WO2018003009A1 - 保冷加温装置、及び分析装置 - Google Patents

保冷加温装置、及び分析装置 Download PDF

Info

Publication number
WO2018003009A1
WO2018003009A1 PCT/JP2016/069116 JP2016069116W WO2018003009A1 WO 2018003009 A1 WO2018003009 A1 WO 2018003009A1 JP 2016069116 W JP2016069116 W JP 2016069116W WO 2018003009 A1 WO2018003009 A1 WO 2018003009A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
cold
heat
heating device
cold preservation
Prior art date
Application number
PCT/JP2016/069116
Other languages
English (en)
French (fr)
Inventor
忠雄 藪原
輝美 田村
洋 渡辺
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to DE112016006885.9T priority Critical patent/DE112016006885T5/de
Priority to PCT/JP2016/069116 priority patent/WO2018003009A1/ja
Priority to CN201680087027.6A priority patent/CN109477679B/zh
Priority to JP2018524617A priority patent/JP6609702B2/ja
Priority to US16/313,521 priority patent/US11209197B2/en
Publication of WO2018003009A1 publication Critical patent/WO2018003009A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/1844Means for temperature control using fluid heat transfer medium using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas

Definitions

  • the present invention relates to a cold insulator / heater and an analyzer using the same, and more particularly to a cold insulator / heater technology capable of cost reduction with a simple structure.
  • the components used for cooling and heating of the cold preservation heating device are generally a heat pump, a heater, a peltier, a compressor, and the like. Further, in the case where there are a cooling chamber and a heating chamber in the apparatus, and the respective components are simultaneously cooled and heated, it is necessary to use two of the above-mentioned components. That is, there is no device for cooling and heating each of the two regions with only one component.
  • the heat pump for cooling, the heat pump for heating, and the cooling heating apparatus using a sheathed heater are disclosed by patent document 1.
  • the air heated by the exhaust heat is further heated by coming into contact with the compressor of the heat pump for cooling, and the heated air is introduced into the evaporator of the heat pump for heating, whereby evaporation in the evaporator is caused.
  • the temperature can be further raised, and the thermal efficiency of the heating heat pump can be improved.
  • Patent Document 2 discloses an incubator using a cooling peltier and a heating peltier. Thermal conduction connecting a first Peltier element for heating a heating block, a second Peltier element for cooling the cooling block by a heat absorption surface, and a heat absorption surface of the first Peltier element and a heat dissipation surface of the second Peltier element Of the heat-releasing surface of the second Peltier element is recovered at the heat-absorbing surface of the first Peltier element and used for heating the heating block, thereby improving efficiency and durability I am trying to improve the quality.
  • the patent document 1 mentioned above arranges two components for temperature control which became independent respectively for cooling and heating, and diverts the heat_generation
  • a method is generally used, but multiple components for temperature control are required. The cost increases and the device size also increases.
  • patent document 2 it has a different temperature setting area
  • the component for temperature control is a Peltier element, and by connecting the heat absorption surface of the heating Peltier element and the heat dissipation surface of the cooling Peltier element with a thermally conductive connecting member, the efficiency as a whole can be improved.
  • two Peltier elements are used, and temperature control of cooling or heating is required for each Peltier element, as in Patent Document 1, a plurality of mechanical elements for temperature control are required, resulting in cost The size of the device also increases.
  • the object of the present invention is to provide a low-cost cooling / heating device capable of cooling and heating with a single Peltier element, with respect to a device having a cold-setting unit and a heating unit for temperature setting. And providing an analyzer using the same.
  • a cooler In order to achieve the above object, according to the present invention, a cooler, a Peltier cooler for supplying cold air into the cooler, a heat dissipation member for Peltier heat dissipation, a fan for air cooling the heat dissipation member, and a fan And an installation unit provided in the flow path through which waste heat from the heat radiation member passes, and capable of installing a heating object, and the cooling / heating apparatus having a configuration for installing the heating object in the installation unit and heating provide.
  • a cooler for supplying cold air into the cooler, a heat dissipation member for Peltier heat dissipation, a fan for air cooling the heat dissipation member, a fan and a heat dissipation member
  • Temperature measurement part which measures the temperature of waste heat from the installation part where the heating object can be installed, an exhaust route which can be exchanged between the heating object and the waste heat installed in the installation part, waste heat
  • a flow path switching unit for switching an exhaust route which does not exchange heat with a heating target, and the flow channel switching unit switches a cooling / heating device configured to switch two exhaust routes based on the measurement result of the temperature measuring unit.
  • a substantially single Peltier element is used as a heat source, and the heat absorption portion and the cold storage portion of the Peltier element are directly or indirectly joined, and the heating portion of the Peltier element is heated
  • the present invention provides a cold storage heating device for directly or indirectly joining the installation parts of Further, the cold storage heating device controls the Peltier element so that the temperature of the cold storage portion becomes a desired temperature, a heat dissipation member such as a fin is provided in the heat generating portion of the Peltier element, and waste heat is obtained by an air cooling fan. You may transmit to the installation part of heating object via an exhaust duct.
  • the cold storage / heating device includes a temperature sensor in the exhaust duct, a flow rate adjusting mechanism for adjusting the flow rate transmitted through the exhaust duct to the installation part to be kept warm, and the installation part for a plurality of heat retention targets. May be provided.
  • an analyzer equipped with these cold storage and warming devices, wherein the cold storage reagent is stored in a cold storage and the heat retention reagent is installed in the installation part.
  • FIG. 2 is a view showing an example of the configuration of a cold storage warming device according to a first embodiment; It is a figure which shows the modification of the cold preservation heating apparatus based on Example 1.
  • FIG. It is a figure which shows the example of a flow path of the waste heat of a cold preservation warming device based on Example 1.
