なお、上記では、z軸方向に印加される加速度を検出する慣性センサ100の製造方法について説明したが、xy平面に沿う方向に印加される加速度を検出するセンシング部を同一慣性センサ100内に設けるようにしても良い。また、上記では1つの加速度センサの製造方法について説明したが、ウェハ状の支持基板10およびキャップ基板40を用意し、これらを接合した後にダイシングカットしてチップ単位に分割するようにしてもよい。 The inertial sensor 100 is manufactured through the processes described above. In addition, although the manufacturing method of the inertial sensor 100 which detects the acceleration applied to az-axis direction was demonstrated above, the sensing part which detects the acceleration applied to the direction along xy plane is provided in the same inertial sensor 100. FIG. You may do it. In the above description, the manufacturing method of one acceleration sensor has been described. However, the wafer-like support substrate 10 and the cap substrate 40 may be prepared, and after dicing and cutting, the wafer may be divided into chips.
 次に、本実施形態にかかる慣性センサ100の作用効果について説明する。 Next, functions and effects of the inertial sensor 100 according to the present embodiment will be described.
 この慣性センサ100では、センシング部を構成する可動部20が貫通電極70と直接的に接続されることなく、中継配線を介して第1パッド部31および第1貫通電極71に接続される。このため、第1貫通電極71が温度によって膨張あるいは収縮を生じた場合でも、その熱応力を直接第2パッド部、ひいては可動部20に伝達してしまうことを抑制することができる。したがって、センシング部において出力するセンサ信号に重畳する、温度に起因するノイズを低減することができる。 In this inertial sensor 100, the movable part 20 constituting the sensing part is connected to the first pad part 31 and the first through electrode 71 via the relay wiring without being directly connected to the through electrode 70. For this reason, even when the first through electrode 71 expands or contracts due to temperature, it is possible to prevent the thermal stress from being directly transmitted to the second pad portion, and hence the movable portion 20. Therefore, noise caused by temperature superimposed on the sensor signal output from the sensing unit can be reduced.
 また、この慣性センサ100には、第1種スリット51が形成されている。具体的には、支持基板10ひいては第2基板13における周辺部30が、第1種スリット51によって接合部30aと母体部30bとに区画されている。このため、貫通電極70の熱応力に起因して接合部30aが変形しても、母体部30bとの間で第1種スリット51がクリアランスとなるため、可動部20への熱応力の影響をより抑制することができる。 The inertial sensor 100 has a first type slit 51 formed therein. Specifically, the supporting substrate 10 and thus the peripheral portion 30 of the second substrate 13 are partitioned by the first type slit 51 into the joint portion 30a and the base portion 30b. For this reason, even if the joint portion 30a is deformed due to the thermal stress of the through electrode 70, the first type slit 51 becomes a clearance with the base body portion 30b, so that the influence of the thermal stress on the movable portion 20 is affected. It can be suppressed more.
 さらに、この慣性センサ100には、第2種スリット52が形成されている。具体的には、支持基板10ひいては第2基板13における周辺部30が、第2種スリット52によって外周部30cと内周部30dとに区画されている。このため、第2種スリット52の枠内である内周部30d側に形成された貫通電極70が温度によって膨張あるいは収縮を生じた場合でも、内周部30dと外周部30cとの間で第2種スリット52がクリアランスとなるため、外周部30cへの熱応力の影響をより抑制することができる。例えば外周部30c側にx軸方向およびy軸方向に印加される加速度を検出するためのセンシング部が別途形成されているような慣性センサであっても、それらセンシング部への熱応力の影響を抑制することができる。 Furthermore, a second type slit 52 is formed in the inertial sensor 100. Specifically, the peripheral portion 30 of the support substrate 10 and thus the second substrate 13 is partitioned into an outer peripheral portion 30 c and an inner peripheral portion 30 d by the second type slit 52. For this reason, even when the penetration electrode 70 formed on the inner peripheral portion 30d side in the frame of the second type slit 52 expands or contracts due to the temperature, the second electrode 52 is formed between the inner peripheral portion 30d and the outer peripheral portion 30c. Since the two types of slits 52 serve as a clearance, the influence of thermal stress on the outer peripheral portion 30c can be further suppressed. For example, even in an inertial sensor in which a sensing unit for detecting acceleration applied in the x-axis direction and the y-axis direction is separately formed on the outer peripheral part 30c side, the influence of thermal stress on the sensing unit is affected. Can be suppressed.
 (第2実施形態)
 第1実施形態では、z軸方向から正面視したとき、第1パッド部31が周辺部30にオーバラップするような慣性センサ100について説明した。しかしながら、第1パッド部31の形成位置は、周辺部30に必ずしもオーバラップする必要はない。
(Second Embodiment)
In the first embodiment, the inertial sensor 100 in which the first pad portion 31 overlaps the peripheral portion 30 when viewed from the front in the z-axis direction has been described. However, the formation position of the first pad portion 31 does not necessarily overlap the peripheral portion 30.
 第2実施形態における慣性センサ110における第1パッド部31は、図15および図16に示すように、可動部20にオーバラップするように形成されている。具体的には、第1パッド部31は、第2基板13に対向しつつ接触しないように、キャップ基板40における第2面40aに形成されている。そして、第1パッド部31と第2パッド部32とは中継配線63により電気的に接続されている。第1パッド部31には第1実施形態と同様に第1貫通電極71が接続されている。なお、図15は、図16に示すXV-XV線に沿う断面図である。 The first pad portion 31 in the inertial sensor 110 in the second embodiment is formed so as to overlap the movable portion 20 as shown in FIGS. 15 and 16. Specifically, the first pad portion 31 is formed on the second surface 40 a of the cap substrate 40 so as not to contact the second substrate 13 while facing the second substrate 13. The first pad portion 31 and the second pad portion 32 are electrically connected by the relay wiring 63. The 1st penetration electrode 71 is connected to the 1st pad part 31 like a 1st embodiment. FIG. 15 is a cross-sectional view taken along line XV-XV shown in FIG.
 この慣性センサ110においても、第1貫通電極71と可動部20上に形成された第2パッド部32とは直接的に接続されることなく、中継配線63を介して電気的に接続される。このため、第1貫通電極71が温度によって膨張あるいは収縮を生じた場合でも、その熱応力を直接第2パッド部、ひいては可動部20に伝達してしまうことを抑制することができる。 Also in this inertial sensor 110, the first through electrode 71 and the second pad portion 32 formed on the movable portion 20 are not directly connected but are electrically connected via the relay wiring 63. For this reason, even when the first through electrode 71 expands or contracts due to temperature, it is possible to prevent the thermal stress from being directly transmitted to the second pad portion, and hence the movable portion 20.
 (第3実施形態)
 第1実施形態および第2実施形態における貫通電極70は、固定電極60が設けられた基板と同一のキャップ基板40側に形成されている。これに対して、第3実施形態における慣性センサ130は、図17に示すように、固定電極60が設けられた基板とは異なる支持基板10に形成されている。
(Third embodiment)
The through electrode 70 in the first embodiment and the second embodiment is formed on the same cap substrate 40 side as the substrate on which the fixed electrode 60 is provided. In contrast, the inertial sensor 130 in the third embodiment is formed on a support substrate 10 different from the substrate on which the fixed electrode 60 is provided, as shown in FIG.
 この慣性センサ130は、貫通電極70の形成位置を除く部分では第1実施形態の慣性センサ100と略同一の構成をしている。本実施形態における貫通電極70は、第1実施形態における貫通電極70に対して、xy平面を対称面として鏡面対称の位置に形成されている。図17に示すように、第1貫通電極71に対応して第5貫通電極75が形成され、第2貫通電極72に対応して第6貫通電極76が形成されている。なお、第3貫通電極および第4貫通電極に対応する貫通電極70も形成されているが図示を省略する。 The inertial sensor 130 has substantially the same configuration as that of the inertial sensor 100 of the first embodiment except for the position where the through electrode 70 is formed. The through electrode 70 in the present embodiment is formed in a mirror-symmetrical position with respect to the through electrode 70 in the first embodiment, with the xy plane as a symmetry plane. As shown in FIG. 17, a fifth through electrode 75 is formed corresponding to the first through electrode 71, and a sixth through electrode 76 is formed corresponding to the second through electrode 72. In addition, although the penetration electrode 70 corresponding to the 3rd penetration electrode and the 4th penetration electrode is also formed, illustration is abbreviate | omitted.
 第5貫通電極75および第6貫通電極76は支持基板10のうち第1基板11と絶縁膜12を貫通するように形成されている。本実施形態における貫通電極70は、第1基板11および絶縁膜12を貫通する貫通孔11aに、絶縁膜11bを介して形成されている。絶縁膜11bは、貫通孔11aの内壁面において絶縁膜12と連結して一体的な絶縁膜となっている。貫通電極70は貫通孔11aの内壁面に沿って形成される。 The fifth through electrode 75 and the sixth through electrode 76 are formed so as to penetrate the first substrate 11 and the insulating film 12 in the support substrate 10. The through electrode 70 in the present embodiment is formed in the through hole 11a penetrating the first substrate 11 and the insulating film 12 via the insulating film 11b. The insulating film 11b is connected to the insulating film 12 on the inner wall surface of the through hole 11a to form an integral insulating film. The through electrode 70 is formed along the inner wall surface of the through hole 11a.
