JP5393864B1 - Work shape measuring method and work shape measuring apparatus - Google Patents

Work shape measuring method and work shape measuring apparatus Download PDF

Info

Publication number
JP5393864B1
JP5393864B1 JP2012234520A JP2012234520A JP5393864B1 JP 5393864 B1 JP5393864 B1 JP 5393864B1 JP 2012234520 A JP2012234520 A JP 2012234520A JP 2012234520 A JP2012234520 A JP 2012234520A JP 5393864 B1 JP5393864 B1 JP 5393864B1
Authority
JP
Japan
Prior art keywords
workpiece
work
shape
laser
laser measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012234520A
Other languages
Japanese (ja)
Other versions
JP2014085236A (en
Inventor
忠 笠原
健一 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP2012234520A priority Critical patent/JP5393864B1/en
Application granted granted Critical
Publication of JP5393864B1 publication Critical patent/JP5393864B1/en
Publication of JP2014085236A publication Critical patent/JP2014085236A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】レーザ測定器を用いてワークの形状測定を効率よく行う。
【解決手段】ワーク表面Waにライン状のレーザ光を照射するとともに反射光を受光してワーク表面Waまでの距離Dを測定するレーザ測定器20を、ワーク取付部5に対し相対移動可能である主軸4と一体に取り付け、ワーク取付面5b上に、ワークWを搭載可能な三次元空間であるワーク搭載可能領域40を設定し、レーザ測定器20をワーク搭載可能領域40の外周に沿って相対移動させるとともに、ワーク搭載可能領域40に向けてライン状のレーザ光を照射させ、レーザ測定器20により取得された距離情報およびワーク取付部5に対するレーザ測定器20の相対位置情報に基づいて、ワークWの形状と取付位置とを求める。
【選択図】図4
The shape of a workpiece is efficiently measured using a laser measuring instrument.
A laser measuring device for irradiating a workpiece surface Wa with a linear laser beam and receiving reflected light to measure a distance D to the workpiece surface Wa is movable relative to the workpiece mounting portion 5. A workpiece mounting area 40, which is a three-dimensional space in which the workpiece W can be mounted, is set on the workpiece mounting surface 5b, and the laser measuring instrument 20 is relatively moved along the outer periphery of the workpiece mounting area 40. The workpiece is moved and irradiated with a line-shaped laser beam toward the work mountable region 40, and the workpiece is determined based on the distance information acquired by the laser measuring device 20 and the relative position information of the laser measuring device 20 with respect to the workpiece mounting portion 5. The shape of W and the mounting position are obtained.
[Selection] Figure 4

Description

本発明は、工作機械上で、レーザ光を照射してワーク形状を測定するワーク形状測定方法およびワーク形状測定装置に関する。   The present invention relates to a workpiece shape measuring method and a workpiece shape measuring apparatus for measuring a workpiece shape by irradiating a laser beam on a machine tool.

工作機械のテーブル上に支持されたワークの三次元形状をレーザ光を用いて計測するようにした装置が知られている(例えば特許文献1参照)。この特許文献1記載の装置では、工作機械に設けた非接触型のワーク計測センサをワークに対しX,Y,Z軸方向へ相対移動させ、ワーク計測センサで取得された情報に基づいてワークの三次元形状を求め、加工プログラム上のワークの形状と実際に求めたワークの形状とが適合しているか否かを判断する。   An apparatus is known in which a three-dimensional shape of a work supported on a table of a machine tool is measured using a laser beam (see, for example, Patent Document 1). In the apparatus described in Patent Document 1, a non-contact type workpiece measurement sensor provided in a machine tool is moved relative to the workpiece in the X, Y, and Z axis directions, and the workpiece is measured based on information acquired by the workpiece measurement sensor. A three-dimensional shape is obtained, and it is determined whether or not the shape of the workpiece on the machining program matches the actually obtained shape of the workpiece.

特開2012−53508号公報JP 2012-53508 A

ところで、ワークの加工サイクルタイムを短縮して生産効率を高めるためには、ワークの形状測定を効率よく行い、形状測定に要する時間を短縮することが好ましく、この点で上記特許文献1記載の装置には改善の余地がある。   Incidentally, in order to shorten the machining cycle time of the workpiece and increase the production efficiency, it is preferable to efficiently measure the shape of the workpiece and shorten the time required for the shape measurement. In this respect, the apparatus described in Patent Document 1 above. There is room for improvement.

本発明の一態様であるワーク形状測定方法は、工作機械上でのワークの形状を測定するワーク形状測定方法において、ワーク表面にライン状のレーザ光を照射するとともに反射光を受光してワーク表面までの距離を測定するレーザ測定器を、ワーク取付部に対し相対移動可能である主軸と一体に取り付け、ワーク取付部のワーク取付面上に、ワークを搭載可能な三次元空間であるワーク搭載可能領域を設定し、レーザ測定器をワーク搭載可能領域の外周に沿って相対移動させるとともに、レーザ測定器によりライン状のレーザ光をワーク搭載可能領域に向けて照射させ、レーザ測定器により取得された距離情報およびワーク取付部に対するレーザ測定器の相対位置情報に基づいて、ワークの形状と取付位置とを求めることを特徴とする。   A workpiece shape measuring method according to one aspect of the present invention is a workpiece shape measuring method for measuring a workpiece shape on a machine tool. The workpiece surface is irradiated with a line-shaped laser beam and receives reflected light. A laser measuring instrument that measures the distance to the workpiece mounting part can be mounted integrally with the spindle that can move relative to the workpiece mounting part, and a workpiece can be mounted on the workpiece mounting surface of the workpiece mounting part, which is a three-dimensional space. The area was set, the laser measuring device was moved relatively along the outer periphery of the work mounting area, and the laser measuring device was irradiated with a line-shaped laser beam toward the work mounting area. Based on the distance information and the relative position information of the laser measuring device with respect to the workpiece mounting portion, the shape and the mounting position of the workpiece are obtained.

また、本発明の一態様であるワーク形状測定装置は、工作機械上でワークの形状を測定するワーク形状測定装置において、ワーク取付部に対し相対移動可能である主軸と一体に取り付けられ、ワーク表面にライン状のレーザ光を照射するとともに反射光を受光してワーク表面までの距離を測定するレーザ測定器と、ワーク取付部のワーク取付面上に、ワークを搭載可能な三次元空間であるワーク搭載可能領域を設定する設定手段と、レーザ測定器をワーク搭載可能領域の外周に沿って相対移動させる移動手段と、レーザ測定器により取得された距離情報およびワーク取付部に対する主軸の相対位置情報に基づいて、ワークの形状と取付位置とを求める算出手段と、を備えることを特徴とする。本発明におけるワーク形状測定には、ワークをワーク取付部に取り付けるための締め具、イケール、ロータリワークヘッド等のワーク取付具の形状と取付位置も合わせて測定する場合を含む。   The workpiece shape measuring apparatus according to one aspect of the present invention is a workpiece shape measuring apparatus that measures the shape of a workpiece on a machine tool, and is integrally attached to a spindle that is relatively movable with respect to a workpiece mounting portion. A laser measuring instrument that irradiates a line-shaped laser beam and receives reflected light to measure the distance to the workpiece surface, and a workpiece that is a three-dimensional space in which a workpiece can be mounted on the workpiece mounting surface of the workpiece mounting section Setting means for setting the mountable area, moving means for relatively moving the laser measuring instrument along the outer periphery of the work mountable area, distance information acquired by the laser measuring instrument, and relative position information of the spindle with respect to the work mounting portion And calculating means for determining the shape and the mounting position of the workpiece. The workpiece shape measurement in the present invention includes a case where the shape and the mounting position of a workpiece attachment tool such as a fastener, a scale, or a rotary work head for attaching the workpiece to the workpiece attachment portion are also measured.

