WO2018003018A1 - X線検査方法及び装置 - Google Patents

X線検査方法及び装置 Download PDF

Info

Publication number
WO2018003018A1
WO2018003018A1 PCT/JP2016/069154 JP2016069154W WO2018003018A1 WO 2018003018 A1 WO2018003018 A1 WO 2018003018A1 JP 2016069154 W JP2016069154 W JP 2016069154W WO 2018003018 A1 WO2018003018 A1 WO 2018003018A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
size
inspection
defect
Prior art date
Application number
PCT/JP2016/069154
Other languages
English (en)
French (fr)
Inventor
久恵 渋谷
敏之 中尾
秀明 笹澤
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2016/069154 priority Critical patent/WO2018003018A1/ja
Publication of WO2018003018A1 publication Critical patent/WO2018003018A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Definitions

  • the present invention relates to a semiconductor inspection apparatus and method based on an X-ray transmission image.
  • TSV Through Si Via
  • the TSV has a diameter of 10 to 20 ⁇ m and a depth of about 80 ⁇ m, is smaller than a microbump widely used in current 3D lamination, and has a high aspect ratio.
  • the void generated when forming TSV by Cu plating tends to be a fatal defect, and the need for void inspection in TSV is high.
  • a void detection technique a technique of irradiating a target substrate with X-rays and analyzing a transmission image thereof is widely used. In Patent Document 1, X-rays are irradiated from a direction inclined with respect to the vertical direction of the substrate. A technique for detecting voids is described.
  • Patent Document 2 many simulation X images in which the shape parameters of TSV are changed are generated. A technique is described in which a simulation X image most similar to a captured X-ray image is searched for and the shape parameter estimation of the inspection target TSV is performed. Patent Document 2 further describes a technique for detecting a defect by comparing a captured image and a simulation X image.
  • JP 2013-130392 A Japanese Unexamined Patent Publication No. 2014-16239
  • Patent Document 2 does not describe the difference in the image depending on the field of view. However, in order to solve the above problem using this method, it is necessary to create a simulation image in which the shape parameter is changed for each imaging position. is there. Furthermore, if you want to change the tilt angle, the distance between the X-ray source, the object, and the imaging surface, it is necessary to prepare another simulation image set, which takes a very long time, It is difficult to realize.
  • an object of the present invention is to solve the above-described problems of the prior art, and to detect a minute defect in a minute structure, and the size measurement result of the same object depends on the position in the field of view. It is an object of the present invention to provide an X-ray inspection method and apparatus that are identical to each other.
  • the present invention irradiates a sample with X-rays emitted from an X-ray source, detects X-rays transmitted through the inside of the sample with an X-ray detector, and detects the detected X-rays.
  • a transmission X-ray image is generated by the image processing unit
  • the image processing unit To inspect the inside of the sample by extracting the inspection region from the generated transmission X-ray image, generating a reference image including the inspection region extracted from the generated transmission X-ray image, A defect in the inspection area is detected from the reference image, and the position and size of the detected defect are corrected using the design information of the sample and a preset parameter for the detected defect, and the corrected defect position and Output size information It was.
  • an X-ray source that emits X-rays
  • an X-ray detector that detects X-rays emitted from the X-ray source and transmitted through the inside of the sample
  • An image generation unit that generates a transmission X-ray image of the sample by X-rays detected by the X-ray detector, and an image processing unit that processes the transmission X-ray image generated by the image generation unit and inspects the inside of the sample
  • the image processing unit includes an inspection region extraction unit that extracts an inspection region from the generated transmission X-ray image, and the generated transmission X
  • a reference image generation unit that generates a reference image including an inspection region extracted from the line image by the inspection region extraction unit, a transmission X-ray image generated by the image generation unit, and a reference image generated by the reference image generation unit in the inspection region Missing defect detection A detection unit and a
  • the size measurement result of the same object can be obtained regardless of the position in the field of view. This makes it possible to make the defect detection sensitivity in the field of view uniform. In addition, highly reliable statistical analysis using size measurement results and defect detection results becomes possible.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3 of the wafer to be inspected in the embodiment of the present invention. It is a side view which shows the relationship between the sample and X-ray detector explaining the X-ray transmission image obtained when X-ray is irradiated from the direction inclined with respect to the wafer in the Example of this invention.
  • Example of this invention It is a flowchart explaining the flow of the image analysis process which performs defect detection and size measurement from the X-ray transmission image in the Example of this invention.
  • the Example of this invention is the X-ray transmissive image obtained by irradiating a X-ray to the wafer in which 1 layer of TSV was formed from the diagonal, and its partial enlarged view.
  • It is a side view which shows the relationship between the X-ray source, a sample, and a X-ray detector explaining the change of the X-ray irradiation angle of X direction and the magnification by the X coordinate in the captured image in the Example of this invention.
  • the present invention inputs structure size design information, calculates a size correction coefficient based on the projected image at the center of the field of view of the X-ray image and the structure detection position, The size of the structure is calculated using the correction coefficient from the size of the structure image obtained by the image processing.
  • the present invention also relates to an X-ray inspection method for detecting a defect based on an image analysis of a transmission image obtained by obliquely irradiating X-rays, the distance from the X-ray source to the imaging surface, the surface of the target substrate from the X-ray source Information including the distance up to, the angle of inclination, the pixel size, the image size, and the design size of the size measurement object, and the world coordinates of the target substrate surface at the center of the field of view and the expected projection image size of the size measurement object Calculate, detect the center of gravity coordinates, width and height of the image of the size measurement object from the X-ray transmission image, calculate the magnification and the X-ray irradiation angle at the detected center of gravity coordinates, and based on the X-ray irradiation angle Calculate the expected projection image size of the size measurement object, calculate the correction coefficient to make the projection size equal in the entire field of view based on the detected coordinates and the projection size at the center of
  • FIG. 1A is a schematic diagram of an X-ray inspection apparatus 100.
  • An X-ray inspection apparatus 100 includes an X-ray source 1, a translation stage 3 and a rotation stage 4 for holding and moving a wafer 2 to be measured, an X-ray detector 5, a peristaltic stage 6, an X-ray shielding wall 7, An X-ray source controller 101, a stage controller 102, an X-ray detector controller 103, a control unit 104, an image analysis unit 105, and an input / output unit 106 are provided.
  • the X-ray source 1 is composed of an electron optical system and a target (not shown).
  • the electron optical system is a Schottky electron gun, and the target is composed of a tungsten thin film and a diamond thin film.
  • the translation stage 3 can move in the X-axis, Y-axis, and Z-axis directions, and the rotary stage 4 can rotate in the XY plane (hereinafter, the rotation direction of the rotary stage in the XY plane is defined as the ⁇ direction). ).
  • the central portions of the translation stage 3 and the rotation stage 4 are made of glass (not shown) that absorbs little X-rays.
  • the X-ray detector 5 is disposed at a position facing the X-ray source 1 with the translation stage 3 and the rotation stage 4 interposed therebetween.
  • the X-ray detector 5 is composed of an image intensifier and a CCD camera.
  • the X-rays irradiated from the X-ray source 1 are absorbed by the wafer 2 disposed on the translation stage 3, and the transmitted X-rays are detected by the X-ray detector 5.
  • the distance between the X-ray detector 5 and the X-ray source 1 is fixed, and the magnification and the width of the field of view are changed by changing the position of the wafer 2 by the translation stage 3.
  • the X-ray detector 5 is rotatable in the XZ plane around the X-ray generation position of the X-ray source 1 by a peristaltic stage 6 having the same structure as the goniometer (the rotation direction in the XZ plane is defined as the ⁇ direction)
  • the wafer 2 is translated by the translation stage 3 according to the rotation angle, and the measurement area is adjusted so as not to shift.
  • the X-ray source 1, the translation stage 3, the rotary stage 4, and the X-ray detector 5 are arranged inside the X-ray shielding wall 7 so that X-rays do not leak outside.
  • the X-ray source controller 101 controls various parameters of the X-ray source 1 (tube voltage, tube current, applied magnetic field to the electron optical system, applied voltage, atmospheric pressure, etc.) and ON / OFF of X-ray generation, and the stage controller 102
  • the movement coordinates of the translation stage 3 and the rotation stage 4 are controlled, and the X-ray detector controller 103 reads data from the X-ray detector 5 and sets imaging conditions (sensitivity, average number of sheets, etc.).
  • the X-ray source controller 101, the stage controller 102, and the X-ray detector controller 103 are controlled by the control unit 104.
  • the control unit 104 captures an X-ray transmission image while moving the wafer 2 based on the inspection condition input in advance.
  • the image analysis unit 105 receives an X-ray transmission image and an inspection parameter input in advance from the control unit 104, determines a defect such as a void by image analysis, measures the size and position of an inspection object such as a TSV, The result is displayed on the input / output unit 106.
  • FIG. 1B shows the configuration of the image analysis unit 105.
  • the image analysis unit 105 includes a wafer information input unit 1051, an image input unit 1052, an image preprocessing unit 1053, an area extraction unit 1054, a reference image creation unit 1055, a defect detection unit 1056, a correction processing unit 1057, and an input / output unit 1058. ing.
  • the wafer information input unit 1051 inputs the design information of the wafer 2 from the control unit 104 and sends it to the correction processing unit 1057.
