WO2018002964A1 - パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置 - Google Patents

パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置 Download PDF

Info

Publication number
WO2018002964A1
WO2018002964A1 PCT/JP2016/003088 JP2016003088W WO2018002964A1 WO 2018002964 A1 WO2018002964 A1 WO 2018002964A1 JP 2016003088 W JP2016003088 W JP 2016003088W WO 2018002964 A1 WO2018002964 A1 WO 2018002964A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
pipes
inner diameter
group
welding
Prior art date
Application number
PCT/JP2016/003088
Other languages
English (en)
French (fr)
Inventor
寿夫 和田
遼太 武内
敬次 下山
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2016/003088 priority Critical patent/WO2018002964A1/ja
Publication of WO2018002964A1 publication Critical patent/WO2018002964A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L1/00Laying or reclaiming pipes; Repairing or joining pipes on or under water
    • F16L1/12Laying or reclaiming pipes on or under water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints

Definitions

  • the present invention relates to a pipeline welding system, a pipe management device, and a pipe shape measuring device.
  • a standard pipe for example, about 12 m
  • a steel pipe for example, a steel pipe
  • a method of laying a pipeline with a distance of several kilometers to several tens of kilometers every day is used.
  • the shape of one pipe end and the shape of the other pipe end do not completely coincide with each other, and a radial shift (mistake) occurs.
  • an on-site worker welds and joins the end portions of pipes, the mistake is visually confirmed, and the pipe position is adjusted manually.
  • an object of the present invention is to improve the quality of pipeline welding and the pipe laying speed by reducing the amount of misalignment when the ends of the pipe are welded together.
  • a pipeline welding system is a pipeline welding system that welds and joins a plurality of pipes, and a measuring device configured to measure inner diameter shapes of both ends of each of the plurality of pipes;
  • the pipe management device that acquires information on the measured inner diameter shape of each end of each of the plurality of pipes, and groups the plurality of pipes according to the size of the inner diameter shape of each end of each of the plurality of pipes
  • a transport device that transports each of the grouped pipes to a predetermined storage location of each group, and a welding robot that welds and joins the ends of two pipes belonging to the same group.
  • the plurality of pipes are grouped according to the size of the inner diameter shape of each end of each of the plurality of pipes, and in principle, two pipes belonging to the same group are welded at a predetermined direction and rotation angle.
  • the risk of poor welding can be reduced.
  • the pipe laying speed can be improved and the quality of pipe welding can be improved.
  • the “difference amount” in the documents of this specification and claims refers to the shape of the inner surface of one pipe end and the inner surface of the other pipe end when the ends of the pipe are butted together and welded together. This refers to the step in the radial direction due to the difference in the inner diameter of the shape.
  • the pipe management device divides the plurality of pipes into a plurality of groups according to the average value of the inner diameter, assigns a predetermined number according to the size of the standard deviation of the inner diameter in each group, Decide the combination of pipes where the ends close to the standard deviation are abutting each other, and select the rotation angle of both pipes so that the determined difference between the two pipes does not exceed the specified value Also good.
  • the pipe management device selects the other group with the closest average value of the inner diameter when the last pipe of one group (hereinafter referred to as the final pipe) and the pipe of the other group are to be matched. Select both pipes so that the ends with the closest standard deviation in the selected group are matched, and the difference between the selected pipe and the final pipe does not exceed the specified value.
  • the rotation angle may be selected.
  • the transport device is configured to sequentially send pipes belonging to the same group from the predetermined storage location to a predetermined work space, and before the pipes of one group are exhausted, the pipes of the groups adjacent to the one group. Delivery may be started.
  • a pipe management device is a pipe management device for a pipeline in which a plurality of pipes are welded together, and acquires and acquires information on the inner diameter shape of each end of each of the plurality of pipes. Based on the information, determine how to connect the plurality of pipes so that the amount of difference when the ends of the two pipes match each other is equal to or less than a predetermined allowable value, and information on how to connect the pipes Perform management.
  • pipe welding is performed by predetermining how to connect a plurality of pipes (for example, pipe arrangement and orientation) used for welding the submarine pipeline before welding based on data on the inner diameter shape of both ends of the pipe. It is possible to reduce the time in the process and optimize the consistency of the pipe joint. By optimizing the consistency of the pipe joint, it is possible to minimize the amount of misalignment in the pipe joint and reduce the risk of poor welding.
  • the pipe storage method suitable for conveyance during welding is determined in advance, and the welding process time can be shortened. As a result, the quality of pipe welding and the speed of pipe laying can be improved.
  • a pipe shape measuring apparatus is a pipe shape measuring apparatus for measuring an inner diameter shape of a pipe used in a pipeline, and a rotating body having a rotating shaft rotatable around a central axis of the pipe; A plurality of positioning sensors provided in the axial direction of the outer surface of the rotating body so as to correspond to the inner surface of the end portion of the pipe, and the positioning sensor while the rotating body rotates about the rotating shaft.
  • the control apparatus which acquires the information regarding the internal diameter shape of the pipe measured by (2) is provided.
  • the pipe shape measuring device further includes a positioning mechanism that positions the end portions of the two pipes in contact with each other, a clamp mechanism that restrains the two pipes, and a state that restrains at least one of the pipes.
  • An internal clamp having a rotation axis rotatable around the central axis of the pipe is also provided.
  • the control device acquires information on the inner diameter shape of the two pipes measured by the positioning sensor while the rotating body rotates around the rotation axis, and based on the acquired information, Calculate the amount of misalignment when the ends of each pipe are abutted, and control the optimal combination of pipes and how to connect and rotation of the rotation axis of the internal clamp so that the amount of misalignment is minimized. Good.
  • a positioning sensor for example, an ultrasonic displacement meter
  • a rotating body for example, a cylinder or a disk
  • Attach and rotate this rotating body to measure the shape in the pipe (inner diameter distribution).
  • a rotation angle sensor attached to a rotation shaft of the internal clamp is further provided, and the control device rotates the internal clamp based on a detection signal of the rotation angle sensor so that the misalignment amount is minimized.
  • the rotation of the shaft may be controlled.
  • the quality of pipeline welding and the pipe laying speed can be improved by reducing the amount of misalignment when the ends of the pipe are welded together.
  • FIG. 1 is a plan view schematically showing a pipe-laying ship equipped with a pipeline welding system according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the pipeline welding system of FIG.
  • FIG. 3 is a front view schematically showing the configuration of the rounding / shaping machine shown in FIG.
  • FIG. 4 is a side view showing a part of the pipe shape measuring apparatus of FIG.
  • FIG. 5 is a side view showing a modification of the rotating body of FIG.
  • FIG. 6 is a side view showing the remaining part of the pipe shape measuring apparatus.
  • FIG. 7 is a side view showing a modification of a part of the pipe shape measuring apparatus of FIG.
  • FIG. 8 is a side view showing a modification of a part of the pipe shape measuring apparatus of FIG.
  • FIG. 1 is a plan view schematically showing a pipe-laying ship equipped with a pipeline welding system according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the pipeline welding system of FIG.
  • FIG. 9 is a perspective view showing a first example of the welding robot of FIG.
  • FIG. 10 is a perspective view showing a second example of the welding robot of FIG.
  • FIG. 11 is a perspective view of a first example of the nondestructive inspection robot of FIG. 12 is a diagram showing a second example of the nondestructive inspection robot of FIG.
  • FIG. 13 is a flowchart showing an example of a flow of processing executed in the pipeline welding system of FIG.
  • FIG. 14 is a graph showing an example of a measurement result obtained by the pipe shape measuring apparatus of FIG.
  • FIG. 15 is a diagram illustrating an example of a result of grouping a plurality of pipes by the pipe management device of FIG. FIG.
  • FIG. 16 is a flowchart illustrating an example of a process flow for determining the range of each group.
  • FIG. 17 is a schematic diagram illustrating an example of a processing procedure for grouped pipes.
  • FIG. 18 is a block diagram illustrating a configuration of a pipeline welding system according to the second embodiment.
  • FIG. 19 is a flowchart showing an example of a flow of a series of processes in the pipeline welding system of FIG.
  • FIG. 20 is a graph showing an example of the measurement result of the inner diameter shape of the pipe by the pipe shape measuring apparatus of FIG.
  • FIG. 21 is a chart showing an example of a combination of a plurality of pipes determined by the pipe management device of FIG.
  • FIG. 1 is a plan view schematically showing a pipe laying ship 200 equipped with a pipeline welding system 100 according to the first embodiment.
  • a temporary storage place 201 and a storage 500 for pipes P for laying pipelines are installed on a deck on a pipe laying ship 200.
  • the pipeline welding system 100 of this embodiment is a welding system for a submarine pipeline that welds and joins a plurality of pipes P on a pipe laying ship 200.
  • the lay barge method is used for laying the submarine pipeline of the present embodiment.
  • a pipe P for example, steel pipe
  • a fixed length for example, about 12 m
  • Multiple pipes are welded and joined, and the pipe laying ship 200 is repeatedly moved for a fixed length or multiple fixed lengths while sinking the pipeline to the seabed. This is a method of laying a pipeline with a distance of several kilometers.
  • FIG. 2 is a block diagram showing the configuration of the pipeline welding system 100.
  • the pipeline welding system 100 includes a rounding and shaping machine 1, a pipe shape measuring device 2, a pipe conveying device 3, a welding robot 4, a nondestructive inspection robot 5, and a coating device 6.
  • FIG. 3 is a front view schematically showing the configuration of the first example of the rounding shaping machine 1.
  • the rounding shaping machine 1 includes a shaping roll 71 processed into a perfect circle, a ring-shaped casing 72 whose inner and outer surfaces are processed into a perfect circle, and a receiving roll that is rotationally driven by a motor. (Not shown).
  • the shaping roll 71 has a plurality of rolls having axes parallel to the axial direction of the pipe P. In the figure, two rolls are arranged at a predetermined interval.
  • the rounding shaping machine 1 is rotated by friction between the casing 72, the pipe P and the shaping roll 71 by the rotation of the receiving roll in a state where the pipe P is inserted between the shaping roll 71 and the casing 72. It is configured. Thereby, the end of the pipe P is rounded and shaped.
  • the shaping roll 71 is a single roll, the pipe P is shaped only in the direction in which the radius of curvature of the pipe P becomes smaller, so the inner diameter of the pipe P becomes smaller.
  • the curvature radius of the pipe P is not reduced by shaping. Therefore, it is possible to round and shape while maintaining the inner diameter of the pipe P.
  • FIG. 4 is a side view showing a part of the pipe shape measuring apparatus 2.
  • the pipe shape measuring apparatus 2 has a rotating shaft 46 that is inserted inside the pipe P along the center axis (one-dot chain line) of the pipe and is rotatable around the center axis of the pipe.
  • the rotating body 45 and a plurality of positioning sensors 47 provided on the outer surface of the rotating body 45 so as to correspond to the inner surface of the end portion of the pipe P are provided.
  • the pipe P is positioned at a predetermined position by the positioning mechanism 43.
  • the positioning mechanism 43 includes a vertically movable guide roller 43a and a horizontally movable guide roller 43b. Details of the positioning mechanism 43 will be described later.
  • the rotary shaft 46 is driven to rotate around the central axis of the pipe or extend and contract in the axial direction by a motor (not shown). Accordingly, the rotating body 45 can be stored when the measurement is not performed, and the rotating body 45 can be moved to the measurement position inside the pipe P during the measurement.
  • Rotating body 45 has a cylindrical shape.
  • two positioning sensors 47 positioned in the axial direction on the outer surface of the rotating body 45 are provided.
  • the two positioning sensors 47 positioned in the axial direction are arranged corresponding to the inner surface of the end portion of the pipe P. Either sensor in the axial direction may correspond to the pipe end.
  • the positioning sensor 47 is an ultrasonic displacement meter, for example. Thereby, the internal diameter shape of the end part of a pipe can be measured by rotating the rotating shaft 46 once.
  • by attaching a plurality of positioning sensors 47 in the circumferential direction and the axial direction measurement accuracy and sensor redundancy can be ensured.
  • the rotating body 45 of the pipe shape measuring device 2 is not limited to a cylindrical shape.