本発明によれば、レーザ測定器をワーク搭載可能領域の外周に沿って相対移動させるとともに、ワーク搭載可能領域に向けてライン状のレーザ光を照射させるようにしたので、ワークの形状測定に要する時間を短縮することができ、ワークの生産効率を高めることができる。   According to the present invention, the laser measuring instrument is relatively moved along the outer periphery of the work mountable area, and the line-shaped laser light is irradiated toward the work mountable area. The time can be shortened and the production efficiency of the workpiece can be increased.

本発明の実施形態に係るワーク形状測定装置が適用される工作機械の要部構成を概略的に示す側面図。The side view which shows roughly the principal part structure of the machine tool with which the workpiece | work shape measuring apparatus which concerns on embodiment of this invention is applied. 本発明の実施形態に係るワーク形状測定装置を構成するレーザ測定器の概略構成を示す図。The figure which shows schematic structure of the laser measuring device which comprises the workpiece | work shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るワーク形状測定装置の構成を示すブロック図。The block diagram which shows the structure of the workpiece | work shape measuring apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るワーク形状測定方法によるワークの測定動作の一例を示す図。The figure which shows an example of the measurement operation | movement of the workpiece | work by the workpiece | work shape measuring method which concerns on embodiment of this invention. (a),(b)は、それぞれ図4のレーザ測定器の相対移動を示す図。(A), (b) is a figure which shows the relative movement of the laser measuring device of FIG. 4, respectively. 図4の変形例を示す図。The figure which shows the modification of FIG. 図6のレーザ測定器の相対移動を示す図。The figure which shows the relative movement of the laser measuring device of FIG.

以下、図1〜図7を参照して本発明によるワーク形状測定装置の一実施形態について説明する。図1は、本発明の実施形態に係るワーク形状測定装置が適用される工作機械の要部構成を概略的に示す側面図である。   Hereinafter, an embodiment of a workpiece shape measuring apparatus according to the present invention will be described with reference to FIGS. FIG. 1 is a side view schematically showing a main part configuration of a machine tool to which a workpiece shape measuring apparatus according to an embodiment of the present invention is applied.

工作機械1は、例えば横形マシニングセンタであり、ベース2と、ベース2上に立設されるコラム3と、コラム3に設けられる主軸4と、ワークWが取り付けられるテーブル5とを有する。以下では、図示のように互いに直交する3軸をそれぞれX軸、Y軸、Z軸と定義する。すなわち、主軸4の回転軸CL1に平行な水平方向をZ軸、鉛直方向をY軸、Z軸とY軸の双方に垂直な水平方向をX軸とそれぞれ定義する。主軸4は、Y軸用モータ6の駆動により送りねじを介してY軸方向に移動し、Z軸用モータ7の駆動により送りねじを介してコラム3と一体にZ軸方向に移動する。なお、図示は省略するが、工作機械1には、主軸4またはテーブル5をX軸方向に駆動するX軸用モータも設けられている。   The machine tool 1 is, for example, a horizontal machining center, and includes a base 2, a column 3 standing on the base 2, a main shaft 4 provided on the column 3, and a table 5 to which a workpiece W is attached. Hereinafter, as shown in the figure, the three axes orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, respectively. That is, the horizontal direction parallel to the rotation axis CL1 of the main shaft 4 is defined as the Z axis, the vertical direction is defined as the Y axis, and the horizontal direction perpendicular to both the Z axis and the Y axis is defined as the X axis. The main shaft 4 moves in the Y-axis direction via the feed screw by driving the Y-axis motor 6, and moves in the Z-axis direction integrally with the column 3 via the feed screw by driving the Z-axis motor 7. Although not shown, the machine tool 1 is also provided with an X-axis motor that drives the spindle 4 or the table 5 in the X-axis direction.

ワークWは、取付具5aによってテーブル5上のワーク取付面5bに取り付けられている。テーブル5は、B軸用モータ8の駆動により、鉛直方向の軸線CL2を中心としたB軸方向に回転する。この構成により、主軸4がワークWに対しX軸方向、Y軸方向およびZ軸方向に相対移動可能となり、かつ、B軸方向に相対回転可能となる。したがって、主軸4の工具取付部4a(チャック)に装着された工具(不図示)によりワークWを所望の三次元形状に加工することができる。   The workpiece W is attached to the workpiece attachment surface 5b on the table 5 by the fixture 5a. The table 5 rotates in the B-axis direction about the vertical axis line CL2 by driving the B-axis motor 8. With this configuration, the main shaft 4 can move relative to the workpiece W in the X-axis direction, the Y-axis direction, and the Z-axis direction, and can relatively rotate in the B-axis direction. Therefore, the workpiece W can be machined into a desired three-dimensional shape with a tool (not shown) mounted on the tool mounting portion 4a (chuck) of the spindle 4.

本実施形態に係るワーク形状測定装置はレーザ測定器20を有し、レーザ測定器20は、工具に代えて主軸4の工具取付部4aに取り付けられる。図2は、レーザ測定器20の概略構成を示す図である。レーザ測定器20は、レーザ出力部21から出力されたレーザ光を揺動鏡22の揺動により高速スキャンしてワーク表面Waにライン状のレーザ光を照射し、その反射光をレンズ23を介して撮像素子24で受光する。ワーク表面Wa上のライン状に並ぶ照射光を、照射ラインLaと呼ぶ。   The workpiece shape measuring apparatus according to the present embodiment includes a laser measuring device 20, and the laser measuring device 20 is attached to the tool attachment portion 4 a of the spindle 4 instead of the tool. FIG. 2 is a diagram showing a schematic configuration of the laser measuring instrument 20. The laser measuring instrument 20 scans the laser beam output from the laser output unit 21 at a high speed by swinging the swinging mirror 22 to irradiate the workpiece surface Wa with a line-shaped laser beam, and the reflected light passes through the lens 23. The image sensor 24 receives light. Irradiation light arranged in a line on the workpiece surface Wa is referred to as an irradiation line La.

揺動鏡22の揺動動作に対応した反射光の受光位置のデータは、測定データとして無線部25から制御部30(図3)に無線で送信される。制御部30は、これら測定データに基づいて、三角測量の原理により、レーザ測定器20からワーク表面Waの各点P1までの距離を演算する。これによりワーク表面Waの各点の位置を表す点データが求まり、点データの集合によりワークWの形状が求められる。揺動鏡22は、揺動モータ26の駆動により、ラインレーザLaに直交する軸線CL3を中心に揺動する。なお、揺動モータ26には制御部30から有線で制御信号が出力される。   Data on the light receiving position of the reflected light corresponding to the swing operation of the swing mirror 22 is wirelessly transmitted from the wireless unit 25 to the control unit 30 (FIG. 3) as measurement data. Based on these measurement data, the control unit 30 calculates the distance from the laser measuring instrument 20 to each point P1 on the workpiece surface Wa by the principle of triangulation. As a result, point data representing the position of each point on the workpiece surface Wa is obtained, and the shape of the workpiece W is obtained from the set of point data. The oscillating mirror 22 oscillates about an axis CL3 orthogonal to the line laser La by driving of the oscillating motor 26. A control signal is output from the control unit 30 to the swing motor 26 by wire.

