WO2018001797A1 - Düsenkörper für einen kraftstoffinjektor - Google Patents

Düsenkörper für einen kraftstoffinjektor Download PDF

Info

Publication number
WO2018001797A1
WO2018001797A1 PCT/EP2017/065128 EP2017065128W WO2018001797A1 WO 2018001797 A1 WO2018001797 A1 WO 2018001797A1 EP 2017065128 W EP2017065128 W EP 2017065128W WO 2018001797 A1 WO2018001797 A1 WO 2018001797A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle body
nozzle
cooling
matrix
kidney
Prior art date
Application number
PCT/EP2017/065128
Other languages
English (en)
French (fr)
Inventor
Walter Walkner
Arno Seiringer
Heinrich Werger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020197002214A priority Critical patent/KR102303418B1/ko
Priority to CN201780040164.9A priority patent/CN109416007B/zh
Priority to EP17731874.8A priority patent/EP3475555B1/de
Priority to JP2018565654A priority patent/JP6757805B2/ja
Publication of WO2018001797A1 publication Critical patent/WO2018001797A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/043Injectors with heating, cooling, or thermally-insulating means with cooling means other than air cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/08Shaping hollow articles with different cross-section in longitudinal direction, e.g. nozzles, spark-plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1866Valve seats or member ends having multiple cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/07Nozzles and injectors with controllable fuel supply
    • F02M2700/077Injectors having cooling or heating means