  • the image input unit 1052 inputs the X-ray transmission image picked up by the X-ray detector 5 and outputs it to the image preprocessing unit 1053.
  • the image preprocessing unit 1053 performs preprocessing, which will be described later, on the image received from the image input unit 1052, and sends the result to the region extraction unit 1054.
  • the area extraction unit 1054 extracts an inspection target area where an inspection target such as TSV is formed from the preprocessed image.
  • the reference image creation unit 1055 creates a reference image using the inspection target region information extracted by the region extraction unit 1054.
  • the defect detection unit 1056 detects a defect from the image of the inspection target region extracted by the region extraction unit 1054 using the reference image created by the reference image creation unit 1055, and measures the position and size of the defect and the inspection target.
  • the correction processing unit 1057 the wei sent from the wafer information input unit 1051 corrects the position and size of the defect and the inspection object measured using the design information 2, and the input / output unit 1058 to the input / output unit 106. Output to.
  • FIG. 2 is a plan view of the entire wafer 2 and an enlarged view of a region where TSV is formed
  • FIG. 3 is a cross-sectional view taken along the line AA ′ in FIG.
  • a plurality of dies 10 are regularly formed on the wafer 2, and TSVs 11 are formed on a part of the dies 10.
  • the diameter of the TSV 11 is ⁇ , and is formed at a pitch of P X in the X-axis direction and P Y in the Y-axis direction.
  • the first layer 13, the second layer 14, and the third layer 15 are laminated, and the respective layers are connected by the TSV 11 and the microbump 12.
  • the length of TSV11 is h.
  • the X-ray transmission image of the wafer 2 was acquired by tilting the position of the X-ray detector 5 by the peristaltic stage 6 in the ⁇ direction within the XZ plane with the X-ray generation position of the X-ray source 1 as the center.
  • description will be made with reference to an XZ sectional view in which only one TSV 11 formed on the second layer 14 of the wafer 2 is taken out.
  • TSV is mainly made of Cu, and since Cu has a larger atomic number than Si constituting most of the wafer 2, X-ray absorption is large. That is, when the second layer 14 is irradiated with X-rays 200 and transmitted X-rays are detected by the X-ray detector 5, the region where TSV11 does not exist in the captured image becomes bright because X-ray absorption is small, and TSV11 is The existing region becomes dark because of the large X-ray absorption. Further, if the void 20 is present inside the TSV 11, X-ray absorption is reduced in the void region, and only the void region becomes brighter than the surroundings, and the void can be detected with this brightness difference.
  • the number of pixels of the X-ray detector 5 that detects X-rays that have passed through the TSV11 region is small, and the corresponding pixels The absorption of X-rays incident on TSV11 is maximized.
  • the brightness (the magnitude of the output signal) for each pixel number of the X-ray detector 5 (the number when a plurality of pixels arranged in a line of the X-ray detector 5 are counted in order from one end).
  • the output signal 301 from the pixel at the position corresponding to the TSV existence area becomes small as in the profile 30 in which is plotted, and the brightness of the image becomes very dark.
  • the void 20 exists in the TSV 11, since the absorption in the TSV 11 is very large in the first place, the contrast between the detection signal 302 of the TSV 11 and the detection signal 303 of the void 20 is poor, and the detection performance is deteriorated.
  • the X ship detector 5 that detects X-rays that have passed through the TSV11 region.
  • the X-ray detector 5 is tilted in the ⁇ direction with respect to the wafer 2 to acquire an X-ray transmission image, whereby the brightness contrast of the void portion image with respect to the TSV region can be increased, and the detected image It becomes possible to improve the detection accuracy of the void 20 inside the TSV when the above is processed.
  • the processing flow in the image analysis unit 105 will be described with reference to FIG.
  • the wafer 2 on which the TSV 11 is formed only on one layer is the object, and in the configuration shown in FIG. 1, the position of the X-ray detector 5 is moved by the peristaltic stage 6 around the X-ray generation position of the X-ray source 1.
  • an X-ray transmission image including a plurality of TSVs 11 is acquired while being tilted in the ⁇ direction.
  • FIG. 6 shows an example image.
  • the TSV image 65 that is a transmission image has a shape obtained by rounding the left and right sides of a horizontally long rectangle.
  • an image 66 brighter than the surroundings is observed.
  • the image analysis unit 105 receives the image 60 from the control unit 104 by the image input unit 1052, sends the input image to the image preprocessing unit 1053, and performs preprocessing S 601 to create the inspection image 61.
  • Preprocessing performed by the image preprocessing unit 1053 is processing for obtaining an appropriate inspection image 61, and includes shading correction, contrast correction, noise removal, and the like. Processing for correcting imaging distortion caused by the X-ray detector may be included.
  • the inspection image 61 created by the image preprocessing unit 1053 is sent to the region extraction unit 1054.
  • the region extraction unit 1054 performs TSV region extraction S602 to obtain the TSV image 65 from the inspection image 61 and extract the TSV region.
  • TSV region extraction S602 to obtain the TSV image 65 from the inspection image 61 and extract the TSV region.
  • the binarization threshold can be automatically determined by using Otsu's method. Assuming the presence of the void 20, after tracing the contour of one pattern on the binary image, the convex hull is obtained and the inside is filled with one. Labeling identifies each one separately, and extracts information such as area, perimeter length, barycentric position, and minimum and maximum X and Y coordinates.
  • the reference image creation unit 1055 performs reference image creation S603 for creating the reference image 62 using the inspection image 61 created by the image preprocessing unit 1053 and the TSV region information obtained by the region extraction unit 1054.
  • the reference image 62 is an image simulating a normal TSV image.
  • an image in which the bright void portion is darkened is created.
  • a vertically normal and symmetric normal image is created.
  • the labeled area is a defect candidate, but includes false information detected due to a luminance difference caused by density variation that cannot be said to be noise or a defect at the time of image acquisition. Therefore, features such as area, roundness, relative position with respect to TSV, and brightness are calculated for each defect region, and only those having a high probability of defect are extracted as defects by comparison with a predetermined threshold value.
  • learning is performed by teaching whether the defect is a defect or a false report on the feature space, and the defect and the false report are identified using a classification criterion obtained by the learning.
  • the defect detection unit 1056 performs position / size calculation processing S605 for each TSV region extracted in the defect detection processing S602 and the defect region extracted in S604. Specifically, the position of the center of gravity of the TSV area, the size of the rectangle (without rotation) surrounding the TSV area, the position of the center of gravity of the defect area, the area, and the like.
  • the correction processing unit 1057 obtains the design information of the wafer 2 acquired from the control unit 104 by the wafer information input unit 1051 and the parameter 63 previously input. Are used to perform position / size correction processing S606, and position / size information 64 corrected for TSV or defects is output. Specifically, the world coordinates of the TSV, the relative coordinates of the center of the visual field, the diameter, the height, the depth of the defect from the TSV top, the size (diameter in terms of a perfect circle), the longitudinal size, the lateral direction size, etc. is there.
  • Pieces of information are output from the input / output unit 1058 and input to the input / output unit 106.
  • file output and a list are displayed on the GUI screen.
  • the input / output unit 106 can also display an image in which a defect detected in the input image is marked.
  • the imaging surface of the X-ray detector 5 is kept perpendicular to a straight line connecting the origin 70 and the visual field center (image center) 72.
  • the detector tilt angle 74 and the height (H) 75 to the wafer surface are determined in advance in consideration of the necessary magnification, TSV, and the ease of detection of defects.
  • the inclination angle 74 has a clockwise direction as a positive direction.
  • the field-of-view center 71 on the wafer surface is adjusted by the translation stage 3 to be on a line connecting the origin 70 and the field-of-view center (image center) 72 of the detector 5. Therefore, the X coordinate (X center ) 76 of the visual field center 71 on the wafer surface is obtained by the following equation.
  • the object imaged at a certain target position 78 other than the center of the image is at the position 77 on the wafer surface, and its X coordinate (X target ) 80 is an actual X-ray irradiation angle different from the tilt angle 74 It can be seen from ( ⁇ X ) 79 that the following equation is obtained.
  • FIG. 8 is a diagram when FIG. 7 is viewed from another viewpoint, and is a diagram illustrating the relationship between the position of interest 78 and the X-ray irradiation angles in the X direction and the Y direction.
  • the relative positions (X image , Y image ) 81 and 82 of the target position 78 from the image center (image center) 72 are calculated by the following equations.
  • the Y coordinate (Y target ) of the position 77 of the object on the wafer surface is calculated by the following equation.
  • magnification (M target ) of the target position is determined by the ratio of the distance from the X-ray source to the object and the distance to the detection position, it is calculated by the following equation.
  • FIG. 9 is a diagram for explaining how the projected image of the TSV 11 is deformed depending on the X-ray irradiation angle.
  • FIG. 10A is a projection image at the center of the visual field
  • FIG. 10B is a projection image at the periphery of the visual field.
  • the TSV 11 has a cylindrical shape with the diameter ( ⁇ ) 91 and the height (h) 92 as parameters, the length (h centor ) 93 of the projected image 97 at the center of the field of view in FIG. It can be seen that
  • the height ( ⁇ centor ) 94 of the projected image 97 at the center of the field of view remains ⁇ . Since the irradiation angle is shifted in both the X direction and the Y direction around the field of view in FIG. 10B, a shift occurs between the top side projection position and the bottom side projection position of the TSV 11, and the projection image 98 has an inclined shape.
  • the length (h target ) 95 and the height ( ⁇ terget ) 96 of the rectangle 99 surrounding this are expressed by the following equations.
  • correction coefficients for correcting the shape obtained around the field of view to the shape at the center of the field of view are defined by the following equations.