 図17に示すように、第5貫通電極75は絶縁膜12を貫通して第1パッド部31に至る。つまり、第5貫通電極75は、第1パッド部31、中継配線63、第2パッド部32を経由して可動部20に電気的に接続されている。第6貫通電極76は絶縁膜12を貫通して第3パッド部33に至る。図示しない残る2つの貫通電極70は、それぞれ第1固定電極61および第2固定電極62と電気的に接続されている。 As shown in FIG. 17, the fifth through electrode 75 penetrates the insulating film 12 and reaches the first pad portion 31. That is, the fifth through electrode 75 is electrically connected to the movable portion 20 via the first pad portion 31, the relay wiring 63, and the second pad portion 32. The sixth through electrode 76 penetrates the insulating film 12 and reaches the third pad portion 33. The remaining two through electrodes 70 (not shown) are electrically connected to the first fixed electrode 61 and the second fixed electrode 62, respectively.
 この慣性センサ130においても、第5貫通電極75と可動部20上に形成された第2パッド部32とは直接的に接続されることなく、中継配線63を介して電気的に接続される。このため、第5貫通電極75が温度によって膨張あるいは収縮を生じた場合でも、その熱応力を直接第2パッド部、ひいては可動部20に伝達してしまうことを抑制することができる。 Also in this inertial sensor 130, the fifth through electrode 75 and the second pad portion 32 formed on the movable portion 20 are electrically connected via the relay wiring 63 without being directly connected. For this reason, even when the fifth through electrode 75 expands or contracts due to temperature, it is possible to prevent the thermal stress from being directly transmitted to the second pad portion, and hence the movable portion 20.
 また、本実施形態における慣性センサ130のように、貫通電極70を、固定電極60が形成される基板(キャップ基板40)と対になる基板(支持基板10)に形成することにより、キャップ基板40に貫通孔41aを形成する必要がなくなる。これにより、貼り合わせ基板41の薄肉化を行う必要がなくなるため、キャップ基板40の応力に対する強度を高めることができる。すなわち、温度に対して反りなどの発生を抑制することができる。したがって、第1実施形態および第2実施形態に較べて、固定電極60と可動部20との間の対向距離の精度を高くすることができ、センサ信号の精度を向上させることができる。 Further, like the inertial sensor 130 in the present embodiment, the through electrode 70 is formed on the substrate (support substrate 10) that is paired with the substrate (cap substrate 40) on which the fixed electrode 60 is formed. It is no longer necessary to form the through hole 41a. Thereby, since it is not necessary to reduce the thickness of the bonded substrate 41, the strength of the cap substrate 40 against the stress can be increased. That is, it is possible to suppress the occurrence of warpage with respect to the temperature. Therefore, compared with 1st Embodiment and 2nd Embodiment, the precision of the opposing distance between the fixed electrode 60 and the movable part 20 can be made high, and the precision of a sensor signal can be improved.
 (その他の実施形態)
 上記した実施形態では、支持基板11のスリット50を設け、スリット50を熱歪みに対するクリアランスとする例について説明したが、スリット50は必ずしも設ける必要はない。また、第1種スリット51のみを形成しても良いし、第2種スリット52のみを形成しても良い。また、熱歪みに対するクリアランスとして機能すればスリットである必要はなく、第1種スリット51または第2種スリット52の形成位置に相当する部分に、例えばボイド状の緩衝領域を設けても良い。
(Other embodiments)
In the above-described embodiment, the example in which the slit 50 of the support substrate 11 is provided and the slit 50 is used as a clearance against thermal strain has been described. However, the slit 50 is not necessarily provided. Further, only the first type slit 51 may be formed, or only the second type slit 52 may be formed. Moreover, if it functions as a clearance with respect to thermal distortion, it is not necessary to be a slit, and for example, a void-shaped buffer region may be provided in a portion corresponding to the formation position of the first type slit 51 or the second type slit 52.
 また、上記した実施形態では、パッド部31~35、気密フレーム36、貫通電極70についてアルミニウムを採用する例について説明したが、金や銅を採用しても良い。 In the above-described embodiment, an example in which aluminum is used for the pad portions 31 to 35, the hermetic frame 36, and the through electrode 70 has been described. However, gold or copper may be used.
 (第4実施形態)
 最初に、図18~図19を参照して、本実施形態に係る半導体装置の概略構成について説明する。
(Fourth embodiment)
First, a schematic configuration of the semiconductor device according to the present embodiment will be described with reference to FIGS.
 本実施形態における半導体装置は、例えば加速度を検出する慣性センサである。図18に示すように、半導体装置たる慣性センサ2100は、支持基板210とキャップ基板240とが積層されて構成されている。なお、図18は、図19に示すXVIII-XVIII線に沿う断面図である。図19は支持基板210のうち、第2基板213の上面図である。 The semiconductor device in the present embodiment is an inertial sensor that detects acceleration, for example. As shown in FIG. 18, the inertial sensor 2100 as a semiconductor device is configured by stacking a support substrate 210 and a cap substrate 240. FIG. 18 is a cross-sectional view taken along line XVIII-XVIII shown in FIG. FIG. 19 is a top view of the second substrate 213 in the support substrate 210.
 支持基板210は、第1基板211上に絶縁膜212を介して第2基板213が配置されたSOI(Silicon on Insulator)基板とされており、第1面210aが第2基板213のうち絶縁膜212側と反対側の表面で構成されている。なお、第1基板211はシリコン等の半導体で構成され、絶縁膜212は酸化膜や窒化膜として構成され、第2基板213はポリシリコン等で構成されている。また、第1基板211には、絶縁膜212の形成面と反対側の面に絶縁膜212aが形成されている。 The support substrate 210 is an SOI (Silicon on Insulator) substrate in which the second substrate 213 is disposed on the first substrate 211 via the insulating film 212, and the first surface 210 a is the insulating film of the second substrate 213. It is composed of a surface opposite to the 212 side. The first substrate 211 is made of a semiconductor such as silicon, the insulating film 212 is made of an oxide film or a nitride film, and the second substrate 213 is made of polysilicon or the like. In addition, an insulating film 212 a is formed on the first substrate 211 on the surface opposite to the surface on which the insulating film 212 is formed.
 そして、第2基板213には、図18および図19に示されるように、マイクロマシン加工が施されて溝部214が形成され、溝部214によって可動部220と周辺部230とが区画されている。 Then, as shown in FIGS. 18 and 19, the second substrate 213 is subjected to micromachining to form a groove portion 214, and the movable portion 220 and the peripheral portion 230 are partitioned by the groove portion 214.
 また、支持基板210のうち第1基板211には、可動部220ひいては後述の枠部222が第1基板211および絶縁膜212と接触することを防止するために、可動部220と対向する部分に窪み部215が形成されている。なお、窪み部215はエッチング等の方法により形成されるものであり、絶縁膜212は窪み部215の表面に亘って形成されている。 Further, the first substrate 211 of the support substrate 210 has a portion facing the movable portion 220 in order to prevent the movable portion 220 and a frame portion 222 described later from coming into contact with the first substrate 211 and the insulating film 212. A recess 215 is formed. The recess 215 is formed by a method such as etching, and the insulating film 212 is formed over the surface of the recess 215.
 可動部220は、平面矩形状の開口部221が形成された矩形枠状の枠部222と、開口部221の対向辺を連結するように形成されたトーション梁223とを有している。そして、可動部220は、トーション梁223が絶縁膜212に支持されたアンカー部224と連結されることにより第1基板211に支持されている。この可動部220がセンシング部に相当する。 The movable part 220 has a rectangular frame-shaped frame part 222 in which a planar rectangular opening part 221 is formed, and a torsion beam 223 formed so as to connect opposite sides of the opening part 221. The movable part 220 is supported by the first substrate 211 by connecting the torsion beam 223 to the anchor part 224 supported by the insulating film 212. This movable part 220 corresponds to a sensing part.
 ここで、本実施形態における方向の定義について説明する。図18および図19に示すように、トーション梁223の延設方向をx軸方向とし、x軸に直交する方向をy軸方向とする。また、xy平面に直交する方向をz軸方向とする。すなわち、z軸方向は支持基板210の第1面210aの法線方向である。換言すれば、z軸方向は、支持基板210およびキャップ基板240の厚さ方向である。 Here, the definition of the direction in the present embodiment will be described. As shown in FIGS. 18 and 19, the extending direction of the torsion beam 223 is defined as the x-axis direction, and the direction orthogonal to the x-axis is defined as the y-axis direction. A direction orthogonal to the xy plane is taken as a z-axis direction. That is, the z-axis direction is a normal direction of the first surface 210 a of the support substrate 210. In other words, the z-axis direction is the thickness direction of the support substrate 210 and the cap substrate 240.
 トーション梁223は、z軸方向の加速度が印加されたとき、可動部220の回転中心軸となる部材である。すなわち、トーション梁223は、その延設方向を回転軸として回動する。本実施形態におけるトーション梁223は開口部221を2分割するように形成されている。 The torsion beam 223 is a member that becomes the rotation center axis of the movable portion 220 when an acceleration in the z-axis direction is applied. That is, the torsion beam 223 rotates with the extending direction as a rotation axis. The torsion beam 223 in this embodiment is formed so that the opening 221 is divided into two.