  • it may be a prismatic shape, a disk shape, or a polygonal plate shape.
  • FIG. 5 is a side view showing a modification of the rotating body 45 of FIG.
  • the rotating body 45A is formed of a disk, and the disk is attached to the rotating shaft 46 so that its main surface is perpendicular to the center axis of the pipe.
  • two positioning sensors 47 positioned in the axial direction on the end face of the disk are provided.
  • the pipe shape measuring apparatus 2 of the present embodiment measures the inner diameter shapes of both ends of each of a plurality of pipes that have been rounded by the rounding and shaping machine 1 installed in the temporary storage place 201.
  • the pipe shape measuring device 2 is mounted on a pipe transfer device 3 installed in a pipe laying ship 200, and measures the inner diameter shape when the pipe transfer device 3 transfers the pipe from the temporary storage place 201 to the storage 500.
  • the pipe shape measuring device 2 may measure both ends of one pipe simultaneously with two units, or may measure both ends of one pipe in order with one pipe shape measuring device. Simultaneous measurement with two units is more effective in reducing time.
  • the pipe management device determines the order and direction of welding of each pipe based on the measured shape, and it is possible to shorten the time for taking out, transporting and matching each pipe during welding. Therefore, it is possible to shorten the time from when the pipe conveying device takes out the pipe from the storage 500 to start welding.
  • the pipe transport device 3 is configured to transport the pipe P loaded in the temporary storage place 201 by the crane 400 to the storage 500 and transport the pipe P stored in the storage 500 to a predetermined work space.
  • FIG. 6 is a side view showing the remaining part of the pipe shape measuring apparatus 2. This shows a state in which two pipes P are abutted after the pipe P is transferred from the storage 500 by the pipe conveying device 3 and pipe groove processing is performed.
  • the pipe shape measuring device 2 includes a positioning mechanism 43 and an internal clamp 40.
  • the positioning mechanism 43 includes a vertically movable guide roller 43a and a horizontally movable guide roller 43b.
  • the vertically movable guide roller 43a is configured to be able to adjust the vertical position of the pipe.
  • the left and right movable guide roller 43b is configured to be capable of adjusting the position of the pipe in the left and right direction. By operating each of these rollers, the position of the pipe is adjusted. In this way, the position of the two pipes P can be adjusted by the pair of positioning mechanisms 43 so that the end portions of the two pipes P can be positioned in a butted state.
  • the internal clamp 40 includes a clamp mechanism 41 that restrains the two pipes P from the inside of the pipe, and a rotating shaft 42 that can rotate around the central axis (one-dot chain line) of the pipe while restraining at least one of the pipes.
  • a rotation angle sensor (for example, an encoder) 48 is attached to the rotary shaft 42 of the internal clamp.
  • the internal clamp 40 is inserted in the vicinity of the joint 50 inside the two pipes P, and the telescopic rod as the clamp mechanism 41 extends toward the inner walls of the two pipe P ends. Is constrained from the inside.
  • the expansion rod on one side of the pipe is contracted to relieve the constraint, and only the expansion / contraction rod on the other side of the pipe is stretched to constrain one of the pipes.
  • a mechanism in which only the internal clamp on the pipe side to be rotated, that is, only one half of the axial direction of the internal clamp 40, is rotated by a predetermined angle while the telescopic rods (41) on both pipe sides are extended. It may be.
  • FIG. 7 is a side view showing a modification of a part of the pipe shape measuring apparatus 2 of FIG.
  • the pipe shape measuring apparatus 2 ⁇ / b> A adjusts the positions of the two pipes P with the pair of positioning mechanisms 43 and abuts the ends of the two pipes P. Positioning is performed in the state, and the inner diameter shape of the ends of the two pipes is simultaneously measured by the rotating body 45.
  • FIG. 8 is a side view showing a modification of a part of the pipe shape measuring apparatus 2 of FIG.
  • FIG. 9 is a perspective view schematically showing a first example of the welding robot 4.
  • the welding robot 4 is a vertical articulated robot.
  • the welding robot 4 may be self-propelled so that it can be moved to an instructed location unattended.
  • a welding torch 51 is attached to the tip of the robot.
  • other devices such as a welding wire supply device and a welding power source are omitted.
  • the welding robot 4 automatically welds the rotating pipe P while maintaining the welding torch 51 at the same position and posture from the first layer to the last layer.
  • the two pipes P are rotated in a state of being abutted by, for example, the internal clamp 40 (see FIG. 6).
  • the welding robot 4 can weld the pipe P from the outside and perform the first-layer back wave welding. That is, the weld bead can be taken out as if the inner surface was melted only by welding from the outside and the welding was performed from the back side.
  • the weaving amount is automatically set based on the groove shape.
  • the welding speed may be a set value instructed in advance, or the set value may be changed in the middle.
  • the welding robot 4 taught in advance performs the welding operation automatically, the installation work of the welding machine becomes unnecessary and the operation time can be shortened.
  • a preset welding speed can be maintained, the operator's visual confirmation and adjustment work are not required.
  • the administrator may adjust the speed by changing a preset welding speed via the operation panel 31 while confirming the monitor 32 screen at the management center 30, for example.
  • welding work of the same technical level can be performed from the first layer to the last layer, welding can be performed at the same position from the first layer to the last layer with the same robot without moving the pipe.
  • FIG. 10 is a perspective view schematically showing a second example of the welding robot 4.
  • the two welding robots 4 are arranged so as to face each other with the pipe P interposed therebetween.
  • the two pipes P are positioned with their ends abutted by, for example, a pair of positioning mechanisms 43 (see FIG. 6).
  • Two welding robots 4 automatically weld two pipes that do not rotate from the first layer to the last layer.
  • the two welding robots 4 maintain the base at the same position from the first layer to the last layer, and perform welding with the welding torch 51 at the tip while rotating only the arm around the pipe.
  • the arm is controlled to approach not only at a right angle but also at an angle to the welding position so that no singular point occurs in the robot operation.
  • the singular point means a point where the movement of the robot arm may move in a plurality of directions.
  • welding speed improves by performing welding simultaneously with multiple units.
  • FIG. 11 is a perspective view schematically showing a first example of the nondestructive inspection robot 5.
  • the nondestructive inspection robot 5 includes an ultrasonic flaw detector 61 at the tip of an arm, and automatically performs a nondestructive inspection of the joint 50 of the rotating pipe P.
  • the inspection method may be ultrasonic flaw detection by vertical flaw detection or oblique flaw detection, or other nondestructive inspection such as X-ray.
  • the pipe rotation speed may be a preset value or may be changed midway.
  • the inspection data is sent to the management center 30.
  • the administrator confirms the inspection result displayed on the monitor 32 and makes a determination.
  • the non-destructive inspection robot 5 taught in advance automatically inspects the joint portion 50, so that the work of mounting the non-destructive inspection device on the base becomes unnecessary and the work time can be shortened. it can.
  • the nondestructive inspection robot 5 of FIG. 11 may perform nondestructive inspection of the joint 50 of the two pipes P positioned so as not to rotate while the arm rotates around the pipe.
  • a method of inspecting the pipe periphery with two robots 5 may be used (see FIG. 10). Since the robot arm moves around the pipe, the rail becomes unnecessary, and when the rail and the nondestructive inspection device are separated, the rail is installed and removed, and the nondestructive inspection device is attached to and removed from the rail. Further, in the case of a non-destructive inspection apparatus with rails, the work time is shortened because the work of mounting and removing the apparatus is unnecessary.
  • FIG. 12 shows a second example of the nondestructive inspection robot 5.
  • a rail 62 is installed around the pipe P, and the nondestructive inspection robot 5A is configured to run on a rail installed on a wall surface, for example.
  • This self-propelled nondestructive inspection robot 5A includes an ultrasonic flaw detector 61 at the tip of an arm, and performs a nondestructive inspection while rotating around a pipe P that does not rotate. Further, the welding operation may be performed by replacing the tool at the tip of the rail self-propelled robot 5A with a welding torch 51 (see FIGS. 9 and 10). As a result of the inspection, if there is a defect in the welded portion, the welding is immediately re-executed on the spot, and then the non-destructive inspection is performed again.
  • the pipe welded portion where the welding and nondestructive inspection have been completed as described above is subjected to FJC (Field Joint Coating) by the coating device 6 (see FIG. 2).
  • FJC Field Joint Coating
  • the main controller 10 includes, for example, a calculation unit (not shown) including a microcontroller, an MPU, a PLC (Programmable Logic Controller), a logic circuit, and a memory unit (not shown) including a ROM, a RAM, and the like. ).
  • the main controller 10 has a function for controlling the controllers 11 to 16 for controlling the rounding / shaping machine 1, the pipe shape measuring device 2, the pipe conveying device 3, the welding robot 4, the nondestructive inspection robot 5, and the coating device 6.
  • the main controller 10 has a function of a pipe management device 20 that manages information on a plurality of pipes P for welding.
  • Each functional block provided in the main controller 10 can be realized by the arithmetic unit of the main controller 10 reading and executing a program stored in the memory unit.
  • the management center 30 (see FIG. 2) is installed in a pipe laying ship 200 isolated from the work space.
  • the management center 30 includes an operation panel 31 that is operated by an administrator and gives an operation command to the main controller 10 so as to control the operation of each device, and a monitor 32 that displays an image captured by the monitoring camera 7.
  • the monitoring camera 7 is installed so as to image each work place such as a welding work space. Although the surveillance camera 7 is controlled by the main controller 10, it can also be controlled by the operation panel 31.
  • the plurality of pipes P are loaded from the pipe supply ship 300 to the pipe laying ship 200 by the crane 400 and temporarily placed in the temporary storage place 201 (see FIG. 1).
  • the rounding / shaping machine 1 rounds both ends of each of the plurality of pipes P temporarily placed in the temporary storage place 201 (step S ⁇ b> 101 in FIG. 13).
  • the controller 11 controls the operation of the rounding shaping machine 1 according to preset shaping conditions. For example, by adjusting the shaping conditions for each lot of pipes in advance, the dimensional difference after shaping can be minimized.
  • the pipe shape measuring device 2 measures the inner diameter shapes of both ends of each of the plurality of pipes P that are shaped into a perfect circle (step S102 in FIG. 13).
  • the pipe shape measuring apparatus 2 measures the inner diameter shapes of both ends of each of a plurality of pipes that have been rounded by the rounding and shaping machine 1 installed in the temporary storage place 201.
  • the pipe shape measuring device 2 is mounted on a pipe conveying device 3 installed in a pipe laying ship 200, and measures the inner diameter shape when the pipe conveying device 3 conveys the pipe from the temporary storage place 201 to the hold storage 500.
  • the controller 12 controls the operation of the pipe shape measuring device 2.
  • the positioning sensor 47 attached to the rotating body 45 measures the inner diameter distribution at the end of the pipe while the rotating body 45 rotates around the rotating shaft 46 inside the pipe (see FIG. 4).
  • the pipe shape measuring apparatus 2 of the present embodiment measures the distance to a position where the end of the pipe can be measured at one or two axial directions on the outer surface of the cylindrical rotating body 45 inserted into the pipe.
  • a positioning sensor 47 is provided, and the rotating body 45 is rotated to measure the shape (inner diameter distribution) in the pipe (see FIG. 4). If the difference in the relative circumferential direction of the inner diameter shape of each pipe can be measured, the pipes are stored in an optimal combination, connection method, amount of rotation of each pipe, etc. so that the amount of misinterpretation of each pipe is reduced. It can be determined in advance before being transferred from.
  • the shape measurement in the pipe may be performed in a state where the two pipes are abutted after the pipe groove processing.
  • the rotating body 45 is in a state where the butting has been completed once, the clamp on one side through which the rotating body 45 passes is loosened so that the pipe does not rotate, and the stored rotating body 45 for measurement is moved to the butting portion to form the inner diameter shape.
  • the rotating body 45 is provided with a positioning sensor 47 that measures the shape of the end of the pipe in at least two locations in the axial direction of the outer surface. The rotating body 45 is rotated to simultaneously measure the shapes (inner diameter distribution) in the two pipes.
  • the marking on the outer surface of the pipe may be searched with a camera attached to the robot, and the rotation angle of the marking may be measured by image processing.
  • marking may be performed at a 45 deg pitch for rotation measurement, and the rotation angle may be measured by capturing a plurality of markings with a robot.
