WO2015158178A1 - 一种otn保护倒换自动化测试系统、方法及装置 - Google Patents
一种otn保护倒换自动化测试系统、方法及装置 Download PDFInfo
- Publication number
- WO2015158178A1 WO2015158178A1 PCT/CN2015/071915 CN2015071915W WO2015158178A1 WO 2015158178 A1 WO2015158178 A1 WO 2015158178A1 CN 2015071915 W CN2015071915 W CN 2015071915W WO 2015158178 A1 WO2015158178 A1 WO 2015158178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- otn
- line
- standby
- analyzer
- fault
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/34—Signalling channels for network management communication
- H04L41/344—Out-of-band transfers
Definitions
- the present invention relates to the field of OTN (Optical Transport Network) protection, and in particular, to an OTN protection switching automatic test system, method and device.
- OTN Optical Transport Network
- OTN optical network based on WDM (Wavelength Division Multiplexing) in the optical layer organization network.
- WDM Widelength Division Multiplexing
- the survivability of OTN (the ability to maintain acceptable quality of service after being subjected to various faults and even disasters, that is, the ability of the network to resist failure) is better than that of ordinary electrical layer networks. More important.
- the optical layer survivability technology not only has the characteristics of fast response and flexibility, but also can effectively improve the service quality of the network and reduce the loss of services; therefore, the network protection of the OTN (for the optical network)
- the bearer service provides reserved protection resources. When the network fails, the affected services are scheduled to be transmitted to the pre-allocated protection routes to recover the affected services. The traditional optical network protection becomes more important. .
- the network protection of the OTN is often under the control of the local network element or the remote network element, without the intervention of the external network management system.
- the protection switching time of the network protection of the OTN refers to the time when the system starts the protection switching action until the protection switching is completed.
- the national standard requires ITU-T (International Telecommunication Union, International Telecommunication Union - Telecommunication Standards Department, G.806 and G.798 Recommendations) without considering the delay time (Hold Off),
- the service loss time caused by OTN linear protection switching should be less than 50ms; therefore, protection switching time is an important indicator of OTN protection switching test.
- the test of the protection switching time of OTN is generally a manual test.
- the judgment standard of whether the test is qualified is relatively fixed (according to different testers, it is divided into different judgment standards, and the judgment standard is generally one time point), not only the test is completed.
- the workload is large, the human resources are consumed, and the test time is long and the test efficiency is low.
- the object of the present invention is to provide an OTN protection switching automatic test system, method and device, which not only has wide coverage, high test versatility, but also has small workload and high test efficiency. High, saving human resources.
- an OTN protection switching automatic test system including a network management server software platform, a switch, a bit error analyzer, a fault detecting device, and at least one OTN device;
- the software platform is respectively connected to the error analyzer and the fault detecting device through the switch;
- the error analyzer, the fault detecting device and at least one OTN device form a closed main line;
- the error code analyzer and at least one OTN device form a line.
- the fault detecting device is at least one of a controllable power source, an optical switch, and a fault error analyzer;
- the server software platform initializes the error code analyzer and the fault detecting device, and clears the collected data of the error code analyzer and the fault detecting device, and the error code analyzer determines whether the fault detecting device supports the automatic protection switching APS protocol, and if so, the network management software platform
- the APS protocol determines that the active line is idle, and the network management server software platform sends a control command to the fault detection device; otherwise, sets the first recovery waiting time of the network management server software platform, and determines the fault error analyzer after the first recovery waiting time elapses.
- the alarm information is not sent, and the network management server software platform sends a control command to the fault detection device.
- the fault detecting device triggers the error analyzer and The OTN device switches from the primary line to the standby line; the error analyzer determines whether the fault detection device supports the APS protocol. If yes, the network management software platform determines that the primary line is idle through the APS protocol, and proceeds to the step error analyzer and OTN. The device switches from the standby line to the active line communication; otherwise, sets the second recovery waiting time of the network management server software platform. After the second recovery waiting time expires, it is determined that the fault error analyzer does not issue alarm information, the error code analyzer and the OTN device. Switching from the alternate line to the primary line communication;
- the network management server software platform reads through the error code analyzer: the first service interruption time SDT used by any OTN device to switch from the main line to the standby line. Any OTN device switches from the standby line to the second SDT used by the active line; the error analyzer determines whether the first SDT and the second SDT are both less than the service damage time specified by the national standard, and if so, determines the OTN device protection switching automation The test was successful; otherwise, the OTN device protection switching automation test failed.
- the number of the OTN devices is three: a first node OTN device, a relay point OTN device, and a last node OTN device; the error code analyzer, the first node OTN device, a fault detecting device, The relay point OTN device and the last node OTN device are sequentially connected end to end to form a primary line; the error code analyzer, the head node OTN device, the relay point OTN device, and the last node OTN device are sequentially connected end to end to form a standby line.
- step A Initialize the error analyzer and the fault detecting device, and clear the collected data of the error analyzer and the fault detecting device; determine whether the fault detecting device supports the APS protocol, and if yes, go to step B, otherwise set the network management server software platform.
- the first recovery waiting time after the first recovery waiting time has elapsed, it is determined that the fault error analyzer has not issued a warning letter. Interest, go to step C;
- step B the network management software platform determines that the main line is idle through the APS protocol, and proceeds to step C;
- the network management server software platform sends a control command to the fault detecting device, and the fault detecting device triggers the error code analyzer and the OTN device to switch from the primary line to the standby line communication; determines whether the fault detecting device supports the APS protocol, and if yes, goes to step D. Otherwise, setting the second recovery waiting time of the network management server software platform, after the second recovery waiting time has elapsed, determining that the fault error analyzer has not issued the alarm information, and proceeds to step E;
- step D the network management software platform determines that the main line is idle through the APS protocol, and proceeds to step E;
- the error code analyzer and the OTN device switch from the standby line to the main line communication.
- the network management server software platform reads through the error code analyzer: the first SDT used by any OTN device to switch from the main line to the standby line, any An OTN device switches from the standby line to the second SDT used by the active line; determines whether the first SDT and the second SDT are both less than the service damage time specified by the national standard, and if so, determines that the OTN device protection switching automatic test is successful; otherwise, Step F;
- the data collected in step A includes historical alarm data and performance data; the first recovery waiting time in step A is 1 to 12 minutes; and the first recovery waiting time is determined in step A.
- the method further includes the following steps: determining that the fault error analyzer sends an alarm message, and proceeds to step F.
- step B further includes the following steps: the network management software platform determines that the primary line is not in an idle state by using the APS protocol, and performs step B again; in step B, the APS protocol determines that the primary line is idle. The following process is included: determining that the upper 4 bytes of the APS protocol receive 0000b, and the active line is idle.
- the second recovery waiting time in step C is 1 to 12 minutes, and after the second recovery waiting time in step C, the following steps are further included: determining that the fault error analyzer sends an alarm Information, go to step F.
