WO2018003324A1 - Rotating machinery clearance measurement method, measurement device, and measurement system - Google Patents

Rotating machinery clearance measurement method, measurement device, and measurement system Download PDF

Info

Publication number
WO2018003324A1
WO2018003324A1 PCT/JP2017/018237 JP2017018237W WO2018003324A1 WO 2018003324 A1 WO2018003324 A1 WO 2018003324A1 JP 2017018237 W JP2017018237 W JP 2017018237W WO 2018003324 A1 WO2018003324 A1 WO 2018003324A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
clearance
unit
light emitting
light receiving
Prior art date
Application number
PCT/JP2017/018237
Other languages
French (fr)
Japanese (ja)
Inventor
元春 植田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2018003324A1 publication Critical patent/WO2018003324A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Definitions

  • the present invention relates to a clearance measuring method, a measuring apparatus, and a measuring system for a rotary machine, and is useful when applied to the clearance management between a moving blade and a casing in a turbine driven by a high temperature driving fluid.
  • Non-contact measurement methods such as laser type, capacitance type, ultrasonic type and eddy current type are known for measuring clearance between rotating blades and casings of rotating machinery applied to such clearance management.
  • Each has its own non-contact sensor. In either case, the sensor is installed offset from the casing so that it does not protrude into the main flow path of the driving fluid, and between the rotor blade and the casing that have a high peripheral speed in a high-temperature environment such as a gas turbine.
  • a capacitance type or eddy current type non-contact sensor is used for this clearance measurement.
  • Patent Document 1 as a publicly known document that discloses a technique for measuring a clearance between a rotating side and a fixed side during a turning operation before starting, for example, in a low-speed rotation region.
  • a sphere fixed to a casing so that it can be displaced in the centrifugal direction of the moving blade is brought into point contact with the tip of the moving blade, and the inner wall surface of the casing and each moving blade are It measures the clearance with the tip.
  • the present invention can measure the clearance between the rotating body and the casing with high accuracy without opening the casing and even during low-speed rotation such as turning operation. It is an object of the present invention to provide a clearance measuring method, a measuring apparatus, and a measuring system in a rotating machine.
  • FIG. 1A to 1C are views showing the relationship between the light emitting part and the moving blade
  • FIG. 1A is a schematic view showing a state where the light emitting part is inclined in one direction with respect to the moving blade
  • FIG. 1B is a moving blade
  • FIG. 1C is a characteristic diagram showing the width of the laser light received by the light receiving unit as time elapses due to the rotation of the moving blades. .
  • This clearance measuring device has a light emitting unit 1 and a light receiving unit 2.
  • the light-emitting unit 1 is arranged on the outer periphery of the moving blade 3 on one side, that is, on one side (left side in the drawing) in the axial direction of the moving blade 3 with respect to the rotating blade 3 of the turbine that is a rotating machine. It is installed. Then, a sheet-shaped laser beam L having a predetermined width is directed toward the clearance between the inner peripheral surface 4a of the casing 4 and the outer peripheral surface 3a of the rotor blade 3 with an irradiation angle X (inclination angle with respect to X in the figure). Irradiate in a direction inclined by ⁇ .
  • the sheet-like laser light L is light traveling on one plane and includes a collection of a plurality of parallel lights. Therefore, the light emitting unit 1 is suitably used as an aggregate of light sources arranged so as to extend in a line having a predetermined length from the outer peripheral side (casing side) of the turbine to the inner peripheral side (rotating shaft side), for example. Can be formed.
  • the light receiving unit 2 is disposed on the other side of the moving blade 3, that is, on the other side in the axial direction of the moving blade 3 (right side in the drawing). Then, the sheet-like laser beam L irradiated by the light emitting unit 1 is received.
  • the moving blade 3 when the light emitting unit 1 is inclined at an inclination angle ⁇ with respect to a reference line Z orthogonal to the tip surface of the moving blade 3 (the upper end surface in the drawing; the same applies hereinafter), the moving blade 3 is When the moving blade 3 moves in the moving direction Y indicated by the arrow in 1B, the outer peripheral surface 23a sequentially passes the laser light L at positions P1, P2, P3, and P4 along with the rotation (see the arrow in FIG. 1B). Then, the laser beam L is blocked. That is, the positions P1 to P4 that are the blocking positions of the laser light L move from the light emitting unit 1 side to the light receiving unit 2 side with the rotation of the moving blade 3. As a result, as shown in FIG.
  • the characteristic of the width of the laser beam L received by the light receiving unit 2 with respect to the elapsed time associated with the rotation of the rotor blade 3 is the position at which the laser beam L is blocked as the rotor blade 3 rotates. However, by moving from the position P1 to the position P4, it changes linearly or almost linearly with time and increases.
  • the width of L changes linearly as the position where the laser beam L is cut off as the moving blade 3 rotates from the light emitting unit 1 side to the light receiving unit 2 side, and is opposite to the case shown in FIG. 1C. Decreases over time.
  • FIG. 2 is a graph showing the width of the laser light L detected by the light receiving unit 2 with respect to the case where the inclination angles ⁇ of the light emitting unit 1 with respect to the moving blade 3 are different from each other. It is a characteristic view shown with it.
  • the irradiation direction of the laser light L is closer to the direction parallel to the tip surface 3a of the rotor blade 3. Can be made. That is, if the position of the light emitting unit 1 is adjusted so that the width of the laser light L is constant regardless of the passage of time associated with the rotation of the rotor blade 3, as indicated by the straight line l3, the irradiation direction of the laser light L Can be made parallel to the tip surface of the rotor blade 3.
  • the light emitting unit 1 is rotated on the vertical plane (XZ plane) with the center O1 of the base end 1A as the rotation center, and the time characteristic of the width of the laser beam L received by the light receiving unit 2 is made constant.
  • W for example, 2 mm
  • a vertical plane (XZ plane) is formed to be rotatable about the center O2 of the base end 2A.
  • the tilt angles ⁇ 1 and ⁇ 2 are changed so that the laser light L irradiated from the light emitting unit 1 with the known width W is adjusted so that the light receiving unit 2 can detect the width W as it is.
  • the adjustment of the parallelism of the light receiving unit 2 is desirably performed based on the laser light L that is transmitted between the adjacent blades 3 in the circumferential direction and received by the light receiving unit 3. This is because between the adjacent rotor blades 3, it is easy to configure so that all of the laser light L emitted from the light emitting unit 1 is transmitted and received by the light receiving unit 2.
  • the laser light L emitted from the light emitting unit 1 toward the clearance 5 becomes the laser light L parallel to the tip surface of the rotor blade 3, and the light receiving that ensures parallelism with respect to the light emitting unit 1.
  • the light is received by the unit 2.
  • the laser beam L emitted from the light emitting unit 1 is detected by the light receiving unit 2, and the clearance between the inner peripheral surface of the casing and the tip surface of the rotor blade 3 is determined based on the detected width of the laser beam L. Accurate measurement is possible.
  • the clearance measuring method in the rotating machine according to the present invention based on the above consideration results is characterized by the following points.
  • a clearance measuring method in a rotating machine that measures the size of a clearance between an outer peripheral surface of a moving blade that is a rotating part of the rotating machine and an inner peripheral surface of a casing that is a fixed part, A preparation step, and a measurement step of measuring the size of the clearance after the preparation step,
  • a sheet-shaped light having a predetermined width is rotated in the axial direction of the moving blade from the light emitting portion whose base end portion is rotatably supported by the light emitting side rotating portion while rotating the moving blade.
  • the other side in the axial direction of the moving blade is irradiated with light from the one side toward the clearance, and the light transmitted through the clearance by the light receiving portion whose base end portion is rotatably supported by the rotation portion on the light receiving side.
  • the width of the light received by the light receiving unit is constant over time when the specific moving blade passes between the light emitting unit and the light receiving unit.
  • the rotating part on the light emitting side and a part on the base end side of the light emitting part are provided before the first step.
  • the rotating portion on the light receiving side and a part on the base end side of the light receiving portion are disposed in the other measurement hole provided in the casing.
  • the light of the predetermined size in the second step is irradiated from the light emitting unit, and a gap between the moving blades adjacent in the circumferential direction is formed. The light is transmitted and received by the light receiving unit.
  • the clearance measuring device for a rotating machine according to the present invention is characterized by the following points.
  • a measuring device for measuring the size of the clearance in the rotating machine that measures the clearance between the rotor blade that is the rotating part of the rotating machine and the inner peripheral surface of the casing that is the fixed part, A light emitting unit that irradiates a sheet-like light of a predetermined width toward the clearance; A light-emitting side rotating part that rotatably supports a base end part that is an end part on the casing side of the light-emitting part; A light receiving portion for receiving the light; A light-receiving-side rotation portion that rotatably supports a base end portion that is an end portion on the casing side of the light-receiving portion; A frame that supports an end portion of the light emitting side rotating portion and supports an end portion of the light receiving side rotating portion.
  • the distance from the base end portion to the tip end portion of the light receiving portion is made larger than the distance from the base end portion to the tip end portion of the light emitting portion.
  • the clearance measurement system for a rotating machine according to the present invention is characterized by the following points.
  • a clearance measuring system in a rotating machine that measures a clearance between a moving blade that is a rotating part of the rotating machine and an inner peripheral surface of a casing that is a fixed part, A clearance measuring device according to (5) or (6) above;
  • a first rotation drive unit that rotationally drives the light emission side rotation unit provided in the measurement device and a second rotation drive that rotationally drives the light reception side rotation unit provided in the measurement device.
  • the controller is The light is emitted from the light emitting unit of the measuring device toward the clearance, and the specific moving blade is received by the light receiving unit when passing between the light emitting unit and the light receiving unit with the rotation.
  • a first rotation control unit that controls the rotation drive of the rotation unit on the light emitting side via the first rotation drive unit so that the width becomes constant.
  • the light receiving side is irradiated with light having a predetermined width from the light emitting unit, and is received as light having the predetermined size by the light receiving unit via the second rotation driving unit.
  • a second rotation control unit that controls the rotation drive of the rotation unit.
  • the first rotation control unit includes an elapsed time when the rotating moving blade blocks and passes the light, and a width of the light detected by the light receiving unit. Adjusting the rotation position of the light emitting unit so that the rate of change is within a predetermined range by rotating the light emitting unit according to the change rate of the width based on
  • the light having a predetermined width is predetermined frequency or color
  • the controller selects light of the specific frequency or color and detects whether or not the width of the light has a predetermined value.
  • the light irradiated from the light emitting unit can be adjusted to be parallel to the tip surface of the moving blade, that is, to be parallel to the clearance while rotating the moving blade of the rotating machine.
  • the posture of the light receiving unit can be adjusted so as to ensure the parallelism of the light receiving unit with respect to the light emitting unit. That is, the clearance between the outer peripheral surface of the rotor blade and the inner peripheral surface of the casing can be performed with high accuracy by non-contact measurement by two kinds of adjustments of the first stage and the second stage.
  • a predetermined measurement operation can be reasonably performed in a short time.
  • FIGS. 1A to 1C are diagrams showing a relationship between a light emitting unit and a moving blade in the present invention
  • FIG. 1A is a schematic diagram showing a state where the light emitting unit is inclined in one direction with respect to the moving blade.
  • FIG. 1B is a schematic diagram showing a mode in which the moving blade cuts off the light emitted from the light emitting portion
  • FIG. 1C is a characteristic diagram showing the width of the laser beam received by the light receiving portion as time elapses due to the rotation of the moving blade. is there. It is a characteristic view which shows the width
  • FIG. 1 FIGS. 1A to 1C
  • FIG. 4 are also used in the description of each embodiment, and the same parts are denoted by the same reference numerals, and redundant descriptions are omitted. Yes.
  • FIG. 4 is a schematic diagram showing a clearance measuring device according to an embodiment of the present invention mounted on a casing.
  • the measuring apparatus 100 includes a light emitting unit 1, a light emitting side rotating unit 11, a light receiving unit 2, a light receiving side rotating unit 12, and a frame 13.
  • the light emitting unit 1 is disposed on the outer periphery of the moving blade 3 on one side of the turbine blade 3, that is, one side in the axial direction of the moving blade 3 (left side in FIG. 4).
  • the light emitting section 1 is a light source extending in a line shape of a predetermined length from the inner peripheral surface 4a side of the casing 4 along the radial direction of the rotor blade 3 toward the inner side, or a light source arranged to extend in a line shape
  • the sheet-like laser light L having a predetermined width is emitted from the light source toward the clearance 5 between the inner peripheral surface 4 a of the casing 4 and the outer peripheral surface 3 a of the rotor blade 3.
  • the laser beam L is optimally a width laser beam.
  • the sheet-like laser light L also includes a set of lights irradiated in parallel from a plurality of point light sources arranged in a straight line. As described above, in the present invention, light that includes a plurality of parallel lights and travels on one plane having a two-dimensional spread is referred to as sheet-like light (including laser light L).
  • the base end which is the end of the light emitting unit 1 on the casing 4 side, is rotatably supported by the light emitting side rotating unit 11.
  • the light receiving unit 2 receives the sheet-like laser light L emitted from the light emitting unit 1 and sends out information indicating the width thereof.
  • the irradiation direction of the laser light L emitted from the light emitting unit 1 described with reference to FIG. 1 (FIGS. 1A to 1C) and FIG. 2 can be adjusted to be parallel to the clearance 5.
  • the base end portion which is the end portion on the casing 4 side of the light receiving portion 2 is rotatably supported by the rotating portion 12 on the light receiving side.
  • the direction of the light receiving surface can be adjusted in accordance with the direction of the laser beam L emitted from the light emitting unit 1 by adjusting the amount of rotation of the rotating unit 12. That is, the rotating unit 12 is for performing the adjustment shown in FIG.