  • FIG. 14 is a graph showing an example of the measurement result of the inner diameter shape of the pipe by the pipe shape measuring apparatus 2. As shown in FIG. 14, the inner diameter shape of the end of each pipe P is measured. The measurement result is digitized and graphed as a circumferential distribution of the inner diameter of the pipe end. In the present embodiment, 200 graphs are created because measurement is performed on both ends of 100 pipes.
  • the pipe management device 20 acquires the measurement result of the inner diameter shape of the pipe when the pipe transport device 3 transports the pipe from the temporary storage place 201 to the storage room 500 of the hold, and groups the plurality of pipes ( Step S103 in FIG. 13).
  • the pipe management device 20 acquires information on the inner diameter shape of each end of each of the 100 pipes from the pipe shape measuring device 2, and according to the size of the inner diameter shape of each end of the 100 pipes, Group pipes together. For example, it is divided into m groups of G1 to Gm according to the size of the average value Dmean of the inner diameter, and numbers 1 to p are assigned in order of the size of the standard deviation ⁇ of the inner diameter in each group.
  • the pipes are combined and connected so that the ends close to the standard deviation meet each other, and the rotation angles of both pipes are selected so that the misalignment amount does not exceed a predetermined value (1 mm).
  • the last pipe in the group is always matched with another group of pipes.
  • a group having the closest inner diameter average value Dmean is selected, pipes are selected so that the ends having the closest standard deviation in this group are matched, and the misalignment amount is a predetermined value. Select a rotation angle for both pipes that does not exceed.
  • FIG. 15 is a diagram illustrating an example of a result of grouping 100 pipes by the pipe management device 20.
  • the pipe management device 20 groups 100 pipes into four groups G1 to G4 according to the size of the inner diameter shape (for example, the inner diameter average value).
  • the size of the inner diameter shape for example, the inner diameter average value.
  • pipes No. 3, 99, etc. belong to group G1
  • pipes No. 1, n + 1 etc. belong to group G2
  • pipes No. 2, 100, etc. belong to group G3, n No. and No. 98 pipes belong to the group G4.
  • the range of the size of the inner diameter shape of each group is determined according to a predetermined standard. The determination method will be described later.
  • the transfer device 3 transfers the pipes grouped by the pipe management device 20 from the temporary storage place 201 to the storage 500 (step S104 in FIG. 13).
  • the transport device 3 transports each of the grouped 100 pipes to a predetermined place of each group in the storage 500.
  • pipes such as No. 3 and No. 99 are stored in predetermined locations of the group G1 in the storage 500
  • pipes such as No. 1 and No. n + 1 are stored in predetermined locations of the group G2.
  • pipes No. 2 and No. 100 are stored in a predetermined place of the group G3, and pipes No. n and No. 98 are stored in a predetermined place of the group G4.
  • the information regarding which group is classified may be notified to the operator, for example, by turning on an indicator.
  • the pipe management device 20 controls which pipe is stored in which location.
  • a pipe end chamfering machine (not shown) performs groove processing on the ends of two pipes belonging to the same group (step S105 in FIG. 13).
  • two pipes P belonging to the same group are transferred from the storage 500 to the work space by the pipe transfer device 3.
  • the pipe end is chamfered obliquely for welding (see FIG. 6).
  • a pre-heat treatment before welding by a heater is also performed.
  • step S106 in FIG. 13 fitting adjustment is performed on the grooved pipe P by the internal clamp 40 and the positioning mechanism 43 (step S106 in FIG. 13).
  • the internal clamp 40 (see FIG. 6) restrains the two pipes with the clamp mechanism 41 in a state where the ends of the two pipes P belonging to the same group are abutted. Then, the positions of the two pipes P are adjusted by the pair of positioning mechanisms 43, and the two pipes P are maintained in a state of abutting each other.
  • the telescopic rod on one side of the pipe is contracted to relax the constraint, and only the telescopic rod on the other side of the pipe is stretched to constrain one of the pipes. 42 can be rotated by a predetermined angle amount to adjust the pipe to a predetermined rotation angle.
  • the telescopic rods (41) on both pipes being extended, only the internal clamp on the pipe side to be rotated, that is, a mechanism that rotates only 1/2 of the axial direction of the internal clamp 40 by a predetermined angle amount is used.
  • the pipe can be adjusted to a predetermined rotation angle.
  • the welded part is cut and removed by an arc cutting device (not shown).
  • the measurement of the inner diameter shape is performed again in a state in which a new pipe end portion formed by cutting is abutted.
  • the controller 12 calculates the misalignment amount at the ends of the two pipes, and based on the detection signal of the rotation angle sensor 48, the internal clamp is configured so that the misalignment amount is minimized.
  • the rotation of the rotary shaft 42 is controlled.
  • the welding robot 4 welds the fitting-adjusted pipe (step S107 in FIG. 13).
  • the welding robot 4 welds and joins the ends of the two pipes whose combinations are determined by the pipe management device 20. If the two pipes are welded together unless directly connected to the submarine pipeline, the internal clamp 40 can rotate the pipe, so the welding robot 4 of FIG. 9 is suitable.
  • the welding robot 4 of FIG. 10 is suitable because the pipes cannot be rotated.
  • a non-destructive inspection is performed on the welded portion (step S108 in FIG. 13).
  • the nondestructive inspection robot 5 automatically performs nondestructive inspection of the welded pipe joint 50. If the pipe is to be nondestructively inspected unless directly connected to the submarine pipeline, the pipe can be rotated by the internal clamp 40, so the nondestructive inspection robot 5 of FIG. 11 is suitable. In addition, when a new joint pipe is welded to the submarine pipeline, the pipe cannot be rotated, so a robot as shown in FIG. 12 is suitable. Further, as in the case of the welding robot shown in FIG. 10, two nondestructive inspection robots 5 may be arranged and inspected.
  • the coating apparatus 6 performs a coating process for the corrosion prevention of the pipe welded part and the heat insulation of the pipeline after the nondestructive inspection is completed (step S109 in FIG. 13).
  • the coating apparatus 6 performs FJC (Field Joint Coating) processing.
  • a plurality of pipes are grouped according to the size of the inner diameter shape of each end of each of the plurality of pipes, and two appropriate pipes belonging to the same group
  • the amount of misalignment of the pipe joint can be minimized and the risk of poor welding can be reduced.
  • the work time required for the conveying and welding processes it is possible to reduce the work time required for the conveying and welding processes. As a result, the quality of pipeline welding and the speed of pipe laying can be improved.
  • the range of the size of the inner diameter shape of each group of pipes of this embodiment is determined according to a predetermined standard prior to steps S101 to S109 in FIG.
  • the pipe management device 20 analyzes in advance the plastic deformation in the radial direction at both ends of the pipe after rounding shaping based on the information on the inner diameter shape of each of the plurality of pipes before rounding. Determine the range of the size of the inner diameter shape.
  • FIG. 16 is a flowchart illustrating an example of a process flow for determining the range of each group.
  • the pipe shape measuring apparatus 2 samples and inspects the size of the inner diameter shape of the pipe before rounding (step S11).
  • the pipe shape measuring apparatus 2 measures the inner diameter shapes of both ends of the pipe selected from the plurality of pipes P temporarily placed on the temporary placement place 201.
  • the pipe management device 20 may have a function of acquiring the measurement result of the inner diameter shape of the pipe that has been subjected to the sampling inspection and analyzing the plastic deformation after the perfect circle shaping (step S12).
  • the pipe P is crushed between the casing 72 and the shaping roll 71, reaches the plastic zone in the entire thickness direction, and the deformation is promoted. Therefore, the pipe management device 20 may analyze the plastic deformation after shaping the perfect circle by, for example, a numerical simulation using a finite element method.
  • the pipe management device 20 may determine the range of each group based on the analysis result (step S53).
  • the pipe management device 20 may determine the range of each group based on the analysis result (step S53).
  • FIG. 17 is a schematic diagram illustrating an example of a processing procedure for grouped pipes.
  • a plurality of pipes are grouped into four groups G1 to G4 and stored in the storage 500 of the pipe laying boat 200. For example, suppose we have to start joining the pipes in the G2 block to match the end shape of the pipeline from the seabed.
  • the pipes of the block of G2 are sequentially joined.
  • the pipe of the block of the adjacent group G3 is joined (case C1).
  • the pipes of the block of G3 are sequentially joined.
  • the pipe is joined to the pipe in the adjacent G4 block (case C2).
  • the pipes of the block of G4 are sequentially joined.
  • the pipe is joined to the pipe in the G3 block (case C3).
  • the shape adjustment may be determined by reading an identification code (such as a barcode) printed on the outer surface of each pipe at the time of measurement after the perfect circle shaping.
  • an identification code such as a barcode
  • a laying apparatus for throwing pipes into the sea may be automated by a robot.
  • J-Ray where the pipes are placed vertically into the sea, the ship's sway becomes larger at higher positions, making it difficult for humans to work (bad work). Since the control can be easily corrected for shaking, the robot automation system becomes a system suitable for work at high places (J-Ray).
  • the configuration of the laying boat 200 on which the pipeline welding system 100A of this embodiment is mounted is the same as that of the first embodiment.
  • the description of the structure common to 1st Embodiment is abbreviate
  • FIG. 18 is a block diagram showing a configuration of a pipeline welding system 100A according to the second embodiment. As shown in FIG. 18, when compared with the first embodiment, the pipe management device 20A manages information related to how to connect pipes, and the two-dimensional code printer 8 that outputs information related to pipes in the pipeline welding system 100A. Furthermore, the point provided is different.
  • FIG. 19 is a flowchart showing an example of a flow of a series of processes in the pipeline welding system 100A.
  • the pipe management device 20A determines a combination of pipes (step S203).
  • the pipe management device 20A determines and manages how to connect a plurality of pipes to be welded from the shape measurement result of the pipe end portions so that the consistency of the end portions of the two pipes to be welded is within an allowable range.
  • FIG. 20 is a graph showing an example of the measurement result of the inner diameter shape of the pipe by the pipe shape measuring apparatus 2.
  • the inner diameter shape of the end portions of the two pipes P butted together is measured.
  • the measurement result is digitized and graphed as a circumferential distribution of the inner diameter of the pipe end. Since measurement is performed on both ends of 100 pipes, 200 graphs are created.
  • 20A of pipe management apparatuses acquire the information regarding the internal diameter shape of the both ends of each of 100 pipes, and based on the acquired information, the amount of difference
  • the connection method of 100 pipes is determined so as to be equal to or less than a value (for example, 1 mm).
  • FIG. 21 is a chart showing an example of a combination of 100 pipes determined by the pipe management device 20A. As shown on the left in FIG.
  • the order of each pipe (pipe No.), the direction of each pipe (up or down), and the relative rotation amount (deg) of the joined end are determined as the combination of pipes.
  • the combination method of 100 pipes P is determined.
  • the pipe management device 20A outputs a two-dimensional code (step S204).
  • the pipe management device 20A converts the information about how to connect the pipes into a machine-readable two-dimensional code, and prints the converted two-dimensional code 91 on the outer surface of each pipe.
  • the two-dimensional code includes information on the order of each pipe (pipe No.), the direction of each pipe (up or down), and the relative rotation amount (deg) of the joining end. .
  • the converted two-dimensional code is printed on the outer surface of each pipe, the pipe is easily managed and positioned during welding.
  • information such as the order, orientation, and rotation direction angle of the pipe is printed as a two-dimensional code on the coated portion of the pipe surface.
  • the two-dimensional code is printed at the reference position (rotation angle 0 deg.) Of the rotation angle of the pipe.
  • the pipe management apparatus 20A of the present embodiment is mounted on the pipeline welding system 100A of the laying ship 200, and the optimum connection method in units (hundreds to thousands) of pipes mounted on the laying ship 200. May be determined, or may be mounted on land pipeline welding systems. Further, on the land, an optimum connection method may be determined for each unit to be shipped (for example, every several hundred to several thousand units).
  • the pipe shape measuring device 2 measures the inner diameter shape of each end of each of a plurality of pipes that are rounded by the rounding and shaping machine 1, but the pipe shape measuring device 2 is You may measure the internal-diameter shape of the both ends of each of the some pipe which is not perfect-circle shaping.
  • the present invention is useful for pipeline welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