  • the focus is based on the size of the rectangle surrounding the projection image of the TSV on the image obtained at the target position.
  • the length (h target ) 95 and height ( ⁇ terget ) 96 of the projected image 98 are obtained using the magnification (M target ) of the position, and the same object is viewed using the correction coefficients (corr X , corr Y ).
  • the length (h centor ) 93 and the height ( ⁇ center ) 94 when observed at the center are obtained.
  • X max , X min , Y max , and Y min are the maximum and minimum values of the X coordinate and Y coordinate of the TSV region obtained in S602.
  • X max -X min +1 and Y max -Y min +1 are calculated in S605 and recorded as a rectangular size surrounding the TSV area.
  • the coordinates (X taeget , Y target ) of the object position 77 on the wafer surface are the position obtained by projecting the center of gravity of TSV11 on the wafer surface.
  • the exact position of TSV11 is considered to be the top position of TSV11 (X taeget_top , Y target_top ), and the top position of TSV11 is calculated by the following equation.
  • the void 20 which is a defect is almost spherical, and in S605, the size in terms of a circle is obtained from the area on the image, that is, the number of pixels in the defect region, by the following formula, and the size is calculated using the magnification at the defect detection coordinate Is calculated.
  • FIG. 12 shows a processing flow of TSV and void defect position / size correction processing (S606) executed by the correction processing unit 1057.
  • Image size and pixel size are acquired as fixed value device information, and reference distance 73 from the control system to the X-ray source to the X-ray detector, X-ray detector tilt angle 74, stage height as other device information To get. Further, the design values of the wafer thickness, the TSV diameter, and the height are acquired through the GUI or the condition setting file as the object information.
  • position / size correction basic information is calculated (S1202).
  • the wafer surface height 73 is calculated by subtracting the wafer thickness from the stage height, and the X and Y coordinates of the visual field center 71 on the wafer surface are calculated based on the tilt angle 74 of the X-ray detector. Further, the expected apparent length 93 and height 94 of the TSV at the center of the visual field are obtained by inputting design values into the cylindrical parameters h and ⁇ .
  • the position / size correction processing from S1204 to S1209 is repeated for all TSV areas detected in S602 (S1203).
  • the barycentric position on the image of the TSV area calculated in S605 and the size of the rectangle surrounding the area are acquired (S1204).
  • X-ray irradiation angles in the X direction and the Y direction are calculated using equations (3) to (6) (S1205).
  • the magnification at the TSV barycentric position is calculated using equation (Equation 8) (S1206).
  • the expected apparent length 95 and height 96 of the TSV at the coordinates are obtained by inputting design values into the parameters h and ⁇ of the cylinders of the equations (Equation 10) and (Equation 11).
  • the shape correction coefficients in the X direction and the Y direction are calculated using (Expression 12) and Expression (Expression 13) (S1207).
  • the position / size correction processing from S1211 to S1216 is repeated for all void defect areas detected in S604 (S1210).
  • the position of the center of gravity on the image of the defect area calculated in S605, the area, and the size converted to the diameter of the circle are acquired (S1211).
  • X-ray irradiation angles in the X direction and the Y direction are calculated using equations (3) to (6) (S1212).
  • the coordinates of the position of the detected void defect on the wafer surface are calculated using Equation (Equation 2) and Equation (Equation 7) (S1213).
  • the magnification at the void defect centroid position is calculated using the equation (Equation 8) (S1214).
  • TSV the detected void defect is generated is associated by image processing (S1215). That is, the TSV region including the defect gravity center position on the image is obtained.
  • the depth and size of the defect are calculated (S1216).
  • the depth of the defect is a depth from the top side of the TSV, and the X-coordinate of the position of the TSV and void defect on the wafer surface calculated in S1206 and S1213 and the shape correction coefficient in the X direction calculated in S1208 are used.
  • the calculation is performed by the equation (Equation 19).
  • the size of the void the size of the void defect is calculated using the size of the circle on the image acquired in S1211 and the magnification calculated in S1214 (S1216).
  • FIG. 13 shows an imaging condition setting screen 132 of the GUI screen.
  • an inspection mode screen 130 for inspecting a wafer a recipe creation screen 131 for creating an inspection recipe
  • an imaging condition setting screen 132 for creating an inspection recipe
  • a load / unload screen 133 for loading and unloading a wafer.
  • the stage parameter 1320 such as the rotation angle 1329 is input.
  • the reference distance 1325 is a distance from the X-ray source 1 to the X-ray detector 5.
  • a magnification 1326 is input based on this distance, a stage height 1327 is calculated and displayed. Conversely, when a stage height 1327 is input. A magnification 1326 is calculated and displayed.
  • the tilt angle 1328 is the tilt angle 74 of the detector, and is set so that the luminance contrast between the TSV and the void defect is sufficiently high within a range where the TSV does not overlap.
  • the rotation angle 1329 is the rotation angle of the rotary stage 4 and is set to be the smallest in a range where TSV images do not overlap.
  • the wafer is selected from the pull-down menu 134 and the pre-registered layout information is taken in.
  • a die map on the wafer as shown in FIG. 2 is displayed, a user selects a die used for imaging condition setting, further displays TSV layout information in the die, and a user uses the position of a pattern used for imaging condition setting. specify.
  • the coordinates of the translation stage 3 having the designated position as the center of the visual field are calculated and displayed in the stage coordinate display window 135, and the translation stage 3 is moved to that position. If the wafer layout information is not captured, the translation stage 3 can be moved by inputting coordinates. Alternatively, the translation stage 3 can be translated by a control panel (not shown) directly connected to the stage controller 102 and the rotary stage 4 can be rotated, and the display of the stage coordinates is updated with the movement. If the automatic rotation angle calculation button 136 is pressed in this state, the stage rotation angle without overlapping transmission images is automatically calculated, and the rotation angle of the rotary stage 4 is set to that angle.
  • an X-ray transmission image is displayed in real time. However, the exposure time and the average number of sheets are reflected after a certain period of time has elapsed after all parameters have been changed.
  • An arbitrary straight line 138 can be drawn on the display window 137, and its brightness profile can be displayed on the profile display window 139.
  • the X-ray source parameter is adjusted while confirming the brightness with the transmission image and the profile, and the stage parameter is adjusted while confirming the size of the visual field and the appearance of the TSV.
  • FIG. 14 shows a recipe creation screen 131 of the GUI screen.
  • wafer parameters 1310 such as wafer thickness, TSV diameter, and TSV height
  • defect detection parameters 1311 used for image processing and defect detection in the defect detection processing are input. Further, a process of selecting a wafer from the pull-down menu 134 and designating an inspection area is performed.
  • a die selection button 140 is pressed, a die map on the wafer as shown in FIG. 2 is displayed in the display window 137, and a die to be inspected is selected by the user.
  • the layout display button 141 is pressed, the TSV layout information in the die is displayed on the display window 137, and the inspection area is designated by the user.
  • the size and inclination of the inspection area are calculated according to the magnification 1326 set on the imaging condition setting screen 132, the detector inclination angle 1328, and the rotation angle 1329 of the rotary stage 4, and are displayed on the layout displayed on the display window 137. It is set by arranging inspection areas of size and inclination.
  • the coordinates of the translation stage 3 in which the set area is included in the field of view are calculated and displayed in the stage coordinate display window 135, and the translation stage 3 is moved to that position.
  • the position of the translation stage 3 may be finely adjusted by coordinate input or a control panel (not shown) directly connected to the stage controller 102. Since an X-ray transmission image is displayed in the display window 137, when the stage position is determined, the add button 142 is pushed to the inspection object. With this process, one inspection area can be designated.
  • ⁇ To specify multiple inspection areas repeat the area specification from the layout display, X-ray transmission image confirmation, and inspection object addition. At this time, the set inspection region is displayed in the second and subsequent layout displays.
  • Various parameters and inspection area information set on the recipe creation screen 131 are saved together with the parameters set on the imaging condition setting screen 132 by pressing the recipe save button 143.
  • the wafer set in the X-ray inspection apparatus 100 can be unloaded and the wafer stored in the hoop can be loaded (not shown).
  • the target of the X-ray source 1 is described as an example of a tungsten thin film and a diamond thin film.
  • the present invention is not limited to this. Since the optimum X-ray energy differs depending on the measurement object, it can be appropriately changed in consideration of the characteristic X-ray energy and the like. Also, the configuration of the electron optical system is not limited to this.
  • the X-ray detector 5 is described as an example composed of an image intensifier and a CCD camera.
  • the present invention is not limited to this. For example, if a flat panel display is used, a transmission image having no distortion can be obtained over the entire field of view, and inspection can be performed with a wide field of view.
  • the defect detection processing method has been described with reference to the flow shown in FIG. 5, but the processing method is not limited to this.
  • GUI as shown in FIGS. 13 and 14 has been described as an example, the present invention is not limited to this.
  • the measurement object is described as an example of a wafer, but the measurement object is not limited to this.
  • the present invention can be applied to a measurement object in which a complicated pattern is engraved, such as a chip after dicing or MEMS.
  • the tilt angle ⁇ may be changed by rotating the X-ray source 1 and the X-ray detector 5 around the measurement location of the wafer 2 while maintaining the facing positional relationship.
  • the tilt angle ⁇ may be changed by tilting the wafer 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