  • FIG. It is a figure which shows the relationship of the room temperature and waste heat-room temperature of a cold preservation heating apparatus based on Example 1.
  • FIG. FIG. 7 is a view showing an example of the configuration of a cold storage warming device according to a second embodiment; It is a figure which shows the structural example of the flow-path switching part of the cold preservation warming apparatus based on Example 2. As shown in FIG.
  • a cooler In the first embodiment, a cooler, a Peltier cooler for supplying cold air into the cooler, a heat dissipation member for Peltier heat dissipation, a fan for air cooling the heat dissipation member, and waste heat from the fan and the heat dissipation member
  • a cooler In the first embodiment, a cooler, a Peltier cooler for supplying cold air into the cooler, a heat dissipation member for Peltier heat dissipation, a fan for air cooling the heat dissipation member, and waste heat from the fan and the heat dissipation member
  • FIG. 1 is a view showing an example of the configuration of a cold storage warming device according to a first embodiment.
  • the cold storage / heating apparatus 21 includes a control unit 18, a cold storage unit 19, and a heating unit 20.
  • FIG. 1 (a) is a cold storage heating device utilizing heat transfer and thermal conduction
  • FIG. 1 (b) is a cold storage heating device utilizing thermal conduction.
  • the cold storage portion The reference numeral 19 denotes a peltier 1, a cold storage 11, a cold storage door 12, a temperature measurement unit 13, a cover 14, a fan 15, and a cooling member 16, which constitute a peltier cooler
  • the heating unit 20 is a fan 2, a peltier.
  • the temperature measurement unit 13 uses a thermocouple, a thermistor, a resistance temperature detector, an integrated circuit (IC) temperature sensor, or the like.
  • the current or voltage supplied to the peltier 1 from the control unit 18 is controlled so that the temperature of the temperature measurement unit 13 in the cold storage container 11 is within 5 ° C ⁇ 2 ° C. To be performed.
  • the temperature of the cooling member 16 decreases and the temperature of the heat dissipation member 3 increases.
  • the cooling unit 19 circulates the air 17 in the cold storage 11 by the fan 15 to cool and cool the temperature in the cold storage 11. In addition, access to the inside of the cold storage 11 is performed by the door 12 of the cold storage.
  • the cooling efficiency of the peltier 1 is better as the temperature difference ( ⁇ t) between the heat absorption surface and the heat dissipation surface is smaller, so that the heat dissipation member 3 is air cooled by the fan 2.
  • the air 8 sucked by the fan 2 absorbs the heat of the heat radiating member and becomes waste heat 9, and through the exhaust duct 4 serving as the flow path to the installation portion 5 of the heating target installed on the flow path It is supplied and heats the heating target 6.
  • the waste heat 9 which has been deprived of energy by the heating target 6 becomes waste heat 10, and is discharged to the outside of the cold storage heating device.
  • the Peltier 1 and the cold storage case 11 are brought into contact with each other to cool and cool the inside of the cold storage case by heat conduction.
  • the other configuration is the same as the configuration of (a) of FIG. 1, and the current flowing from the control unit 18 to the peltier 1 or the current so that the temperature of the temperature measurement unit 13 in the cold storage 11 is within 5 ° C. ⁇ 2 ° C. Control the voltage.
  • FIG. 1 The structure of the modification of the cold preservation warming apparatus of Example 1 is shown in FIG.
  • an exhaust duct 201 serving as a flow path is further provided downstream of the installation portion 5 to be heated.
  • the installation place 202 to be heated and the heating object 203 are further provided.
  • FIG. 3 is a figure which shows the structural example of the flow path of the waste heat of the cold preservation warming apparatus in a present Example.
  • (A), (b) of FIG. 3 shows a plan view of the exhaust duct 4, the installation portion 5 to be heated, the heating target 6, and the exhaust duct 201, and (c), (d), (d) of FIG. e) shows a vertical cross-sectional view of the exhaust duct 4, the installation unit 5 to be heated, the heating target 6, and the exhaust duct 201.
  • the positional relationship between the exhaust duct 4 and the exhaust duct 201 serving as the flow path is linear, that is, 0 °, and the waste heat 9 is positively brought into contact with the heating object 6 to perform heat exchange.
  • the exhaust duct 4 and the exhaust duct 201 to be flow paths are disposed at a right angle, that is, at a position of 90 °. In the above configuration example, the positions of 0 ° and 90 ° are shown, but connection may be made at any position of 0 to 180 °.
  • (C) of FIG. 3 arranges the exhaust duct 4 and the exhaust duct 201 which become a flow path linearly in the gravity direction.
  • the heating target 6 is installed from the side surface of the heating target installation unit 5 and floats in the air. However, as long as the heating target 6 does not close the vent of the exhaust duct 201, the heating target 6 may be installed on the bottom surface of the installation portion 5 to be heated.
  • the exhaust duct 4 is connected to the upper surface of the installation portion 5 to be heated
  • the exhaust duct 201 is connected to the side surface of the installation portion 5 to be heated.
  • the heating target 6 is installed from the side surface of the installation portion 5 to be heated, and the heating target 6 floats in the air or is in contact with the bottom surface of the installation portion 5 to be heated.
  • a hole may be opened in the bottom of the installation portion 5 to be heated, and the heating target 6 may be installed from below the bottom of the installation portion 5 to be heated.
  • the exhaust duct 4 is connected to the side surface of the installation part 5 of heating object, and the exhaust duct 201 is connected to the lower surface of the installation part 5 of heating object.
  • the heating target 6 is installed from the side surface of the heating target installation unit 5 and floats in the air. However, as long as the heating target 6 is in a range that does not block the vent hole of the exhaust duct 201, the heating target 6 may be installed on the bottom surface of the installation portion 5 that is the heating target.
  • the hole has opened the upper surface of installation part 5 of heating object, and heating object 6 is heated.
  • It may be configured to be in a state of being ejected from the hole on the upper surface of the installation portion 5 to be warmed. In this case, the installation of the heating target 6 can be accessed from the hole on the upper surface of the installation portion 5 to be heated.
  • FIG. 4 is a graph showing an example of the relationship between the room temperature and the waste heat-room temperature in the configuration of the cooling and heating apparatus according to the present embodiment.
  • the temperature of the waste heat is obtained by measuring the temperature of the waste heat 9 downstream of the heat dissipation member 3.