図1に示すように、レーザ測定器20は、所定範囲の測定可能領域S(斜線部)を有する。測定可能領域Sは、レーザ測定器20から所定角度θで広がる境界線(直線または曲線)S1、S2と、レーザ測定器20からの距離がD1およびD2である境界線(直線または曲線)S3、S4とによって区画された有限平面であり、測定可能領域S内において、レーザ測定器20からの距離Dを測定することができる。   As shown in FIG. 1, the laser measuring instrument 20 has a measurable area S (shaded part) within a predetermined range. The measurable area S includes boundary lines (straight lines or curves) S1 and S2 extending from the laser measuring instrument 20 at a predetermined angle θ, and boundary lines (straight lines or curved lines) S3 whose distances from the laser measuring instrument 20 are D1 and D2. The distance D from the laser measuring instrument 20 can be measured in the measurable region S.

図3は、本実施形態に係るワーク形状測定装置10の構成を示すブロック図である。図3に示すように、ワーク形状測定装置10は、制御部30を中心として、レーザ測定器20と、入力部31と、位置検出器32と、駆動モータMと、表示部33とを有する。   FIG. 3 is a block diagram illustrating a configuration of the workpiece shape measuring apparatus 10 according to the present embodiment. As shown in FIG. 3, the workpiece shape measuring apparatus 10 includes a laser measuring device 20, an input unit 31, a position detector 32, a drive motor M, and a display unit 33 with a control unit 30 as a center.

入力部31からは、レーザ測定器20の測定動作の開始指令、終了指令の他、テーブルに搭載されると予想されるワークWの形状データ(CADデータ)等、ワーク形状測定に関する各種情報が入力される。駆動モータMは、X軸用モータ、Y軸用モータ6、Z軸用モータ7、B軸用モータ8および揺動モータ26の総称である。位置検出器32は、X軸用モータ、Y軸用モータ6、Z軸用モータ7、B軸用モータ8および揺動モータ26の位置をそれぞれ検出するX軸用検出器、Y軸用検出器、Z軸用検出器、B軸用検出器および揺動検出器を含む。   From the input unit 31, in addition to the start command and end command of the measurement operation of the laser measuring instrument 20, various information related to the workpiece shape measurement such as the shape data (CAD data) of the workpiece W expected to be mounted on the table is input. Is done. The drive motor M is a general term for the X-axis motor, the Y-axis motor 6, the Z-axis motor 7, the B-axis motor 8, and the swing motor 26. The position detector 32 is an X-axis detector and a Y-axis detector that detect the positions of the X-axis motor, the Y-axis motor 6, the Z-axis motor 7, the B-axis motor 8, and the swing motor 26, respectively. , A Z-axis detector, a B-axis detector, and a swing detector.

X軸用検出器、Y軸用検出器、Z軸用検出器およびB軸用検出器からの信号により、テーブル5に対するレーザ測定器20の相対位置を検出することができ、さらに揺動検出器からの信号により、レーザ測定器20に対するレーザ光の照射位置を検出することができる。すなわち、位置検出器32からの信号によりテーブル5に対するレーザ測定器20からのレーザ光の照射位置を検出することができる。   The relative position of the laser measuring device 20 with respect to the table 5 can be detected by signals from the X-axis detector, the Y-axis detector, the Z-axis detector, and the B-axis detector. The position of the laser beam irradiated to the laser measuring instrument 20 can be detected by the signal from. That is, the irradiation position of the laser beam from the laser measuring device 20 on the table 5 can be detected by the signal from the position detector 32.

制御部30は、CPU,ROM,RAM、その他の周辺回路などを有する演算処理装置を含んで構成され、機能的構成として、領域設定部30Aと、計測制御部30Bと、形状算出部30Cと、結果照合部30Dとを有する。制御部30は、ワーク加工時に工作機械を制御するNC制御装置としての機能も有する。   The control unit 30 is configured to include an arithmetic processing unit having a CPU, ROM, RAM, and other peripheral circuits. As a functional configuration, the region setting unit 30A, a measurement control unit 30B, a shape calculation unit 30C, A result verification unit 30D. The control unit 30 also has a function as an NC control device that controls the machine tool during workpiece machining.

図4は、ワーク形状測定方法による測定動作の一例を示す図である。図4に示すように、領域設定部30Aは、テーブル5のワーク取付面5b上に、ワークWを搭載可能な三次元空間であるワーク搭載可能領域40を設定する。ワーク搭載可能領域40は、テーブル5上に搭載されるワークWの最大の大きさと取付具5aとを内側に含む領域であり、テーブル5の形状、大きさ、向き等を考慮して、例えばユーザが入力部31の操作により手動で設定する。図4では、ワーク取付面5b上に、ワークWと取付具5aの全体を包囲するようにワーク取付面5bに対して垂直に円筒面41が形成されている。すなわち、ワーク搭載可能領域40は円柱形状を呈し、円柱空間の内側に、ワークWと取付具5aが収容されている。なお、テーブル5の形状等に応じて、領域設定部30Aがワーク搭載可能領域40を自動で設定するようにしてもよい。   FIG. 4 is a diagram illustrating an example of a measuring operation by the workpiece shape measuring method. As illustrated in FIG. 4, the area setting unit 30 </ b> A sets a work mountable area 40 that is a three-dimensional space in which the work W can be mounted on the work mounting surface 5 b of the table 5. The work mountable area 40 is an area that includes the maximum size of the work W mounted on the table 5 and the fixture 5a on the inner side, and considers the shape, size, orientation, etc. of the table 5, for example, a user Is manually set by operating the input unit 31. In FIG. 4, a cylindrical surface 41 is formed on the workpiece attachment surface 5b so as to be perpendicular to the workpiece attachment surface 5b so as to surround the entire workpiece W and the fixture 5a. That is, the work mountable area 40 has a cylindrical shape, and the work W and the fixture 5a are accommodated inside the cylindrical space. The area setting unit 30A may automatically set the work mountable area 40 according to the shape of the table 5 or the like.

計測制御部30Bは、入力部31の操作により計測開始が指令されると、駆動モータM(X軸用モータ、Y軸用モータ6、Z軸用モータ7)に制御信号を出力し、レーザ測定器20を初期位置に移動する。図5(a),(b)は、それぞれ図4のレーザ測定器20の相対移動を示す図(図4のV-V線断面図)である。初期位置は、例えば図5(a)の位置PT1に示すように、測定可能領域Sである有限平面がYZ平面上に存在し、かつ、ワーク搭載可能領域40の上端角部(円筒面41の上端部)が測定可能領域Sの内側に含まれるような位置である。図5(a)では、境界線S1と境界線S3の交点P2が、テーブル5の反対側におけるワーク搭載可能領域40の円筒面41の端部に一致している。   When measurement start is instructed by operating the input unit 31, the measurement control unit 30B outputs a control signal to the drive motor M (X-axis motor, Y-axis motor 6, Z-axis motor 7), and performs laser measurement. Move the vessel 20 to the initial position. FIGS. 5A and 5B are views (cross-sectional view taken along the line V-V in FIG. 4) showing the relative movement of the laser measuring device 20 in FIG. 4. The initial position is, for example, as shown at a position PT1 in FIG. 5A, a finite plane that is the measurable area S exists on the YZ plane, and the upper end corner of the work mountable area 40 (on the cylindrical surface 41). The position is such that the upper end portion is included inside the measurable region S. In FIG. 5A, the intersection point P <b> 2 between the boundary line S <b> 1 and the boundary line S <b> 3 coincides with the end portion of the cylindrical surface 41 of the work mountable region 40 on the opposite side of the table 5.