試料に形成された構造物のX線検査において、同じ構造物に対しては視野内での位置によらずに同じサイズ計測結果を得られるようにするために、X線源から発射したX線を試料に照射し、試料の内部を透過したX線をX線検出器で検出し、検出したX線による試料の透過X線画像を画像生成部で生成し、生成した透過X線画像を画像処理部で処理して試料の内部を検査するX線検査方法において、画像処理部で透過X線画像を処理して試料の内部を検査することを、生成した透過X線画像から検査領域を抽出し、生成した透過X線画像から抽出した検査領域を含む参照画像を生成し、透過X線画像と参照画像とから検査領域における欠陥を検出し、この検出した欠陥に対して試料の設計情報と予め設定したパラメータを用いて検出した欠陥の位置とサイズを補正し、この補正した欠陥の位置とサイズの情報を出力するようにした。

Description

X線検査方法及び装置
本発明はX線透過像に基づく半導体検査装置および方法に関する。
 半導体の高集積化が進み、近年では3D積層技術の進化も著しい。特に、TSV(Through Si Via)技術は次世代の半導体積層技術として期待されている。TSVの寸法は直径10~20μm、深さ80μm程度であり、現行の3D積層に広く用いられているマイクロバンプよりも微小であり、かつアスペクト比が高い。このため、CuメッキでTSVを形成する際に発生するボイドが致命的な欠陥となりやすく、TSV内のボイド検査のニーズが高い。ボイド検出技術としては、X線を対象基板に照射し、その透過画像を解析する手法が広く用いられており、特許文献1には基板鉛直方向に対して傾斜させた方向からX線を照射して、ボイドを検出する技術が記載されている。
 また、TSVのような微細な構造物が正しくできているかを検査するためにそのサイズを計測するニーズもあり、特許文献2には、TSVの形状パラメータを変化させたシミュレーションX画像を多数生成してデータベースに登録しておき、撮像されたX線画像に最も類似したシミュレーションX画像を探索して検査対象TSVの形状パラメータ推定を行う技術が記載されている。特許文献2には、さらに撮像画像とシミュレーションX画像の比較により欠陥を検出する技術が記載されている。
特開2013-130392号公報 特開2014-16239号公報
 アスペクト比の高いTSVの中のボイドを検出するためには、特許文献1に記載されているように、基板鉛直方向に対して傾斜させた方向からX線を照射して撮像する必要があり、その傾斜角は大きい方がよい。しかし、X線の透過画像では、X線源からの撮像面までの距離と対象物までの距離の比によって倍率が変化するため、そのように撮像すると視野内の位置によって倍率が変化する。また、X線入射角度によって対象物が投影されて観測される像の形状が変化するため、これも視野内の位置に依存する。したがって、このような画像を用いてTSVのような微細な構造物のサイズを計測すると、視野内の位置によって異なる結果となるという問題がある。
 特許文献2には視野による像の違いについては記載されていないが、この方法を用いて上記問題点を解決するためには、形状パラメータを変化させたシミュレーション画像を撮像位置毎に作成する必要がある。さらに傾斜角や、X線源、対象物、撮像面の相互間の距離を変化させたい場合は、別のシミュレーション画像セットを用意しておく必要があり、これには非常に時間がかかるため、実現困難である。
 そこで、本発明の目的は、上記した従来技術の課題を解決して、微細な構造物の中の微細な欠陥を検出可能、かつ同じ対象物のサイズ計測結果は、視野内での位置によらずに同じとなるようなX線検査方法および装置を提供することにある。
 上記した従来技術の課題を解決するために、本発明では、X線源から発射したX線を試料に照射し、試料の内部を透過したX線をX線検出器で検出し、検出したX線による試料の透過X線画像を画像生成部で生成し、生成した透過X線画像を画像処理部で処理して試料の内部を検査するX線検査方法において、画像処理部で透過X線画像を処理して試料の内部を検査することを、生成した透過X線画像から検査領域を抽出し、生成した透過X線画像から抽出した検査領域を含む参照画像を生成し、透過X線画像と参照画像とから検査領域における欠陥を検出し、この検出した欠陥に対して試料の設計情報と予め設定したパラメータとを用いて検出した欠陥の位置とサイズを補正し、この補正した欠陥の位置とサイズの情報を出力するようにした。
 また、上記した従来技術の課題を解決するために、本発明では、X線を発射するX線源と、X線源から発射されて試料の内部を透過したX線を検出するX線検出器と、X線検出器で検出したX線による試料の透過X線画像を生成する画像生成部と、画像生成部で生成した透過X線画像を処理して試料の内部を検査する画像処理ユニットと、画像処理ユニットで処理した結果を出力する出力部とを備えたX線検査装置において、画像処理ユニットは、生成した透過X線画像から検査領域を抽出する検査領域抽出部と、生成した透過X線画像から検査領域抽出部で抽出した検査領域を含む参照画像を生成する参照画像生成部と、画像生成部で生成した透過X線画像と参照画像生成部で生成した参照画像とから検査領域における欠陥を検出する欠陥検出部と、欠陥検出部で検出した欠陥に対して試料の設計情報と予め設定したパラメータを用いて検出した欠陥の位置とサイズを補正する補正処理部とを有し、補正処理部で補正した欠陥の位置とサイズの情報を出力部に出力するように構成した。
 本発明によれば、視野内の位置によって異なるX線照射角度および倍率を考慮した補正ができるため、視野内の位置によらずに同じ対象物のサイズ計測結果を得られる。これにより、視野内の欠陥検出感度を均一にすることが可能となる。また、サイズ計測結果や欠陥検出結果を利用した信頼性の高い統計解析が可能となる。
本発明の実施例にかかるX線検査装置の概略構成を示すブロック図である。 本発明のX線検査装置の画像解析部の構成を示すブロック図である。 本発明の実施例において検査対象とするウェハの平面図である。 本発明の実施例において検査対象とするウェハの図3における線A-Aに沿った断面図である。 本発明の実施例においてウェハに対して傾斜した方向からX線を照射した場合に得られるX線透過像を説明する試料とX線検出器の関係を示す側面図である。 本発明の実施例におけるX線透過画像から欠陥検出およびサイズ計測を行う画像解析処理の流れを説明するフロー図である。 本発明の実施例において1層のTSVが形成されたウェハに斜めからX線を照射して得られるX線透過画像とその部分拡大図である。 本発明の実施例において撮像画像内のX座標によるX方向のX線照射角度および倍率の変化を説明するX線源と試料とX線検出器の関係を示す側面図である。 本発明の実施例において撮像画像内の二次元座標によるY方向のX線照射角度および倍率の変化を説明する試料とX線検出器との斜視図である。 本発明の実施例においてX方向およびY方向のX線照射角度の違いによるTSVの投影像のサイズの変化を説明するTSVの側面図である。 本発明の実施例において視野中央におけるTSVの投影像である。 本発明の実施例において視野周辺におけるTSVの投影像である。 本発明の実施例においてボイド欠陥を含むTSVの投影像である。 本発明の実施例におけるTSVおよび欠陥の位置とサイズを補正する処理の流れを説明するフロー図である。 本発明の実施例における撮像条件を設定するGUI画面の正面である。 本発明の実施例におけるレシピを作成するGUI画面の正面である。 本発明の実施例においてTSV及び欠陥の補正された位置・サイズ情報のファイル出力の例を示す表である。
 本発明は、X線検査装置において、構造物サイズの設計情報を入力しておき、X線画像の視野中央と構造物検出位置における期待される投影像をもとにサイズ補正係数を算出し、画像処理により得られる構造物像のサイズから補正係数を用いて構造物のサイズを算出するようにしたものである。
 また、本発明は、X線を斜めに照射して得られる透過画像の画像解析に基づき欠陥を検出するX線検査方法において、X線源から撮像面までの距離、X線源から対象基板表面までの距離、傾斜角度、画素サイズ、画像サイズ、サイズ計測対象物の設計サイズを含む情報を取得し、視野中央における、対象基板表面の世界座標とサイズ計測対象物の期待される投影像サイズを算出し、X線透過画像からサイズ計測対象物の像の重心座標と幅と高さを検出し、検出された重心座標における、倍率とX線照射角度を算出し、X線照射角度に基づいてサイズ計測対象物の期待される投影像サイズを算出し、検出座標および視野中央におけるそれぞれの投影サイズに基づき、全視野で投影サイズを等しくさせるための補正係数を算出し、検出されたサイズ計測対象物の像幅と高さから倍率と補正係数を用いて投影サイズを変換し、これに基づきサイズ計測対象物のサイズを算出するようにしたものである。
 本実施の形態を説明するための全図において同一機能を有するものは同一の符号を付すようにし、その繰り返しの説明は原則として省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 ただし、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。
 図1AはX線検査装置100の模式図である。X線検査装置100は、X線源1、測定対象であるウェハ2を保持し、移動させるための並進ステージ3と回転ステージ4、X線検出器5、搖動ステージ6、X線遮蔽壁7、X線源コントローラ101、ステージコントローラ102、X線検出器コントローラ103、制御部104、画像解析部105、入出力部106を備えている。
 X線源1は電子光学系とターゲットで構成されている(図示せず)。電子光学系はショットキー型電子銃であり、ターゲットはタングステン薄膜とダイヤモンド薄膜で構成されている。並進ステージ3はX軸、Y軸、Z軸方向に移動可能であり、回転ステージ4はXY平面内で回転可能である(以後、回転ステージのXY面内での回転方向をθ方向と定義する)。また、並進ステージ3、回転ステージ4の中央部はX線の吸収が小さいガラス(図示せず)で構成されている。
 X線検出器5は並進ステージ3、回転ステージ4を挟んで、X線源1と対向する位置に配置されている。ここで、X線検出器5にはイメージインテンシファイアとCCDカメラで構成したものを用いる。
 X線源1から照射されたX線は並進ステージ3の上に配置されたウェハ2で吸収され、その透過X線はX線検出器5で検出される。X線検出器5とX線源1との間の距離は固定であり、並進ステージ3でウェハ2の位置を変えることで倍率と視野の広さを変更する。X線検出器5は、ゴニオメータと同様な構造を有する搖動ステージ6によりX線源1のX線発生位置を中心にXZ面内で回転可能(XZ面内での回転方向をΦ方向と定義する)であり、その回転角度に応じて並進ステージ3でウェハ2を並進移動させ、測定領域がずれないように調整する。
 上記、X線源1、並進ステージ3、回転ステージ4、X線検出器5はX線遮蔽壁7の内部に配置され、外部にX線が漏れないようになっている。
 X線源コントローラ101はX線源1の各種パラメータ(管電圧、管電流、電子光学系への印加磁場、印加電圧、気圧等)とX線発生のON/OFFをコントロールし、ステージコントローラ102は並進ステージ3、回転ステージ4の移動座標をコントロールし、X線検出器コントローラ103はX線検出器5からのデータの読み込みと撮像条件(感度、平均化枚数等)の設定を行う。