  • the distance L02 from the proximal end portion to the distal end portion of the light receiving portion 2 in the present embodiment is longer than the distance L01 from the proximal end portion to the distal end portion of the light emitting portion 1. That is, it is formed so as to be longer by the extension portion ⁇ L, and the arrangement length of the light receiving element is also increased accordingly. Although it is not essential to set the length of the light receiving unit 2 as described above, even if the light receiving unit 2 is inclined with respect to the light emitting unit 1 as shown by a two-dot chain line in FIG. All the laser beams L can be received.
  • the frame 13 supports the light emitting unit 1 rotatably at one lower end portion via the rotating portion 11 and supports the light receiving portion 2 rotatably at the other lower end portion via the rotating portion 12. It is a mold member.
  • the measuring device 100 inserts the light emitting unit 1 into the casing 4 together with the rotating unit 11 by inserting the frame 13 into the measuring hole 4 ⁇ / b> A provided in the casing 4.
  • the light receiving unit 2 is inserted into the casing 4 together with the rotating unit 12 by inserting the frame 13 into another measurement hole 4 ⁇ / b> B provided in the casing 4.
  • the light emitting unit 1 and the light receiving unit 2 can be disposed to face each other with the moving blade 3 interposed therebetween by being inserted into the casing 4 through the measurement holes 4A and 4B by the frame 13. .
  • the measurement holes 4A and 4B are normally closed with plugs (not shown), and the plugs are removed and the frame 13 and the like are inserted as described above when measuring the clearance.
  • a predetermined clearance measurement is performed using the measurement device 100 arranged in a manner as shown in FIG. That is, in the present embodiment, the rotating unit 11 and a part of the light source on the base end side of the light emitting unit 1 are disposed in the measurement hole 4A, the rotating unit 12 and the light receiving unit 2. A part on the base end side is disposed in the measurement hole 4B.
  • the position of the linear laser beam L11 used as a reference when measuring a predetermined clearance can be specified by this arrangement, so that the predetermined measurement can be performed easily and easily. It can be performed with high accuracy. Further details are as follows.
  • FIG. 5 is a schematic diagram conceptually showing the measurement principle of the width laser measuring apparatus.
  • the width laser measuring device has a light emitting unit 1 and a light receiving unit 2, and is configured so that the light receiving unit 2 receives sheet-like laser light emitted from the light emitting unit 1. .
  • the laser light L corresponding to the width W0 is not detected by the light receiving unit 2. That is, the interval between the laser beam L11 in contact with the upper end of the measurement target 200 in the drawing and the laser beam L12 in contact with the lower end of the measurement target 200 in the drawing becomes the width W0 that is the measurement value of the measurement target 200. Therefore, in order to perform the predetermined measurement, it is necessary to specify the linear laser beams L11 and L12 which are the measurement reference in the sheet-shaped laser beam L.
  • the measurement hole 4A is blocked by the wall of the measurement hole 4A.
  • the presence of laser light is required.
  • the linear laser light L11 that first faces the clearance 5 can be specified.
  • the position of the laser beam L11 as a reference, the dimension of the predetermined clearance 5 can be easily and accurately measured.
  • FIG. 6 is a flowchart showing a clearance measuring method in the rotary machine according to the embodiment of the present invention.
  • step S1 it is detected whether or not the gas turbine (GT) is rotating (see step S1).
  • the rotation of the rotor blade 3 (low-speed rotation) is a precondition.
  • step S2 If the determination result in step S1 is “YES”, the measuring device 100 is attached to the gas turbine via the measurement holes 4A and 4B (see step S2).
  • the light emitting section 1 that irradiates the clearance 5 with the sheet-like laser light L having a predetermined width extending from the outer peripheral side to the inner peripheral side of the gas turbine is provided on one side in the axial direction of the rotor blade 3 (see FIG. 4 is arranged on the left side), and the light receiving unit 2 that receives the laser beam L is arranged on the other side (right side in FIG. 4) in the axial direction of the rotor blade 3 so as to face each other with a clearance 5 therebetween.
  • the inclination angle ⁇ of the light emitting unit 1 is adjusted based on the width of the laser light L received by the light receiving unit 2 by irradiating the laser beam L from the light emitting unit 1 toward the clearance 5 (see step S3).
  • step S4 It is determined whether or not the laser light L emitted from the light emitting unit 1 is parallel to the outer peripheral surface of the moving blade 3 that defines the clearance 5 and the inner peripheral surface 4a of the casing 4 (see step S4).
  • This can be realized by determining whether or not the width of the laser beam L detected by the light receiving unit 2 over time as the moving blade 3 rotates is constant. Specifically, for example, the rate of change of the width based on the relationship between the elapsed time when the rotating blade 3 passes and blocks the laser light L and the width of the laser light L detected by the light receiving unit 2. Accordingly, the rotation position of the light emitting unit 1 is adjusted by rotating the light emitting unit 1 so that the rate of change is within a predetermined range.
  • the desired parallelism can be ensured by adjusting the rotational position of the light emitting unit 1 so that the width of the laser light L detected by the light receiving unit 2 is finally constant, so that the predetermined parallelism is ensured.
  • Steps S3 and S4 are repeated until the degree is secured.
  • the slope of the straight line l1 that initially had a large slope gradually decreases, and as shown by the straight line l3, the slope is equal to or less than a predetermined threshold (the width of the laser light L is constant).
  • the determination result of step S4 is “YES”, and the first step is ended.
  • the characteristics shown in FIG. 2 are the shape of the tip surface of the rotor blade 3 and the inclination angle ⁇ of the light emitting unit 1 (see FIG. 1A; the same applies hereinafter). Varies in various directions (inclination direction with respect to the reference line Z). Further, depending on the shape of the tip surface of the rotor blade 3, not only a case where the change is strictly linear but also a case where the change is almost linear is conceivable.
  • the rotation of the light emitting part is performed by the rotating part 11 so that the inclination of the straight lines l1 and l2 becomes small and the width of the laser light L accompanying the rotation of the moving blade 3 becomes constant. It is preferable to adjust the inclination angle ⁇ of 1.
  • step S5 Since the rotation position of the light emitting unit 1 is determined as predetermined in the process of step S3, the parallelism of the light receiving unit 2 with respect to the light emitting unit 1 is adjusted to be a predetermined parallelism (see step S5). ). This is the adjustment described with reference to FIG.
  • a laser beam having a known width W irradiated by the light emitting unit 1 (for example, width W) It is determined whether or not the laser light L1 having a wavelength different from that of the other light is detected by the light receiving unit 2 with the width W as it is (see step S6), that is, the width W of the laser light L irradiated from the light emitting unit 1 It is determined whether or not the absolute value is secured (secured).
  • step S5 and step S6 are repeated, and the step is performed when the difference between the detection width W ′ detected by the light receiving unit 2 and the width W becomes equal to or smaller than a predetermined threshold value.
  • the determination result of S6 is “YES”. In this state, the second step is finished.
  • step S7 The parallelism between the laser beam L emitted from the light emitting unit 1 and the tip surface of the rotor blade 3 is ensured in the determination process in step S4, and at the same time, the light emitting unit 1 in the reference posture in the determination process in step S6 Since the parallelism with the light receiving unit 2 is ensured, a predetermined clearance measurement is performed in this state (see step S7). That is, of the sheet-like light L emitted from the light source of the light emitting unit 1, the tip surface of the rotor blade 3 from the light L11 with reference to the light L11 (see FIG. 4; the same applies hereinafter) that first faces the clearance 5 on the casing 4 side. The dimension of the clearance is detected from the width of the light L until the light is blocked. Thus, the measurement process is performed. As a result, high-accuracy clearance measurement can be performed.
  • the present invention when applied to clearance measurement at low speed operation (about 5 to 10 rpm) such as turning operation, the present invention has a remarkable effect over the prior art in terms of measurement accuracy and cost. .
  • FIG. 7 is a block diagram showing a clearance measurement system according to an embodiment of the present invention.
  • the clearance measurement system according to the present embodiment is provided between an outer peripheral surface 3a of a moving blade 3 that is a rotating portion of a turbine that is a rotating machine and an inner peripheral surface 4a of a casing 4 that is a fixed portion.
  • the clearance 5 is measured.
  • the rotor blade 3 is fixed to the peripheral surface of a rotor disk (not shown in FIG. 7) whose center is fixed to a rotating shaft (not shown in FIG. 7) and is rotatable. .
  • These rotor blades 3, the rotor disk, and the rotating shaft constitute a rotating body of the rotating machine.
  • the measurement system includes a measurement device 100, first and second rotation driving units, and a controller 101.
  • the first rotation driving unit drives the rotation unit 11 on the light emission side of the measuring device 100 to rotate.
  • the second rotation drive unit rotates the light receiving side rotation unit 12 of the measuring device 100.
  • the first and second rotation drive units (not shown per se; the same applies hereinafter) in the present embodiment are both integrated into the rotation units 11 and 12. That is, the rotation units 11 and 12 are configured as a rotation stage incorporating a drive source. However, this configuration is not essential. As long as the turning force of the drive source can be transmitted to turn the turning parts 11 and 12, the turning parts 11 and 12 may be provided separately from the turning parts 11 and 12.
  • the controller 101 controls the light emitting operation of the light emitting unit 1 and the light receiving operation of the light receiving unit 2, controls the rotating operation of the first and second rotation driving units, and also controls the sheet-like shape sent from the light receiving unit 2.
  • a predetermined process is performed based on information indicating the width of the laser beam L.
  • the light emission command unit 101A controls the light emission operation of the light emitting unit 1, that is, the start and stop of irradiation of the laser light L.
  • the light receiving command unit 101B controls the start and stop of the light receiving operation of the laser light L in the light receiving unit 2.
  • the first rotation control unit 101C controls the rotation of the rotation unit 11 based on the result of predetermined information processing in the information processing unit 101E.
  • the second rotation control unit 101D controls the rotation of the rotation unit 12 based on the result of predetermined information processing in the information processing unit 101E.
  • the control commands from the first and second rotation control units 101C and 101D in the present embodiment are supplied to the first and second rotation drive units of the rotation units 11 and 12 serving as the rotation stage. Is done.
  • the drive sources of the rotation units 11 and 12 are provided separately from the rotation units 11 and 12, the first and second rotation control units 101C and 101C are provided for the respective drive sources. Control commands from 101D are supplied.
  • the first rotation control unit 101C detects the width of the laser beam L received when passing between the rotating rotor blades 3 based on the output signal from the light receiving unit 2, and uses the information indicating the width. Based on this, the rotation part 11 is rotationally driven so that the width becomes constant, and the inclination angle ⁇ of the light emitting part 1 is adjusted. Specifically, for example, every time the width of the laser beam L is detected, the rotation unit 11 is rotated by an arbitrary rotation amount via the first rotation control unit 101C, and the time series associated with the rotation of the moving blade 3 is increased. The width of the laser beam L is adjusted so as to be within a predetermined range.
  • the rate of change in the width of the laser light L based on the relationship between the elapsed time when the rotating rotor blade 3 blocks and passes the laser light L and the width of the laser light L detected by the information processing unit 101E. Accordingly, the first rotation control unit 101C rotates the light emitting unit 1 via the rotating unit 11, thereby adjusting the rotation position of the light emitting unit 1 so that the rate of change is within a predetermined range. For example, the light emitting unit 1 is rotated by setting the rotation direction according to the sign of the change rate and setting the rotation amount according to the magnitude of the change rate.
  • the width of the laser light L over time can be made well constant.
  • the desired parallelism of the laser beam L with respect to the clearance 5 is adjusted by adjusting the rotation position of the light emitting unit 1 so that the width of the laser beam L detected by the information processing unit 101E is finally constant. Can be secured.
  • the second rotation control unit 101D is configured such that the laser beam L1 having a predetermined width W emitted from the light emitting unit 1 is converted into a laser beam L1 having a predetermined width W.
  • the rotation unit 12 is controlled to rotate so as to receive light.
  • the laser beam L1 having a predetermined width W having a predetermined dimension may have a specific frequency or color.
  • the information processing unit 101E selects the laser light L1 having a specific frequency or color and detects whether or not the width of the laser light L1 is a predetermined value. As a result, the laser beam L1 for specifying the width W is easily and reliably specified, and the rotation control of the rotation unit 12 as described above in the second rotation control unit 101D is executed.
  • the irradiation direction of the laser light L emitted from the light emitting unit 1 can be made parallel to the tip surface of the rotor blade 3 and the clearance, and the light emitting unit 1 and the light receiving unit.
  • the parallelism between the two can also be ensured. Therefore, the clearance measurement performed after the two-stage adjustment is highly accurate and can contribute to strict clearance management.
  • the case where the clearance between the turbine rotor blade and the casing is measured has been described as an example. Widely applicable to cases.
  • the light need not be limited to the laser light L, but it is optimal to use a laser light that is excellent in straightness and non-diffusibility.
  • the width laser is used in the above embodiment, the present invention is not limited to this. Even if a large number of laser light sources are arranged in a line at high density, the same one can be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A clearance measurement method comprising: a first step in which, while moving blades (3) are made to rotate, a sheet-shaped laser light (L) is shone from a light emitting unit (1) having a rotatably supported base end section, from one side in an axial direction of the moving blades (3) toward a clearance (5), the laser light (L) that has permeated the clearance (5) is received, on the other side in the axial direction of the moving blades (3), with a light receiving unit (2) having a rotatably supported base end section, and the rotational position of the light emitting unit (1) is adjusted such that the width of the laser light (L) that is received with the light receiving unit (2) when a specific moving blade (3) passes between the light emitting unit (1) and the light receiving unit (2) becomes constant over time; and a second step in which the rotational position of the light receiving unit (2) is adjusted such that the laser light (L) that is shone from the light emission unit (1) and has a width of a previously set prescribed dimension is received as a light that has a width of the prescribed dimension. The present invention thereby allows the clearance between a rotor and a casing to be measured with high accuracy even during low-speed rotation.