Definitions

  • the invention relates to a nozzle body for a fuel injector for
  • a nozzle body for a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine according to the preamble of claim 1 is known from EP 1 781 931 Bl.
  • the known fuel injector comprises a holding body, a valve body with throttle plate and a nozzle body.
  • the holding body and the nozzle body are through a nozzle retaining nut
  • a pressure chamber is formed, which is supplied via an inlet bore with pressurized fuel.
  • An at least one injection opening releasing or closing longitudinally movable nozzle needle is arranged to be longitudinally movable in the pressure chamber.
  • the nozzle body according to the invention for a fuel injector has cooling channels which are optimized in their cooling effect. Nevertheless, the nozzle body is designed in one piece, so that can be dispensed with elaborate manufacturing techniques and seals. Furthermore, the structural weakening of the nozzle body by the cooling channels is only marginal. For this purpose, a pressure chamber is formed in the nozzle body, which has a
  • Inlet bore can be supplied with fuel under high pressure.
  • a nozzle needle releasing or closing at least one injection opening is arranged longitudinally movably in the pressure space. The at least one
  • Injection opening is formed in a nozzle tip of the nozzle body.
  • In the nozzle body can be flowed through with cooling medium cooling channels.
  • Cooling channels comprise a cooling matrix formed in the nozzle tip.
  • the nozzle body is also made in one piece.
  • the cooling matrix has the largest possible effective for the cooling surface, so that the heat input from the nozzle tip into the cooling medium is very large and the cooling of the nozzle body thereby particularly effective.
  • the cooling channels, in particular the cooling matrix, are
  • the cooling matrix is designed fence-shaped, meandering or helical.
  • the entire convection surface of the cooling matrix ie the separation surface between the nozzle body and the cooling matrix, can be made very large.
  • a large heat flow from the nozzle tip into the Cooling medium is the result.
  • the cooling of the nozzle body is thereby particularly effective.
  • the flow through the cooling matrix is additionally designed in a particularly defined manner; there is no danger of the cooling medium standing in local areas and not flowing.
  • the cooling matrix is designed ring-cylindrical.
  • the nozzle body can be made very compact in its axial dimensions.
  • the cooling matrix is penetrated by material pores of the nozzle tip. As a result, the entire convection surface can be increased again. The heat exchange between the nozzle tip and the cooling medium is thereby further optimized.
  • the cooling channels comprise an elongated
  • Inlet channel and an elongated flow channel for supplying and discharging cooling medium in the cooling matrix and from the cooling matrix.
  • the nozzle tip is the hottest portion of the nozzle body and the cooling matrix disposed therein.
  • the supply and removal of the cooling medium in the nozzle body or from the nozzle body takes place at the nozzle tip
  • Drain channel is therefore a fluidically favorable design to connect the cooling matrix hydraulically to the supply of cooling medium.
  • the cooling channels have an inlet kidney and an outlet kidney.
  • the inlet kidney and the Auslassniere are formed on one of the nozzle tip opposite end face of the nozzle body.
  • the inlet kidney goes into the inlet channel and the outlet kidney goes into the outlet channel.
  • the nozzle body can be braced on the end face with a further component, for example a holding body or a throttle plate, the connection of the cooling channels not being tight
  • the inlet kidney and the outlet kidney are the hydraulic connection of the cooling channels to the adjacent component. Due to the comparatively large areas of the two kidneys, have Dimensional deviations to the connection geometries no disadvantage
  • the nozzle body has a
  • Thermal conductivity has as the remaining area of the nozzle body.
  • the amount of heat transported through the convection area is therefore particularly large.
  • defined main heat flows can be advantageously arranged, for example, from the injection openings to the cooling matrix.
  • a particularly thermally conductive material for example, copper for the
  • Convection area can be used. Due to the 3D printing process nevertheless creates a solid cohesive connection to the other
  • Nozzle body in a fuel injector has a
  • Control valve for controlling the pressure of a control room.
  • the control chamber is limited by the nozzle needle.
  • the opening and closing movements of the nozzle needle are thus controlled by the pressure in the control chamber, which in turn is controlled by the control valve.
  • the manufacturing method of the nozzle body according to the invention is an SD printing method, since only so that the complex geometry of the cooling matrix can be realized in a one-piece nozzle body. Sealing plugs, other components, welds, sealants and the like
  • Body made of the nozzle body, preferably by forging or casting.
  • this basic body optional partial geometries of the Be designed cooling channels, for example as a longitudinal section of holes or as a half-model. Subsequently, the remaining, the cooling channels
  • convection areas can then also be applied with a material of high thermal conductivity by means of 3D printing.
  • Fig. 4 shows a detail of a negative form of cooling channels in another
  • FIG. 1 shows a longitudinal section of a fuel injector 100 for injecting fuel into the combustion chamber of an internal combustion engine, as is known from the prior art.
  • the known fuel injector 100 comprises a holding body 1, a
  • Valve body 3 a throttle plate 5 and a nozzle body 16. All these components are held together by a nozzle retaining nut 7.
  • the nozzle body 16 in this case contains a nozzle needle 6, which in an im
  • Nozzle body 16 formed pressure chamber 8 is arranged longitudinally displaceable. During an opening movement of the nozzle needle 6 fuel over several in Nozzle body 16 injection openings 60 injected into the combustion chamber of the internal combustion engine.
  • a collar is visible, on which a compression spring 61 is supported.
  • the other end of the compression spring 61 is supported on a control sleeve 62, which in turn rests against the underside of the throttle plate 5.
  • the control sleeve 62 defines with the upper, the injection openings 60 opposite end face of the nozzle needle 6 and the underside of the throttle plate 5 a control chamber 63.
  • the pressure prevailing in the control chamber 63 pressure is decisive for the control of the longitudinal movement of the nozzle needle 6.
  • An inlet bore 64 is formed in the fuel injector 100. About the
  • the fuel pressure on the one hand in the pressure chamber 8 is effective, where he exerts a force in the opening direction of the nozzle needle 6 via a pressure shoulder of the nozzle needle 6.
  • this fuel pressure acts via an inlet throttle 65 formed in the control sleeve 62 in the control chamber 63 and, supported by the force of the compression spring 61, holds the nozzle needle 6 in its
  • the fuel injector 100 further includes a control valve 2 for controlling the
  • Outflow channel 76 flow.
  • the lowering of the hydraulic force in this way on the upper end face of the nozzle needle 6 leads to an opening of the nozzle needle 6.
  • the fuel from the pressure chamber 8 thus passes through the injection openings 60 into the combustion chamber of the internal combustion engine.
  • cooling passages 30 are in valve body 3, throttle plate 5 and nozzle body 16 of the known
  • Fuel injector 100 is formed. Thus, especially the tip of the nozzle needle 6 and the nozzle body 16 can be cooled.
  • the cooling channels 30 are partially in the inlet bore 64. However, this is only due to the sectional view, in the embodiments are the
  • Cooling channels 30 separated from the inlet bore 64.
  • the cooling channels 30 are now formed in a one-piece SD printed nozzle body 16.
  • any shapes of the cooling channels can be realized, on the other hand can be dispensed with a complex construction with multiple components.
  • FIG. 2 shows a nozzle body 16 produced in the 3D printing process in a perspective transparent view.
  • the inlet bore 64 in the pressure chamber 8 is not shown.
  • the nozzle body 16 are as usual the
  • Cooling channels 30 are formed so that they have a very large area to the nozzle body 16 in the region of the nozzle tip 16a of the nozzle body 16, ie near the injection openings 60.
  • the cooling channels 30 comprise an inlet kidney 33 and an outlet kidney 34 for connection to the component adjacent to the nozzle body 16, thus, for example, the throttle plate 5 or the holding body 1, depending on the design of the
  • Fuel injector 100 The external cooling connections of the fuel injector 100 are generally formed on the holding body 1.
  • the cooling channels 30 further comprise an elongate inlet channel 31, an elongate outlet channel 32 and a cooling matrix 35.
  • the cooling matrix 35 is preferably provided with a large total area for effective cooling of the nozzle tip 16a, so that maximum heat transfer from the very hot nozzle tip 16a in FIG that the cooling channels 30th can flow through cooling medium. This extends the
  • Cooling matrix 35 preferably also over the entire circumference of the nozzle tip 16a.
  • Convection region 37 as shown in Figure 2 surrounding the cooling matrix 35.
  • the convection region 37 is made of a different material, for example copper, than the remaining nozzle body 16, but nevertheless connected to it in a material-locking manner due to the 3D printing.
  • the convection region 37 has a particularly high thermal conductivity and serves to conduct the largest possible amount of heat from very hot regions of the nozzle body 16 to the cooling matrix 35.
  • the convection region 37 is arranged in the vicinity of the injection openings 60 in the nozzle tip 16a, since there usually the highest temperatures of the fuel injector 100 prevail.
  • cooling matrix 35 is executed fence-shaped. Further embodiments are shown in the following figures 3 and 4.
  • FIG 3 shows a negative model of the cooling matrix 35 - ie the geometry of the cooling medium - in helical or meander shape. Due to the meandering shape, the cooling matrix 35 flows through in a particularly defined manner, since there are no branches in the flow direction. Standing cooling medium - and thus locally low heat transfer coefficients - are thus excluded.
  • cooling matrix 35 as a ring cylinder with a plurality of
  • the pores 36 are thus material of the nozzle body 16, for example steel.
  • the convection surface of the cooling matrix 35 is particularly large. Accordingly, a large heat input from the nozzle tip 16a into the cooling medium can occur.
  • the cooling matrix 35 may also be annular.
  • Nozzle body 16 to use. Especially with regard to the property of the thermal conductivity, heat flows in the direction of the cooling channels 30 can thus be advantageously influenced.
  • One or more convection regions 37 which have a particularly high thermal conductivity and preferably run from the region of the injection openings 60 to the cooling matrix 35, are applied by means of 3D printing.
  • the cooling channels 30 may already be present in partial contours.
  • the outer region of the nozzle body 16, in particular the region surrounding the cooling matrix 35 and optionally also the convection region 17, is then applied by means of 3D printing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