  • the horizontal axis of the figure shows room temperature (° C.), and the vertical axis shows the relationship between waste heat and room temperature (° C.).
  • the data in FIG. 4 is data when the cooling control of the cold storage is in a steady state. Under an environment of room temperature 18-25 ° C., waste heat of room temperature + about 2.6 ° C. can be supplied.
  • the waste heat is room temperature + about 2.6 ° C.
  • the materials of the cooling member 16 and the heat radiation member 3 include aluminum, copper, gold, silver, other synthetic metals, thermal conductive resin, etc., and in the shape, a pile of things like a pile of fins, a row of fins, and a column. A large number of objects can be used.
  • the operation control of the Peltier device is controlled based on the temperature of the cold storage, and the heat preservation target is heated from about 21 ° C. to 28 ° C. (room temperature (18 to 26 ° C.)) only by this control.
  • one Peltier device and one control device constitute a system for maintaining the temperature of the cooling / heating device, which enables downsizing and cost reduction.
  • the temperature of the heat generating part of the Peltier element is equal to or higher than the temperature of the heating part, and sufficient heating performance can be secured by using this heat as it is for the heating part.
  • a flow path switching unit capable of switching the exhaust route based on the measured temperature of the temperature measurement unit provided in the exhaust duct. It is an Example of the cold preservation heating device which enables switching of the exhaust route which can be heat-exchanged with heating object, and the exhaust route which does not perform heat exchange with waste heat and heating object.
  • FIG. 5 shows one configuration of a cold keeping and warming apparatus according to the present embodiment.
  • the cold storage unit 19 is a peltier 1, a cold storage 11, a door 12 of the cold storage, a temperature measurement unit 13, a cover 14, a fan 15, and a cooling member 16.
  • the heating unit 20 is a fan 2, a heat radiation member 3, exhaust duct 4, installation place 5 to be heated, fan 7, temperature measuring unit 302 for measuring the temperature of waste heat, flow path switching unit 303, exhaust duct 201, exhaust duct 304, exhaust duct 306, and waste heat
  • the discard unit 305 is configured.
  • the temperature measurement unit 302 uses a thermocouple, a thermistor, a temperature measuring resistor, an IC temperature sensor, and the like as the temperature measurement unit 13 does.
  • Cooling and cold storage control the current or voltage supplied from the control unit 18 to the peltier 1 so that the temperature of the temperature measurement unit 13 in the cold storage 11 is within 5 ° C. ⁇ 2 ° C. as in the first embodiment.
  • the temperature of the cooling member 16 decreases and the temperature of the heat dissipation member 3 increases.
  • the cold storage unit 19 circulates the air 17 in the cold storage 11 by the fan 15 to cool and cool the temperature in the cold storage 11. In addition, access to the inside of the cold storage 11 is performed by the door 12 of the cold storage.
  • the heat radiating member 3 is air cooled by the fan 2.
  • the air 8 sucked by the fan 2 absorbs the heat of the heat radiating member, becomes waste heat 9, and is supplied to the flow path switching unit 303 through the exhaust duct 4. Further, the temperature of the waste heat 9 is measured by the temperature measurement unit 302 in the exhaust duct 4, and the flow path switching unit 303 is switched based on the measured temperature to control the flow path, that is, waste heat and heating object. Switch between an exhaust route where heat exchange is possible and an exhaust route where heat exchange between waste heat and the object to be heated is not performed.
  • FIG. 5 is a figure which shows the flow path which supplies the waste heat 9 to the installation part 5 of heating object in the structure of a present Example.
  • the flow path switching unit 303 connects the flow path to the exhaust duct 304 side and supplies the waste heat 9 to the installation location 5 of the heating target, Heating object 6 is heated.
  • the waste heat 9 deprived of energy by the heating target 6 becomes waste heat 10 and is discharged from the waste heat disposal unit 305 to the outside of the apparatus.
  • two fans 2 and 7 are shown in FIG. 5, only one of them may be installed as in the first embodiment.
  • FIG. 5 is a figure which shows the flow path which does not supply the waste heat 9 to the installation part 5 of heating object.
  • the flow path switching unit 303 is connected to the exhaust duct 306, and the waste heat discarding unit 305 directly discharges the waste heat 9 to the outside of the apparatus.
  • FIG. 6 is a view showing a specific configuration example of the flow path switching unit of the cold storage warming device of the present embodiment.
  • FIG. 6A shows a configuration in which the flow path switching shaft 402 and the flow path switching plate 403 are rotationally moved by the stepping motor 401 to switch the flow path.
  • (B) and (c) of FIG. 6 show a configuration in which the flow path is switched by the spring 404 and the solenoid 405.
  • the flow path switching plate 403 is pressed to the exhaust duct 304 side by the force of the solenoid 405, and becomes a flow path of the exhaust duct 306.
  • the flow path switching plate 403 is pressed to the exhaust duct 306 side by the force of the spring 404 and becomes a flow path of the exhaust duct 304.
  • the machine element may be used in reverse, and the connection destination may be reversed. Also, a thermo element or the like may be used instead of the solenoid 405.
  • FIG. 6 shows an example of switching to a heating target at 0% and 100%, but the flow path switching plate may be set at an intermediate position, for example, to an arbitrary position of 0% to 100%. It is also possible.
  • the cold storage warming device of the present embodiment by measuring the temperature of waste heat in the exhaust duct, it is possible to prevent unnecessary heating of the object to be heated.
  • the control is performed based on the temperature of the refrigerator. Further, the control of the flow path switching unit is simple in structure and can be operated with small power. This enables miniaturization and cost reduction.
  • the third embodiment is an embodiment of an analyzer equipped with the cold preservation heating device of the first embodiment or the second embodiment. That is, the configuration and function of the above-described cooling / heating apparatus are mounted on the analyzer, the cold-storage reagent is cold-held by the cold-storage cabinet 11 which is the cold-storage section, and the heat retention reagent is installed in the setting section 5 of the heating section Heat up.
  • a heat retention reagent in an analyzer a reagent etc. which need to prevent crystallization become object.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations of the description.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Sustainable Development (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