この状態で、計測制御部30Bは、無線部25を介してレーザ測定器20に動作開始信号を送信する。これによりレーザ測定器20はレーザ出力部21(図2)からレーザ光を出力する。さらに計測制御部30Bは、揺動モータ26に制御信号を出力するとともに、B軸用モータ8に制御信号を出力する。これにより揺動鏡22が揺動しながら、テーブル5が回転し、ワーク搭載可能領域40の外周面に沿ってライン状のレーザ光が照射される。レーザ測定器20によって得られた測定データは、無線部25を介して所定時間毎に制御部30に送信される。   In this state, the measurement control unit 30B transmits an operation start signal to the laser measuring device 20 via the wireless unit 25. Thereby, the laser measuring device 20 outputs a laser beam from the laser output unit 21 (FIG. 2). Furthermore, the measurement control unit 30 </ b> B outputs a control signal to the swing motor 26 and also outputs a control signal to the B-axis motor 8. As a result, the table 5 rotates while the oscillating mirror 22 is oscillating, and a linear laser beam is irradiated along the outer peripheral surface of the work mountable area 40. Measurement data obtained by the laser measuring instrument 20 is transmitted to the control unit 30 via the wireless unit 25 at predetermined time intervals.

図5(a)に示すように、ワーク搭載可能領域40の円筒面41の高さH0がレーザ測定器20の測定可能領域Sの高さ(例えば境界線S3の長さH1)よりも長い場合、レーザ測定器20を初期位置PT1に移動したままでは、ワーク搭載可能領域40の外周を高さ方向(Y軸方向)全域にわたり測定できない。したがって、この場合には、初期位置PT1でワーク搭載可能領域40の全周を測定した後に、計測制御部30BがY軸用モータ6に制御信号を出力し、図5(a)の位置PT2に示すように、レーザ測定器20をY軸方向に沿って所定量だけテーブル5側にずらす。   As shown in FIG. 5A, when the height H0 of the cylindrical surface 41 of the work mountable area 40 is longer than the height of the measurable area S of the laser measuring instrument 20 (for example, the length H1 of the boundary line S3). If the laser measuring instrument 20 is moved to the initial position PT1, the outer circumference of the work mountable area 40 cannot be measured over the entire height direction (Y-axis direction). Therefore, in this case, after measuring the entire circumference of the work mountable area 40 at the initial position PT1, the measurement control unit 30B outputs a control signal to the Y-axis motor 6 to the position PT2 in FIG. As shown, the laser measuring device 20 is shifted to the table 5 side by a predetermined amount along the Y-axis direction.

この状態で、揺動モータ26に制御信号を出力するとともに、B軸用モータ8に制御信号を出力し、ワーク搭載可能領域40の円筒面41に沿ってライン状のレーザ光を照射する。レーザ測定器20のテーブル5側への移動は、測定可能領域Sがテーブル上のワーク取付面5bに到るまで、すなわちレーザ測定器20が図5(a)の位置PT3に移動するまで行われる。レーザ測定器20を移動する度に、軸線CL2を中心にB軸方向にテーブル5を回転し、ワーク搭載可能領域40の円筒面41にライン状のレーザ光を照射する。これによりワーク搭載可能領域40の外周面(円筒面41)の全体にレーザ光が照射される。   In this state, a control signal is output to the swing motor 26 and a control signal is output to the B-axis motor 8, and a linear laser beam is irradiated along the cylindrical surface 41 of the work mountable area 40. The movement of the laser measuring instrument 20 toward the table 5 is performed until the measurable area S reaches the work mounting surface 5b on the table, that is, until the laser measuring instrument 20 moves to the position PT3 in FIG. . Each time the laser measuring instrument 20 is moved, the table 5 is rotated in the B-axis direction around the axis line CL2 to irradiate the cylindrical surface 41 of the work mountable area 40 with a linear laser beam. As a result, the entire outer peripheral surface (cylindrical surface 41) of the work mountable region 40 is irradiated with laser light.

形状算出部30Cは、無線部25を介して送信されたレーザ測定器20の測定データ(受光位置データ)を取り込むとともに、各測定データに対応する位置検出器32からの位置データを取り込む。形状算出部30Cは、これら測定データと位置データとに基づき、レーザ光の照射位置と、その照射位置におけるレーザ測定器20からの距離D(図1)を算出する。これによりワーク表面Waの各測定点P1(図2)の位置を特定することができ、これらの測定点P1の点データを集合することで、ワークWの形状および取付位置を求めることができる。   The shape calculation unit 30C captures the measurement data (light reception position data) of the laser measuring device 20 transmitted via the wireless unit 25 and also captures the position data from the position detector 32 corresponding to each measurement data. Based on these measurement data and position data, the shape calculation unit 30C calculates the irradiation position of the laser beam and the distance D (FIG. 1) from the laser measuring instrument 20 at the irradiation position. Thereby, the position of each measurement point P1 (FIG. 2) on the workpiece surface Wa can be specified, and the shape and attachment position of the workpiece W can be obtained by collecting point data of these measurement points P1.

図5(b)に示すように、ワークWの外径が小さい場合、レーザ測定器20を初期位置PT1からY軸方向に移動しただけでは、測定可能領域S内にワーク表面Waが含まれない領域が発生することがある。この場合、レーザ測定器20は受光位置データを取得できず、測定点P1を特定できない。レーザ測定器20が受光位置データを取得できない場合、計測制御部30Bは、駆動モータMに制御信号を出力し、レーザ測定器20を、その受光位置データを取得できない位置(図5(b)では初期位置PT1)に移動させた後、さらに図5(b)の位置PT4に示すように、レーザ測定器20を所定量だけワーク搭載可能領域40の内側(回転軸CL2側)に移動させる。   As shown in FIG. 5B, when the outer diameter of the workpiece W is small, the workpiece surface Wa is not included in the measurable region S simply by moving the laser measuring instrument 20 from the initial position PT1 in the Y-axis direction. An area may occur. In this case, the laser measuring instrument 20 cannot acquire the light reception position data and cannot specify the measurement point P1. When the laser measuring instrument 20 cannot acquire the light receiving position data, the measurement control unit 30B outputs a control signal to the drive motor M, so that the laser measuring instrument 20 cannot acquire the light receiving position data (in FIG. 5B). After being moved to the initial position PT1), the laser measuring instrument 20 is further moved to the inside of the work mountable area 40 (on the rotation axis CL2 side) by a predetermined amount, as indicated by a position PT4 in FIG.

これにより測定可能領域S内にワーク表面Waが含まれ、レーザ測定器20は受光位置データを取得することができ、ワーク表面全体にわたり測定点Pの位置を特定することができる。この場合、計測制御部30Bは、レーザ測定器20が受光位置データを取得するまで、レーザ測定器20を所定量ずつ徐々に回転軸CL2側に移動させる。レーザ測定器20が回転軸CL2に接近しすぎると、レーザ測定器20が障害物(例えばテーブル5)に干渉するおそれがある点を考慮し、レーザ測定器20の接近移動量に予め制限値を設けておき、計測制御部30Bは、レーザ測定器20が制限値を越えて接近させないようにする。   As a result, the workpiece surface Wa is included in the measurable region S, the laser measuring instrument 20 can acquire the light receiving position data, and can specify the position of the measurement point P over the entire workpiece surface. In this case, the measurement control unit 30B gradually moves the laser measuring instrument 20 toward the rotation axis CL2 by a predetermined amount until the laser measuring instrument 20 acquires the light receiving position data. Considering that the laser measuring device 20 may interfere with an obstacle (for example, the table 5) if the laser measuring device 20 is too close to the rotation axis CL2, a limit value is set in advance for the approach movement amount of the laser measuring device 20. The measurement control unit 30B is provided so that the laser measuring instrument 20 does not approach the limit value.