Die Erfindung betrifft einen Düsenkörper (16), insbesondere in Verwendung in einem Kraftstoffinjektor (100) zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine. Der Düsenkörper (16) ist einstückig ausgeführt. In dem Düsenkörper (16) ist ein Druckraum (8) ausgebildet, der über eine Zulaufbohrung (64) mit unter Hochdruck stehendem Kraftstoff versorgbar ist. Eine zumindest eine Einspritzöffnung (60) freigebende oder verschließende Düsennadel (6) ist in dem Druckraum (8) längsbeweglich angeordnet. Die zumindest eine Einspritzöffnung (60) ist in einer Düsenspitze (16a) des Düsenkörpers (16) ausgebildet. In dem Düsenkörper (16) sind mit Kühlmedium durchströmbare Kühlkanäle (30) ausgebildet. Die Kühlkanäle (30) umfassen eine in der Düsenspitze (16a) ausgebildete Kühlmatrix (35).

Description

Beschreibung
Titel
Düsenkörper für einen Kraftstoffinjektor Stand der Technik
Die Erfindung betrifft einen Düsenkörper für einen Kraftstoffinjektor zum
Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine, wobei der Düsenkörper Kühlkanäle aufweist.
Ein Düsenkörper für einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1 ist aus der EP 1 781 931 Bl bekannt. Der bekannte Kraftstoffinjektor umfasst einen Haltekörper, einen Ventilkörper mit Drosselplatte und einen Düsenkörper. Der Haltekörper und der Düsenkörper sind durch eine Düsenspannmutter
miteinander verspannt. In dem Düsenkörper ist ein Druckraum ausgebildet, der über eine Zulaufbohrung mit unter Druck stehendem Kraftstoff versorgbar ist. Eine zumindest eine Einspritzöffnung freigebende oder verschließende längsbewegliche Düsennadel ist in dem Druckraum längsbeweglich angeordnet.
Weiterhin weist der bekannte Kraftstoffinjektor in dem Düsenkörper ausgebildete Kühlkanäle auf. Über die Ausführung und Herstellung dieser Kühlkanäle offenbart die EP 1 781 931 Bl jedoch nichts. Des Weiteren ist die nichtvorveröffentlichte DE 10 2016 206 796 AI aus dem
Stand der Technik bekannt, welche die Ausbildung von Kühlkanälen zwischen dem Düsenkörper und einem zusätzlichen Bauteil, der Kühlkappe, offenbart.
Die Ausführungen der Kühlkanäle der bekannten Kraftstoffinjektoren erfordern komplexe Ausführungen und einen hohen fertigungstechnischen Aufwand. Offenbarung der Erfindung
Der erfindungsgemäße Düsenkörper für einen Kraftstoffinjektor weist demgegen- über Kühlkanäle auf, die in ihrer Kühlwirkung optimiert sind. Dennoch ist der Düsenkörper einstückig gestaltet, so dass auf aufwändige Fertigungstechniken und Abdichtungen verzichtet werden kann. Weiterhin ist die Strukturschwächung des Düsenkörpers durch die Kühlkanäle nur marginal. Dazu ist in dem Düsenkörper ein Druckraum ausgebildet, der über eine
Zulaufbohrung mit unter Hochdruck stehendem Kraftstoff versorgbar ist. Eine zumindest eine Einspritzöffnung freigebende oder verschließende Düsennadel ist in dem Druckraum längsbeweglich angeordnet. Die zumindest eine
Einspritzöffnung ist in einer Düsenspitze des Düsenkörpers ausgebildet. In dem Düsenkörper sind mit Kühlmedium durchströmbare Kühlkanäle ausgebildet. Die
Kühlkanäle umfassen eine in der Düsenspitze ausgebildete Kühlmatrix. Der Düsenkörper ist weiterhin einstückig ausgeführt.
Im Betrieb des Kraftstoff injektors ist besonders die Düsenspitze sehr hohen Temperaturen ausgesetzt. Eine effektive Kühlung der Düsenspitze hat eine robuste Funktionalität und eine erhöhte Lebensdauer des Kraftstoffinjektors zur Folge. Die Kühlmatrix weist eine möglichst große, für die Kühlung wirksame Gesamtfläche auf, so dass der Wärmeeintrag von der Düsenspitze in das Kühlmedium sehr groß ist und die Kühlung des Düsenkörpers dadurch besonders effektiv. Die Kühlkanäle, insbesondere die Kühlmatrix sind mittels SD-
Druck-Verfahren hergestellt. Mit anderen Fertigungsverfahren, beispielsweise konventioneller Dreh- und Bohrtechnik, kann die Geometrie der Kühlmatrix in einem einstückigen Düsenkörper nicht hergestellt werden. Auf aufwändige Ersatzmaßnahmen wie Schweißen oder Verschlussstopfen kann daher verzichtet werden. Damit einhergehende Anschlussprobleme wie mangelnde Dichtheit oder verminderte Festigkeit entfallen.