 枠部222は、z軸方向の加速度が印加されたとき、トーション梁223を回転軸として回転できるように、トーション梁223を基準として非対称な形状とされている。本実施形態における枠部222は、トーション梁223を基準として第1部位222aと第2部位222bとに分けられる。枠部222は、第1部位222aにおけるトーション梁223から最も離れている部分の端部までのy軸方向の長さが、第2部位222bにおけるトーション梁223から最も離れている部分の端部までのy軸方向の長さより短くされている。つまり、枠部222は、第1部位222aの質量が第2部位222bの質量よりも小さくされている。 The frame portion 222 has an asymmetric shape with respect to the torsion beam 223 so that it can rotate about the torsion beam 223 when the acceleration in the z-axis direction is applied. The frame portion 222 in this embodiment is divided into a first portion 222a and a second portion 222b with the torsion beam 223 as a reference. The frame portion 222 has a length in the y-axis direction from the torsion beam 223 in the first part 222a to the end of the part farthest from the torsion beam 223, to the end of the part farthest from the torsion beam 223 in the second part 222b. Is shorter than the length in the y-axis direction. That is, in the frame part 222, the mass of the first part 222a is smaller than the mass of the second part 222b.
 また、支持基板210の第1面210a、すなわち第2基板213の表面には、第1接合体231、第2接合体232、第3接合体233、第4接合体234および第5接合体235が形成されるとともに、気密フレームとして機能する第6接合体236が形成されている。これら接合体231~236は、本実施形態においては例えばアルミニウムで構成されており、支持基板210とキャップ基板240とに挟まれて形成されている。なお、図19では、これらの要素の形成位置を破線で示している。 Further, the first bonded body 231, the second bonded body 232, the third bonded body 233, the fourth bonded body 234, and the fifth bonded body 235 are formed on the first surface 210 a of the support substrate 210, that is, the surface of the second substrate 213. And a sixth joined body 236 that functions as an airtight frame is formed. In the present embodiment, these joined bodies 231 to 236 are made of aluminum, for example, and are formed between the support substrate 210 and the cap substrate 240. In FIG. 19, the formation positions of these elements are indicated by broken lines.
 具体的には、第1接合体231は周辺部230の表面である第1面210aに形成され、周辺部230を介して後述の第1貫通電極271に接続されている。第2接合体232はアンカー部224に形成されて可動部220と電気的に接続されている。第3接合体233は周辺部230の表面である第1面210aに形成され、周辺部230を介して後述の第2貫通電極272に接続されている。とくに第3接合体233は絶縁膜242に設けられたキャップ基板側コンタクト242aを介して貼り合わせ基板241に電気的に接続されている。第4接合体234は周辺部230の表面である第1面210aに形成され、周辺部230を介して図示しない第3貫通電極に接続されている。第5接合体235は周辺部230の表面である第1面210aに形成され、周辺部230を介して図示しない第4貫通電極に接続されている。第3貫通電極および第4貫通電極は、それぞれ第1貫通電極271と同一の構成を有しつつy軸方向に沿って並んで形成されている。すなわち、第1接合体231、第3接合体233、第4接合体234、第5接合体235の電位は、それぞれ、第1貫通電極271、第2貫通電極272、第3貫通電極、第4貫通電極と同電位となっており、これらの電極を介して外部に出力できるようになっている。逆に、これらの電極に電圧を印加すれば、対応する接合体を所望の電位にすることができる。 Specifically, the first bonded body 231 is formed on the first surface 210 a that is the surface of the peripheral portion 230, and is connected to a first through electrode 271 described later via the peripheral portion 230. The second joined body 232 is formed on the anchor portion 224 and is electrically connected to the movable portion 220. The third bonded body 233 is formed on the first surface 210 a that is the surface of the peripheral portion 230, and is connected to a second through electrode 272 described later via the peripheral portion 230. In particular, the third bonded body 233 is electrically connected to the bonded substrate 241 via a cap substrate-side contact 242a provided on the insulating film 242. The fourth bonded body 234 is formed on the first surface 210 a that is the surface of the peripheral portion 230, and is connected to a third through electrode (not shown) via the peripheral portion 230. The fifth bonded body 235 is formed on the first surface 210 a that is the surface of the peripheral portion 230, and is connected to a fourth through electrode (not shown) via the peripheral portion 230. The third through electrode and the fourth through electrode have the same configuration as the first through electrode 271 and are formed side by side along the y-axis direction. That is, the potentials of the first bonded body 231, the third bonded body 233, the fourth bonded body 234, and the fifth bonded body 235 are the first through electrode 271, the second through electrode 272, the third through electrode, and the fourth, respectively. It has the same potential as the through electrode, and can be output to the outside through these electrodes. Conversely, when a voltage is applied to these electrodes, the corresponding bonded body can be brought to a desired potential.
 さらに、第1接合体231と第2接合体232とは、後述の中継配線263によって互いに結線され電気的に接続されている。つまり、センシング部たる可動部220の電位は第1貫通電極71から取り出すことができるようになっている。 Furthermore, the first joined body 231 and the second joined body 232 are connected and electrically connected to each other by a relay wiring 263 described later. That is, the potential of the movable part 220 as a sensing part can be taken out from the first through electrode 71.
 気密フレームとして機能する第6接合体236は、可動部220(溝部214)を取り囲むように枠状に形成されている。第6接合体236は、支持基板210とキャップ基板240とに挟まれて形成されているので、第6接合体236と支持基板210とキャップ基板240とに囲まれた領域は外部から隔離された気密空間となっている。キャビティとは、この隔離空間に相当する。また、以降、この隔離空間をキャビティ280と称する。 The sixth joined body 236 that functions as an airtight frame is formed in a frame shape so as to surround the movable portion 220 (groove portion 214). Since the sixth bonded body 236 is formed between the support substrate 210 and the cap substrate 240, the region surrounded by the sixth bonded body 236, the support substrate 210, and the cap substrate 240 is isolated from the outside. It is an airtight space. A cavity corresponds to this isolated space. Hereinafter, this isolation space is referred to as a cavity 280.
 支持基板210における第2基板213は、図18および図19に示すように、外周部230において複数のスリット250を有している。本実施形態における第2基板213は、第1種スリット251と第2種スリット252を有している。以降、第1種スリット251および第2種スリット252をまとめてスリット250ということがある。 The 2nd board | substrate 213 in the support substrate 210 has the some slit 250 in the outer peripheral part 230, as shown in FIG.18 and FIG.19. The second substrate 213 in this embodiment has a first type slit 251 and a second type slit 252. Hereinafter, the first type slit 251 and the second type slit 252 may be collectively referred to as a slit 250.
 第1種スリット251は、第2基板213のうち、第1接合体231、第3接合体233、第4接合体234および第5接合体235との接触部分を取り囲むように略環状に形成されている。図19に示すように、第1接合体231との接触部分を取り囲む第1種スリット251は環状であり、以降、スリットで囲まれた領域を島部230aと称する。すなわち、周辺部230は、第1種スリット251によって島部230aと、島部230aを除く母体部230bとに区画される。なお、本実施形態では、図18に示すように、第1種スリット251が第1基板211や絶縁膜212にまで至っていないが、これに限定されるものではない。島部230aおよび母体部230bは第1基板211や絶縁膜212を含む概念である。 The first type slit 251 is formed in a substantially annular shape so as to surround a contact portion of the second substrate 213 with the first bonded body 231, the third bonded body 233, the fourth bonded body 234, and the fifth bonded body 235. ing. As shown in FIG. 19, the first type slit 251 surrounding the contact portion with the first joined body 231 is annular, and hereinafter, the region surrounded by the slit is referred to as an island portion 230a. That is, the peripheral part 230 is divided into the island part 230a and the base part 230b excluding the island part 230a by the first type slit 251. In the present embodiment, as shown in FIG. 18, the first type slit 251 does not reach the first substrate 211 or the insulating film 212, but the present invention is not limited to this. The island part 230 a and the base part 230 b are concepts including the first substrate 211 and the insulating film 212.
 第1接合体231と同様に、第2基板213のうち第3接合体233との接触部分を取り囲むように第1種スリット251が形成されている。第3接合体233に対応する第1種スリット251は完全な環状を成さず、一部が欠損したC字状を成している。つまり、第3接合体233は母体部230bと電気的に導通しており、後述の絶縁膜242を貫くキャップ基板側コンタクト242aを介して貼り合わせ基板241と導通している。さらに同様に、第2基板213のうち第4接合体234との接触部分を取り囲むように第1種スリット251が形成され、第5接合体235との接触部分を取り囲むように第1種スリット251が形成されている。第4接合体234および第5接合体235に対応する第1種スリット251は環状を成しており、島部230aと母体部230bとを区画している。 Similarly to the first bonded body 231, a first type slit 251 is formed so as to surround a contact portion of the second substrate 213 with the third bonded body 233. The first type slit 251 corresponding to the third joined body 233 does not form a complete ring shape, but forms a C shape with a part missing. That is, the third bonded body 233 is electrically connected to the base body part 230b, and is connected to the bonded substrate 241 via the cap substrate side contact 242a penetrating the insulating film 242 described later. Similarly, the first type slit 251 is formed so as to surround the contact portion with the fourth bonded body 234 in the second substrate 213, and the first type slit 251 is surrounded so as to surround the contact portion with the fifth bonded body 235. Is formed. The first type slit 251 corresponding to the fourth joined body 234 and the fifth joined body 235 has an annular shape, and divides the island portion 230a and the base portion 230b.