なお、レーザ測定器20のY軸方向への相対移動とZ軸方向への相対移動は、どちらが先であってもよい。すなわち、レーザ測定器20をワーク搭載可能領域40の高さ方向全域にわたってY軸方向に移動させた後に、受光位置データを取得できなかった部位において、Z軸方向に移動させるようにしてもよい。または、受光位置データを取得できない部位が生じたときに、レーザ測定器20をZ軸方向に移動させ、その後、Z軸方向の元の位置に戻してから(あるいは元の位置に戻さずに)、Y軸方向に移動させるようにしてもよい。   Note that either the relative movement in the Y-axis direction or the relative movement in the Z-axis direction of the laser measuring device 20 may be first. That is, after the laser measuring device 20 is moved in the Y-axis direction over the entire height direction of the work mountable area 40, the laser measuring device 20 may be moved in the Z-axis direction at a site where the light receiving position data cannot be acquired. Alternatively, when a portion where light reception position data cannot be obtained is generated, the laser measuring device 20 is moved in the Z-axis direction and then returned to the original position in the Z-axis direction (or without returning to the original position). , It may be moved in the Y-axis direction.

以上によりワークWの形状測定作業が終了すると、結果照合部30Dは、予めCAD装置(不図示)により設定されたワークWの形状および取付位置のデータ(設計データ)を入力部31を介して読み込む。そして、形状測定作業により得られたワークWの形状および取付位置の実測データと設計データとを照合し、照合結果を表示部33に出力する。実測データと設計データとが、予め定めた閾値以上異なる場合には、エラーメッセージを併せて出力する。これによりワークWの形状および取付位置が適正であるか否かをユーザは容易に判断できる。   When the workpiece W shape measurement operation is completed as described above, the result collating unit 30D reads the workpiece W shape and mounting position data (design data) set in advance by a CAD device (not shown) via the input unit 31. . Then, the actual measurement data of the shape and attachment position of the workpiece W obtained by the shape measurement work and the design data are collated, and the collation result is output to the display unit 33. If the actual measurement data and the design data are different from each other by a predetermined threshold or more, an error message is output together. As a result, the user can easily determine whether or not the shape and mounting position of the workpiece W are appropriate.

エラーメッセージが出力された場合には、ワークWを交換あるいは取付位置の変更が必要と考えられるため、以降のワーク加工動作を禁止する。これにより、誤ったワークWを選択して加工動作を行うこと、あるいは加工途中におけるワークWや取付具5aと他の部位とが不所望に干渉することを防ぐことができる。形状測定作業により得られた実測データには、ワークWだけでなく取付具5aの形状データも含まれる。このため、実測データを、ワーク加工時における干渉チェック用の形状データとして用いることもできる。   When an error message is output, it is considered that the workpiece W needs to be replaced or the mounting position needs to be changed, so that subsequent workpiece machining operations are prohibited. Thereby, it is possible to prevent the workpiece W or the fixture 5a in the middle of machining from interfering undesirably with the machining operation by selecting an incorrect workpiece W. The actual measurement data obtained by the shape measurement operation includes not only the workpiece W but also the shape data of the fixture 5a. For this reason, the actual measurement data can also be used as shape data for interference check during workpiece machining.

以上の実施形態によるワーク形状測定方法をまとめると次のようになる。
(1)まず、ワーク表面Waにライン状のレーザ光を照射するとともに反射光を受光してワーク表面Waまでの距離を測定するレーザ測定器20を、テーブル5に対し相対移動可能である主軸4と一体に取り付ける(取付工程)。
The work shape measuring method according to the above embodiment is summarized as follows.
(1) First, a spindle 4 that can move relative to the table 5 with a laser measuring device 20 that irradiates the workpiece surface Wa with a linear laser beam and receives reflected light to measure the distance to the workpiece surface Wa. (Mounting process)

(2)さらに、領域設定部30Aで、テーブル5のワーク取付面5b上に、ワークWを搭載可能な三次元空間であるワーク搭載可能領域40を設定する(設定工程)。 (2) Further, the area setting unit 30A sets the work mountable area 40, which is a three-dimensional space in which the work W can be mounted, on the work mounting surface 5b of the table 5 (setting process).

(3)次に、計測制御部30Bで、レーザ測定器20をワーク搭載可能領域40の外周に沿って相対移動させるとともに、レーザ測定器20によりライン状のレーザ光をワーク搭載可能領域40に向けて照射させる(照射工程)。 (3) Next, in the measurement control unit 30B, the laser measuring device 20 is relatively moved along the outer periphery of the work mountable region 40, and the laser measuring device 20 directs a line-shaped laser beam toward the work mountable region 40. (Irradiation process).

(4)次に、形状算出部30Cで、レーザ測定器20により取得された距離情報およびテーブル5に対するレーザ測定器20の相対位置情報に基づいて、ワークWの形状と取付位置とを求める(算出工程)。 (4) Next, the shape calculation unit 30C obtains the shape and attachment position of the workpiece W based on the distance information acquired by the laser measurement device 20 and the relative position information of the laser measurement device 20 with respect to the table 5 (calculation). Process).

(5)最後に、形状測定作業によって得られたワークWの形状および取付位置のデータ(実測データ)と、CAD装置等から得られたワークWの形状および取付位置の設計データとを照合し、照合結果を表示部33に出力する(照合工程)。 (5) Finally, the shape and mounting position data (actual measurement data) of the workpiece W obtained by the shape measurement operation is compared with the shape and mounting position design data of the workpiece W obtained from a CAD device or the like. The collation result is output to the display unit 33 (collation process).

このように本実施形態では、レーザ測定器20をワーク搭載可能領域40の外周に沿って相対移動させるとともに、ライン状のレーザ光をワーク搭載可能領域40に照射するので、形状が不明であるワークWの形状測定を、短時間で効率よく行うことができ、ワークWの生産効率を向上できる。   As described above, in the present embodiment, the laser measuring instrument 20 is relatively moved along the outer periphery of the work mountable area 40 and the line-shaped laser light is irradiated to the work mountable area 40. Therefore, the workpiece whose shape is unknown. The shape measurement of W can be performed efficiently in a short time, and the production efficiency of the workpiece W can be improved.

算出工程では、レーザ測定器20からの距離情報および位置測定器32からの相対位置情報に基づいて、ワーク表面Waの複数の測定点P1を特定し、これら測定点P1を集合してワークWおよび取付具5aの形状と取付位置とを求める。照射工程では、レーザ測定器20で距離情報が得られないとき、レーザ測定器20をワーク搭載可能領域40の内側に向けて相対移動させてライン状のレーザ光を照射させる。これにより例えばワークWの径が小さく、レーザ測定器20をワーク搭載可能領域40の円筒面41に沿って移動しただけでは測定点P1のデータが得られない場合であっても、ワーク形状を確実に把握することができる。   In the calculation step, a plurality of measurement points P1 on the workpiece surface Wa are specified based on the distance information from the laser measuring device 20 and the relative position information from the position measuring device 32, and the workpiece W and the measurement points P1 are collected. The shape and mounting position of the fixture 5a are obtained. In the irradiation process, when distance information cannot be obtained by the laser measuring device 20, the laser measuring device 20 is relatively moved toward the inside of the work mountable region 40 to irradiate the line-shaped laser light. Thereby, for example, even when the diameter of the workpiece W is small and the data of the measurement point P1 cannot be obtained only by moving the laser measuring instrument 20 along the cylindrical surface 41 of the workpiece mounting area 40, the workpiece shape is surely obtained. Can grasp.