 X線源コントローラ101、ステージコントローラ102、X線検出器コントローラ103は制御部104で制御される。制御部104は、事前に入力された検査条件に基づき、ウェハ2を移動させつつ、X線透過像を撮像する。画像解析部105は、制御部104からX線透過像と事前に入力された検査パラメータを受け取り、画像解析によりボイドなどの欠陥を判別し、TSVなどの検査対象物のサイズおよび位置を計測し、結果を入出力部106に表示する。
 図1Bに、画像解析部105の構成を示す。画像解析部105は、ウェハ情報入力部1051、画像入力部1052、画像前処理部1053、領域抽出部1054、参照画像作成部1055、欠陥検出部1056、補正処理部1057、入出力部1058を備えている。
 ウェハ情報入力部1051は、制御部104からウェハ2の設計情報を入力し、補正処理部1057へ送る。
 画像入力部1052は、X線検出器5で撮像されたX線透過像を入力し画像前処理部1053へ出力する。画像前処理部1053では、画像入力部1052から受け取った画像に対して後述する前処理を行い、その結果を領域抽出部1054に送る。領域抽出部1054では、前処理された画像からTSVなどの検査対象物が形成されている検査対象領域を抽出する。
 参照画像作成部1055では、領域抽出部1054で抽出した検査対象領域情報とを用いて、参照画像を作成する。
 欠陥検出部1056では、参照画像作成部1055で作成した参照画像を用いて領域抽出部1054で抽出した検査対象領域の画像から欠陥を検出し、欠陥と検査対象物の位置およびサイズを計測する。補正処理部1057では、ウェハ情報入力部1051から送られてきたウィは2の設計情報を用いて計測した欠陥と検査対象物の位置およびサイズを補正処理し、入出力部1058から入出力部106へ出力する。
 図2、図3にウェハ2の模式図の一例を示す。図2はウェハ2全体の平面図とTSVが形成されている領域の拡大図、図3は図2内のA-A’の断面図を示している。ウェハ2には複数のダイ10が規則的に形成されており、ダイ10の一部にTSV11が形成されている。TSV11の直径はΦであり、X軸方向にはP、Y軸方向にはPのピッチで形成されている。図3では、第一の層13、第二の層14、第三の層15が積層されており、それぞれの層をTSV11とマイクロバンプ12で接続している。TSV11の長さはhである。
 図4を用いて、搖動ステージ6によりX線検出器5の位置をX線源1のX線発生位置を中心にXZ面内でΦ方向に傾斜させてウェハ2のX線透過像を取得した時の説明を行う。ここでは、ウェハ2の第二の層14に形成されたTSV11を1つだけ取り出したXZ断面図で説明を行う。
 TSVは主にCuで形成されており、Cuはウェハ2の大部分を構成するSiよりも原子番号が大きいため、X線の吸収が大きい。つまり、第二の層14にX線200を照射し、X線検出器5で透過X線を検出した場合、撮像画像ではTSV11が存在しない領域はX線の吸収が小さいため明るくなり、TSV11が存在する領域はX線の吸収が大きいため暗くなる。さらにTSV11内部にボイド20が存在すれば、ボイド領域ではX線の吸収が小さくなり、ボイド領域だけが周辺よりも明るくなり、この明るさの差をもって、ボイドを検出することができる。
 Φ=0度、つまり第二の層14の鉛直方向からX線200を照射した場合には、TSV11領域を通過したX線を検出するX線検出器5の画素の数が少なく、かつ該当画素に入射するX線のTSV11での吸収が最大となる。その結果、X線検出器5の画素番号(X線検出器5のライン状に並ぶ複数の画素を一方の端から順に数えていった時の番号)ごとの明るさ(出力信号の大きさ)をプロットしたプロファイル30のようにTSV存在領域に対応する位置の画素からの出力信号301が小さくなり、画像の明るさが非常に暗くなる。
 また、TSV11内部にボイド20が存在していても、TSV11での吸収がそもそも非常に大きいため、TSV11の検出信号302とボイド20の検出信号303とのコントラストが悪く、検出性能が低下する。
 一方、搖動ステージ6によりX線検出器5をΦ方向に傾斜させてX線を照射した場合には(例えばΦ=60度)、TSV11領域を通過したX線を検出するX船検出器5の画素が増加し、かつ該当画素に入射するX線のTSV11での吸収もΦ=0度のときよりも小さくなり、プロファイル31のようにTSV存在領域に対応する位置の画素からの出力信号311のうちTSV11の検出信号312とボイド20の検出信号313との明るさ(出力信号の大きさ)のレベルが上がり、ボイド20をより高いコントラストで検出することが可能となる。
 このように、X船検出器5をウェハ2に対してΦ方向に傾斜させてX線透過像を取得することでTSV領域に対するボイド部分の画像の明るさコントラストを大きくすることができ、検出画像を処理した場合のTSV内部のボイド20の検出精度を向上させることが可能となる。
 図5を用いて、画像解析部105における処理フローを説明する。ここでは、一層のみにTSV11が形成されたウェハ2を対象とし、図1に示した構成において搖動ステージ6によりX線検出器5の位置をX線源1のX線発生位置を中心にXZ面内でΦ方向に傾斜させて複数のTSV11を含むX線透過像を取得した場合を例とする。図6に画像例を示す。TSV11がほぼ円筒形状である場合、透過像であるTSV像65は横長の長方形の左右を丸めたような形となる。また、TSV11の内部にボイド20が存在する場合、周囲より明るい像66が観測される。
 画像解析部105は、制御部104からの画像60を画像入力部1052で受け取り、この入力した画像が画像前処理部1053に送られて前処理S601を行い検査画像61を作成する。画像前処理部1053で行う前処理は適正な検査画像61を得るための処理であり、シェーディング補正、コントラスト補正、ノイズ除去などを含む。X線検出器起因の撮像歪を補正する処理を含めてもよい。
 次に、画像前処理部1053で作成された検査画像61は領域抽出部1054に送られる。領域抽出部1054では、検査画像61からTSV像65を求めてTSV領域を抽出するTSV領域抽出S602を行う。図6に示すように、TSV像65は何もないところよりも暗いため、暗い方を1、明るい方を0とする二値化を行う。二値化しきい値は、大津の方法などを利用すれば自動で定めることができる。ボイド20が存在することを想定して、二値画像上で1のパターンの輪郭追跡を行ったのち凸包を求め内側を1で塗りつぶす。ラベリングにより1個ずつ別々のものとして識別し、それぞれの面積、周囲長、重心位置、XおよびY座標の最小と最大などの情報を抽出する。
 次に、参照画像作成部1055において、画像前処理部1053で作成した検査画像61と領域抽出部1054で得られたTSV領域情報を用いて参照画像62を作成する参照画像作成S603を行う。参照画像62は、正常なTSVの像を模擬した画像である。
 光学式の検査では、ウェハ上のパターンの周期性を利用して複数の同一のパターンを重ね合わせて平均やメディアンを算出する方法がよく用いられている。しかし、X線透過像では同一のものが規則的に並んでいても撮像位置によって形状とサイズが変化するため、各TSV像65ごとに、そのTSV像に対応する参照画像を作成する。
 例えば、検査画像61に指定サイズの最小値フィルタをかけたあと同サイズの最大値フィルタをかける処理(オープニング)により、明るいボイド部分を暗くした画像を作成する。あるいは、TSVの外周および中心からの距離に応じて領域を分割し、領域毎に平均またはメディアンを算出して値を置き換える処理により、上下左右対称な正常らしい画像を作成する。
 次に、欠陥検出部1056において、画像前処理部1053で作成した検査画像61と参照画像作成部1055で作成した参照画像62を用いて、検査画像61から欠陥を検出する欠陥検出S604を行う。具体的には、検査画像61から参照画像62を引いた差分画像を作成して二値化し、ラベリングを行う。
 ラベル付けされた領域は欠陥候補であるが、画像取得時のノイズや欠陥とは言えない密度ばらつきによる輝度差に起因して検出される虚報が含まれる。そのため、各欠陥領域について、面積、真円度、TSVとの相対位置、輝度などの特徴を算出しておき、予め指定したしきい値との比較により欠陥らしさの高いもののみ欠陥として抽出する。あるいは特徴空間上で欠陥か虚報かを教示して学習を行い、学習により得られる分類基準を用いて欠陥と虚報を識別する。
 次に、欠陥検出部1056において、欠陥検出処理S602で抽出された個々のTSV領域およびS604で抽出された欠陥領域の位置・サイズ算出処理S605を行う。具体的にはTSV領域の重心位置、TSV領域を囲む矩形(回転なし)サイズ、欠陥領域の重心位置、面積などである。
 最後に、欠陥検出部1056で抽出されたTSV領域及び欠陥領域について、補正処理部1057において、ウェハ情報入力部1051で制御部104から取得したウェハ2の設計情報と予め入力しておいたパラメータ63とを用いて位置・サイズ補正処理S606を行い、TSVまたは欠陥の補正された位置・サイズ情報64を出力する。具体的には、TSVの世界座標、視野中央基準の相対座標、直径、高さ、欠陥のTSVトップからの深さ、サイズ(真円換算の直径)、長手方向サイズ、短手方向サイズなどである。
 これらの情報は、入出力部1058から出力され、入出力部106に入力される。入出力部106において、ファイル出力およびGUI画面に一覧表示される。また、入出力部106では、入力画像に検出された欠陥をマークした画像を表示することもできる。
 ファイル形式の出力データ1500の例を、図15に示す。出力データ1500には、TSVのIDを示すTSV番号1501、TSVの補正されたX,Y座標位置を示すTSV位置表示欄1502、TSVの補正されたサイズとして高さと径を表示するTSVサイズ表示欄1503、TSVの内部で検出された欠陥についてTSV内における深さと径との補正されたデータを表示する欠陥情報表示欄1504とがあり、各TSVの内部における欠陥の情報が一覧できる。
 図7から図10Bを用いて、位置・サイズ補正処理S606を詳細に説明する。
  図7は、X線源1、検査対象物であるウェハ2、X線検出器5のX方向とZ方向の位置関係を表す断面図である。X線源1のX線発生位置を原点70とし、下向きにZ軸、紙面の手前から奥に向かってY軸、左向きにX軸をとる。原点70からX線検出器5の視野中心すなわち画像中心72までの距離を基準距離(D)73とする。X線検出器5の撮像面は原点70と視野中心(画像中心)72を結ぶ直線と垂直に保たれている。検出器の傾斜角度74とウェハ表面までの高さ(H)75は、必要な倍率およびTSVおよび欠陥の検出しやすさを考慮して予め決められる。なお、ここでは傾斜角度74は時計回りの方向を正方向とする。
 ウェハ表面の視野中心71は、並進ステージ3によって原点70と検出器5の視野中心(画像中心)72を結ぶ線上に来るよう調整される。したがって、ウェハ表面の視野中心71のX座標(Xcenter)76は、次式で求められる。
Figure JPOXMLDOC01-appb-M000001
 図より、画像中心以外のある着目位置78に撮像された対象物はウェハ表面上では位置77にあり、そのX座標(Xtarget)80は、傾斜角度74とは異なる実際のX線の照射角度(Φ)79から次式で求められることが分かる。
Figure JPOXMLDOC01-appb-M000002
 図8は、図7を別の視点から見た図であり、着目位置78とX方向およびY方向のX線照射角度の関係を表す図である。まず、着目位置78の画像中心(画像中心)72からの相対位置(Ximage, Yimage)81,82は、次式により計算される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004