 第2種スリット252は、図19に示すように、可動部220、および、周辺部230のうち各接合体231,233~235との接触部分とを内側に含むように枠状に形成されている。本実施形態における第2種スリット252は、第6接合体236が形成される枠内であって、第6接合体236に沿った矩形状に形成されている。第2種スリット252は、第2基板213を、第2種スリット252の枠外である外周部230cと、枠内である内周部230dとに区画している。z軸方向から正面視したとき、外周部230cは支持基板210うち第6接合体236が接合されている領域である。対して、内周部230dは、可動部220や上記した島部230aを内包する領域である。 As shown in FIG. 19, the second type slit 252 is formed in a frame shape so as to include the movable portion 220 and the contact portions of the peripheral portion 230 with the joined bodies 231, 233 to 235 inside. Yes. The second type slit 252 in the present embodiment is formed in a rectangular shape along the sixth joined body 236 in the frame in which the sixth joined body 236 is formed. The second type slit 252 partitions the second substrate 213 into an outer peripheral part 230c that is outside the frame of the second type slit 252 and an inner peripheral part 230d that is inside the frame. When viewed from the front in the z-axis direction, the outer peripheral portion 230c is a region of the support substrate 210 where the sixth joined body 236 is joined. On the other hand, the inner peripheral part 230d is an area including the movable part 220 and the above-described island part 230a.
 キャップ基板240は、図18に示すように、貼り合わせ基板241と、貼り合わせ基板241のうち支持基板210と対向する一面に形成された絶縁膜242とを有している。絶縁膜242における第3接合体233と接触する部分には絶縁膜242を貫通して貼り合わせ基板241に至るキャップ基板側コンタクト242aが形成されている。第3接合体233はキャップ基板側コンタクト242aの内部に入り込んで形成され貼り合わせ基板241に電気的に接触している。そして、絶縁膜242のうち支持基板210と対向する面にてキャップ基板240における第2面240aが構成されている。なお、貼り合わせ基板241はシリコン等で構成され、絶縁膜242は酸化膜や窒化膜で構成されている。 As shown in FIG. 18, the cap substrate 240 includes a bonded substrate 241 and an insulating film 242 formed on one surface of the bonded substrate 241 that faces the support substrate 210. A cap substrate side contact 242 a that penetrates the insulating film 242 and reaches the bonded substrate 241 is formed in a portion of the insulating film 242 that contacts the third bonded body 233. The third bonded body 233 is formed so as to enter the inside of the cap substrate side contact 242 a and is in electrical contact with the bonded substrate 241. A second surface 240 a of the cap substrate 240 is formed on the surface of the insulating film 242 facing the support substrate 210. Note that the bonded substrate 241 is made of silicon or the like, and the insulating film 242 is made of an oxide film or a nitride film.
 図19に示すように、キャップ基板240の第2面240aには、第1固定電極261と第2固定電極262とが形成されている。以降、第1固定電極261と第2固定電極262とをまとめて固定電極260ということがある。固定電極260は支持基板210との対向配置されており、第1面210aに接触しないように形成されている。 As shown in FIG. 19, a first fixed electrode 261 and a second fixed electrode 262 are formed on the second surface 240 a of the cap substrate 240. Hereinafter, the first fixed electrode 261 and the second fixed electrode 262 may be collectively referred to as a fixed electrode 260. The fixed electrode 260 is disposed opposite to the support substrate 210 and is formed so as not to contact the first surface 210a.
 第1固定電極261は、図19に示すように、z軸方向から正面視したとき、枠部222における第1部位222aとオーバラップするように形成されている。換言すれば、第1固定電極61は第1部位222aに対向している。第1固定電極261と第1部位222aは静電容量を構成し、可動部220がトーション梁223を回転軸として変位することによって当該静電容量が変化するようになっている。第1固定電極261は、第1配線261aを介して第5接合体235に電気的に接続されている。すなわち、第1固定電極261の電位は第4貫通電極を介して検出することができる。 As shown in FIG. 19, the first fixed electrode 261 is formed so as to overlap the first portion 222a in the frame portion 222 when viewed from the front in the z-axis direction. In other words, the first fixed electrode 61 faces the first part 222a. The first fixed electrode 261 and the first portion 222a constitute an electrostatic capacity, and the electrostatic capacity changes as the movable part 220 is displaced with the torsion beam 223 as a rotation axis. The first fixed electrode 261 is electrically connected to the fifth joined body 235 through the first wiring 261a. That is, the potential of the first fixed electrode 261 can be detected through the fourth through electrode.
 第2固定電極262は、図19に示すように、z軸方向から正面視したとき、枠部222における第2部位222bとオーバラップするように形成されている。換言すれば、第2固定電極262は第2部位222bに対向している。第2固定電極262と第2部位222bは静電容量を構成し、可動部220がトーション梁223を回転軸として変位することによって当該静電容量が変化するようになっている。第2固定電極262は、第2配線262aを介して第4接合体234に電気的に接続されている。すなわち、第2固定電極262の電位は第3貫通電極を介して検出することができる。このように、第1固定電極261の電位は第4貫通電極により引き出され、第2固定電極262の電位は第3貫通電極により引き出される。 As shown in FIG. 19, the second fixed electrode 262 is formed so as to overlap the second portion 222b in the frame portion 222 when viewed from the front in the z-axis direction. In other words, the second fixed electrode 262 faces the second portion 222b. The second fixed electrode 262 and the second portion 222b constitute an electrostatic capacity, and the electrostatic capacity changes as the movable part 220 is displaced with the torsion beam 223 as a rotation axis. The second fixed electrode 262 is electrically connected to the fourth joined body 234 through the second wiring 262a. That is, the potential of the second fixed electrode 262 can be detected through the third through electrode. As described above, the potential of the first fixed electrode 261 is extracted by the fourth through electrode, and the potential of the second fixed electrode 262 is extracted by the third through electrode.
 なお、固定電極260、第1配線261aおよび第2配線262aは例えばアルミニウムにより構成されている。また、第1固定電極261および第2固定電極262は互いに同一の平面形状とされ、加速度が印加されていない状態において、第1,第2部位222a,222bとの間に等しい静電容量を構成している。 The fixed electrode 260, the first wiring 261a, and the second wiring 262a are made of aluminum, for example. In addition, the first fixed electrode 261 and the second fixed electrode 262 have the same planar shape, and form an equal capacitance between the first and second portions 222a and 222b when no acceleration is applied. is doing.
 さらに、キャップ基板240の第2面240aには、第2面240aに沿うように中継配線263が形成されている。中継配線263は、例えばアルミニウムにより構成され、第1接合体231と第2接合体232とを電気的に接続している。中継配線263により、第2接合体232と第1接合体231、ひいては第1貫通電極271とを同電位とすることができる。なお、本実施形態における中継配線263はトーション梁223に対向するようにx軸方向に延設されている。ここで、上記した第1配線261a、第2配線262a、および中継配線263はキャビティ280内に形成される配線であり、いわゆる内層配線である。これら内層配線261a,262a,263は、キャップ基板240における絶縁膜242上に形成されており、シリコンを主成分とする貼り合わせ基板241と直接接触しない構造となっている。 Furthermore, a relay wiring 263 is formed on the second surface 240a of the cap substrate 240 along the second surface 240a. The relay wiring 263 is made of, for example, aluminum, and electrically connects the first joined body 231 and the second joined body 232. With the relay wiring 263, the second joined body 232 and the first joined body 231, and thus the first through electrode 271 can be set to the same potential. Note that the relay wiring 263 in this embodiment extends in the x-axis direction so as to face the torsion beam 223. Here, the first wiring 261a, the second wiring 262a, and the relay wiring 263 described above are wirings formed in the cavity 280, and are so-called inner layer wirings. These inner layer wirings 261 a, 262 a, and 263 are formed on the insulating film 242 in the cap substrate 240, and have a structure that does not come into direct contact with the bonded substrate 241 mainly composed of silicon.
 このように、可動部220と固定電極260とでセンシング部が構成され、第1貫通電極271、第3貫通電極および第4貫通電極によって加速度に応じたセンサ信号を出力することができるようになっている。 As described above, the movable unit 220 and the fixed electrode 260 constitute a sensing unit, and the first through electrode 271, the third through electrode, and the fourth through electrode can output a sensor signal corresponding to the acceleration. ing.
 次に、第1貫通電極271、第2貫通電極272、第3貫通電極および第4貫通電極の詳しい構成について説明する。 Next, a detailed configuration of the first through electrode 271, the second through electrode 272, the third through electrode, and the fourth through electrode will be described.
 支持基板210のうち第1基板211には、厚さ方向(z軸方向)に貫通する貫通電極270が形成されている。本実施形態における貫通電極270は、図18に示す第1貫通電極271、第2貫通電極272および、図示しない第3貫通電極、第4貫通電極なる4つを含んでいる。これら4つの貫通電極を総称して貫通電極270ということがある。 The first substrate 211 of the support substrate 210 is formed with a through electrode 270 that penetrates in the thickness direction (z-axis direction). The through electrode 270 in the present embodiment includes the first through electrode 271 and the second through electrode 272 shown in FIG. 18, and the four through electrodes, a third through electrode and a fourth through electrode (not shown). These four through electrodes may be collectively referred to as a through electrode 270.
 4つの貫通電極270は、絶縁膜212a、第1基板211および絶縁膜212を貫通する貫通孔211aに、絶縁膜211bを介して形成されている。絶縁膜211bは貫通孔211aの内壁面において絶縁膜212と絶縁膜212aとを連結して一体的な絶縁膜となっている。貫通電極270は貫通孔211aの内壁面に沿って形成されるとともに、絶縁膜212a上にランド部270aが形成された構成とされている。 The four through electrodes 270 are formed in the through hole 211a penetrating the insulating film 212a, the first substrate 211, and the insulating film 212 via the insulating film 211b. The insulating film 211b is formed as an integral insulating film by connecting the insulating film 212 and the insulating film 212a on the inner wall surface of the through hole 211a. The through electrode 270 is formed along the inner wall surface of the through hole 211a, and the land portion 270a is formed on the insulating film 212a.