In vorteilhaften Ausführungen ist die Kühlmatrix zaunförmig, mäanderförmig oder wendeiförmig gestaltet. Dadurch kann die gesamte Konvektionsfläche der Kühlmatrix, also die Trennfläche zwischen Düsenkörper und Kühlmatrix, sehr groß gestaltet werden. Ein großer Wärmefluss von der Düsenspitze in das Kühlmedium ist die Folge. Die Kühlung des Düsenkörpers ist dadurch besonders effektiv. Bei den wendel- und mäanderförmigen Ausführungen der Kühlmatrix ist die Durchströmung der Kühlmatrix zusätzlich besonders definiert gestaltet, es gibt keine Gefahr, dass das Kühlmedium in lokalen Bereichen steht und nicht fließt.
In einer anderen vorteilhaften Ausführung ist die Kühlmatrix ringzylinderförmig gestaltet. Dadurch kann der Düsenkörper in seinen axialen Abmaßen sehr kompakt ausgeführt werden.
In vorteilhaften Weiterbildungen ist die Kühlmatrix von Materialporen der Düsenspitze durchsetzt. Dadurch kann die gesamte Konvektionsfläche noch einmal vergrößert werden. Der Wärmeaustausch zwischen Düsenspitze und Kühlmedium ist dadurch weiter optimiert.
In vorteilhaften Ausführungen umfassen die Kühlkanäle einen länglichen
Zulaufkanal und einen länglichen Ablaufkanal zum Zu- und Abführen von Kühlmedium in die Kühlmatrix und aus der Kühlmatrix. Typischerweise ist die Düsenspitze der heißeste Bereich des Düsenkörpers und die Kühlmatrix in diesem angeordnet. Die Zu- und Abfuhr des Kühlmediums in den Düsenkörper bzw. aus dem Düsenkörper erfolgt jedoch an der der Düsenspitze
gegenüberliegenden Stirnseite des Düsenkörpers. Der längliche Zu- bzw.
Ablaufkanal ist demzufolge eine strömungstechnisch günstige Ausführung um die Kühlmatrix hydraulisch an die Versorgung mit Kühlmedium anzuschließen.
In vorteilhaften Weiterbildungen weisen die Kühlkanäle eine Einlassniere und eine Auslassniere auf. Die Einlassniere und die Auslassniere sind an einer der Düsenspitze gegenüberliegenden Stirnseite des Düsenkörpers ausgebildet. Die Einlassniere geht in den Zulaufkanal über, und die Auslassniere geht in den Ablaufkanal über. Dadurch kann der Düsenkörper an der Stirnseite mit einem weiteren Bauteil, beispielsweise einem Haltekörper oder einer Drosselplatte, verspannt werden, wobei die Anbindung der Kühlkanäle keinen engen
Toleranzen unterliegen muss. Die Einlassniere und die Auslassniere sind die hydraulische Verbindung der Kühlkanäle zu dem benachbarten Bauteil. Durch die vergleichsweise großen Flächen der beiden Nieren, haben Maßabweichungen zu den Anschlussgeometrien keine nachteil
Auswirkungen auf die Durchströmung der Kühlkanäle.
In vorteilhaften Weiterbildungen weist der Düsenkörper einen
Konvektionsbereich auf, wobei der Konvektionsbereich eine größere
Wärmeleitfähigkeit besitzt als der übrige Bereich des Düsenkörpers. Die durch den Konvektionsbereich transportierte Wärmemenge ist damit besonders groß. So können definierte Hauptwärmeströme vorteilhaft angeordnet werden, beispielsweise von den Einspritzöffnungen zu der Kühlmatrix. Als besonders wärmeleitfähiges Material kann beispielsweise Kupfer für den
Konvektionsbereich verwendet werden. Aufgrund des 3D-Druck-Verfahrens entsteht dennoch eine feste stoffschlüssige Verbindung zu den weiteren
Bereichen des Düsenkörpers. Eine besonders vorteilhafte Verwendung findet der erfindungsgemäße
Düsenkörper in einem Kraftstoffinjektor. Der Kraftstoffinjektor weist ein
Steuerventil zur Steuerung des Drucks eines Steuerraums auf. Der Steuerraum ist dabei durch die Düsennadel begrenzt. Die Öffnungs- und Schließbewegungen der Düsennadel werden also durch den Druck im Steuerraum gesteuert, welcher wiederum von dem Steuerventil gesteuert wird. Der Kraftstoffinjektor zum
Einspritzen von unter Hochdruck stehendem Kraftstoff in den Brennraum einer Brennkraftmaschine ist besonders hohen Temperaturen ausgesetzt, dies gilt insbesondere für die Düsenspitze, an welcher die Einspritzöffnungen in den Brennraum ausgebildet sind. Die Kühlung der Düsenspitze über die Kühlmatrix ist für derartige Kraftstoffinjektoren daher besonders wichtig und besonders effektiv.
Das Herstellungsverfahren des erfindungsgemäßen Düsenkörpers ist ein SD- Druck-Verfahren, da lediglich damit die komplexe Geometrie der Kühlmatrix in einem einstückigen Düsenkörper realisiert werden kann. Verschlussstopfen, weitere Bauteile, Schweißnähte, Abdichtmittel und ähnliche
Umgehungsmaßnahmen entfallen dadurch.
In einer vorteilhaften Weiterbildung des Verfahrens wird zunächst ein
Grundkörper des Düsenkörpers gefertigt, vorzugsweise durch Schmieden oder Gießen. In diesem Grundkörper können optional auch bereits Teilgeometrien der Kühlkanäle ausgebildet sein, beispielsweise als Längsschnitt von Bohrungen bzw. als Halbmodell. Anschließend wird das restliche, die Kühlkanäle
umgebende Material per 3D-Druck appliziert. Gegebenenfalls können dann auch noch Konvektionsbereiche mit einem besonders wärmeleitfähigen Material per 3D-Druck appliziert werden.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.
Diese zeigen in:
Fig. 1 einen Längsschnitt durch einen Kraftstoffinjektor gemäß dem Stand der Technik,
Fig. 2 einen Düsenkörper in transparenter perspektivischer Ansicht,
Fig. 3 einen Ausschnitt einer Negativform von Kühlkanälen,
Fig. 4 einen Ausschnitt einer Negativform von Kühlkanälen in einer weiteren
Ausführungsform.
Gleiche Elemente bzw. Elemente mit gleicher Funktion sind in den Figuren mit den gleichen Bezugsziffern versehen.
In der Fig.l ist ein Kraftstoffinjektor 100 zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine im Längsschnitt dargestellt, wie er aus dem Stand der Technik bekannt ist.
Der bekannte Kraftstoffinjektor 100 umfasst einen Haltekörper 1, einen
Ventilkörper 3, eine Drosselplatte 5 und einen Düsenkörper 16. Alle diese Bauteile werden durch eine Düsenspannmutter 7 zusammengehalten. Der Düsenkörper 16 enthält hierbei eine Düsennadel 6, welche in einem im
Düsenkörper 16 ausgebildeten Druckraum 8 längsverschiebbar angeordnet ist. Bei einer Öffnungsbewegung der Düsennadel 6 wird Kraftstoff über mehrere im Düsenkörper 16 ausgebildete Einspritzöffnungen 60 in den Brennraum der Brennkraftmaschine eingespritzt.
An der Düsennadel 6 ist ein Bund ersichtlich, an welchem eine Druckfeder 61 abgestützt ist. Das andere Ende der Druckfeder 61 ist an einer Steuerhülse 62 abgestützt, welche selbst wiederum an der Unterseite der Drosselplatte 5 anliegt. Die Steuerhülse 62 definiert mit der oberen, den Einspritzöffnungen 60 gegenüberliegenden Stirnfläche der Düsennadel 6 und mit der Unterseite der Drosselplatte 5 einen Steuerraum 63. Der im Steuerraum 63 herrschende Druck ist für die Steuerung der Längsbewegung der Düsennadel 6 maßgeblich.
Im Kraftstoffinjektor 100 ist eine Zulaufbohrung 64 ausgebildet. Über die
Zulaufbohrung 64 wird der Kraftstoffdruck einerseits im Druckraum 8 wirksam, wo er über eine Druckschulter der Düsennadel 6 eine Kraft in Öffnungsrichtung der Düsennadel 6 ausübt. Andererseits wirkt dieser Kraftstoffdruck über eine in der Steuerhülse 62 ausgebildete Zulaufdrossel 65 im Steuerraum 63 und hält, unterstützt von der Kraft der Druckfeder 61, die Düsennadel 6 in ihrer
Schließstellung. Der Kraftstoffinjektor 100 weist weiterhin ein Steuerventil 2 zur Steuerung des
Drucks im Steuerraum 63 auf: Wenn ein Elektromagnet 70 angesteuert wird, wird ein Magnetanker 71 sowie eine mit dem Magnetanker 71 verbundene Ventilnadel 72 von einem an dem Ventilkörper 3 ausgebildeten Ventilsitz 73 abgehoben. Der Kraftstoff aus dem Steuerraum 63 kann auf diese Weise durch eine in der Drosselplatte 5 ausgebildete Ablaufdrossel 75 über den Ventilsitz 73 in einen
Ablaufkanal 76 abströmen. Das auf diese Weise bewirkte Absinken der hydraulischen Kraft auf die obere Stirnfläche der Düsennadel 6 führt zu einem Öffnen der Düsennadel 6. Der Kraftstoff aus dem Druckraum 8 gelangt so durch die Einspritzöffnungen 60 in den Brennraum der Brennkraftmaschine.
Sobald der Elektromagnet 70 abgeschaltet wird, wird der Magnetanker 71 durch die Kraft einer weiteren Druckfeder 74 in Richtung des Ventilsitzes 73 gedrückt, so dass die Ventilnadel 72 an den Ventilsitz 73 gepresst wird. Auf diese Weise wird der Ablaufweg des Kraftstoffs über die Ablaufdrossel 75 und den Ventilsitz 73 gesperrt. Über die Zulaufdrossel 65 wird im Steuerraum 63 wieder
Kraftstoff druck aufgebaut, wodurch die hydraulische Schließkraft erhöht wird. Dadurch wird die Düsennadel 6 in Richtung der Einspritzöffnungen 60
verschoben und verschließt diese. Der Einspritzvorgang ist dann beendet.
Um die Bauteile im Bereich des Brennraums zu kühlen, sind Kühlkanäle 30 in Ventilkörper 3, Drosselplatte 5 und Düsenkörper 16 des bekannten
Kraftstoffinjektors 100 ausgebildet. So können speziell die Spitze der Düsennadel 6 und der Düsenkörper 16 gekühlt werden. In der Schnittdarstellung der Fig.l liegen die Kühlkanäle 30 teilweise in der Zulaufbohrung 64. Dies ist jedoch lediglich der Schnittdarstellung geschuldet, in den Ausführungen sind die
Kühlkanäle 30 von der Zulaufbohrung 64 getrennt.
Erfindungsgemäß sind nun die Kühlkanäle 30 in einem einstückigen SD- gedruckten Düsenkörper 16 ausgebildet. Dadurch können zum einen nahezu beliebige Formen der Kühlkanäle realisiert werden, zum anderen kann auf eine aufwändige Konstruktion mit mehreren Bauteilen verzichtet werden.
Fig.2 zeigt einen im 3D-Druck-Verfahren hergestellten Düsenkörper 16 in perspektivischer transparenter Ansicht. Die Zulaufbohrung 64 in den Druckraum 8 ist dabei nicht abgebildet. In dem Düsenkörper 16 sind wie üblich der
Druckraum 8 und die Einspritzöffnungen 60 ausgebildet. Weiterhin sind die Kühlkanäle 30 so ausgebildet, dass sie im Bereich der Düsenspitze 16a des Düsenkörpers 16, also nahe den Einspritzöffnungen 60 eine sehr große Fläche zum Düsenkörper 16 aufweisen.
Die Kühlkanäle 30 umfassen eine Einlassniere 33 und eine Auslassniere 34 zum Anschluss an das dem Düsenkörper 16 benachbarte Bauteil, also beispielsweise die Drosselplatte 5 oder den Haltekörper 1, je nach Ausführung des
Kraftstoffinjektors 100. Die externen Kühlanschlüsse des Kraftstoffinjektors 100 sind dabei in der Regel am Haltekörper 1 ausgebildet.
Die Kühlkanäle 30 umfassen weiterhin einen länglichen Zulaufkanal 31, einen länglichen Ablaufkanal 32 und eine Kühlmatrix 35. Die Kühlmatrix 35 ist vorzugsweise mit einer großen Gesamtfläche zur wirksamen Kühlung der Düsenspitze 16a versehen, so dass eine größtmögliche Wärmeübertragung von der im Betrieb sehr heißen Düsenspitze 16a in das die Kühlkanäle 30 durchströmende Kühlmedium stattfinden kann. Dazu erstreckt sich die
Kühlmatrix 35 vorzugsweise auch über den gesamten Umfang der Düsenspitze 16a.
In vorteilhaften Ausführungen weist der Düsenkörper 16 einen
Konvektionsbereich 37 auf, wie in der Fig.2 die Kühlmatrix 35 umgebend dargestellt. Der Konvektionsbereich 37 ist aus einem anderen Material, beispielsweise Kupfer, als der restliche Düsenkörper 16 ausgeführt, aber dennoch aufgrund des 3D-Drucks mit diesem stoffschlüssig verbunden. Der Konvektionsbereich 37 weist eine besonders große Wärmeleitfähigkeit auf und dient dazu, eine möglichst große Wärmemenge von sehr heißen Bereichen des Düsenkörpers 16 zur Kühlmatrix 35 zu leiten.
Vorzugsweise ist der Konvektionsbereich 37 in der Nähe der Einspritzöffnungen 60 in der Düsenspitze 16a angeordnet, da dort üblicherweise die höchsten Temperaturen des Kraftstoffinjektors 100 herrschen.
In der Ausführung der Fig.2 ist die Kühlmatrix 35 zaunförmig ausgeführt. Weitere Ausführungsmöglichkeiten sind in den nachfolgenden Figuren 3 und 4 zu sehen.
Fig.3 zeigt ein Negativmodell der Kühlmatrix 35 - also die Geometrie des Kühlmediums - in Wendel- bzw. Mäanderform. Durch die Mäanderform wird die Kühlmatrix 35 besonders definiert durchströmt, da es keine Verzweigungen in Strömungsrichtung gibt. Stehendes Kühlmedium - und damit lokal geringe Wärmeübergangskoeffizienten - sind somit ausgeschlossen.
Fig.4 zeigt die Kühlmatrix 35 als Ringzylinder mit einer Vielzahl von
Materialporen 36. Die Materialporen 36 sind somit Material des Düsenkörpers 16, beispielsweise Stahl. Dadurch ist die Konvektionsfläche der Kühlmatrix 35 besonders groß. Dementsprechend kann ein großer Wärmeeintrag von der Düsenspitze 16a in das Kühlmedium erfolgen. Alternativ kann die Kühlmatrix 35 auch ringförmig gestaltet sein.
Durch das 3D-Druck-Verfahren als Herstellungsverfahren für den Düsenkörper 16 können nahezu beliebige Geometrien für die Kühlkanäle 30 realisiert werden und dennoch der Düsenkörper 16 einstückig ausgeführt sein. Dabei ist es auch möglich unterschiedliche Materialien für unterschiedliche Bereiche des
Düsenkörpers 16 zu verwenden. Speziell hinsichtlich der Eigenschaft der Wärmeleitfähigkeit können so Wärmeflüsse in Richtung der Kühlkanäle 30 vorteilhaft beeinflusst werden. Mittels 3D-Druck werden dazu ein oder mehrere Konvektionsbereiche 37 appliziert, die eine besonders hohe Wärmeleitfähigkeit aufweisen und vorzugsweise vom Bereich der Einspritzöffnungen 60 bis zur Kühlmatrix 35 verlaufen.
In einer Weiterbildung des Verfahrens wird zunächst ein Grundkörper des Düsenkörpers 16 mit einer konventionellen Fertigung - beispielsweise
Schmieden oder ein spanabtragendes Fertigungsverfahren - hergestellt. Optional können dabei die Kühlkanäle 30 schon in Teilkonturen vorhanden sein. Der äußere Bereich des Düsenkörpers 16, speziell der die Kühlmatrix 35 umgebende Bereich und gegebenenfalls auch der Konvektionsbereich 17, wird dann mittels 3D-Druck appliziert.

Claims

p
Ansprüche
1. Düsenkörper (16) für einen Kraftstoffinjektor (100) zum Einspritzen von
Kraftstoff in den Brennraum einer Brennkraftmaschine, wobei der
Düsenkörper (16) einstückig ausgeführt ist, wobei in dem Düsenkörper (16) ein Druckraum (8) ausgebildet ist, der über eine Zulaufbohrung (64) mit unter Hochdruck stehendem Kraftstoff versorgbar ist, wobei eine zumindest eine Einspritzöffnung (60) freigebende oder verschließende Düsennadel (6) in dem Druckraum (8) längsbeweglich angeordnet ist, wobei die zumindest eine Einspritzöffnung (60) in einer Düsenspitze (16a) des Düsenkörpers (16) ausgebildet ist, wobei in dem Düsenkörper (16) mit Kühlmedium
durchströmbare Kühlkanäle (30) ausgebildet sind,
dadurch gekennzeichnet, dass
die Kühlkanäle (30) eine in der Düsenspitze (16a) ausgebildete Kühlmatrix (35) umfassen.
2. Düsenkörper (16) nach Anspruch 1,
dadurch gekennzeichnet,
dass die Kühlmatrix (35) zaunförmig, mäanderförmig oder wendeiförmig gestaltet ist.
3. Düsenkörper (16) nach Anspruch 1,
dadurch gekennzeichnet,
dass die Kühlmatrix (35) ringzylinderförmig gestaltet ist.
4. Düsenkörper (16) nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die Kühlmatrix (35) von Materialporen (36) der Düsenspitze (16a) durchsetzt ist.
5. Düsenkörper (16) nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass die Kühlkanäle (30) einen länglichen Zulaufkanal (31) und einen länglichen Ablaufkanal (32) zum Zu- und Abführen von Kühlmedium in Kühlmatrix und aus der Kühlmatrix (35) umfassen.
6. Düsenkörper (16) nach Anspruch 5,
dadurch gekennzeichnet,
dass die Kühlkanäle (30) eine Einlassniere (33) und eine Auslassniere (34) aufweisen, wobei die Einlassniere (33) und die Auslassniere (34) an einer der Düsenspitze (16a) gegenüberliegenden Stirnseite des Düsenkörpers (16) ausgebildet sind, wobei die Einlassniere (33) in den Zulaufkanal (31) übergeht und wobei die Auslassniere (34) in den Ablaufkanal (32) übergeht.
7. Düsenkörper (16) nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass der Düsenkörper (16) einen Konvektionsbereich (37) aufweist, wobei der Konvektionsbereich (37) eine größere Wärmeleitfähigkeit besitzt als der übrige Bereich des Düsenkörpers (16).
8. Kraftstoffinjektor (100) mit einem Düsenkörper (16) nach einem der
Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass der Kraftstoffinjektor (100) ein Steuerventil (2) zur Steuerung des Drucks eines Steuerraums (63) aufweist, wobei die Düsennadel (6) den Steuerraum (63) begrenzt.
Verfahren zur Herstellung eines Düsenkörpers (100) nach einem
Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
der Düsenkörper (16) im 3D-Druck-Verfahren gefertigt wird.
10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass
das Verfahren folgende Verfahrensschritte aufweist:
Fertigung eines Grundkörpers des Düsenkörpers (16), vorzugsweise durch Schmieden Applizieren des die Kühlmatrix (35) nach außen umgebenden Materials der Düsenspitze (16a) mittels 3D-Druck-Verfahren.
PCT/EP2017/065128 2016-06-27 2017-06-20 Düsenkörper für einen kraftstoffinjektor WO2018001797A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197002214A KR102303418B1 (ko) 2016-06-27 2017-06-20 연료 분사기용 노즐 바디
CN201780040164.9A CN109416007B (zh) 2016-06-27 2017-06-20 用于燃料喷射器的喷嘴体
EP17731874.8A EP3475555B1 (de) 2016-06-27 2017-06-20 Düsenkörper für einen kraftstoffinjektor
JP2018565654A JP6757805B2 (ja) 2016-06-27 2017-06-20 燃料インジェクタのためのノズルボディ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016211477.8 2016-06-27
DE102016211477.8A DE102016211477A1 (de) 2016-06-27 2016-06-27 Düsenkörper für einen Kraftstoffinjektor

Publications (1)

Publication Number Publication Date
WO2018001797A1 true WO2018001797A1 (de) 2018-01-04

Family

ID=59093557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/065128 WO2018001797A1 (de) 2016-06-27 2017-06-20 Düsenkörper für einen kraftstoffinjektor

Country Status (6)

Country Link
EP (1) EP3475555B1 (de)
JP (1) JP6757805B2 (de)
KR (1) KR102303418B1 (de)
CN (1) CN109416007B (de)
DE (1) DE102016211477A1 (de)
WO (1) WO2018001797A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1026728B1 (fr) 2018-10-25 2020-05-28 Soudobeam Sa Organe d'injection de gaz, four muni d'un tel organe et son utilisation
CN110408921B (zh) * 2019-07-04 2022-02-22 广东省新材料研究所 一种喷嘴及其加工方法
DE102019120046A1 (de) * 2019-07-24 2021-01-28 Liebherr-Components Deggendorf Gmbh Kraftstoffinjektor
KR102607623B1 (ko) * 2021-07-13 2023-11-29 주식회사 이엠엘 분말제조용 고압가스 회전 노즐

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD266480A3 (de) * 1985-05-21 1989-04-05 Ckd Praha Kuehlbare einspritzduese fuer direkteinspritzmotoren
EP1781931B1 (de) 2004-08-24 2009-12-16 Robert Bosch GmbH Einspritzdüse für brennkraftmaschinen
US20110266364A1 (en) * 2010-04-30 2011-11-03 General Electric Company Fuel injector having differential tip cooling system and method
CN103254940A (zh) * 2012-02-16 2013-08-21 通用电气公司 用于冷却燃料喷射器的系统和方法
DE102013006420A1 (de) * 2013-04-15 2014-10-16 L'orange Gmbh Kraftstoffinjektor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1875457A (en) * 1932-09-06 Torkild valdemar hemmingsen
DE1068948B (de) * 1955-09-19 1959-11-12 Licencia Tälälmänyokat Ertekesitö Vällalat, Budapest Kraftstoffeinspritzdüse für brennkraftmaschinen und verfahren zu ihrer herstellung
JPS4860207A (de) * 1971-11-30 1973-08-23
DE2527049A1 (de) * 1975-06-18 1977-01-13 Bosch Gmbh Robert Fluessigkeitsgekuehlte kraftstoffeinspritzduese fuer brennkraftmaschinen
FR2341751A1 (fr) * 1976-02-20 1977-09-16 Semt Procede et dispositif pour pallier le risque de fuite de combustible d'injection notamment dans le circuit de refroidissement des injecteurs d'un moteur diesel
JPS5435913U (de) * 1977-08-18 1979-03-09
JPS5625067U (de) * 1979-08-03 1981-03-07
JPS6217364A (ja) * 1985-07-13 1987-01-26 Niigata Eng Co Ltd 内燃機関の燃料噴射ノズル
JPH0644378U (ja) * 1992-11-20 1994-06-10 株式会社明電舎 回転電機
DE19546134C1 (de) * 1995-12-11 1997-01-30 Daimler Benz Ag Kraftstoffeinspritzdüse für Brennkraftmaschinen
JP3228497B2 (ja) * 1996-03-27 2001-11-12 株式会社豊田中央研究所 燃料噴射弁のデポジット低減法およびデポジット低減式燃料噴射弁
KR19980049763A (ko) * 1996-12-20 1998-09-15 박병재 디젤 엔진용 연료 분사노즐
JP2002098000A (ja) * 2000-09-27 2002-04-05 Daihatsu Diesel Mfg Co Ltd ディーゼル機関の燃料噴射弁冷却装置
JP2004251474A (ja) * 2003-02-18 2004-09-09 Matsushita Electric Ind Co Ltd 電子機器の冷却装置
DE10324985B4 (de) * 2003-06-03 2005-06-16 Man B & W Diesel Ag Kraftstoffeinspritzdüse
JP4592577B2 (ja) * 2005-12-13 2010-12-01 三菱重工業株式会社 水冷式燃料噴射弁
AT505666B1 (de) * 2007-08-20 2009-03-15 Bosch Gmbh Robert Verfahren und vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
US9291139B2 (en) * 2008-08-27 2016-03-22 Woodward, Inc. Dual action fuel injection nozzle
CA2820719A1 (en) * 2010-12-06 2012-06-14 Mcalister Technologies, Llc Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
US20150285502A1 (en) * 2014-04-08 2015-10-08 General Electric Company Fuel nozzle shroud and method of manufacturing the shroud
CN107078569A (zh) * 2014-09-18 2017-08-18 普里派尔技术有限公司 电机端匝冷却装置
DE102016206796A1 (de) 2016-04-21 2017-10-26 Robert Bosch Gmbh Kraftstoffinjektor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD266480A3 (de) * 1985-05-21 1989-04-05 Ckd Praha Kuehlbare einspritzduese fuer direkteinspritzmotoren
EP1781931B1 (de) 2004-08-24 2009-12-16 Robert Bosch GmbH Einspritzdüse für brennkraftmaschinen
US20110266364A1 (en) * 2010-04-30 2011-11-03 General Electric Company Fuel injector having differential tip cooling system and method
CN103254940A (zh) * 2012-02-16 2013-08-21 通用电气公司 用于冷却燃料喷射器的系统和方法
DE102013006420A1 (de) * 2013-04-15 2014-10-16 L'orange Gmbh Kraftstoffinjektor

Also Published As

Publication number Publication date
JP2019518170A (ja) 2019-06-27
KR102303418B1 (ko) 2021-09-24
KR20190020798A (ko) 2019-03-04
EP3475555B1 (de) 2020-10-28
DE102016211477A1 (de) 2017-12-28
EP3475555A1 (de) 2019-05-01
JP6757805B2 (ja) 2020-09-23
CN109416007A (zh) 2019-03-01
CN109416007B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
EP3475555B1 (de) Düsenkörper für einen kraftstoffinjektor
WO2006021014A1 (de) Einspritzdüse für brennkraftmaschinen
WO2006012658A1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
WO2005050003A1 (de) Injektor zur einspritzung von kraftstoff in brennräume von brennkraftmaschinen, insbesondere piezoaktorgesteuerter common-rail-injektor
EP3535486B1 (de) Brennstoffeinspritzventil zum einspritzen eines gasförmigen und/oder flüssigen brennstoffs
AT501914B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP2423498B1 (de) Passives Mengenbegrenzungsventil
DE102012010614A1 (de) Injektor
WO2017029076A1 (de) Kraftstoffinjektor
AT501668B1 (de) Steuerventil für eine einspritzdüse
EP3445967B1 (de) Kraftstoffinjektor
EP3055551B1 (de) Steuerventil
EP1658427B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2013117979A1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP2019198B1 (de) Injektor
EP3362671B1 (de) Piezo-injektor zur kraftstoffeinspritzung
DE19923422C2 (de) Elektronisches Einspritzsystem
EP2726728B1 (de) Kraftstoffinjektor
EP3583310B1 (de) Kraftstoffinjektor
DE102016000350A1 (de) Kraftstoffinjektor
DE102013220823B3 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2009033964A1 (de) Leckagefreier kraftstoffinjektor mit langer düsennadel
DE102015222169A1 (de) Kraftstoffinjektor für ein Kraftstoffeinspritzsystem
EP3184802A1 (de) Kraftstoffinjektor
EP1686258A1 (de) Dosierungsvorrichtung für Flüssigkeiten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17731874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197002214

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017731874

Country of ref document: EP

Effective date: 20190128