装置コストを抑えつつ、保冷および加温を効率よく行う保冷加温装置を提供する。加温および保冷を効率よく行うための保冷加温装置は、保冷庫11と、保冷庫内に冷気を供給するペルチェ式冷却機のペルチェ1と、ペルチェ放熱用の放熱部材3と、放熱部材を空冷するためのファン7、8と、ファンおよび放熱部材からの廃熱9が通過する排気ダクト4と、加温対象6を設置可能である設置部5とを備え、加温対象を排気ダクトの廃熱流路内に設置して加温する。

Description

保冷加温装置、及び分析装置
 本発明は、保冷加温装置、及びそれを利用する分析装置に係り、特に簡単な構造でコスト低減が可能な保冷加温装置技術に関する。
 保冷加温装置の冷却および加熱に用いる構成要素は、ヒートポンプ、ヒータ、ペルチェ、コンプレッサーなどが一般的である。また、装置内に冷却室と加温室などがあり、それぞれを同時に冷却・加熱する場合、上記構成要素を2つ使用する必要がある。つまり、1つの構成要素のみで2つの領域をそれぞれ冷却および加熱を行う装置はない。
 冷却および加温を同時に行う装置としては、特許文献1に冷却用ヒートポンプおよび加温用ヒートポンプ、シーズヒータを用いる冷却加温装置が開示されている。特許文献1では、空気の流れ方向に沿って、上流側から冷却用ヒートポンプの凝集器、冷却用ヒートポンプの圧縮機、加温用ヒートポンプ蒸発器の順に配置することにより、冷却用ヒートポンプの凝縮器の排熱で加温された空気が、冷却用ヒートポンプの圧縮機に接触することでさらに加温され、この加温空気が加温用ヒートポンプの蒸発器へ導入されることにより、蒸発器での蒸発温度をより上昇させることができて加温用ヒートポンプの熱効率を向上させることができる構成となっている。
 また、特許文献2には、冷却用ペルチェおよび加温用ペルチェを用いるインキュベータが開示されている。加熱ブロックを加熱する第1のペルチェ素子と、吸熱面によって前記冷却ブロックを冷却する第2のペルチェ素子と、第1のペルチェ素子の吸熱面と第2のペルチェ素子の放熱面を接続する熱伝導性の接続部材とを設けており、第2のペルチェ素子の放熱面から生じる熱エネルギーを第1のペルチェ素子の吸熱面にて回収して加熱ブロックの加熱に利用することで、効率向上・耐久性向上を図っている。
             
特開2009-223838号公報 特開2000-270837号公報
 上述した特許文献1は、冷却用と加温用にそれぞれ独立した温度調整用の構成要素を2系統配置し、冷却用ヒートポンプの発熱を加温用ヒートポンプの熱効率向上に転用している。温度設定の異なる2つのエリアを有し、それらに対して冷却および加温を同時に行う場合、一般的にこのような方式を使用するが、温度制御のための構成要素が複数必要となるため、コストが増大し、装置サイズも大きくなる。
 特許文献2では、一つの装置内に冷却部と加熱部の異なる温度設定領域(冷却ブロック、加熱ブロック)を有している。温度調整用の構成要素はペルチェ素子であり、加熱用ペルチェ素子の吸熱面と冷却用ペルチェ素子の放熱面を熱伝導性接続部材で接続することで、全体としての効率向上が図られる。しかし、ペルチェ素子を2つ使用し、それぞれのペルチェ素子毎に冷却あるいは加温の温度制御が必要となるため、特許文献1と同様に、温度制御のための機械要素が複数必要となり、コストが増大し、装置サイズも大きくなる。
 本発明の目的は、上記の課題を解決するため、温度設定の保冷部と加温部を有する装置に対し、ペルチェ素子1つで保冷および加温が可能で、かつ低コストの保冷加温装置を提供すること、及びそれを利用した分析装置を提供することにある。
 上記の目的を達成するため、本発明においては、保冷庫と、保冷庫内に冷気を供給するペルチェ式冷却機と、ペルチェ放熱用の放熱部材と、放熱部材を空冷するためのファンと、ファンおよび放熱部材からの廃熱が通過する流路内に設けられ、加温対象を設置可能な設置部とを備え、設置部に加温対象を設置して加温する構成の保冷加温装置を提供する。
 また、上記の目的を達成するため、保冷庫と、保冷庫内に冷気を供給するペルチェ式冷却機と、ペルチェ放熱用の放熱部材と、放熱部材を空冷するためのファンと、ファンおよび放熱部材からの廃熱の温度を測定する温度測定部と、加温対象を設置可能な設置部と、設置部に設置される加温対象と廃熱との熱交換が可能な排気ルート、廃熱と加温対象との熱交換を行わない排気ルートを切換える流路切換え部とを備え、流路切換え部は、温度測定部の測定結果に基づき、二つの排気ルートを切換える構成の保冷加温装置を提供する。
 また、上記の目的を達成するため、熱源として実質的に単一のペルチェ素子を使用し、ペルチェ素子の吸熱部と保冷部を直接または間接的に接合し、ペルチェ素子の発熱部と加温対象の設置部を直接または間接的に接合する保冷加温装置を提供する。また、前記保冷加温装置は、保冷部の温度が所望の温度になるようにペルチェ素子を制御し、ペルチェ素子の発熱部に、フィン等の放熱部材を設け、空冷用ファンにより、廃熱を排気ダクトを介して加温対象の設置部に伝達してもよい。なお、前記保冷加温装置は、排気ダクト内に温度センサ、排気ダクトを通り保温対象の設置部に伝達する流量を0から100%の間で調整する流量調整機構、複数の保温対象の設置部を設けてもよい。
 更に、上記の目的を達成するため、これらの保冷加温装置を搭載した分析装置であって、保冷庫で保冷試薬を保冷し、設置部に保温試薬を設置する構成の分析装置を提供する。
 本発明によれば、ペルチェ1つで保冷および加温が可能で、かつ低コストの保冷加温装置を提供することができる。
実施例1に係る、保冷加温装置の一構成例を示す図である。 実施例1に係る、保冷加温装置の変形例を示す図である。 実施例1に係る、保冷加温装置の廃熱の流路例を示す図である。 実施例1に係る、保冷加温装置の室温と廃熱―室温との関係を示す図である。 実施例2に係る、保冷加温装置の一構成例を示す図である。 実施例2に係る、保冷加温装置の流路切換え部の構成例を示す図である。
 以下、図面を参照して本発明の種々の実施例を詳細に説明する。
 実施例1は、保冷庫と、保冷庫内に冷気を供給するペルチェ式冷却機と、ペルチェ放熱用の放熱部材と、放熱部材を空冷するためのファンと、ファンおよび放熱部材からの廃熱が通過する流路内に設置される、加温対象を設置可能な設置部とを備え、設置部に加温対象を設置して加温する保冷加温装置の実施例である。
 図1は、実施例1に係る保冷加温装置の一構成例を示す図である。図1に示すように、本実施例に係る保冷加温装置21は、制御部18、保冷部19、加温部20を含んで構成される。図1の(a)は熱伝達および熱伝導を利用した保冷加温装置であり、図1の(b)は熱伝導を利用した保冷加温装置である
 図1の(a)において、保冷部19は、ペルチェ式冷却機を構成するペルチェ1、保冷庫11、保冷庫の扉12、温度測定部13、カバー14、ファン15、および冷却部材16で、加温部20は、ファン2、ペルチェ放熱用の放熱部材3、排気ダクト4、加温対象の設置部5、およびファン7で構成される。ここで、温度測定部13は、熱電対、サーミスタ、測温抵抗体、集積回路(IC)温度センサなどを用いる。
 本実施例に係る保冷加温装置21における冷却は、保冷庫11内の温度測定部13の温度が5℃±2℃以内となるよう、制御部18からペルチェ1に流す電流あるいは電圧を制御することで実行される。ペルチェ1が冷却制御を開始すると、冷却部材16の温度が低下し、放熱部材3の温度が上昇する。冷却部19は、ファン15により保冷庫11内の空気17を循環させ、保冷庫11内の温度を冷却・保冷する。なお、保冷庫11内へのアクセスは、保冷庫の扉12によりおこなう。
 また、ペルチェ1の冷却効率は、吸熱面と放熱面の温度差(Δt)が小さいほど良いため、ファン2により放熱部材3を空冷する。ファン2により、吸引された空気8は、放熱部材の熱を吸収し、廃熱9となり、その流路となる排気ダクト4を介して、流路上に設置される加温対象の設置部5へ供給され、加温対象6を加温する。加温対象6によりエネルギーを奪われた廃熱9は廃熱10となり、保冷加温装置外へ排出される。なお、図1に示した構成には、ファン2およびファン7を2つ記載しているが、どちらか一方だけの設置でも良い。
 図1の(b)に示した熱伝導を利用した保冷加温装置の構成においては、ペルチェ1と保冷庫11を接触させ、熱伝導により保冷庫内を冷却・保冷する。他の構成は、図1の(a)の構成と同様であり、保冷庫11内の温度測定部13の温度が5℃±2℃以内となるよう、制御部18からペルチェ1に流す電流あるいは電圧を制御する。
 図2に実施例1の保冷加温装置の変形例の構成を示す。図2の(a)において、特定の出口から廃熱10を排出するため、加温対象の設置部5の下流に、流路となる排気ダクト201を更に備える。図2の(b)においては、加温対象の設置場所5の下流に排気ダクト201に加えて、加温対象の設置場所202、加温対象203を更に備える。
 図2の(a)、(b)に示す変形例の構成のように、図1の保冷加温装置の構成において、排気ダクトおよび加温対象の設置場所、加温対象が2つ以上あっても良い。
 図3は、本実施例における保冷加温装置の廃熱の流路の構成例を示す図である。図3の(a)、(b)は、排気ダクト4、加温対象の設置部5、加温対象6、排気ダクト201の平面図を示し、図3の(c)、(d)、(e)は、排気ダクト4、加温対象の設置部5、加温対象6、排気ダクト201の鉛直断面図を示す。
 図3の(a)において、流路となる排気ダクト4および排気ダクト201の位置関係が直線上、すなわち0°となり、加温対象6に廃熱9を積極的に接触させ、熱交換を行う。図3の(b)は、流路となる排気ダクト4および排気ダクト201を直角、すなわち90°の位置に配置する。以上の構成例では、0°と90°の位置を示したが、0~180°の好きな位置で接続をしても良い。
 図3の(c)は、流路となる排気ダクト4および排気ダクト201を重力方向に直線状に配置する。加温対象6は、加温対象の設置部5の側面から設置し、宙に浮いた状態となる。ただし、加温対象6が排気ダクト201の通気口をふさがない範囲であれば、加温対象の設置部5の底面に加温対象6を設置しても良い。図3の(d)は、排気ダクト4が加温対象の設置部5の上面に接続され、排気ダクト201が加温対象の設置部5の側面に接続される。加温対象6は、加温対象の設置部5の側面から設置され、加温対象6は宙に浮いた状態、あるいは加温対象の設置部5の底面に接した状態とする。なお、加温対象の設置部5の底面に穴を開けておき、加温対象の設置部5の底面の下方から、加温対象6を設置するよう構成しても良い。
 図3の(e)は、排気ダクト4が加温対象の設置部5の側面に接続され、排気ダクト201が加温対象の設置部5の下面に接続される。加温対象6は、加温対象の設置部5の側面から設置し、宙に浮いた状態となる。ただし、加温対象6が排気ダクト201の通気孔をふさがない範囲であれば、加温対象の設置部5の底面に加温対象6を設置しても良い。図3の(e)では、加温対象6が加温対象の設置部5内に設置されているが、加温対象の設置部5の上面に穴が開いており、加温対象6が加温対象の設置部5の上面の穴から飛び出した状態となる構成であっても良い。この場合、加温対象6の設置は加温対象の設置部5の上面の穴からアクセスが可能となる。
 図4は、本実施例の保冷加温装置の構成において、室温と廃熱-室温との関係の一例を示すグラフである。この廃熱の温度は、放熱部材3の下流の廃熱9の温度を測定したものである。同図の横軸が室温(℃)を示し、縦軸が廃熱-室温(℃)の関係を示す。なお、図4のデータは保冷庫の冷却制御が定常状態時のデータである。室温18~25℃の環境下で、室温+約2.6℃の廃熱を供給可能である。
 図4に示したデータでは、室温+約2.6℃の廃熱となったが、放熱部材3の形状および材料、ペルチェ1の選定によっては供給する廃熱の温度をさらに上げることが可能となる。なお、冷却部材16および放熱部材3の材料には、アルミ、銅、金、銀、その他合成金属、熱伝導性樹脂など、形状には、剣山状の物、フィンが多数並んだ物、柱が多数並んだ物などを用いることができる。
 本実施例によれば、ペルチェ1つの簡単な構成で保冷および加温が可能で、低コストの保冷加温装置を提供することができる。
 本実施例によれば、ペルチェ素子の動作制御は保冷庫の温度に基づいて制御し、この制御のみで、保温対象を約21℃から28℃に加温(室温(18-26℃))することが可能であり、ペルチェ素子1つおよび制御装置も1系統で保冷加温装置を構成し、小型化と低コスト化が可能となる。また、ペルチェ素子の発熱部の温度が加温部の温度以上であり、この熱をそのまま加温部に使うことで、十分な加温性能を確保することができることを確認した。この発熱部の熱を加温部に使うことで、簡便・安価な加温部を構築できる。
 実施例2は、実施例1の構成に加え、排気ダクト内に設けた温度測定部の測定温度に基づき、排気ルートを切換え可能とする流路切換え部を更に備えた構成であり、廃熱と加温対象との熱交換が可能な排気ルートと、廃熱と加温対象との熱交換を行わない排気ルートを切換え可能とする保冷加温装置の実施例である。図5に、本実施例に関わる保冷加温装置の一構成を示した。
 図5において、保冷部19は、ペルチェ1、保冷庫11、保冷庫の扉12、温度測定部13、カバー14、ファン15、及び冷却部材16で、加温部20は、ファン2、放熱部材3、排気ダクト4、加温対象の設置場所5、ファン7、廃熱の温度を測定する温度測定部302、流路切換え部303、排気ダクト201、排気ダクト304、排気ダクト306、及び廃熱廃棄部305で構成される。なお、温度測定部302は、温度測定部13同様、熱電対、サーミスタ、測温抵抗体、IC温度センサなどを用いる。
 冷却・保冷は、実施例1同様、保冷庫11内の温度測定部13の温度が5℃±2℃以内となるよう、制御部18からペルチェ1に流す電流あるいは電圧を制御する。ペルチェ1が冷却制御を開始すると、冷却部材16の温度が低下し、放熱部材3の温度が上昇する。保冷部19は、ファン15により保冷庫11内の空気17を循環させ、保冷庫11内の温度を冷却・保冷する。なお、保冷庫11内へのアクセスは、保冷庫の扉12によりおこなう。
 ファン2により放熱部材3を空冷する。ファン2により、吸引された空気8は、放熱部材の熱を吸収し、廃熱9となり、排気ダクト4を介し、流路切換え部303へ供給される。また、排気ダクト4内の温度測定部302で廃熱9の温度を測定し、その測定温度に基づき、流路切換え部303を切換え制御して流路、すなわち、廃熱と加温対象との熱交換が可能な排気ルートと、廃熱と加温対象との熱交換を行わない排気ルートを切換える。
 図5の(a)は、本実施例の構成おける、加温対象の設置部5へ廃熱9を供給する流路を示す図である。温度測定部302による廃熱9の測定温度が30℃以下の場合、流路切換え部303は流路を排気ダクト304側へ接続し、加温対象の設置場所5へ廃熱9を供給し、加温対象6を加温する。加温対象6によりエネルギーを奪われた廃熱9は廃熱10となり、廃熱廃棄部305から装置外へ排出する。なお、図5には、ファン2およびファン7を2つ記載しているが、実施例1と同様、どちらか一方だけの設置でも良い。
 図5の(b)は、加温対象の設置部5へ廃熱9を供給しない流路を示す図である。温度測定部302の温度が30℃を超えた場合、流路切換え部303は排気ダクト306へ接続し、廃熱廃棄部305から廃熱9を直接装置外部へ排出する。
 図6は、本実施例の保冷加温装置の流路切換え部の具体的構成例を示す図である。図6の(a)は、ステッピングモータ401により、流路切換え軸402および流路切換え板403を回転移動させ、流路を切り替える構成を示す。図6の(b)、(c)は、ばね404、ソレノイド405により流路の切り替えを行う構成を示す。ソレノイド405への電力供給時は、ソレノイド405の力により、流路切換え板403を排気ダクト304側へ押しつけ、排気ダクト306の流路となる。非供給時は、ばね404の力により、流路切換え板403を排気ダクト306側へ押しつけ、排気ダクト304の流路となる。なお、機械要素を逆に使用し、接続先が逆転しても良い。また、ソレノイド405の代わりにサーモエレメントなどを使用しても良い。
 なお、図6は、加温対象への切り替えを0%と100%の場合についての例であるが、流路切換え板を中間位置にするなどで、0%~100%の任意の位置に設定することも可能である。
 本実施例の保冷加温装置によれば、排気ダクト内で廃熱の温度を測定することにより、加温対象への不必要な加温を防ぐことが出来る。
 本例では、実施例1と同様に、ペルチェ素子が一つで、その制御は保冷庫の温度に基づいて行う。また、流路切換え部の制御は、構造が簡単で、小電力にて動作が可能である。これにより、小型化と低コスト化が可能となる。
 実施例3は、実施例1あるいは実施例2の保冷加温装置を搭載、利用した分析装置の実施例である。すなわち、上述した保冷加温装置の構成・機能を分析装置に搭載し、保冷部である保冷庫11で保冷試薬の保冷を行い、その加温部の設置部5に保温試薬を設置してその加温を行う。なお、分析装置における保温試薬としては、結晶化を防止する必要のある試薬等が対象となる。
 以上説明した本発明によれば、ペルチェ1つの簡単な構成で保冷および加温が可能で、低コストかつ小型の保冷加温装置、及び分析装置を提供でき、更に加温対象への不必要な加温を防止することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…ペルチェ,2、15…ファン,3…放熱部材,4、201、304、3
06…排気ダクト,5、202…設置部,6、203…加温対象,7…ファ
ン,8、17…空気,9…廃熱,10…廃熱,11…保冷庫,12…保冷庫
の扉,13、302…温度測定部,14…カバー,16…冷却部材,18…
制御部,19…冷却部,20…加温部,21…冷却加温装置,303…流路
切換え部,305…廃熱廃棄部,401…ステッピングモータ,402…流
路切換え軸,403…流路切換え板,404…ばね,405…ソレノイド