  ここで、X, Yは画像上の座標(画素単位)、pixel_sizeは検出器の画素サイズ、image_widthは画像幅(画素単位)、image_heightは画像高さ(画素単位)である。
 次に、X方向の実際の照射角度79と検出器の傾斜角度74との差(Φ・・Φ)83は次式により計算される。
Figure JPOXMLDOC01-appb-M000005
 X方向の実際の角度(Φ)84は次式により計算される。
Figure JPOXMLDOC01-appb-M000006
 図示していないが、ウェハ表面上の対象物の位置77のY座標(Ytarget)は、次式により計算される。
Figure JPOXMLDOC01-appb-M000007
 着目位置の倍率(M target)は、X線源から対象物までの距離と、検出位置までの距離の比で決まるため、次式により計算される。
Figure JPOXMLDOC01-appb-M000008
 図9は、TSV11の投影像がX線の照射角度によってどのように変形するのかを説明する図である。図10Aは視野中央における投影像、図10Bは視野周辺における投影像である。TSV11が径(Φ)91と高さ(h)92をパラメータとする円筒形状であるとすると、図10Aの視野中央における投影像97の長さ(hcentor)93は、図9より、次式で表されることがわかる。
Figure JPOXMLDOC01-appb-M000009
 視野中央における投影像97の高さ(Φcentor)94は、Φそのままとなる。図10Bの視野周辺ではX方向Y方向ともに照射角度がずれるため、TSV11のトップ側の投影位置とボトム側の投影位置にずれが生じ、投影像98は傾いた形状となる。これを囲む矩形99の長さ(htarget)95と高さ(Φterget)96は、次式で表される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 これらの値から、視野周辺で得られた形状を視野中央での形状に補正する補正係数(corr , corr )を次式により定義する。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 X線検出器5の着目位置78で撮像される画像は投影像98が拡大されたものと考えられるため、着目位置で得られる画像上のTSVの投影像を囲む矩形のサイズをもとに着目位置の倍率(M target)を用いて投影像98の長さ(htarget)95と高さ(Φterget)96を求め、さらに補正係数(corr , corr )を用いて同じ対象物を視野中心で観測した場合の長さ(hcentor)93と高さ(Φcenter)94を求める。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 実際のTSV11のパラメータは式(数9)より導かれる次式を用いて算出される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 ここでXmaX,Xmin,YmaX,Yminは、S602で得られたTSV領域のX座標、Y座標の最大値と最小値である。XmaX- Xmin+1とYmaX- Ymin+1はS605にて算出され、TSV領域を囲む矩形のサイズとして記録されている。
 また、S602で得られたTSV領域の重心位置を着目位置78とすると、ウェハ表面上の対象物の位置77の座標(Xtaeget, Ytarget)は、TSV11の重心をウェハ表面に投影した位置となる。TSV11の正確な位置はTSV11のトップの位置(Xtaeget_top, Ytarget_top)であると考えられ、次式によりTSV11のトップの位置を算出する。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 また、欠陥であるボイド20はほぼ球状であると仮定し、S605にて画像上の面積すなわち欠陥領域の画素数から円換算のサイズを次式により求め、欠陥検出座標での倍率を用いてサイズを算出する。
Figure JPOXMLDOC01-appb-M000020
 欠陥であるボイド(ボイド欠陥)の位置はTSV11のトップからの深さで表す。図11は、ボイド20を含むTSV11の投影像である。TSVの投影像98の重心位置112は、画像処理により求めた重心位置を元に式(数2)と式(数7)を用いて算出される。同様にボイド欠陥の像111の重心位置113も算出できる。これらからボイド欠陥のTSVに対するX方向の相対位置(Xrelative)114を算出することができる。なお相対位置は左向きを正として表す。ボイド欠陥の深さは次式により算出される。
Figure JPOXMLDOC01-appb-M000021
 以上の説明を踏まえて、補正処理部1057で実行するTSVおよびボイド欠陥の位置・サイズ補正処理(S606)の処理の流れを図12に示す。
 始めに、処理に必要なパラメータを取得する(S1201)。固定値の装置情報として、画像サイズ、画素サイズを取得し、その他の装置情報として制御系からX線源からX線検出器までの基準距離73、X線検出器の傾斜角度74、ステージ高さを取得する。また、対象物の情報としてウェハ厚さ、TSVの直径および高さの設計値をGUIまたは条件設定ファイルを通じて取得する。
 次に、位置・サイズ補正基本情報を算出する(S1202)。ウェハ表面高さ73をステージ高さからウェハ厚さを差し引くことにより算出し、X線検出器の傾斜角度74に基づいて、ウェハ表面の視野中心71のX,Y座標を算出する。また、視野中心におけるTSVの期待される見かけの長さ93と高さ94を、円筒のパラメータhとΦに設計値を入力して求めておく。
 次に、S602で検出された全てのTSV領域について、S1204からS1209までの位置・サイズ補正処理を繰り返す(S1203)。まず、S605で算出されるTSV領域の画像上の重心位置と領域を囲む矩形のサイズを取得する(S1204)。次に、画像上の重心位置に基づき、式(数3)~(数6)を用いてX方向およびY方向のX線照射角度を算出する(S1205)。次に、TSV重心位置における倍率を式(数8)を用いて算出する(S1206)。次に、その座標におけるTSVの期待される見かけの長さ95と高さ96を、式(数10)および式(数11)の円筒のパラメータhとΦに設計値を入力して求め、式(数12)と式(数13)を用いてX方向およびY方向の形状補正係数を算出する(S1207)。
 次に、S1204で取得した画像上のTSV領域を囲む矩形のサイズ、S1206で算出した倍率、S1207で算出した形状補正係数を用い、式(数14)および(数15)により視野中心で観測した場合の長さと高さを算出し、式(数16)および(数17)によりTSVの高さと直径を算出する(S1208)。次に、X線照射角度に基づき式(数2)と式(数7)を用いて、検出されたTSVの重心をウェハ表面上に投影した位置77の座標を算出し、式(数18)および(数19)を用いてTSVトップの位置を算出する(S1209)。ここで算出されるTSV位置は図7に示す座標系で表される世界座標であるが、視野中心の世界座標を差し引いて、視野中心基準の試料表面座標を算出してもよい。
 次に、S604で検出された全てのボイド欠陥領域について、S1211からS1216までの位置・サイズ補正処理を繰り返す(S1210)。まず、S605で算出される欠陥領域の画像上の重心位置と面積と円の直径換算のサイズを取得する(S1211)。次に、TSV領域と同様に画像上の重心位置に基づき、式(数3)~(数6)を用いてX方向およびY方向のX線照射角度を算出する(S1212)。次に、X線照射角度に基づき式(数2)と式(数7)を用いて、検出されたボイド欠陥のウェハ表面上の位置の座標を算出する(S1213)。
 次に、ボイド欠陥重心位置における倍率を式(数8)を用いて算出する(S1214)。次に、検出されたボイド欠陥がどのTSVの中に発生しているのかの対応付けを画像処理により行う(S1215)。すなわち画像上の欠陥重心位置を含むTSV領域を求める。最後に欠陥の深さとサイズの算出を行う(S1216)。欠陥の深さとはTSVのトップ側からの深さのことであり、S1206およびS1213で算出したTSVおよびボイド欠陥のウェハ表面上の位置のX座標とS1208で算出したX方向の形状補正係数を用いて、式(数19)により算出する。ボイドのサイズはS1211で取得した画像上の円の直径換算のサイズとS1214で算出した倍率を用いてボイド欠陥のサイズを算出する(S1216)。