テーブル5は、ワーク取付面5bに垂直な回転軸CL2を中心にB軸方向に回転可能であり、照射工程では、テーブル5を回転させながら、ワーク搭載可能領域40の円筒面41に対し垂直にライン状のレーザ光を照射させる。これにより、レーザ測定器20の移動量が少なくて済み、形状測定作業を効率的に行うことができる。   The table 5 can rotate in the B-axis direction about a rotation axis CL2 perpendicular to the workpiece mounting surface 5b. In the irradiation process, the table 5 is rotated perpendicularly to the cylindrical surface 41 of the workpiece mounting area 40 while rotating the table 5. A line-shaped laser beam is irradiated. Thereby, the movement amount of the laser measuring instrument 20 can be reduced, and the shape measuring operation can be performed efficiently.

取付工程では、主軸4の工具取付部4aに、工具に代えてレーザ測定器20を取り付ける。これにより、ワーク加工時における工具の相対移動と同様に、レーザ測定器20をワークWに対し相対移動することができ、レーザ測定器20の最大限の移動範囲を得ることができる。工作機械1が有する自動工具交換装置(図示せず)を用いて、レーザ測定器20を主軸4の工具取付部4aに取り付けてもよい。   In the attachment process, the laser measuring device 20 is attached to the tool attachment portion 4a of the spindle 4 in place of the tool. Thereby, similarly to the relative movement of the tool at the time of workpiece processing, the laser measuring device 20 can be moved relative to the workpiece W, and the maximum moving range of the laser measuring device 20 can be obtained. The laser measuring device 20 may be attached to the tool attachment portion 4a of the spindle 4 by using an automatic tool changer (not shown) included in the machine tool 1.

なお、上記実施形態では、ワーク取付面5b上のワーク搭載可能領域40の外周面に対し垂直にライン状のレーザ光を照射するようにしたが、レーザ光の照射方向はこれに限らない。図6は、ワーク取付面5bに対し垂直にライン状のレーザ光を照射するようにした例である。   In the above embodiment, the linear laser beam is irradiated perpendicularly to the outer peripheral surface of the work mountable area 40 on the workpiece mounting surface 5b. However, the irradiation direction of the laser beam is not limited to this. FIG. 6 shows an example in which a linear laser beam is irradiated perpendicularly to the workpiece mounting surface 5b.

図6に示すように、テーブル5上には、テーブル上面に対し垂直にイケール50が立設され、イケール50の主軸側表面にワーク取付面5bが形成されている。図6の例では、ワークWと取付具5aの全体を包囲するようにワーク取付面5bから垂直に4つの側面42が立設している。すなわち、ワーク搭載可能領域40は直方体形状を呈し、直方体空間の内側にワークWと取付具5aが収容されている。   As shown in FIG. 6, on the table 5, the scale 50 is erected perpendicularly to the top surface of the table, and a work mounting surface 5 b is formed on the main shaft side surface of the scale 50. In the example of FIG. 6, four side surfaces 42 are erected vertically from the workpiece attachment surface 5b so as to surround the entire workpiece W and the fixture 5a. That is, the work mountable area 40 has a rectangular parallelepiped shape, and the work W and the fixture 5a are accommodated inside the rectangular parallelepiped space.

図7は、図6のレーザ測定器20の相対移動を示す図(図6の矢視VII図)である。図7では、ワーク取付面5bに対し垂直にライン状のレーザ光を照射しているため、レーザ測定器20からのレーザ光による照射ラインLaが直線で表されている。レーザ測定器20は、計測制御部30B(図3)により動作が制御され、揺動鏡22を揺動させながら、ワーク搭載可能領域40の縁部43、すなわち4つの側面42により定義される四角形の辺43に沿って、矢印に示すように相対移動する。   FIG. 7 is a view showing the relative movement of the laser measuring device 20 in FIG. 6 (the view taken along the arrow VII in FIG. 6). In FIG. 7, since the line-shaped laser beam is irradiated perpendicularly to the workpiece mounting surface 5b, the irradiation line La by the laser beam from the laser measuring device 20 is represented by a straight line. The operation of the laser measuring instrument 20 is controlled by the measurement control unit 30B (FIG. 3), and a quadrangle defined by the edge 43 of the work mountable region 40, that is, the four side surfaces 42 while the swinging mirror 22 is swung. Along the side 43, as shown by the arrows.

このとき、計測制御部30Bは、照射ラインLaが各辺43に対し直交するように主軸4を回転させる。すなわち、レーザ測定器20がY軸方向に相対移動するときは照射ラインLaがX軸に平行となり、X軸方向に相対移動するときは照射ラインLaがY軸に平行となるように、レーザ測定器20を、軸線CL1(図1)を中心に回転させる。このとき、主軸4を軸線CL1を中心に回転送りさせるC軸制御機能が具備されているのが好ましい。これにより図6のワークWの側端面Wbの全域にレーザ光を照射することができ、ワーク形状を精度よく測定することができる。   At this time, the measurement control unit 30 </ b> B rotates the spindle 4 so that the irradiation line La is orthogonal to each side 43. That is, laser measurement is performed so that the irradiation line La is parallel to the X axis when the laser measuring device 20 is relatively moved in the Y-axis direction, and so that the irradiation line La is parallel to the Y-axis when the laser measuring device 20 is relatively moved in the X-axis direction. The vessel 20 is rotated about the axis CL1 (FIG. 1). At this time, it is preferable that a C-axis control function for rotating and feeding the main shaft 4 about the axis CL1 is provided. As a result, the entire region of the side end face Wb of the workpiece W in FIG. 6 can be irradiated with laser light, and the workpiece shape can be accurately measured.

なお、レーザ測定器20は、図5と同様、所定の初期位置からワーク搭載可能領域40の縁部43に沿って相対移動させる。初期位置としては、例えば図6に示すように縁部43を含むXY平面上に測定可能領域Sの境界線S3が位置し、かつ、図7に示すように照射ラインLaの端部がワーク搭載可能領域40の縁部43と一致するような位置である。   As in FIG. 5, the laser measuring instrument 20 is relatively moved along the edge 43 of the work mountable area 40 from a predetermined initial position. As the initial position, for example, the boundary line S3 of the measurable region S is positioned on the XY plane including the edge 43 as shown in FIG. 6, and the end of the irradiation line La is mounted on the workpiece as shown in FIG. The position coincides with the edge 43 of the possible area 40.

この場合、レーザ測定器20を初期位置からワーク搭載可能領域40の外周縁部に沿って相対移動させた際に、測定可能領域S内にワーク表面Waが含まれないと、レーザ測定器20で受光位置データを取得できない。受光位置データを取得できない場合には、測定可能領域S内にワーク表面Waが含まれるように、レーザ測定器20をZ軸方向に相対移動してワーク取付面5bに接近させ、あるいはレーザ測定器20をXY平面上をワーク搭載可能領域40の内側(中心側)に移動させる。   In this case, if the workpiece surface Wa is not included in the measurable area S when the laser measuring instrument 20 is relatively moved from the initial position along the outer peripheral edge of the work mountable area 40, the laser measuring instrument 20 The light receiving position data cannot be acquired. When the light receiving position data cannot be obtained, the laser measuring device 20 is moved relatively in the Z-axis direction so that the work surface Wa is included in the measurable region S, or the work measuring surface 5b is approached. 20 is moved to the inside (center side) of the work mountable area 40 on the XY plane.