Description

回転機械におけるクリアランスの計測方法、計測装置および計測システムCLEARANCE MEASUREMENT METHOD, MEASUREMENT DEVICE AND MEASUREMENT SYSTEM FOR ROTARY MACHINE
 本発明は回転機械におけるクリアランスの計測方法、計測装置および計測システムに関し、高温の駆動流体で駆動されるタービンにおける動翼とケーシングとの間のクリアランス管理に適用して有用なものである。 The present invention relates to a clearance measuring method, a measuring apparatus, and a measuring system for a rotary machine, and is useful when applied to the clearance management between a moving blade and a casing in a turbine driven by a high temperature driving fluid.
 ガスタービン等、高温の駆動流体で駆動される回転機械においては、その高効率運転を実現するために動翼とケーシングとの間の厳密なクリアランス管理を行うことが肝要である。かかるクリアランス管理に適用される回転機械の動翼とケーシングとの間のクリアランス計測には、レーザ式、静電容量式、超音波式および渦電流式等の非接触の計測方式が知られており、それぞれ固有の非接触式のセンサが用いられている。そして、いずれの場合も、センサが駆動流体の主流通路内に突出しないようにケーシングからはオフセットされて設置されており、ガスタービンのような高温環境で周速が速い動翼とケーシングとの間のクリアランス計測には静電容量型や渦電流型の非接触センサが用いられている。 In a rotary machine driven by a high-temperature driving fluid such as a gas turbine, it is important to perform strict clearance management between the moving blade and the casing in order to realize the high-efficiency operation. Non-contact measurement methods such as laser type, capacitance type, ultrasonic type and eddy current type are known for measuring clearance between rotating blades and casings of rotating machinery applied to such clearance management. Each has its own non-contact sensor. In either case, the sensor is installed offset from the casing so that it does not protrude into the main flow path of the driving fluid, and between the rotor blade and the casing that have a high peripheral speed in a high-temperature environment such as a gas turbine. For this clearance measurement, a capacitance type or eddy current type non-contact sensor is used.
 これらのセンサは運転時のクリアランスを非接触で計測することを目的としたものであるので、初期クリアランスを計測することを目的とするものとしては高価な装置となってしまう。また、センサの出力範囲が限られるため、一般的に運転時より広い初期クリアランスを計測するときには、センサ出力下限近くでの計測となる。このため、信号出力が低く、S/N比が悪いため高精度の計測を行なうことができない。 These sensors are intended to measure the clearance during operation in a non-contact manner, so that they are expensive devices intended to measure the initial clearance. In addition, since the output range of the sensor is limited, generally when measuring a wider initial clearance than during operation, the measurement is performed near the lower limit of the sensor output. For this reason, since the signal output is low and the S / N ratio is poor, high-precision measurement cannot be performed.
 一方、低速回転域である、例えば起動前のターニング運転中において回転側と固定側との間のクリアランスを計測する技術を開示する公知文献として特許文献1が存在する。特許文献1は、動翼の遠心方向に変位し得るようケーシングに固定された球体を、動翼の先端に点接触させ、このときの球体の変位量に基づきケーシングの内壁面と各動翼の先端とのクリアランスを計測するものである。 On the other hand, there is Patent Document 1 as a publicly known document that discloses a technique for measuring a clearance between a rotating side and a fixed side during a turning operation before starting, for example, in a low-speed rotation region. In Patent Document 1, a sphere fixed to a casing so that it can be displaced in the centrifugal direction of the moving blade is brought into point contact with the tip of the moving blade, and the inner wall surface of the casing and each moving blade are It measures the clearance with the tip.
特開2014-109242号公報JP 2014-109242 A
 ところが、特許文献1に開示するクリアランス計測方法では、動翼の遠心方向に変位する球体を動翼の先端に当接させて所定のクリアランスを計測する。これは、接触式の計測であるため、計測に伴い動翼を損傷するリスクがある。 However, in the clearance measuring method disclosed in Patent Document 1, a predetermined clearance is measured by bringing a spherical body displaced in the centrifugal direction of the moving blade into contact with the tip of the moving blade. Since this is a contact-type measurement, there is a risk of damaging the rotor blade along with the measurement.
 本発明は、上記従来技術の課題に鑑み、ケーシングを開放することなく、またターニング運転等の低速回転時であっても回転体とケーシングとの間のクリアランスを非接触で高精度に計測し得る回転機械におけるクリアランスの計測方法、計測装置および計測システムを提供することを目的とする。 In view of the above-described problems of the prior art, the present invention can measure the clearance between the rotating body and the casing with high accuracy without opening the casing and even during low-speed rotation such as turning operation. It is an object of the present invention to provide a clearance measuring method, a measuring apparatus, and a measuring system in a rotating machine.
 上記目的を達成する本発明は、次の考察の結果に基づくものである。
 図1A~図1Cは発光部と動翼との関係を示す図で、図1Aは動翼に対して発光部が一方向に傾斜している場合の様子を示す模式図、図1Bは動翼が発光部から照射した光であるレーザ光を切る場合の態様を示す模式図、図1Cは動翼の回転による時間の経過に伴い受光部で受光されるレーザ光の幅を示す特性図である。
The present invention that achieves the above object is based on the results of the following considerations.
1A to 1C are views showing the relationship between the light emitting part and the moving blade, FIG. 1A is a schematic view showing a state where the light emitting part is inclined in one direction with respect to the moving blade, and FIG. 1B is a moving blade. FIG. 1C is a characteristic diagram showing the width of the laser light received by the light receiving unit as time elapses due to the rotation of the moving blades. .
 このクリアランスの計測装置は、発光部1と受光部2とを有する。図1Aに示すように、発光部1は、回転機械であるタービンの動翼3を挟んで一方側、すなわち動翼3の軸方向における一方側(図では左側)で動翼3の外周に配設されている。そして、所定の幅のシート状のレーザ光Lを、ケーシング4の内周面4aと動翼3の外周面3aとの間のクリアランスに向けて図中の照射方向X(Xに対して傾斜角θだけ傾斜した方向)に照射する。 This clearance measuring device has a light emitting unit 1 and a light receiving unit 2. As shown in FIG. 1A, the light-emitting unit 1 is arranged on the outer periphery of the moving blade 3 on one side, that is, on one side (left side in the drawing) in the axial direction of the moving blade 3 with respect to the rotating blade 3 of the turbine that is a rotating machine. It is installed. Then, a sheet-shaped laser beam L having a predetermined width is directed toward the clearance between the inner peripheral surface 4a of the casing 4 and the outer peripheral surface 3a of the rotor blade 3 with an irradiation angle X (inclination angle with respect to X in the figure). Irradiate in a direction inclined by θ.
 ここで、シート状のレーザ光Lとは、一つの平面上を進む光であり、複数の平行光の集まりも含む。したがって、発光部1は、例えば前記タービンの外周側(ケーシング側)から内周側(回転軸側)に向かって所定の長さのライン状に延びるように配列された光源の集合体として好適に形成することができる。 Here, the sheet-like laser light L is light traveling on one plane and includes a collection of a plurality of parallel lights. Therefore, the light emitting unit 1 is suitably used as an aggregate of light sources arranged so as to extend in a line having a predetermined length from the outer peripheral side (casing side) of the turbine to the inner peripheral side (rotating shaft side), for example. Can be formed.
 一方、受光部2は動翼3を挟んで他方側、すなわち動翼3の軸方向における他方側(図では右側)に配設されている。そして、発光部1が照射したシート状のレーザ光Lを受光する。 On the other hand, the light receiving unit 2 is disposed on the other side of the moving blade 3, that is, on the other side in the axial direction of the moving blade 3 (right side in the drawing). Then, the sheet-like laser beam L irradiated by the light emitting unit 1 is received.
 図1Aに示すように発光部1が動翼3の先端面(図中の上端面;以下同じ)に直交する基準線Zに対し傾斜角θで傾斜している場合において、動翼3が図1Bに矢印で示す移動方向Yに移動した場合、動翼3は、その回転(図1Bの矢印参照)に伴い、その外周面23aが位置P1,P2,P3,P4で順次レーザ光Lを通過してこのレーザ光Lを遮断する。すなわち、レーザ光Lの遮断位置である位置P1~P4は、動翼3の回転に伴い発光部1側から受光部2側へ移動する。この結果、図1Cに示すように、動翼3の回転に伴う経過時間に対し受光部2で受光するレーザ光Lの幅の特性は、動翼3の回転に伴いレーザ光Lを遮断する位置が、位置P1から位置P4へと移動することで、時間の経過とともに直線的またはほぼ直線的に変化して増大する。 As shown in FIG. 1A, when the light emitting unit 1 is inclined at an inclination angle θ with respect to a reference line Z orthogonal to the tip surface of the moving blade 3 (the upper end surface in the drawing; the same applies hereinafter), the moving blade 3 is When the moving blade 3 moves in the moving direction Y indicated by the arrow in 1B, the outer peripheral surface 23a sequentially passes the laser light L at positions P1, P2, P3, and P4 along with the rotation (see the arrow in FIG. 1B). Then, the laser beam L is blocked. That is, the positions P1 to P4 that are the blocking positions of the laser light L move from the light emitting unit 1 side to the light receiving unit 2 side with the rotation of the moving blade 3. As a result, as shown in FIG. 1C, the characteristic of the width of the laser beam L received by the light receiving unit 2 with respect to the elapsed time associated with the rotation of the rotor blade 3 is the position at which the laser beam L is blocked as the rotor blade 3 rotates. However, by moving from the position P1 to the position P4, it changes linearly or almost linearly with time and increases.
 一方、図示はしないが、動翼3に対して発光部1が図1Aとは反対方向、すなわち基準線Zに対して時計方向に傾斜している場合には、受光部2で受光するレーザ光Lの幅は、動翼3の回転に伴いレーザ光Lを遮断する位置が発光部1側から受光部2側へと移動するに伴い直線的に変化して図1Cに示す場合とは逆に時間の経過とともに減少する。 On the other hand, although not shown, the laser beam received by the light receiving unit 2 when the light emitting unit 1 is inclined in the direction opposite to that of FIG. The width of L changes linearly as the position where the laser beam L is cut off as the moving blade 3 rotates from the light emitting unit 1 side to the light receiving unit 2 side, and is opposite to the case shown in FIG. 1C. Decreases over time.
 このように、発光部1が基準線Zに対して傾斜している場合、換言すればレーザ光Lの照射方向が動翼3の先端面に平行でない場合、受光部2で受光されるレーザ光Lの幅は、動翼3の回転に伴う時間の経過とともに直線的に増減する。そして、このときの直線の傾斜は発光部1の基準線Zに対する傾斜角θに比例して増減する。すなわち、図2に示すように、傾斜角θが大きければ直線l1,l2の傾斜も大きくなる。ここで、図2は、動翼3に対する発光部1の傾斜角θがそれぞれ異なる複数の場合に関し、受光部2で検出されるレーザ光Lの幅を、動翼3の回転に伴う時間の経過とともに示す特性図である。 In this way, when the light emitting unit 1 is inclined with respect to the reference line Z, in other words, when the irradiation direction of the laser light L is not parallel to the tip surface of the rotor blade 3, the laser light received by the light receiving unit 2 The width of L increases and decreases linearly with the passage of time associated with the rotation of the rotor blade 3. And the inclination of the straight line at this time increases / decreases in proportion to inclination-angle (theta) with respect to the reference line Z of the light emission part 1. FIG. That is, as shown in FIG. 2, if the inclination angle θ is large, the inclinations of the straight lines 11 and 12 are also large. Here, FIG. 2 is a graph showing the width of the laser light L detected by the light receiving unit 2 with respect to the case where the inclination angles θ of the light emitting unit 1 with respect to the moving blade 3 are different from each other. It is a characteristic view shown with it.
 図2を参照すれば明らかな通り、直線l1,l2の傾斜(傾斜角θ)が小さくなるようにすればレーザ光Lの照射方向を動翼3の先端面3aに平行な方向に、より近接させることができる。すなわち、直線l3に示すように、レーザ光Lの幅が、動翼3の回転に伴う時間の経過に係らず一定となるように発光部1の位置を調整すれば、レーザ光Lの照射方向を動翼3の先端面に平行にすることができる。 As is apparent from FIG. 2, if the inclination (inclination angle θ) of the straight lines 11 and 12 is reduced, the irradiation direction of the laser light L is closer to the direction parallel to the tip surface 3a of the rotor blade 3. Can be made. That is, if the position of the light emitting unit 1 is adjusted so that the width of the laser light L is constant regardless of the passage of time associated with the rotation of the rotor blade 3, as indicated by the straight line l3, the irradiation direction of the laser light L Can be made parallel to the tip surface of the rotor blade 3.
 そこで、発光部1を基端部1Aの中心O1を回動中心として垂直面(XZ平面)で回動して受光部2で受光されるレーザ光Lの幅の時間特性を一定にする。 Therefore, the light emitting unit 1 is rotated on the vertical plane (XZ plane) with the center O1 of the base end 1A as the rotation center, and the time characteristic of the width of the laser beam L received by the light receiving unit 2 is made constant.
 一方、レーザ光Lを動翼3の先端面に対して平行に照射することができても、図3に示すように、発光部1の長手方向の中心線C1に対して受光部2の長手方向の中心線C2が平行でなければ、正確なクリアランス計測を行うことはできない。すなわち、図3に一点鎖線および二点鎖線で示すように、受光部2の中心線C21,C22が、発光部1の中心線C1と平行な受光部2の中心線C2に対して、傾斜角θ1またはθ2だけ傾いている場合、発光部1から照射した既知の幅W(例えば2mm)のレーザ光Lが幅W1,W2(W1,W2>W)として検出されてしまうからである。 On the other hand, even if the laser beam L can be irradiated in parallel to the tip surface of the moving blade 3, the longitudinal direction of the light receiving unit 2 with respect to the center line C1 in the longitudinal direction of the light emitting unit 1 as shown in FIG. If the direction center line C2 is not parallel, accurate clearance measurement cannot be performed. That is, as indicated by a one-dot chain line and a two-dot chain line in FIG. 3, the center lines C21 and C22 of the light receiving unit 2 are inclined with respect to the center line C2 of the light receiving unit 2 parallel to the center line C1 of the light emitting unit 1. This is because the laser beam L having a known width W (for example, 2 mm) emitted from the light emitting unit 1 is detected as the width W1, W2 (W1, W2> W) when it is inclined by θ1 or θ2.
 そこで、受光部2においても、図1Aに示す発光部1と同様に、基端部2Aの中心O2を回動中心として垂直面(XZ平面)を回動可能に形成する。このことにより傾斜角θ1、θ2を変化させて発光部1から既知の幅Wで照射したレーザ光Lが受光部2でもそのまま幅Wとして検出されるように調整する。かかる調整により傾斜角θ1、θ2=0となる回動位置で発光部1に対する受光部2の平行度も所定通りに担保される。以上の調整で発光部1に対する受光部2の平行度の調整が完了する。なお、かかる受光部2の平行度の調整は、周方向で隣接する動翼3間を透過して受光部3で受光されるレーザ光Lに基づき実施するのが望ましい。隣接する動翼3間では、発光部1から照射したレーザ光Lの全てを透過させて受光部2で受光させるように構成することが容易であるからである。 Therefore, also in the light receiving unit 2, similarly to the light emitting unit 1 shown in FIG. 1A, a vertical plane (XZ plane) is formed to be rotatable about the center O2 of the base end 2A. As a result, the tilt angles θ1 and θ2 are changed so that the laser light L irradiated from the light emitting unit 1 with the known width W is adjusted so that the light receiving unit 2 can detect the width W as it is. By such adjustment, the parallelism of the light receiving unit 2 with respect to the light emitting unit 1 is also ensured as predetermined at a rotation position where the inclination angles θ1 and θ2 = 0. With the above adjustment, the adjustment of the parallelism of the light receiving unit 2 with respect to the light emitting unit 1 is completed. The adjustment of the parallelism of the light receiving unit 2 is desirably performed based on the laser light L that is transmitted between the adjacent blades 3 in the circumferential direction and received by the light receiving unit 3. This is because between the adjacent rotor blades 3, it is easy to configure so that all of the laser light L emitted from the light emitting unit 1 is transmitted and received by the light receiving unit 2.
 かかる2種類の調整を行なうことで、発光部1からクリアランス5に向けて照射したレーザ光Lは動翼3の先端面に平行なレーザ光Lとなり、発光部1に対する平行度が担保された受光部2で受光される。かかる状態で、発光部1から照射したレーザ光Lを受光部2で検出するとともに、検出したレーザ光Lの幅に基づきケーシングの内周面と動翼3の先端面間のクリアランスの大きさを正確に計測することができる。 By performing these two kinds of adjustments, the laser light L emitted from the light emitting unit 1 toward the clearance 5 becomes the laser light L parallel to the tip surface of the rotor blade 3, and the light receiving that ensures parallelism with respect to the light emitting unit 1. The light is received by the unit 2. In this state, the laser beam L emitted from the light emitting unit 1 is detected by the light receiving unit 2, and the clearance between the inner peripheral surface of the casing and the tip surface of the rotor blade 3 is determined based on the detected width of the laser beam L. Accurate measurement is possible.
 上記考察結果に基づく本発明に係る回転機械におけるクリアランスの計測方法は、次の点を特徴とする。 The clearance measuring method in the rotating machine according to the present invention based on the above consideration results is characterized by the following points.
(1) 回転機械の回転部である動翼の外周面と固定部であるケーシングの内周面との間のクリアランスの大きさを計測する回転機械におけるクリアランスの計測方法であって、
 準備工程と、前記準備工程後に前記クリアランスの大きさを計測する計測工程とを有し、
 前記準備工程は、前記動翼を回転させつつ、基端部が発光側の回動部によって回動可能に支持されている発光部から所定幅のシート状の光を前記動翼の軸方向における一方側から前記クリアランスに向けて照射するとともに基端部が受光側の回動部によって回動可能に支持されている受光部により前記クリアランスを透過した前記光を前記動翼の前記軸方向における他方側で受光し、特定の前記動翼が前記発光部と前記受光部との間を通過する際に前記受光部で受光される前記光の幅が経時的に一定になるように前記発光部の回動位置を調整する第1の工程と、
 前記発光部から予め定められた所定寸法の幅の光を照射し、前記受光部で前記所定寸法の幅の光として受光されるように前記受光部の回動位置を調整する第2の工程とを有すること。
(1) A clearance measuring method in a rotating machine that measures the size of a clearance between an outer peripheral surface of a moving blade that is a rotating part of the rotating machine and an inner peripheral surface of a casing that is a fixed part,
A preparation step, and a measurement step of measuring the size of the clearance after the preparation step,
In the preparation step, a sheet-shaped light having a predetermined width is rotated in the axial direction of the moving blade from the light emitting portion whose base end portion is rotatably supported by the light emitting side rotating portion while rotating the moving blade. The other side in the axial direction of the moving blade is irradiated with light from the one side toward the clearance, and the light transmitted through the clearance by the light receiving portion whose base end portion is rotatably supported by the rotation portion on the light receiving side. Of the light emitting unit so that the width of the light received by the light receiving unit is constant over time when the specific moving blade passes between the light emitting unit and the light receiving unit. A first step of adjusting the rotational position;
A second step of irradiating light of a predetermined width from the light emitting unit, and adjusting the rotational position of the light receiving unit so that the light receiving unit receives the light as the width of the predetermined size; Having
(2) 上記(1)において、前記第1の工程の前に、前記発光側の回動部と、前記発光部の前記基端部側の一部とを、前記ケーシングに設けた計測孔内に配設するとともに、前記受光側の回動部と、前記受光部の前記基端部側の一部とを、前記ケーシングに設けた他方の計測孔内に配設すること。 (2) In the above (1), in the measurement hole provided in the casing, the rotating part on the light emitting side and a part on the base end side of the light emitting part are provided before the first step. And the rotating portion on the light receiving side and a part on the base end side of the light receiving portion are disposed in the other measurement hole provided in the casing.
(3) 上記(1)または(2)において、前記第1の工程では、回転する前記動翼が前記光を遮断して通過する際の経過時間と、前記受光部で検出される前記光の幅との関係に基づく前記幅の変化率に応じて前記発光部を回動することで、前記変化率が所定範囲内となるように前記発光部の回動位置を調整すること。 (3) In the above (1) or (2), in the first step, an elapsed time when the rotating moving blade blocks and passes the light, and the light detected by the light receiving unit. Adjusting the rotation position of the light emitting unit so that the rate of change is within a predetermined range by rotating the light emitting unit according to the change rate of the width based on the relationship with the width.
(4) 上記(1)~(3)のいずれかにおいて、前記第2の工程における前記所定寸法の幅の光は、前記発光部から照射し、周方向で隣接する前記動翼間の隙間を透過させて前記受光部で受光するようにしたこと。 (4) In any one of the above (1) to (3), the light of the predetermined size in the second step is irradiated from the light emitting unit, and a gap between the moving blades adjacent in the circumferential direction is formed. The light is transmitted and received by the light receiving unit.
 本発明に係る回転機械におけるクリアランスの計測装置は、次の点を特徴とする。 The clearance measuring device for a rotating machine according to the present invention is characterized by the following points.
(5) 回転機械の回転部である動翼と固定部であるケーシングの内周面との間のクリアランスを計測する回転機械におけるクリアランスの大きさを計測のための計測装置であって、
 所定の幅のシート状の光を、前記クリアランスに向けて照射する発光部と、
 前記発光部のケーシング側の端部である基端部を回動可能に支持している発光側の回動部と、
 前記光を受光する受光部と、
 前記受光部のケーシング側の端部である基端部を回動可能に支持している受光側の回動部と、
 前記発光側の回動部の端部を支持するとともに、前記受光側の回動部の端部を支持するフレームと、を有すること。
(5) A measuring device for measuring the size of the clearance in the rotating machine that measures the clearance between the rotor blade that is the rotating part of the rotating machine and the inner peripheral surface of the casing that is the fixed part,
A light emitting unit that irradiates a sheet-like light of a predetermined width toward the clearance;
A light-emitting side rotating part that rotatably supports a base end part that is an end part on the casing side of the light-emitting part;
A light receiving portion for receiving the light;
A light-receiving-side rotation portion that rotatably supports a base end portion that is an end portion on the casing side of the light-receiving portion;
A frame that supports an end portion of the light emitting side rotating portion and supports an end portion of the light receiving side rotating portion.
(6) 上記(5)において、前記受光部の前記基端部から先端部までの距離を、前記発光部の前記基端部から先端部までの距離よりも大きく形成したこと。 (6) In the above (5), the distance from the base end portion to the tip end portion of the light receiving portion is made larger than the distance from the base end portion to the tip end portion of the light emitting portion.
 本発明に係る回転機械におけるクリアランスの計測システムは、次の点を特徴とする。 The clearance measurement system for a rotating machine according to the present invention is characterized by the following points.
(7) 回転機械の回転部である動翼と固定部であるケーシングの内周面との間のクリアランスを計測する回転機械におけるクリアランスの計測システムであって、
 上記(5)または(6)に記載するクリアランス計測装置と、
 前記計測装置に備えた前記発光側の回動部を回動駆動する第1の回動駆動部および前記計測装置に備えた前記受光側の回動部を回動駆動する第2の回動駆動部と、
 前記第1および第2の回動駆動部の回動動作、ならびに前記発光部の発光動作および前記受光部の受光動作を制御するとともに、前記受光部から送出されるシート状の光の幅を表す情報の処理を行なう情報処理部を備えたコントローラと、を有し、
 前記コントローラは、
 前記計測装置の発光部から前記光を前記クリアランスに向けて照射させ、特定の前記動翼がその回転に伴い前記発光部と前記受光部との間を通過する際に前記受光部で受光される前記光の幅を表す情報に基づき、前記幅が一定になるように前記第1の回動駆動部を介して前記発光側の回動部の回動駆動を制御する第1の回動制御部と、
 前記発光部から予め定められた所定寸法の幅の光を照射させ、前記受光部で前記所定寸法の幅の光として受光されるように、前記第2の回動駆動部を介して前記受光側の回動部の回動駆動を制御する第2の回動制御部と、を有するものであること。
(7) A clearance measuring system in a rotating machine that measures a clearance between a moving blade that is a rotating part of the rotating machine and an inner peripheral surface of a casing that is a fixed part,
A clearance measuring device according to (5) or (6) above;
A first rotation drive unit that rotationally drives the light emission side rotation unit provided in the measurement device and a second rotation drive that rotationally drives the light reception side rotation unit provided in the measurement device. And
Controls the rotation operation of the first and second rotation driving units, the light emission operation of the light emitting unit and the light receiving operation of the light receiving unit, and represents the width of the sheet-like light transmitted from the light receiving unit. A controller having an information processing unit for processing information;
The controller is
The light is emitted from the light emitting unit of the measuring device toward the clearance, and the specific moving blade is received by the light receiving unit when passing between the light emitting unit and the light receiving unit with the rotation. Based on information representing the width of the light, a first rotation control unit that controls the rotation drive of the rotation unit on the light emitting side via the first rotation drive unit so that the width becomes constant. When,
The light receiving side is irradiated with light having a predetermined width from the light emitting unit, and is received as light having the predetermined size by the light receiving unit via the second rotation driving unit. A second rotation control unit that controls the rotation drive of the rotation unit.
(8) 上記(7)において、前記第1の回動制御部は、回転する前記動翼が前記光を遮断して通過する際の経過時間と、前記受光部で検出される前記光の幅との関係に基づく前記幅の変化率に応じて前記発光部を回動することで、前記変化率が所定範囲内となるように前記発光部の回動位置を調整すること。 (8) In the above (7), the first rotation control unit includes an elapsed time when the rotating moving blade blocks and passes the light, and a width of the light detected by the light receiving unit. Adjusting the rotation position of the light emitting unit so that the rate of change is within a predetermined range by rotating the light emitting unit according to the change rate of the width based on
(9) 上記(7)または(8)において、前記予め定められた所定寸法の幅の光は、固有の周波数または色を有するものとし、
 前記コントローラは、前記固有の周波数または色の光を選択して当該光の幅が所定の値となっているか否かを検出すること。
(9) In the above (7) or (8), the light having a predetermined width is predetermined frequency or color,
The controller selects light of the specific frequency or color and detects whether or not the width of the light has a predetermined value.
 本発明によれば、第1段階として回転機械の動翼を回転させつつ発光部から照射した光が動翼の先端面に平行、すなわちクリアランスに平行になるように調整することができる。また、その後、第2段段階として、発光部に対する受光部の平行度を担保するように受光部の姿勢を調整することができる。すなわち、第1段階および第2段階の2種類の調整で、動翼の外周面とケーシングの内周面との間のクリアランスを非接触計測により高精度に行うことができる。また、計測に際してはケーシングを開放することなく行うこともできるので、所定の計測作業を短時間で合理的に行なうことができる。 According to the present invention, as the first stage, the light irradiated from the light emitting unit can be adjusted to be parallel to the tip surface of the moving blade, that is, to be parallel to the clearance while rotating the moving blade of the rotating machine. Thereafter, as the second stage, the posture of the light receiving unit can be adjusted so as to ensure the parallelism of the light receiving unit with respect to the light emitting unit. That is, the clearance between the outer peripheral surface of the rotor blade and the inner peripheral surface of the casing can be performed with high accuracy by non-contact measurement by two kinds of adjustments of the first stage and the second stage. In addition, since the measurement can be performed without opening the casing, a predetermined measurement operation can be reasonably performed in a short time.
図1A~図1Cは、本発明における発光部と動翼との関係を示す図で、図1Aはが動翼に対して発光部が一方向に傾斜している場合の様子を示す模式図、図1Bは動翼が発光部から照射した光を切る場合の態様を示す模式図、図1Cは動翼の回転による時間の経過に伴い受光部で受光されるレーザ光の幅を示す特性図である。1A to 1C are diagrams showing a relationship between a light emitting unit and a moving blade in the present invention, and FIG. 1A is a schematic diagram showing a state where the light emitting unit is inclined in one direction with respect to the moving blade. FIG. 1B is a schematic diagram showing a mode in which the moving blade cuts off the light emitted from the light emitting portion, and FIG. 1C is a characteristic diagram showing the width of the laser beam received by the light receiving portion as time elapses due to the rotation of the moving blade. is there. 動翼に対する発光部の複数の傾斜角に対し、受光部で検出されるレーザ光の幅を示す特性図である。It is a characteristic view which shows the width | variety of the laser beam detected in a light-receiving part with respect to the several inclination angle of the light-emitting part with respect to a moving blade. 発光部に対する受光部の平行度を担保するための調整の様子を概念的に示す模式図である。It is a schematic diagram which shows notionally the mode of adjustment for ensuring the parallelism of the light-receiving part with respect to a light-emitting part. 本発明の実施形態に係るクリアランスの計測装置をケーシングに装着した状態で概念的に示す模式図である。It is a schematic diagram which shows notionally the state which mounted | wore the casing with the clearance measuring device which concerns on embodiment of this invention. 幅レーザ計測装置の測定原理を概念的に示す模式図である。It is a schematic diagram which shows notionally the measurement principle of a width laser measuring device. 本発明の実施形態に係る回転機械におけるクリアランスの計測方法を示すフローチャートである。It is a flowchart which shows the measuring method of the clearance in the rotary machine which concerns on embodiment of this invention. 本発明の実施形態に係るクリアランスの計測システムを示すブロック図である。1 is a block diagram showing a clearance measurement system according to an embodiment of the present invention.
 以下、本発明の実施の形態を図面に基づき詳細に説明する。ここで、各実施形態の説明に当たり、図1(図1A~図1C)~図4は各実施形態の説明にも共用し、同一部分には同一番号を付し、重複する説明は省略している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, in describing each embodiment, FIG. 1 (FIGS. 1A to 1C) to FIG. 4 are also used in the description of each embodiment, and the same parts are denoted by the same reference numerals, and redundant descriptions are omitted. Yes.
 なお、以下に示す各実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。 It should be noted that the following embodiments are merely examples, and there is no intention to exclude various modifications and technical applications that are not explicitly described in the following embodiments. Each configuration of the following embodiments can be implemented with various modifications without departing from the spirit thereof, and can be selected as necessary or can be appropriately combined.
 <クリアランスの計測装置>
 図4は、本発明の実施形態に係るクリアランスの計測装置をケーシングに装着した状態で示す模式図である。図4に示すように、本実施形態に係る計測装置100は、発光部1、発光側の回動部11、受光部2、受光側の回動部12およびフレーム13からなる。発光部1は、タービンの動翼3を挟んで一方側、すなわち動翼3の軸方向における一方側(図4では左側)で動翼3の外周に配設されている。発光部1は、ケーシング4の内周面4a側から動翼3のラジアル方向に沿い内部側に向かって所定の長さのライン状に延びた光源、或いはライン状に延びるように配列された光源を有し、前記光源から所定の幅のシート状のレーザ光Lを、ケーシング4の内周面4aと動翼3の外周面3aとの間のクリアランス5に向けて照射する。かかるレーザ光Lとしては幅レーザ光が最適である。ただし、シート状のレーザ光Lは、直線状に並んだ複数の点光源から互いに平行に照射された光の集合をも含む。このように、本発明では、複数の平行光を含み、二次元的な広がりを持つ一つの平面上を進む光をシート状の光(レーザ光Lを含む)という。
<Clearance measurement device>
FIG. 4 is a schematic diagram showing a clearance measuring device according to an embodiment of the present invention mounted on a casing. As shown in FIG. 4, the measuring apparatus 100 according to this embodiment includes a light emitting unit 1, a light emitting side rotating unit 11, a light receiving unit 2, a light receiving side rotating unit 12, and a frame 13. The light emitting unit 1 is disposed on the outer periphery of the moving blade 3 on one side of the turbine blade 3, that is, one side in the axial direction of the moving blade 3 (left side in FIG. 4). The light emitting section 1 is a light source extending in a line shape of a predetermined length from the inner peripheral surface 4a side of the casing 4 along the radial direction of the rotor blade 3 toward the inner side, or a light source arranged to extend in a line shape The sheet-like laser light L having a predetermined width is emitted from the light source toward the clearance 5 between the inner peripheral surface 4 a of the casing 4 and the outer peripheral surface 3 a of the rotor blade 3. The laser beam L is optimally a width laser beam. However, the sheet-like laser light L also includes a set of lights irradiated in parallel from a plurality of point light sources arranged in a straight line. As described above, in the present invention, light that includes a plurality of parallel lights and travels on one plane having a two-dimensional spread is referred to as sheet-like light (including laser light L).
 発光部1のケーシング4側の端部である基端部は発光側の回動部11に回動可能に支持してある。この結果、回動部11の回動量を調整することにより発光部1から照射されるレーザ光Lの照射方向を調整し得る。また、受光部2は発光部1から照射されたシート状のレーザ光Lを受光してその幅を表す情報を送出する。かかる構成により図1(図1A~図1C)および図2に基づき説明した発光部1から照射されるレーザ光Lの照射方向がクリアランス5と平行になるように調整することができる。 The base end, which is the end of the light emitting unit 1 on the casing 4 side, is rotatably supported by the light emitting side rotating unit 11. As a result, the irradiation direction of the laser beam L emitted from the light emitting unit 1 can be adjusted by adjusting the rotation amount of the rotation unit 11. The light receiving unit 2 receives the sheet-like laser light L emitted from the light emitting unit 1 and sends out information indicating the width thereof. With this configuration, the irradiation direction of the laser light L emitted from the light emitting unit 1 described with reference to FIG. 1 (FIGS. 1A to 1C) and FIG. 2 can be adjusted to be parallel to the clearance 5.
 さらに、受光部2のケーシング4側の端部である基端部は、受光側の回動部12に回動可能に支持してある。この結果、回動部12の回動量を調整することにより発光部1から照射されるレーザ光Lの方向に合わせて受光面の方向を調整し得る。すなわち、回転部12は、図3に示す調整を行なうためのものである。 Furthermore, the base end portion which is the end portion on the casing 4 side of the light receiving portion 2 is rotatably supported by the rotating portion 12 on the light receiving side. As a result, the direction of the light receiving surface can be adjusted in accordance with the direction of the laser beam L emitted from the light emitting unit 1 by adjusting the amount of rotation of the rotating unit 12. That is, the rotating unit 12 is for performing the adjustment shown in FIG.
 ここで、本実施形態における受光部2の基端部から先端部までの距離L02は、発光部1の基端部から先端部までの距離L01より長くなっている。すなわち延長部ΔLだけ長くなるように形成してあり、その分受光素子の配設長も長くなっている。このように受光部2の長さを設定することは必須ではないが、図3に二点鎖線で示すように、受光部2が発光部1に対して傾いていても発光部1から照射されたレーザ光Lをすべて受光し得るようにすることができる。 Here, the distance L02 from the proximal end portion to the distal end portion of the light receiving portion 2 in the present embodiment is longer than the distance L01 from the proximal end portion to the distal end portion of the light emitting portion 1. That is, it is formed so as to be longer by the extension portion ΔL, and the arrangement length of the light receiving element is also increased accordingly. Although it is not essential to set the length of the light receiving unit 2 as described above, even if the light receiving unit 2 is inclined with respect to the light emitting unit 1 as shown by a two-dot chain line in FIG. All the laser beams L can be received.
 フレーム13は一方の下端部に回動部11を介して発光部1を回動可能に支持するとともに、他方の下端部に回動部12を介して受光部2を回動可能に支持する門型の部材である。 The frame 13 supports the light emitting unit 1 rotatably at one lower end portion via the rotating portion 11 and supports the light receiving portion 2 rotatably at the other lower end portion via the rotating portion 12. It is a mold member.
 かかる計測装置100は、ケーシング4に設けた計測孔4Aにフレーム13を挿入することにより回動部11とともに発光部1をケーシング4内に挿入する。同時に、ケーシング4に設けた他の計測孔4Bにフレーム13を挿入することにより回動部12とともに受光部2をケーシング4内に挿入する。このようにフレーム13により計測孔4A,4Bを介してケーシング4の内部に挿入することで発光部1と受光部2とを、動翼3を挟んで相対向するように配設することができる。 The measuring device 100 inserts the light emitting unit 1 into the casing 4 together with the rotating unit 11 by inserting the frame 13 into the measuring hole 4 </ b> A provided in the casing 4. At the same time, the light receiving unit 2 is inserted into the casing 4 together with the rotating unit 12 by inserting the frame 13 into another measurement hole 4 </ b> B provided in the casing 4. In this manner, the light emitting unit 1 and the light receiving unit 2 can be disposed to face each other with the moving blade 3 interposed therebetween by being inserted into the casing 4 through the measurement holes 4A and 4B by the frame 13. .
 なお、計測孔4A,4Bは、通常は栓(図示せず)で閉塞してあり、クリアランス計測時に栓を外して上述の如くフレーム13等を挿入する。 The measurement holes 4A and 4B are normally closed with plugs (not shown), and the plugs are removed and the frame 13 and the like are inserted as described above when measuring the clearance.
 かかる計測装置100を用いた場合には、計測孔4A,4Bにフレーム13等を挿入するだけで、ケーシング4を開放することなく、計測の準備が整う。したがって、所定のクリアランス計測を短時間で良好に実施することができる。 When such a measuring device 100 is used, it is possible to prepare for measurement without opening the casing 4 simply by inserting the frame 13 or the like into the measurement holes 4A and 4B. Therefore, the predetermined clearance measurement can be favorably performed in a short time.
 <クリアランスの計測方法>
 本実施形態に係るクリアランス計測方法では、図4に示すような態様で配設された計測装置100を用いて所定のクリアランス計測を行なう。すなわち、本実施形態においては、回動部11と、発光部1の基端部側の一部の光源とが、計測孔4A内に配設されるとともに、回動部12と、受光部2の基端部側の一部とが、計測孔4B内に配設されている。このように配設することは必須ではないが、かかる配設により所定のクリアランスを計測する際に基準となる線状のレーザ光L11の位置を特定することができるので、所定の計測を容易かつ高精度に行うことができる。さらに詳言すると次の通りである。
<Clearance measurement method>
In the clearance measurement method according to the present embodiment, a predetermined clearance measurement is performed using the measurement device 100 arranged in a manner as shown in FIG. That is, in the present embodiment, the rotating unit 11 and a part of the light source on the base end side of the light emitting unit 1 are disposed in the measurement hole 4A, the rotating unit 12 and the light receiving unit 2. A part on the base end side is disposed in the measurement hole 4B. Although it is not essential to arrange in this way, the position of the linear laser beam L11 used as a reference when measuring a predetermined clearance can be specified by this arrangement, so that the predetermined measurement can be performed easily and easily. It can be performed with high accuracy. Further details are as follows.
 図5は幅レーザ計測装置の測定原理を概念的に示す模式図である。同図に基づき測定対象200のZ軸方向に関する寸法である幅W0を計測する場合を考える。図5に示すように、幅レーザ計測装置は発光部1と受光部2とを有しており、発光部1から照射したシート状のレーザ光を受光部2で受光するように構成してある。 FIG. 5 is a schematic diagram conceptually showing the measurement principle of the width laser measuring apparatus. Consider a case in which the width W0, which is a dimension in the Z-axis direction of the measuring object 200, is measured based on FIG. As shown in FIG. 5, the width laser measuring device has a light emitting unit 1 and a light receiving unit 2, and is configured so that the light receiving unit 2 receives sheet-like laser light emitted from the light emitting unit 1. .
 ここで、発光部1から受光部2に至る光路の途中に測定対象200が位置している場合、幅W0に相当するレーザ光Lは受光部2では検出されない。すなわち、測定対象200の図中上端に接するレーザ光L11と測定対象200の図中下端に接するレーザ光L12との間隔が測定対象200の測定値である幅W0となる。したがって、所定の計測を行なうためには、シート状のレーザ光Lにおいて計測の基準となる線状のレーザ光L11,L12を特定することが必要となる。 Here, when the measuring object 200 is located in the middle of the optical path from the light emitting unit 1 to the light receiving unit 2, the laser light L corresponding to the width W0 is not detected by the light receiving unit 2. That is, the interval between the laser beam L11 in contact with the upper end of the measurement target 200 in the drawing and the laser beam L12 in contact with the lower end of the measurement target 200 in the drawing becomes the width W0 that is the measurement value of the measurement target 200. Therefore, in order to perform the predetermined measurement, it is necessary to specify the linear laser beams L11 and L12 which are the measurement reference in the sheet-shaped laser beam L.
 同様に、本実施形態の場合、図4に示すようにケーシング4側のクリアランス計測の基準となる線状のレーザ光L11を得るためには、計測孔4A中で計測孔4Aの壁に遮られているレーザ光の存在が必要になる。発光部1から照射されるレーザ光Lの一部が計測孔4Aで遮られるようにすることで、クリアランス5に最初に臨む線状のレーザ光L11を特定することができる。このレーザ光L11の位置を基準とすることで、容易かつ高精度に所定のクリアランス5の寸法を計測することができる。 Similarly, in the case of the present embodiment, as shown in FIG. 4, in order to obtain a linear laser beam L11 that serves as a reference for clearance measurement on the casing 4 side, the measurement hole 4A is blocked by the wall of the measurement hole 4A. The presence of laser light is required. By making a part of the laser light L emitted from the light emitting unit 1 blocked by the measurement hole 4A, the linear laser light L11 that first faces the clearance 5 can be specified. By using the position of the laser beam L11 as a reference, the dimension of the predetermined clearance 5 can be easily and accurately measured.
 本実施形態に係るクリアランスの計測方法は、図4に示す計測装置100を利用することで良好に実施し得る。図6は本発明の実施形態に係る回転機械におけるクリアランスの計測方法を示すフローチャートである。 The clearance measuring method according to the present embodiment can be favorably implemented by using the measuring device 100 shown in FIG. FIG. 6 is a flowchart showing a clearance measuring method in the rotary machine according to the embodiment of the present invention.
(1) 図6に示すように、まずガスタービン(GT)が回転中であるか否かを検出する(ステップS1参照)。本実施形態では、ガスタービンの動翼3が移動している状態で発光部1から照射されるレーザ光Lの照射方向とクリアランス5との平行度(動翼3の先端面との平行度)を調整するものであるからであり、動翼3の回転(低速回転)が前提となっている。換言すれば、ターニング運転を行なっているか否かを判定する。当該運転を行なっていない場合には、運転が開始されるまで待機する。 (1) As shown in FIG. 6, first, it is detected whether or not the gas turbine (GT) is rotating (see step S1). In the present embodiment, the parallelism between the irradiation direction of the laser beam L emitted from the light emitting unit 1 and the clearance 5 in a state where the moving blade 3 of the gas turbine is moving (parallelism with the tip surface of the moving blade 3). This is because the rotation of the rotor blade 3 (low-speed rotation) is a precondition. In other words, it is determined whether or not the turning operation is being performed. When the said operation is not performed, it waits until an operation is started.
(2) ステップS1の判定結果が「YES」の場合には、計測孔4A,4Bを介して計測装置100をガスタービンに装着する(ステップS2参照)。これにより、ガスタービンの外周側から内周側に伸びる所定の幅を有するシート状のレーザ光Lを、クリアランス5に向けて照射する発光部1を、動翼3の軸方向に関する一方側(図4では左側)に配設するとともに、レーザ光Lを受光する受光部2を、クリアランス5を介して相対向するよう動翼3の軸方向に関する他方側(図4では右側)に配設する。 (2) If the determination result in step S1 is “YES”, the measuring device 100 is attached to the gas turbine via the measurement holes 4A and 4B (see step S2). As a result, the light emitting section 1 that irradiates the clearance 5 with the sheet-like laser light L having a predetermined width extending from the outer peripheral side to the inner peripheral side of the gas turbine is provided on one side in the axial direction of the rotor blade 3 (see FIG. 4 is arranged on the left side), and the light receiving unit 2 that receives the laser beam L is arranged on the other side (right side in FIG. 4) in the axial direction of the rotor blade 3 so as to face each other with a clearance 5 therebetween.
(3) 発光部1からクリアランス5に向けてレーザ光Lを照射して受光部2で受光したレーザ光Lの幅に基づき発光部1の傾斜角θを調整する(ステップS3参照)。 (3) The inclination angle θ of the light emitting unit 1 is adjusted based on the width of the laser light L received by the light receiving unit 2 by irradiating the laser beam L from the light emitting unit 1 toward the clearance 5 (see step S3).
(4) 発光部1から照射するレーザ光Lがクリアランス5を規定する動翼3の外周面およびケーシング4の内周面4aに平行であるか否かを判定する(ステップS4参照)。これは、動翼3の回転に伴い経時的に受光部2で検出されるレーザ光Lの幅が一定であるか否かを判定することで実現し得る。具体的には、例えば回転する動翼3がレーザ光Lを遮断して通過する際の経過時間と、受光部2で検出されるレーザ光Lの幅との関係に基づく前記幅の変化率に応じて発光部1を回動することで前記変化率が所定範囲内となるように発光部1の回動位置を調整する。いずれにしても、受光部2で検出するレーザ光Lの幅が最終的に一定になるように発光部1の回動位置を調整することで所望の平行度を担保し得るので、所定の平行度が担保されるまで、ステップS3およびステップS4の処理を繰返す。この結果、例えば図2に示すように最初は大きな傾斜を持っていた直線l1の傾斜が徐々に小さくなり、直線l3に示すように傾斜が所定の閾値以下(レーザ光Lの幅が一定)となる。かかる状態でステップS4の判定結果が「YES」となり、第1の工程が終了する。 (4) It is determined whether or not the laser light L emitted from the light emitting unit 1 is parallel to the outer peripheral surface of the moving blade 3 that defines the clearance 5 and the inner peripheral surface 4a of the casing 4 (see step S4). This can be realized by determining whether or not the width of the laser beam L detected by the light receiving unit 2 over time as the moving blade 3 rotates is constant. Specifically, for example, the rate of change of the width based on the relationship between the elapsed time when the rotating blade 3 passes and blocks the laser light L and the width of the laser light L detected by the light receiving unit 2. Accordingly, the rotation position of the light emitting unit 1 is adjusted by rotating the light emitting unit 1 so that the rate of change is within a predetermined range. In any case, the desired parallelism can be ensured by adjusting the rotational position of the light emitting unit 1 so that the width of the laser light L detected by the light receiving unit 2 is finally constant, so that the predetermined parallelism is ensured. Steps S3 and S4 are repeated until the degree is secured. As a result, for example, as shown in FIG. 2, the slope of the straight line l1 that initially had a large slope gradually decreases, and as shown by the straight line l3, the slope is equal to or less than a predetermined threshold (the width of the laser light L is constant). Become. In this state, the determination result of step S4 is “YES”, and the first step is ended.
 なお、図2に示す特性(直線l1,l2の傾斜や傾斜方向(右上がりまたは右下がり))は動翼3の先端面の形状や発光部1の傾斜角θ(図1A参照;以下同じ)の方向(基準線Zに対する傾斜方向)により種々変化する。また、動翼3の先端面の形状によっては、厳密に直線的に変化する場合だけでなくほぼ直線状の変化となる場合も考えられる。ただ、いずれにしても所望の平行度を得るためには直線l1,l2の傾斜が小さくなり、動翼3の回転に伴うレーザ光Lの幅が一定になるように回動部11により発光部1の傾斜角θを調整すれば好い。 Note that the characteristics shown in FIG. 2 (inclinations and inclination directions of the straight lines 11 and 12 (upward or downright)) are the shape of the tip surface of the rotor blade 3 and the inclination angle θ of the light emitting unit 1 (see FIG. 1A; the same applies hereinafter). Varies in various directions (inclination direction with respect to the reference line Z). Further, depending on the shape of the tip surface of the rotor blade 3, not only a case where the change is strictly linear but also a case where the change is almost linear is conceivable. However, in any case, in order to obtain a desired parallelism, the rotation of the light emitting part is performed by the rotating part 11 so that the inclination of the straight lines l1 and l2 becomes small and the width of the laser light L accompanying the rotation of the moving blade 3 becomes constant. It is preferable to adjust the inclination angle θ of 1.
(5) ステップS3の処理で発光部1の回動位置が所定通りに確定されたので、発光部1に対する受光部2の平行度を所定通りの平行度となるように調整する(ステップS5参照)。これは図3に基づき説明した調整である。 (5) Since the rotation position of the light emitting unit 1 is determined as predetermined in the process of step S3, the parallelism of the light receiving unit 2 with respect to the light emitting unit 1 is adjusted to be a predetermined parallelism (see step S5). ). This is the adjustment described with reference to FIG.
(6) ステップS5の処理で受光部2の傾斜角θ1,θ2(図3参照;以下同じ)を適宜変更した結果、発光部1が照射した既知の幅Wのレーザ光(例えば、幅W分だけ他と波長の異なるレーザ光)L1が受光部2で、そのまま幅Wで検出されているか否かを判定する(ステップS6参照)、すなわち、発光部1から照射したレーザ光Lの幅Wの絶対値が担保(確保)されているか否かを判定する。そこで、判定結果が「NO」の場合には、ステップS5およびステップS6の処理を繰返し、受光部2で検出する検出幅W´と幅Wとの差が所定の閾値以下となった時点でステップS6の判定結果を「YES」とする。かかる状態で第2の工程が終了する。 (6) As a result of appropriately changing the inclination angles θ1 and θ2 (see FIG. 3; the same applies hereinafter) of the light receiving unit 2 in the process of step S5, a laser beam having a known width W irradiated by the light emitting unit 1 (for example, width W) It is determined whether or not the laser light L1 having a wavelength different from that of the other light is detected by the light receiving unit 2 with the width W as it is (see step S6), that is, the width W of the laser light L irradiated from the light emitting unit 1 It is determined whether or not the absolute value is secured (secured). Therefore, when the determination result is “NO”, the processing of step S5 and step S6 is repeated, and the step is performed when the difference between the detection width W ′ detected by the light receiving unit 2 and the width W becomes equal to or smaller than a predetermined threshold value. The determination result of S6 is “YES”. In this state, the second step is finished.
(7) ステップS4の判定処理で発光部1が照射するレーザ光Lと動翼3の先端面との平行度が担保され、同時にステップS6の判定処理で基準姿勢となっている発光部1と受光部2との平行度が担保されているので、かかる状態で所定のクリアランス計測を行なう(ステップS7参照)。すなわち、発光部1の光源から照射されるシート状の光Lのうちケーシング4側で最初にクリアランス5に臨む光L11(図4参照;以下同じ)を基準として光L11から動翼3の先端面に遮断されるまでの光Lの幅によりクリアランスの寸法を検出する。かくして、計測工程を実施する。この結果、高精度のクリアランス計測を行うことができる。 (7) The parallelism between the laser beam L emitted from the light emitting unit 1 and the tip surface of the rotor blade 3 is ensured in the determination process in step S4, and at the same time, the light emitting unit 1 in the reference posture in the determination process in step S6 Since the parallelism with the light receiving unit 2 is ensured, a predetermined clearance measurement is performed in this state (see step S7). That is, of the sheet-like light L emitted from the light source of the light emitting unit 1, the tip surface of the rotor blade 3 from the light L11 with reference to the light L11 (see FIG. 4; the same applies hereinafter) that first faces the clearance 5 on the casing 4 side. The dimension of the clearance is detected from the width of the light L until the light is blocked. Thus, the measurement process is performed. As a result, high-accuracy clearance measurement can be performed.
 このように本実施形態に係るクリアランスの計測方法によれば、高精度のクリアランス計測を行なうことができ、厳しいクリアランス管理が求められる回転機械に適用してきわめて有用なものとなる。特に図4に示す計測装置100を用いた場合には、所定の計測作業を迅速かつ合理的に実施することができる。 As described above, according to the clearance measuring method according to the present embodiment, high-accuracy clearance measurement can be performed, which is extremely useful when applied to a rotating machine that requires strict clearance management. In particular, when the measurement apparatus 100 shown in FIG. 4 is used, a predetermined measurement operation can be performed quickly and rationally.
 特に、本実施形態によれば、ターニング運転等の低速運転(5~10rpm程度)時のクリアランス計測に適用した場合、測定精度やコストの点で従来技術に対し、顕著な効果を奏するものとなる。 In particular, according to the present embodiment, when applied to clearance measurement at low speed operation (about 5 to 10 rpm) such as turning operation, the present invention has a remarkable effect over the prior art in terms of measurement accuracy and cost. .
 <クリアランスの計測システム>
 図7は本発明の実施形態に係るクリアランスの計測システムを示すブロック図である。同図に示すように、本実施形態に係るクリアランスの計測システムは、回転機械であるタービンの回転部である動翼3の外周面3aと固定部であるケーシング4の内周面4aとの間のクリアランス5を計測するものである。ここで、動翼3は中心部を回転軸(図7には図示せず)に固定されて回転可能となっているロータディスク(図7には図示せず)の周面に固定されている。これら動翼3、ロータディスクおよび回転軸で当該回転機械の回転体を構成している。
<Clearance measurement system>
FIG. 7 is a block diagram showing a clearance measurement system according to an embodiment of the present invention. As shown in the figure, the clearance measurement system according to the present embodiment is provided between an outer peripheral surface 3a of a moving blade 3 that is a rotating portion of a turbine that is a rotating machine and an inner peripheral surface 4a of a casing 4 that is a fixed portion. The clearance 5 is measured. Here, the rotor blade 3 is fixed to the peripheral surface of a rotor disk (not shown in FIG. 7) whose center is fixed to a rotating shaft (not shown in FIG. 7) and is rotatable. . These rotor blades 3, the rotor disk, and the rotating shaft constitute a rotating body of the rotating machine.
 また、本実施形態に係る計測システムは、計測装置100、第1および第2の回動駆動部およびコントローラ101を備えている。ここで、計測装置100は、図4に基づき既に説明したので、図4と同一部分には同一番号を付して重複する説明は省略する。第1の回転駆動部は、前記計測装置100の発光側の回動部11を回動駆動する。また、第2の回動駆動部は計測装置100の受光側の回動部12を回動駆動する。本実施形態における第1および第2の回転駆動部(それ自体は図示せず;以下同じ)は、いずれも回動部11、12に一体的に組み込まれている。すなわち、回動部11,12が駆動源を内蔵する回動ステージとして構成してある。ただ、このように構成することは必須ではない。駆動源の回動力を伝達して回動部11,12を回動し得るようになっていれば、回動部11,12から独立して別に設けられていてもよい。 In addition, the measurement system according to the present embodiment includes a measurement device 100, first and second rotation driving units, and a controller 101. Here, since the measuring apparatus 100 has already been described with reference to FIG. 4, the same parts as those in FIG. The first rotation driving unit drives the rotation unit 11 on the light emission side of the measuring device 100 to rotate. Further, the second rotation drive unit rotates the light receiving side rotation unit 12 of the measuring device 100. The first and second rotation drive units (not shown per se; the same applies hereinafter) in the present embodiment are both integrated into the rotation units 11 and 12. That is, the rotation units 11 and 12 are configured as a rotation stage incorporating a drive source. However, this configuration is not essential. As long as the turning force of the drive source can be transmitted to turn the turning parts 11 and 12, the turning parts 11 and 12 may be provided separately from the turning parts 11 and 12.
 コントローラ101は、発光部1の発光動作および受光部2の受光動作の制御、第1および第2の回動駆動部の回動動作の制御を行なうとともに、受光部2から送出されるシート状のレーザ光Lの幅を表す情報に基づき所定の処理を行なう。具体的には、発光指令部101Aは発光部1の発光動作、すなわちレーザ光Lの照射開始および停止を制御する。受光指令部101Bは受光部2でのレーザ光Lの受光動作の開始および停止を制御する。第1の回動制御部101Cは、情報処理部101Eにおける所定の情報処理の結果に基づき回動部11の回動を制御する。第2の回動制御部101Dは、情報処理部101Eにおける所定の情報処理の結果に基づき回動部12の回動を制御する。ここで、本実施形態における第1および第2の回動制御部101C,101Dからの制御指令は、回転ステージとなっている回動部11,12の第1および第2の回転駆動部に供給される。一方、回動部11,12の駆動源が回動部11,12から独立して別に設けられている場合には、それぞれの駆動源に対して第1および第2の回動制御部101C,101Dからの制御指令をそれぞれ供給する。 The controller 101 controls the light emitting operation of the light emitting unit 1 and the light receiving operation of the light receiving unit 2, controls the rotating operation of the first and second rotation driving units, and also controls the sheet-like shape sent from the light receiving unit 2. A predetermined process is performed based on information indicating the width of the laser beam L. Specifically, the light emission command unit 101A controls the light emission operation of the light emitting unit 1, that is, the start and stop of irradiation of the laser light L. The light receiving command unit 101B controls the start and stop of the light receiving operation of the laser light L in the light receiving unit 2. The first rotation control unit 101C controls the rotation of the rotation unit 11 based on the result of predetermined information processing in the information processing unit 101E. The second rotation control unit 101D controls the rotation of the rotation unit 12 based on the result of predetermined information processing in the information processing unit 101E. Here, the control commands from the first and second rotation control units 101C and 101D in the present embodiment are supplied to the first and second rotation drive units of the rotation units 11 and 12 serving as the rotation stage. Is done. On the other hand, when the drive sources of the rotation units 11 and 12 are provided separately from the rotation units 11 and 12, the first and second rotation control units 101C and 101C are provided for the respective drive sources. Control commands from 101D are supplied.
 第1の回転制御部101Cは、受光部2からの出力信号に基づきレーザ光Lが、回転する動翼3の間を通過する際に受光されるその幅を検出するとともに、幅を表す情報に基づきその幅が一定になるように回動部11を回動駆動して発光部1の傾斜角θを調整する。具体的には、例えばレーザ光Lの幅の検出処理ごとに任意の回動量で第1の回動制御部101Cを介して回動部11を回動させて動翼3の回転に伴う経時的なレーザ光Lの幅が所定の範囲内に収まるように調整する。または、回転する動翼3がレーザ光Lを遮断して通過する際の経過時間と、情報処理部101Eで検出されるレーザ光Lの幅との関係に基づくレーザ光Lの幅の変化率に応じて第1の回動制御部101Cにより回動部11を介して発光部1を回動することで、前記変化率が所定範囲内となるように発光部1の回動位置を調整する。例えば変化率の正負に応じて回動方向を設定し変化率の大きさに応じて回動量を設定して、発光部1を回動する。すなわち、コントローラ101から発光部1および受光部2を経てコントローラ101に戻るフィードバック制御系を構成することで、経時的なレーザ光Lの幅を良好に一定にすることができる。いずれにしても、情報処理部101Eで検出するレーザ光Lの幅が最終的に一定になるように発光部1の回動位置を調整することで、クリアランス5に対するレーザ光Lの所望の平行度を担保し得る。 The first rotation control unit 101C detects the width of the laser beam L received when passing between the rotating rotor blades 3 based on the output signal from the light receiving unit 2, and uses the information indicating the width. Based on this, the rotation part 11 is rotationally driven so that the width becomes constant, and the inclination angle θ of the light emitting part 1 is adjusted. Specifically, for example, every time the width of the laser beam L is detected, the rotation unit 11 is rotated by an arbitrary rotation amount via the first rotation control unit 101C, and the time series associated with the rotation of the moving blade 3 is increased. The width of the laser beam L is adjusted so as to be within a predetermined range. Alternatively, the rate of change in the width of the laser light L based on the relationship between the elapsed time when the rotating rotor blade 3 blocks and passes the laser light L and the width of the laser light L detected by the information processing unit 101E. Accordingly, the first rotation control unit 101C rotates the light emitting unit 1 via the rotating unit 11, thereby adjusting the rotation position of the light emitting unit 1 so that the rate of change is within a predetermined range. For example, the light emitting unit 1 is rotated by setting the rotation direction according to the sign of the change rate and setting the rotation amount according to the magnitude of the change rate. That is, by configuring a feedback control system that returns from the controller 101 to the controller 101 via the light emitting unit 1 and the light receiving unit 2, the width of the laser light L over time can be made well constant. In any case, the desired parallelism of the laser beam L with respect to the clearance 5 is adjusted by adjusting the rotation position of the light emitting unit 1 so that the width of the laser beam L detected by the information processing unit 101E is finally constant. Can be secured.
 さらに第2の回動制御部101Dは、図3に示すように、発光部1から照射される予め定められた所定寸法の幅Wのレーザ光L1が、所定寸法の幅Wのレーザ光L1として受光されるように、回動部12を回動制御する。ここで、予め定められた所定寸法の幅Wのレーザ光L1は、固有の周波数または色を有するものとすることができる。この場合、情報処理部101Eは、固有の周波数または色のレーザ光L1を選択して当該レーザ光L1の幅が所定の値となっているか否かを検出する。このことにより幅Wを特定するためのレーザ光L1を容易かつ確実に特定し、第2の回動制御部101Dにおける上述の如き回動部12の回動制御を実行させる。 Further, as shown in FIG. 3, the second rotation control unit 101D is configured such that the laser beam L1 having a predetermined width W emitted from the light emitting unit 1 is converted into a laser beam L1 having a predetermined width W. The rotation unit 12 is controlled to rotate so as to receive light. Here, the laser beam L1 having a predetermined width W having a predetermined dimension may have a specific frequency or color. In this case, the information processing unit 101E selects the laser light L1 having a specific frequency or color and detects whether or not the width of the laser light L1 is a predetermined value. As a result, the laser beam L1 for specifying the width W is easily and reliably specified, and the rotation control of the rotation unit 12 as described above in the second rotation control unit 101D is executed.
 かくして、本実施形態に係る計測システムによれば、発光部1から照射されるレーザ光Lの照射方向を動翼3の先端面およびクリアランスと平行にすることができ、さらに発光部1と受光部2との相互間の平行度も担保することができる。そこで、かかる2段階の調整後に行なうクリアランス計測は、高精度なものとなり、厳密なクリアランス管理に資することができる。 Thus, according to the measurement system according to the present embodiment, the irradiation direction of the laser light L emitted from the light emitting unit 1 can be made parallel to the tip surface of the rotor blade 3 and the clearance, and the light emitting unit 1 and the light receiving unit. The parallelism between the two can also be ensured. Therefore, the clearance measurement performed after the two-stage adjustment is highly accurate and can contribute to strict clearance management.
 <他の実施形態>
 上記実施形態ではタービンの動翼とケーシングとの間のクリアランスを計測する場合を例にとって説明したが、これに限るものではなく、回転機械の回転部と固定部であるケーシング等のクリアランスを計測する場合に広く適用し得る。また、光はレーザ光Lに限る必要はないが、直進性および非拡散性に優れるレーザ光を用いるのが最適である。さらに、上記実施形態では幅レーザを用いたが、これに限るものではない。多数のレーザ光源を高密度にライン状に並べても同様のものを作製することはできる。
<Other embodiments>
In the above-described embodiment, the case where the clearance between the turbine rotor blade and the casing is measured has been described as an example. Widely applicable to cases. The light need not be limited to the laser light L, but it is optimal to use a laser light that is excellent in straightness and non-diffusibility. Furthermore, although the width laser is used in the above embodiment, the present invention is not limited to this. Even if a large number of laser light sources are arranged in a line at high density, the same one can be produced.
1 発光部
1A,2A 基端部
2 受光部
3 動翼
3a 動翼3の外周面
4 ケーシング
4a ケーシング4の内周面
5 クリアランス
11,12 回動部
13 フレーム
100 計測装置
101 コントローラ
101A 発光指令部
101B 受光指令部
101C 第1の回動制御部
101D 第2の回動制御部
101E 情報処理部
P1~P4 位置
θ 傾斜角
L,L1 レーザ光
DESCRIPTION OF SYMBOLS 1 Light emission part 1A, 2A Base end part 2 Light-receiving part 3 Rotor blade 3a Outer peripheral surface 4 of the moving blade 3 Casing 4a Inner peripheral surface 5 of the casing 4 Clearance 11, 12 Rotating part 13 Frame 100 Measuring device 101 Controller 101A Light emission command part 101B Light reception command unit 101C First rotation control unit 101D Second rotation control unit 101E Information processing units P1 to P4 Position θ Inclination angle L, L1 Laser light

Claims (9)

  1.  回転機械の回転部である動翼の外周面と固定部であるケーシングの内周面との間のクリアランスの大きさを計測する回転機械におけるクリアランスの計測方法であって、
     準備工程と、前記準備工程後に前記クリアランスの大きさを計測する計測工程とを有し、
     前記準備工程は、前記動翼を回転させつつ、基端部が発光側の回動部によって回動可能に支持されている発光部から所定幅のシート状の光を前記動翼の軸方向における一方側から前記クリアランスに向けて照射するとともに、基端部が受光側の回動部によって回動可能に支持されている受光部により前記クリアランスを透過した前記光を前記動翼の前記軸方向における他方側で受光し、特定の前記動翼が前記発光部と前記受光部との間を通過する際に前記受光部で受光される前記光の幅が経時的に一定になるように前記発光部の回動位置を調整する第1の工程と、
     前記発光部から予め定められた所定寸法の幅の光を照射し、前記受光部で前記所定寸法の幅の光として受光されるように前記受光部の回動位置を調整する第2の工程とを有することを特徴とする回転機械におけるクリアランスの計測方法。
    A clearance measuring method in a rotating machine that measures the size of a clearance between an outer peripheral surface of a moving blade that is a rotating part of a rotating machine and an inner peripheral surface of a casing that is a fixed part,
    A preparation step, and a measurement step of measuring the size of the clearance after the preparation step,
    In the preparation step, a sheet-shaped light having a predetermined width is rotated in the axial direction of the moving blade from the light emitting portion whose base end portion is rotatably supported by the light emitting side rotating portion while rotating the moving blade. The light transmitted from one side toward the clearance and the light transmitted through the clearance by the light receiving portion whose base end portion is rotatably supported by the rotation portion on the light receiving side in the axial direction of the moving blade The light emitting unit receives light on the other side, and the width of the light received by the light receiving unit is constant over time when the specific moving blade passes between the light emitting unit and the light receiving unit. A first step of adjusting the rotational position of
    A second step of irradiating light of a predetermined width from the light emitting unit, and adjusting the rotational position of the light receiving unit so that the light receiving unit receives the light as the width of the predetermined size; A clearance measuring method in a rotating machine, comprising:
  2.  前記第1の工程の前に、前記発光側の回動部と、前記発光部の前記基端部側の一部とを、前記ケーシングに設けた計測孔内に配設するとともに、前記受光側の回動部と、前記受光部の前記基端部側の一部とを、前記ケーシングに設けた他方の計測孔内に配設することを特徴とする請求項1に記載するクリアランスの計測方法。 Prior to the first step, the light-emitting side turning part and a part of the light-emitting part on the base end part side are disposed in a measurement hole provided in the casing, and the light-receiving side The clearance measuring method according to claim 1, wherein a rotating portion of the light receiving portion and a part on the base end side of the light receiving portion are disposed in the other measurement hole provided in the casing. .
  3.  前記第1の工程では、回転する前記動翼が前記光を遮断して通過する際の経過時間と、前記受光部で検出される前記光の幅との関係に基づく前記幅の変化率に応じて前記発光部を回動することで、前記変化率が所定範囲内となるように前記発光部の回動位置を調整することを特徴とする請求項1または請求項2に記載する回転機械におけるクリアランスの計測方法。 In the first step, according to a change rate of the width based on a relationship between an elapsed time when the rotating moving blade blocks and passes the light and a width of the light detected by the light receiving unit. The rotating position of the light emitting unit is adjusted by rotating the light emitting unit so that the rate of change is within a predetermined range. How to measure clearance.
  4.  前記第2の工程における前記所定寸法の幅の光は、前記発光部から照射し、周方向で隣接する前記動翼間の隙間を透過させて前記受光部で受光するようにしたことを特徴とする請求項1~請求項3のいずれか一項に記載する回転機械におけるクリアランスの計測方法。 The light having a predetermined width in the second step is emitted from the light emitting unit, and is transmitted through a gap between the moving blades adjacent in the circumferential direction and received by the light receiving unit. The clearance measurement method for a rotary machine according to any one of claims 1 to 3.
  5.  回転機械の回転部である動翼の外周面と固定部であるケーシングの内周面との間のクリアランスの大きさを計測する回転機械におけるクリアランスの計測のための計測装置であって、
     所定の幅のシート状の光を、前記クリアランスに向けて照射する発光部と、
     前記発光部の前記ケーシング側の端部である基端部を回動可能に支持している発光側の回動部と、
     前記光を受光する受光部と、
     前記受光部の前記ケーシング側の端部である基端部を回動可能に支持している受光側の回動部と、
     前記発光側の回動部の端部を支持するとともに、前記受光側の回動部の端部を支持するフレームとを有することを特徴とする回転機械におけるクリアランスの計測装置。
    A measuring device for measuring the clearance in a rotating machine that measures the size of the clearance between the outer peripheral surface of a moving blade that is a rotating part of the rotating machine and the inner peripheral surface of a casing that is a fixed part,
    A light emitting unit that irradiates a sheet-like light of a predetermined width toward the clearance;
    A light emitting side rotating portion that rotatably supports a base end portion that is an end portion of the light emitting portion on the casing side;
    A light receiving portion for receiving the light;
    A light-receiving-side rotation portion that rotatably supports a base end portion that is an end portion of the light-receiving portion on the casing side;
    A clearance measuring device in a rotating machine, comprising: a frame that supports an end portion of the light emitting side rotating portion and supports an end portion of the light receiving side rotating portion.
  6.  前記受光部の前記基端部から先端部までの距離を、前記発光部の前記基端部から先端部までの距離よりも大きく形成したことを特徴とする請求項5に記載するクリアランスの計測装置。 6. The clearance measuring device according to claim 5, wherein a distance from the base end portion to the tip end portion of the light receiving portion is formed larger than a distance from the base end portion to the tip end portion of the light emitting portion. .
  7.  回転機械の回転部である動翼の外周面と固定部であるケーシングの内周面との間のクリアランスを計測する回転機械におけるクリアランスの計測システムであって、
     請求項5または請求項6に記載するクリアランスの計測装置と、
     前記計測装置に備えた前記発光側の回動部を回動駆動する第1の回動駆動部および前記計測装置に備えた前記受光側の回動部を回動駆動する第2の回動駆動部と、
     前記第1および第2の回動駆動部の回動動作、ならびに前記発光部の発光動作および前記受光部の受光動作を制御するとともに、前記受光部から送出されるシート状の光の幅を表す情報の処理を行なう情報処理部を備えたコントローラとを有し、
     前記コントローラは、
     前記計測装置の発光部から前記光を前記クリアランスに向けて照射させ、特定の前記動翼がその回転に伴い前記発光部と前記受光部との間を通過する際に前記受光部で受光される前記光の幅を表す情報に基づき、前記幅が一定になるように前記第1の回動駆動部を介して前記発光側の回動部の回動駆動を制御する第1の回動制御部と、
     前記発光部から予め定められた所定寸法の幅の光を照射させ、前記受光部で前記所定寸法の幅の光として受光されるように、前記第2の回動駆動部を介して前記受光側の回動部の回動駆動を制御する第2の回動制御部と、を有するものであることを特徴とする回転機械におけるクリアランスの計測システム。
    A clearance measurement system in a rotating machine that measures a clearance between an outer peripheral surface of a moving blade that is a rotating part of the rotating machine and an inner peripheral surface of a casing that is a fixed part,
    A clearance measuring device according to claim 5 or claim 6,
    A first rotation drive unit that rotationally drives the light emission side rotation unit provided in the measurement device and a second rotation drive that rotationally drives the light reception side rotation unit provided in the measurement device. And
    Controls the rotation operation of the first and second rotation driving units, the light emission operation of the light emitting unit and the light receiving operation of the light receiving unit, and represents the width of the sheet-like light transmitted from the light receiving unit. A controller having an information processing unit for processing information;
    The controller is
    The light is emitted from the light emitting unit of the measuring device toward the clearance, and the specific moving blade is received by the light receiving unit when passing between the light emitting unit and the light receiving unit with the rotation. Based on information representing the width of the light, a first rotation control unit that controls the rotation drive of the rotation unit on the light emitting side via the first rotation drive unit so that the width becomes constant. When,
    The light receiving side is irradiated with light having a predetermined width from the light emitting unit, and is received as light having the predetermined size by the light receiving unit via the second rotation driving unit. And a second rotation control unit that controls the rotation drive of the rotation unit. A clearance measurement system for a rotary machine, comprising:
  8.  前記第1の回動制御部は、
     回転する前記動翼が前記光を遮断して通過する際の経過時間と、前記受光部で検出される前記光の幅との関係に基づく前記幅の変化率に応じて前記発光部を回動することで、前記変化率が所定範囲内となるように前記発光部の回動位置を調整することを特徴とする請求項7に記載する回転機械におけるクリアランスの計測システム。
    The first rotation control unit includes:
    The light emitting unit is rotated in accordance with a change rate of the width based on a relationship between an elapsed time when the rotating moving blade blocks and passes the light and a width of the light detected by the light receiving unit. Thus, the rotational position of the light emitting unit is adjusted so that the rate of change is within a predetermined range.
  9.  前記予め定められた所定寸法の幅の光は、固有の周波数または色を有するものとし、
     前記コントローラは、前記固有の周波数または色の光を選択して当該光の幅が所定の値となっているか否かを検出することを特徴とする請求項7または請求項8に記載する回転機械におけるクリアランスの計測システム。
    The predetermined width of the predetermined light has a specific frequency or color,
    9. The rotating machine according to claim 7, wherein the controller detects light having the specific frequency or color and detects whether or not the width of the light has a predetermined value. Clearance measurement system.
PCT/JP2017/018237 2016-06-28 2017-05-15 Rotating machinery clearance measurement method, measurement device, and measurement system WO2018003324A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016127852A JP2018004313A (en) 2016-06-28 2016-06-28 Rotary machine clearance measurement method, measurement device and measurement system
JP2016-127852 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003324A1 true WO2018003324A1 (en) 2018-01-04

Family

ID=60786681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018237 WO2018003324A1 (en) 2016-06-28 2017-05-15 Rotating machinery clearance measurement method, measurement device, and measurement system

Country Status (2)

Country Link
JP (1) JP2018004313A (en)
WO (1) WO2018003324A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211250A (en) * 1988-06-29 1990-01-16 Kawasaki Steel Corp Production of amorphous metal strip
JPH03269307A (en) * 1990-03-20 1991-11-29 Keyence Corp Gap measuring machine
JP2000326058A (en) * 1999-03-15 2000-11-28 Nippon Steel Corp Nozzle for single-roll type casting and method for casting quenched strip
JP2004191374A (en) * 2002-12-12 2004-07-08 Siemens Ag Method and device for measuring distance
US20100046008A1 (en) * 2008-08-20 2010-02-25 Rolls-Royce Plc Measurement Method
JP2015001414A (en) * 2013-06-14 2015-01-05 三菱重工業株式会社 Tip clearance measurement device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211250A (en) * 1988-06-29 1990-01-16 Kawasaki Steel Corp Production of amorphous metal strip
JPH03269307A (en) * 1990-03-20 1991-11-29 Keyence Corp Gap measuring machine
JP2000326058A (en) * 1999-03-15 2000-11-28 Nippon Steel Corp Nozzle for single-roll type casting and method for casting quenched strip
JP2004191374A (en) * 2002-12-12 2004-07-08 Siemens Ag Method and device for measuring distance
US20100046008A1 (en) * 2008-08-20 2010-02-25 Rolls-Royce Plc Measurement Method
JP2015001414A (en) * 2013-06-14 2015-01-05 三菱重工業株式会社 Tip clearance measurement device

Also Published As

Publication number Publication date
JP2018004313A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP4970211B2 (en) 3D shape measuring instrument
JP5801796B2 (en) Lens shape measuring device
EP2124086B1 (en) Light beam scanning apparatus, laser machining apparatus, test method and laser machining method
WO2017002395A1 (en) Tool-shape measurement device
JP2008093682A (en) Method for adjusting position of laser beam emission apparatus
CN109416244B (en) Gap measuring device and gap control system
JP6309754B2 (en) Laser radar equipment
US20130319986A1 (en) Apparatus for laser working of flat elements
WO2018003324A1 (en) Rotating machinery clearance measurement method, measurement device, and measurement system
JP7223939B2 (en) Shape measuring machine and its control method
JP5845319B1 (en) Manufacturing apparatus and manufacturing method for manufacturing blower blades with little unbalance
JP4806093B1 (en) Method and measuring system for measuring locus of movement of rotation axis of rotating body
JPWO2019065107A1 (en) Gear positioning device, stress measurement system, gear positioning method and stress measurement method
JP5393864B1 (en) Work shape measuring method and work shape measuring apparatus
KR101796198B1 (en) Laser processing apparatus and laser processing method using the laser processing apparatus
JP2009229216A (en) Unbalance correction method and apparatus of rotating body
JP7407994B2 (en) Pipe inner surface inspection method
JP2018079548A (en) Drill blade phase measurement device and drill blade phase measurement method
JP6969523B2 (en) Cutting equipment
JP2008228524A (en) Rocking actuator and laser machining device
JP2019086362A (en) Laser device and method for adjusting gain of laser device
JP3746777B2 (en) Inner diameter measuring device
JP5416000B2 (en) Measuring device and measuring method of processing machine provided with opposed rotating shafts
JP2017191076A (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP6988434B2 (en) Tread shape measuring method and tread shape measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819691

Country of ref document: EP

Kind code of ref document: A1