- the fault detecting device triggering the error analysis device and the OTN device switching from the primary line to the standby line in step C includes the following processes:
- the fault detection device selects the fault error analyzer, after the fault error analyzer receives the control command, it automatically issues the alarm type corresponding to the control command, cuts off the connection of the main line, and the error code analyzer and the OTN device switch from the main line.
- the fault error analyzer receives the control command, it automatically issues the alarm type corresponding to the control command, cuts off the connection of the main line, and the error code analyzer and the OTN device switch from the main line.
- the optical switch When the optical switch is selected by the fault detecting device, after the optical switch receives the control command, the main line is broken, and the error analyzer and the OTN device are switched from the main line to the standby line;
- the controllable power source stops the power supply of the main line after receiving the control command, and the error code analyzer and the OTN device switch from the main line to the standby line.
- step D further includes the following steps: the network management software platform determines that the primary line is not in an idle state through the APS protocol, and performs step D again; in step D, the APS protocol determines that the primary line is in an idle state, including the following: Flow: If the upper 4 bytes of the APS protocol are received, 0000b is received, and the active line is idle.
- step F the following steps are further included: the test result is imported into the test report; the network management server software platform outputs a detection device abnormal dialog box to perform problem location; after the problem is located, according to the network management server software platform parameter Set to determine whether to perform the next OTN protection switching test. If yes, go to step A, otherwise end.
- An OTN protection switching automatic test device for implementing the above method, including main use a line detection module, a first main line state determination module, an active/standby line switching module, a second main line determination module, a standby main line switching module, and a test failure determination module;
- the main line detecting module is configured to: initialize the error code analyzer and the fault detecting device, clear the collected data of the error code analyzer and the fault detecting device; determine whether the fault detecting device supports the APS protocol, and if so, to the first master
- the line state determination module sends the determination signal, otherwise the first recovery waiting time of the network management server software platform is set. After the first recovery waiting time expires, it is determined that the fault error analyzer does not send the alarm information, and the active and standby line switching modules are sent to the active and standby circuits. Switching signal
- the first active line state determining module is configured to: after receiving the determination signal sent by the first active line state determining module, control the network management software platform to determine that the primary line is in an idle state by using the APS protocol, and send the primary to the active/standby line switching module.
- Backup signal
- the active/standby line switching module is configured to: after receiving the active/standby switching signal, the control network management server software platform sends a control command to the fault detecting device, and the fault detecting device triggers the error code analyzer and the OTN device to switch from the primary line to the standby line communication. Determining whether the fault detecting device supports the APS protocol, and if so, sending a determination signal to the second primary line determining module; otherwise, setting a second recovery waiting time of the network management server software platform, and determining the fault error analysis after the second recovery waiting time has elapsed The instrument does not send an alarm message, and sends a standby switch signal to the standby main line switching module;
- the second main line determining module is configured to: after receiving the determination signal sent by the active/standby line switching module, control the network management software platform to determine that the main line is in an idle state by using the APS protocol, and send the standby switching signal to the standby main line switching module. ;
- the standby main line switching module is configured to: after receiving the standby switching signal, the error analysis analyzer and the OTN device switch from the standby line to the main line communication, and the network management server software platform reads through the error code analyzer: any OTN device Switching from the primary line to the first SDT used by the backup line, and any OTN device switching from the standby line to the primary line
- the second SDT is used to determine whether the first SDT and the second SDT are both less than the service damage time specified by the national standard. If yes, it is determined that the OTN device protection switching automatic test is successful; otherwise, the test failure determination module sends a test failure signal;
- the test failure determination module is configured to: after receiving the test failure signal sent by the standby main line switching module, determine that the OTN device protection switching automatic test fails.
- the fault detecting device of the present invention includes at least one of a controllable power source, an optical switch, and a fault error analysis.
- the present invention can complete three types of OTN by only controlling a controllable power source, an optical switch, or a fault error analysis.
- the method of protecting the switching test; the optical switch can implement the OTN fiber-breaking trigger protection switching test, and the controllable power switch can implement the OTN power-down trigger protection switching test. Therefore, the present invention can simulate different types of engineering faults (such as signal failure, node failure, signal degradation, etc.), not only does not need to control the test equipment, the test process is relatively simple, and the test coverage is wide, and can be matched to various test environments, matching Good sex and easy for people to use.
- the OTN protection switching test is performed by the present invention, it is not necessary to develop a dedicated device interface platform, as long as the ODUk SNCP (Optical Channel Data Unit) of the (ITU-T G.709, G.873.1) protocol is supported; Sub-network connection protection, the device for linear protection of the sub-network connection protection can be tested. Therefore, the invention has strong versatility, wide application range, and is convenient for people to use.
- ODUk SNCP Optical Channel Data Unit
- the invention can automatically control the testing process, facilitate the tester's control management and intervention on the testing process, simplify the testing process of the testing personnel, and reduce the intensity of the testing work. Not only is it easy to use, but the test efficiency is higher, the workload of the test is smaller, and human resources are saved.
- the present invention can evade the tester The problem of inconsistent test results caused by differences in technical capabilities. Therefore, the test of the invention has high precision and the test result is relatively accurate.
- the network management server software platform pops up a detection device exception dialog box to facilitate problem location and facilitate troubleshooting.
- the transplantation process of the present invention is relatively simple and has good portability.
- FIG. 1 is a connection block diagram of an OTN protection switching automatic test system according to an embodiment of the present invention
- FIG. 2 is a flowchart of an automated test method for OTN protection switching according to an embodiment of the present invention.
- an OTN protection switching automatic test system includes a network management server software platform, a switch, a BER analyzer, a fault detection device, and at least one OTN device.
- the server software platform is respectively connected to the error code analyzer and the fault detecting device through the switch; the error code analyzer, the fault detecting device and at least one OTN device form a closed main line, and the error code analyzer and at least one OTN device form A closed alternate line.
- the fault detecting device in this embodiment is at least one of a controllable power source, an optical switch, and a fault error analyzer of the type FTB500.
- the number of OTN devices is three: the first node OTN device, the relay point OTN device, and the last node OTN device.
- Error code analyzer, head node OTN device, fault detection device, relay point OTN device and end node The OTN devices are connected end to end to form a primary line; the error code analyzer, the first node OTN device, the relay point OTN device, and the last node OTN device are sequentially connected end to end to form a standby line.
- the OTN protection switching automatic test method includes the following steps:
- S1 Initialize the error analyzer and the fault detecting device, and clear the collected data of the error analyzer and the fault detecting device, and the collected data includes historical alarm data and performance data.
- step S2 It is judged whether the fault detecting device supports the APS (Automatic Protection Switching) protocol, and if yes, go to step S3, otherwise go to step S4.
- APS Automatic Protection Switching
- step S3 The network management software platform determines whether the primary line is in an idle state through the APS protocol. If the upper 4 bytes of the APS protocol does not receive 0000b, the primary line is in a fault state (ie, not in an idle state), and step S3 is re-executed. Otherwise, the active line is idle, and the process goes to step S5.