(変形例)
ワーク表面Waにライン状のレーザ光を照射するとともに反射光を受光してワーク表面Waまでの距離Dを測定するレーザ測定器20の構成は、上述したものに限らない。例えば、レーザ出力部21からのレーザ光をレンズで拡散し、ライン状のレーザ光を照射するようにしてもよい。複数のレーザ出力部21をライン状に配置し、各レーザ出力部21からレーザ光を照射することで、ライン状のレーザ光を照射するようにしてもよい。上記実施形態では、工具取付部4aにレーザ測定器20を取り付けるようにしたが、主軸4と一体に移動するのであれば、他の部位にレーザ測定器20を取り付けるようにしてもよい。
(Modification)
The configuration of the laser measuring instrument 20 that irradiates the workpiece surface Wa with line-shaped laser light and receives reflected light to measure the distance D to the workpiece surface Wa is not limited to that described above. For example, the laser beam from the laser output unit 21 may be diffused by a lens and irradiated with a line-shaped laser beam. A plurality of laser output units 21 may be arranged in a line shape, and laser light may be emitted from each laser output unit 21 to irradiate the line-shaped laser light. In the above embodiment, the laser measuring instrument 20 is attached to the tool attaching portion 4a. However, the laser measuring instrument 20 may be attached to another part as long as it moves integrally with the main shaft 4.

上記実施形態では、設定手段としての領域設定部30Aにより、ワークWを搭載可能な三次元空間であるワーク搭載可能領域40としてワーク取付面5b上に円柱状または直方体形状の空間を設定するようにしたが(図4、図6)、ワーク搭載可能領域40の形状は上述したものに限らない。計測制御部30Bが駆動モータMを制御することで、レーザ測定器20をワーク搭載可能領域40の外周に沿って相対移動させるようにしたが、移動手段の構成はいかなるものでもよい。ここで、ワーク搭載可能領域40の外周とは、ワーク取付面5bに対し立設する面(図4の円筒面41)と、ワーク取付面5bに対し立設する面の端部(図7の縁部43)の両方を含む。   In the above embodiment, the area setting unit 30A as setting means sets a columnar or rectangular parallelepiped space on the work mounting surface 5b as the work mountable area 40 which is a three-dimensional space in which the work W can be mounted. However, the shape of the work mountable area 40 is not limited to that described above. Although the measurement control unit 30B controls the drive motor M to move the laser measuring instrument 20 along the outer periphery of the work mountable area 40, the moving means may have any configuration. Here, the outer periphery of the work mountable area 40 includes a surface standing upright with respect to the work mounting surface 5b (cylindrical surface 41 in FIG. 4) and an end portion of the surface standing upright with respect to the work mounting surface 5b (in FIG. 7). Including both edges 43).

レーザ測定器20により取得された距離情報およびテーブル5に対する主軸4の相対位置情報(位置検出器32からの情報)に基づいて、ワークWの形状と取付位置とを求めるのであれば、算出手段としての形状算出部30Cの構成はいかなるものでもよい。上記実施形態では、テーブル5またはイケール50にワークを取り付けるようにしたが、ワーク取付面5bを構成するワーク取付部の構成は上述したものに限らない。   If the shape and the mounting position of the workpiece W are obtained based on the distance information acquired by the laser measuring device 20 and the relative position information of the spindle 4 with respect to the table 5 (information from the position detector 32), the calculation means The configuration of the shape calculation unit 30C may be any configuration. In the said embodiment, although the workpiece | work was attached to the table 5 or the scale 50, the structure of the workpiece | work attachment part which comprises the workpiece | work attachment surface 5b is not restricted to what was mentioned above.

以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態および変形例の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。すなわち、本発明の技術的思想の範囲内で考えられる他の形態についても、本発明の範囲内に含まれる。また、上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能である。   The above description is merely an example, and the present invention is not limited to the above-described embodiments and modifications unless the features of the present invention are impaired. The constituent elements of the embodiment and the modified examples include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. That is, other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. Moreover, it is also possible to arbitrarily combine one or more of the above-described embodiments and modified examples.

1 工作機械
5 テーブル
5b ワーク取付面
20 レーザ測定器
30 制御部
30A 領域設定部
30B 計測制御部
30C 形状算出部
32 位置検出器
40 ワーク搭載可能領域
La 照射ライン
M 駆動モータ
DESCRIPTION OF SYMBOLS 1 Machine tool 5 Table 5b Workpiece attachment surface 20 Laser measuring device 30 Control part 30A Area setting part 30B Measurement control part 30C Shape calculation part 32 Position detector 40 Workable mounting area La Irradiation line M Drive motor

Claims (7)