 図18に示すように、第1貫通電極271は絶縁膜212a、第1基板211、絶縁膜212を貫通し、第2基板213を介して第1接合体231に至る。つまり、第1貫通電極271は、第1接合体231、中継配線263、第2接合体232を経由して可動部220に電気的に接続されている。第1貫通電極271は、B種貫通電極に相当する貫通電極である。なお、第1貫通電極271は、z軸方向においてアンカー部224の直下に形成され、中継配線263を介さずに可動部220と接続されるように形成されても良い。ただし、本実施形態のように、中継配線263を経由することによって、第1貫通電極271の熱に起因する体積変化の影響が可動部220に直接伝達されることを防止でき、センシング部の経年劣化の抑制、および測定精度の向上をはかることができる。 As shown in FIG. 18, the first through electrode 271 passes through the insulating film 212 a, the first substrate 211, and the insulating film 212 and reaches the first bonded body 231 through the second substrate 213. That is, the first through electrode 271 is electrically connected to the movable portion 220 via the first joined body 231, the relay wiring 263, and the second joined body 232. The first through electrode 271 is a through electrode corresponding to a B-type through electrode. The first through electrode 271 may be formed immediately below the anchor portion 224 in the z-axis direction and connected to the movable portion 220 without using the relay wiring 263. However, as in the present embodiment, by passing through the relay wiring 263, it is possible to prevent the influence of the volume change caused by the heat of the first through electrode 271 from being directly transmitted to the movable part 220, and the aging of the sensing part. It is possible to suppress deterioration and improve measurement accuracy.
 第2貫通電極272は絶縁膜212a、第1基板211、絶縁膜212を貫通して第2基板213における周辺部230に至る。また、第2貫通電極272は、絶縁膜212aに設けられた支持基板側コンタクト212bを介して支持基板211とも電気的に接触している。さらに、第2基板213における周辺部230は第3接合体233と接続し、第3接合体233はキャップ基板側コンタクト242aを介して貼り合わせ基板241と電気的に接触している。すなわち、第2貫通電極272は、支持基板211、第2基板213の周辺部230、第3接合体233および貼り合わせ基板241と同電位である。例えば第2貫通電極272を慣性センサ2100におけるグランド電位に設定すれば、貼り合わせ基板241と周辺部230と支持基板211とをグランド電位に設定することができる。第2貫通電極272は、C種貫通電極に相当する貫通電極である。 The second through electrode 272 passes through the insulating film 212a, the first substrate 211, and the insulating film 212 and reaches the peripheral portion 230 of the second substrate 213. The second through electrode 272 is also in electrical contact with the support substrate 211 via a support substrate side contact 212b provided on the insulating film 212a. Further, the peripheral portion 230 of the second substrate 213 is connected to the third bonded body 233, and the third bonded body 233 is in electrical contact with the bonded substrate 241 through the cap substrate side contact 242a. That is, the second through electrode 272 has the same potential as the support substrate 211, the peripheral portion 230 of the second substrate 213, the third bonded body 233, and the bonded substrate 241. For example, when the second through electrode 272 is set to the ground potential in the inertial sensor 2100, the bonded substrate 241, the peripheral portion 230, and the support substrate 211 can be set to the ground potential. The second through electrode 272 is a through electrode corresponding to a C-type through electrode.
 図示しない第3貫通電極および第4貫通電極は、絶縁膜212a、第1基板211、絶縁膜212を貫通し、第2基板213を介してそれぞれ第4接合体234および第5接合体235に至る。つまり、第3貫通電極および第4貫通電極は、それぞれ第2固定電極262および第1固定電極261と電気的に接続されている。第3貫通電極および第4貫通電極は、A種貫通電極に相当する貫通電極である。 The third through electrode and the fourth through electrode (not shown) penetrate the insulating film 212a, the first substrate 211, and the insulating film 212, and reach the fourth bonded body 234 and the fifth bonded body 235 through the second substrate 213, respectively. . That is, the third through electrode and the fourth through electrode are electrically connected to the second fixed electrode 262 and the first fixed electrode 261, respectively. The 3rd penetration electrode and the 4th penetration electrode are penetration electrodes equivalent to the A class penetration electrode.
 以上が本実施形態における慣性センサ2100の概略構造である。このような慣性センサ2100は、z軸方向の加速度が印加されると、枠部222がトーション梁223を回転軸として加速度に応じて回転する。そして、第1部位222aと第1固定電極261との間の静電容量と、第2部位222bと第2固定電極262との間の静電容量とが加速度に応じて変化するため、この容量変化に基づいて加速度の検出が行われる。すなわち、慣性センサ2100はZ軸慣性センサである。 The above is the schematic structure of the inertial sensor 2100 in the present embodiment. In such an inertial sensor 2100, when an acceleration in the z-axis direction is applied, the frame portion 222 rotates according to the acceleration with the torsion beam 223 as a rotation axis. And since the electrostatic capacitance between the 1st site | part 222a and the 1st fixed electrode 261 and the electrostatic capacitance between the 2nd site | part 222b and the 2nd fixed electrode 262 change according to an acceleration, this capacity | capacitance. The acceleration is detected based on the change. That is, inertial sensor 2100 is a Z-axis inertial sensor.
 次に、図20~図29を参照して、慣性センサ2100の製造方法について説明する。 Next, a method for manufacturing inertial sensor 2100 will be described with reference to FIGS.
 先ず、図20に示すように、支持基板210を構成する第1基板211を用意し、図示しないマスクレジストを形成してエッチング等を行い、第1基板211に窪み部215を形成する。その後、第1基板211上にCVDや熱酸化等の一般的に知られた方法で絶縁膜12を形成する。 First, as shown in FIG. 20, a first substrate 211 constituting the support substrate 210 is prepared, a mask resist (not shown) is formed, and etching is performed to form a recess 215 in the first substrate 211. Thereafter, the insulating film 12 is formed on the first substrate 211 by a generally known method such as CVD or thermal oxidation.
 次いで、図21に示すように、絶縁膜212と第2基板213とを接合して支持基板210を形成する。絶縁膜212と第2基板213とを接合は、特に限定されるものではないが、例えば、次のように行うことができる。 Next, as shown in FIG. 21, the insulating film 212 and the second substrate 213 are joined to form a support substrate 210. The bonding of the insulating film 212 and the second substrate 213 is not particularly limited, but can be performed as follows, for example.
 まず、絶縁膜212の接合面および第2基板213の接合面にNプラズマ、Oプラズマ、またはArイオンビームを照射し、絶縁膜212および第2基板213の各接合面を活性化する。そして、適宜形成されたアライメントマークを用いて赤外顕微鏡等によるアライメントを行い、室温~550℃で絶縁膜212および第2基板213をいわゆる直接接合により接合する。 First, the bonding surface of the insulating film 212 and the bonding surface of the second substrate 213 are irradiated with N 2 plasma, O 2 plasma, or an Ar ion beam to activate the bonding surfaces of the insulating film 212 and the second substrate 213. Then, alignment is performed by an infrared microscope or the like using an appropriately formed alignment mark, and the insulating film 212 and the second substrate 213 are bonded by so-called direct bonding at room temperature to 550 ° C.
 なお、ここでは直接接合を例に挙げて説明したが、絶縁膜212と第2基板213とは、陽極接合や中間層接合、フージョン接合等の接合技術によって接合されてもよい。また、接合後に、高温アニール等の接合品質を向上させる処理を行ってもよい。さらに、接合後に、第2基板13を研削研磨によって所望の厚さに加工してもよい。 Although the direct bonding is described as an example here, the insulating film 212 and the second substrate 213 may be bonded by a bonding technique such as anodic bonding, intermediate layer bonding, or fusion bonding. Further, after the joining, a treatment for improving the joining quality such as high temperature annealing may be performed. Further, after bonding, the second substrate 13 may be processed to a desired thickness by grinding and polishing.
 次いで、図22に示すように、支持基板210の第1面210aにCVD法等によって金属膜(アルミニウム)を形成する。そして、レジストや酸化膜等の図示しないマスクを用いて反応性イオンエッチング等で当該金属膜をパターニングすることにより、第1接合体231~第6接合体236の一部となる金属層を選択的に形成する。図22においては第4接合体234と第5接合体235を図示していないが、この工程において形成される。なお、金属の接合体を形成する前に、後述の工程であるキャップ基板240を接合する際の高さを決定するためのスペーサを形成する工程を挿入しても良い。また、本実施形態における接合体231~236はアルミニウムを想定しているが、金や銅を採用しても良い。 Next, as shown in FIG. 22, a metal film (aluminum) is formed on the first surface 210a of the support substrate 210 by a CVD method or the like. Then, by patterning the metal film by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film, a metal layer that becomes a part of the first bonded body 231 to the sixth bonded body 236 is selectively selected. To form. In FIG. 22, the fourth joined body 234 and the fifth joined body 235 are not shown, but are formed in this step. Before forming the metal bonded body, a step of forming a spacer for determining the height when the cap substrate 240 is bonded, which will be described later, may be inserted. Further, the bonded bodies 231 to 236 in the present embodiment are assumed to be aluminum, but gold or copper may be adopted.
 次いで、図23に示すように、レジストや酸化膜等の図示しないマスクを用いて反応性イオンエッチング等で第2基板213に溝部214およびスリット250を形成する。これにより、可動部220が形成され、且つ、周辺部230が接合部230aと母体部230b、あるいは、外周部230cと内周部230dに区画された第1基板210が用意される。 Next, as shown in FIG. 23, grooves 214 and slits 250 are formed in the second substrate 213 by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film. Thus, the first substrate 210 in which the movable part 220 is formed and the peripheral part 230 is divided into the joint part 230a and the base part 230b or the outer peripheral part 230c and the inner peripheral part 230d is prepared.
 上記図20~図23とは別工程において、図24に示すように、貼り合わせ基板241を用意し、図示しないマスクレジストを形成してエッチング等を行い、貼り合わせ基板241に窪み部216を形成する。その後、熱酸化等によって貼り合わせ基板241の全面に絶縁膜242を形成する。その後、絶縁膜242を部分的に除去してキャップ基板側コンタクト242aとなるべきコンタクトホールを形成する。 In a process different from that shown in FIGS. 20 to 23, as shown in FIG. 24, a bonded substrate 241 is prepared, a mask resist (not shown) is formed, and etching or the like is performed to form a recess 216 in the bonded substrate 241. To do. Thereafter, an insulating film 242 is formed on the entire surface of the bonded substrate 241 by thermal oxidation or the like. Thereafter, the insulating film 242 is partially removed to form a contact hole to be the cap substrate side contact 242a.
 次いで、図25に示すように、絶縁膜242のうち支持基板210と対向するべき部分に金属膜(アルミニウム)を形成する。そして、レジストや酸化膜等の図示しないマスクを用いて反応性イオンエッチング等で当該金属膜をパターニングすることにより、第1固定電極261、第2固定電極262を形成する。また、この工程において、第1接合体231~第6接合体236の残りの部分となる金属層を選択的に形成する。さらに、この工程において中継配線263、第1配線261aおよび第2配線262aを形成する。第3接合体233の形成にあっては、前工程において形成されたコンタクトホールに第3接合体233が充填されてキャップ基板側コンタクト242aとなるように金属膜の形成を行う。 Next, as shown in FIG. 25, a metal film (aluminum) is formed on a portion of the insulating film 242 that should face the support substrate 210. Then, the first fixed electrode 261 and the second fixed electrode 262 are formed by patterning the metal film by reactive ion etching or the like using a mask (not shown) such as a resist or an oxide film. Further, in this step, a metal layer to be the remaining part of the first joined body 231 to the sixth joined body 236 is selectively formed. Further, in this step, the relay wiring 263, the first wiring 261a, and the second wiring 262a are formed. In forming the third bonded body 233, a metal film is formed so that the contact hole formed in the previous step is filled with the third bonded body 233 to become the cap substrate side contact 242a.
 なお、第1固定電極261および第2固定電極262はポリシリコンで形成しても良い。この場合には、第1固定電極261および第2固定電極262をポリシリコンでパターニングした後、第1接合体231~第6接合体236の残りの部分、および中継配線263、第1配線261aおよび第2配線262aを、アルミニウムを用いて形成するようにすれば良い。 Note that the first fixed electrode 261 and the second fixed electrode 262 may be formed of polysilicon. In this case, after patterning the first fixed electrode 261 and the second fixed electrode 262 with polysilicon, the remaining portions of the first bonded body 231 to the sixth bonded body 236, the relay wiring 263, the first wiring 261a, The second wiring 262a may be formed using aluminum.
 次いで、図26に示すように、支持基板210とキャップ基板240とを接合する。具体的には、適宜形成されたアライメントマークを用いて赤外顕微鏡等によるアライメントを行い、支持基板210に形成された第1接合体231~第6接合体236の一部と、キャップ基板240に形成された第1接合体231~第6接合体236の一部とを300~500℃で金属接合する。これにより、支持基板210とキャップ基板240との間の空間が第6接合体236により封止されてキャビティ280となり、枠部222および第1固定電極261、第2固定電極262がキャビティ280に気密封止される。 Next, as shown in FIG. 26, the support substrate 210 and the cap substrate 240 are joined. Specifically, alignment is performed by an infrared microscope or the like using an appropriately formed alignment mark, and a part of the first bonded body 231 to the sixth bonded body 236 formed on the support substrate 210 and the cap substrate 240 are aligned. The formed first bonded body 231 to a part of the sixth bonded body 236 are metal bonded at 300 to 500 ° C. As a result, the space between the support substrate 210 and the cap substrate 240 is sealed by the sixth joined body 236 to form the cavity 280, and the frame portion 222, the first fixed electrode 261, and the second fixed electrode 262 pass through the cavity 280. Hermetically sealed.
 次いで、図27に示すように、貼り合わせ基板241を支持基板210側と反対側から研削して貼り合わせ基板241を所望の厚さに調整する。ところで、貼り合わせ基板241を含むキャップ基板240には固定電極260が形成されている。このため、可動部220と固定電極260との対向距離が意図せずに変化しないように、貼り合わせ基板241の厚さは、慣性センサ2100に印加が想定される応力や冷熱変化に対して、十分な強度を確保できる厚さに設定するべきである。従来の慣性センサでは、キャップ基板240側に貫通電極270を形成するために、貼り合わせ基板241の厚さを薄くする必要があった。これに対して、本実施形態では、キャップ基板240側に貫通電極270を形成しないので、応力や冷熱変化に対して、十分な強度を確保できる厚さに設定することができる。 Next, as shown in FIG. 27, the bonded substrate 241 is ground from the side opposite to the support substrate 210 side to adjust the bonded substrate 241 to a desired thickness. Incidentally, the fixed electrode 260 is formed on the cap substrate 240 including the bonded substrate 241. For this reason, the thickness of the bonded substrate 241 is not affected by the stress or cooling / heating change assumed to be applied to the inertial sensor 2100 so that the facing distance between the movable part 220 and the fixed electrode 260 does not change unintentionally. The thickness should be set to ensure sufficient strength. In the conventional inertia sensor, in order to form the through electrode 270 on the cap substrate 240 side, it is necessary to reduce the thickness of the bonded substrate 241. On the other hand, in this embodiment, since the through electrode 270 is not formed on the cap substrate 240 side, it can be set to a thickness that can secure a sufficient strength against a stress and a change in cooling.
 一方、図27に示すように、第1基板211をキャップ基板240側と反対側から研削して第1基板211を所望の厚さに調整する。第1基板211の厚さは、貫通電極270の形成容易性を考慮して決定される。 On the other hand, as shown in FIG. 27, the first substrate 211 is ground from the side opposite to the cap substrate 240 side to adjust the first substrate 211 to a desired thickness. The thickness of the first substrate 211 is determined in consideration of the ease of forming the through electrode 270.
 貼り合わせ基板241および第1基板211の研削による厚さ調整の後、図27に示すように、第1基板211におけるキャップ基板240とは反対側の一面から貫通孔211cを形成する。貫通孔211cは例えばエッチングにより形成する。本実施形態において、貫通孔211cは、第1接合体231、第3接合体233、第4接合体234、第5接合体235に対応する位置に形成する。 After adjusting the thickness of the bonded substrate 241 and the first substrate 211 by grinding, a through hole 211c is formed from one surface of the first substrate 211 opposite to the cap substrate 240 as shown in FIG. The through hole 211c is formed by etching, for example. In the present embodiment, the through hole 211c is formed at a position corresponding to the first joined body 231, the third joined body 233, the fourth joined body 234, and the fifth joined body 235.
 次いで、図28に示すように、各貫通孔211cの壁面にTEOS等の絶縁膜211bを成膜する。このとき、第1基板211のうちキャップ基板240側と反対側に形成された絶縁膜にて絶縁膜212aが構成される。つまり、絶縁膜212aと絶縁膜211bとは同じ工程で形成される。以降、絶縁膜211bの内壁面を改めて貫通孔211aと称する。 Next, as shown in FIG. 28, an insulating film 211b such as TEOS is formed on the wall surface of each through hole 211c. At this time, the insulating film 212a is configured by an insulating film formed on the first substrate 211 on the side opposite to the cap substrate 240 side. That is, the insulating film 212a and the insulating film 211b are formed in the same process. Hereinafter, the inner wall surface of the insulating film 211b is referred to as a through hole 211a.
 次いで、図29に示すように、各貫通孔211aの底部に形成された絶縁膜211bを部分的に除去し、各貫通孔211a内において、第1接合体231、第3接合体233、第4接合体234および第5接合体235と電気的に接触した第2基板213を露出させる。同時に、第3接合体233に繋がる貫通孔211aの近傍の絶縁膜212aをエッチングして、支持基板側コンタクト212bとなるべきコンタクトホールを設ける。これにより、絶縁膜212aが部分的に除去されて第1基板211が露出する。 Next, as shown in FIG. 29, the insulating film 211b formed at the bottom of each through hole 211a is partially removed, and the first joined body 231, the third joined body 233, the fourth inside the through hole 211a. The second substrate 213 that is in electrical contact with the bonded body 234 and the fifth bonded body 235 is exposed. At the same time, the insulating film 212a in the vicinity of the through hole 211a connected to the third bonded body 233 is etched to provide a contact hole to be the support substrate side contact 212b. As a result, the insulating film 212a is partially removed and the first substrate 211 is exposed.