 図13および図14を用いて本発明を実施するシステムのGUIの一例を説明する。図13は、GUI画面の撮像条件設定画面132を表す。GUI画面はウェハを検査するための検査モード画面130、検査のレシピを作成するためのレシピ作成画面131、撮像条件設定画面132、ウェハの搬入出を行うためのロード・アンロード画面133の4つのサブ画面を有する。
 撮像条件設定画面132では、X線源パラメータの管電圧1321、プローブ電流1322、検出器パラメータの露光時間1323と平均枚数1324、ステージパラメータの基準距離1325、倍率1326、ステージ高さ1327、傾斜角度1328、回転角度1329などのステージパラメータ1320を入力する。
 基準距離1325はX線源1からX線検出器5までの距離であり、これをもとに倍率1326を入力するとステージ高さ1327が計算されて表示され、逆にステージ高さ1327を入力すると倍率1326が計算されて表示される。傾斜角度1328は検出器の傾斜角度74のことであり、TSVが重ならない範囲でTSVとボイド欠陥の輝度コントラストが十分に高くなるように設定する。回転角度1329は回転ステージ4の回転角度のことであり、TSVの像どうしが重ならない範囲でもっとも小さくなるように設定する。
 ウェハ2のレイアウト情報が既知であれば、プルダウンメニュー134からウェハを選択し、予め登録してあるレイアウト情報を取り込む。図2に示すようなウェハ上のダイマップを表示して、ユーザにより撮像条件設定に用いるダイを選択し、さらにダイ内のTSVレイアウト情報を表示してユーザにより撮像条件設定に用いるパターンの位置を指定する。
 指定した位置が視野中心になる並進ステージ3の座標が計算され、ステージ座標表示ウィンドウ135に表示され、その位置に並進ステージ3が移動される。またウェハレイアウト情報を取り込まない場合は、座標を入力して並進ステージ3を動かすことが可能である。あるいはステージコントローラ102に直結した制御盤(図示せず)で並進ステージ3を並進移動させ、回転ステージ4を回転させることが可能であり、移動に伴いステージ座標の表示が更新される。この状態で回転角度自動計算ボタン136を押せば、透過像の重なりがないステージ回転角度を自動計算し、回転ステージ4の回転角度をその角度に設定する。
 表示ウィンドウ137にはX線透過像がリアルタイム表示される。ただし、露光時間と平均枚数が反映されるのは、全てのパラメータの変化がなくなってから一定時間経過した後とする。表示ウィンドウ137には、任意の直線138をひくことが可能であり、その明るさプロファイルをプロファイル表示ウィンドウ139に表示可能である。透過像およびプロファイルで明るさを確認しながらX線源パラメータを調整し、視野の大きさやTSVの見え方を確認しながらステージパラメータを調整する。
 図14は、GUI画面のレシピ作成画面131を表す。レシピ作成画面131では、ウェハ厚さ、TSV直径、TSV高さなどのウェハパラメータ1310、欠陥検出処理において画像処理や欠陥検出に用いる欠陥検出パラメータ1311を入力する。また、プルダウンメニュー134からウェハを選択し、検査領域を指定する処理を行う。
 まず、ダイ選択ボタン140押下により、表示ウィンドウ137に図2に示すようなウェハ上のダイマップを表示して、ユーザにより検査対象ダイを選択する。次に、レイアウト表示ボタン141押下により表示ウィンドウ137にダイ内のTSVレイアウト情報を表示して、ユーザにより検査領域を指定する。
 検査領域の大きさと傾きは撮像条件設定画面132で設定した倍率1326および検出器の傾斜角度1328および回転ステージ4の回転角度1329に応じて算出しておき、表示ウィンドウ137に表示したレイアウト上にその大きさおよび傾きの検査領域を配置することにより設定する。
 設定した領域が視野に含まれる並進ステージ3の座標が計算され、ステージ座標表示ウィンドウ135に表示され、その位置に並進ステージ3が移動される。座標入力やステージコントローラ102に直結した制御盤(図示せず)により並進ステージ3の位置を微調整してもよい。表示ウィンドウ137にX線透過像が表示されるので、ステージ位置が確定したら検査対象に追加ボタン142を押す。この処理により、検査領域を1箇所指定することができる。
 複数の検査領域指定のためには、レイアウト表示からの領域指定とX線透過像の確認、検査対象追加を繰り返す。このとき、二回目以降のレイアウト表示において、設定済みの検査領域が表示されているようにする。レシピ保存ボタン143押下により撮像条件設定画面132で設定したパラメータとともにレシピ作成画面131で設定した各種パラメータと検査領域情報を保存する。
 検査モード画面130では、レシピ作成画面131で作成したレシピを選択し、検査の開始・中止を行うことができる。また、検査結果の保存、読み出しや解析も行うことができる(図示せず)。検査結果とは、TSVの世界座標あるいは視野中央基準の相対座標あるいはその両方のTSV位置情報、直径および高さのTSVサイズ情報、欠陥ごとのTSVトップからの深さ、欠陥の真円換算の直径、長手方向サイズ、短手方向サイズなどの欠陥サイズ情報、入力画像に検出された欠陥をマークした画像、TSV領域を表す画像などの画像である。図15にTSVごとの検査結果テーブルである出力データ1500の一例を示す。
 ロード・アンロード画面133では、X線検査装置100内部にセットされているウェハの搬出、フープに格納されているウェハの搬入を行うことができる(図示せず)。
 本実施例では、X線源1のターゲットがタングステン薄膜とダイヤモンド薄膜の例で説明を行ったが、これに限定されることはない。測定対象によって最適なX線のエネルギが異なるため、特性X線のエネルギ等を考慮し、適宜変更可能である。また、電子光学系の構成もこれに限定されることはない。
 本実施例では、X線検出器5がイメージインテンシファイアとCCDカメラで構成した例で説明を行ったが、これに限定されることはない。例えば、フラットパネルディスプレイを使えば、視野全域でひずみがない透過像が得られ、かつ広い視野で検査を行うことが可能となる。
 本実施例では、欠陥検出の処理方法を図5に示すフローで説明したが、処理方法はこれに限定されることはない。また、図13、図14のようなGUIを例として説明したが、これに限定されることはない。
 本実施例では、TSVを対象として説明を行ったが、これに限定されることはない。例えば、マイクロバンプやCuピラーについても形状パラメータを入力して各検出位置での見かけの形状を算出することは可能であり、上記説明した方法を適用することが可能である。
 本実施例では、測定対象がウェハの例で説明を行ったが、これに限定されることはない。例えば、ダイシングされた後のチップや、MEMSなど、複雑なパターンが刻まれている測定対象に適用可能である。
 本実施例では、X線検出器5を移動させることで傾斜角度Φを変化させる例で説明を行ったが、これに限定されることはない。例えば、X線源1とX線検出器5を対向した位置関係を維持したまま、ウェハ2の測定箇所を中心に回転させることで、傾斜角度Φを変化させても構わない。または、ウェハ2を傾けることで傾斜角度Φを変化させても構わない。
 本実施例では、複数のSiチップが積層された状態で検査する例で説明を行ったが、これに限定されることはない。一層ずつ積層した後に検査を行っても構わない。また、ダイシングし、パッケージングした後で検査を行っても構わない。
 以上、本発明者らによってなされた発明を実施形態に基づき具体的に説明したが、本発明は本実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 1・・・X線源  2・・・ウェハ  3・・・並進ステージ  4・・・回転ステージ  5・・・X線検出器  6・・・搖動ステージ  7・・・X線遮蔽壁  10・・・ダイ  11・・・TSV  12・・・マイクロバンプ  13・・・第一の層  14・・・第二の層  15・・・第三の層  20・・・ボイド   130・・・検査モード画面  131・・・レシピ作成画面  132・・・撮像条件設定画面  133・・・ロード・アンロード画面。