- the first recovery waiting time of the network management server software platform is set, and the first recovery waiting time can be set to 1 to 12 minutes. In this embodiment, the first recovery waiting time is set to 3 minutes; after the first recovery waiting time is over, it is determined. Whether the fault error analyzer sends an alarm message, if not, go to step S5, otherwise go to step 11.
- the network management server software platform sends a control command to the fault detecting device, and the fault detecting device triggers the error code analyzer and the OTN device to switch from the primary line to the standby line communication, and proceeds to step S6.
- the fault detection device selects the fault error analyzer, after the fault error analyzer receives the control command, it automatically issues the alarm type corresponding to the control command, cuts off the connection of the main line, and the error code analyzer and the OTN device switch from the main line. To alternate line communication.
- the optical switch When the optical switch is selected as the fault detecting device, after the optical switch receives the control command, the main line is used.
- the circuit performs the fiber breaking operation, and the error analysis analyzer and the OTN device switch from the primary line to the standby line.
- the controllable power source stops the power supply of the main line after receiving the control command, and the error code analyzer and the OTN device switch from the main line to the standby line.
- step S6 It is judged whether the fault detecting device supports the APS protocol, and if yes, go to step S7, otherwise go to step S8.
- step S7 The network management software platform determines whether the primary line is idle through the APS protocol. If not, step S7 is performed again, otherwise, the process goes to step S9.
- step S8 Set the second recovery waiting time of the network management server software platform, and the second recovery waiting time may be set to 1 to 12 minutes. In this embodiment, the second recovery waiting time is set to 3 minutes. After the second recovery waiting time has elapsed, it is judged whether the fault error analyzer issues an alarm message, if not, go to step S9, otherwise go to S11.
- step S9 The error analyzer and the OTN device switch from the standby line to the main line communication, and the process goes to step S10.
- the network management server software platform reads through the error code analyzer: the first SDT (service interruption time) used by any OTN device to switch from the primary line to the standby line, and the switching of any OTN device from the standby line to the active line.
- the second SDT It is judged whether the first SDT and the second SDT are both less than the service damage time specified by the national standard, and the service damage time is generally 50 ms. If yes, it is determined that the OTN equipment protection switching automatic test is successful (passed), and the test result is imported into the test report, and the test ends. ; otherwise go to step S11.
- step S12 After the problem is located, according to the parameter setting of the network management server software platform, Whether to perform the next OTN protection switching test, if yes, go to step S1, otherwise end.
- the OTN protection switching automatic test device in this embodiment includes a main line detection module, a first main line state determination module, an active/standby line switching module, a second main line determination module, a standby main line switching module, and a test failure.
- the main line detecting module is configured to: initialize the error code analyzer and the fault detecting device, clear the collected data of the error code analyzer and the fault detecting device; determine whether the fault detecting device supports the APS protocol, and if so, to the first master