 次いで、各貫通孔211aの内壁面および、各貫通孔211aの近傍に金属膜状の電極を形成する。具体的には、第1接合体231に対応する貫通孔211aに第1貫通電極271を形成する。第3接合体233に対応する貫通孔211aに第2貫通電極272を形成する。また、第4接合体234に対応する貫通孔211aに第3貫通電極を形成する。第5接合体235に対応する貫通孔211aに第4貫通電極を形成する。その後、絶縁膜243上の金属膜をパターニングしてランド部270aを形成する。これにより、図18に示す慣性センサ2100を製造することができる。とくに第2貫通電極272におけるランド270aを構成する金属膜は、絶縁膜212aに設けられたコンタクトホール内に充填されて支持基板側コンタクト212bを形成し、第2貫通電極272と、支持基板210における第1基板211とを電気的に接続している。 Next, a metal film electrode is formed on the inner wall surface of each through hole 211a and in the vicinity of each through hole 211a. Specifically, the first through electrode 271 is formed in the through hole 211 a corresponding to the first joined body 231. A second through electrode 272 is formed in the through hole 211 a corresponding to the third joined body 233. In addition, a third through electrode is formed in the through hole 211 a corresponding to the fourth joined body 234. A fourth through electrode is formed in the through hole 211 a corresponding to the fifth joined body 235. Thereafter, the metal film on the insulating film 243 is patterned to form the land portion 270a. Thereby, the inertial sensor 2100 shown in FIG. 18 can be manufactured. In particular, the metal film constituting the land 270a in the second through electrode 272 is filled in the contact hole provided in the insulating film 212a to form the support substrate side contact 212b, and the second through electrode 272 and the support substrate 210 are formed. The first substrate 211 is electrically connected.
 なお、上記では、z軸方向に印加される加速度を検出する慣性センサ2100の製造方法について説明したが、xy平面に沿う方向に印加される加速度を検出するセンシング部を同一慣性センサ2100内に設けるようにしても良い。また、上記では1つの加速度センサの製造方法について説明したが、ウェハ状の支持基板210およびキャップ基板240を用意し、これらを接合した後にダイシングカットしてチップ単位に分割するようにしてもよい。 In addition, although the manufacturing method of the inertial sensor 2100 which detects the acceleration applied to az axis direction was demonstrated above, the sensing part which detects the acceleration applied to the direction along xy plane is provided in the same inertial sensor 2100. You may do it. In the above description, the manufacturing method of one acceleration sensor has been described. However, a wafer-like support substrate 210 and a cap substrate 240 may be prepared, and after dicing and cutting, the wafer may be divided into chips.
 次に、本実施形態にかかる慣性センサ2100の作用効果について説明する。 Next, the function and effect of the inertial sensor 2100 according to this embodiment will be described.
 従来の慣性センサでは、貫通電極270と固定電極260とが同一の基板、例えばキャップ基板240に形成されていた。このような形態では、貫通電極270の形成のために、キャップ基板240をできるだけ薄く製造するという要請がある一方、キャップ基板240の変形に起因する固定電極260と可動部220との間の静電容量の変化を抑制する観点から、キャップ基板240をできるだけ厚く製造するという背反する要請があった。 In the conventional inertial sensor, the through electrode 270 and the fixed electrode 260 are formed on the same substrate, for example, the cap substrate 240. In such a form, there is a demand for manufacturing the cap substrate 240 as thin as possible in order to form the through electrode 270, while the electrostatic capacitance between the fixed electrode 260 and the movable part 220 due to the deformation of the cap substrate 240. From the viewpoint of suppressing the change in capacitance, there has been a contradictory request to manufacture the cap substrate 240 as thick as possible.
 これに対して、本実施形態における慣性センサ2100では、固定電極260が形成されたキャップ基板241とは異なる基板として形成される支持基板210に貫通電極270が形成される。 In contrast, in the inertial sensor 2100 according to the present embodiment, the through electrode 270 is formed on the support substrate 210 formed as a substrate different from the cap substrate 241 on which the fixed electrode 260 is formed.
 このため、可動部220と固定電極260との対向距離が意図せずに変化しないように、キャップ基板240を構成する貼り合わせ基板241の厚さを、慣性センサ2100に印加が想定される応力や冷熱変化に対して、十分な強度を確保できる厚さに設定することができる。 For this reason, the thickness of the bonded substrate 241 constituting the cap substrate 240 is set to a stress that is assumed to be applied to the inertial sensor 2100 so that the facing distance between the movable portion 220 and the fixed electrode 260 does not change unintentionally. It can be set to a thickness that can ensure sufficient strength against changes in cooling.
 また、支持基板210の観点から述べれば、貫通電極270の形成容易性を考慮して第1基板211の厚さを決定することができる。 Further, from the viewpoint of the support substrate 210, the thickness of the first substrate 211 can be determined in consideration of the ease of forming the through electrode 270.
 すなわち、背反する要請を考慮することなく、支持基板210の厚さ、およびキャップ基板240の厚さを、それぞれ独立に、任意に設定することができる。 That is, the thickness of the support substrate 210 and the thickness of the cap substrate 240 can be arbitrarily set independently without considering contradictory requirements.
 よって、貫通電極270形成の容易性のために支持基板210をできるだけ薄く製造する要請と、静電容量の変化を抑制するという目的のためにキャップ基板240を必要十分な厚さに製造する要請とを両立するため、キャップ基板240の厚さは、支持基板210よりも厚く設定することが好ましい。 Therefore, a request to manufacture the support substrate 210 as thin as possible for the ease of forming the through electrode 270 and a request to manufacture the cap substrate 240 to a necessary and sufficient thickness for the purpose of suppressing a change in capacitance. Therefore, it is preferable to set the thickness of the cap substrate 240 to be thicker than that of the support substrate 210.
 また、本実施形態における慣性センサ2100は、キャップ基板側コンタクト242aと、支持基板側コンタクト212bとが形成されていることにより、貼り合わせ基板241と、第2基板213における母体部230bと、第1基板211と、第2貫通電極272とを同電位にすることができる。支持基板210とキャップ基板240とが同電位にされていることによって、キャビティ280内における外乱電場を生じにくくするでき、センサ信号の精度を向上することができる。 In addition, the inertial sensor 2100 according to the present embodiment includes the bonded substrate 241, the base body 230 b of the second substrate 213, the first substrate 242 a, and the support substrate side contact 212 b. The substrate 211 and the second through electrode 272 can be set to the same potential. Since the support substrate 210 and the cap substrate 240 are set to the same potential, a disturbance electric field in the cavity 280 can be hardly generated, and the accuracy of the sensor signal can be improved.
 そして、キャップ基板側コンタクト242aは、慣性センサ2100の製造工程において、絶縁膜242をパターニングするだけで形成することができるものであり、絶縁膜242をエッチングする別の工程と共通化することができる。すなわち、パターニングのためのエッチングマスクを変更するだけで実現できる。同様に、支持基板側コンタクト212bは、慣性センサ2100の製造工程において、絶縁膜212aをパターニングするだけで形成することができるものであり、絶縁膜212aをパターニングするためのエッチングマスクを変更するだけで実現することができる。つまり、従来の製造工程に対して、工程数を増加することなく、貼り合わせ基板241と、第2基板213における母体部230bと、第1基板211と、第2貫通電極272とを同電位にすることができる。 The cap substrate side contact 242a can be formed only by patterning the insulating film 242 in the manufacturing process of the inertial sensor 2100, and can be shared with another process of etching the insulating film 242. . That is, it can be realized only by changing the etching mask for patterning. Similarly, the support substrate side contact 212b can be formed only by patterning the insulating film 212a in the manufacturing process of the inertial sensor 2100, and only by changing the etching mask for patterning the insulating film 212a. Can be realized. That is, the bonded substrate 241, the base body 230 b in the second substrate 213, the first substrate 211, and the second through electrode 272 are set to the same potential without increasing the number of steps compared to the conventional manufacturing process. can do.
 (その他の実施形態)
 上記した各実施形態では、接合体231~236、貫通電極270についてアルミニウムを採用する例について説明したが、金や銅を含む金属を採用しても良い。また、各絶縁膜については、シリコンの酸化膜や窒化膜を採用することができる。
(Other embodiments)
In each of the above-described embodiments, examples in which aluminum is used for the joined bodies 231 to 236 and the through electrode 270 have been described. However, a metal including gold or copper may be used. For each insulating film, a silicon oxide film or a nitride film can be employed.
 また、貫通電極270の形成の後、支持基板210の第1面210aと反対の面に、耐湿性のパッシベーション膜を全面に亘って形成するようにしても良い。パッシベーション膜には、例えばPIQ(ポリイミド)や窒化シリコンを採用することができる。 Further, after the through electrode 270 is formed, a moisture-resistant passivation film may be formed on the entire surface of the support substrate 210 opposite to the first surface 210a. For the passivation film, for example, PIQ (polyimide) or silicon nitride can be employed.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (9)

  1.  第1面(10a)を有する支持基板(10)と、
     第2面(40a)を有し、前記第2面が前記第1面に対向する状態で前記支持基板に接合されるキャップ基板(40)と、
     前記支持基板と前記キャップ基板との間に形成された気密性のキャビティ(80)内に配置され、物理量に応じたセンサ信号を出力するセンシング部(20、30、60)と、
     前記支持基板もしくは前記キャップ基板の厚さ方向に貫通して形成された貫通電極(70)と、
     前記第1面と前記第2面との間に形成され、前記貫通電極の先端と電気的に接続された第1パッド部(31)と、
     中継配線(63)とを備え、
     前記センシング部は、前記センシング部と同電位とされた第2パッド部(32)を有し、
     前記支持基板を前記厚さ方向から見たとき、前記第1パッド部と前記第2パッド部とが互いにずれて配置され、
     前記中継配線は、前記第1パッド部と前記第2パッド部とを互いに電気的に接続する半導体装置。
    A support substrate (10) having a first surface (10a);
    A cap substrate (40) having a second surface (40a) and bonded to the support substrate in a state where the second surface faces the first surface;
    A sensing unit (20, 30, 60) disposed in an airtight cavity (80) formed between the support substrate and the cap substrate and outputting a sensor signal corresponding to a physical quantity;
    A through electrode (70) formed so as to penetrate in the thickness direction of the support substrate or the cap substrate;
    A first pad portion (31) formed between the first surface and the second surface and electrically connected to a tip of the through electrode;
    Relay wiring (63),
    The sensing unit includes a second pad unit (32) that has the same potential as the sensing unit,
    When the support substrate is viewed from the thickness direction, the first pad portion and the second pad portion are arranged to be shifted from each other,
    The relay wiring is a semiconductor device that electrically connects the first pad portion and the second pad portion to each other.