Claims (24)

  1. 保冷庫と、前記保冷庫内に冷気を供給するペルチェ式冷却機と、ペルチェ放熱用の放熱部材と、前記放熱部材を空冷するためのファンと、前記ファンおよび前記放熱部材からの廃熱が通過する流路内に設けられ、加温対象を設置可能な設置部と、を備え、前記設置部に加温対象を設置して加温する、
    ことを特徴とする保冷加温装置。
  2. 請求項1に記載の保冷加温装置であって、
    前記ペルチェ式冷却機から前記保冷庫に熱伝導を利用して冷気を供給する、
    ことを特徴とする保冷加温装置。
  3. 請求項1に記載の保冷加温装置であって、
    前記ペルチェ式冷却機から前記保冷庫に熱伝達および熱伝導を利用して冷気を供給する、
    ことを特徴とする保冷加温装置。
  4. 請求項1に記載の保冷加温装置であって、
    前記流路は排気ダクトを含む、
    ことを特徴とする保冷加温装置。
  5. 請求項4に記載の保冷加温装置であって、
    前記排気ダクトに、前記加温対象を設置可能な複数の設置部が接続される、
    ことを特徴とする保冷加温装置。
  6. 請求項4に記載の保冷加温装置であって、
    前記排気ダクトは、前記設置部を挟んで直線上に配置された2つの排気ダクトからなる、
    ことを特徴とする保冷加温装置。
  7. 請求項4に記載の保冷加温装置であって、
    前記排気ダクトは、前記設置部を挟んで直角の位置に配置された2つの排気ダクトからなる、
    ことを特徴とする保冷加温装置。
  8. 保冷庫と、前記保冷庫内に冷気を供給するペルチェ式冷却機と、ペルチェ放熱用の放熱部材と、前記放熱部材を空冷するためのファンと、前記ファンおよび前記放熱部材からの廃熱の温度を測定する温度測定部と、加温対象を設置可能な設置部と、前記設置部に設置される加温対象と前記廃熱との熱交換が可能な排気ルート、前記廃熱と前記加温対象との熱交換を行わない排気ルートを切換える流路切換え部と、を備え、
    前記流路切換え部は、前記温度測定部の測定結果に基づき、二つの前記排気ルートを切換える、
    ことを特徴とする保冷加温装置。
  9. 請求項8に記載の保冷加温装置であって、
    空気の流れる方向に沿って上流側から、前記ファン、前記放熱部材、前記温度測定部、前記流路切換え部の順に配置される、
    ことを特徴とする保冷加温装置。
  10. 請求項8に記載の保冷加温装置であって、
    二つの前記排気ルートはそれぞれ排気ダクトを含む、
    ことを特徴とする保冷加温装置。
  11. 請求項10に記載の保冷加温装置であって、
    前記流路切換え部は、二つの前記排気ダクトを何れかに前記流路を切換える流路切換え板を含む、
    ことを特徴とする保冷加温装置。
  12. 請求項11に記載の保冷加温装置であって、
    前記流路切換え部は、前記流路切換え板を流路切換え軸で回転移動させるステッピングモータを含む、
    ことを特徴とする保冷加温装置。
  13. 請求項11に記載の保冷加温装置であって、
    前記流路切換え部は、前記流路切換え板を流路切換え軸で回転移動させるソレノイドあるいはサーモエレメントと、バネとからなる、
    ことを特徴とする保冷加温装置。
  14. 請求項1に記載の保冷加温装置を搭載した分析装置であって、
    前記保冷庫で保冷試薬を保冷し、前記設置部に保温試薬を設置する、
    ことを特徴とする分析装置。
  15. 請求項8に記載の保冷加温装置を搭載した分析装置であって、
    前記保冷庫で保冷試薬を保冷し、前記設置部に保温試薬を設置する、
    ことを特徴とする分析装置。
  16. 保冷部と加温部を有する保冷加温装置であり、
    実質的に単一のペルチェ素子を具備し、
    該ペルチェ素子の吸熱部と該保冷部が実質的に接合し、
    該ペルチェ素子の発熱部と該加温部が実質的に接合し、
    該保冷部の温度情報のみに基づいて、該ペルチェ素子の制御をするペルチェ素子制御部を有することを特徴とする保冷加温装置。
  17. 請求項16に記載の保冷加温装置であって、 
    前記加温対象の設置部は、複数具備することを特徴とする保冷加温装置。
  18. 請求項16に記載の保冷加温装置であって、
    前記ペルチェ素子の発熱部には、放熱部材と、空冷用ファンが設けられ、排気ダクトを介して加温対象の設置部と接続されることを特徴とする保冷加温装置。
  19. 請求項16または請求項18に記載の保冷加温装置であって、 
    前記ペルチェ素子と前記加温対象の設置部との間に、排気ダクト内の温度測定のための温度センサ及び、加温対象の設置部への排気ダクト内の流量を調整する流量調整機構部を具備することを特徴とする保冷加温装置。
  20. 請求項19に記載の保冷加温装置であって、
    前記流量調整機構部が、前記ペルチェ素子の発熱部からの廃熱を分岐して一部を前記加温対象の設置部へ供給する機構であることを特徴とする保冷加温装置。
  21. 請求項19に記載の保冷加温装置であって、
    前記流量調整機構部が、前記ペルチェ素子の発熱部からの廃熱の前記加温対象の設置部への供給をON/OFFする機構であることを特徴とする保冷加温装置。
  22. 請求項16から請求項21のいずれか1項に記載の保冷加温装置を搭載した分析装置であって、
    前記保冷部で保冷試薬を保冷し、
    前記加温部に保温試薬を設置する、
    ことを特徴とする分析装置。
  23. 保冷部と加温部を有する保冷加温装置であり、
    ペルチェ素子を具備し、
    該ペルチェ素子の吸熱部と保冷部が実質的に接合し、
    該ペルチェ素子の発熱部と加温部が実質的に接合する
    ことを特徴とする保冷加温装置。
  24. 請求項23に記載の保冷加温装置を搭載した分析装置であって、
    前記保冷部で保冷試薬を保冷し、
    前記加温部に保温試薬を設置する、
    ことを特徴とする分析装置。
PCT/JP2016/069116 2016-06-28 2016-06-28 保冷加温装置、及び分析装置 WO2018003009A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112016006885.9T DE112016006885T5 (de) 2016-06-28 2016-06-28 Kühl/Heiz-Vorrichtung und Analysevorrichtung
PCT/JP2016/069116 WO2018003009A1 (ja) 2016-06-28 2016-06-28 保冷加温装置、及び分析装置
CN201680087027.6A CN109477679B (zh) 2016-06-28 2016-06-28 保冷加温装置、及分析装置
JP2018524617A JP6609702B2 (ja) 2016-06-28 2016-06-28 保冷加温装置、及び分析装置
US16/313,521 US11209197B2 (en) 2016-06-28 2016-06-28 Refrigerating/heating device, and analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069116 WO2018003009A1 (ja) 2016-06-28 2016-06-28 保冷加温装置、及び分析装置

Publications (1)

Publication Number Publication Date
WO2018003009A1 true WO2018003009A1 (ja) 2018-01-04

Family

ID=60786177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069116 WO2018003009A1 (ja) 2016-06-28 2016-06-28 保冷加温装置、及び分析装置

Country Status (5)

Country Link
US (1) US11209197B2 (ja)
JP (1) JP6609702B2 (ja)
CN (1) CN109477679B (ja)
DE (1) DE112016006885T5 (ja)
WO (1) WO2018003009A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169278A (ja) * 2017-03-29 2018-11-01 株式会社日立ハイテクノロジーズ 自動分析装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345662B (zh) * 2019-07-24 2020-12-04 苏州长光华医生物医学工程有限公司 一种消除冷凝水的试剂仓制冷结构及试剂仓

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3619944B1 (ja) * 1960-05-10 1961-10-20
JPS6273079A (ja) * 1985-09-25 1987-04-03 今永 栄輔 温冷蔵庫装置
JPH04332557A (ja) * 1991-05-08 1992-11-19 Nippon Sekijiyuujishiya 血小板輸送システム
JPH0517470U (ja) * 1991-08-13 1993-03-05 西武電機工業株式会社 冷温風庫
JPH07101138B2 (ja) * 1987-12-08 1995-11-01 三菱商事株式会社 自動分析装置における液体冷却装置
JP2000270837A (ja) * 1999-03-25 2000-10-03 Sanyo Electric Co Ltd インキュベータ
JP2002282136A (ja) * 2001-03-28 2002-10-02 Sanyo Electric Co Ltd 輸送用貯蔵庫
JP2008534905A (ja) * 2005-03-29 2008-08-28 デーウー・エレクトロニクス・コーポレイション 育児用多機能保管庫

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216204A (en) * 1963-01-15 1965-11-09 Tecumseh Products Co Low loss thermoelectric heat exchanger
US5027145A (en) * 1990-08-29 1991-06-25 Eastman Kodak Company Heat exchanger for film processor
SE469488B (sv) * 1991-10-04 1993-07-12 Christer Tennstedt Termoelektriskt kylelement med flexibelt vaermeledningselement
CN2152805Y (zh) * 1993-03-27 1994-01-12 杭州解放电子仪器厂 可调式恒温箱
CN1173654A (zh) * 1996-07-16 1998-02-18 萨墨福尼克斯株式会社 温度控制设备
JP3619944B2 (ja) * 1997-02-06 2005-02-16 日信工業株式会社 ディスクブレーキ
US5970719A (en) * 1998-03-02 1999-10-26 Merritt; Thomas Heating and cooling device
JP2004537708A (ja) * 2001-08-07 2004-12-16 ビーエスエスティー エルエルシー 熱電気式個人用環境調整機器
US7337615B2 (en) * 2003-04-16 2008-03-04 Reidy James J Thermoelectric, high-efficiency, water generating device
US20060059933A1 (en) * 2004-09-21 2006-03-23 W.E.T. Automotive Systems Ag Heating, cooling and ventilation system for a vehicle seat
JP2007297034A (ja) * 2006-04-07 2007-11-15 Denso Corp 加熱冷却装置
US20120174607A1 (en) * 2006-12-28 2012-07-12 Whirlpool Corporation Refrigeration appliance with optional storage module
CN101715535B (zh) * 2007-04-30 2012-01-11 奥西库尔有限公司 摩托车空气调节系统
WO2008148042A2 (en) * 2007-05-25 2008-12-04 Bsst Llc System and method for distributed thermoelectric heating and colling
JP5202055B2 (ja) 2008-03-19 2013-06-05 株式会社クボタ 自動販売機の冷却加温装置
AT509231B1 (de) * 2010-05-07 2011-07-15 Bernhard Adler Vorrichtung und verfahren zum umwandeln thermischer energie
WO2012149057A1 (en) * 2011-04-25 2012-11-01 Holtec International, Inc. Air-cooled heat exchanger and system and method of using the same to remove waste thermal energy from radioactive materials
EP2944489B1 (en) * 2014-05-16 2020-05-06 Perkins Engines Company Limited Heating and cooling system for a vehicle
US9656536B2 (en) * 2015-03-03 2017-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. System for cooling a vehicle compartment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3619944B1 (ja) * 1960-05-10 1961-10-20
JPS6273079A (ja) * 1985-09-25 1987-04-03 今永 栄輔 温冷蔵庫装置
JPH07101138B2 (ja) * 1987-12-08 1995-11-01 三菱商事株式会社 自動分析装置における液体冷却装置
JPH04332557A (ja) * 1991-05-08 1992-11-19 Nippon Sekijiyuujishiya 血小板輸送システム
JPH0517470U (ja) * 1991-08-13 1993-03-05 西武電機工業株式会社 冷温風庫
JP2000270837A (ja) * 1999-03-25 2000-10-03 Sanyo Electric Co Ltd インキュベータ
JP2002282136A (ja) * 2001-03-28 2002-10-02 Sanyo Electric Co Ltd 輸送用貯蔵庫
JP2008534905A (ja) * 2005-03-29 2008-08-28 デーウー・エレクトロニクス・コーポレイション 育児用多機能保管庫

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169278A (ja) * 2017-03-29 2018-11-01 株式会社日立ハイテクノロジーズ 自動分析装置

Also Published As

Publication number Publication date
CN109477679B (zh) 2020-12-25
DE112016006885T5 (de) 2019-02-21
US11209197B2 (en) 2021-12-28
CN109477679A (zh) 2019-03-15
US20200182518A1 (en) 2020-06-11
JP6609702B2 (ja) 2019-11-20
JPWO2018003009A1 (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
US6463743B1 (en) Modular thermoelectric unit and cooling system using same
US20130319014A1 (en) Room Air Conditioner Having a Liquid-To-Air Heat Exchanging Device With Peltier Elements
US9416995B2 (en) Heating and cooling unit with semiconductor device and heat pipe
JP2000274788A (ja) 加温装置、冷却装置及びこの冷却装置を利用した空調装置
US20110056650A1 (en) Heat sink
US7104687B2 (en) X-ray diagnosis apparatus having a common cooler
US20130174577A1 (en) Heating and Cooling Unit with Semiconductor Device and Heat Pipe
WO2018003009A1 (ja) 保冷加温装置、及び分析装置
KR101800374B1 (ko) 열전소자가 결합된 일체형 워터블록을 이용한 냉방장치
JP2008106958A (ja) 熱交換器
KR20180072079A (ko) 열전소자를 이용한 냉난방 장치
KR20020019787A (ko) 효율이 뛰어난 차량용 열전 냉·온장고
KR20140073137A (ko) 차량용 냉온장 컵홀더 장치
JP6325911B2 (ja) 磁気ヒートポンプ装置及び空気調和装置
KR102159541B1 (ko) 열전소자를 활용한 전자식 공조장치 및 그에 의한 공조방법
JPH07308592A (ja) 恒温槽の液体温度調節装置
JP6108583B1 (ja) 複数のペルチェ素子を利用した観賞魚用水槽及び飼育水温調節方法
KR101619626B1 (ko) 수/공냉 통합형 열전소자 장치
US20070068174A1 (en) Cooler with thermoelectric cooling apparatus
KR101451160B1 (ko) 수냉식과 공냉식이 통합된 열전소자 시스템
JP4834460B2 (ja) 電子機器用冷却装置
KR20000010950U (ko) 열전 냉각기
KR20100029572A (ko) 열전소자모듈을 이용한 열교환장치
US20230099698A1 (en) Augmented Phase Chiller System for Component and Compartment Chilling
RU49961U1 (ru) Термоэлектрический воздухоохладитель

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907242

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524617

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16907242

Country of ref document: EP

Kind code of ref document: A1