- the line state determination module sends the determination signal, otherwise the first recovery waiting time of the network management server software platform is set. After the first recovery waiting time expires, it is determined that the fault error analyzer does not send the alarm information, and the active and standby line switching modules are sent to the active and standby circuits. Switching signal
- the first active line state determining module is configured to: after receiving the determination signal sent by the first active line state determining module, control the network management software platform to determine that the primary line is in an idle state by using the APS protocol, and send the primary to the active/standby line switching module.
- Backup signal
- the active/standby line switching module is configured to: after receiving the active/standby switching signal, the control network management server software platform sends a control command to the fault detecting device, and the fault detecting device triggers the error code analyzer and the OTN device to switch from the primary line to the standby line communication. Determining whether the fault detecting device supports the APS protocol, and if so, sending a determination signal to the second primary line determining module; otherwise, setting a second recovery waiting time of the network management server software platform, and determining the fault error analysis after the second recovery waiting time has elapsed The instrument does not send an alarm message, and sends a standby switch signal to the standby main line switching module;
- the second main line determining module is configured to: after receiving the determination signal sent by the active/standby line switching module, control the network management software platform to determine that the main line is in an idle state by using the APS protocol, and send the standby switching signal to the standby main line switching module. ;
- the standby main line switching module is configured to: after receiving the standby switching signal, the error analyzer and The OTN device switches from the standby line to the main line communication, and the network management server software platform reads through the error code analyzer: the first SDT used by any OTN device to switch from the main line to the standby line, and any OTN device switches from the standby line.
- the second SDT used by the main line determining whether the first SDT and the second SDT are both less than the service damage time specified by the national standard; if yes, determining that the OTN device protection switching automatic test is successful; otherwise, sending a test failure signal to the test failure determination module ;
- the test failure determination module is configured to: after receiving the test failure signal sent by the standby main line switching module, determine that the OTN device protection switching automatic test fails.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种OTN保护倒换自动化测试系统、方法及装置,涉及OTN保护领域。系统包括网管服务器软件平台、交换机、1台误码分析仪、1台故障检测装置和至少1台OTN设备;服务器软件平台通过交换机分别与误码分析仪、故障检测装置相连;误码分析仪、故障检测装置和至少1个OTN设备形成一条闭合的主用线路;误码分析仪和至少1台OTN设备形成一条闭合的备用线路;所述故障检测装置为可控电源、光开关和故障误码分析仪中的至少一种。本发明不仅测试覆盖面广,测试通用性较强,而且测试的工作量较小,测试效率较高,节省了人力资源。
Description
本发明涉及OTN(Optical Transport Network,光传送网)保护领域,具体涉及一种OTN保护倒换自动化测试系统、方法及装置。
随着光通信技术的高速发展,光通信已经从电层网络向光层网络发展。OTN是一种在光层组织网络中以WDM(Wavelength Division Multiplexing,波分复用)为基础的传送网;随着社会信息需求的快速增长,OTN已经成为是下一代骨干传送网的主要技术要求。
由于OTN中传送的光信号速率高、容量大,因此OTN的生存性(经受各种故障甚至灾难后仍能维持可接受的业务质量的能力,也就是网络抵御失效的能力)比普通电层网络更加重要。在光网络的各种生存性技术中,由于光层的生存性技术不仅具有响应快速、灵活的特点,而且能够有效提高网络的服务质量,减少业务的丢失;因此OTN的网络保护(为光网络的承载业务提供预留的保护资源。当网络发生故障时,受影响业务被安排到预先分配好的保护路由进行传送,以此来恢复受影响的业务)对于传统光网络保护变得更为重要。
OTN的网络保护往往处于本地网元或远端网元的控制下,无须外部网管系统的介入。OTN的网络保护的保护倒换时间是指系统启动保护倒换动作至保护倒换完成的时间。国标要求ITU-T(International Telecommunication Union,国际电信联盟-电信标准部,G.806和G.798建议书)在不考虑拖延时间(Hold Off)的情况下,
OTN线性保护倒换引起的业务受损时间应小于50ms;因此,保护倒换时间是OTN保护倒换测试的一项重要指标。
目前,OTN的保护倒换时间的测试一般为人工测试,测试是否合格的判断标准相对固定(根据不同的测试员分为为不同的判断标准,判断标准一般为1个时间点),不仅完成测试的工作量较大,耗费了人力资源,而且测试时间较长,测试效率较低。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种OTN保护倒换自动化测试系统、方法及装置,不仅测试覆盖面广,测试通用性较强,而且测试的工作量较小,测试效率较高,节省了人力资源。
为达到以上目的,本发明采取的技术方案是:一种OTN保护倒换自动化测试系统,包括网管服务器软件平台、交换机、1台误码分析仪、1台故障检测装置和至少1台OTN设备;服务器软件平台通过交换机分别与误码分析仪、故障检测装置相连;误码分析仪、故障检测装置和至少1个OTN设备形成一条闭合的主用线路;误码分析仪和至少1台OTN设备形成一条闭合的备用线路;所述故障检测装置为可控电源、光开关和故障误码分析仪中的至少一种;
服务器软件平台对误码分析仪和故障检测装置进行初始化,将误码分析仪和故障检测装置的采集数据清空,误码分析仪判断故障检测装置是否支持自动保护倒换APS协议,若是,网管软件平台通过APS协议判定主用线路为空闲状态,网管服务器软件平台对故障检测装置发送控制指令;否则设置网管服务器软件平台的第一恢复等待时间,待第一恢复等待时间过后,判定故障误码分析仪未发出告警信息,网管服务器软件平台对故障检测装置发送控制指令;
故障检测装置发送控制指令后,故障检测装置触发误码分析仪和
OTN设备从主用线路倒换至备用线路通信;误码分析仪判断故障检测装置是否支持APS协议,若是,网管软件平台通过APS协议判定主用线路为空闲状态,转到步骤误码分析仪和OTN设备从备用线路切换至主用线路通信;否则设置网管服务器软件平台的第二恢复等待时间,待第二恢复等待时间过后,判定故障误码分析仪未发出告警信息,误码分析仪和OTN设备从备用线路切换至主用线路通信;
误码分析仪和OTN设备从备用线路切换至主用线路通信后,网管服务器软件平台通过误码分析仪读取:任意一个OTN设备从主用线路切换至备用线路所用的第一服务中断时间SDT、任意一个OTN设备从备用线路切换至主用线路所用的第二SDT;误码分析仪判断第一SDT和第二SDT是否均小于国标规定的业务受损时间,若是,确定OTN设备保护倒换自动化测试成功;否则确定OTN设备保护倒换自动化测试失败。
在上述技术方案的基础上,所述OTN设备的数量为3个:首节点OTN设备、中继点OTN设备和末节点OTN设备;所述误码分析仪、首节点OTN设备、故障检测装置、中继点OTN设备和末节点OTN设备顺次首尾连接形成主用线路;所述误码分析仪、首节点OTN设备、中继点OTN设备和末节点OTN设备顺次首尾连接形成备用线路。
一种基于上述系统的OTN保护倒换自动化测试方法,包括以下步骤:
A、对误码分析仪和故障检测装置进行初始化,将误码分析仪和故障检测装置的采集数据清空;判断故障检测装置是否支持APS协议,若是,转到步骤B,否则置网管服务器软件平台的第一恢复等待时间,待第一恢复等待时间过后,判定故障误码分析仪未发出告警信
息,转到步骤C;
B、网管软件平台通过APS协议判定主用线路为空闲状态,转到步骤C;
C、网管服务器软件平台对故障检测装置发送控制指令,故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信;判断故障检测装置是否支持APS协议,若是,转到步骤D;否则设置网管服务器软件平台的第二恢复等待时间,待第二恢复等待时间过后,判定故障误码分析仪未发出告警信息,转到步骤E;
D、网管软件平台通过APS协议判定主用线路为空闲状态,转到步骤E;
E、误码分析仪和OTN设备从备用线路切换至主用线路通信,网管服务器软件平台通过误码分析仪读取:任意一个OTN设备从主用线路切换至备用线路所用的第一SDT、任意一个OTN设备从备用线路切换至主用线路所用的第二SDT;判断第一SDT和第二SDT是否均小于国标规定的业务受损时间,若是,确定OTN设备保护倒换自动化测试成功;否则转到步骤F;
F、确定OTN设备保护倒换自动化测试失败。
在上述技术方案的基础上,步骤A中所述采集数据包括历史告警数据和性能数据;步骤A中所述第一恢复等待时间为1~12分钟;步骤A中所述待第一恢复等待时间过后,还包括以下步骤:判定故障误码分析仪发出告警信息,转到步骤F。
在上述技术方案的基础上,步骤B还包括以下步骤:网管软件平台通过APS协议判定主用线路不为空闲状态,重新执行步骤B;步骤B中所述APS协议判定主用线路是为空闲状态包括以下流程:判定APS协议的高4位字节收到0000b,主用线路为空闲状态。
在上述技术方案的基础上,步骤C中所述第二恢复等待时间为1~12分钟,步骤C中所述待第二恢复等待时间过后,还包括以下步骤:判定故障误码分析仪发出告警信息,转到步骤F。
在上述技术方案的基础上,步骤C中所述故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信包括以下流程:
故障检测装置选用故障误码分析仪时,故障误码分析仪接收控制指令后,自动发出与控制指令对应的告警类型,切断主用线路的连接,误码分析仪和OTN设备从主用线路倒换至备用线路通信;
故障检测装置选用光开关时,光开关接收控制指令后,对主用线路进行断纤操作,误码分析仪和OTN设备从主用线路倒换至备用线路通信;
故障检测装置选用可控电源时,可控电源接收控制指令后,停止主用线路的供电,误码分析仪和OTN设备从主用线路倒换至备用线路通信。
在上述技术方案的基础上,步骤D还包括以下步骤:网管软件平台通过APS协议判定主用线路不为空闲状态,重新执行步骤D;步骤D中APS协议判定主用线路是为空闲状态包括以下流程:判定APS协议的高4位字节收到0000b,则主用线路为空闲状态。
在上述技术方案的基础上,步骤F之后还包括以下步骤:将测试结果导入至测试报告;网管服务器软件平台输出检测设备异常对话框,进行问题定位;问题定位结束后,根据网管服务器软件平台参数设置,判断是否进行下一次OTN保护倒换测试,若是,转到步骤A,否则结束。
一种实现上述方法的OTN保护倒换自动化测试装置,包括主用
线路检测模块、第一主用线路状态判定模块、主备线路切换模块、第二主用线路判定模块、备主线路切换模块和测试失败判定模块;
主用线路检测模块,用于:对误码分析仪和故障检测装置进行初始化,将误码分析仪和故障检测装置的采集数据清空;判断故障检测装置是否支持APS协议,若是,向第一主用线路状态判定模块发送判定信号,否则置网管服务器软件平台的第一恢复等待时间,待第一恢复等待时间过后,判定故障误码分析仪未发出告警信息,向主备线路切换模块发送主备切换信号;
第一主用线路状态判定模块,用于:接收第一主用线路状态判定模块发送的判定信号后,控制网管软件平台通过APS协议判定主用线路为空闲状态,向主备线路切换模块发送主备切换信号;
主备线路切换模块,用于:收到主备切换信号后,控制网管服务器软件平台对故障检测装置发送控制指令,故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信;判断故障检测装置是否支持APS协议,若是,向第二主用线路判定模块发送判定信号;否则设置网管服务器软件平台的第二恢复等待时间,待第二恢复等待时间过后,判定故障误码分析仪未发出告警信息,向备主线路切换模块发送备主切换信号;
第二主用线路判定模块,用于:收到主备线路切换模块发送的判定信号后,控制网管软件平台通过APS协议判定主用线路为空闲状态,向备主线路切换模块发送备主切换信号;
备主线路切换模块,用于:收到备主切换信号后,误码分析仪和OTN设备从备用线路切换至主用线路通信,网管服务器软件平台通过误码分析仪读取:任意一个OTN设备从主用线路切换至备用线路所用的第一SDT、任意一个OTN设备从备用线路切换至主用线路所
用的第二SDT;判断第一SDT和第二SDT是否均小于国标规定的业务受损时间,若是,确定OTN设备保护倒换自动化测试成功;否则向测试失败判定模块发送测试失败信号;
测试失败判定模块,用于:收到备主线路切换模块发送的测试失败信号后,确定OTN设备保护倒换自动化测试失败。
与现有技术相比,本发明的优点在于:
(1)本发明的故障检测装置包括可控电源、光开关和故障误码分析中的至少一种,本发明只需控制可控电源、光开关或故障误码分析,就能够完成三种OTN保护倒换测试的方法;光开关能够实现OTN的断纤触发保护倒换测试,可控电源开关能够实现OTN的掉电触发保护倒换测试。因此,本发明能够模拟不同工程故障类型(例如信号失效、节点失效、信号劣化等),不仅无需对测试设备进行操控,测试过程比较简单,而且测试覆盖面广,能够匹配于多种测试环境,匹配性较好,便于人们使用。
(2)本发明进行OTN保护倒换测试时,不需要开发专门的设备接口平台,只要支持(ITU-T G.709、G.873.1)协议的ODUk SNCP(Optical Channel Data Unit,光通路数据单元;sub-network connection protection,子网连接保护)的线性保护功能的设备都可以完成测试。因此,本发明的通用性较强,适用范围比较广泛,便于人们使用。
(3)与现有技术中人工进行OTN保护倒换测试相比,本发明能够自动控制测试过程,便于测试人员对测试过程的控制管理和干预,简化测试人员的测试过程,降低测试工作的强度,不仅易用性较强,而且测试效率较高,测试的工作量较小,节省了人力资源。
(4)与现有技术中人工进行OTN保护倒换测试相比,因为本发明自动进行OTN保护倒换测试时,所以本发明能够规避由测试人员
技术能力差异导致的测试结果不一致的问题。因此,本发明的测试精度较高,测试结果比较准确。
(5)本发明进行OTN保护倒换测试时,若OTN保护倒换测试失败,网管服务器软件平台弹出检测设备异常对话框,方便问题定位,便于故障排查。
(6)本发明实现进行OTN保护倒换测试时,当实现一种业务速率(如10Gbit/sSTM64信号)的测试用例后,能够简单移植至其它业务速率的自动化测试(以太网信号如GE等),因此,本发明的移植使用过程比较简单,可移植性较好。
图1为本发明实施例中OTN保护倒换自动化测试系统的连接框图;
图2为本发明实施例中OTN保护倒换自动化测试方法的流程图。
参见图1所示,本发明实施例提供的OTN保护倒换自动化测试系统,包括网管服务器软件平台、交换机、1台误码分析仪、1台故障检测装置和至少1台OTN设备。服务器软件平台通过交换机分别与误码分析仪、故障检测装置相连;误码分析仪、故障检测装置和至少1个OTN设备形成一条闭合的主用线路,误码分析仪和至少1台OTN设备形成一条闭合的备用线路。
本实施例中的故障检测装置为可控电源、光开关和型号为FTB500的故障误码分析仪中的至少一种。OTN设备的数量为3个:首节点OTN设备、中继点OTN设备和末节点OTN设备。误码分析仪、首节点OTN设备、故障检测装置、中继点OTN设备和末节点
OTN设备顺次首尾连接形成主用线路;误码分析仪、首节点OTN设备、中继点OTN设备和末节点OTN设备顺次首尾连接形成备用线路。
参见图2所示,本发明实施例提供的OTN保护倒换自动化测试方法,包括以下步骤:
S1:对误码分析仪和故障检测装置进行初始化,将误码分析仪和故障检测装置的采集数据清空,采集数据包括历史告警数据和性能数据等。
S2:判断故障检测装置是否支持APS(Automatic Protection Switching,自动保护倒换)协议,若是,转到步骤S3,否则转到步骤S4。
S3:网管软件平台通过APS协议判断主用线路是否为空闲状态,若APS协议的高4位字节未收到0000b,则主用线路为故障状态(即不是空闲状态),重新执行步骤S3,否则主用线路为空闲状态,转到步骤S5。
S4:设置网管服务器软件平台的第一恢复等待时间,第一恢复等待时间可以设置为1~12分钟,本实施例中第一恢复等待时间设置为3分钟;待第一恢复等待时间过后,判断故障误码分析仪是否发出告警信息,若不是,转到步骤S5,否则转到步骤11。
S5:网管服务器软件平台对故障检测装置发送控制指令,故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信,转到步骤S6。
故障检测装置选用故障误码分析仪时,故障误码分析仪接收控制指令后,自动发出与控制指令对应的告警类型,切断主用线路的连接,误码分析仪和OTN设备从主用线路倒换至备用线路通信。
故障检测装置选用光开关时,光开关接收控制指令后,对主用线
路进行断纤操作,误码分析仪和OTN设备从主用线路倒换至备用线路通信。
故障检测装置选用可控电源时,可控电源接收控制指令后,停止主用线路的供电,误码分析仪和OTN设备从主用线路倒换至备用线路通信。
S6:判断故障检测装置是否支持APS协议,若是,转到步骤S7,否则转到步骤S8。
S7:网管软件平台通过APS协议判断主用线路是否为空闲状态,若不是,重新执行步骤S7,否则转到步骤S9。
S8:设置网管服务器软件平台的第二恢复等待时间,第二恢复等待时间可以设置为1~12分钟,本实施例中第二恢复等待时间设置为3分钟。待第二恢复等待时间过后,判断故障误码分析仪是否发出告警信息,若不是,转到步骤S9,否则转到S11。
S9:误码分析仪和OTN设备从备用线路切换至主用线路通信,转到步骤S10。
S10:网管服务器软件平台通过误码分析仪读取:任意一个OTN设备从主用线路切换至备用线路所用的第一SDT(服务中断时间)、任意一个OTN设备从备用线路切换至主用线路所用的第二SDT。判断第一SDT和第二SDT是否均小于国标规定的业务受损时间,业务受损时间一般为50ms,若是,确定OTN设备保护倒换自动化测试成功(合格),将测试结果导入至测试报告,结束;否则转到步骤S11。
S11:确定OTN设备保护倒换自动化测试失败,将测试结果导入至测试报告;网管服务器软件平台输出检测设备异常对话框,以保留现场,进行问题定位,转到步骤S12。
S12:问题定位结束后,根据网管服务器软件平台参数设置,判
断是否进行下一次OTN保护倒换测试,若是,转到步骤S1,否则结束。
本实施例中的OTN保护倒换自动化测试装置,包括主用线路检测模块、第一主用线路状态判定模块、主备线路切换模块、第二主用线路判定模块、备主线路切换模块和测试失败判定模块;
主用线路检测模块,用于:对误码分析仪和故障检测装置进行初始化,将误码分析仪和故障检测装置的采集数据清空;判断故障检测装置是否支持APS协议,若是,向第一主用线路状态判定模块发送判定信号,否则置网管服务器软件平台的第一恢复等待时间,待第一恢复等待时间过后,判定故障误码分析仪未发出告警信息,向主备线路切换模块发送主备切换信号;
第一主用线路状态判定模块,用于:接收第一主用线路状态判定模块发送的判定信号后,控制网管软件平台通过APS协议判定主用线路为空闲状态,向主备线路切换模块发送主备切换信号;
主备线路切换模块,用于:收到主备切换信号后,控制网管服务器软件平台对故障检测装置发送控制指令,故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信;判断故障检测装置是否支持APS协议,若是,向第二主用线路判定模块发送判定信号;否则设置网管服务器软件平台的第二恢复等待时间,待第二恢复等待时间过后,判定故障误码分析仪未发出告警信息,向备主线路切换模块发送备主切换信号;
第二主用线路判定模块,用于:收到主备线路切换模块发送的判定信号后,控制网管软件平台通过APS协议判定主用线路为空闲状态,向备主线路切换模块发送备主切换信号;
备主线路切换模块,用于:收到备主切换信号后,误码分析仪和
OTN设备从备用线路切换至主用线路通信,网管服务器软件平台通过误码分析仪读取:任意一个OTN设备从主用线路切换至备用线路所用的第一SDT、任意一个OTN设备从备用线路切换至主用线路所用的第二SDT;判断第一SDT和第二SDT是否均小于国标规定的业务受损时间,若是,确定OTN设备保护倒换自动化测试成功;否则向测试失败判定模块发送测试失败信号;
测试失败判定模块,用于:收到备主线路切换模块发送的测试失败信号后,确定OTN设备保护倒换自动化测试失败。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
Claims (10)
- 一种OTN保护倒换自动化测试系统,包括网管服务器软件平台、交换机、1台误码分析仪、1台故障检测装置和至少1台OTN设备;其特征在于:服务器软件平台通过交换机分别与误码分析仪、故障检测装置相连;误码分析仪、故障检测装置和至少1个OTN设备形成一条闭合的主用线路;误码分析仪和至少1台OTN设备形成一条闭合的备用线路;所述故障检测装置为可控电源、光开关和故障误码分析仪中的至少一种;服务器软件平台对误码分析仪和故障检测装置进行初始化,将误码分析仪和故障检测装置的采集数据清空,误码分析仪判断故障检测装置是否支持自动保护倒换APS协议,若是,网管软件平台通过APS协议判定主用线路为空闲状态,网管服务器软件平台对故障检测装置发送控制指令;否则设置网管服务器软件平台的第一恢复等待时间,待第一恢复等待时间过后,判定故障误码分析仪未发出告警信息,网管服务器软件平台对故障检测装置发送控制指令;故障检测装置发送控制指令后,故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信;误码分析仪判断故障检测装置是否支持APS协议,若是,网管软件平台通过APS协议判定主用线路为空闲状态,转到步骤误码分析仪和OTN设备从备用线路切换至主用线路通信;否则设置网管服务器软件平台的第二恢复等待时间,待第二恢复等待时间过后,判定故障误码分析仪未发出告警信息,误码分析仪和OTN设备从备用线路切换至主用线路通信;误码分析仪和OTN设备从备用线路切换至主用线路通信后,网管服务器软件平台通过误码分析仪读取:任意一个OTN设备从主用线路切换至备用线路所用的第一服务中断时间SDT、任意一个OTN 设备从备用线路切换至主用线路所用的第二SDT;误码分析仪判断第一SDT和第二SDT是否均小于国标规定的业务受损时间,若是,确定OTN设备保护倒换自动化测试成功;否则确定OTN设备保护倒换自动化测试失败。
- 如权利要求1所述的OTN保护倒换自动化测试系统,其特征在于:所述OTN设备的数量为3个:首节点OTN设备、中继点OTN设备和末节点OTN设备;所述误码分析仪、首节点OTN设备、故障检测装置、中继点OTN设备和末节点OTN设备顺次首尾连接形成主用线路;所述误码分析仪、首节点OTN设备、中继点OTN设备和末节点OTN设备顺次首尾连接形成备用线路。
- 一种基于权利要求1或2所述系统的OTN保护倒换自动化测试方法,其特征在于,包括以下步骤:A、对误码分析仪和故障检测装置进行初始化,将误码分析仪和故障检测装置的采集数据清空;判断故障检测装置是否支持APS协议,若是,转到步骤B,否则置网管服务器软件平台的第一恢复等待时间,待第一恢复等待时间过后,判定故障误码分析仪未发出告警信息,转到步骤C;B、网管软件平台通过APS协议判定主用线路为空闲状态,转到步骤C;C、网管服务器软件平台对故障检测装置发送控制指令,故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信;判断故障检测装置是否支持APS协议,若是,转到步骤D;否则设置网管服务器软件平台的第二恢复等待时间,待第二恢复等待时间过后,判定故障误码分析仪未发出告警信息,转到步骤E;D、网管软件平台通过APS协议判定主用线路为空闲状态,转到 步骤E;E、误码分析仪和OTN设备从备用线路切换至主用线路通信,网管服务器软件平台通过误码分析仪读取:任意一个OTN设备从主用线路切换至备用线路所用的第一SDT、任意一个OTN设备从备用线路切换至主用线路所用的第二SDT;判断第一SDT和第二SDT是否均小于国标规定的业务受损时间,若是,确定OTN设备保护倒换自动化测试成功;否则转到步骤F;F、确定OTN设备保护倒换自动化测试失败。
- 如权利要求3所述的OTN保护倒换自动化测试方法,其特征在于:步骤A中所述采集数据包括历史告警数据和性能数据;步骤A中所述第一恢复等待时间为1~12分钟; 步骤A中所述待第一恢复等待时间过后,还包括以下步骤:判定故障误码分析仪发出告警信息,转到步骤F。
- 如权利要求3所述的OTN保护倒换自动化测试方法,其特征在于,步骤B还包括以下步骤:网管软件平台通过APS协议判定主用线路不为空闲状态,重新执行步骤B;步骤B中所述APS协议判定主用线路是为空闲状态包括以下流程:判定APS协议的高4位字节收到0000b,主用线路为空闲状态。
- 如权利要求3所述的OTN保护倒换自动化测试方法,其特征在于,步骤C中所述第二恢复等待时间为1~12分钟,步骤C中所述待第二恢复等待时间过后,还包括以下步骤:判定故障误码分析仪发出告警信息,转到步骤F。
- 如权利要求3所述的OTN保护倒换自动化测试方法,其特征在于:步骤C中所述故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信包括以下流程:故障检测装置选用故障误码分析仪时,故障误码分析仪接收控制指令后,自动发出与控制指令对应的告警类型,切断主用线路的连接,误码分析仪和OTN设备从主用线路倒换至备用线路通信;故障检测装置选用光开关时,光开关接收控制指令后,对主用线路进行断纤操作,误码分析仪和OTN设备从主用线路倒换至备用线路通信;故障检测装置选用可控电源时,可控电源接收控制指令后,停止主用线路的供电,误码分析仪和OTN设备从主用线路倒换至备用线路通信。
- 如权利要求3所述的OTN保护倒换自动化测试方法,其特征在于,步骤D还包括以下步骤:网管软件平台通过APS协议判定主用线路不为空闲状态,重新执行步骤D;步骤D中APS协议判定主用线路是为空闲状态包括以下流程:判定APS协议的高4位字节收到0000b,则主用线路为空闲状态。
- 如权利要求3至8任一项所述的OTN保护倒换自动化测试方法,其特征在于,步骤F之后还包括以下步骤:将测试结果导入至测试报告;网管服务器软件平台输出检测设备异常对话框,进行问题定位;问题定位结束后,根据网管服务器软件平台参数设置,判断是否进行下一次OTN保护倒换测试,若是,转到步骤A,否则结束。
- 一种实现权利要求4至9任一项所述方法的OTN保护倒换自动化测试装置,其特征在于:包括主用线路检测模块、第一主用线路状态判定模块、主备线路切换模块、第二主用线路判定模块、备主线路切换模块和测试失败判定模块;主用线路检测模块,用于:对误码分析仪和故障检测装置进行初始化,将误码分析仪和故障检测装置的采集数据清空;判断故障检测 装置是否支持APS协议,若是,向第一主用线路状态判定模块发送判定信号,否则置网管服务器软件平台的第一恢复等待时间,待第一恢复等待时间过后,判定故障误码分析仪未发出告警信息,向主备线路切换模块发送主备切换信号;第一主用线路状态判定模块,用于:接收第一主用线路状态判定模块发送的判定信号后,控制网管软件平台通过APS协议判定主用线路为空闲状态,向主备线路切换模块发送主备切换信号;主备线路切换模块,用于:收到主备切换信号后,控制网管服务器软件平台对故障检测装置发送控制指令,故障检测装置触发误码分析仪和OTN设备从主用线路倒换至备用线路通信;判断故障检测装置是否支持APS协议,若是,向第二主用线路判定模块发送判定信号;否则设置网管服务器软件平台的第二恢复等待时间,待第二恢复等待时间过后,判定故障误码分析仪未发出告警信息,向备主线路切换模块发送备主切换信号;第二主用线路判定模块,用于:收到主备线路切换模块发送的判定信号后,控制网管软件平台通过APS协议判定主用线路为空闲状态,向备主线路切换模块发送备主切换信号;备主线路切换模块,用于:收到备主切换信号后,误码分析仪和OTN设备从备用线路切换至主用线路通信,网管服务器软件平台通过误码分析仪读取:任意一个OTN设备从主用线路切换至备用线路所用的第一SDT、任意一个OTN设备从备用线路切换至主用线路所用的第二SDT;判断第一SDT和第二SDT是否均小于国标规定的业务受损时间,若是,确定OTN设备保护倒换自动化测试成功;否则向测试失败判定模块发送测试失败信号;测试失败判定模块,用于:收到备主线路切换模块发送的测试失 败信号后,确定OTN设备保护倒换自动化测试失败。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410152535.0 | 2014-04-16 | ||
CN201410152535.0A CN103973359B (zh) | 2014-04-16 | 2014-04-16 | 一种otn保护倒换自动化测试系统、方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015158178A1 true WO2015158178A1 (zh) | 2015-10-22 |
Family
ID=51242447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/071915 WO2015158178A1 (zh) | 2014-04-16 | 2015-01-30 | 一种otn保护倒换自动化测试系统、方法及装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN103973359B (zh) |
MY (1) | MY177604A (zh) |
WO (1) | WO2015158178A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109194392A (zh) * | 2018-08-24 | 2019-01-11 | 武汉恒泰通技术有限公司 | 一种多速率误码检测系统及其检测方法 |
CN109274421A (zh) * | 2018-11-20 | 2019-01-25 | 中国电信集团工会上海市委员会 | 一种传输otn网络端到端电路故障自动定位的方法 |
CN112056760A (zh) * | 2020-08-18 | 2020-12-11 | 惠州市德赛西威汽车电子股份有限公司 | 一站式测试系统及方法 |
CN113114349A (zh) * | 2021-04-19 | 2021-07-13 | 国网湖北省电力有限公司信息通信公司 | Sdh系统sncp保护业务检测方法及功率分配优化方法 |
CN117246181A (zh) * | 2023-11-20 | 2023-12-19 | 广州冠廷机电设备有限公司 | 一种国转欧转换电路 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103973359B (zh) * | 2014-04-16 | 2016-05-25 | 烽火通信科技股份有限公司 | 一种otn保护倒换自动化测试系统、方法及装置 |
CN104639233A (zh) * | 2014-12-31 | 2015-05-20 | 太仓市同维电子有限公司 | 光收发模块接口组件生产校准一拖n测试系统的方法 |
CN104836616B (zh) * | 2015-05-25 | 2017-08-01 | 烽火通信科技股份有限公司 | 一种光传送网中极限光信噪比自动化测试的系统及方法 |
CN105553783A (zh) * | 2016-01-25 | 2016-05-04 | 北京同有飞骥科技股份有限公司 | 一种配置双机资源切换的自动化测试方法 |
CN113556633B (zh) * | 2020-04-23 | 2024-04-09 | 华为技术有限公司 | 一种业务信号恢复方法、设备以及系统 |
CN112557752B (zh) * | 2020-12-06 | 2023-06-02 | 苏州大学 | 一种电磁信号的监测系统、计算机存储介质 |
CN112532515A (zh) * | 2020-12-21 | 2021-03-19 | 安徽皖通邮电股份有限公司 | 一种基于e1业务线路切换的方法 |
CN113381802B (zh) * | 2021-06-02 | 2023-07-07 | 国网安徽省电力有限公司铜陵供电公司 | 一种基于光交换矩阵的智能光路切换系统 |
CN115022752B (zh) * | 2022-08-09 | 2022-10-21 | 江苏泽宇电力设计有限公司 | 一种otn光层计算及电层配置技术的断点自测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1838617A (zh) * | 2005-03-21 | 2006-09-27 | 中兴通讯股份有限公司 | 光同步数字传送体系网络保护系统的自动测试方法 |
CN102104504A (zh) * | 2009-12-21 | 2011-06-22 | 中兴通讯股份有限公司 | 一种北向接口测试平台及测试方法 |
CN102611499A (zh) * | 2012-04-05 | 2012-07-25 | 烽火通信科技股份有限公司 | 一种otn设备交叉盘实现oduk保护倒换的方法 |
US20130236169A1 (en) * | 2008-12-08 | 2013-09-12 | Ciena Corporation | Coherent probe and optical service channel systems and methods for optical networks |
CN103973359A (zh) * | 2014-04-16 | 2014-08-06 | 烽火通信科技股份有限公司 | 一种otn保护倒换自动化测试系统、方法及装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050169187A1 (en) * | 2004-01-30 | 2005-08-04 | Richard Taylor | Methods and apparatus for testing automatic path protection switching |
US7940648B1 (en) * | 2004-03-02 | 2011-05-10 | Cisco Technology, Inc. | Hierarchical protection switching framework |
CN101064566B (zh) * | 2006-04-26 | 2010-05-12 | 中兴通讯股份有限公司 | 光传输系统保护倒换功能的自动检测装置和方法 |
CN101820317A (zh) * | 2010-03-17 | 2010-09-01 | 中兴通讯股份有限公司 | 实现保护组保护倒换的方法及系统 |
CN103580929A (zh) * | 2013-11-21 | 2014-02-12 | 盛科网络(苏州)有限公司 | 环网切换延迟的自动化测试方法及装置 |
-
2014
- 2014-04-16 CN CN201410152535.0A patent/CN103973359B/zh active Active
-
2015
- 2015-01-30 WO PCT/CN2015/071915 patent/WO2015158178A1/zh active Application Filing
- 2015-01-30 MY MYPI2016703771A patent/MY177604A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1838617A (zh) * | 2005-03-21 | 2006-09-27 | 中兴通讯股份有限公司 | 光同步数字传送体系网络保护系统的自动测试方法 |
US20130236169A1 (en) * | 2008-12-08 | 2013-09-12 | Ciena Corporation | Coherent probe and optical service channel systems and methods for optical networks |
CN102104504A (zh) * | 2009-12-21 | 2011-06-22 | 中兴通讯股份有限公司 | 一种北向接口测试平台及测试方法 |
CN102611499A (zh) * | 2012-04-05 | 2012-07-25 | 烽火通信科技股份有限公司 | 一种otn设备交叉盘实现oduk保护倒换的方法 |
CN103973359A (zh) * | 2014-04-16 | 2014-08-06 | 烽火通信科技股份有限公司 | 一种otn保护倒换自动化测试系统、方法及装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109194392A (zh) * | 2018-08-24 | 2019-01-11 | 武汉恒泰通技术有限公司 | 一种多速率误码检测系统及其检测方法 |
CN109274421A (zh) * | 2018-11-20 | 2019-01-25 | 中国电信集团工会上海市委员会 | 一种传输otn网络端到端电路故障自动定位的方法 |
CN112056760A (zh) * | 2020-08-18 | 2020-12-11 | 惠州市德赛西威汽车电子股份有限公司 | 一站式测试系统及方法 |
CN112056760B (zh) * | 2020-08-18 | 2023-01-06 | 惠州市德赛西威汽车电子股份有限公司 | 一站式测试系统及方法 |
CN113114349A (zh) * | 2021-04-19 | 2021-07-13 | 国网湖北省电力有限公司信息通信公司 | Sdh系统sncp保护业务检测方法及功率分配优化方法 |
CN113114349B (zh) * | 2021-04-19 | 2022-11-04 | 国网湖北省电力有限公司信息通信公司 | Sdh系统sncp保护业务检测方法及功率分配优化方法 |
CN117246181A (zh) * | 2023-11-20 | 2023-12-19 | 广州冠廷机电设备有限公司 | 一种国转欧转换电路 |
CN117246181B (zh) * | 2023-11-20 | 2024-01-30 | 广州冠廷机电设备有限公司 | 一种国转欧转换电路 |
Also Published As
Publication number | Publication date |
---|---|
MY177604A (en) | 2020-09-22 |
CN103973359B (zh) | 2016-05-25 |
CN103973359A (zh) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015158178A1 (zh) | 一种otn保护倒换自动化测试系统、方法及装置 | |
CN106533811B (zh) | 一种基于sdh的冗余通信系统及其冗余保护方法 | |
US8433190B2 (en) | Hot-swapping in-line optical amplifiers in an optical network | |
US20170164223A1 (en) | Ageing detection method and device | |
WO2018001326A1 (zh) | 故障信息获取方法及装置 | |
US20100128611A1 (en) | Transmitting apparatus, alarm control method, and computer product | |
JP6461481B2 (ja) | 電気的障害を検出または予測するための方法 | |
CN105871569B (zh) | Otn 网络故障节点自动检测的方法及装置 | |
CN104301176A (zh) | 一种多onu设备测试系统及方法 | |
WO2017197956A1 (zh) | 一种集成光时域反射仪的光线路保护系统 | |
CN102611575A (zh) | 一种控制onu设备指示灯显示的方法、设备及系统 | |
CN104779994B (zh) | 以太无源光网络的保护方法及装置 | |
CN115549775B (zh) | 光信号传输异常的处理方法、光传输设备及系统 | |
CN108123752B (zh) | 一种基于地理信息定位的epon精确环路检测方法 | |
US9110798B2 (en) | Method and system for preventing holding-off of a protection switching for a plurality of alarms | |
JP2015186134A (ja) | 通信システム及びノード | |
CN102447569B (zh) | 一种点对多点组播业务的保护方法及网络设备 | |
CN101656621B (zh) | 一种告警性能配置方法、系统和网元设备 | |
CN203406900U (zh) | 基于td-lte网络与光纤网络的路由备份装置 | |
Sánchez et al. | Troubleshooting PON networks effectively with carrier-grade ethernet and WDM-PON | |
KR100221528B1 (ko) | 동기식 전송망의 시험엑세스 방법 | |
CN103326774B (zh) | 用于光传输设备监控的2m电路系统及其测试方法 | |
CN104065498A (zh) | 一种通道建立方法及装置 | |
CN112383845B (zh) | 一种便于pon接入网络链路的测试电路及方法 | |
JP6204397B2 (ja) | 通信機、通信システム、通信方法およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15780561 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15780561 Country of ref document: EP Kind code of ref document: A1 |