  2.  前記センシング部は、前記第1面の法線方向への加速度に応じて変位する可動部(20)と、
     前記可動部を取り囲む周辺部(30)と、
     前記キャップ部における前記第2面に形成され、前記可動部と対向する固定電極(60)と、を有し、
     前記支持基板を前記厚さ方向から見たとき、前記第1パッド部は、前記周辺部とオーバラップする位置に形成される請求項1に記載の半導体装置。
    The sensing unit includes a movable unit (20) that is displaced according to acceleration in a normal direction of the first surface;
    A peripheral portion (30) surrounding the movable portion;
    A fixed electrode (60) formed on the second surface of the cap portion and facing the movable portion;
    The semiconductor device according to claim 1, wherein when the support substrate is viewed from the thickness direction, the first pad portion is formed at a position overlapping the peripheral portion.
  3.  前記支持基板は、前記第1パッド部が接合された接合部(30a)と、前記接合部を除く母体部(30b)とを有し、
     前記接合部と前記母体部との間にクリアランス(51)を設けた請求項1または請求項2に記載の半導体装置。
    The support substrate has a joint part (30a) to which the first pad part is joined, and a base part (30b) excluding the joint part,
    The semiconductor device according to claim 1, wherein a clearance (51) is provided between the joint portion and the base body portion.
  4.  前記キャビティは、前記第1面と前記第2面との間に形成され前記センシング部を囲む枠状の気密フレーム(36)と、前記支持基板と、前記キャップ基板と、により囲まれた領域として形成されており、
     前記支持基板を前記厚さ方向から見たとき、前記第1パッド部は前記気密フレームの枠内に形成され、
     前記支持基板は、前記気密フレームが接合された外周部(30c)と、前記外周部を除く部分であって前記第1パッド部が接合された内周部(30d)とを有し、
     前記外周部と前記内周部との間にクリアランス(52)を設けた請求項1~3のいずれか1項に記載の半導体装置。
    The cavity is a region surrounded by a frame-like airtight frame (36) formed between the first surface and the second surface and surrounding the sensing unit, the support substrate, and the cap substrate. Formed,
    When the support substrate is viewed from the thickness direction, the first pad portion is formed in a frame of the airtight frame,
    The support substrate has an outer peripheral part (30c) to which the airtight frame is joined, and an inner peripheral part (30d) to which the first pad part is joined, excluding the outer peripheral part,
    The semiconductor device according to any one of claims 1 to 3, wherein a clearance (52) is provided between the outer peripheral portion and the inner peripheral portion.
  5.  前記中継配線は、前記第2面に沿って形成され前記第1パッド部と前記第2パッド部とを電気的に接続する請求項1~4のいずれか1項に記載の半導体装置。 5. The semiconductor device according to claim 1, wherein the relay wiring is formed along the second surface and electrically connects the first pad portion and the second pad portion.
  6.  第1面(210a)を有する支持基板(210)と、
     第2面(240a)を有し、前記第2面が前記第1面に対向する状態で前記支持基板に接合されるキャップ基板(240)と、
     前記支持基板と前記キャップ基板との間に配置された、気密性のキャビティ(280)内における前記第2面に固定された固定電極(260)と、
     前記キャビティ内において前記固定電極に対向して形成されることにより静電容量を成し、前記静電容量の変化に応じたセンサ信号を出力するセンシング部(220)と、
     前記支持基板を貫通して形成され、前記キャビティの内外を互いに電気的に接続する貫通電極(270)を備える半導体装置。
    A support substrate (210) having a first surface (210a);
    A cap substrate (240) having a second surface (240a) and bonded to the support substrate in a state where the second surface is opposed to the first surface;
    A fixed electrode (260) disposed between the support substrate and the cap substrate and fixed to the second surface in an airtight cavity (280);
    A sensing unit (220) that forms a capacitance by being formed opposite to the fixed electrode in the cavity and outputs a sensor signal according to the change in the capacitance;
    A semiconductor device comprising a through electrode (270) formed through the support substrate and electrically connecting the inside and outside of the cavity.
  7.  前記貫通電極は、
     前記固定電極の電位を取り出すためのA種貫通電極と、
     前記センシング部の電位を取り出すためのB種貫通電極(271)と、
     前記支持基板と電気的に接続されるとともに前記キャップ基板にも電気的に接続されることにより前記支持基板と前記キャップ基板とを互いに接続するC種貫通電極(272)と、を含む請求項6に記載の半導体装置。
    The through electrode is
    A type A through electrode for extracting the potential of the fixed electrode;
    A B-type through electrode (271) for extracting the potential of the sensing unit;
    A C-type through electrode (272) that is electrically connected to the support substrate and is also connected to the cap substrate to connect the support substrate and the cap substrate to each other. A semiconductor device according to 1.
  8.  前記支持基板と前記キャップ基板とは、金属を含む接合体(231~236)を介して互いに接合され、
     前記C種貫通電極は、
     前記支持基板に形成された支持基板側コンタクト(212b)を介して前記支持基板に接続されるとともに、前記支持基板を貫通して前記接合体に至り、
     前記接合体は、前記キャビティ内において前記キャップ基板に形成されたキャップ基板側コンタクト(242a)を介して前記キャップ基板に接続される請求項7に記載の半導体装置。
    The support substrate and the cap substrate are bonded to each other through a bonded body (231 to 236) containing a metal,
    The C-type through electrode is
    The support substrate is connected to the support substrate via a support substrate side contact (212b) formed on the support substrate, and reaches the joined body through the support substrate.
    The semiconductor device according to claim 7, wherein the joined body is connected to the cap substrate through a cap substrate-side contact (242 a) formed on the cap substrate in the cavity.
  9.  前記キャップ基板の板厚は、前記支持基板の板厚よりも厚い請求項6~8のいずれか1項に記載の半導体装置。 9. The semiconductor device according to claim 6, wherein a thickness of the cap substrate is thicker than a thickness of the support substrate.
PCT/JP2017/019295 2016-07-01 2017-05-24 Semiconductor device WO2018003353A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016131710A JP2018004448A (en) 2016-07-01 2016-07-01 Semiconductor device
JP2016131708A JP2018004447A (en) 2016-07-01 2016-07-01 Semiconductor device
JP2016-131710 2016-07-01
JP2016-131708 2016-07-01

Publications (1)

Publication Number Publication Date
WO2018003353A1 true WO2018003353A1 (en) 2018-01-04

Family

ID=60785195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019295 WO2018003353A1 (en) 2016-07-01 2017-05-24 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2018003353A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077349A (en) * 2003-09-03 2005-03-24 Mitsubishi Electric Corp Acceleration sensor
US20090145227A1 (en) * 2007-12-11 2009-06-11 Memscap Pendulous accelerometer and method for the manufacture thereof
WO2014192263A1 (en) * 2013-05-30 2014-12-04 株式会社デンソー Physical quantity sensor
WO2015045360A1 (en) * 2013-09-26 2015-04-02 株式会社デンソー Physical quantity sensor and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077349A (en) * 2003-09-03 2005-03-24 Mitsubishi Electric Corp Acceleration sensor
US20090145227A1 (en) * 2007-12-11 2009-06-11 Memscap Pendulous accelerometer and method for the manufacture thereof
WO2014192263A1 (en) * 2013-05-30 2014-12-04 株式会社デンソー Physical quantity sensor
WO2015045360A1 (en) * 2013-09-26 2015-04-02 株式会社デンソー Physical quantity sensor and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5206826B2 (en) Region-divided substrate, semiconductor device using the same, and manufacturing method thereof
JP5141658B2 (en) Semiconductor device and manufacturing method thereof
TW201524891A (en) Pressure sensor
US20100252898A1 (en) Semiconductor device and method of manufacturing the same
US9835507B2 (en) Dynamic quantity sensor
US9840410B2 (en) Micromechanical component
US8252695B2 (en) Method for manufacturing a micro-electromechanical structure
JP2008046078A (en) Micro electromechanical system element and manufacturing method thereof
JP5083247B2 (en) Semiconductor device and manufacturing method thereof
JP5874609B2 (en) Semiconductor device and manufacturing method thereof
WO2015045360A1 (en) Physical quantity sensor and method for manufacturing same
WO2017150343A1 (en) Semiconductor device
US10209155B2 (en) Physical quantity sensing semiconductor device and method for manufacturing the same
WO2018003353A1 (en) Semiconductor device
US20150353345A1 (en) Vertical Hybrid Integrated MEMS ASIC Component Having A Stress Decoupling Structure
JP6221965B2 (en) Semiconductor device and manufacturing method thereof
JP2018004448A (en) Semiconductor device
US10509051B2 (en) Physical quantity sensor and manufacturing method therefor
JP2010203990A (en) Compound sensor
JP6218330B2 (en) Pressure sensor and manufacturing method thereof
JP2018004447A (en) Semiconductor device
JP6237440B2 (en) Physical quantity sensor and manufacturing method thereof
JP5999027B2 (en) Physical quantity sensor
JP5238410B2 (en) Airtight structure device
JP2014102225A (en) Physical quantity sensor and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819720

Country of ref document: EP

Kind code of ref document: A1