工作機械上でワークの形状を測定するワーク形状測定方法において、
ワーク表面にライン状のレーザ光を照射するとともに反射光を受光してワーク表面までの距離を測定するレーザ測定器を、ワーク取付部に対し相対移動可能である主軸と一体に取り付ける取付工程と、
前記ワーク取付部のワーク取付面上に、ワークを搭載可能な三次元空間であるワーク搭載可能領域を設定する設定工程と、
前記レーザ測定器を前記ワーク搭載可能領域の外周に沿って相対移動させるとともに、前記レーザ測定器によりライン状のレーザ光を前記ワーク搭載可能領域に向けて照射させる照射工程と、
前記レーザ測定器により取得された距離情報および前記ワーク取付部に対する前記レーザ測定器の相対位置情報に基づいて、ワークの形状と取付位置とを求める算出工程と、を含むことを特徴としたワーク形状測定方法。
In a workpiece shape measuring method for measuring the shape of a workpiece on a machine tool,
A mounting step of attaching a laser measuring device that irradiates the workpiece surface with a line-shaped laser beam and receives reflected light to measure the distance to the workpiece surface, integrally with a spindle that is movable relative to the workpiece mounting portion;
On the work mounting surface of the work mounting part, a setting step for setting a work mountable area that is a three-dimensional space in which a work can be mounted;
An irradiation step of relatively moving the laser measuring device along the outer periphery of the work mountable region and irradiating a line-shaped laser beam toward the work mountable region by the laser measuring device,
A workpiece shape comprising: a calculation step for obtaining a workpiece shape and a mounting position based on distance information acquired by the laser measuring device and relative position information of the laser measuring device with respect to the workpiece mounting portion. Measuring method.
請求項1に記載のワーク形状測定方法において、
前記取付工程では、前記主軸の工具取付部に前記レーザ測定器を取り付ける、ワーク形状測定方法。
In the workpiece shape measuring method according to claim 1,
In the attaching step, the workpiece shape measuring method, wherein the laser measuring instrument is attached to a tool attaching portion of the spindle.
請求項1または2に記載のワーク形状測定方法において、
前記照射工程では、前記レーザ測定器で距離情報が得られないとき、前記レーザ測定器を前記ワーク搭載可能領域の内側に向けて相対移動させてライン状のレーザ光を照射させる、ワーク形状測定方法。
In the workpiece shape measuring method according to claim 1 or 2,
In the irradiation step, when distance information cannot be obtained with the laser measuring device, the laser measuring device is relatively moved toward the inside of the work mountable region to irradiate a line-shaped laser beam. .
請求項1〜3のいずれか1項に記載のワーク形状測定方法において、
前記ワーク取付部は、前記ワーク取付面に垂直な回転軸を中心に回転可能であり、
前記照射工程では、前記ワーク取付部を回転させながら、前記ワーク搭載可能領域の外周面に対し垂直にライン状のレーザ光を照射させる、ワーク形状測定方法。
In the workpiece shape measuring method according to any one of claims 1 to 3,
The workpiece mounting portion is rotatable around a rotation axis perpendicular to the workpiece mounting surface,
In the irradiation step, a workpiece shape measuring method of irradiating a line-shaped laser beam perpendicularly to an outer peripheral surface of the workpiece mountable region while rotating the workpiece attachment portion.
請求項1〜3のいずれか1項に記載のワーク形状測定方法において、
前記照射工程では、前記ワーク搭載可能領域の外周縁部に沿って前記レーザ測定器を相対移動させながら、前記ワーク取付面に対し垂直にライン状のレーザ光を照射させる、ワーク形状測定方法。
In the workpiece shape measuring method according to any one of claims 1 to 3,
In the irradiation step, a workpiece shape measuring method of irradiating a line-shaped laser beam perpendicularly to the workpiece mounting surface while relatively moving the laser measuring device along the outer peripheral edge of the workpiece mountable region.
請求項1〜5のいずれか1項に記載のワーク形状測定方法において、
前記算出工程は、ワークを前記ワーク取付部に取り付ける取付具の形状と取付位置も合わせて求める、ワーク形状測定方法。
In the workpiece shape measuring method according to any one of claims 1 to 5,
The said calculation process is a workpiece | work shape measuring method which calculates | requires also the shape and attachment position of the fixture which attaches a workpiece | work to the said workpiece | work attachment part.
工作機械上でワークの形状を測定するワーク形状測定装置において、
ワーク取付部に対し相対移動可能である主軸と一体に取り付けられ、ワーク表面にライン状のレーザ光を照射するとともに反射光を受光してワーク表面までの距離を測定するレーザ測定器と、
前記ワーク取付部のワーク取付面上に、ワークを搭載可能な三次元空間であるワーク搭載可能領域を設定する設定手段と、
前記レーザ測定器を前記ワーク搭載可能領域の外周に沿って相対移動させる移動手段と、
前記レーザ測定器により取得された距離情報および前記ワーク取付部に対する前記主軸の相対位置情報に基づいて、ワークの形状と取付位置とを求める算出手段と、を備えることを特徴としたワーク形状測定装置。
In a workpiece shape measuring device that measures the shape of a workpiece on a machine tool,
A laser measuring instrument that is mounted integrally with a spindle that is movable relative to the workpiece mounting portion, irradiates the surface of the workpiece with line-shaped laser light and receives reflected light to measure the distance to the workpiece surface;
Setting means for setting a work mountable area that is a three-dimensional space in which a work can be mounted on the work mounting surface of the work mounting portion;
Moving means for relatively moving the laser measuring instrument along the outer periphery of the work mountable area;
A workpiece shape measuring apparatus comprising: calculation means for obtaining a workpiece shape and a mounting position based on distance information acquired by the laser measuring instrument and relative position information of the spindle with respect to the workpiece mounting portion. .
JP2012234520A 2012-10-24 2012-10-24 Work shape measuring method and work shape measuring apparatus Active JP5393864B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234520A JP5393864B1 (en) 2012-10-24 2012-10-24 Work shape measuring method and work shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234520A JP5393864B1 (en) 2012-10-24 2012-10-24 Work shape measuring method and work shape measuring apparatus

Publications (2)

Publication Number Publication Date
JP5393864B1 true JP5393864B1 (en) 2014-01-22
JP2014085236A JP2014085236A (en) 2014-05-12

Family

ID=50112275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234520A Active JP5393864B1 (en) 2012-10-24 2012-10-24 Work shape measuring method and work shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP5393864B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237818A (en) * 2022-12-29 2023-06-09 广东中海万泰技术有限公司 Offset measuring method for deep hole machining

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013018654A1 (en) * 2013-10-30 2015-04-30 Jenoptik Automatisierungstechnik Gmbh Method and device for detecting and correcting a spatial position of a workpiece held in a positioning device
WO2019049715A1 (en) * 2017-09-05 2019-03-14 株式会社ニデック Eyeglass frame shape measurement device and eyeglass frame shape measurement program
KR102222898B1 (en) * 2019-06-25 2021-03-05 한국기계연구원 Method and apparatus for inspecting workpiece using laser
JP7344708B2 (en) * 2019-08-06 2023-09-14 株式会社キーエンス 3D shape measuring device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248213A (en) * 1994-03-11 1995-09-26 Nikon Corp Apparatus for measuring three-dimensional shape
JP3552381B2 (en) * 1996-01-09 2004-08-11 株式会社ニコン Image measuring machine
JPH11160023A (en) * 1997-11-28 1999-06-18 Japan Aircraft Mfg Co Ltd Noncontact coordinate measuring apparatus
JP4478530B2 (en) * 2004-08-10 2010-06-09 株式会社 ソキア・トプコン Micro dimension measuring machine
JP2007085764A (en) * 2005-09-20 2007-04-05 Hitachi Kenki Fine Tech Co Ltd Probe control method of scanning probe microscope
JP5561109B2 (en) * 2010-11-09 2014-07-30 株式会社デンソー Apparatus and method for measuring three-dimensional dimensions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116237818A (en) * 2022-12-29 2023-06-09 广东中海万泰技术有限公司 Offset measuring method for deep hole machining

Also Published As

Publication number Publication date
JP2014085236A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP6457468B2 (en) Deburring device
JP6445070B2 (en) Machine tool control system
JP5595798B2 (en) Workpiece measuring method and apparatus for machine tool
JP5393864B1 (en) Work shape measuring method and work shape measuring apparatus
CN1802240A (en) A method for calibrating and programming of a robot application
JP6013139B2 (en) Tool length measuring method and machine tool
JP2018151965A (en) Control system for machine tool
JP2009233785A (en) Position measuring method of machine tool and its device
JP7000037B2 (en) 3D measuring machine and 3D measuring method
EP2774008A1 (en) System and method for machining and inspecting a workpiece
JP2010058239A (en) Machining method
JP2006349388A (en) Measuring method and measuring instrument for rotation center
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP6147022B2 (en) Spatial accuracy measuring method and spatial accuracy measuring apparatus for machine tool
JP3657252B2 (en) Shape measurement system using workpiece shape measuring device
JP5693662B2 (en) Automatic centering method of displacement measuring instrument and machine tool having displacement measuring function
JP5283563B2 (en) Workpiece measuring apparatus and method for machine tool
KR101663677B1 (en) Machining apparatus having a function of automatic tool setting and alignment and a method thereof
US11933638B2 (en) Method for detecting phase on gear, method for producing gear, method for detecting position on edge of workpiece, and machine tool for detecting phase on gear
JP2018116458A (en) Controller
JP2018128328A (en) Geometrical error measuring method of machine tool
JP2012247312A (en) Cross-sectional form measuring method
JP7266511B2 (en) POSITION MEASURING METHOD OF OBJECT IN MACHINE TOOL, POSITION MEASURING SYSTEM, AND POSITION MEASURING PROGRAM
JP2021168043A (en) Method of machining
JP4136475B2 (en) Non-contact measuring method and measuring apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150