Claims (10)

  1.  X線源から発射したX線を試料に照射し、
    前記試料の内部を透過したX線をX線検出器で検出し、
    前記検出したX線による前記試料の透過X線画像を画像生成部で生成し、
    前記生成した透過X線画像を画像処理部で処理して前記試料の内部を検査する
    X線検査方法であって、
     前記画像処理部で前記透過X線画像を処理して前記試料の内部を検査することを、
     前記生成した透過X線画像から検査領域を抽出し、
     前記生成した透過X線画像とから前記抽出した検査領域を含む参照画像を生成し、
     前記透過X線画像と前記参照画像とから前記検査領域における欠陥を検出し、
     前記検出した欠陥に対して前記試料の設計情報と予め設定したパラメータを用いて前記検出した欠陥の位置とサイズを補正し、
    前記補正した欠陥の位置とサイズの情報を出力する
    ことを特徴とするX線検査方法。
  2.  請求項1記載のX線検査方法であって、前記画像処理部で前記検出した欠陥の位置とサイズを補正するのに用いる前記予め設定したパラメータには、前記X線検出器の画素サイズと前記生成した透過X線画像の画像サイズ、前記X線源に対する前記X線検出器の視野中心の傾斜角度と前記X線源のX線発生位置から前記試料の表面までの高さ及び前記X線源のX線発生位置から前記X線検出器の視野中心までの距離の情報を含むことを特徴とするX線検査方法。
  3.  請求項1記載のX線検査方法であって、前記画像処理部では、更に、前記透過X線画像から抽出した前記検査領域に対して前記予め設定したパラメータを用いて前記検査領域の位置とサイズを補正し、前記補正した検査領域の位置とサイズの情報を出力することを特徴とするX線検査方法。
  4.  請求項3記載のX線検査方法であって、前記画像処理部では、前記パラメータを用いて前記検査領域における前記X線の照射角度と画像の倍率を求めて前記検査領域の形状補正係数を求め、前記求めた形状補正係数を用いて前記検査領域の位置とサイズを算出して前記検査領域の前記試料の表面上の位置を求めることを特徴とするX線検査方法。
  5.  請求項3記載のX線検査方法であって、前記画像処理部では、前記試料の表面上の位置を求めた前記検査領域と前記位置とサイズを補正した前記検出した欠陥とを対応付けて、前記検査領域における前記欠陥の深さと大きさを求めることを特徴とするX線検査方法。
  6.  X線を発射するX線源と、
    前記X線源から発射されて試料の内部を透過したX線を検出するX線検出器と、
    前記X線検出器で検出したX線による前記試料の透過X線画像を生成する画像生成部と、
    前記画像生成部で生成した透過X線画像を処理して前記試料の内部を検査する画像処理ユニットと
    前記画像処理ユニットで処理した結果を出力する出力部と
    を備えたX線検査装置であって、
     前記画像処理ユニットは、
     前記生成した透過X線画像から検査領域を抽出する検査領域抽出部と、
     前記生成した透過X線画像とから前記検査領域抽出部で抽出した検査領域を含む参照画像を生成する参照画像生成部と、
     前記画像生成部で生成した透過X線画像と前記参照画像生成部で生成した参照画像とから前記検査領域における欠陥を検出する欠陥検出部と、
     前記欠陥検出部で検出した欠陥に対して前記試料の設計情報と予め設定したパラメータを用いて前記抽出した欠陥の位置とサイズを補正する補正処理部と
    を有し、前記補正処理部で補正した欠陥の位置とサイズの情報を前記出力部に出力する
    ことを特徴とするX線検査装置。
  7.  請求項6記載のX線検査装置であって、前記補正処理部において前記欠陥検出部で検出した欠陥の位置とサイズを補正するのに用いる前記予め設定したパラメータには、前記X線検出器の画素サイズと前記生成した透過X線画像の画像サイズ、前記X線源に対する前記X線検出器の視野中心の傾斜角度と前記X線源のX線発生位置から前記試料の表面までの高さ及び前記X線源のX線発生位置から前記X線検出器の視野中心までの距離の情報を含むことを特徴とするX線検査装置。
  8.  請求項6記載のX線検査装置であって、前記補正処理部では、更に、前記透過X線画像から抽出した前記検査領域に対して前記予め設定したパラメータを用いて前記検査領域の位置とサイズを補正し、前記補正した検査領域の位置とサイズの情報を前記出力部に出力することを特徴とするX線検査装置。
  9.  請求項8記載のX線検査装置であって、前記補正処理部では、前記パラメータを用いて前記検査領域における前記X線の照射角度と画像の倍率を求めて前記検査領域の形状補正係数を求め、前記求めた形状補正係数を用いて前記検査領域の位置とサイズを算出して前記検査領域の前記試料の表面上の位置を求めることを特徴とするX線検査装置。
  10.  請求項8記載のX線検査装置であって、前記補正処理部では、前記試料の表面上の位置を求めた前記検査領域と前記位置とサイズを補正した前記検出した欠陥とを対応付けて、前記検査領域のおける前記欠陥の深さと大きさを求めることを特徴とするX線検査装置。
PCT/JP2016/069154 2016-06-28 2016-06-28 X線検査方法及び装置 WO2018003018A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069154 WO2018003018A1 (ja) 2016-06-28 2016-06-28 X線検査方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069154 WO2018003018A1 (ja) 2016-06-28 2016-06-28 X線検査方法及び装置

Publications (1)

Publication Number Publication Date
WO2018003018A1 true WO2018003018A1 (ja) 2018-01-04

Family

ID=60786762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069154 WO2018003018A1 (ja) 2016-06-28 2016-06-28 X線検査方法及び装置

Country Status (1)

Country Link
WO (1) WO2018003018A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021011341A1 (en) * 2019-07-12 2021-01-21 SVXR, Inc. Methods and systems for process control based on x-ray inspection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270146A (ja) * 1994-03-30 1995-10-20 Ngk Insulators Ltd 内部欠陥寸法の測定方法及びそれに用いるテストピース
JP2009198463A (ja) * 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd 検査装置と検査方法
JP2014106113A (ja) * 2012-11-27 2014-06-09 Topcon Corp X線検査装置、およびx線検査方法
WO2016098795A1 (ja) * 2014-12-19 2016-06-23 株式会社日立ハイテクノロジーズ X線検査方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270146A (ja) * 1994-03-30 1995-10-20 Ngk Insulators Ltd 内部欠陥寸法の測定方法及びそれに用いるテストピース
JP2009198463A (ja) * 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd 検査装置と検査方法
JP2014106113A (ja) * 2012-11-27 2014-06-09 Topcon Corp X線検査装置、およびx線検査方法
WO2016098795A1 (ja) * 2014-12-19 2016-06-23 株式会社日立ハイテクノロジーズ X線検査方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. WANG: "Rapidly Void Detection in TSVs with 2- D X-Ray Imaging and Artificial Neural Networks", IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, vol. 27, no. 2, 1 May 2014 (2014-05-01), pages 246 - 251, XP011547056 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021011341A1 (en) * 2019-07-12 2021-01-21 SVXR, Inc. Methods and systems for process control based on x-ray inspection
US11430118B2 (en) 2019-07-12 2022-08-30 Bruker Nano, Inc. Methods and systems for process control based on X-ray inspection

Similar Documents

Publication Publication Date Title
JP7002949B2 (ja) 画像評価方法及び画像評価装置
US10229812B2 (en) Sample observation method and sample observation device
US9865046B2 (en) Defect inspection method and defect inspection device
US8885950B2 (en) Pattern matching method and pattern matching apparatus
US8111902B2 (en) Method and apparatus for inspecting defects of circuit patterns
KR101479889B1 (ko) 하전 입자선 장치
TWI613436B (zh) 缺陷判定方法、及x射線檢查裝置
JPH09312318A (ja) パタ−ン欠陥検査装置
TW200848723A (en) X ray inspecting method and X ray inspecting device
JP2013171425A (ja) 画像処理装置
US10352879B2 (en) X-ray inspection method and device
JP2012026969A (ja) パターン検査方法およびパターン検査装置
CN113474618B (zh) 使用多光谱3d激光扫描的对象检查的系统和方法
WO2017130365A1 (ja) オーバーレイ誤差計測装置、及びコンピュータープログラム
JP4610590B2 (ja) X線検査装置、x線検査方法およびx線検査プログラム
JP4580266B2 (ja) X線検査装置、x線検査方法およびx線検査プログラム
JP2024012432A (ja) 検査システム、及び非一時的コンピュータ可読媒体
US20220318975A1 (en) Image Processing Program, Image Processing Device, and Image Processing Method
JP4591103B2 (ja) X線ct検査装置及びx線ct検査方法
JP2020043266A (ja) 半導体ウェハの欠陥観察システム及び欠陥観察方法
WO2018003018A1 (ja) X線検査方法及び装置
JP2017058190A (ja) 参照画像作成用の基準データ作成方法及びパターン検査装置
JP4728092B2 (ja) X線画像出力装置、x線画像出力方法およびx線画像出力プログラム
JP2012154895A (ja) 欠陥検査方法および欠陥検査装置
WO2019163136A1 (ja) X線検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP