WO2018001228A1 - 光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质 - Google Patents

光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质 Download PDF

Info

Publication number
WO2018001228A1
WO2018001228A1 PCT/CN2017/090242 CN2017090242W WO2018001228A1 WO 2018001228 A1 WO2018001228 A1 WO 2018001228A1 CN 2017090242 W CN2017090242 W CN 2017090242W WO 2018001228 A1 WO2018001228 A1 WO 2018001228A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
check code
network element
port
test
Prior art date
Application number
PCT/CN2017/090242
Other languages
English (en)
French (fr)
Inventor
孙杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018001228A1 publication Critical patent/WO2018001228A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols

Definitions

  • the present disclosure relates to the field of wavelength division optical transmission, and in particular, to a fiber connection detection method, a network management server, and a receiving end network element and a computer storage medium.
  • the test method for optical fiber connection in engineering is mainly to determine whether there is a problem with the fiber connection after the project is deployed.
  • the method of hanging table test requires the tester to run site by site and test site by site. This will consume a lot of manpower, material and time, and the test result will be affected by the tester's operation.
  • the optical fiber connection detection method, the network management server, the receiving end network element and the computer storage medium provided by the embodiments of the present invention mainly solve the technical problem: the existing optical fiber connection test is solved by the operator to manually test each site to each site, and there is a test. The time and labor costs are high, and the test results are greatly affected by human factors.
  • Embodiments of the present invention provide a fiber connection detection method, including:
  • the embodiment of the invention further provides a fiber connection detection method, including:
  • the alarm information is sent when the actual check code does not match the test check code.
  • the embodiment of the invention further provides a network management server, including:
  • a path determining module configured to determine, according to the channel planning diagram, a transmission path between the network elements, where the network elements are connected according to the channel planning diagram when performing physical fiber connection;
  • test processing module configured to generate a test check code, and send the corresponding service receiving port on the receiving end network element to the corresponding service receiving port on the transmitting end network through the corresponding service sending port on the transmitting end network element, and the The test verification code is configured on the service receiving end;
  • the alarm module is configured to receive alarm information sent by the receiving network element when the actual check code received by the service receiving port does not match the test check code.
  • the embodiment of the invention further provides a receiving end network element, including:
  • a configuration module configured to receive a test verification code sent to the service receiving port, and configured in the service receiving port;
  • An extraction module configured to extract an actual check code sent by the service sending port of the sending end network element to the service receiving port
  • a matching module configured to send the alarm information when the actual check code does not match the test check code.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the foregoing fiber connection detection method.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform at least one of the foregoing methods.
  • the network management server, the receiving end network element, and the storage medium provided by the embodiment of the present invention, after the physical fiber in the network element and the network element is connected according to the channel planning map, according to the channel planning
  • the figure determines the transmission path of the service between the network elements, and then generates a test check code, and sends the test check code to the receiving end network on the transmission path through the corresponding service sending port on the transmitting end network element of the determined transmission path.
  • the corresponding service receiving port on the element, and the test check code is configured on the service receiving port.
  • the actual check code sent by the service sending port of the sending end network element to the service receiving port is extracted, and matched with the test check code configured by the service receiving port, and when the two are not matched, the line is indicated.
  • the physical fiber connection of the service path and automatic alarm Compared with the prior art, testers are not required to manually test one by one site, It greatly reduces the test time and labor cost, and at the same time avoids the test results being affected by human factors. At the same time, the optical fiber misconnection can be completely detected at the beginning of the opening, which achieves the effect of ensuring the smooth opening of the project and improves the work efficiency.
  • FIG. 1 is a schematic flowchart of a network side optical fiber connection detecting method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of determining a service transmission path according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a method for detecting a fiber connection of a network side of a receiving end according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic flowchart of a test verification code matching and alarm process in the first embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a network management server according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of a network element at a receiving end according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a network element networking in Embodiment 3 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the purpose of this embodiment is to provide a method for preventing optical fiber misconnection in a wavelength division optical transmission system, so that when a situation inconsistent with a planned channel occurs in the system, it can be detected in time and an alarm can be generated, and is not required.
  • Testers manually test the test instruments on a site-by-site basis, with better test efficiency, better accuracy, and lower test costs.
  • the connection is generally performed according to the channel planning diagram, and some connection errors are easily detected during the connection process, for example, on the circuit board. If the fiber ends of the receiving and sending ends are reversed, the network management server will report an input-independent alarm. However, some connection errors are not detected by the network management server. For example, when the port correspondence on the multiplexer board is incorrectly connected, or when two fibers that are staggered are in the same mapping mode, the network management server cannot detect it. of.
  • the optical fiber connection detection method of this embodiment is performed on the network side, and the execution process thereof is shown in FIG. 1 and includes:
  • S101 Determine a transmission path between the network elements according to the channel planning diagram, and perform physical fiber connection between the network elements according to the channel planning diagram. That is, the channel plan used in determining the service transmission path is the same as the channel plan used when the actual fiber connection is made between the network elements.
  • the formulation of the channel plan described in S101 can be made in any existing manner.
  • the network management server determines, according to the channel planning diagram, a transmission path between the network elements of the service.
  • the fiber-optic operation between the network element and the network element of the WDM device is performed on the network management server.
  • the end-to-end search service mode can be used for fiber-connected processing.
  • the process includes:
  • S201 The service mapping of the port and the board on the service path is set on the network management server;
  • S202 Perform fiber connection between network elements according to a channel planning diagram.
  • S203 Perform fiber connection in the network element according to the channel planning diagram
  • S204 Determine a transmission path of the service according to the service mapping of the port and the board on the service path.
  • S101 in this embodiment is not limited to being executed by the network management server.
  • S102 Generate a test check code, and send the test check code to the corresponding service receiving port on the receiving end network element on the transmission path through the corresponding service sending port on the transmitting end network element in the transmission path, and test the check code. It is configured on the service receiving port.
  • the network element at the transmitting end on the service transmission path and the service sending port of the service on the network element of the sending end can be directly calculated, and the receiving end network element on the transmission path and the receiving can be determined.
  • the service receiving port of the service on the end network element can determine the path between the network element at the transmitting end and the network element at the receiving end.
  • the execution process of S102 may also be performed by the network management server.
  • the network management server After determining the transmission path, the network management server generates a test check code, where the test check code is an expected value, if the service sending interface and the service receiving interface are between The fiber connection on the network management server is correct, and there is no error in the physical fiber connection during the actual physical connection.
  • the actual check code received on the service receiving port is consistent with the test check code; otherwise, it will cause both. Inconsistent, detecting a fiber connection error.
  • S103 Receive alarm information sent by the receiving network element when the actual check code received by the service receiving port does not match the test check code.
  • the optical fiber connection between the service sending interface and the service receiving interface on the network management server is indicated. Or the physical fiber connection in the actual physical connection process is wrong, and the alarm information is sent to the network side.
  • test check code when the test check code is sent to the corresponding service receiving port, the test may be specifically The code is carried in the service frame and sent to the receiving network element along with the service frame. This can reduce the overhead and improve the resource utilization.
  • the generation rule of the test verification code in this embodiment may be user-defined, or may be randomly generated by the network management server, or generated by other rules.
  • the test check code may be carried in the trace byte of the service frame, and sent to the receiving end network element along with the service frame.
  • the test check code generated in this embodiment may be a 32-byte random check code sequence generated by the network management server.
  • the length of the test check code in this embodiment is not limited to 32 bytes, as long as it can uniquely identify each service path and is less than or equal to 32 bytes.
  • the network management server After the network management server generates the test check code, it sends it to the receiving network element to configure the corresponding service receiving interface on the receiving network element as the expected check code, and sends it to the sending network element.
  • a corresponding service sending port on the service board for the service board to write the test check code into the trace byte of the service frame.
  • the service board can write the test check code in each service frame, or write the test check code only in the previous part according to the actual test requirements.
  • FIG. 3 which includes:
  • S301 Configure a test verification code sent to the service receiving port of the receiving network element on the service receiving port.
  • the test check code in S301 may be sent by the network management system to the network element of the receiving end, and the test check code of the receiving end network element may be configured on the service receiving port corresponding to the network element of the receiving end.
  • S302 Extract an actual check code sent by the service sending port of the sending end network element to the service receiving port.
  • the actual check code in this step refers to the test check code that the service receiving port actually receives from the service sending port.
  • the test check code may be sent to the service receiving interface of the receiving end network element along with the service frame. Therefore, the actual check code sent by the service sending port of the sending end network element to the service receiving port is:
  • the actual check code is extracted from the trace byte of the service frame sent by the service sending port to the service receiving port.
  • S303 Send an alarm message to the network side when the actual check code of the service receiving port does not match the previously configured test check code.
  • the matching control may be completed by the control board of the receiving network element, and the process is shown in FIG. 4 .
  • the process is shown in FIG. 4 .
  • S401 The control board determines whether the actual check code received by the service receiving port is consistent with the pre-configured test check code, if not, go to S402; otherwise, go to S404;
  • the control board sends the alarm information to the network management server on the network side.
  • the network management server After receiving the alarm information, the network management server generates a prompt alarm.
  • the method for preventing optical fiber misconnection in the wavelength division optical transmission system may be inconsistent with the planned channel in the system, can be detected in time and can generate an alarm, and does not require the tester to be site-by-site. Manual testing by test instrumentation results in better test efficiency, accuracy, and lower test cost.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a network management server, as shown in FIG. 5, including:
  • the path determining module 51 is configured to determine, according to the channel planning diagram, a transmission path between the network elements, where the network elements are connected according to the channel planning diagram when performing physical fiber connection.
  • the channel planning map can be formulated in any existing manner.
  • the path determining module 51 performs the fiber-connecting operation between the network element and the network element of the wavelength division device on the network management server according to the channel planning diagram, and may perform the fiber-connected processing by using the end-to-end search service mode, and details are not described herein again.
  • the test processing module 52 is configured to generate a test check code and send it to a corresponding service receiving port on the receiving end network element on the transmission path through the corresponding service sending port on the transmitting end network element, and configure the test check code in the test The service receiving port;
  • the alarm module 53 is configured to receive the alarm information sent by the receiving network element when the actual check code received by the service receiving port does not match the test check code.
  • the actual check code received by the service receiving port of the receiving network element is inconsistent with the previously configured test check code, it indicates that the service sending interface and the service receiving interface are connected to the optical fiber on the network management server, or the physical connection is actually If the physical fiber connection in the process is wrong, the alarm information will be sent to the network side, and the alarm module 53 on the network side will receive the alarm information.
  • the test processing module 52 when the test processing module 52 sends the test check code to the corresponding service receiving port, the test check code may be carried in the service frame and sent to the receiving end network element along with the service frame, so that It may reduce overhead and improve resource utilization.
  • the generation rule of the test verification code in this embodiment may be user-defined, or may be randomly generated by the network management server, or generated by other rules. Considered in this embodiment There are trace bytes in the service frame for transmitting the optical layer flow direction. The user-defined field has 32 bytes, which only involves monitoring the traffic flow, and has no other practical effect. Therefore, in the embodiment, the test processing module 52 may carry the test check code in the trace byte of the service frame, and send it to the receiving end network element along with the service frame.
  • the test check code generated by the test processing module 52 in this embodiment may be a 2-byte random check code sequence.
  • the length of the test check code in this embodiment is not limited to 32 bytes, as long as it can uniquely identify each service path and is less than or equal to 32 bytes.
  • test processing module 52 After the test processing module 52 generates the test check code, it sends it to the receiving network element to configure the corresponding service receiving interface on the receiving network element as the expected check code, and sends it to the sending end network element. Corresponding service sending port on the service board, for the service board to write the test check code into the trace byte of the service frame.
  • the service board can write the test check code in each service frame, or write the test check code only in the previous part according to the actual test requirements.
  • the above functions of the path determining module 51, the test processing module 52, and the alarm module 53 in this embodiment may be implemented by a controller or a processor of the network management server, and each module may be constructed in the controller or the processor.
  • the receiving end network element provided in this embodiment includes:
  • the configuration module 61 is configured to receive a test verification code sent to the service receiving port and configure the service check port.
  • the extracting module 62 is configured to extract an actual check code sent by the service sending port of the sending end network element to the service receiving port; the actual check code is a test check code actually received by the service receiving port from the service sending port. .
  • the test check code may be sent to the service receiving interface of the receiving end network element along with the service frame, so the extracting module 62 may extract the actual check code from the service sending port to the trace byte of the service frame sent by the service receiving port. .
  • the matching module 63 is configured to send the alarm information when the extracted actual check code does not match the previously configured test check code.
  • the specific alarm mode in this embodiment is not described here.
  • the functions of the configuration module 61, the extraction module 62, and the configuration module 63 in this embodiment may be implemented by a microprocessor on the receiving network element control board, and each module may be specifically configured in the microprocessor.
  • the network management server and the receiving network element provided in this embodiment may be inconsistent with the planned channel in the system, and can be detected in time and can generate an alarm, and the tester does not need to manually test the site by site. Reduce test time and labor costs while avoiding test results being affected by human factors; At the same time, in the initial stage of the opening, the optical fiber misconnection can be completely detected, which achieves the effect of ensuring the smooth opening of the project and improves the work efficiency.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the present invention further exemplifies the present invention in conjunction with a specific application scenario.
  • the transmitting end network element in FIG. 7 includes a first optical converting unit, an optical combiner, and a first optical fiber amplifier that are sequentially connected; the transmitting end network element includes a second optical fiber amplifier, an optical splitter, and a second optical converting unit that are sequentially connected. . It is assumed that the service starts from the first optical conversion unit, and the original plan is to perform multiplexed transmission as the first wave and the second wave of the 80-wave system.
  • the light emitted by the first light conversion unit is connected to the optical multiplexer at a wavelength of 192.1/192.2, passing through the first optical fiber amplifier to the actual optical path.
  • the optical cable reaches the receiving end network element through a long distance transmission, and then passes through the second optical fiber amplifier on the receiving end network element, and after being connected to the optical demultiplexer, the service is sent to the second optical converting unit at a wavelength of 192.1/192.2, thereby Completed a complete business transfer.
  • the transmitting network element on the left side of the dotted line A and the receiving end network element on the right side of the dotted line is named B.
  • the specific process is as follows:
  • the output optical fibers of the first optical conversion unit of the A site are respectively connected to the optical port 1 and the optical port 2 of the optical fiber multiplexer board of the A site, and the output port of the optical fiber multiplexer of the A site is connected to the first optical fiber amplifier board.
  • After the optical fiber is transmitted to the B network element, it is connected to the input port of the second fiber amplifier board.
  • After being amplified, it is output from the output port to the input port of the optical splitter board, and the first output port of the optical splitter board is obtained.
  • the optical fiber coming out from the second output port is connected to the second optical conversion unit to complete the transmission of a service. Assume that the 1/2 port from the output of the optical demultiplexer is reversed. Since the optical splitter board receives light, there is no optical path warning on the network management server.
  • the network management server connects the network management server to the network element. Note that this is the operation on the network management server.
  • the network management server considers that there are two services planned. One is carried by 192.1 wavelength, and the other is carried by 192.2 wavelength. The 192.1 is taken as an example.
  • the service flow is the first output of the first optical conversion unit at point A.
  • the network management server randomly generates a random sequence in the trace byte sent by the network management server at the same time as the first output port of the first optical conversion unit of the A network element (that is, the service sending port of the transmitting end network element), such as 00011112222, because the network management server is connected to the fiber, it can judge the upstream and downstream relationship of this business. Therefore, at the same time, the first port of the second optical switching unit of the B station (that is, the service receiving port of the receiving network element) is also set to set a desired value of the tracking byte 00011112222. Similarly, the second output port of the first optical conversion unit of the A site sends an 11100002222, and the second port of the second optical conversion unit of the B site receives an expected value of 11100002222.
  • step 3 Since the actual fiber connection in step 1 and the network element fiber connection in step 2 are not corresponding, it is easy to know that the first port of the second optical conversion unit of station B actually receives 11100002222 and the expected value is 00011112222. The second port of the two-light conversion unit receives the 00011112222 and the expected value is 11100002222. At this time, we report an alarm by the network management server according to the judgment of the value to indicate that the fiber does not match the plan.
  • the network management server and the receiving network element provided in this embodiment can detect and generate an alarm when the actual optical fiber connection is inconsistent with the planned channel, and the tester does not need to manually test the site by site, which can greatly reduce the test time and manpower. At the same time, the cost can be avoided, and the test results can be avoided by human factors. At the same time, the optical fiber misconnection can be completely detected at the beginning of the opening, which can achieve the effect of ensuring the smooth opening of the project and improve the work efficiency.
  • modules or steps of the above embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed among multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in a computer storage medium (ROM/RAM, disk, optical disk) by a computing device, and at some
  • the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of modules or steps may be fabricated into a single integrated circuit module. . Therefore, the invention is not limited to any particular combination of hardware and software.
  • the technical solution provided by the embodiment of the present invention can be applied to the field of wavelength division optical transmission.
  • the optical fiber connection detecting method, the network management server, the receiving end network element, and the storage medium provided by the embodiment of the present invention after the physical fiber in the network element and the network element is connected according to the channel planning map, according to the channel planning The figure determines the transmission path of the service between the network elements, and then generates a test check code, and sends the test check code to the receiving end network on the transmission path through the corresponding service sending port on the transmitting end network element of the determined transmission path.
  • the corresponding service receiving port on the element, and the test check code is configured on the service receiving port.
  • the actual check code sent by the service sending port of the sending end network element to the service receiving port is extracted, and matched with the test check code configured by the service receiving port, and when the two are not matched, the line is indicated.
  • the tester does not need to manually test the site by site, which can greatly reduce the test time and labor cost, and can avoid the test result being affected by human factors; at the same time, the fiber misconnection can be completely detected at the beginning of the start. It has achieved the effect of smooth opening of the guarantee project and improved work efficiency.

Abstract

本发明实施例提供一种光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质,在根据波道规划图将网元内以及网元之间的物理光纤连接好之后,根据波道规划图确定业务在网元之间的传输路径,然后生成测试校验码,并通过确定的传输路径上发送端网元上对应的业务发送端口,将测试校验码发送给传输路径上接收端网元上对应的业务接收端口,并将测试检验码配置在业务接收端口上。然后在网元接收端提取发送端网元的业务发送端口发送给业务接收端口的实际校验码,将其与业务接收端口配置的测试校验码进行匹配,当二者不配时,表明这一条业务路径的物理光纤连接存在问题,自动告警。不需要测试人员逐个站点手动测试,可以大大降低测试时间和人力成本。

Description

光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质 技术领域
本公开涉及波分光传输领域,尤其涉及一种光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质。
背景技术
随着光通信技术的不断发展,密集波分复用系统越来越多的被应用于国内国际各大运营商、企业网中。目前被大规模使用的是40波和80波系统,这就意味着在工程开通的时候一块合分波板上可能要插40根甚至80根光纤,稍不注意就会出现光纤错连的情况。
目前工程上对光纤连接的测试方式主要是采用工程部署完毕后挂表测试确定光纤连接是否有问题。采用挂表测试的方法,需要测试人员逐个站点跑并逐个站点进行测试,这样会耗费大量的人力物力和时间,且测试结果还会受测试人员操作影响。
发明内容
本发明实施例提供的光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质,主要解决的技术问题是:解决现有光纤连接测试采用操作人员逐个到各站点进行手动测试,存在测试时间和人力成本高,且测试结果受人为因素影响较大的问题。
本发明实施例提供一种光纤连接检测方法,包括:
根据波道规划图确定业务在网元之间的传输路径,所述网元之间进行物理光纤连接时依据所述波道规划图进行连纤;
生成测试校验码,并通过所述传输路径上发送端网元上对应的业务发送端口发送给所述传输路径上接收端网元上对应的业务接收端口,并将所述测试检验码配置在所述业务接收端上;
接收所述接收端网元在所述业务接收端口接收到的实际校验码与所述测试校验码不匹配时发送的告警信息。
本发明实施例还提供一种光纤连接检测方法,包括:
将发给接收端网元的业务接收端口的测试检验码配置在该业务接收端口上;
提取发送端网元的业务发送端口发送给所述业务接收端口的实际校验码;
在所述实际校验码与所述测试校验码不匹配时发送告警信息。
本发明实施例还提供一种网络管理服务器,包括:
路径确定模块,用于根据波道规划图确定业务在网元之间的传输路径,所述网元之间进行物理光纤连接时依据所述波道规划图进行连纤;
测试处理模块,用于生成测试校验码并通过所述传输路径上发送端网元上对应的业务发送端口发送给所述传输路径上接收端网元上对应的业务接收端口,以及将所述测试检验码配置在所述业务接收端上;
报警模块,用于接收所述接收端网元在所述业务接收端口接收到的实际校验码与所述测试校验码不匹配时发送的告警信息。
本发明实施例还提供一种接收端网元,包括:
配置模块,用于接收向业务接收端口发送的测试检验码并配置在该业务接收端口;
提取模块,用于提取发送端网元的业务发送端口发送给所述业务接收端口的实际校验码;
匹配模块,用于在所述实际校验码与所述测试校验码不匹配时发送告警信息。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述的光纤连接检测方法。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法中的至少其中之一。
本发明实施例提供的技术方案具有以下有益效果:
根据本发明实施例提供的光纤连接检测方法、网络管理服务器、接收端网元及存储介质,在根据波道规划图将网元内以及网元之间的物理光纤连接好之后,根据波道规划图确定业务在网元之间的传输路径,然后生成测试校验码,并通过确定的传输路径上发送端网元上对应的业务发送端口,将测试校验码发送给传输路径上接收端网元上对应的业务接收端口,并将测试检验码配置在业务接收端口上。然后在网元接收端提取发送端网元的业务发送端口发送给业务接收端口的实际校验码,将其与业务接收端口配置的测试校验码进行匹配,当二者不配时,表明这一条业务路径的物理光纤连接存在问题,自动告警。与现有技术相比,不需要测试人员逐个站点手动测试,可以 大大降低测试时间和人力成本,同时可避免测试结果受人为因素影响;同时在开局初期就能把光纤错连的情况完全检测出来,达到了保障工程顺利开通的效果,提升了工作效率。
附图说明
图1为本发明实施例一中的网络侧光纤连接检测方法流程示意图;
图2为本发明实施例一中的确定业务传输路径流程示意图;
图3为本发明实施例一中的接收端网元侧光纤连接检测方法流程示意图;
图4为本发明实施例一中的测试校验码匹配及报警过程流程示意图;
图5为本发明实施例二中的网络管理服务器结构示意图;
图6为本发明实施例二中的接收端网元结构示意图;
图7为本发明实施例三中的网元组网示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例只是本发明中一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
本实施例的目的在于,提供一种在波分光传输系统中防止光纤错连的方法,使得当系统中出现与规划波道不一致的情况,能够及时的被检测出来并可产生告警,且不需要测试人员逐个站点的通过测试仪表进行手动测试,测试效率、准确率更好,测试成本更低。
在对网元内网元间的物理光纤进行连接时,一般都会根据波道规划图进行连接,且在连接过程中对于一些特别明显的连接错误,很容易被检测出来,例如,在线路板上收、发两端光纤接反,则网络管理服务器会上报输入无关告警。但是,对于一些连接错误并不是网络管理服务器检测到的,例如合分波板上端口对应关系连接错误时,或者错连的两根光纤恰好是同一映射方式的时候,网络管理服务器是检测不到的。对此,本实施例的光纤连接检测方法,在网络侧,其执行过程参见图1所示,包括:
S101:根据波道规划图确定业务在网元之间的传输路径,网元之间进行物理光纤连接时依据所述波道规划图进行连纤。也即确定业务传输路径时采用的波道规划图与网元之间进行实际的光纤连接时采用的波道规划图相同。
S101中所述的波道规划图的制定可以采用现有任意的方式。S101中具体可以是网络管理服务器根据波道规划图确定业务在网元之间的传输路径。根据波道规划图在网络管理服务器上进行波分设备的网元和网元间的连纤操作,一般可以采用端到端的搜索业务方式进行连纤处理,该过程参见图2所示,包括:
S201:网络管理服务器上设置业务路径上端口、单板的业务映射;
S202:根据波道规划图进行网元间的连纤;
S203:根据波道规划图进行网元内的连纤;
S204:根据业务路径上的端口、单板的业务映射确定该业务的传输路径。
应当理解的是,本实施例中S101并不限于由网络管理服务器执行。
S102:生成测试校验码,并通过传输路径上发送端网元上对应的业务发送端口,将测试校验码发送给传输路径上接收端网元上对应的业务接收端口,并将测试检验码配置在所述业务接收端口上。
通过图2所示的过程,可以直接计算确定业务传输路径上的发送端网元,以及该发送端网元上该业务的业务发送端口,并可以确定传输路径上的接收端网元以及该接收端网元上该业务的业务接收端口,同时可以确定发送端网元与接收端网元之间的路径。且S102的执行过程也可以是由网络管理服务器执行,网络管理服务器在确定好传输路径之后,生成测试校验码,该测试校验码是一个期望值,如果业务发送接口和业务接收接口之间在网络管理服务器上的光纤连接没错,且在实际物理连接过程中的物理光纤连接也没有出错,业务接收端口上收到的实际校验码与测试校验码一致;否则,就会导致二者不一致,从而检测出光纤连接错误。
S103:接收上述接收端网元在业务接收端口接收到的实际校验码与测试校验码不匹配时发送的告警信息。
本实施例中,接收端网元的业务接收端口接收到的实际校验码与之前配置的测试检验码不一致时,则表明业务发送接口和业务接收接口之间在网络管理服务器上的光纤连接,或在实际物理连接过程中的物理光纤连接出错了,会向网络侧发送告警信息。
本实施例中,将测试校验码发送给对应的业务接收端口时,具体可以将该测试校 验码携带在业务帧中随业务帧一起发给接收端网元,这样可以尽可能减少开销,提升资源利用率。
应当理解的是,本实施例中的测试检验码的生成规则可以用户自定义,也可以有网络管理服务器随机生成,或者通过其他规则进行生成。本实施例中考虑到业务帧中有用于传递光层流向的踪迹字节,其中用户自定义的字段有32个字节只涉及到监测业务流向,并无其他实际作用。因此,本实施例中具体可以将该测试校验码携带在业务帧的踪迹字节中,随业务帧一起发给接收端网元。此时本实施例中生成的测试校验码可以为网络管理服务器生成的32字节的随机校验码序列。
当然,理论上本实施例中的测试校验码的长度并不限于32字节,只要其能唯一标识各业务路径且小于等于32字节即可。
网络管理服务器生成好测试校验码之后,将其发给接收端网元在接收端网元上对应的业务接收接口进行配置,作为期望的校验码,并将其发给发送端网元的业务板上对应的业务发送端口,以供业务板将该测试校验码写入业务帧的踪迹字节中。业务板可以在每一个业务帧中都写入测试校验码,也可以根据实际测试需求仅在前面的一部分中写入测试校验码。
对于接收端网元侧,本实施例中的光纤连接检测方法执行过程参见图3所示,包括:
S301:将发给接收端网元的业务接收端口的测试检验码配置在该业务接收端口上。
S301中的测试校验码可以是网络管理系统发给接收端网元的,且可以由接收端网元的控制板将测试检验码配置在接收端网元对应的业务接收端口上。
S302:提取发送端网元的业务发送端口发送给业务接收端口的实际校验码。
本步骤中的实际校验码是指业务接收端口实际从业务发送端口接收到的测试校验码。本实施例中测试校验码可以随业务帧发给接收端网元的业务接收接口,因此提取发送端网元的业务发送端口发送给业务接收端口的实际校验码包括:
从业务发送端口向业务接收端口发送的业务帧的踪迹字节中提取实际校验码。
S303:在业务接收端口的实际校验码与之前配置的测试校验码不匹配时向网络侧发送告警信息。
该步骤中,具体可以由接收端网元的控制板完成匹配控制,该过程参见图4所示, 包括:
S401:控制板判断业务接收端口接收到的实际校验码与预先配置的测试校验码是否一致,如否,转至S402;否则,转至S404;
S402:控制板向网络侧的网络管理服务器发送告警信息;
S403:网络管理服务器接收到告警信息后,产生提示告警。
S404:光纤连接无错误。
本实施例提供的在波分光传输系统中防止光纤错连的方法,可以在系统中出现与规划波道不一致的情况,能够及时的被检测出来并可产生告警,且不需要测试人员逐个站点的通过测试仪表进行手动测试,测试效率、准确率更好,测试成本更低。
实施例二:
本实施例提供了一种网络管理服务器,参见图5所示,包括:
路径确定模块51,用于根据波道规划图确定业务在网元之间的传输路径,所述网元之间进行物理光纤连接时依据所述波道规划图进行连纤。
本实施例中波道规划图的制定可以采用现有任意的方式。路径确定模块51根据波道规划图在网络管理服务器上进行波分设备的网元和网元间的连纤操作,可以采用端到端的搜索业务方式进行连纤处理,在此不再赘述。
测试处理模块52,用于生成测试校验码并通过传输路径上发送端网元上对应的业务发送端口发送给传输路径上接收端网元上对应的业务接收端口,以及将测试检验码配置在所述业务接收端口上;
报警模块53,用于接收上述接收端网元在所述业务接收端口接收到的实际校验码与所述测试校验码不匹配时发送的告警信息。
接收端网元的业务接收端口接收到的实际校验码与之前配置的测试检验码不一致时,则表明业务发送接口和业务接收接口之间在网络管理服务器上的光纤连接,或在实际物理连接过程中的物理光纤连接出错了,会向网络侧发送告警信息,网络侧的报警模块53则会收到该告警信息。
本实施例中,测试处理模块52将测试校验码发送给对应的业务接收端口时,具体可以将该测试校验码携带在业务帧中随业务帧一起发给接收端网元,这样可以尽可能减少开销,提升资源利用率。本实施例中的测试检验码的生成规则可以用户自定义,也可以有网络管理服务器随机生成,或者通过其他规则进行生成。本实施例中考虑到 业务帧中有用于传递光层流向的踪迹字节,其中用户自定义的字段有32个字节只涉及到监测业务流向,并无其他实际作用。因此,本实施例中测试处理模块52具体可以将该测试校验码携带在业务帧的踪迹字节中,随业务帧一起发给接收端网元。此时本实施例中测试处理模块52生成的测试校验码可以为2字节的随机校验码序列。理论上本实施例中的测试校验码的长度并不限于32字节,只要其能唯一标识各业务路径且小于等于32字节即可
测试处理模块52生成好测试校验码之后,将其发给接收端网元在接收端网元上对应的业务接收接口进行配置,作为期望的校验码,并将其发给发送端网元的业务板上对应的业务发送端口,以供业务板将该测试校验码写入业务帧的踪迹字节中。业务板可以在每一个业务帧中都写入测试校验码,也可以根据实际测试需求仅在前面的一部分中写入测试校验码。
本实施例中的路径确定模块51、测试处理模块52以及报警模块53的上述功能可以由网络管理服务器的控制器或处理器实现,各模块可以构造于该控制器或处理器内。
参见图6所示,本实施例提供的接收端网元包括:
配置模块61,用于接收向业务接收端口发送的测试检验码并配置在该业务接收端口;
提取模块62,用于提取发送端网元的业务发送端口发送给所述业务接收端口的实际校验码;该实际校验码是指业务接收端口实际从业务发送端口接收到的测试校验码。本实施例中测试校验码可以随业务帧发给接收端网元的业务接收接口,因此提取模块62可以从业务发送端口向业务接收端口发送的业务帧的踪迹字节中提取实际校验码。
匹配模块63,用于在提取的实际校验码与之前配置的测试校验码不匹配时发送告警信息。本实施例中具体的报警方式在此不再赘述。
本实施例中的配置模块61、提取模块62以及配置模块63的功能可以由接收端网元控制板上的微处理器实现,各模块具体可以构造于该微处理器中。
基于本实施例提供的网络管理服务器和接收端网元,可以在系统中出现与规划波道不一致的情况,能够及时的被检测出来并可产生告警,不需要测试人员逐个站点手动测试,可以大大降低测试时间和人力成本,同时可避免测试结果受人为因素影响; 同时在开局初期就能把光纤错连的情况完全检测出来,达到了保障工程顺利开通的效果,提升了工作效率
实施例三:
为了更好理解的本发明,本实施例结合一种具体的应用场景对本发明做进一步示例说明。
参见图7所示的组网,该图中省略了网元中一些不影响对本发明方案进行描述的板件。图7中的发送端网元包含依次连接的第一光转换单元、光合波器、第一光纤放大器;发送端网元包含依次连接的第二光纤放大器、光分波器以及第二光转换单元。假设业务从第一光转换单元开始,原计划是作为80波系统的第一波和第二波进行合分波传输。首先第一光转换单元发出来的光会以192.1/192.2波长接入到光合波器上,经过第一光纤放大器上到实际的光路上。光缆通过一个长距离传输到达接收端网元,在接收端网元上再经过第二光纤放大器,被接到光分波器后,业务以192.1/192.2波长下路到第二光转换单元,从而完成了一个完整的业务传输。为方便描述,我们把虚线左侧的发送端网元命名A,虚线右侧的接收端网元命名B,具体过程如下:
1.按照规划,A站点第一光转换单元输出光纤分别连接到A站点光合波器单板的光口1和光口2,A站点光合波器单板输出口接到第一光纤放大器单板的输入口上实际光纤线路。该条光纤传递到B网元后接到第二光纤放大器单板输入口,经放大后从输出口出来接到光分波器单板输入口,从光分波器单板的第1输出口和第2输出口出来的光纤接到第二光转换单元,完成了一个业务的传递。假设从光分波器输出口出来的1/2口接反了,由于光分波器单板收光是出波的,所以网络管理服务器上不会有光路方面的告警。
2.根据规划,进行网络管理服务器上网元间连纤,注意,这里是网络管理服务器上的操作。网络管理服务器上认为规划的有两条业务,一条是以192.1波长承载的,一条是以192.2波长承载的,其中以192.1为例,业务流向是A点第一光转换单元的第1输出口到光合波器的第1输入口,到第一光纤放大器,到B点第二光纤放大器,到光分波器的输入口,由光分波器的第1输出口到第二光转换单元的第1口上。在网络管理服务器连纤同时在A网元第一光转换单元的第1输出口(也即发送端网元的业务发送端口)发出去的踪迹字节里网络管理服务器随机生成一个随机序列,比如00011112222,由于网络管理服务器连纤的时候是可以判断处这一条业务上下游关系 的,所以同时也会在B站点的第二光转换单元的第1口(也即接收端网元的业务接收端口)收口设置一个踪迹字节的期望值00011112222。同理,A站点第一光转换单元的第2输出口发一个11100002222,B站点第二光转换单元的第2口收设置一个期望值11100002222。
3.由于步骤1实际连纤和步骤2网元连纤是没对应的,那么我们很容易能知道,B站点第二光转换单元的第1口实际收到的是11100002222而期望值是00011112222,第二光转换单元的第2口收到的是00011112222而期望值是11100002222,这个时候我们根据判断这个值的不同由网络管理服务器上报一个告警以提示连纤与规划不符。
4.根据这样提示的告警,很容易就能发现光纤错连,从而针对该问题做修改。
本实施例提供的网络管理服务器和接收端网元,可以在实际光纤连接出现与规划波道不一致时及时检测出来并可产生告警,不需要测试人员逐个站点手动测试,可以大大降低测试时间和人力成本,同时可避免测试结果受人为因素影响;同时在开局初期就能把光纤错连的情况完全检测出来,达到了保障工程顺利开通的效果,提升了工作效率。
显然,本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本发明不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
本发明实施例提供的技术方案可以应用于波分光传输领域。根据本发明实施例提供的光纤连接检测方法、网络管理服务器、接收端网元及存储介质,在根据波道规划图将网元内以及网元之间的物理光纤连接好之后,根据波道规划图确定业务在网元之间的传输路径,然后生成测试校验码,并通过确定的传输路径上发送端网元上对应的业务发送端口,将测试校验码发送给传输路径上接收端网元上对应的业务接收端口,并将测试检验码配置在业务接收端口上。然后在网元接收端提取发送端网元的业务发送端口发送给业务接收端口的实际校验码,将其与业务接收端口配置的测试校验码进行匹配,当二者不配时,表明这一条业务路径的物理光纤连接存在问题,自动告警。与现有技术相比,不需要测试人员逐个站点手动测试,可以大大降低测试时间和人力成本,同时可避免测试结果受人为因素影响;同时在开局初期就能把光纤错连的情况完全检测出来,达到了保障工程顺利开通的效果,提升了工作效率。

Claims (11)

  1. 一种光纤连接检测方法,包括:
    根据波道规划图确定业务在网元之间的传输路径,所述网元之间进行物理光纤连接时依据所述波道规划图进行连纤;
    生成测试校验码,并通过所述传输路径上发送端网元上对应的业务发送端口发送给所述传输路径上接收端网元上对应的业务接收端口,并将所述测试检验码配置在所述业务接收端口上;
    接收所述接收端网元在所述业务接收端口接收到的实际校验码与所述测试校验码不匹配时发送的告警信息。
  2. 如权利要求1所述的光纤连接检测方法,其中,通过所述业务发送端口将所述测试校验码发送给所述对应的业务接收端口包括:
    将所述测试校验码携带在业务帧的踪迹字节中,随所述业务帧通过所述业务发送端口发送给所述对应的业务接收端口。
  3. 如权利要求1或2所述的光纤连接检测方法,其中,所述测试校验码为网络管理服务器生成的32字节的随机校验码序列。
  4. 一种光纤连接检测方法,包括:
    将发给接收端网元的业务接收端口的测试检验码配置在该业务接收端口上;
    提取发送端网元的业务发送端口发送给所述业务接收端口的实际校验码;
    在所述实际校验码与所述测试校验码不匹配时发送告警信息。
  5. 如权利要求4所述的光纤连接检测方法,其中,所述提取发送端网元的业务发送端口发送给所述业务接收端口的实际校验码包括:
    从所述业务发送端口向所述业务接收端口发送的业务帧的踪迹字节中提取所述实际校验码。
  6. 一种网络管理服务器,包括:
    路径确定模块,设置为根据波道规划图确定业务在网元之间的传输路径,所述网元之间进行物理光纤连接时依据所述波道规划图进行连纤;
    测试处理模块,设置为生成测试校验码并通过所述传输路径上发送端网元上对应的业务发送端口发送给所述传输路径上接收端网元上对应的业务接收端口,以及 将所述测试检验码配置在所述业务接收端口上;
    报警模块,设置为接收所述接收端网元在所述业务接收端口接收到的实际校验码与所述测试校验码不匹配时发送的告警信息。
  7. 如权利要求6所述的网络管理服务器,其中,所述测试处理模块设置为将所述测试校验码携带在业务帧的踪迹字节中,随所述业务帧通过所述业务发送端口发送给所述对应的业务接收端口。
  8. 如权利要求6或7所述的网络管理服务器,其中,所述测试校验码为32字节的随机校验码序列。
  9. 一种接收端网元,包括:
    配置模块,设置为接收向业务接收端口发送的测试检验码并配置在该业务接收端口;
    提取模块,设置为提取发送端网元的业务发送端口发送给所述业务接收端口的实际校验码;
    匹配模块,设置为在所述实际校验码与所述测试校验码不匹配时发送告警信息。
  10. 如权利要求9所述的接收端网元,其中,所述提取模块设置为从所述业务发送端口向所述业务接收端口发送的业务帧的踪迹字节中提取所述实际校验码。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1至5中所述的方法中的至少其中之一。
PCT/CN2017/090242 2016-06-30 2017-06-27 光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质 WO2018001228A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610510201.5 2016-06-30
CN201610510201.5A CN107566035A (zh) 2016-06-30 2016-06-30 光纤连接检测方法、网络管理服务器及接收端网元

Publications (1)

Publication Number Publication Date
WO2018001228A1 true WO2018001228A1 (zh) 2018-01-04

Family

ID=60785276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090242 WO2018001228A1 (zh) 2016-06-30 2017-06-27 光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质

Country Status (2)

Country Link
CN (1) CN107566035A (zh)
WO (1) WO2018001228A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157350A (zh) * 2021-10-26 2022-03-08 武汉光迅信息技术有限公司 一种光纤错连检测方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141014A1 (en) * 2001-01-30 2002-10-03 Gee-Kung Chang Optical layer multicasting using a multiple sub-carrier header and multicasting switch
CN1992572A (zh) * 2005-12-31 2007-07-04 北京畅通达通信技术有限公司 低速光口到2m传输线路的复用和保护切换的方法与装置
CN101800757A (zh) * 2010-02-03 2010-08-11 国家保密科学技术研究所 一种基于单光纤结构的无反馈单向数据传输方法
CN104518826A (zh) * 2013-09-30 2015-04-15 华为技术有限公司 一种监测光纤故障的方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141014A1 (en) * 2001-01-30 2002-10-03 Gee-Kung Chang Optical layer multicasting using a multiple sub-carrier header and multicasting switch
CN1992572A (zh) * 2005-12-31 2007-07-04 北京畅通达通信技术有限公司 低速光口到2m传输线路的复用和保护切换的方法与装置
CN101800757A (zh) * 2010-02-03 2010-08-11 国家保密科学技术研究所 一种基于单光纤结构的无反馈单向数据传输方法
CN104518826A (zh) * 2013-09-30 2015-04-15 华为技术有限公司 一种监测光纤故障的方法、设备及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114157350A (zh) * 2021-10-26 2022-03-08 武汉光迅信息技术有限公司 一种光纤错连检测方法和系统
CN114157350B (zh) * 2021-10-26 2023-02-03 武汉光迅信息技术有限公司 一种光纤错连检测方法和系统

Also Published As

Publication number Publication date
CN107566035A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
TWI741505B (zh) 一種拓撲處理方法和裝置以及系統
EP3029853B1 (en) Method, device, and system for optical fiber link identification
US10931394B2 (en) Optical-fiber link routing look-up method, fault detection method and diagnostic system
CN103718478B (zh) 用于无源光网络的认证以及用于末尾光纤臂中问题和故障的检测的系统
CN103731205B (zh) 一种光网络单元自动化测试方法
WO2015158178A1 (zh) 一种otn保护倒换自动化测试系统、方法及装置
CN103108262A (zh) Gpon系统中光网络单元配置文件升级的方法
CN106656562B (zh) 一种olt批量下发onu配置的检测方法及装置
WO2011124107A1 (zh) 光纤连接的检测方法和系统
WO2013107313A1 (zh) 一种光纤网络管理方法、终端及系统
CN103138988B (zh) 网络故障的定位处理方法及装置
CN108989128B (zh) 基于组网结构的故障定位方法及装置
CN105991358A (zh) 一种测试接口板流量的方法、装置、测试板及系统
CN104301176A (zh) 一种多onu设备测试系统及方法
CN105337656B (zh) 一种光网络连接关系确定方法、设备以及系统
CN103969524A (zh) 基于反馈的智能扫描电子式互感器合并单元特性测试方法
CN104811243A (zh) 长发光检测方法及装置
WO2018001228A1 (zh) 光纤连接检测方法、网络管理服务器及接收端网元和计算机存储介质
WO2015131623A1 (zh) 检测环回链路的方法、装置以及光线路终端、光网络终端
US11349563B2 (en) Communication monitor method and communication monitor device
CN104468261A (zh) 一种以太无源光网络的监测系统及其监测方法
CN115549775B (zh) 光信号传输异常的处理方法、光传输设备及系统
CN104065495A (zh) 判断长发光onu的方法、装置及无源光网络系统
CN116506340A (zh) 流量链路的测试方法、装置、电子设备及存储介质
CN111064507A (zh) 光纤链路长度检测方法、装置及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819225

Country of ref document: EP

Kind code of ref document: A1