パイプライン溶接システムは、複数のパイプを溶接接合するパイプラインの溶接システムである。前記複数のパイプの各々の両端の内径形状を計測するように構成された計測装置と、計測された前記複数のパイプの各々の両端の内径形状に関する情報を取得し、前記複数のパイプの各々の両端の内径形状の大きさに応じて、前記複数のパイプをグループ分けするパイプ管理装置と、グループ分けされた前記複数のパイプの各々を各グループの所定の保管場所に搬送する搬送装置と、同じグループに属する二本のパイプの端部を溶接接合する溶接ロボットと、を備える。

Description

パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置
 本発明は、パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置に関する。
 石油や天然ガスの経済的で安全な輸送のため、陸上及び海底には多くのパイプラインが敷設されている。このうち、海底パイプラインの敷設には、一般に定尺(例えば約12m)のパイプ(例えば鋼管)をパイプライン敷設用の船上にて溶接接合し、パイプラインを海底に沈ませつつ定尺分の船の移動を繰り返し、毎日数kmから10数kmの距離のパイプラインを敷設する工法が用いられる。パイプの端部同士を溶接接合する際には、一方のパイプ端部の形状と他方のパイプ端部の形状とは完全に一致することはなく、半径方向のずれ(目違い)が生じる。従来は、現場の作業者がパイプの端部同士を溶接接合する際に目視により目違いを確認し、手作業によりパイプ位置を調整する。
 しかし、従来の方法では、現場の作業者がパイプを実際に突き合せて初めて目違い量を把握するため、作業者の経験や熟練度に依って把握される量が異なる。このため、目違い量が大きい場合に溶接不良となるリスクが存在するという課題がある。
 そこで、本発明では、パイプの端部同士を溶接接合する際の目違い量を小さくすることにより、パイプライン溶接の品質及びパイプ敷設速度の向上を図ることを目的とする。
 本発明の一態様に係るパイプライン溶接システムは、複数のパイプを溶接接合するパイプライン溶接システムであって、前記複数のパイプの各々の両端の内径形状を計測するように構成された計測装置と、計測された前記複数のパイプの各々の両端の内径形状に関する情報を取得し、前記複数のパイプの各々の両端の内径形状の大きさに応じて、前記複数のパイプをグループ分けするパイプ管理装置と、グループ分けされた前記複数のパイプの各々を各グループの所定の保管場所に搬送する搬送装置と、同じグループに属する二本のパイプの端部を溶接接合する溶接ロボットと、を備える。
 上記構成によれば、複数のパイプの各々の両端の内径形状の大きさに応じて、複数のパイプをグループ分けし、原則として同じグループに属する二本のパイプを所定の向き・回転角度で溶接することにより、パイプ接合部の目違い量の現場での確認・調整を省略して溶接過程における所要時間を短縮した上、パイプ接合部の不整合性の指標となる目違い量を最小化して、溶接不良のリスクを軽減することができる。これにより、パイプ敷設速度の向上及びパイプ溶接の品質向上が可能となる。この明細書及び特許請求の範囲の書類中における「目違い量」は、パイプの端部同士を突き合せて溶接接合する際に、一方のパイプ端部の内面形状と他方のパイプ端部の内面形状の内径差に起因した半径方向の段差をさす。
 前記パイプ管理装置は、前記複数のパイプを内径の平均値の大きさに応じて複数のグループに分け、各グループにおいて内径の標準偏差の大きさに応じて所定の番号を付与し、同一グループの中で標準偏差の近い端部同士が突き合わせとなるようなパイプの組み合わせを決定し、決定された二本のパイプの目違い量が所定値を超えないように両パイプの回転角度を選定してもよい。
 同じグループ内でのパイプの組み合わせを進めて行くとグループの最後のパイプは必ず他の異なるグループのパイプとの突合せとなる。そこで、前記パイプ管理装置は、一のグループの最後のパイプ(以下、最終パイプという)と他のグループのパイプとを突合せる場合には、内径の平均値が最も近い他のグループを選定し、選定したグループの中で標準偏差が最も近い値の端部同士の突合せとなるようにパイプを選定し、選定されたパイプと前記最終パイプとの目違い量が所定値を超えないような両パイプの回転角度を選定してもよい。
 前記搬送装置は、前記所定の保管場所から同じグループに属するパイプを所定の作業スペースに順次送り出すように構成され、一のグループのパイプのみが無くなる前に当該一のグループに隣接するグループのパイプの送り出しを開始してもよい。
 本発明のその他の態様に係るパイプ管理装置は、複数のパイプが溶接接合されるパイプラインのパイプ管理装置であって、前記複数のパイプの各々の両端の内径形状に関する情報を取得し、取得した情報に基づいて、二本のパイプの端部を突き合せたときの目違い量が所定の許容値以下となるように前記複数のパイプの繋ぎ方を決定し、当該パイプの繋ぎ方に関する情報の管理を行う。
 上記構成によれば、パイプ両端の内径形状に関するデータに基づいて、溶接前に海底パイプラインの溶接に用いる複数のパイプの繋ぎ方(パイプ配列や向き等の)を予め決定することにより、パイプ溶接過程における時間短縮とパイプ接合部の整合性の最適化を可能とすることができる。パイプ接合部の整合性の最適化により、パイプ接合部の目違い量を最小化して、溶接不良のリスク軽減が可能となる。また、パイプの繋ぎ方を予め決定し溶接時の搬送に適したパイプ保管方法が行われることにより、溶接過程の時間短縮が可能となる。上記によりパイプ溶接の品質向上及びパイプ敷設速度の向上が可能となる。
 本発明のその他の態様に係るパイプ形状計測装置は、パイプラインに用いるパイプの内径形状を計測するパイプ形状計測装置であって、パイプの中心軸回りに回転可能な回転軸を有する回転体と、パイプの端部の内面に対応するように、前記回転体の外面の軸方向に設けられた複数の測位センサと、前記回転体が前記回転軸を中心に回転している間に、前記測位センサにより計測されたパイプの内径形状に関する情報を取得する制御装置を備える。
 パイプ形状計測装置は、さらに、二本のパイプの端部を突き合せた状態で位置決めする位置決め機構と、当該二本のパイプを拘束するクランプ機構、及び、少なくとも一方のパイプを拘束した状態で当該パイプの中心軸回りに回転可能な回転軸を有するインターナルクランプをも備える。前記制御装置は、前記回転体が前記回転軸を中心に回転している間に、前記測位センサにより計測された前記二本のパイプの内径形状に関する情報を取得し、取得した情報に基づいて、各パイプの端部を突き合わせた際の目違い量を算出し、当該目違い量が最小になるように、パイプの最適な組み合わせや繋ぎ方とインターナルクランプの回転軸の回転を制御してもよい。
 上記構成によれば、パイプの内部に挿入する回転体(例えば円筒又は円盤)の外面の軸方向であって、パイプの端部を計測できる位置に測位センサ(例えば超音波の変位計等)を取り付け、この回転体を回転させてパイプ内の形状(内径分布)を計測する。これらの装置により、各パイプの形状差を予め計測することができるので、最適なパイプの組み合わせ、繋ぎ方を事前に決定しておくことが出来、パイプ溶接の品質向上と時間短縮を図ることが出来る。
 前記インターナルクランプの回転軸に取り付けられた回転角度センサを更に備え、前記制御装置は、前記回転角度センサの検出信号に基づいて、前記目違い量が最小になるように前記インターナルクランプの回転軸の回転を制御してもよい。
 本発明によれば、パイプの端部同士を溶接接合する際の目違い量を小さくすることにより、パイプライン溶接の品質及びパイプ敷設速度の向上を図ることができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
図1は、第1実施形態に係るパイプライン溶接システムを搭載したパイプ敷設船を概略的に示した平面図である。 図2は、図1のパイプライン溶接システムの構成を示すブロック図である。 図3は、図2の真円化整形機の構成を模式的に示す正面図である。 図4は、図2のパイプ形状計測装置の一部を示す側面図である。 図5は、図4の回転体の変形例を示す側面図である。 図6は、上記パイプ形状計測装置の残りの部分を示す側面図である。 図7は、図4のパイプ形状計測装置の一部の変形例を示す側面図である。 図8は、図5のパイプ形状計測装置の一部の変形例を示す側面図である。 図9は、図2の溶接ロボットの第一例を示す斜視図である。 図10は、図2の溶接ロボットの第二例を示す斜視図である。 図11は、図2の非破壊検査ロボットの第一例を斜視図である。 図12は、図2の非破壊検査ロボットの第二例を示す図である。 図13は、図2のパイプライン溶接システムにおいて実行される処理の流れの一例を示すフローチャートである。 図14は、図2のパイプ形状計測装置による計測結果の一例を示すグラフである。 図15は、図2のパイプ管理装置により複数のパイプをグループ分けした結果の一例を示す図である。 図16は、各グループの範囲を決定する処理の流れの一例を示すフローチャートである。 図17は、グループ分けされたパイプの処理手順の一例を示した模式図である。 図18は、第2実施形態に係るパイプライン溶接システムの構成を示すブロック図である。 図19は、図18のパイプライン溶接システムにおける一連の処理の流れの一例を示すフローチャートである。 図20は、図18のパイプ形状計測装置によるパイプの内径形状の計測結果の一例を示すグラフである。 図21は、図18のパイプ管理装置により決定した複数のパイプの組み合わせの一例を示すチャートである。
 以下、本発明に係る実施形態について図面を参照しつつ説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。
(第1実施形態)
[パイプライン溶接システム]
 図1は、第1実施形態に係るパイプライン溶接システム100を搭載したパイプ敷設船200を概略的に示した平面図である。図1に示すように、パイプ敷設船200上のデッキには、パイプライン敷設用のパイプPの仮置き場201及び保管庫500が設置される。本実施形態のパイプライン溶接システム100は、複数のパイプPをパイプ敷設船200上で溶接接合する海底パイプラインの溶接システムである。パイプ敷設船200の作業スペースには作業用ロボットや専用の装置等が適宜配置され各作業が自動化されている。本実施形態の海底パイプラインの敷設には、レイバージ工法が用いられる。レイバージ工法とは、例えばクレーン400によりパイプ補給船300から積み込まれた定尺(例えば約12m)のパイプP(例えば鋼管)をパイプ敷設船200上にて海底パイプラインに1本ずつあるいは予め溶接接合させた複数本(2本あるいはそれ以上)ずつを溶接接合し、パイプラインを海底に沈ませつつ定尺分あるいは複数本の定尺分のパイプ敷設船200の移動を繰り返し、毎日数kmから十数km程度の距離のパイプラインを敷設する工法である。
 図2は、パイプライン溶接システム100の構成を示すブロック図である。図2に示すように、パイプライン溶接システム100は、真円化整形機1と、パイプ形状計測装置2と、パイプ搬送装置3と、溶接ロボット4と、非破壊検査ロボット5と、コーティング装置6と、監視カメラ7と、メインコントローラ10と、各種のコントローラ11~16とを備える。
 真円化整形機1は、例えばパイプの仮置き場201又は保管庫500に設置され、複数のパイプの各々の両端を真円整形するように構成される。図3は、真円化整形機1の第一例についてその構成を模式的に示す正面図である。図3に示すように、真円化整形機1は、真円に加工された整形ロール71と、内外面が真円に加工されたリング状のケーシング72と、モータで回転駆動される受けロール(図示せず)とを備える。整形ロール71はパイプPの軸方向に平行な軸を有する複数のロールを有する。同図では2つのロールが所定の間隔を空けて配置されている。真円化整形機1は、パイプPを整形ロール71とケーシング72の間に挿入した状態で、受けロールの回転により、ケーシング72、パイプP及び整形ロール71の相互間の摩擦により回転するように構成されている。これにより、パイプPの端部が真円化整形される。整形ロール71が一つのロールでは、パイプPの曲率半径が小さくなる方向にのみ整形されるので、パイプPの内径は小さくなる。図3では、2つのロールにより、パイプPがケーシング72に押し付けられるので、整形により、パイプPの曲率半径が小さくなることはない。よって、パイプPの内径を維持しつつ真円化整形することができる。
[パイプ形状計測装置]
 パイプ形状計測装置2は、各パイプの両端の内径形状を計測するように構成される。図4はパイプ形状計測装置2の一部を示す側面図である。図4に示すように、パイプ形状計測装置2は、パイプPの内側にパイプの中心軸(一点鎖線)に沿って挿入され、且つ、当該パイプの中心軸回りに回転可能な回転軸46を有する回転体45と、パイプPの端部の内面に対応するように、回転体45の外面に設けられた複数の測位センサ47と、を備える。同図ではパイプPは、位置決め機構43により、所定位置に位置決めされる。位置決め機構43は、上下可動ガイドローラ43a及び左右可動ガイドローラ43bを備える。位置決め機構43の詳細については後述する。
 回転軸46はモータ(図示せず)により、パイプの中心軸回りに回転駆動又は軸方向に伸縮駆動される。これにより、計測を行わない場合には回転体45を格納しておき、計測時には回転体45をパイプPの内側の測定位置まで移動させることができる。
 回転体45は円筒形状を有する。本実施形態では、回転体45の外面において軸方向に位置する2つの測位センサ47が2箇所設けられる。軸方向に位置する2つの測位センサ47はパイプPの端部の内面に対応して配置される。軸方向のどちら側のセンサがパイプ端部に対応していても良い。測位センサ47は例えば超音波の変位計である。これにより、回転軸46を一回転することでパイプの端部の内径形状を計測できる。また、測位センサ47を周方向や軸方向に複数個取り付けることにより、計測精度とセンサの冗長性を確保できる。
 尚、パイプ形状計測装置2の回転体45は円筒形状に限定されない。例えば角柱形状、円盤形状、又は多角形板形状であっても良い。図5は、図4の回転体45の変形例を示す側面図である。図5に示すように、回転体45Aは円盤で構成されており、円盤はその主面がパイプの中心軸に対して垂直になるように回転軸46に取り付けられている。ここでは円盤の端面において軸方向に位置する2つの測位センサ47が設けられる。
 本実施形態のパイプ形状計測装置2は、仮置き場201に設置された真円化整形機1によって、真円整形された複数のパイプの各々の両端の内径形状を計測する。パイプ形状計測装置2は、パイプ敷設船200に設置されたパイプ搬送装置3に搭載され、パイプ搬送装置3により仮置き場201から保管庫500へパイプを搬送する際に内径形状を計測する。パイプ形状計測装置2は1本のパイプの両端部を2台で同時に計測しても良いし、1台のパイプ形状計測装置で1本のパイプの両端部を順番に計測することでも良い。2台で同時計測する方が時間短縮には有効である。計測された形状に基づいてパイプ管理装置が各パイプの溶接の順番・向きを決定し、それに従って溶接時の各パイプの取り出し・搬送・突合せの時間短縮が可能となるように保管庫500に適切に整理して格納出来るので、パイプ搬送装置が保管庫500からパイプを取り出して溶接を開始するまでの時間が短縮出来ることとなる。
 パイプ搬送装置3は、クレーン400により仮置き場201に積み込まれたパイプPを保管庫500へ搬送し、保管庫500に保管されたパイプPを所定の作業スペースに搬送するように構成される。
 図6は、パイプ形状計測装置2の残りの部分を示す側面図である。これは、パイプ搬送装置3によりパイプPが保管庫500から移送され、パイプ開先加工が行われた後、2本のパイプPを突き合わせた状態を示す。図6に示すように、パイプ形状計測装置2は、位置決め機構43と、インターナルクランプ40とを備える。
 位置決め機構43は、上下可動ガイドローラ43a及び左右可動ガイドローラ43bを備える。上下可動ガイドローラ43aは、パイプの上下方向の位置を調整可能に構成される。左右可動ガイドローラ43bはパイプの左右方向の位置を調整可能に構成される。これらのローラを各々動作させることにより、パイプの位置が調整される。このようにして一対の位置決め機構43により、二本のパイプPの位置を調整して、二本のパイプPの端部を突き合せた状態で位置決めすることができる。
インターナルクランプ40は、二本のパイプPをパイプ内側から拘束するクランプ機構41、及び、少なくとも一方のパイプを拘束した状態で当該パイプの中心軸(一点鎖線)回りに回転可能な回転軸42を有する。インターナルクランプの回転軸42には回転角度センサ(例えばエンコーダ)48が取り付けられている。インターナルクランプ40は、二本のパイプPの内側の接合部50付近に挿入され、クランプ機構41としての伸縮ロッドが二本のパイプP端部の内壁に向かって伸展し、二本のパイプPを内側から拘束するように構成されている。パイプの回転角度調整については、一方のパイプ側の伸縮ロッドを縮ませて拘束を緩和し、他方のパイプ側の伸縮ロッドだけを伸ばして一方のパイプを拘束した後、インターナルクランプの回転軸42を所定角度量だけ回転させて当該パイプを所定の回転角度に合わすことができる。または、両パイプ側の伸縮ロッド(41)を伸ばしたまま、回転させたいパイプ側のインターナルクランプだけ、すなわちインターナルクランプ40の軸方向の片側1/2だけを所定角度量だけ回転させるという機構であっても良い。
 尚、パイプ形状計測装置2は、保管庫からパイプ搬送装置3により移送されパイプ開先加工が行われた後、2本のパイプが突き合わされた際に、2本のパイプの内径形状を同時に計測するような構成でもよい。図7は、図4のパイプ形状計測装置2の一部の変形例を示す側面図である。図7に示すように、本変形例では、パイプ形状計測装置2Aは、一対の位置決め機構43により、二本のパイプPの位置を調整して、二本のパイプPの端部を突き合せた状態で位置決めし、回転体45により2本のパイプの端部の内径形状を同時に計測する。図8は、図5のパイプ形状計測装置2の一部の変形例を示す側面図である。図8に示すように、パイプ形状計測装置2Bは、一対の位置決め機構43により、二本のパイプPの位置を調整して、二本のパイプPの端部を突き合せた状態で位置決めし、回転体45Aにより2本のパイプの端部の内径形状を同時に計測する。
[溶接ロボット]
 図9は、溶接ロボット4の第一例を模式的に示す斜視図である。図9に示すように、溶接ロボット4は、垂直多関節ロボットである。溶接ロボット4は指示された場所への移動が無人で可能となるように自走型であっても良い。ロボットの先端には溶接トーチ51が取り付けられている。同図では、溶接ワイヤ供給装置及び溶接電源等のその他の装置は省略している。溶接ロボット4は、初層から最終層まで溶接トーチ51を同じ位置及び姿勢に維持しつつ回転するパイプPを自動的に溶接する。2本のパイプPは、例えばインターナルクランプ40(図6参照)により突き合せた状態で回転する。溶接ロボット4は、パイプPを外側から溶接し、初層の裏波溶接が可能である。つまり、外側からの溶接だけで内面まで溶かし込み、裏側から溶接を施したように溶接ビードを出すことができる。ウィービング量は開先加工形状に基づき自動的にセットされる。溶接速度は予め指示された設定値でもよいが、途中で設定値が変更されてもよい。汎用の多関節ロボットを使用するので同様な設備で様々な径のパイプの溶接が可能となる。また、同じ作業スペースにおいてロボットの先端のツールを取り換えるだけで、非破壊検査等のその他の作業が可能となるので、ラインを柔軟に組み替えることができる(図11参照)。
 従来、回転する二本のパイプを溶接する場合には、作業者は半自動溶接機を手作業で装着し、溶接を行っていた。作業者はその溶接速度を目視で確認しながら制御していた。初層については第2層から最終層に比べて高い技術が必要であるため熟練技術者が初層を担当することになる。通常、熟練技術者の数には限りがあるため、別な作業者が第2層から最終層を担当する。初層と、第2層から最終層との間でパイプを移動させて異なる場所で溶接を行う場合は多くの作業スペースが必要になる。また、溶接機の装着や取り外し、溶接速度の調整等の作業は、作業者が溶接現場に立ち会って行う必要があり、作業に時間がかかっていた。
 そこで、図9に示すように予め教示された溶接ロボット4が自動で溶接作業を行うことにより、溶接機の装着作業が不要となり作業時間を短縮することができる。また、予め設定された溶接速度を維持することができるので、作業者の目視による確認及び調整作業が不要となる。また、管理者が、例えば管理センタ30でモニタ32画面を確認しながら、操作盤31を介して、予め設定された溶接速度を変更することにより、速度調整してもよい。また、初層から最終層まで同一技術レベルの溶接作業が可能であるので、パイプを移動することなく、同じロボットで初層から最終層まで同じ位置で溶接可能となる。
 図10は、溶接ロボット4の第二例を模式的に示す斜視図である。図10に示すように、ここでは2台の溶接ロボット4がパイプPを挟んで互いに向かい合うように配置されている。2本のパイプPは例えば一対の位置決め機構43(図6参照)により、端部を突き合せた状態で位置決めされる。2台の溶接ロボット4が、回転しない2本のパイプの溶接を初層から最終層まで自動で行う。2台の溶接ロボット4は、初層から最終層までベースを同じ位置に維持し、アームのみパイプの周囲を回転させつつ先端の溶接トーチ51により溶接する。ここではロボット動作に特異点が生じないように、アームは溶接位置に対して直角だけでなく斜めにアプローチするように制御される。ここで特異点とは、ロボットアームの動きが複数方向に動く可能性を有する点をいう。このように複数台で同時に溶接を行うことにより、溶接速度が向上する。
 従来は、回転しないパイプを溶接する場合には、作業者は手作業でレールをパイプの周りに敷設し、そのレールに半自動溶接機を装着し、溶接を行っていた。作業者はその溶接速度を目視で確認しながら制御していた。また、熟練技術者が初層を担当し、別な作業者が第2層から最終層を担当する場合には、パイプを移動させて異なる場所で作業をおこなうため、多くの作業スペースが必要である。レールや溶接機の敷設や取り外し、溶接速度の調整等の作業は、作業者が溶接現場に立ち会って行う必要があり、作業に時間がかかっていた。
 そこで、図10に示すように2台の溶接ロボット4のアームを回転しないパイプの周囲を回るように制御することにより、レールが不要となる。レールの敷設・取り外し作業及びレールへの溶接機の装着・取り外し作業が不要なので作業時間を短縮することができる。
[非破壊検査ロボット]
 図11は、非破壊検査ロボット5の第一例を模式的に示す斜視図である。図11に示すように、非破壊検査ロボット5は、アームの先端に超音波探傷部61を備え、回転するパイプPの接合部50の非破壊検査を自動で行う。検査方法は、垂直探傷法又は斜角探傷法による超音波探傷検査でもよいし、X線等のその他の非破壊検査でもよい。パイプ回転速度は予め設定された値でもよいし、途中で変更されてもよい。検査データは管理センタ30に送られる。管理者はモニタ32に表示された検査結果を確認して判定を行う。
 従来は、作業者が非破壊検査装置を手作業でパイプPの周囲の所定位置に装着し、終了後は装置を手作業でパイプPの周囲から取り外していた。非破壊検査装置の装着や取り外し作業には、作業者が現場で立ち会って行うことが必要で、作業に時間を要していた。
 そこで、図11に示すように予め教示された非破壊検査ロボット5が自動で接合部50を検査することにより、非破壊検査装置の台座への装着作業が不要となり、作業時間を短縮することができる。
 尚、図11の非破壊検査ロボット5は、回転しないように位置決めされた2本のパイプPの接合部50の非破壊検査を、パイプ周囲をアームが回りながら行ってもよい。また、2台のロボット5でパイプ周囲を検査する方法であっても良い(図10参照)。ロボットのアームがパイプの周囲を回るので、レールが不要となり、レールと非破壊検査装置とが分離している場合にはレールの敷設と取り外し作業及びレールへの非破壊検査装置の装着及び取り外し作業、また、レール付非破壊検査装置の場合には当該装置の装着及び取り外し作業、が不要なので作業時間が短縮される。
 図12は、非破壊検査ロボット5の第二例を示している。図12に示すように、パイプPの周囲をレール62が設置され、非破壊検査ロボット5Aは、例えば壁面に設置されたレール上を走行するように構成されている。この自走型の非破壊検査ロボット5Aは、アームの先端に超音波探傷部61を備え、回転しないパイプPの周囲を回転しながら非破壊検査を実施する。また、このようなレール自走型のロボット5Aの先端のツールを溶接トーチ51(図9,10参照)に取り換えることにより、溶接作業を行ってもよい。尚、検査の結果、溶接部に不具合があれば直ちにその場で溶接のやり直しを行った上、再度非破壊検査を実施する。
 以上のように溶接及び非破壊検査が終了したパイプ溶接部分は、コーティング装置6(図2参照)により、FJC(Field Joint Coating)される。
 メインコントローラ10(図2参照)は、例えば、マイクロコントローラ、MPU、PLC(Programmable Logic Controller)、論理回路等からなる演算部(図示せず)と、ROMやRAM等からなるメモリ部(図示せず)と、により構成することができる。メインコントローラ10は、真円化整形機1、パイプ形状計測装置2、パイプ搬送装置3、溶接ロボット4、非破壊検査ロボット5、コーティング装置6を制御するコントローラ11~16の制御を司る機能を備える。本実施形態ではメインコントローラ10は、溶接のための複数のパイプPの情報を管理するパイプ管理装置20の機能を備える。メインコントローラ10が備える各機能ブロックは、メインコントローラ10の演算部がメモリ部に格納されているプログラムを読み出し実行することにより実現できる。
 管理センタ30(図2参照)は、作業スペースから隔離されたパイプ敷設船200内に設置される。管理センタ30は、管理者によって操作され、各装置の動作を制御するようにメインコントローラ10に操作指令を与える操作盤31と、監視カメラ7で撮像された映像を表示するモニタ32とを備える。監視カメラ7は溶接作業スペース等の各作業場を撮像するように設置される。監視カメラ7はメインコントローラ10で制御されるが、操作盤31により制御することも出来る。
 次に、パイプライン溶接システム100において実行される一連の処理の流れについて図13のフローチャートを用いて説明する。この一連の処理に先立って、複数のパイプPは、クレーン400によりパイプ補給船300からパイプ敷設船200に積み込まれ、仮置き場201に仮置きされた状態にある(図1参照)。図13に示すように、まず、真円化整形機1が、仮置き場201に仮置きされた複数のパイプPの各々の両端を真円整形する(図13のステップS101)。コントローラ11は予め設定された整形条件に従って、真円化整形機1の動作を制御する。例えば予めパイプのロット毎に整形条件を調整することにより、整形後の寸法差を最小にすることができる。
 次に、パイプ形状計測装置2が、真円整形された複数のパイプPの各々の両端の内径形状を計測する(図13のステップS102)。パイプ形状計測装置2は、仮置き場201に設置された真円化整形機1によって、真円整形された複数のパイプの各々の両端の内径形状を計測する。パイプ形状計測装置2は、パイプ敷設船200に設置されたパイプ搬送装置3に搭載され、パイプ搬送装置3により仮置き場201から船倉の保管庫500へパイプを搬送する際に内径形状を計測する。コントローラ12はパイプ形状計測装置2の動作を制御する。パイプ形状計測装置2は、回転体45がパイプ内部で回転軸46を中心に回転している間に、回転体45に取り付けられた測位センサ47がパイプの端部の内径分布を計測する(図4参照)。
 一般に、二本のパイプを溶接する場合、両方のパイプの接合部の目違い量が1mm以上になると溶接不良が発生し得る。従って、パイプの溶接不良を回避するためには各パイプ端部の内面形状を正確に把握した上で最適な相対位置にすることが必要である。このために、各パイプ端部の内面形状を正確に計測できる装置が必要であるが、この形状計測を正確に行える装置は未だ実用化されていないのが現状である。
 そこで、本実施形態のパイプ形状計測装置2は、パイプの内部に挿入する円筒状の回転体45の外面の軸方向1箇所または2箇所に、パイプの端部を計測できる位置に距離を計測する測位センサ47を備え、この回転体45を回転させてパイプ内の形状(内径分布)を計測する(図4参照)。各パイプの内径形状の相対的な周方向の違いを計測できれば、各パイプの突合せ部の目違い量が全て小さくなるような最適な組み合わせ、繋ぎ方、各パイプの回転量等をパイプを保管庫から移送する前に予め決定しておくことが出来る。
 また、図7に示すように、パイプ内の形状計測をパイプ開先加工後、2本のパイプを突き合わせた状態で行うようにしてもよい。この場合には、以下のようになる。回転体45は一旦突合せが完了した状態で、パイプが回転しないように回転体45が通過する片側のクランプを緩めて、格納されていた計測用の回転体45を突合せ部に移動させて内径形状を計測する。この場合、回転体45には外面の軸方向の少なくとも2箇所に、パイプの端部形状を計測する測位センサ47を備える。回転体45を回転させて2本のパイプ内の形状(内径分布)を同時に計測する。計測完了後は回転体45を格納してから、全てのクランプをする。インターナルクランプ40の回転軸42には回転角度センサ48(エンコーダ)が取り付けられているので、パイプの回転角度を計測できる。これにより、パイプ内面形状の正確な計測が容易に実現できる。二本のパイプ接合の際の溶接不良のリスクが低減し、パイプ接合工事のコスト削減に寄与する。このように、2本のパイプを突き合わせた状態でパイプ内の形状計測を行う場合には、図13のフローにおいて、パイプ形状計測(S102)は溶接(S107)の直前、S105とS106の間、またはS104とS105の間、に行われることとなる。
 尚、ロボットに取り付けたカメラでパイプの外表面のマーキングを探し、マーキングの回転角度を画像処理により計測してもよい。また、回転計測用に45degピッチでマーキングし、ロボットで複数のマーキングを捕捉して回転角度を計測してもよい。
 図14は、パイプ形状計測装置2によるパイプの内径形状の計測結果の一例を示すグラフである。図14に示すように、各パイプPの端部の内径形状が計測される。計測結果は、パイプ端部の内径の周方向分布として数値化されグラフ化される。本実施形態では、100本のパイプの両端について計測されるので200個のグラフが作成される。
 次に、パイプ管理装置20は、パイプ搬送装置3により仮置き場201から船倉の保管庫500へパイプを搬送する際にパイプの内径形状の計測結果を取得して、複数のパイプをグループ分けする(図13のステップS103)。パイプ管理装置20は、パイプ形状計測装置2から100本のパイプの各々の両端の内径形状に関する情報を取得し、100本のパイプの各々の両端の内径形状の大きさに応じて、100本のパイプをグループ分けする。例えば、内径の平均値Dmeanの大きさによりG1~Gmのm個のグループに分け、各グループにおいて内径の標準偏差σの大きさの順により1~pまでの番号を振る。同じグループの中で標準偏差の近い端部同士が突き合わせとなるようなパイプの組み合わせ、繋ぎ方とし、目違い量が所定値(1mm)を超えないように両パイプの回転角度を選定する。グループ内でのパイプの組み合わせを進めて行くとグループの最後のパイプは必ず他の異なるグループのパイプとの突合せとなる。この場合にも、内径の平均値Dmeanが最も近いグループを選定し、このグループの中で標準偏差が最も近い値の端部同士の突合せとなるようにパイプを選定し、目違い量が所定値を超えないような両パイプの回転角度を選定する。
 図15は、パイプ管理装置20により100本のパイプをグループ分けした結果の一例を示す図である。図15の左に示すように、本実施形態では、パイプ管理装置20は、内径形状の大きさ(例えば、内径平均値)に応じて、100本のパイプを4つのグループG1~G4にグループ分けする。グループ分けの結果、3番と99番等のパイプがグループG1には属し、1番とn+1番等のパイプ等がグループG2に属し、2番と100番等のパイプがグループG3に属し、n番と98番等のパイプがグループG4に属する。各グループの内径形状の大きさの範囲は予め定められた基準に従って決められる。決定方法については後述する。
 次に、搬送装置3は、パイプ管理装置20によりグループ分けされたパイプを、仮置き場201から保管庫500へ移送する(図13のステップS104)。搬送装置3は、グループ分けされた100本のパイプの各々を保管庫500内の各グループの所定場所に搬送する。図15の右に示すように、保管庫500内のグループG1の所定場所には3番と99番等のパイプが保管され、グループG2の所定場所には1番とn+1番等のパイプが保管され、グループG3の所定場所には2番と100番等のパイプが保管され、グループG4の所定場所にはn番と98番のパイプ等が保管される。どのグループに分類されたかの情報は例えばインジケータが点灯することにより、オペレータに知らせてもよい。どのパイプをどこの場所に保管するかはパイプ管理装置20が制御する。
 次に、パイプ端部面取り機(図示せず)が、同じグループに属する二本のパイプの端部を開先加工する(図13のステップS105)。ここでは開先加工に先立って、パイプ搬送装置3により、保管庫500から同じグループに属する二本のパイプPが作業スペースに搬送される。開先加工により、溶接のためにパイプ端が斜めに面取りされる(図6参照)。また、面取り加工に続いて加熱器による溶接前の予熱処理も実行される。
 次に、インターナルクランプ40及び位置決め機構43により、開先加工されたパイプPがフィッティング調整される(図13のステップS106)。インターナルクランプ40(図6参照)は、クランプ機構41により、同じグループに属する二本のパイプPの端部を突き合せた状態でこの二本のパイプを拘束する。そして、一対の位置決め機構43により、二本のパイプPの位置が調整され、二本のパイプPの端部を突き合せた状態に維持される。
 パイプの回転角度調整については、一方のパイプ側の伸縮ロッドを縮ませて拘束を緩和し、他方のパイプ側の伸縮ロッドだけを伸ばして一方のパイプを拘束した後、インターナルクランプ40の回転軸42を所定角度量だけ回転させて当該パイプを所定の回転角度に合わすことができる。または、両パイプ側の伸縮ロッド(41)を伸ばしたまま、回転させたいパイプ側のインターナルクランプだけ、すなわちインターナルクランプ40の軸方向の1/2だけを所定角度量だけ回転させる機構とすることでも、当該パイプを所定の回転角度に合わせることが出来る。
 また、パイプ溶接個所の非破壊検査後、溶接をやり直さなければならなくなった場合、溶接個所をアーク切断装置等(図示せず)により切断除去する。この場合、切断されて出来た新しいパイプ端部を突き合わせた状態で内径形状の計測を再度行う。このような場合、突き合わせるパイプの内径形状の相対的な周方向の違いを計測できれば、片方のパイプを回転させて両形状の差を小さく調節できるため、周方向位置を一旦決めてその状態で両パイプの形状差を計測する。計測結果に基づいてフィッティング調整を行う。インターナルクランプにより、一方のパイプを回転させることにより、両形状の差を小さく調節できる。コントローラ12は、取得した情報に基づいて、二本のパイプの端部の目違い量を算出し、回転角度センサ48の検出信号に基づいて、当該目違い量が最小になるようにインターナルクランプの回転軸42の回転を制御する。
 次に、溶接ロボット4は、フィッティング調整されたパイプを溶接加工する(図13のステップS107)。溶接ロボット4は、パイプ管理装置20により組み合わせを定められた二本のパイプの端部を溶接接合する。海底パイプラインに直接繋ぐ場合でなければ二本のパイプを溶接接合する場合は、インターナルクランプ40によりパイプを回転することができるので、図9の溶接ロボット4が適している。また、海底パイプラインに新設の接合パイプ(例えば2本又は4本)を溶接接合する場合は、パイプを回転することができないため、図10の溶接ロボット4が適している。
 次に、溶接加工された溶接部を非破壊検査する(図13のステップS108)。非破壊検査ロボット5は、溶接されたパイプの接合部50の非破壊検査を自動で行う。海底パイプラインに直接繋ぐ場合でなければパイプを非破壊検査する場合は、インターナルクランプ40によりパイプを回転することができるので、図11の非破壊検査ロボット5が適している。また、海底パイプラインに新設の接合パイプが溶接された場合は、パイプを回転することができないため、図12のようなロボットが適している。また、図10に示す溶接ロボットの場合のように、非破壊検査ロボット5を2台配置して検査することでも良い。
 次に、コーティング装置6は非破壊検査が終了したパイプ溶接部分の防蝕とパイプラインの断熱のためにコーティング処理する(図13のステップS109)。コーティング装置6は、FJC(Field Joint Coating)処理を実行する。
 つまり、本実施形態のパイプライン溶接システム100によれば、複数のパイプの各々の両端の内径形状の大きさに応じて、複数のパイプをグループ分けし、同じグループに属する適切な二本のパイプを溶接することにより、パイプ接合部の目違い量を最小化して、溶接不良のリスクを軽減することができる。また、各パイプの内径形状計測とその繋ぎ方の決定とを事前に行うことで搬送~溶接過程に要する作業時間を短縮することが出来る。これらにより、パイプライン溶接の品質向上及びパイプ敷設速度の向上が可能となる。
 また、本実施形態の各グループのパイプの内径形状の大きさの範囲は、図13のステップS101~S109に先立って、予め定められた基準に従って決められる。
例えば、以下のような方法でも良い。パイプ管理装置20は、予め、真円整形前の複数のパイプの各々の両端の内径形状に関する情報に基づいて、真円化整形後のパイプの両端の半径方向の塑性変形を解析して各グループの内径形状の大きさの範囲を決定する。図16は、各グループの範囲を決定する処理の流れの一例を示すフローチャートである。まず、パイプ形状計測装置2は、真円整形前のパイプの内径形状の大きさを抜き取り検査する(ステップS11)。パイプ形状計測装置2は、仮置き場201に仮置きされた複数のパイプPの中から選択されたパイプの両端の内径形状を計測する。
 次に、パイプ管理装置20は、抜き取り検査されたパイプの内径形状の計測結果を取得して、真円整形後の塑性変形を解析する(ステップS12)という機能を有していても良い。真円整形では、パイプPはケーシング72と整形ロール71間で圧下され、厚み方向全域で塑性域に達して変形が促進される。そこで、パイプ管理装置20は、真円整形後の塑性変形を、例えば有限要素法による数値シミュレーションにより解析しても良い。
 パイプ管理装置20は解析結果に基づいて、各グループの範囲を決定しても良い(ステップS53)。このように、真円化整形する場合に、予め、真円化整形後のパイプの両端の半径方向の塑性変形を予想して、各グループの内径形状の大きさの範囲を決定すれば、複数のパイプを精度良くグループ分けできる。以て、目違い精度がさらに向上する。
 ところで、このようにグループ分けされた複数のパイプを搬送装置3によって保管庫500から作業スペースに送り出す場合、基本的には同じグループの配管をピッキングして大きな目違いを生じさせないが、グループの最後のパイプは必ず他の異なるグループのパイプとの突合せとなる。そこで、あるグループのパイプが先に無くならないように隣りのグループに移り、すべてのグループのパイプを偏りなく送り出す。図17は、グループ分けされたパイプの処理手順の一例を示した模式図である。図17(A)に示すように、複数のパイプが4つのグループG1~G4にグループ分けされ、パイプ敷設船200の保管庫500に保管されている。例えば、海底からのパイプラインの端部形状に整合させるためにG2のブロックのパイプから接合し始めなければならないとする。
 図17(B)に示すように、同じグループG2からピッキングし続けそのグループのパイプが無くなり隣のグループG3に移る場合(ケースC1、ケースC2)、大きく離れたグループ間でつなぐ必要が生じ(ケースC3)、大きな目違いを生じさせる。
 そこで、図17(C)に示すように、まず、G2のブロックのパイプを順次接合して行く。G2のブロックのパイプ残数が、例えば1/2の本数になった所で隣のグループG3のブロックのパイプと接合する(ケースC1)。次に、G3のブロックのパイプを順次接合して行く。G3のブロックのパイプの残数が1/2になった所で隣のG4のブロックのパイプと接合する(ケースC2)。次に、G4のブロックのパイプを順次接合して行く。G4のブロックのパイプ残数が1/2になった所でG3のブロックのパイプと接合する(ケースC3)。G3のブロックのパイプ残数が1/2(当初から見ると1/4)になった所で隣のG2のブロックのパイプと接合する(ケースC4)。次に、G2のブロック内のパイプを順次接合して行く。G2のブロック内のパイプ残数が1/2(当初から見ると1/4)になった所で隣のG1のブロックのパイプと接合する(ケースC5)。次に、G1のブロック内のパイプを順次接合して行く。G1のブロック内のパイプ残数が1/2になった所でG1のブロックの隣のG2のブロックのパイプと接合する(ケースC6)。次にG2のブロック内のパイプを順次接合して行く。G2のブロック内のパイプ残数が1/2(当初から見ると1/8)になった所で隣のG3のブロックのパイプと接合する。このような手順を順次繰り返すことにより、大きな目違いを生じさせることなく、またどこかのブロックのパイプだけを大量に残すことなく接合することが可能となる。
 図17(C)では、パイプ残数が「1/2」となったら隣のブロックのパイプと接合するとしたが、この残数は「1/3」や「1/4」あるいは「1/m」(m=2、3、4、・・・)等でも良い。繰り返し行われる同一グループ内同士でのパイプ接合の中で、順次変えていくことでも良い。例えば、最初に同じグループ内で連続して接合する時は1/2で、2回目に同じグループ内で連続接合する時は1/3、3回目は1/4、というような方法でも良い。
 また、陸上で予めパイプ端部の内面形状が計測され、その平均半径値と半径値の標準偏差とが把握されている場合には、平均半径値の範囲毎にグループ分けした上、グループ内で標準偏差値の大きさの順番に従って船積みしておけば、同じグループ内での接合においても標準偏差値の最も近いパイプ同士の接合とすることが出来るため更に目違いの小さい接合となり溶接不良を発生させる危険性をさらに小さくすることが可能となる。
 尚、真円整形後の計測時に各パイプの外表面に印刷された識別コード(バーコードなど)を読み取り、形状の調整を決定してもよい。
 尚、溶接ロボットに取り付けたカメラで識別コードを探して、これを読み取り、パイプ位置を認識してインナークランプに指示を出してもよい。
 また、溶接後のパイプを海に投入する際には、パイプを斜めや垂直にして投入することにより、パイプに作用する曲げの力を小さくすることができる。そこで、本実施形態のパイプライン溶接システム100に加えて、パイプを海に投入する敷設用の装置をロボットにより自動化してもよい。パイプを垂直に立てて海へ投入するJ-Layと呼ばれる方法では、船の揺れは高い位置ほど大きくなるため、人による作業が難しく(作業が悪く)なるが、高速で制御できるロボットにとってはこの揺れを容易に補正した制御が可能であるため、ロボットによる自動化システムは高所での作業(J-Lay)に適したシステムになる。
(第2実施形態)
 次に、第2実施形態について説明する。本実施形態のパイプライン溶接システム100Aを搭載する敷設船200の構成は、第1実施形態と同様である。以下では、第1実施形態と共通する構成の説明は省略し、相違する構成についてのみ説明する。
 図18は、第2実施形態に係るパイプライン溶接システム100Aの構成を示すブロック図である。図18に示すように、第1実施形態と比較すると、パイプ管理装置20Aがパイプの繋ぎ方に関する情報の管理を行う点、パイプライン溶接システム100Aがパイプに関する情報を出力する二次元コードプリンタ8を更に備える点が異なる。
 図19は、パイプライン溶接システム100Aにおける一連の処理の流れの一例を示すフローチャートである。図19に示すように、本実施形態では、パイプ管理装置20Aは、パイプの組み合わせを決定する(ステップS203)。パイプ管理装置20Aは、溶接する2本のパイプの端部の整合性が許容範囲となるよう、パイプ端部の形状計測結果から、溶接する複数のパイプの繋ぎ方を決定し管理する。
 図20は、パイプ形状計測装置2によるパイプの内径形状の計測結果の一例を示すグラフである。図20に示すように、突き合せた二本のパイプP端部の内径形状が計測される。計測結果は、パイプ端部の内径の周方向分布として数値化されグラフ化される。100本のパイプの両端について計測されるので200個のグラフが作成される。パイプ管理装置20Aは、100本のパイプの各々の両端の内径形状に関する情報を取得し、取得した情報に基づいて、二本のパイプの端部を突き合せたときの目違い量が所定の許容値(例えば1mm)以下となるように100本のパイプの繋ぎ方を決定する。例えばm番目のパイプの端部の内径形状分布に対するn番目のパイプの端部の内径形状分布をずらして目違い量が所定の許容値以下となるか否かを判定する。許容値以下にならなければ次(n+1番目)のパイプの端部の内径形状分布について判定し、許容値以下になる最適なパイプの組み合わせを探す。このような処理を100本のパイプについて行う。図21は、パイプ管理装置20Aにより決定した100本のパイプの組み合わせの一例を示すチャートである。図21の左に示すように、パイプの組み合わせとして、各パイプの順序(パイプNo.)、各パイプの方向(上又は下)及び接合する端部の相対回転量(deg)が決定される。ここでは100本のパイプPの組み合わせ方が決定される。このように、溶接前に、予め、複数のパイプの具体的な繋ぎ方を決定するので、効率的にパイプを溶接位置に設置することができる。
 次に、パイプ管理装置20Aは、2次元コードを出力する(ステップS204)。パイプ管理装置20Aは、パイプの繋ぎ方に関する情報を機械読み取り可能な2次元コードに変換し、変換した2次元コード91を各パイプの外側表面にプリントする。図21の右に示すように、二次元コードは各パイプの順序(パイプNo.)、各パイプの方向(上又は下)及び接合する端部の相対回転量(deg)に関する情報を含んでいる。このように、変換された2次元コードが各パイプの外側表面にプリントされるので、パイプの管理及び溶接時の位置決めが容易となる。
 尚、パイプの順序、向き、回転方向角度等の情報は、パイプ表面のコーティングされた部分に2次元コードがプリントされる。2次元コードは、パイプの回転角度の基準位置(回転角度0deg.位置)にプリントされる。
 また、本実施形態のパイプ管理装置20Aは、敷設船200のパイプライン溶接システム100Aに搭載され、敷設船200上に搭載されるパイプについて(数百本から数千本)単位で最適な繋ぎ方を決定してもよいし、陸上のパイプライン溶接システムに搭載されてもよい。また、陸上で、船出しする単位毎(例えば数百本から数千本単位毎)で最適な繋ぎ方を決定してもよい。
 従来は、現場でパイプを突き合わせてみて初めてパイプ溶接部の目違い量について把握するため、目違い量が大きい場合には溶接不良となりうるという課題があった。また、目違い量の最大値を小さくするような相対回転角度の検討と決定とを現場でパイプ突き合せてから行うため、溶接開始までに時間を要するという課題もあった。これに対し、本実施形態によれば、端部形状計測で得られるデータによりパイプ接合部の整合性最適化のためのパイプ配列や向き等の決定が溶接前に可能となる。パイプ接合部の不整合性(目違い量)を最小にすることが可能となり、溶接時間の短縮と溶接不良のリスク軽減とが可能となる。このシステムの採用により、パイプ溶接の品質向上及びパイプ敷設速度の向上が可能となる。
(その他の実施形態)
 尚、上記各実施形態では、パイプ形状計測装置2は、真円化整形機1によって、真円整形された複数のパイプの各々の両端の内径形状を計測したが、パイプ形状計測装置2は、真円整形されない複数のパイプの各々の両端の内径形状を計測してもよい。
 尚、上記各実施形態のパイプライン溶接システムは、複数のパイプをパイプ敷設船200上で溶接接合する海底パイプラインに適用したが、陸上で溶接接合される陸上パイプラインに適用してもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び機能の一方又は双方の詳細を実質的に変更できる。
 本発明は、パイプライン溶接に有用である。
1 真円化整形機
2,2A,2B パイプ形状計測装置
3 パイプ搬送装置
4 溶接ロボット
5,5A 非破壊検査ロボット
6 コーティング装置
7 監視カメラ
8 二次元コードプリンタ
10 メインコントローラ
11~16 コントローラ
20、20A パイプ管理装置
30 管理センタ
31 操作盤
32 モニタ
40 インターナルクランプ
41 クランプ機構
42 回転軸
43 位置決め機構
43a 上下可動ガイドローラ
43b 左右可動ガイドローラ
44 車輪
45,45A 回転体
46 回転軸
47 測位センサ
48 エンコーダ
50 パイプ接合部
51 溶接トーチ
61 超音波探傷部
62 レール
71 整形ロール
72 ケーシング
91 二次元コード
100,100A パイプライン溶接システム
200 パイプ敷設船(pipe lay barge)
201 パイプ仮置き場
300 パイプ補給船(supply vessel)
400 クレーン
500 保管庫
P パイプ
 
 
 

Claims (14)

  1.  複数のパイプを溶接接合するパイプライン溶接システムであって、
     前記複数のパイプの各々の両端の内径形状を計測するように構成された計測装置と、
     計測された前記複数のパイプの各々の両端の内径形状に関する情報を取得し、前記複数のパイプの各々の両端の内径形状の大きさに応じて、前記複数のパイプをグループ分けするパイプ管理装置と、
     グループ分けされた前記複数のパイプの各々を各グループの所定の保管場所に搬送する搬送装置と、
     同じグループに属する二本のパイプの端部を溶接接合する溶接ロボットと、
    を備え、パイプライン溶接システム。
  2.  前記パイプ管理装置は、前記複数のパイプを内径の平均値の大きさに応じて複数のグループに分け、各グループにおいて内径の標準偏差の大きさに応じて所定の番号を付与し、同一グループの中で標準偏差の近い端部同士が突き合わせとなるようなパイプの組み合わせを決定し、決定された二本のパイプの目違い量が所定値を超えないように両パイプの回転角度を選定する、請求項1に記載のパイプライン溶接システム。
  3.  前記パイプ管理装置は、一のグループの最後のパイプ(以下、最終パイプという)と他のグループのパイプとを突合せる場合には、内径の平均値が最も近い他のグループを選定し、選定したグループの中で標準偏差が最も近い値の端部同士の突合せとなるようにパイプを選定し、選定されたパイプと前記最終パイプとの目違い量が所定値を超えないような両パイプの回転角度を選定する、請求項2に記載のパイプライン溶接システム。
  4.  前記搬送装置は、前記所定の保管場所から同じグループに属するパイプを所定の作業スペースに順次送り出すように構成され、一のグループのパイプのみが無くなる前に当該一のグループに隣接するグループのパイプの送り出しを開始する、請求項1乃至3のいずれか一項に記載のパイプライン溶接システム。
  5.  溶接接合された前記二本のパイプの端部の溶接部を非破壊検査する非破壊検査ロボットを更に備える、請求項1に記載のパイプライン溶接システム。
  6.  前記複数のパイプの各々の両端を真円整形するように構成された真円化整形機を更に備え、
     前記計測装置は、前記真円化整形機によって、真円整形された前記複数のパイプの各々の両端の内径形状を計測する、請求項1に記載のパイプライン溶接システム。
  7.  前記パイプ管理装置は、予め、真円整形前の複数のパイプの各々の両端の内径形状に関する情報に基づいて、真円化整形後のパイプの両端の半径方向の塑性変形を解析して前記各グループの内径形状の大きさの範囲を決定する、請求項6に記載のパイプライン溶接システム。
  8.  同じグループまたは隣接するグループに属する二本のパイプの端部を突き合せた状態で当該二本のパイプを拘束するクランプ機構と、少なくとも一方のパイプを拘束した状態で当該パイプの中心軸回りに回転可能な回転軸とを有するインターナルクランプと、
     前記二本のパイプの端部の目違い量が最小になるように前記インターナルクランプの前記回転軸の回転を制御する制御装置と、を更に備える、請求項1乃至7のいずれか一項に記載の海底パイプラインの溶接システム。
  9.  複数のパイプが溶接接合されるパイプラインのパイプ管理装置であって、
     前記複数のパイプの各々の両端の内径形状に関する情報を取得し、取得した情報に基づいて、二本のパイプの端部を突き合せたときの目違い量が所定の許容値以下となるように前記複数のパイプの繋ぎ方を決定し、当該パイプの繋ぎ方に関する情報の管理を行う、パイプ管理装置。
  10.  前記複数のパイプの繋ぎ方として、前記複数のパイプの順序、各パイプの方向及び接合する端部の相対回転量を決定する、請求項9に記載のパイプ管理装置。
  11.  前記パイプの繋ぎ方に関する情報を機械読み取り可能な2次元コードに変換し、変換した2次元コードを各パイプの外側表面にプリントする、請求項9又は10に記載のパイプ管理装置。
  12.   パイプラインに用いるパイプの内径形状を計測するパイプ形状計測装置であって、
     前記パイプの内側にパイプの中心軸に沿って挿入され、且つ、当該パイプの中心軸回りに回転可能な回転軸を有する回転体と、
     前記パイプの端部の内面に対応するように、前記回転体の外面の軸方向に設けられた複数の測位センサと、
     前記回転体が前記回転軸を中心に回転している間に、前記測位センサにより計測された前記パイプの内径形状に関する情報を取得する制御装置と、
    を備える、パイプ形状計測装置。
  13.  二本の前記パイプの端部を突き合せた状態で位置決めする前記位置決め機構と、
     前記二本のパイプを拘束するクランプ機構、及び、少なくとも一方のパイプを拘束した状態で当該パイプの中心軸回りに回転可能な回転軸を有するインターナルクランプと、を更に備え、
     前記制御装置は、前記回転体が前記回転軸を中心に回転している間に、前記測位センサにより計測された前記二本のパイプの内径形状に関する情報を取得し、取得した情報に基づいて、前記二本のパイプの端部の目違い量を算出し、当該目違い量が最小になるように前記インターナルクランプの前記回転軸の回転を制御する、請求項12に記載のパイプ形状装置。
  14.  前記インターナルクランプの回転軸に取り付けられた回転角度センサを更に備え、
     前記制御装置は、前記回転角度センサの検出信号に基づいて、前記目違い量が最小になるように前記インターナルクランプの回転軸の回転を制御する、請求項13に記載のパイプ形状装置。
     
PCT/JP2016/003088 2016-06-27 2016-06-27 パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置 WO2018002964A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/003088 WO2018002964A1 (ja) 2016-06-27 2016-06-27 パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/003088 WO2018002964A1 (ja) 2016-06-27 2016-06-27 パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置

Publications (1)

Publication Number Publication Date
WO2018002964A1 true WO2018002964A1 (ja) 2018-01-04

Family

ID=60787025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003088 WO2018002964A1 (ja) 2016-06-27 2016-06-27 パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置

Country Status (1)

Country Link
WO (1) WO2018002964A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101889A1 (en) * 2017-11-24 2019-05-31 Saipem S.P.A. Methods and apparatus relating to pipe welding
CN111272812A (zh) * 2020-03-13 2020-06-12 南通大学 干燥机内部流道隔板脱焊缺陷检测与补焊的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231785A (ja) * 1990-12-28 1992-08-20 Kawasaki Steel Corp パイプラインの敷設方法
JPH0755456A (ja) * 1993-08-10 1995-03-03 Toshiba Corp 管内径測定装置
JPH09324874A (ja) * 1996-06-03 1997-12-16 Tadahiro Omi 配管施工の管理方法
JP2001009590A (ja) * 1999-06-28 2001-01-16 Daido Steel Co Ltd 金属管の軸合わせ方法
JP2002228044A (ja) * 2001-01-31 2002-08-14 Hitachi Plant Eng & Constr Co Ltd 3次元計測による既設配管と合せ配管との接合方法
JP2015075928A (ja) * 2013-10-09 2015-04-20 株式会社クボタ 配管施工管理情報収集システム及び配管施工管理情報収集方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231785A (ja) * 1990-12-28 1992-08-20 Kawasaki Steel Corp パイプラインの敷設方法
JPH0755456A (ja) * 1993-08-10 1995-03-03 Toshiba Corp 管内径測定装置
JPH09324874A (ja) * 1996-06-03 1997-12-16 Tadahiro Omi 配管施工の管理方法
JP2001009590A (ja) * 1999-06-28 2001-01-16 Daido Steel Co Ltd 金属管の軸合わせ方法
JP2002228044A (ja) * 2001-01-31 2002-08-14 Hitachi Plant Eng & Constr Co Ltd 3次元計測による既設配管と合せ配管との接合方法
JP2015075928A (ja) * 2013-10-09 2015-04-20 株式会社クボタ 配管施工管理情報収集システム及び配管施工管理情報収集方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101889A1 (en) * 2017-11-24 2019-05-31 Saipem S.P.A. Methods and apparatus relating to pipe welding
US11448342B2 (en) 2017-11-24 2022-09-20 Saipem S.P.A. Methods and apparatus relating to pipe welding
CN111272812A (zh) * 2020-03-13 2020-06-12 南通大学 干燥机内部流道隔板脱焊缺陷检测与补焊的装置及方法
CN111272812B (zh) * 2020-03-13 2021-11-26 南通大学 干燥机内部流道隔板脱焊缺陷检测与补焊的装置及方法

Similar Documents

Publication Publication Date Title
EP3713703B1 (en) Methods and apparatus relating to pipe welding
US11767934B2 (en) Internally welded pipes
US11175099B2 (en) Systems and methods for use in welding pipe segments of a pipeline
US10589371B2 (en) Rotating welding system and methods
RU2719299C2 (ru) Автоматическая система и способ для измерения и механической обработки концов трубных элементов
AU2015387441B2 (en) Rotating welding system and methods
US10695876B2 (en) Self-powered welding systems and methods
EP3183484B1 (en) Pipe-laying vessel and method of joining pipe sections
AU2014268528B2 (en) Laser controlled internal welding machine for pipelines
AU2016209938B2 (en) Scanning bevels in preparation for welding
JP2011185925A (ja) 配管内作業装置
JP5460149B2 (ja) 鋼管突合せ溶接部内面検査装置および方法
WO2018002964A1 (ja) パイプライン溶接システム、パイプ管理装置及びパイプ形状計測装置
US20240102598A1 (en) Method for producing a polymer-improved pipe element
CA2986645A1 (en) Systems and methods for use in welding pipe segments of a pipeline
WO2017221282A1 (ja) パイプ形状計測システム及びパイプ形状整合システム
Ramalho Filho et al. Development of robots for the pipeline industry
WO2022024075A1 (en) System and method for automated detection, marking and repair of welding abnormalities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP