WO2018001205A1 - 功率分配的方法和装置 - Google Patents

功率分配的方法和装置 Download PDF

Info

Publication number
WO2018001205A1
WO2018001205A1 PCT/CN2017/090044 CN2017090044W WO2018001205A1 WO 2018001205 A1 WO2018001205 A1 WO 2018001205A1 CN 2017090044 W CN2017090044 W CN 2017090044W WO 2018001205 A1 WO2018001205 A1 WO 2018001205A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
target subframe
target
power
priority
Prior art date
Application number
PCT/CN2017/090044
Other languages
English (en)
French (fr)
Inventor
刘建琴
曲秉玉
贺传峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17819202.7A priority Critical patent/EP3468264B1/en
Publication of WO2018001205A1 publication Critical patent/WO2018001205A1/zh
Priority to US16/234,969 priority patent/US10531402B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and apparatus for power allocation.
  • a user equipment may access multiple cell groups at the same time, and different cell groups may have transmission subframes of different time granularity; for convenience of description, the UE simultaneously accesses the first cell.
  • a group and a second cell group are used as an example.
  • the first cell group corresponds to the first transmission subframe
  • the second cell group corresponds to the second transmission subframe.
  • the first transmission subframe and the second transmission subframe have different time granularities.
  • the UE transmits data to the base station the UE carries the data to be transmitted in the first transmission subframe and the second transmission subframe, and allocates a first transmission power for the first transmission subframe, and allocates a second transmission subframe.
  • Two transmit powers the UE transmits channel information on the first transmission subframe to the base station by means of the first transmit power, and transmits channel information on the second transmission subframe to the base station by means of the second transmit power.
  • the first transmission time of the first transmission subframe and the second transmission time of the second transmission subframe may overlap, and the UE transmits the first transmission subframe and the second transmission subframe according to the first transmission time and the second transmission time.
  • the transmission subframe with the earlier transmission time and the transmission subframe with the later transmission time are determined, and the transmission power is preferentially allocated for the transmission subframe with the earlier transmission time, and the UE can only use the pre-transmitted transmission subframe for the later transmission time.
  • the transmission subframe with a later transmission time corresponds to the transmission subframe with the earlier transmission time, when more When the data to be transmitted on the transmission subframe with the earlier transmission time does not always exist, the transmission power remaining on the transmission subframe with the earlier transmission time cannot be allocated to the transmission subframe with the later transmission time, resulting in power resources. Waste, low power usage.
  • the present disclosure provides a method and apparatus for power distribution.
  • the technical solutions are as follows:
  • an embodiment of the present disclosure provides a method for power allocation, where the method includes:
  • the user equipment UE determines a first start time of the first control subframe and a second start time of the second control subframe, where the first control subframe is used to transmit control information of the first target subframe, and the second Controlling a subframe for transmitting control information of a second target subframe, a transmission time of the second target subframe overlapping with a transmission time of the first target subframe, the second target subframe and the first
  • the target subframe has different subframe lengths, and the second target subframe and the first target subframe belong to different base stations or different cell groups;
  • the UE is in the presence of the UE according to the first uplink channel information and the second uplink channel information. Assigning power to the base station or the cell group in which the first target subframe is located, and allocating the reserved power of the UE to the base station or the cell group where the second target subframe is located;
  • the UE is in the UE according to the first uplink channel information and the second uplink channel information.
  • the base station or the cell group in which the second target subframe is located is allocated power, and the reserved power of the UE is allocated to the base station or the cell group where the first target subframe is located.
  • the priority of the target subframe with lower frequency can be determined.
  • the priority of the target subframe is higher than the higher frequency, and the UE preferentially allocates power to the base station or the cell group where the target subframe with the lower frequency is located, thereby avoiding the possible idle transmission on the target subframe with the earlier transmission time. The power can no longer be allocated to the target subframe with a later transmission time, which improves the power usage.
  • the UE determines, according to the first start time and the second start time, whether a priority of the first target subframe is higher than a priority of the second target subframe.
  • the UE determines that the priority of the first target subframe is higher than the priority of the second target subframe;
  • the UE determines that the priority of the first target subframe is lower than the priority of the second target subframe.
  • the priority of the target subframe of the control subframe that is earlier than the start time is determined to be higher than the priority of the target subframe of the control subframe that is later than the start time, so that the target with a lower frequency can be determined.
  • the priority of the subframe is higher than the priority of the target subframe with higher frequency, thereby avoiding the problem that the transmit power that may be spared in the target subframe with the earlier transmission time cannot be allocated to the target subframe with the later transmission time. , increased power usage.
  • the UE determines, according to the first start time and the second start time, whether a priority of the first target subframe is higher than a priority of the second target subframe.
  • Level including:
  • the UE calculates a time difference between the first start time and the second start time
  • the UE determines, according to the time difference and the time difference threshold, whether a priority of the first target subframe is higher than a priority of the second target subframe.
  • a time difference threshold is set, and according to the time difference between the first start time and the second start time, and the time difference threshold, determining whether the priority of the first target subframe is higher than the second target subframe. Priority, so that flexible configuration of UE power allocation priorities in different scenarios can be realized, thereby maximizing power utilization.
  • the UE determines, according to the time difference and the time difference threshold, whether a priority of the first target subframe is higher than a priority of the second target subframe, including:
  • the UE determines that the priority of the first target subframe is higher than the priority of the second target subframe; or
  • the UE determines that the priority of the first target subframe is lower than the priority of the second target subframe.
  • the UE determines a first start time of the first control subframe and a second start time of the second control subframe, including:
  • the first start time of the first control subframe and the second start time of the second control subframe are determined according to the first time offset and the second time offset, so that different Flexible configuration of UE power allocation priorities in the scenario to maximize power utilization.
  • the UE allocates power to the base station or the cell group where the UE is located in the first target subframe according to the first uplink channel information and the second uplink channel information, including :
  • the UE calculates an uplink channel of the first target subframe according to the first uplink channel information and the second uplink channel information.
  • a first guaranteed power where the first guaranteed power is a power configured by the high-layer signaling for the UE in a base station or a cell group where the first target subframe is located;
  • the UE allocates power to the base station or the cell group where the first target subframe is located, according to the first guaranteed power and the first required power of the uplink channel of the first target subframe.
  • the base station or the cell where the UE is located in the first target subframe according to the first guaranteed power and the first required power
  • the group allocates power so as to be able to meet the power requirement of the UE to allocate power in the base station or cell group where the first target subframe is located.
  • the UE calculates the first guaranteed power of the uplink channel of the first target subframe according to the first uplink channel information and the second uplink channel information, including:
  • the first guaranteed power of the uplink channel of the first target subframe is calculated by the transmit power of the PRACH of the frame and the maximum transmit power of the first target subframe and the second target subframe transmit time.
  • the uplink channel on the first target subframe is calculated according to the first uplink channel information and the second uplink channel information.
  • the first guaranteed power can satisfy the power requirement of the UE to allocate power in the base station or the cell group where the first target subframe is located.
  • the reserved power allocated by the UE to the base station or the cell group where the second target subframe is located is less than or equal to the first guaranteed power, and is less than or equal to the maximum of the UE.
  • the reserved power allocated by the UE to the base station or the cell group where the second target subframe is located can satisfy the UE. Power demand.
  • the UE allocates power to the base station or the cell group where the second target subframe is located, according to the first uplink channel information and the second uplink channel information, including :
  • the UE calculates an uplink channel of the second target subframe according to the first uplink channel information and the second uplink channel information.
  • a second guaranteed power where the second guaranteed power is a power configured by the higher layer signaling for the UE in a base station or a cell group where the second target subframe is located;
  • the UE allocates power to the base station or the cell group where the second target subframe is located, according to the second guaranteed power and the second required power of the uplink channel of the second target subframe.
  • the second guaranteed power and the second required power are the base station or the cell where the UE is located in the second target subframe.
  • the group allocates power so as to be able to meet the power requirement of the UE to allocate power in the base station or cell group where the second target subframe is located.
  • the UE calculates the second guaranteed power of the uplink channel of the second target subframe according to the first uplink channel information and the second uplink channel information, including:
  • the second target sub The transmit power of the PRACH of the frame, and the maximum transmit power of the overlap time of the first target subframe and the second target subframe transmit time, and the guaranteed power of the uplink channel of the second target subframe is calculated.
  • the uplink channel on the second target subframe is calculated according to the first uplink channel information and the second uplink channel information.
  • the second guaranteed power can satisfy the power requirement of the UE to allocate power in the base station or the cell group where the second target subframe is located.
  • the reserved power allocated by the UE to the base station or the cell group where the first target subframe is located is less than or equal to the second guaranteed power, and is less than or equal to the maximum of the UE.
  • the reserved power allocated by the UE to the base station or the cell group where the first target subframe is located can satisfy the UE. Power demand.
  • an embodiment of the present disclosure provides a method for power allocation, where the method includes:
  • the base station acquires first uplink channel information on the first target subframe and second uplink channel information on the second target subframe, where a transmission time of the second target subframe overlaps with a transmission time of the first target subframe
  • the second target subframe and the first target subframe have different subframe lengths, and the second target subframe and the first target subframe belong to different base stations or different cell groups;
  • the base station sends, by the base station, the first time offset and the second time offset to the user equipment UE, where the UE determines, according to the first time offset and the second time offset, a first start time of the first control subframe and a second start time of the second control subframe, and according to the first start time and the second start time, the UE is in the first
  • the base station or the cell group in which the target subframe is located allocates power and allocates power to the base station or the cell group in which the UE is located in the second target subframe.
  • the base station configures the first time offset and the second time offset to the UE, and determines, by the UE, the first control subframe according to the first time offset and the second time offset.
  • a start time and a second start time of the second control subframe so that flexible configuration of UE power allocation priorities in different scenarios can be implemented, thereby maximizing power utilization.
  • the base station determines, according to the first uplink channel information and the second uplink channel information, a first time offset of the first control subframe and a second time of the second control subframe. Offset, including:
  • the base station determines a first time offset and a second of the first control subframe that meet the first preset condition Controlling a second time offset of the subframe, where the first preset condition is that the first start time of the first control subframe is before the second start time of the second control subframe, or a time difference between a first start time of the first control subframe and a second start time of the second control subframe is greater than a time difference threshold;
  • the base station determines a first time offset and a second of the first control subframe that meet the second preset condition Controlling a second time offset of the subframe, where the second preset condition is that the second start time of the second control subframe is before the first start time of the first control subframe, or The time difference between the first start time of the first control subframe and the second start time of the second control subframe is not greater than a time difference threshold.
  • the base station may configure, by configuring the first time offset and the second time offset, whether the priority of the first target subframe determined by the UE is higher than the priority of the second target subframe. Therefore, flexible configuration of UE power allocation priorities in different scenarios can be realized, thereby maximizing power utilization.
  • an embodiment of the present disclosure provides a device for power distribution, where the device includes:
  • a first determining module configured to determine a first start time of the first control subframe and a second start time of the second control subframe, where the first control subframe is used to transmit control information of the first target subframe,
  • the second control subframe is configured to transmit control information of the second target subframe, where a transmission time of the second target subframe overlaps with a transmission time of the first target subframe, where the second target subframe is
  • the first target subframe has a different subframe length, and the second target subframe and the first target subframe belong to different base stations or different cell groups;
  • a second determining module configured to determine, according to the first start time and the second start time, whether a priority of the first target subframe is higher than a priority of the second target subframe, and determine First uplink channel information on the first target subframe and second uplink channel information on the second target subframe;
  • a first allocation module configured to: if the priority of the first target subframe is higher than the priority of the second target subframe, according to the first uplink channel information and the second uplink channel information, Allocating power to the base station or the cell group where the first target subframe is located, and allocating the reserved power of the UE to the base station or the cell group where the second target subframe is located;
  • a second allocation module configured to: if the priority of the first target subframe is lower than a priority of the second target subframe, according to the first uplink channel information and the second uplink channel information, The UE allocates power to the base station or the cell group where the second target subframe is located, and allocates the reserved power of the UE to the base station or the cell group where the first target subframe is located.
  • the second determining module is further configured to: if the first starting moment is before the second starting moment, determine that the priority of the first target subframe is higher than the first The priority of the second target subframe; or,
  • the second determining module is further configured to: if the second start time is before the first start time, determine that a priority of the first target subframe is lower than a priority of the second target subframe .
  • the second determining module is further configured to calculate a time difference between the first start time and the second start time; and determine the first according to the time difference and the time difference threshold Priority of a target subframe Whether the level is higher than the priority of the second target subframe.
  • the second determining module is further configured to: if the time difference is greater than a time difference threshold, determine that a priority of the first target subframe is higher than a priority of the second target subframe; or,
  • the second determining module is further configured to determine that the priority of the first target subframe is lower than the priority of the second target subframe, if the time difference is not greater than a time difference threshold.
  • the first determining module is further configured to acquire a first time offset of the first control subframe and a second time offset of the second control subframe; The time offset and the second time offset determine a first start time of the first control subframe and a second start time of the second control subframe.
  • the first allocation module is further configured to: when the uplink channel of the first target subframe includes a random access channel PRACH, according to the first uplink channel information and the second The uplink channel information is used to calculate a first guaranteed power of the uplink channel of the first target subframe, where the first guaranteed power is a base station or a cell group where the UE is located in the first target subframe by using high layer signaling The configured power is allocated to the base station or the cell group where the first target subframe is located, according to the first guaranteed power and the first required power of the uplink channel of the first target subframe.
  • the first allocation module is further configured to: according to a reserved power factor of uplink data transmission in a base station or a cell group where the second target subframe is located, the second target subframe The data channel and the transmit power of the PRACH, the transmit power of the PRACH of the first target subframe, and the maximum transmit power at the time when the first target subframe and the second target subframe transmit time overlap, calculate the The first guaranteed power of the uplink channel of the first target subframe.
  • the reserved power allocated by the UE to the base station or the cell group where the second target subframe is located is less than or equal to the first guaranteed power, and is less than or equal to the maximum of the UE.
  • the second allocation module is further configured to: when the uplink channel of the second target subframe includes a random access channel PRACH, the UE according to the first uplink channel information and Calculating a second guaranteed power of the uplink channel of the second target subframe, where the second guaranteed power is a base station where the UE is located in the second target subframe by using high layer signaling Or the power of the cell group configuration; according to the second guaranteed power and the second required power of the uplink channel of the second target subframe, the UE is allocated in the base station or the cell group where the second target subframe is located power.
  • the second allocation module is further configured to: according to a reserved power factor of uplink data transmission in a base station or a cell group where the first target subframe is located, the first target subframe The data channel and the transmit power of the PRACH, the transmit power of the PRACH of the second target subframe, and the maximum transmit power at the time when the first target subframe and the second target subframe transmit time overlap, calculate the Guaranteed power of the uplink channel of the second target subframe.
  • the reserved power allocated by the UE to the base station or the cell group where the first target subframe is located is less than or equal to the second guaranteed power, and is less than or equal to the maximum of the UE.
  • an embodiment of the present disclosure provides a device for power distribution, where the device includes:
  • An acquiring module configured to acquire first uplink channel information on the first target subframe and second uplink channel information on the second target subframe, where the second target subframe transmits time and the first target subframe The emission time overlaps,
  • the second target subframe has a different subframe length from the first target subframe, and the second target subframe and the first target subframe belong to different base stations or different cell groups;
  • a third determining module configured to determine, according to the first uplink channel information and the second uplink channel information, a first time offset of the first control subframe and a second time offset of the second control subframe
  • the first control subframe is configured to transmit control information of the first target subframe
  • the second control subframe is configured to transmit control information of the second target subframe.
  • a sending module configured to send, by the UE, the first time offset and the second time offset, by the UE according to the first time offset and the second time offset Determining a first start time of the first control subframe and a second start time of the second control subframe, and according to the first start time and the second start time,
  • the base station or the cell group in which the first target subframe is located allocates power and allocates power to the base station or the cell group in which the UE is located in the second target subframe.
  • the third determining module is further configured to determine, according to the first uplink channel information and the second uplink channel information, whether a priority of the first target subframe is higher than the The priority of the second target subframe;
  • the third determining module is further configured to determine, if the priority of the first target subframe is higher than the priority of the second target subframe, the first of the first control subframe that meets the first preset condition a time offset and a second time offset of the second control subframe, where the first preset condition is that the first start time of the first control subframe is from the second of the second control subframe Before the start time, or the time difference between the first start time of the first control subframe and the second start time of the second control subframe is greater than a time difference threshold;
  • the third determining module is further configured to determine, if the priority of the first target subframe is lower than a priority of the second target subframe, the first of the first control subframe that meets the second preset condition a time offset and a second time offset of the second control subframe, where the second preset condition is that the second start time of the second control subframe is from the first one of the first control subframe Before the start time, or the time difference between the first start time of the first control subframe and the second start time of the second control subframe is not greater than a time difference threshold.
  • an embodiment of the present disclosure provides a power distribution user equipment, where the user equipment includes:
  • a first processor configured to determine a first start time of the first control subframe and a second start time of the second control subframe, where the first control subframe is used to transmit control information of the first target subframe,
  • the second control subframe is configured to transmit control information of the second target subframe, where a transmission time of the second target subframe overlaps with a transmission time of the first target subframe, where the second target subframe is
  • the first target subframe has a different subframe length, and the second target subframe and the first target subframe belong to different base stations or different cell groups;
  • the first processor is further configured to determine, according to the first start time and the second start time, whether a priority of the first target subframe is higher than a priority of the second target subframe And determining first uplink channel information on the first target subframe and second uplink channel information on the second target subframe;
  • a first transmitter configured to: if the priority of the first target subframe is higher than a priority of the second target subframe, according to the first uplink channel information and the second uplink channel information, Allocating power to the base station or the cell group where the first target subframe is located, and allocating the reserved power of the UE to the base station or the cell group where the second target subframe is located;
  • the first transmitter is further configured to: if the priority of the first target subframe is lower than a priority of the second target subframe, according to the first uplink channel information and the second uplink channel information For the UE in the second target
  • the base station or the cell group in which the frame is located is allocated power, and the reserved power of the UE is allocated to the base station or the cell group where the first target subframe is located.
  • the first processor is further configured to: if the first start time is before the second start time, determine that the first target subframe has a higher priority than the first The priority of the second target subframe; or,
  • the first processor is further configured to: if the second start time is before the first start time, determine that a priority of the first target subframe is lower than a priority of the second target subframe .
  • the first processor is further configured to calculate a time difference between the first start time and the second start time; and determine the first according to the time difference and the time difference threshold Whether the priority of a target subframe is higher than the priority of the second target subframe.
  • the first processor is further configured to: if the time difference is greater than a time difference threshold, determine that a priority of the first target subframe is higher than a priority of the second target subframe; or,
  • the first processor is further configured to determine that a priority of the first target subframe is lower than a priority of the second target subframe, if the time difference is not greater than a time difference threshold.
  • the first processor is further configured to acquire a first time offset of the first control subframe and a second time offset of the second control subframe; The time offset and the second time offset determine a first start time of the first control subframe and a second start time of the second control subframe.
  • the first transmitter is further configured to: when the uplink channel of the first target subframe includes a random access channel PRACH, according to the first uplink channel information and the second The uplink channel information is used to calculate a first guaranteed power of the uplink channel of the first target subframe, where the first guaranteed power is a base station or a cell group where the UE is located in the first target subframe by using high layer signaling
  • the configured power is allocated to the base station or the cell group where the first target subframe is located, according to the first guaranteed power and the first required power of the uplink channel of the first target subframe.
  • the first transmitter is further configured to: according to a reserved power factor of uplink data transmission in a base station or a cell group where the second target subframe is located, the second target subframe The data channel and the transmit power of the PRACH, the transmit power of the PRACH of the first target subframe, and the maximum transmit power at the time when the first target subframe and the second target subframe transmit time overlap, calculate the The first guaranteed power of the uplink channel of the first target subframe.
  • the reserved power allocated by the UE to the base station or the cell group where the second target subframe is located is less than or equal to the first guaranteed power, and is less than or equal to the maximum of the UE.
  • the first transmitter is further configured to: when the uplink channel of the second target subframe includes a random access channel PRACH, the UE according to the first uplink channel information and Calculating a second guaranteed power of the uplink channel of the second target subframe, where the second guaranteed power is a base station where the UE is located in the second target subframe by using high layer signaling Or the power of the cell group configuration; according to the second guaranteed power and the second required power of the uplink channel of the second target subframe, the UE is allocated in the base station or the cell group where the second target subframe is located power.
  • the first transmitter is further configured to: according to a reserved power factor of uplink data transmission in a base station or a cell group where the first target subframe is located, the first target subframe Transmit power of the data channel and the PRACH, the transmit power of the PRACH of the second target subframe, and the first target subframe and the second target The maximum transmit power at the time when the subframe transmission time overlaps, and the guaranteed power of the uplink channel of the second target subframe is calculated.
  • the reserved power allocated by the UE to the base station or the cell group where the first target subframe is located is less than or equal to the second guaranteed power, and is less than or equal to the maximum of the UE.
  • an embodiment of the present disclosure provides a base station for power allocation, where the base station includes:
  • a second processor configured to acquire first uplink channel information on the first target subframe and second uplink channel information on the second target subframe, where the second target subframe transmits time and the first target The transmission time of the subframe overlaps, the second target subframe has a different subframe length from the first target subframe, and the second target subframe and the first target subframe belong to different base stations or different cells. group;
  • the second processor is further configured to determine, according to the first uplink channel information and the second uplink channel information, a first time offset of the first control subframe and a second time of the second control subframe Offset, the first control subframe is used to transmit control information of the first target subframe, and the second control subframe is used to transmit control information of the second target subframe;
  • a second transmitter configured to send the first time offset and the second time offset to the user equipment UE, according to the first time offset and the second time offset by the UE Determining a first start time of the first control subframe and a second start time of the second control subframe, and determining, according to the first start time and the second start time, the UE Allocating power to the base station or group of cells in which the first target subframe is located and allocating power to the base station or group of cells in which the UE is located in the second target subframe.
  • the second processor is further configured to determine, according to the first uplink channel information and the second uplink channel information, whether a priority of the first target subframe is higher than The priority of the second target subframe;
  • the second processor is further configured to determine, if the priority of the first target subframe is higher than the priority of the second target subframe, the first of the first control subframe that meets the first preset condition a time offset and a second time offset of the second control subframe, where the first preset condition is that the first start time of the first control subframe is from the second of the second control subframe Before the start time, or the time difference between the first start time of the first control subframe and the second start time of the second control subframe is greater than a time difference threshold;
  • the second processor is further configured to determine, if the priority of the first target subframe is lower than a priority of the second target subframe, the first of the first control subframe that meets the second preset condition a time offset and a second time offset of the second control subframe, where the second preset condition is that the second start time of the second control subframe is from the first one of the first control subframe Before the start time, or the time difference between the first start time of the first control subframe and the second start time of the second control subframe is not greater than a time difference threshold.
  • an embodiment of the present disclosure provides a computer storage medium, where the computer storage medium stores a computer program, and when the computer program is executed by a processor, implementing any of the foregoing first aspect or any possible implementation manner of the first aspect The method in .
  • an embodiment of the present disclosure provides a computer storage medium, where the computer storage medium stores a computer program, and when the computer program is executed by the processor, implement any of the foregoing second aspect or any possible implementation manner of the second aspect.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any of the second aspect or the second aspect.
  • the priority of the target subframe with lower frequency can be determined.
  • the priority of the target subframe is higher than the higher frequency, and the UE preferentially allocates power to the base station or the cell group where the target subframe with the lower frequency is located, thereby avoiding the possible idle transmission on the target subframe with the earlier transmission time. The power can no longer be allocated to the target subframe with a later transmission time, which improves the power usage.
  • 1-1 is a schematic diagram of a communication system according to an embodiment of the present disclosure
  • 1-2 is a schematic diagram of a first target subframe and a second target subframe according to an embodiment of the present disclosure
  • 1-3 are schematic diagrams of a relationship between a target subframe and a control subframe according to an embodiment of the present disclosure
  • 1-4 are schematic structural diagrams of a user equipment according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present disclosure
  • 3-1 is a flowchart of a method for power allocation according to an embodiment of the present disclosure
  • 3-2 is a schematic diagram of a relationship between a target subframe and a control subframe according to an embodiment of the present disclosure
  • 4-1 is a flowchart of a method for power allocation according to an embodiment of the present disclosure
  • 4-2 is a schematic diagram of a start time of a control subframe according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a device for power distribution according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a device for power distribution according to an embodiment of the present disclosure.
  • the communication system includes a base station and a UE, as shown in Figure 1-1.
  • the UE simultaneously performs uplink data transmission on the first target subframe and the second target subframe of different subframe lengths, and the frequency of the first target subframe and the frequency of the second target subframe are different.
  • the subframe length of the first target subframe is greater than the subframe length of the second target subframe, and the frequency of the first target subframe is lower than the frequency of the second target subframe, and the first target is The subframe corresponds to a plurality of second target subframes. Therefore, it may occur that the uplink data transmitted by the UE on the first target subframe is later transmitted than the uplink data transmitted on the second target subframe, but the uplink control information of the UE on the first target subframe arrives first ( The control information is generally transmitted on the first four subframes of the target subframe. As shown in Figure 1-3, the first control subframe is used to transmit control information of the first target subframe.
  • the second control subframe is configured to transmit control information of the second target subframe, where the first start time of the first control subframe is before the second start time, and the UE determines that the priority of the first target subframe is higher than the second target Priority of the subframe, the UE preferentially allocates power to the base station or the cell group where the first target subframe is located, and allocates the reserved power of the UE to the base station or the cell group where the second target subframe is located, so that the priority is the low frequency subframe.
  • the power is distributed, and there is no case where the data transmission of the high frequency subframe does not always exist, so that the transmission power on the high frequency subframe in which the data transmission is not performed can no longer be allocated to the data transmission on the low frequency subframe.
  • the UE may generate a large difference due to different configurations or performances, and may include one or more first processors 101 and A transmitter 102.
  • the first processor 101 is configured to determine a first start time of the first control subframe and a second start time of the second control subframe, where the first control subframe is used to transmit control information of the first target subframe, where The second control subframe is configured to transmit control information of the second target subframe, where a transmission time of the second target subframe overlaps with a transmission time of the first target subframe, and the second target subframe has a different subframe from the first target subframe. a frame length, where the second target subframe and the first target subframe belong to different base stations or different cell groups;
  • the first processor 101 further determines, according to the first start time and the second start time, whether the priority of the first target subframe is higher than the priority of the second target subframe, and determines the first subframe.
  • the first transmitter 102 is configured to: if the priority of the first target subframe is higher than the priority of the second target subframe, according to the first uplink channel information and the second uplink channel information, where the UE is located in the first target subframe
  • the base station or the cell group allocates power, and allocates reserved power of the UE to the base station or the cell group where the second target subframe is located;
  • the first transmitter 102 is further configured to: if the priority of the first target subframe is lower than the priority of the second target subframe, according to the first uplink channel information and the second uplink channel information, the UE is in the second target subframe.
  • the base station or the cell group is allocated power, and the UE reserves the reserved power of the UE in the base station or the cell group where the first target subframe is located.
  • the UE may include other components in addition to the foregoing first processor 101 and the first transmitter 102.
  • a first memory 103 one or more first storage media 106 storing the first application 104 or the first data 105 (eg, one or one in a Shanghai amount storage device) may also be included.
  • the first memory 103 and the first storage medium 106 may be short-term storage or persistent storage.
  • the program stored on the first storage medium 106 may include one or more modules (not shown), each of which may include a series of instruction operations in the power distribution device.
  • the first processor 101 can be configured to communicate with the first storage medium 106 to perform a series of instruction operations in the first storage medium 106 on the UE.
  • the UE may also include one or more first power sources 107, one or more first wired or wireless network interfaces 108, one or more first input output interfaces 109, one or more first keyboards 110, and/or, One or more first operating systems 111, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, and the like.
  • the UE including the first processor 101 and the first transmitter 102 in the present disclosure may also have the following functions:
  • the first processor 101 is further configured to: if the first start time is before the second start time, determine that the priority of the first target subframe is higher than the priority of the second target subframe; or
  • the first processor 101 is further configured to determine that the priority of the first target subframe is lower than the priority of the second target subframe if the second start time is before the first start time.
  • the first processor 101 is further configured to calculate a time difference between the first start time and the second start time, and determine, according to the time difference and the time difference threshold, whether the priority of the first target subframe is higher than the second target. The priority of the subframe.
  • the first processor 101 is further configured to: if the time difference is greater than the time difference threshold, determine that the priority of the first target subframe is higher than the priority of the second target subframe; or
  • the first processor 101 is further configured to determine that the priority of the first target subframe is lower than the priority of the second target subframe if the time difference is not greater than a time difference threshold.
  • the first processor 101 is further configured to acquire a first time offset of the first control subframe and a second time offset of the second control subframe; according to the first time offset and the second The time offset determines a first start time of the first control subframe and a second start time of the second control subframe.
  • the first transmitter 102 is further configured to: when the uplink channel of the first target subframe includes the random access channel PRACH, calculate the first target subframe according to the first uplink channel information and the second uplink channel information.
  • the first guaranteed power of the uplink channel where the first guaranteed power is the power configured by the UE in the base station or the cell group where the first target subframe is located by the high layer signaling; according to the first guaranteed power and the uplink channel of the first target subframe
  • the first required power is allocated to the UE by the base station or the cell group where the first target subframe is located.
  • the first transmitter 102 is further configured to: according to a reserved power factor of uplink data transmission in a base station or a cell group where the second target subframe is located, a data channel of the second target subframe, and a transmit power of the PRACH, The transmit power of the PRACH of the first target subframe and the maximum transmit power of the overlap time of the first target subframe and the second target subframe transmit time, and calculate the first guaranteed power of the uplink channel of the first target subframe.
  • the reserved power allocated by the UE to the base station or the cell group where the second target subframe is located is less than or equal to the first guaranteed power, and is less than or equal to the maximum transmit power of the UE and the location of the UE in the first target subframe.
  • the difference in power allocated by the base station or cell group is less than or equal to the first guaranteed power, and is less than or equal to the maximum transmit power of the UE and the location of the UE in the first target subframe.
  • the first transmitter 102 is further configured to: when the uplink channel of the second target subframe includes the random access channel PRACH, the UE calculates the second target subframe according to the first uplink channel information and the second uplink channel information.
  • the second guaranteed power of the uplink channel is the power configured by the high-layer signaling for the base station or the cell group where the UE is located in the second target subframe; and the uplink channel according to the second guaranteed power and the second target subframe
  • the second required power is allocated for the UE in the base station or cell group where the second target subframe is located.
  • the first transmitter 102 is further configured to: according to a reserved power factor of uplink data transmission in a base station or a cell group where the first target subframe is located, a data channel of the first target subframe, and a transmit power of the PRACH, The transmit power of the PRACH of the second target subframe, and the maximum transmit power of the overlap time of the first target subframe and the second target subframe transmit time, and the guaranteed power of the uplink channel of the second target subframe is calculated.
  • the reserved power allocated by the UE to the base station or the cell group where the first target subframe is located is less than or equal to the second guaranteed power, and is less than or equal to the maximum transmit power of the UE and the location of the UE in the second target subframe.
  • the difference in power allocated by the base station or cell group is less than or equal to the second guaranteed power, and is less than or equal to the maximum transmit power of the UE and the location of the UE in the second target subframe.
  • the priority of the target subframe with lower frequency can be determined.
  • the priority of the target subframe is higher than the higher frequency, and the UE preferentially allocates power to the base station or the cell group where the target subframe with the lower frequency is located, thereby avoiding the possible idle transmission on the target subframe with the earlier transmission time. The power can no longer be allocated to the target subframe with a later transmission time, which improves the power usage.
  • FIG. 2 is a structural block diagram of a base station according to an embodiment of the present disclosure.
  • the base station may generate a large difference due to different configurations or performances, and may include one or more second processors 201 and second transmitters 202. .
  • the second processor 201 is configured to acquire first uplink channel information on the first target subframe and second uplink channel information on the second target subframe, where the second target subframe is transmitted and the first target subframe
  • the second target sub-frame and the first target sub-frame have different sub-frame lengths, and the second target sub-frame and the first target sub-frame belong to different base stations or different cell groups;
  • the second processor 201 is further configured to determine, according to the first uplink channel information and the second uplink channel information, a first time offset of the first control subframe and a second time offset of the second control subframe, where a control subframe is used for transmitting control information of the first target subframe, and a second control subframe is used for transmitting control information of the second target subframe;
  • a second transmitter 202 configured to send, by the UE, a first time offset and a second time offset, where the UE determines the first control subframe according to the first time offset and the second time offset.
  • a first start time and a second start time of the second control subframe and according to the first start time and the second start time, the UE allocates power in the base station or the cell group where the first target subframe is located, and is the UE in the first The base station or cell group where the two target subframes are located allocates power.
  • the UE may include other components in addition to the foregoing second processor 201 and the second transmitter 202.
  • a second memory 203, one or more second storage media 206 storing the second application 104 or the second data 205 (eg, one or one of the Shanghai quantity storage devices) may also be included.
  • the second memory 203 and the second storage medium 206 may be short-term storage or persistent storage.
  • the program stored on the second storage medium 206 may include one or more modules (not shown), each of which may include a series of instruction operations in the power distribution device.
  • the second processor 201 can be configured to communicate with the second storage medium 206 to perform a series of instruction operations in the second storage medium 206 on the UE.
  • the UE may also include one or more second power sources 207, one or more second wired or wireless network interfaces 208, one or more second input and output interfaces 209, one or more second keyboards 210, and/or, One or more second operating systems 211, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, and the like.
  • second operating systems 211 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, and the like.
  • the UE including the second processor 201 and the second transmitter 202 in the present disclosure may also have the following functions:
  • the second processor 201 is further configured to determine, according to the first uplink channel information and the second uplink channel information, whether a priority of the first target subframe is higher than a priority of the second target subframe;
  • the second processor 201 is further configured to determine, if the priority of the first target subframe is higher than the priority of the second target subframe, the first time offset of the first control subframe that satisfies the first preset condition, and a second time offset of the second control subframe, where the first preset condition is that the first start time of the first control subframe is before the second start time of the second control subframe, or the first control subframe The time difference between the first start time and the second start time of the second control subframe is greater than a time difference threshold;
  • the second processor 201 is further configured to determine, if the priority of the first target subframe is lower than the priority of the second target subframe, the first time offset of the first control subframe that meets the second preset condition, and a second time offset of the second control subframe, where the second preset condition is that the second start time of the second control subframe is before the first start time of the first control subframe, or the first control subframe The time difference between the first start time and the second start time of the second control subframe is not greater than the time difference threshold.
  • first processor 101 or the second processor 201 in each of the above embodiments may be centrally processed.
  • CPU general purpose processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the first processor 101 or the second processor 201 may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of the method or algorithm described in connection with the present disclosure may be implemented in a hardware manner, or may be implemented by the first processor 101 or the second processor 201 executing software instructions.
  • the software instructions may be comprised of corresponding software modules, which may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard drive, CD-ROM, or any other form of computer known in the art.
  • An exemplary computer storage medium is coupled to the first processor 101 or the second processor 201 to enable the first processor 101 or the second processor 201 to read information from the computer storage medium and to the computer The storage medium writes information.
  • the computer storage medium may also be part of the first processor 101 or the second processor 201.
  • the first processor 101 or the second processor 201 and the computer storage medium may be located in an ASIC. Additionally, the ASIC can be located in the terminal. Of course, the first processor 101 or the second processor 201 and the computer storage medium may also exist as discrete components in the terminal.
  • the base station configures the first time offset and the second time offset to the UE, and determines, by the UE, the first control subframe according to the first time offset and the second time offset.
  • a start time and a second start time of the second control subframe so that flexible configuration of UE power allocation priorities in different scenarios can be implemented, thereby maximizing power utilization.
  • An embodiment of the present disclosure provides a method for power allocation, which is applied to a UE. Referring to FIG. 3-1, the method includes:
  • Step 301 The UE determines a first start time of the first control subframe and a second start time of the second control subframe.
  • the UE accesses different base stations or different cell groups at the same time.
  • the UE acquires transmission subframes corresponding to different base stations, which are respectively referred to as a first target subframe and a second target. a subframe; or, the UE acquires transmission subframes corresponding to different cell groups, which are respectively referred to as a first target subframe and a second target subframe.
  • the transmission time of the second target subframe overlaps with the transmission time of the first target subframe, the second target subframe has a different subframe length from the first target subframe, and the second target subframe is different from the first target subframe.
  • the transmission time of the first target subframe and the transmission time of the second target subframe are both consecutive time ranges, for convenience of description.
  • the transmission time range of the first target subframe is referred to as a first transmission time range
  • the transmission time range of the second target subframe is referred to as a second transmission time range
  • the first transmission time range and the second transmission time range are overlapped That is, the transmission time of the second target subframe overlaps with the transmission time of the first target subframe.
  • the first control subframe is used to transmit control information of the first target subframe
  • the second control subframe is used to transmit control information of the second target subframe
  • the step of the UE determining the first start time of the first control subframe and the second start time of the second control subframe may be:
  • the first mesh Determining, according to the third start time and the first subframe length, the first start time of the first control subframe, according to the fourth subframe length of the target subframe and the second subframe length of the second target subframe, according to the fourth The start time and the second subframe length determine a second start time of the second control subframe.
  • the step of determining, by the UE, the first start time of the first control subframe according to the third start time and the first subframe length may be:
  • the step of determining, by the UE, the second start time of the second control subframe according to the fourth start time and the second subframe length may be:
  • the preset number is 4, see FIG. 3-2, the sequence number of the second target subframe is n+p+4, the sequence number of the second control subframe is n+p, and the sequence number of the first target subframe is N+ 4.
  • the sequence number of the first control subframe is N.
  • Step 302 The UE determines, according to the first start time and the second start time, whether the priority of the first target subframe is higher than the priority of the second target subframe, and determines the first uplink channel on the first target subframe. Information and second uplink channel information on the second target subframe.
  • the UE may determine, according to the first start time and the second start time, whether the priority of the first target subframe is higher than the priority of the second target subframe, that is, the following first implementation manner;
  • a time difference threshold may also be set, and the UE determines the priority of the first target subframe according to the time difference between the first start time and the second start time, and the time difference threshold. Whether it is higher than the priority of the second target subframe, that is, the following second implementation manner.
  • this step can be:
  • the UE determines that the priority of the first target subframe is higher than the priority of the second target subframe; or, if the second start time is before the first start time, the UE It is determined that the priority of the first target subframe is lower than the priority of the second target subframe.
  • this step can be:
  • the UE calculates a time difference between the first start time and the second start time, and determines, according to the time difference and the time difference threshold, whether the priority of the first target subframe is higher than the priority of the second target subframe.
  • the UE determines that the priority of the first target subframe is higher than the priority of the second target subframe; or if the time difference is not greater than the time difference threshold, the UE determines that the priority of the first target subframe is lower than The priority of the second target subframe.
  • the time difference threshold may be set and changed as needed.
  • the time difference threshold is not specifically limited; for example, the time difference threshold may be 3 ms or the like.
  • the UE may also determine, according to the frequency of the first target subframe and the frequency of the second target subframe, whether the priority of the first target subframe is higher than the priority of the second target subframe, and the specific process may be for:
  • the UE determines that the priority of the first target subframe is lower than the frequency of the second target subframe; if the frequency of the first target subframe is lower than the second The frequency of the target subframe, the UE determines that the priority of the first target subframe is higher than the frequency of the second target subframe.
  • the UE stores the first uplink channel information and the second uplink channel information, and in this step, the UE directly acquires the stored first uplink channel information and second uplink channel information.
  • the uplink channel information includes a reserved power factor, a maximum transmit power at a time when the target subframe transmits time overlaps, a transmit power of the data channel, and a transmit power of the random access channel.
  • Step 303 If the priority of the first target subframe is higher than the priority of the second target subframe, the UE is the base station or the cell where the UE is located in the first target subframe according to the first uplink channel information and the second uplink channel information.
  • the group allocates power, and allocates reserved power of the UE to the base station or the cell group where the UE is located in the second target subframe.
  • the UE preferentially allocates power to the base station or the cell group where the first target subframe is located, and the UE is at the base station where the second target subframe is located or
  • the cell group can only use the allocated power after the power is allocated to the base station or the cell group where the first target subframe is located, which can be implemented by the following steps (1) to (3), including:
  • the UE calculates the uplink of the first target subframe according to the first uplink channel information and the second uplink channel information.
  • the first guaranteed power of the channel is a random access channel (PRACH).
  • PRACH random access channel
  • the first guaranteed power is the power configured by the high-layer signaling for the base station or the cell group where the UE is located in the first target subframe.
  • the uplink channel information includes a reserved power factor, a maximum transmit power at a time when the target subframe transmits time overlaps, a transmit power of the data channel, and a transmit power of the random access channel.
  • Step (1) can be specifically implemented by the following steps:
  • the power allocated by the UE to the base station or the cell group where the first target subframe is located can be expressed by the following formula (2):
  • P q1 (i1) is the first required power of the uplink channel of the first target subframe.
  • the UE obtains the reserved power for the UE to allocate power to the base station or the cell group where the first target subframe is located, and allocates the reserved power to the base station or the cell group where the UE is located in the second target subframe.
  • Step 304 If the priority of the first target subframe is lower than the priority of the second target subframe, the UE is the base station or the cell where the UE is located in the second target subframe according to the first uplink channel information and the second uplink channel information.
  • the group allocates power, and allocates reserved power of the UE to the base station or the cell group where the UE is located in the first target subframe.
  • the UE preferentially allocates power to the base station or the cell group where the second target subframe is located, and the UE is at the base station where the first target subframe is located or
  • the cell group can only use the allocated power after the power is allocated to the base station or the cell group where the second target subframe is located, which can be implemented by the following steps (1) to (3), including:
  • the UE calculates the second guaranteed power of the uplink channel of the second target subframe according to the first uplink channel information and the second uplink channel information.
  • the second guaranteed power is the power configured by the high-layer signaling for the base station or the cell group where the UE is located in the second target subframe.
  • the uplink channel information includes a reserved power factor, a maximum transmit power at a time when the target subframe transmits time overlaps, a transmit power of the data channel, and a transmit power of the random access channel.
  • Step (1) can be specifically implemented by the following steps:
  • P b (i2) is the second guaranteed power of the uplink channel of the second target subframe, i1 is the first target subframe, and i2 is the second destination
  • the power allocated by the UE to the base station or the cell group where the second target subframe is located can be expressed by the following formula (4):
  • P q1 (i2) is the second required power of the uplink channel of the second target subframe.
  • the UE obtains the reserved power for the UE to allocate power to the base station or the cell group where the second target subframe is located, and allocates the reserved power to the base station or the cell group where the UE is located in the first target subframe.
  • the priority of the target subframe with lower frequency can be determined.
  • the priority of the target subframe is higher than the higher frequency, and the UE preferentially allocates power to the base station or the cell group where the target subframe with the lower frequency is located, thereby avoiding the possible idle transmission on the target subframe with the earlier transmission time. The power can no longer be allocated to the target subframe with a later transmission time, which improves the power usage.
  • the embodiment of the present disclosure provides a method for power allocation.
  • the base station may configure a first time offset of the first control subframe and a second time offset of the second control subframe.
  • the UE determines the first start time of the first control subframe and the second start time of the second control subframe according to the first time offset and the second time offset, so as to implement the UE power allocation priority in different scenarios.
  • the method is applied between a UE and a base station. Referring to Figure 4-1, the method includes:
  • Step 401 The UE determines first uplink channel information on the first target subframe and second uplink channel information on the second target subframe, and sends the first uplink channel information and the second uplink channel information to the base station.
  • the transmission time of the second target subframe overlaps with the transmission time of the first target subframe, the second target subframe has a different subframe length from the first target subframe, and the second target subframe is different from the first target subframe.
  • the UE sends the first uplink channel information and the second uplink channel information to the base station, and the base station determines the first, according to the first uplink channel information and the second uplink channel information, to adapt to different requirements of different scenarios. Time offset and second time offset.
  • Step 402 The base station receives the first uplink channel information and the second uplink channel information sent by the UE, and determines a first time offset and a second control of the first control subframe according to the first uplink channel information and the second uplink channel information. The second time offset of the subframe.
  • the first control subframe is used to transmit control information of the first target subframe
  • the second control subframe is used to transmit control information of the second target subframe.
  • the time offset is used to change the start time of the control subframe, that is, the first time offset is used to change the first start time of the first control subframe
  • the second time offset is used to change the second control.
  • the second start time of the frame thereby changing the priority relationship between the first target subframe and the second target subframe; this step can be implemented by the following steps (1) and (3), including:
  • the base station determines, according to the first uplink channel information and the second uplink channel information, whether the priority of the first target subframe is higher than the priority of the second target subframe.
  • the first time offset and the second time offset configured by the base station make the priority of the low frequency subframe higher than the priority of the high frequency subframe; for example, when the frequency of the first target subframe is lower than the first When the frequency of the two target subframes, the first time offset and the second time offset configured by the base station are such that the priority of the first target subframe is higher than the priority of the second target subframe.
  • the base station may configure the first time offset and the second time offset, so that the high frequency subframe is prioritized.
  • the level is higher than the priority of the low frequency subframe.
  • the base station determines, according to the first uplink channel information and the second uplink channel information, whether there is a random access in the first target subframe and the second target subframe but the power limited access is unsuccessful.
  • Target subframe if present, selecting a target subframe that initiates random access but is unsuccessful due to power limited access from the first target subframe and the second target subframe, determining that the selected target subframe has a higher priority Unselected target sub-frame.
  • the target subframe with a lower frequency is obtained from the first target subframe and the second target subframe, and it is determined that the selected target subframe has a higher priority than the unselected target subframe.
  • the base station determines a first time offset of the first control subframe that satisfies the first preset condition and the second controller The second time offset of the frame.
  • the first preset condition is that the first start time of the first control subframe is before the second start time of the second control subframe, or the first start time of the first control subframe and the second control subframe The time difference between the two starting moments is greater than the time difference threshold.
  • the base station determines a first time offset of the first control subframe that satisfies the second preset condition, and the second controller The second time offset of the frame.
  • the second preset condition is that the second start time of the second control subframe is before the first start time of the first control subframe, or the first start time of the first control subframe and the second control subframe The time difference between the two starting moments is not greater than the time difference threshold.
  • Step 403 The base station sends a first time offset and a second time offset to the UE.
  • Step 404 The UE receives the first time offset and the second time offset sent by the base station, and determines a first start time of the first control subframe according to the first time offset and the second time offset. The second control moment of the second control subframe.
  • the starting time of the control subframe is generally a preset number of subframe lengths earlier than the target subframe, the preset number may be 4 or the like.
  • the determining, by the UE, the first start time of the first control subframe according to the third start time, the first subframe length, and the first time offset may be:
  • the step of determining, by the UE, the second start time of the second control subframe according to the fourth start time, the second subframe length, and the second time offset may be:
  • the first control subframe is i1
  • the first time offset is k1
  • the first start time of the first control subframe is i1-k1
  • the second control subframe is i2, second.
  • the time offset is k2
  • the second start time of the second control subframe is i2-k2.
  • Step 405 The UE determines, according to the first start time and the second start time, whether the priority of the first target subframe is higher than the priority of the second target subframe, and determines the first uplink channel on the first target subframe. Information and second uplink channel information on the second target subframe.
  • This step can be implemented in the first mode or the second mode.
  • the step can be:
  • the UE determines that the priority of the first target subframe is higher than the priority of the second target subframe; or, if the second start time is before the first start time, the UE It is determined that the priority of the first target subframe is lower than the priority of the second target subframe.
  • this step can be:
  • the UE calculates a time difference between the first start time and the second start time, and determines, according to the time difference and the time difference threshold, whether the priority of the first target subframe is higher than the priority of the second target subframe.
  • the UE determines that the priority of the first target subframe is higher than the priority of the second target subframe; or if the time difference is not greater than the time difference threshold, the UE determines that the priority of the first target subframe is lower than The priority of the second target subframe.
  • the time difference threshold may be set and changed as needed.
  • the time difference threshold is not specifically limited; for example, the time difference threshold may be 3 ms or the like.
  • Step 406 If the priority of the first target subframe is higher than the priority of the second target subframe, the UE is the base station or the cell where the UE is located in the first target subframe according to the first uplink channel information and the second uplink channel information.
  • the group allocates power, and allocates reserved power of the UE to the base station or the cell group where the UE is located in the second target subframe.
  • step 303 is the same as step 303 in the above embodiment, and details are not described herein again.
  • Step 407 If the priority of the first target subframe is lower than the priority of the second target subframe, the UE is the base station or the cell where the UE is located in the second target subframe according to the first uplink channel information and the second uplink channel information.
  • the group allocates power, and allocates reserved power of the UE to the base station or the cell group where the UE is located in the first target subframe.
  • step 304 is the same as step 304 in the above embodiment, and details are not described herein again.
  • the base station configures the first time offset and the second time offset to the UE, and determines, by the UE, the first control subframe according to the first time offset and the second time offset.
  • a start time and a second start time of the second control subframe so that flexible configuration of UE power allocation priorities in different scenarios can be implemented, thereby maximizing power utilization.
  • An embodiment of the present disclosure provides a device for power allocation, the device is applied to a UE, and the method for performing power allocation in the foregoing embodiment.
  • the device includes: a first determining module 501,
  • the second determining module 502 is a first assigning module 503 and a second assigning module 504.
  • a first determining module 501 configured to determine a first start time of the first control subframe and a second start time of the second control subframe, where the first control subframe is used to transmit control information of the first target subframe,
  • the second control subframe is configured to transmit control information of the second target subframe, where a transmission time of the second target subframe overlaps with a transmission time of the first target subframe, and the second target subframe has a different subframe from the first target subframe.
  • a frame length where the second target subframe and the first target subframe belong to different base stations or different cell groups;
  • a second determining module 502 configured to determine, according to the first start time and the second start time, whether a priority of the first target subframe is higher than a priority of the second target subframe, and determine, on the first target subframe First uplink channel information and second uplink channel information on the second target subframe;
  • the first allocation module 503 is configured to: if the priority of the first target subframe is higher than the priority of the second target subframe, according to the first uplink channel information and the second uplink channel information, where the UE is located in the first target subframe
  • the base station or the cell group allocates power, and allocates reserved power of the UE to the base station or the cell group where the second target subframe is located;
  • the second allocation module 504 is configured to: if the priority of the first target subframe is lower than the priority of the second target subframe, according to the first uplink channel information and the second uplink channel information, where the UE is located in the second target subframe.
  • the base station or the cell group allocates power, and allocates reserved power of the UE to the base station or the cell group where the UE is located in the first target subframe.
  • the second determining module 502 is further configured to: if the first start time is before the second start time, determine that the priority of the first target subframe is higher than the priority of the second target subframe; or
  • the second determining module 502 is further configured to determine that the priority of the first target subframe is lower than the priority of the second target subframe if the second start time is before the first start time.
  • the second determining module 502 is further configured to calculate a time difference between the first start time and the second start time, and determine, according to the time difference and the time difference threshold, whether the priority of the first target subframe is higher than the second target. The priority of the subframe.
  • the second determining module 502 is further configured to: if the time difference is greater than the time difference threshold, determine that the priority of the first target subframe is higher than the priority of the second target subframe; or
  • the second determining module 502 is further configured to determine that the priority of the first target subframe is lower than the priority of the second target subframe if the time difference is not greater than the time difference threshold.
  • the first determining module 501 is further configured to acquire a first time offset of the first control subframe and a second time offset of the second control subframe; according to the first time offset and the second The time offset determines a first start time of the first control subframe and a second start time of the second control subframe.
  • the first allocation module 503 is further configured to: when the uplink channel of the first target subframe includes the random access channel PRACH, calculate the first target subframe according to the first uplink channel information and the second uplink channel information.
  • the first guaranteed power of the uplink channel where the first guaranteed power is the power configured by the UE in the base station or the cell group where the first target subframe is located by the high layer signaling; according to the first guaranteed power and the uplink channel of the first target subframe
  • the first demand power is for the UE in the first destination
  • the base station or cell group in which the subframe is located is allocated power.
  • the first allocation module 503 is further configured to: according to a reserved power factor of uplink data transmission in a base station or a cell group where the second target subframe is located, a data channel of the second target subframe, and a transmit power of the PRACH, The transmit power of the PRACH of the first target subframe and the maximum transmit power of the overlap time of the first target subframe and the second target subframe transmit time, and calculate the first guaranteed power of the uplink channel of the first target subframe.
  • the reserved power allocated by the UE to the base station or the cell group where the second target subframe is located is less than or equal to the first guaranteed power, and is less than or equal to the maximum transmit power of the UE and the location of the UE in the first target subframe.
  • the difference in power allocated by the base station or cell group is less than or equal to the first guaranteed power, and is less than or equal to the maximum transmit power of the UE and the location of the UE in the first target subframe.
  • the second allocation module 504 is further configured to: when the uplink channel of the second target subframe includes the random access channel PRACH, the UE calculates the second target subframe according to the first uplink channel information and the second uplink channel information.
  • the second guaranteed power of the uplink channel is the power configured by the high-layer signaling for the base station or the cell group where the UE is located in the second target subframe; and the uplink channel according to the second guaranteed power and the second target subframe
  • the second required power is allocated for the UE in the base station or cell group where the second target subframe is located.
  • the second allocation module 504 is further configured to: according to a reserved power factor of uplink data transmission in a base station or a cell group where the first target subframe is located, a data channel of the first target subframe, and a transmit power of the PRACH, The transmit power of the PRACH of the second target subframe, and the maximum transmit power of the overlap time of the first target subframe and the second target subframe transmit time, and the guaranteed power of the uplink channel of the second target subframe is calculated.
  • the reserved power allocated by the UE to the base station or the cell group where the first target subframe is located is less than or equal to the second guaranteed power, and is less than or equal to the maximum transmit power of the UE and the location of the UE in the second target subframe.
  • the difference in power allocated by the base station or cell group is less than or equal to the second guaranteed power, and is less than or equal to the maximum transmit power of the UE and the location of the UE in the second target subframe.
  • the priority of the target subframe with lower frequency can be determined.
  • the priority of the target subframe is higher than the higher frequency, and the UE preferentially allocates power to the base station or the cell group where the target subframe with the lower frequency is located, thereby avoiding the possible idle transmission on the target subframe with the earlier transmission time. The power can no longer be allocated to the target subframe with a later transmission time, which improves the power usage.
  • An embodiment of the present disclosure provides a device for power allocation, which is applied in a base station, for performing the method for power allocation in the foregoing embodiment.
  • the device includes: an obtaining module 601, a third determining Module 602 and transmitting module 603.
  • the obtaining module 601 is configured to acquire first uplink channel information on the first target subframe and second uplink channel information on the second target subframe, and a transmission time of the second target subframe and a transmission time of the first target subframe
  • the second target sub-frame and the first target sub-frame have different sub-frame lengths, and the second target sub-frame and the first target sub-frame belong to different base stations or different cell groups;
  • the third determining module 602 is configured to determine, according to the first uplink channel information and the second uplink channel information, a first time offset of the first control subframe and a second time offset of the second control subframe, where The control subframe is configured to transmit control information of the first target subframe, and the second control subframe is configured to transmit control information of the second target subframe;
  • the sending module 603 is configured to send, by the UE, a first time offset and a second time offset, where the UE determines the first start of the first control subframe according to the first time offset and the second time offset.
  • Start time and second control subframe a second start time, and according to the first start time and the second start time, the UE allocates power in the base station or the cell group where the first target subframe is located, and allocates the base station or the cell group where the UE is located in the second target subframe. power.
  • the third determining module 602 is further configured to determine, according to the first uplink channel information and the second uplink channel information, whether a priority of the first target subframe is higher than a priority of the second target subframe;
  • the third determining module 602 is further configured to: if the priority of the first target subframe is higher than the priority of the second target subframe, determine a first time offset of the first control subframe that satisfies the first preset condition, and a second time offset of the second control subframe, where the first preset condition is that the first start time of the first control subframe is before the second start time of the second control subframe, or the first control subframe The time difference between the first start time and the second start time of the second control subframe is greater than a time difference threshold;
  • the third determining module 602 is further configured to determine, if the priority of the first target subframe is lower than the priority of the second target subframe, the first time offset of the first control subframe that meets the second preset condition, and a second time offset of the second control subframe, where the second preset condition is that the second start time of the second control subframe is before the first start time of the first control subframe, or the first control subframe The time difference between the first start time and the second start time of the second control subframe is not greater than the time difference threshold.
  • the base station configures the first time offset and the second time offset to the UE, and determines, by the UE, the first control subframe according to the first time offset and the second time offset.
  • a start time and a second start time of the second control subframe so that flexible configuration of UE power allocation priorities in different scenarios can be implemented, thereby maximizing power utilization.
  • the apparatus for power allocation provided by the foregoing embodiment is only illustrated by the division of the foregoing functional modules. In actual applications, the function allocation may be completed by different functional modules as needed. The internal structure of the device is divided into different functional modules to perform all or part of the functions described above.
  • the apparatus for power allocation provided by the foregoing embodiment is the same as the method embodiment of the power allocation, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种功率分配的方法和装置,属于通信技术领域。方法包括:UE确定第一控制子帧的第一起始时刻和第二控制子帧的第二起始时刻,根据第一起始时刻和第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级;如果第一目标子帧的优先级高于第二目标子帧的优先级,根据第一上行信道信息和第二上行信道信息,为UE在第一目标子帧所在的基站或小区组分配功率,为UE在第二目标子帧所在的基站或小区组分配UE的预留功率;如果第一目标子帧的优先级低于第二目标子帧的优先级,根据第一上行信道信息和第二上行信道信息,为UE在第二目标子帧所在的基站或小区组分配功率,为UE在第一目标子帧所在的基站或小区组分配UE的预留功率。

Description

功率分配的方法和装置
本申请要求于2016年06月30日提交中国专利局、申请号为201610511895.4、发明名称为“功率分配的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种功率分配的方法和装置。
背景技术
在目前的通信系统中,用户设备(User Experience,UE)可能同时接入多个小区组,不同的小区组可能有不同时间粒度的传输子帧;为了便于描述,以UE同时接入第一小区组和第二小区组为例进行说明,第一小区组对应第一传输子帧,第二小区组对应第二传输子帧;第一传输子帧和第二传输子帧具有不同的时间粒度;当UE向基站传输数据时,UE将待传输数据承载在第一传输子帧和第二传输子帧,并为第一传输子帧分配第一发射功率,以及,为第二传输子帧分配第二发射功率;UE借助于第一发射功率向基站传输第一传输子帧上的信道信息,以及,借助于第二发射功率向基站传输第二传输子帧上的信道信息。
第一传输子帧的第一发射时间和第二传输子帧的第二发射时间可能重叠,此时UE根据第一发射时间和第二发射时间,从第一传输子帧和第二传输子帧中确定发射时间较早的传输子帧和发射时间较晚的传输子帧,优先为发射时间较早的传输子帧分配发射功率,而在发射时间较晚的传输子帧上UE只能使用预留的发射功率。
现有技术至少存在以下问题:
如果发射时间较早的传输子帧的时间粒度小于发射时间较晚的传输子帧的时间粒度时,则一个发射时间较晚的传输子帧对应多个发射时间较早的传输子帧,当多个发射时间较早的传输子帧上的待传输数据不总存在时,发射时间较早的传输子帧上空余的发射功率却不能再分配给发射时间较晚的传输子帧,从而导致功率资源的浪费,功率使用率低。
发明内容
为了解决现有技术的问题,本公开提供了一种功率分配的方法和装置。技术方案如下:
第一方面,本公开实施例提供了一种功率分配的方法,所述方法包括:
用户设备UE确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,所述第一控制子帧用于传输第一目标子帧的控制信息,所述第二控制子帧用于传输第二目标子帧的控制信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
所述UE根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,并确定所述第一目标子帧上的第一上行信道信息以 及所述第二目标子帧上的第二上行信道信息;
如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,所述UE根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第一目标子帧所在的基站或小区组分配功率,为所述UE在所述第二目标子帧所在的基站或小区组分配所述UE的预留功率;
如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,所述UE根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子帧所在的基站或小区组分配功率,为所述UE在所述第一目标子帧所在的基站或小区组分配所述UE的预留功率。
在本公开实施例中,根据第一控制子帧的第一起始时刻和第二控制子帧的第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级;由于频率较低的目标子帧的控制子帧的起始时刻可能在频率较高的目标子帧的控制子帧的起始时刻之前,从而能够确定出频率较低的目标子帧的优先级高于频率较高的目标子帧的优先级,优先为UE在频率较低的目标子帧所在的基站或小区组分配功率,从而避免了发射时间较早的目标子帧上可能空余的发射功率却不能再分配给发射时间较晚的目标子帧的问题,提高了功率使用率。
在一个可能的设计中,所述UE根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,包括:
如果所述第一起始时刻在所述第二起始时刻之前,所述UE确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
如果所述第二起始时刻在所述第一起始时刻之前,所述UE确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
在本公开实施例中,确定起始时刻早的控制子帧的目标子帧的优先级高于起始时刻晚的控制子帧的目标子帧的优先级,从而能够确定出频率较低的目标子帧的优先级高于频率较高的目标子帧的优先级,从而避免了发射时间较早的目标子帧上可能空余的发射功率却不能再分配给发射时间较晚的目标子帧的问题,提高了功率使用率。
在另一个可能的设计中,所述UE根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,包括:
所述UE计算所述第一起始时刻与所述第二起始时刻之间的时间差;
所述UE根据所述时间差和时间差门限,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级。
在本公开实施例中,设置一个时间差门限,根据第一起始时刻和第二起始时刻之间的时间差,以及该时间差门限,确定第一目标子帧的优先级是否高于第二目标子帧的优先级,从而可以实现不同场景下UE功率分配优先级的灵活配置,从而最大化提高功率利用率。
在另一个可能的设计中,所述UE根据所述时间差和时间差门限,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,包括:
如果所述时间差大于时间差门限,所述UE确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
如果所述时间差不大于时间差门限,所述UE确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
在另一个可能的设计中,所述UE确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,包括:
所述UE获取第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量;
所述UE根据所述第一时间偏移量和所述第二时间偏移量,确定所述第一控制子帧的第一起始时刻以及所述第二控制子帧的第二起始时刻。
在本公开实施例中,根据第一时间偏移量和第二时间偏移量,确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,从而可以实现不同场景下UE功率分配优先级的灵活配置,从而最大化提高功率利用率。
在另一个可能的设计中,所述UE根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第一目标子帧所在的基站或小区组分配功率,包括:
当所述第一目标子帧的上行信道包含随机接入信道PRACH时,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第一目标子帧的上行信道的第一保证功率,所述第一保证功率为通过高层信令为所述UE在所述第一目标子帧所在的基站或小区组配置的功率;
所述UE根据所述第一保证功率和所述第一目标子帧的上行信道的第一需求功率,为所述UE在所述第一目标子帧所在的基站或小区组分配功率。
在本公开实施例中,如果第一目标子帧的优先级高于第二目标子帧的优先级,根据第一保证功率和第一需求功率为UE在第一目标子帧所在的基站或小区组分配功率,从而能够满足UE在第一目标子帧所在的基站或小区组分配功率的功率需求。
在另一个可能的设计中,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第一目标子帧的上行信道的第一保证功率,包括:
所述UE根据所述第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第二目标子帧的数据信道和PRACH的发射功率,所述第一目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第一目标子帧的上行信道的第一保证功率。
在本公开实施例中,如果第一目标子帧的优先级高于第二目标子帧的优先级,根据第一上行信道信息和第二上行信道信息,计算第一目标子帧上的上行信道的第一保证功率,从而能够满足UE在第一目标子帧所在的基站或小区组分配功率的功率需求。
在另一个可能的设计中,为所述UE在所述第二目标子帧所在的基站或小区组分配的预留功率小于或等于所述第一保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第一目标子帧的所在的基站或小区组分配的功率之差。
在本公开实施例中,如果第一目标子帧的优先级高于第二目标子帧的优先级,为UE在第二目标子帧所在的基站或小区组分配的预留功率能够满足UE的功率需求。
在另一个可能的设计中,所述UE根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子帧所在的基站或小区组分配功率,包括:
当所述第二目标子帧的上行信道包含随机接入信道PRACH时,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第二目标子帧的上行信道的第二保证功率,所述第二保证功率为通过高层信令为所述UE在所述第二目标子帧所在的基站或小区组配置的功率;
所述UE根据所述第二保证功率和所述第二目标子帧的上行信道的第二需求功率,为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
在本公开实施例中,如果第二目标子帧的优先级高于第一目标子帧的优先级,根据第二保证功率和第二需求功率为UE在第二目标子帧所在的基站或小区组分配功率,从而能够满足UE在第二目标子帧所在的基站或小区组分配功率的功率需求。
在另一个可能的设计中,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第二目标子帧的上行信道的第二保证功率,包括:
所述UE根据所述第一目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第一目标子帧的数据信道和PRACH的发射功率,所述第二目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第二目标子帧的上行信道的保证功率。
在本公开实施例中,如果第二目标子帧的优先级高于第一目标子帧的优先级,根据第一上行信道信息和第二上行信道信息,计算第二目标子帧上的上行信道的第二保证功率,从而能够满足UE在第二目标子帧所在的基站或小区组分配功率的功率需求。
在另一个可能的设计中,为所述UE在所述第一目标子帧所在的基站或小区组分配的预留功率小于或等于所述第二保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第二目标子帧的所在的基站或小区组分配的功率之差。
在本公开实施例中,如果第二目标子帧的优先级高于第一目标子帧的优先级,为UE在第一目标子帧所在的基站或小区组分配的预留功率能够满足UE的功率需求。
第二方面,本公开实施例提供了一种功率分配的方法,所述方法包括:
基站获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
所述基站根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一控制子帧用于传输所述第一目标子帧的控制信息,所述第二控制子帧用于传输所述第二目标子帧的控制信息;
所述基站向用户设备UE发送所述第一时间偏移量和所述第二时间偏移量,由所述UE根据所述第一时间偏移量和所述第二时间偏移量确定所述第一控制子帧的第一起始时刻和所述第二控制子帧的第二起始时刻,并根据所述第一起始时刻和所述第二起始时刻为所述UE在所述第一目标子帧所在的基站或小区组分配功率以及为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
在本公开实施例中,基站向UE配置第一时间偏移量和第二时间偏移量,由UE根据第一时间偏移量和第二时间偏移量,确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,从而可以实现不同场景下UE功率分配优先级的灵活配置,从而最大化提高功率利用率。
在一个可能的设计中,所述基站根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,包括:
所述基站根据所述第一上行信道信息和所述第二上行信道信息,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级;
如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,所述基站确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一预设条件为所述第一控制子帧的第一起始时刻在所述第二控制子帧的第二起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差大于时间差门限;
如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,所述基站确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第二预设条件为所述第二控制子帧的第二起始时刻在所述第一控制子帧的第一起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
在本公开实施例中,基站可以通过配置第一时间偏移量和第二时间偏移量,来配置UE确定出的第一目标子帧的优先级是否高于第二目标子帧的优先级,从而可以实现不同场景下UE功率分配优先级的灵活配置,从而最大化提高功率利用率。
第三方面,本公开实施例提供了一种功率分配的装置,所述装置包括:
第一确定模块,用于确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,所述第一控制子帧用于传输第一目标子帧的控制信息,所述第二控制子帧用于传输第二目标子帧的控制信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
第二确定模块,用于根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,并确定所述第一目标子帧上的第一上行信道信息以及所述第二目标子帧上的第二上行信道信息;
第一分配模块,用于如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第一目标子帧所在的基站或小区组分配功率,为所述UE在所述第二目标子帧所在的基站或小区组分配所述UE的预留功率;
第二分配模块,用于如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子帧所在的基站或小区组分配功率,为所述UE在所述第一目标子帧所在的基站或小区组分配所述UE的预留功率。
在一个可能的设计中,所述第二确定模块,还用于如果所述第一起始时刻在所述第二起始时刻之前,确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
所述第二确定模块,还用于如果所述第二起始时刻在所述第一起始时刻之前,确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
在另一个可能的设计中,所述第二确定模块,还用于计算所述第一起始时刻与所述第二起始时刻之间的时间差;根据所述时间差和时间差门限,确定所述第一目标子帧的优先 级是否高于所述第二目标子帧的优先级。
在另一个可能的设计中,所述第二确定模块,还用于如果所述时间差大于时间差门限,确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
所述第二确定模块,还用于如果所述时间差不大于时间差门限,确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
在另一个可能的设计中,所述第一确定模块,还用于获取第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量;根据所述第一时间偏移量和所述第二时间偏移量,确定所述第一控制子帧的第一起始时刻以及所述第二控制子帧的第二起始时刻。
在另一个可能的设计中,所述第一分配模块,还用于当所述第一目标子帧的上行信道包含随机接入信道PRACH时,根据所述第一上行信道信息和所述第二上行信道信息,计算所述第一目标子帧的上行信道的第一保证功率,所述第一保证功率为通过高层信令为所述UE在所述第一目标子帧所在的基站或小区组配置的功率;根据所述第一保证功率和所述第一目标子帧的上行信道的第一需求功率,为所述UE在所述第一目标子帧所在的基站或小区组分配功率。
在另一个可能的设计中,所述第一分配模块,还用于根据所述第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第二目标子帧的数据信道和PRACH的发射功率,所述第一目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第一目标子帧的上行信道的第一保证功率。
在另一个可能的设计中,为所述UE在所述第二目标子帧所在的基站或小区组分配的预留功率小于或等于所述第一保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第一目标子帧的所在的基站或小区组分配的功率之差。
在另一个可能的设计中,所述第二分配模块,还用于当所述第二目标子帧的上行信道包含随机接入信道PRACH时,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第二目标子帧的上行信道的第二保证功率,所述第二保证功率为通过高层信令为所述UE在所述第二目标子帧所在的基站或小区组配置的功率;根据所述第二保证功率和所述第二目标子帧的上行信道的第二需求功率,为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
在另一个可能的设计中,所述第二分配模块,还用于根据所述第一目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第一目标子帧的数据信道和PRACH的发射功率,所述第二目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第二目标子帧的上行信道的保证功率。
在另一个可能的设计中,为所述UE在所述第一目标子帧所在的基站或小区组分配的预留功率小于或等于所述第二保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第二目标子帧的所在的基站或小区组分配的功率之差。
第四方面,本公开实施例提供了一种功率分配的装置,所述装置包括:
获取模块,用于获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述 第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
第三确定模块,用于根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一控制子帧用于传输所述第一目标子帧的控制信息,所述第二控制子帧用于传输所述第二目标子帧的控制信息;
发送模块,用于向用户设备UE发送所述第一时间偏移量和所述第二时间偏移量,由所述UE根据所述第一时间偏移量和所述第二时间偏移量确定所述第一控制子帧的第一起始时刻和所述第二控制子帧的第二起始时刻,并根据所述第一起始时刻和所述第二起始时刻为所述UE在所述第一目标子帧所在的基站或小区组分配功率以及为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
在一个可能的设计中,所述第三确定模块,还用于根据所述第一上行信道信息和所述第二上行信道信息,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级;
所述第三确定模块,还用于如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一预设条件为所述第一控制子帧的第一起始时刻在所述第二控制子帧的第二起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差大于时间差门限;
所述第三确定模块,还用于如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第二预设条件为所述第二控制子帧的第二起始时刻在所述第一控制子帧的第一起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
第五方面,本公开实施例提供了一种功率分配的用户设备,所述用户设备包括:
第一处理器,用于确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,所述第一控制子帧用于传输第一目标子帧的控制信息,所述第二控制子帧用于传输第二目标子帧的控制信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
所述第一处理器,还用于根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,并确定所述第一目标子帧上的第一上行信道信息以及所述第二目标子帧上的第二上行信道信息;
第一发射器,用于如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第一目标子帧所在的基站或小区组分配功率,为所述UE在所述第二目标子帧所在的基站或小区组分配所述UE的预留功率;
所述第一发射器,还用于如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子 帧所在的基站或小区组分配功率,为所述UE在所述第一目标子帧所在的基站或小区组分配所述UE的预留功率。
在一个可能的设计中,所述第一处理器,还用于如果所述第一起始时刻在所述第二起始时刻之前,确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
所述第一处理器,还用于如果所述第二起始时刻在所述第一起始时刻之前,确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
在另一个可能的设计中,所述第一处理器,还用于计算所述第一起始时刻与所述第二起始时刻之间的时间差;根据所述时间差和时间差门限,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级。
在另一个可能的设计中,所述第一处理器,还用于如果所述时间差大于时间差门限,确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
所述第一处理器,还用于如果所述时间差不大于时间差门限,确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
在另一个可能的设计中,所述第一处理器,还用于获取第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量;根据所述第一时间偏移量和所述第二时间偏移量,确定所述第一控制子帧的第一起始时刻以及所述第二控制子帧的第二起始时刻。
在另一个可能的设计中,所述第一发射器,还用于当所述第一目标子帧的上行信道包含随机接入信道PRACH时,根据所述第一上行信道信息和所述第二上行信道信息,计算所述第一目标子帧的上行信道的第一保证功率,所述第一保证功率为通过高层信令为所述UE在所述第一目标子帧所在的基站或小区组配置的功率;根据所述第一保证功率和所述第一目标子帧的上行信道的第一需求功率,为所述UE在所述第一目标子帧所在的基站或小区组分配功率。
在另一个可能的设计中,所述第一发射器,还用于根据所述第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第二目标子帧的数据信道和PRACH的发射功率,所述第一目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第一目标子帧的上行信道的第一保证功率。
在另一个可能的设计中,为所述UE在所述第二目标子帧所在的基站或小区组分配的预留功率小于或等于所述第一保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第一目标子帧的所在的基站或小区组分配的功率之差。
在另一个可能的设计中,所述第一发射器,还用于当所述第二目标子帧的上行信道包含随机接入信道PRACH时,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第二目标子帧的上行信道的第二保证功率,所述第二保证功率为通过高层信令为所述UE在所述第二目标子帧所在的基站或小区组配置的功率;根据所述第二保证功率和所述第二目标子帧的上行信道的第二需求功率,为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
在另一个可能的设计中,所述第一发射器,还用于根据所述第一目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第一目标子帧的数据信道和PRACH的发射功率,所述第二目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标 子帧发射时间重叠时刻的最大发射功率,计算所述第二目标子帧的上行信道的保证功率。
在另一个可能的设计中,为所述UE在所述第一目标子帧所在的基站或小区组分配的预留功率小于或等于所述第二保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第二目标子帧的所在的基站或小区组分配的功率之差。
第六方面,本公开实施例提供了一种功率分配的基站,所述基站包括:
第二处理器,用于获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
所述第二处理器,还用于根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一控制子帧用于传输所述第一目标子帧的控制信息,所述第二控制子帧用于传输所述第二目标子帧的控制信息;
第二发射器,用于向用户设备UE发送所述第一时间偏移量和所述第二时间偏移量,由所述UE根据所述第一时间偏移量和所述第二时间偏移量确定所述第一控制子帧的第一起始时刻和所述第二控制子帧的第二起始时刻,并根据所述第一起始时刻和所述第二起始时刻为所述UE在所述第一目标子帧所在的基站或小区组分配功率以及为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
在一个可能的设计中,所述第二处理器,还用于根据所述第一上行信道信息和所述第二上行信道信息,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级;
所述第二处理器,还用于如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一预设条件为所述第一控制子帧的第一起始时刻在所述第二控制子帧的第二起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差大于时间差门限;
所述第二处理器,还用于如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第二预设条件为所述第二控制子帧的第二起始时刻在所述第一控制子帧的第一起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
第七方面,本公开实施例提供了一种计算机存储介质,所述计算机存储介质上存储计算机程序,所述计算机程序被处理器执行时实现以上第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,本公开实施例提供了一种计算机存储介质,所述计算机存储介质上存储计算机程序,所述计算机程序被处理器执行时实现以上第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
在本公开实施例中,根据第一控制子帧的第一起始时刻和第二控制子帧的第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级;由于频率较低的目标子帧的控制子帧的起始时刻可能在频率较高的目标子帧的控制子帧的起始时刻之前,从而能够确定出频率较低的目标子帧的优先级高于频率较高的目标子帧的优先级,优先为UE在频率较低的目标子帧所在的基站或小区组分配功率,从而避免了发射时间较早的目标子帧上可能空余的发射功率却不能再分配给发射时间较晚的目标子帧的问题,提高了功率使用率。
附图说明
图1-1是本公开实施例提供的一种通信系统的示意图;
图1-2是本公开实施例提供的一种第一目标子帧和第二目标子帧的示意图;
图1-3是本公开实施例提供的一种目标子帧和控制子帧关系的示意图;
图1-4是本公开实施例提供的一种用户设备的结构示意图;
图2是本公开实施例提供的一种基站的结构示意图;
图3-1是本公开实施例提供的一种功率分配的方法流程图;
图3-2是本公开实施例提供的一种目标子帧和控制子帧关系的示意图;
图4-1是本公开实施例提供的一种功率分配的方法流程图;
图4-2是本公开实施例提供的一种控制子帧的起始时刻的示意图;
图5是本公开实施例提供的一种功率分配的装置结构示意图;
图6是本公开实施例提供的一种功率分配的装置结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
在目前的通信系统中,例如,长期演进(Long Term Evolution,LTE)通信系统或者宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通信系统等。通信系统中包括基站和UE,参见图1-1所示。UE同时在不同子帧长度的第一目标子帧和第二目标子帧进行上行数据传输,第一目标子帧的频率和第二目标子帧的频率不同。
例如,参见图1-2,第一目标子帧的子帧长度大于第二目标子帧的子帧长度,则第一目标子帧的频率低于第二目标子帧的频率,一个第一目标子帧对应多个第二目标子帧。因此可能出现UE虽然在第一目标子帧上传输的上行数据比在第二目标子帧上传输的上行数据较后传输,但UE在第一目标子帧上的上行控制信息先到达的情况(控制信息一般在目标子帧的前4个子帧上传输),如图1-3所示,第一控制子帧用于传输第一目标子帧的控制信息, 第二控制子帧用于传输第二目标子帧的控制信息,第一控制子帧的第一起始时刻在第二起始时刻之前,UE确定第一目标子帧的优先级高于第二目标子帧的优先级,UE优先为UE在第一目标子帧所在的基站或小区组分配功率,为第二目标子帧所在的基站或小区组分配UE的预留功率,从而优先为低频子帧分配功率,不会出现由于高频子帧的数据传输不总存在,从而使得不进行数据传输的高频子帧上的发射功率不能再分配给低频子帧上的数据传输的情况。
参见图1-4,图1-4是本公开实施例提供的一种UE结构框图,UE可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上第一处理器101和第一发射器102。
第一处理器101,用于确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,第一控制子帧用于传输第一目标子帧的控制信息,第二控制子帧用于传输第二目标子帧的控制信息,第二目标子帧的发射时间与第一目标子帧的发射时间重叠,第二目标子帧与第一目标子帧具有不同的子帧长度,第二目标子帧与第一目标子帧属于不同基站或不同小区组;
第一处理器101,还根据第一起始时刻和第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级,并确定第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息;
第一发射器102,用于如果第一目标子帧的优先级高于第二目标子帧的优先级,根据第一上行信道信息和第二上行信道信息,为UE在第一目标子帧所在的基站或小区组分配功率,为UE在第二目标子帧所在的基站或小区组分配UE的预留功率;
第一发射器102,还用于如果第一目标子帧的优先级低于第二目标子帧的优先级,根据第一上行信道信息和第二上行信道信息,为UE在第二目标子帧所在的基站或小区组分配功率,为UE在第一目标子帧所在的基站或小区组分配UE的预留功率。
可选的,UE除了包括上述第一处理器101和第一发射器102外,还可以包括其他部件。例如,还可以包括第一存储器103,一个或一个以上存储第一应用程序104或第一数据105的第一存储介质106(例如一个或一个以上海量存储设备)。其中,第一存储器103和第一存储介质106可以是短暂存储或持久存储。存储在第一存储介质106的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括功率分配的装置中的一系列指令操作。更进一步地,第一处理器101可以设置为与第一存储介质106通信,在UE上执行第一存储介质106中的一系列指令操作。
UE还可以包括一个或一个以上第一电源107,一个或一个以上第一有线或无线网络接口108,一个或一个以上第一输入输出接口109,一个或一个以上第一键盘110,和/或,一个或一个以上第一操作系统111,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
在本公开中UE包括第一处理器101和第一发射器102还可以具有以下功能:
第一处理器101,还用于如果第一起始时刻在第二起始时刻之前,确定第一目标子帧的优先级高于第二目标子帧的优先级;或者,
第一处理器101,还用于如果第二起始时刻在第一起始时刻之前,确定第一目标子帧的优先级低于第二目标子帧的优先级。
可选的,第一处理器101,还用于计算第一起始时刻与第二起始时刻之间的时间差;根据时间差和时间差门限,确定第一目标子帧的优先级是否高于第二目标子帧的优先级。
可选的,第一处理器101,还用于如果时间差大于时间差门限,确定第一目标子帧的优先级高于第二目标子帧的优先级;或者,
第一处理器101,还用于如果时间差不大于时间差门限,确定第一目标子帧的优先级低于第二目标子帧的优先级。
可选的,第一处理器101,还用于获取第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量;根据第一时间偏移量和第二时间偏移量,确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻。
可选的,第一发射器102,还用于当第一目标子帧的上行信道包含随机接入信道PRACH时,根据第一上行信道信息和第二上行信道信息,计算第一目标子帧的上行信道的第一保证功率,第一保证功率为通过高层信令为UE在第一目标子帧所在的基站或小区组配置的功率;根据第一保证功率和第一目标子帧的上行信道的第一需求功率,为UE在第一目标子帧所在的基站或小区组分配功率。
可选的,第一发射器102,还用于根据第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,第二目标子帧的数据信道和PRACH的发射功率,第一目标子帧的PRACH的发射功率,以及第一目标子帧和第二目标子帧发射时间重叠时刻的最大发射功率,计算第一目标子帧的上行信道的第一保证功率。
可选的,为UE在第二目标子帧所在的基站或小区组分配的预留功率小于或等于第一保证功率,并且小于或等于UE的最大发射功率与UE在第一目标子帧的所在的基站或小区组分配的功率之差。
可选的,第一发射器102,还用于当第二目标子帧的上行信道包含随机接入信道PRACH时,UE根据第一上行信道信息和第二上行信道信息,计算第二目标子帧的上行信道的第二保证功率,第二保证功率为通过高层信令为UE在第二目标子帧所在的基站或小区组配置的功率;根据第二保证功率和第二目标子帧的上行信道的第二需求功率,为UE在第二目标子帧所在的基站或小区组分配功率。
可选的,第一发射器102,还用于根据第一目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,第一目标子帧的数据信道和PRACH的发射功率,第二目标子帧的PRACH的发射功率,以及第一目标子帧和第二目标子帧发射时间重叠时刻的最大发射功率,计算第二目标子帧的上行信道的保证功率。
可选的,为UE在第一目标子帧所在的基站或小区组分配的预留功率小于或等于第二保证功率,并且小于或等于UE的最大发射功率与UE在第二目标子帧的所在的基站或小区组分配的功率之差。
在本公开实施例中,根据第一控制子帧的第一起始时刻和第二控制子帧的第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级;由于频率较低的目标子帧的控制子帧的起始时刻可能在频率较高的目标子帧的控制子帧的起始时刻之前,从而能够确定出频率较低的目标子帧的优先级高于频率较高的目标子帧的优先级,优先为UE在频率较低的目标子帧所在的基站或小区组分配功率,从而避免了发射时间较早的目标子帧上可能空余的发射功率却不能再分配给发射时间较晚的目标子帧的问题,提高了功率使用率。
参见图2,图2是本公开实施例提供的一种基站结构框图,基站可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上第二处理器201和第二发射器202。
第二处理器201,用于获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,第二目标子帧的发射时间与第一目标子帧的发射时间重叠,第二目标子帧与第一目标子帧具有不同的子帧长度,第二目标子帧与第一目标子帧属于不同基站或不同小区组;
第二处理器201,还用于根据第一上行信道信息和第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,第一控制子帧用于传输第一目标子帧的控制信息,第二控制子帧用于传输第二目标子帧的控制信息;
第二发射器202,用于向用户设备UE发送第一时间偏移量和第二时间偏移量,由UE根据第一时间偏移量和第二时间偏移量确定第一控制子帧的第一起始时刻和第二控制子帧的第二起始时刻,并根据第一起始时刻和第二起始时刻为UE在第一目标子帧所在的基站或小区组分配功率以及为UE在第二目标子帧所在的基站或小区组分配功率。
可选的,UE除了包括上述第二处理器201和第二发射器202外,还可以包括其他部件。例如,还可以包括第二存储器203,一个或一个以上存储第二应用程序104或第二数据205的第二存储介质206(例如一个或一个以上海量存储设备)。其中,第二存储器203和第二存储介质206可以是短暂存储或持久存储。存储在第二存储介质206的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括功率分配的装置中的一系列指令操作。更进一步地,第二处理器201可以设置为与第二存储介质206通信,在UE上执行第二存储介质206中的一系列指令操作。
UE还可以包括一个或一个以上第二电源207,一个或一个以上第二有线或无线网络接口208,一个或一个以上第二输入输出接口209,一个或一个以上第二键盘210,和/或,一个或一个以上第二操作系统211,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
在本公开中UE包括第二处理器201和第二发射器202还可以具有以下功能:
第二处理器201,还用于根据第一上行信道信息和第二上行信道信息,确定第一目标子帧的优先级是否高于第二目标子帧的优先级;
第二处理器201,还用于如果第一目标子帧的优先级高于第二目标子帧的优先级,确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,第一预设条件为第一控制子帧的第一起始时刻在第二控制子帧的第二起始时刻之前,或者,第一控制子帧的第一起始时刻与第二控制子帧的第二起始时刻之间的时间差大于时间差门限;
第二处理器201,还用于如果第一目标子帧的优先级低于第二目标子帧的优先级,确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,第二预设条件为第二控制子帧的第二起始时刻在第一控制子帧的第一起始时刻之前,或者,第一控制子帧的第一起始时刻与第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
进一步的,上述各个实施例中的第一处理器101或者第二处理器201可以是中央处理 器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。所述第一处理器101或者第二处理器201也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由第一处理器101或者第二处理器201执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的计算机存储介质中。一种示例性的计算机存储介质耦合至第一处理器101或者第二处理器201,从而使第一处理器101或者第二处理器201能够从该计算机存储介质读取信息,且可向该计算机存储介质写入信息。当然,计算机存储介质也可以是第一处理器101或者第二处理器201的组成部分。第一处理器101或者第二处理器201和计算机存储介质可以位于ASIC中。另外,该ASIC可以位于终端中。当然,第一处理器101或者第二处理器201和计算机存储介质也可以作为分立组件存在于终端中。
在本公开实施例中,基站向UE配置第一时间偏移量和第二时间偏移量,由UE根据第一时间偏移量和第二时间偏移量,确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,从而可以实现不同场景下UE功率分配优先级的灵活配置,从而最大化提高功率利用率。
本公开实施例提供了一种功率分配的方法,该方法应用在UE中,参见图3-1,该方法包括:
步骤301:UE确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻。
在目前的通信系统中,UE同时接入不同的基站或不同的小区组,当UE向基站传输数据之前,UE获取不同基站对应的传输子帧,分别称为第一目标子帧和第二目标子帧;或者,UE获取不同小区组对应的传输子帧,分别称为第一目标子帧和第二目标子帧。
第二目标子帧的发射时间与第一目标子帧的发射时间重叠,第二目标子帧与第一目标子帧具有不同的子帧长度,第二目标子帧与第一目标子帧属于不同基站或不同小区组。
由于第一目标子帧和第二目标子帧都具有一定的子帧长度,因此,第一目标子帧的发射时间和第二目标子帧的发射时间均为一个连续的时间范围,为了便于描述,将第一目标子帧的发射时间范围称为第一发射时间范围,将第二目标子帧的发射时间范围称为第二发射时间范围,则第一发射时间范围和第二发射时间范围重叠,也即第二目标子帧的发射时间与第一目标子帧的发射时间重叠。
第一控制子帧用于传输第一目标子帧的控制信息,第二控制子帧用于传输第二目标子帧的控制信息。
UE确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻的步骤可以为:
UE获取第一目标子帧的第三起始时刻和第二目标子帧的第四起始时刻,以及,第一目 标子帧的第一子帧长度和第二目标子帧的第二子帧长度,根据第三起始时刻和第一子帧长度,确定第一控制子帧的第一起始时刻,根据第四起始时刻和第二子帧长度,确定第二控制子帧的第二起始时刻。
由于控制子帧的起始时刻一般比目标子帧早预设数目个子帧长度,预设数目可以为4等。则UE根据第三起始时刻和第一子帧长度,确定第一控制子帧的第一起始时刻的步骤可以为:
UE根据第三起始时刻和第一子帧长度,确定比第三起始时刻早预设数目个第一子帧长度的第一时间点,将该第一时间点确定为第一控制子帧的第一起始时刻。
相应的,UE根据第四起始时刻和第二子帧长度,确定第二控制子帧的第二起始时刻的步骤可以为:
UE根据第四起始时刻和第二子帧长度,确定比第四起始时刻早预设数目个第一子帧长度的第二时间点,将该第二时间点确定为第二控制子帧的第二起始时刻。
例如,预设数目为4,参见图3-2,第二目标子帧的序号为n+p+4,第二控制子帧的序号为n+p,第一目标子帧的序号为N+4,第一控制子帧的序号为N。
步骤302:UE根据第一起始时刻和第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级,并确定第一目标子帧上的第一上行信道信息和第二目标子帧上的第二上行信道信息。
本步骤UE可以直接根据第一起始时刻和第二起始时刻的早晚,确定第一目标子帧的优先级是否高于第二目标子帧的优先级,也即以下第一种实现方式;在本步骤中,为了适应不同场景的不同需求,也可以设置一个时间差门限,UE根据第一起始时刻和第二起始时刻之间的时间差,以及,该时间差门限确定第一目标子帧的优先级是否高于第二目标子帧的优先级,也即以下第二种实现方式。
对于第一种实现方式,本步骤可以为:
如果第一起始时刻在第二起始时刻之前,UE确定第一目标子帧的优先级高于第二目标子帧的优先级;或者,如果第二起始时刻在第一起始时刻之前,UE确定第一目标子帧的优先级低于第二目标子帧的优先级。
对于第二种实现方式,本步骤可以为:
UE计算第一起始时刻和第二起始时刻的时间差,根据该时间差和时间差门限,确定第一目标子帧的优先级是否高于第二目标子帧的优先级。
如果该时间差大于时间差门限,UE确定第一目标子帧的优先级高于第二目标子帧的优先级;或者,如果该时间差不大于时间差门限,UE确定第一目标子帧的优先级低于第二目标子帧的优先级。
时间差门限可以根据需要进行设置并更改,在本公开实施例中,对时间差门限不作具体具体限定;例如,时间差门限可以为3ms等。
在本步骤中,UE也可以直接根据第一目标子帧的频率和第二目标子帧的频率,确定第一目标子帧的优先级是否高于第二目标子帧的优先级,具体过程可以为:
如果第一目标子帧的频率高于第二目标子帧的频率,UE确定第一目标子帧的优先级低于第二目标子帧的频率;如果第一目标子帧的频率低于第二目标子帧的频率,UE确定第一目标子帧的优先级高于第二目标子帧的频率。
UE中存储有第一上行信道信息和第二上行信道信息,则在本步骤中,UE直接获取已存储的第一上行信道信息和第二上行信道信息。上行信道信息包括预留功率因子,目标子帧发射时间重叠时刻的最大发射功率,数据信道的发射功率和随机接入信道的发射功率。
步骤303:如果第一目标子帧的优先级高于第二目标子帧的优先级,UE根据第一上行信道信息和第二上行信道信息,为UE在第一目标子帧所在的基站或小区组分配功率,为UE在第二目标子帧所在的基站或者小区组分配UE的预留功率。
如果第一目标子帧的优先级高于第二目标子帧的优先级,UE优先为UE在第一目标子帧所在的基站或小区组分配功率,UE在第二目标子帧所在的基站或小区组只能使用为第一目标子帧所在的基站或小区组分配功率后的配预留功率,具体可以通过以下步骤(1)至(3)实现,包括:
(1):当第一目标子帧的上行信道包含随机接入信道(Physical Random Access Channel,PRACH)时,UE根据第一上行信道信息和第二上行信道信息,计算第一目标子帧的上行信道的第一保证功率。
第一保证功率为通过高层信令为UE在第一目标子帧所在的基站或小区组配置的功率。上行信道信息包括预留功率因子,目标子帧发射时间重叠时刻的最大发射功率,数据信道的发射功率和随机接入信道的发射功率。
步骤(1)具体可以通过以下步骤实现:
UE根据第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,第二目标子帧的数据信道和PRACH的发射功率,第一目标子帧的PRACH的发射功率,以及,第一目标子帧和第二目标子帧发射时间重叠时刻的最大发射功率,通过以下公式(1)计算第一目标子帧的上行信道的第一保证功率。
Figure PCTCN2017090044-appb-000001
Pb(i1)为第一目标子帧的上行信道的第一保证功率,i1为第一目标子帧,i2为第二目
Figure PCTCN2017090044-appb-000002
(2):根据第一目标子帧的上行信道的第一保证功率和第一目标子帧的上行信道的第一需求功率,为UE在第一目标子帧所在的基站或小区组分配功率。
从第一目标子帧的上行信道的第一保证功率和第一目标子帧的上行信道的第一需求功率中选择最小功率,为UE在第一目标子帧所在的基站或小区组分配该最小功率。
相应的,为UE在第一目标子帧所在的基站或小区组分配的功率可以通过以下公式(2)表示:
Figure PCTCN2017090044-appb-000003
Pq1(i1)为第一目标子帧的上行信道的第一需求功率。
(3):为UE在第二目标子帧所在的基站或小区组分配UE的预留功率。
UE获取为UE在第一目标子帧所在的基站或小区组分配功率后的预留功率,将该预留功率分配给UE在第二目标子帧所在的基站或小区组。
为第二目标子帧所在的基站或小区组分配UE的预留功率,该预留的功率小于或等于第一保证功率,且小于或等于UE的最大发射功率与UE在第一目标子帧所在的基站或小区组分配的功率之差。
步骤304:如果第一目标子帧的优先级低于第二目标子帧的优先级,UE根据第一上行信道信息和第二上行信道信息,为UE在第二目标子帧所在的基站或小区组分配功率,为UE在第一目标子帧所在的基站或小区组分配UE的预留功率。
如果第一目标子帧的优先级低于第二目标子帧的优先级,UE优先为UE在第二目标子帧所在的基站或小区组分配功率,UE在第一目标子帧所在的基站或小区组只能使用为第二目标子帧所在的基站或小区组分配功率后的配预留功率,具体可以通过以下步骤(1)至(3)实现,包括:
(1):当第二目标子帧的上行信道包含随机接入信道PRACH时,UE根据第一上行信道信息和第二上行信道信息,计算第二目标子帧的上行信道的第二保证功率。
第二保证功率为通过高层信令为UE在第二目标子帧所在的基站或小区组配置的功率。上行信道信息包括预留功率因子,目标子帧发射时间重叠时刻的最大发射功率,数据信道的发射功率和随机接入信道的发射功率。
步骤(1)具体可以通过以下步骤实现:
UE根据第一标子帧所在的基站或小区组内的上行数据传输的预留功率因子,第一目标子帧的数据信道和PRACH的发射功率,第二目标子帧的PRACH的发射功率,以及,第一目标子帧和第二目标子帧发射时间重叠时刻的最大发射功率,通过以下公式(3)计算第二目标子帧的上行信道的第二保证功率。
Figure PCTCN2017090044-appb-000004
Pb(i2)为第二目标子帧的上行信道的第二保证功率,i1为第一目标子帧,i2为第二目
Figure PCTCN2017090044-appb-000005
(2):根据第二目标子帧的上行信道的第二保证功率和第二目标子帧的上行信道的第二需求功率,为UE在第二目标子帧所在的基站或小区组分配功率。
从第二目标子帧的上行信道的第二保证功率和第二目标子帧的上行信道的第二需求功率中选择最小功率,为UE在第二目标子帧所在的基站或小区组分配该最小功率。
相应的,为UE在第二目标子帧所在的基站或小区组分配的功率可以通过以下公式(4)表示:
Figure PCTCN2017090044-appb-000006
Pq1(i2)为第二目标子帧的上行信道的第二需求功率。
(3):为UE在第一目标子帧所在的基站或小区组分配UE的预留功率。
UE获取为UE在第二目标子帧所在的基站或小区组分配功率后的预留功率,将该预留功率分配给UE在第一目标子帧所在的基站或小区组。
为第一目标子帧所在的基站或小区组分配UE的预留功率,该预留的功率小于或等于第二保证功率,且小于或等于UE的最大发射功率与UE在第二目标子帧所在的基站或小区组分配的功率之差。
在本公开实施例中,根据第一控制子帧的第一起始时刻和第二控制子帧的第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级;由于频率较低的目标子帧的控制子帧的起始时刻可能在频率较高的目标子帧的控制子帧的起始时刻之前,从而能够确定出频率较低的目标子帧的优先级高于频率较高的目标子帧的优先级,优先为UE在频率较低的目标子帧所在的基站或小区组分配功率,从而避免了发射时间较早的目标子帧上可能空余的发射功率却不能再分配给发射时间较晚的目标子帧的问题,提高了功率使用率。
本公开实施例提供了一种功率分配的方法,为了适应不同场景的不同需求,基站可以配置第一控制子帧的第一时间偏移量以及第二控制子帧的第二时间偏移量,UE根据第一时间偏移量和第二时间偏移量确定第一控制子帧的第一起始时刻和第二控制子帧的第二起始时刻,从而实现不同场景下UE功率分配优先级的灵活设置,从而最大化提高功率利用率。
该方法应用在UE和基站之间,参见图4-1,该方法包括:
步骤401:UE确定第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,并向基站发送第一上行信道信息以及第二上行信道信息。
第二目标子帧的发射时间与第一目标子帧的发射时间重叠,第二目标子帧与第一目标子帧具有不同的子帧长度,第二目标子帧与第一目标子帧属于不同基站或不同小区组。
在本公开实施例中,为了适应不同场景的不同需求,UE将第一上行信道信息和第二上行信道信息发送给基站,由基站根据第一上行信道信息和第二上行信道信息,确定第一时间偏移量和第二时间偏移量。
步骤402:基站接收UE发送的第一上行信道信息和第二上行信道信息,根据第一上行信道信息和第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量。
第一控制子帧用于传输第一目标子帧的控制信息,第二控制子帧用于传输第二目标子帧的控制信息。时间偏移量用于改变控制子帧的起始时刻,也即第一时间偏移量用于改变第一控制子帧的第一起始时间,第二时间偏移量用于改变第二控制子帧的第二起始时间,从而改变第一目标子帧和第二目标子帧的优先级关系;本步骤可以通过以下步骤(1)和(3)实现,包括:
(1):基站根据第一上行信道信息和第二上行信道信息,确定第一目标子帧的优先级是否高于第二目标子帧的优先级。
一般情况下,基站配置的第一时间偏移量和第二时间偏移量使得低频子帧的优先级高于高频子帧的优先级;例如,当第一目标子帧的频率低于第二目标子帧的频率时,基站配置的第一时间偏移量和第二时间偏移量使得第一目标子帧的优先级高于第二目标子帧的优先级。
但是当UE在多个高频子帧上发起随机接入但由于功率受限接入不成功时,基站可配置第一时间偏移量和第二时间偏移量,使得高频子帧的优先级高于低频子帧的优先级。
因此,在本步骤中,基站根据第一上行信道信息和第二上行信道信息,确定第一目标子帧和第二目标子帧中是否存在发起随机接入但由于功率受限接入不成功的目标子帧,如果存在,从第一目标子帧和第二目标子帧中选择发起随机接入但由于功率受限接入不成功的目标子帧,确定选择的目标子帧的优先级高于未选择的目标子帧。
如果不存在,从第一目标子帧和第二目标子帧中获取频率较低的目标子帧,确定选择的目标子帧的优先级高于未选择的目标子帧。
(2):如果第一目标子帧的优先级高于第二目标子帧的优先级,基站确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量。
第一预设条件为第一控制子帧的第一起始时刻在第二控制子帧的第二起始时刻之前,或者,第一控制子帧的第一起始时刻与第二控制子帧的第二起始时刻之间的时间差大于时间差门限。
(3):如果第一目标子帧的优先级低于第二目标子帧的优先级,基站确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量。
第二预设条件为第二控制子帧的第二起始时刻在第一控制子帧的第一起始时刻之前,或者,第一控制子帧的第一起始时刻与第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
步骤403:基站向UE发送第一时间偏移量和第二时间偏移量。
步骤404:UE接收基站发送的第一时间偏移量和第二时间偏移量,并根据第一时间偏移量和第二时间偏移量,确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻。
UE获取第一目标子帧的第三起始时刻和第二目标子帧的第四起始时刻,以及,第一目标子帧的第一子帧长度和第二目标子帧的子帧长度,根据第三起始时刻、第一子帧长度和第一时间偏移量,确定第一控制子帧的第一起始时刻,根据第四起始时刻、第二子帧长度 和第二时间偏移量,确定第二控制子帧的第二起始时刻。
由于控制子帧的起始时刻一般比目标子帧早预设数目个子帧长度,预设数目可以为4等。则UE根据第三起始时刻、第一子帧长度和第一时间偏移量,确定第一控制子帧的第一起始时刻的步骤可以为:
UE根据第三起始时刻和第一子帧长度,确定比第三起始时刻早预设数目个第一子帧长度的第一时间点,根据第一时间点和第一时间偏移量,确定比第一时间点早第一时间偏移量的第三时间点,将该第三时间点确定为第一控制子帧的第一起始时刻。
相应的,UE根据第四起始时刻、第二子帧长度和第二时间偏移量,确定第二控制子帧的第二起始时刻的步骤可以为:
UE根据第四起始时刻和第二子帧长度,确定比第四起始时刻早预设数目个第一子帧长度的第二时间点,根据第二时间点和第二时间偏移量,确定比第二时间点早第二时间偏移量的第四时间点,将该第四时间点确定为第二控制子帧的第二起始时刻。
例如,参见图4-2,第一控制子帧为i1,第一时间偏移量为k1,第一控制子帧的第一起始时刻为i1-k1,第二控制子帧为i2,第二时间偏移量为k2,第二控制子帧的第二起始时刻为i2-k2。
步骤405:UE根据第一起始时刻和第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级,并确定第一目标子帧上的第一上行信道信息和第二目标子帧上的第二上行信道信息。
本步骤可以通过以下第一种方式或者第二种方式实现,对于第一种实现方式,本步骤可以为:
如果第一起始时刻在第二起始时刻之前,UE确定第一目标子帧的优先级高于第二目标子帧的优先级;或者,如果第二起始时刻在第一起始时刻之前,UE确定第一目标子帧的优先级低于第二目标子帧的优先级。
对于第二种实现方式,本步骤可以为:
UE计算第一起始时刻和第二起始时刻的时间差,根据该时间差和时间差门限,确定第一目标子帧的优先级是否高于第二目标子帧的优先级。
如果该时间差大于时间差门限,UE确定第一目标子帧的优先级高于第二目标子帧的优先级;或者,如果该时间差不大于时间差门限,UE确定第一目标子帧的优先级低于第二目标子帧的优先级。
时间差门限可以根据需要进行设置并更改,在本公开实施例中,对时间差门限不作具体具体限定;例如,时间差门限可以为3ms等。
步骤406:如果第一目标子帧的优先级高于第二目标子帧的优先级,UE根据第一上行信道信息和第二上行信道信息,为UE在第一目标子帧所在的基站或小区组分配功率,为UE在第二目标子帧所在的基站或者小区组分配UE的预留功率。
本步骤和以上实施例中的步骤303相同,在此不再赘述。
步骤407:如果第一目标子帧的优先级低于第二目标子帧的优先级,UE根据第一上行信道信息和第二上行信道信息,为UE在第二目标子帧所在的基站或小区组分配功率,为UE在第一目标子帧所在的基站或小区组分配UE的预留功率。
本步骤和以上实施例中的步骤304相同,在此不再赘述。
在本公开实施例中,基站向UE配置第一时间偏移量和第二时间偏移量,由UE根据第一时间偏移量和第二时间偏移量,确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,从而可以实现不同场景下UE功率分配优先级的灵活配置,从而最大化提高功率利用率。
本公开实施例提供了一种功率分配的装置,该装置应用在UE中,用于执行以上实施例中的功率分配的方法,参见图5,其中,该装置包括:第一确定模块501,第二确定模块502,第一分配模块503和第二分配模块504。
第一确定模块501,用于确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,第一控制子帧用于传输第一目标子帧的控制信息,第二控制子帧用于传输第二目标子帧的控制信息,第二目标子帧的发射时间与第一目标子帧的发射时间重叠,第二目标子帧与第一目标子帧具有不同的子帧长度,第二目标子帧与第一目标子帧属于不同基站或不同小区组;
第二确定模块502,用于根据第一起始时刻和第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级,并确定第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息;
第一分配模块503,用于如果第一目标子帧的优先级高于第二目标子帧的优先级,根据第一上行信道信息和第二上行信道信息,为UE在第一目标子帧所在的基站或小区组分配功率,为UE在第二目标子帧所在的基站或小区组分配UE的预留功率;
第二分配模块504,用于如果第一目标子帧的优先级低于第二目标子帧的优先级,根据第一上行信道信息和第二上行信道信息,为UE在第二目标子帧所在的基站或小区组分配功率,为UE在第一目标子帧所在的基站或小区组分配UE的预留功率。
可选的,第二确定模块502,还用于如果第一起始时刻在第二起始时刻之前,确定第一目标子帧的优先级高于第二目标子帧的优先级;或者,
第二确定模块502,还用于如果第二起始时刻在第一起始时刻之前,确定第一目标子帧的优先级低于第二目标子帧的优先级。
可选的,第二确定模块502,还用于计算第一起始时刻与第二起始时刻之间的时间差;根据时间差和时间差门限,确定第一目标子帧的优先级是否高于第二目标子帧的优先级。
可选的,第二确定模块502,还用于如果时间差大于时间差门限,确定第一目标子帧的优先级高于第二目标子帧的优先级;或者,
第二确定模块502,还用于如果时间差不大于时间差门限,确定第一目标子帧的优先级低于第二目标子帧的优先级。
可选的,第一确定模块501,还用于获取第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量;根据第一时间偏移量和第二时间偏移量,确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻。
可选的,第一分配模块503,还用于当第一目标子帧的上行信道包含随机接入信道PRACH时,根据第一上行信道信息和第二上行信道信息,计算第一目标子帧的上行信道的第一保证功率,第一保证功率为通过高层信令为UE在第一目标子帧所在的基站或小区组配置的功率;根据第一保证功率和第一目标子帧的上行信道的第一需求功率,为UE在第一目 标子帧所在的基站或小区组分配功率。
可选的,第一分配模块503,还用于根据第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,第二目标子帧的数据信道和PRACH的发射功率,第一目标子帧的PRACH的发射功率,以及第一目标子帧和第二目标子帧发射时间重叠时刻的最大发射功率,计算第一目标子帧的上行信道的第一保证功率。
可选的,为UE在第二目标子帧所在的基站或小区组分配的预留功率小于或等于第一保证功率,并且小于或等于UE的最大发射功率与UE在第一目标子帧的所在的基站或小区组分配的功率之差。
可选的,第二分配模块504,还用于当第二目标子帧的上行信道包含随机接入信道PRACH时,UE根据第一上行信道信息和第二上行信道信息,计算第二目标子帧的上行信道的第二保证功率,第二保证功率为通过高层信令为UE在第二目标子帧所在的基站或小区组配置的功率;根据第二保证功率和第二目标子帧的上行信道的第二需求功率,为UE在第二目标子帧所在的基站或小区组分配功率。
可选的,第二分配模块504,还用于根据第一目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,第一目标子帧的数据信道和PRACH的发射功率,第二目标子帧的PRACH的发射功率,以及第一目标子帧和第二目标子帧发射时间重叠时刻的最大发射功率,计算第二目标子帧的上行信道的保证功率。
可选的,为UE在第一目标子帧所在的基站或小区组分配的预留功率小于或等于第二保证功率,并且小于或等于UE的最大发射功率与UE在第二目标子帧的所在的基站或小区组分配的功率之差。
在本公开实施例中,根据第一控制子帧的第一起始时刻和第二控制子帧的第二起始时刻,确定第一目标子帧的优先级是否高于第二目标子帧的优先级;由于频率较低的目标子帧的控制子帧的起始时刻可能在频率较高的目标子帧的控制子帧的起始时刻之前,从而能够确定出频率较低的目标子帧的优先级高于频率较高的目标子帧的优先级,优先为UE在频率较低的目标子帧所在的基站或小区组分配功率,从而避免了发射时间较早的目标子帧上可能空余的发射功率却不能再分配给发射时间较晚的目标子帧的问题,提高了功率使用率。
本公开实施例提供了一种功率分配的装置,该装置应用在基站中,用于执行以上实施例中的功率分配的方法,参见图6,其中,该装置包括:获取模块601,第三确定模块602和发送模块603。
获取模块601,用于获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,第二目标子帧的发射时间与第一目标子帧的发射时间重叠,第二目标子帧与第一目标子帧具有不同的子帧长度,第二目标子帧与第一目标子帧属于不同基站或不同小区组;
第三确定模块602,用于根据第一上行信道信息和第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,第一控制子帧用于传输第一目标子帧的控制信息,第二控制子帧用于传输第二目标子帧的控制信息;
发送模块603,用于向用户设备UE发送第一时间偏移量和第二时间偏移量,由UE根据第一时间偏移量和第二时间偏移量确定第一控制子帧的第一起始时刻和第二控制子帧的 第二起始时刻,并根据第一起始时刻和第二起始时刻为UE在第一目标子帧所在的基站或小区组分配功率以及为UE在第二目标子帧所在的基站或小区组分配功率。
可选的,第三确定模块602,还用于根据第一上行信道信息和第二上行信道信息,确定第一目标子帧的优先级是否高于第二目标子帧的优先级;
第三确定模块602,还用于如果第一目标子帧的优先级高于第二目标子帧的优先级,确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,第一预设条件为第一控制子帧的第一起始时刻在第二控制子帧的第二起始时刻之前,或者,第一控制子帧的第一起始时刻与第二控制子帧的第二起始时刻之间的时间差大于时间差门限;
第三确定模块602,还用于如果第一目标子帧的优先级低于第二目标子帧的优先级,确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,第二预设条件为第二控制子帧的第二起始时刻在第一控制子帧的第一起始时刻之前,或者,第一控制子帧的第一起始时刻与第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
在本公开实施例中,基站向UE配置第一时间偏移量和第二时间偏移量,由UE根据第一时间偏移量和第二时间偏移量,确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,从而可以实现不同场景下UE功率分配优先级的灵活配置,从而最大化提高功率利用率。
需要说明的是:上述实施例提供的功率分配的装置在功率分配时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的功率分配的装置与功率分配的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (41)

  1. 一种功率分配的方法,其特征在于,所述方法包括:
    用户设备UE确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,所述第一控制子帧用于传输第一目标子帧的控制信息,所述第二控制子帧用于传输第二目标子帧的控制信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
    所述UE根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,并确定所述第一目标子帧上的第一上行信道信息以及所述第二目标子帧上的第二上行信道信息;
    如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,所述UE根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第一目标子帧所在的基站或小区组分配功率,为所述UE在所述第二目标子帧所在的基站或小区组分配所述UE的预留功率;
    如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,所述UE根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子帧所在的基站或小区组分配功率,为所述UE在所述第一目标子帧所在的基站或小区组分配所述UE的预留功率。
  2. 根据权利要求1所述的方法,其特征在于,所述UE根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,包括:
    如果所述第一起始时刻在所述第二起始时刻之前,所述UE确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
    如果所述第二起始时刻在所述第一起始时刻之前,所述UE确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
  3. 根据权利要求1所述的方法,其特征在于,所述UE根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,包括:
    所述UE计算所述第一起始时刻与所述第二起始时刻之间的时间差;
    所述UE根据所述时间差和时间差门限,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级。
  4. 根据权利要求3所述的方法,其特征在于,所述UE根据所述时间差和时间差门限,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,包括:
    如果所述时间差大于时间差门限,所述UE确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
    如果所述时间差不大于时间差门限,所述UE确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
  5. 如权利要求1所述的方法,其特征在于,所述UE确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,包括:
    所述UE获取第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量;
    所述UE根据所述第一时间偏移量和所述第二时间偏移量,确定所述第一控制子帧的第一起始时刻以及所述第二控制子帧的第二起始时刻。
  6. 根据权利要求1所述的方法,其特征在于,所述UE根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第一目标子帧所在的基站或小区组分配功率,包括:
    当所述第一目标子帧的上行信道包含随机接入信道PRACH时,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第一目标子帧的上行信道的第一保证功率,所述第一保证功率为通过高层信令为所述UE在所述第一目标子帧所在的基站或小区组配置的功率;
    所述UE根据所述第一保证功率和所述第一目标子帧的上行信道的第一需求功率,为所述UE在所述第一目标子帧所在的基站或小区组分配功率。
  7. 根据权利要求6所述的方法,其特征在于,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第一目标子帧的上行信道的第一保证功率,包括:
    所述UE根据所述第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第二目标子帧的数据信道和PRACH的发射功率,所述第一目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第一目标子帧的上行信道的第一保证功率。
  8. 根据权利要求6所述的方法,其特征在于,为所述UE在所述第二目标子帧所在的基站或小区组分配的预留功率小于或等于所述第一保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第一目标子帧的所在的基站或小区组分配的功率之差。
  9. 根据权利要求1所述的方法,其特征在于,所述UE根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子帧所在的基站或小区组分配功率,包括:
    当所述第二目标子帧的上行信道包含随机接入信道PRACH时,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第二目标子帧的上行信道的第二保证功率,所述第二保证功率为通过高层信令为所述UE在所述第二目标子帧所在的基站或小区组配置的功率;
    所述UE根据所述第二保证功率和所述第二目标子帧的上行信道的第二需求功率,为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
  10. 根据权利要求9所述的方法,其特征在于,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第二目标子帧的上行信道的第二保证功率,包括:
    所述UE根据所述第一目标子帧所在的基站或小区组内的上行数据传输的预留功率因子, 所述第一目标子帧的数据信道和PRACH的发射功率,所述第二目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第二目标子帧的上行信道的保证功率。
  11. 根据权利要求9所述的方法,其特征在于,为所述UE在所述第一目标子帧所在的基站或小区组分配的预留功率小于或等于所述第二保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第二目标子帧的所在的基站或小区组分配的功率之差。
  12. 一种功率分配的方法,其特征在于,所述方法包括:
    基站获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
    所述基站根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一控制子帧用于传输所述第一目标子帧的控制信息,所述第二控制子帧用于传输所述第二目标子帧的控制信息;
    所述基站向用户设备UE发送所述第一时间偏移量和所述第二时间偏移量,由所述UE根据所述第一时间偏移量和所述第二时间偏移量确定所述第一控制子帧的第一起始时刻和所述第二控制子帧的第二起始时刻,并根据所述第一起始时刻和所述第二起始时刻为所述UE在所述第一目标子帧所在的基站或小区组分配功率以及为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
  13. 根据权利要求12所述的方法,其特征在于,所述基站根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,包括:
    所述基站根据所述第一上行信道信息和所述第二上行信道信息,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级;
    如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,所述基站确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一预设条件为所述第一控制子帧的第一起始时刻在所述第二控制子帧的第二起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差大于时间差门限;
    如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,所述基站确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第二预设条件为所述第二控制子帧的第二起始时刻在所述第一控制子帧的第一起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
  14. 一种功率分配的装置,其特征在于,所述装置包括:
    第一确定模块,用于确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,所述第一控制子帧用于传输第一目标子帧的控制信息,所述第二控制子帧用于传输第二目标子帧的控制信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
    第二确定模块,用于根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,并确定所述第一目标子帧上的第一上行信道信息以及所述第二目标子帧上的第二上行信道信息;
    第一分配模块,用于如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第一目标子帧所在的基站或小区组分配功率,为所述UE在所述第二目标子帧所在的基站或小区组分配所述UE的预留功率;
    第二分配模块,用于如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子帧所在的基站或小区组分配功率,为所述UE在所述第一目标子帧所在的基站或小区组分配所述UE的预留功率。
  15. 根据权利要求14所述的装置,其特征在于,
    所述第二确定模块,还用于如果所述第一起始时刻在所述第二起始时刻之前,确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
    所述第二确定模块,还用于如果所述第二起始时刻在所述第一起始时刻之前,确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
  16. 根据权利要求14所述的装置,其特征在于,
    所述第二确定模块,还用于计算所述第一起始时刻与所述第二起始时刻之间的时间差;根据所述时间差和时间差门限,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级。
  17. 根据权利要求16所述的装置,其特征在于,
    所述第二确定模块,还用于如果所述时间差大于时间差门限,确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
    所述第二确定模块,还用于如果所述时间差不大于时间差门限,确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
  18. 如权利要求14所述的装置,其特征在于,
    所述第一确定模块,还用于获取第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量;根据所述第一时间偏移量和所述第二时间偏移量,确定所述第一控制子帧的第一起始时刻以及所述第二控制子帧的第二起始时刻。
  19. 根据权利要求14所述的装置,其特征在于,
    所述第一分配模块,还用于当所述第一目标子帧的上行信道包含随机接入信道PRACH时,根据所述第一上行信道信息和所述第二上行信道信息,计算所述第一目标子帧的上行信道的第一保证功率,所述第一保证功率为通过高层信令为所述UE在所述第一目标子帧所在的基站或小区组配置的功率;根据所述第一保证功率和所述第一目标子帧的上行信道的第一需求功率,为所述UE在所述第一目标子帧所在的基站或小区组分配功率。
  20. 根据权利要求19所述的装置,其特征在于,
    所述第一分配模块,还用于根据所述第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第二目标子帧的数据信道和PRACH的发射功率,所述第一目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第一目标子帧的上行信道的第一保证功率。
  21. 根据权利要求19所述的装置,其特征在于,为所述UE在所述第二目标子帧所在的基站或小区组分配的预留功率小于或等于所述第一保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第一目标子帧的所在的基站或小区组分配的功率之差。
  22. 根据权利要求14所述的装置,其特征在于,
    所述第二分配模块,还用于当所述第二目标子帧的上行信道包含随机接入信道PRACH时,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第二目标子帧的上行信道的第二保证功率,所述第二保证功率为通过高层信令为所述UE在所述第二目标子帧所在的基站或小区组配置的功率;根据所述第二保证功率和所述第二目标子帧的上行信道的第二需求功率,为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
  23. 根据权利要求22所述的装置,其特征在于,
    所述第二分配模块,还用于根据所述第一目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第一目标子帧的数据信道和PRACH的发射功率,所述第二目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第二目标子帧的上行信道的保证功率。
  24. 根据权利要求22所述的装置,其特征在于,为所述UE在所述第一目标子帧所在的基站或小区组分配的预留功率小于或等于所述第二保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第二目标子帧的所在的基站或小区组分配的功率之差。
  25. 一种功率分配的装置,其特征在于,所述装置包括:
    获取模块,用于获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
    第三确定模块,用于根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一控制子帧用于传输所述第一目标子帧的控制信息,所述第二控制子帧用于传输所述第二目标子帧的控制信息;
    发送模块,用于向用户设备UE发送所述第一时间偏移量和所述第二时间偏移量,由所述UE根据所述第一时间偏移量和所述第二时间偏移量确定所述第一控制子帧的第一起始时刻和所述第二控制子帧的第二起始时刻,并根据所述第一起始时刻和所述第二起始时刻为所述UE在所述第一目标子帧所在的基站或小区组分配功率以及为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
  26. 根据权利要求25所述的装置,其特征在于,
    所述第三确定模块,还用于根据所述第一上行信道信息和所述第二上行信道信息,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级;
    所述第三确定模块,还用于如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一预设条件为所述第一控制子帧的第一起始时刻在所述第二控制子帧的第二起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差大于时间差门限;
    所述第三确定模块,还用于如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第二预设条件为所述第二控制子帧的第二起始时刻在所述第一控制子帧的第一起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
  27. 一种功率分配的用户设备,其特征在于,所述用户设备包括:
    第一处理器,用于确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,所述第一控制子帧用于传输第一目标子帧的控制信息,所述第二控制子帧用于传输第二目标子帧的控制信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
    所述第一处理器,还用于根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,并确定所述第一目标子帧上的第一上行信道信息以及所述第二目标子帧上的第二上行信道信息;
    第一发射器,用于如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第一目标子帧所在的基站或小区组分配功率,为所述UE在所述第二目标子帧所在的基站或小区组分配所述UE的预留功率;
    所述第一发射器,还用于如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子帧所在的基站或小区组分配功率,为所述UE在所述第一目标子帧所在的基站或小区组分配所 述UE的预留功率。
  28. 根据权利要求27所述的用户设备,其特征在于,
    所述第一处理器,还用于如果所述第一起始时刻在所述第二起始时刻之前,确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
    所述第一处理器,还用于如果所述第二起始时刻在所述第一起始时刻之前,确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
  29. 根据权利要求27所述的用户设备,其特征在于,
    所述第一处理器,还用于计算所述第一起始时刻与所述第二起始时刻之间的时间差;根据所述时间差和时间差门限,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级。
  30. 根据权利要求29所述的用户设备,其特征在于,
    所述第一处理器,还用于如果所述时间差大于时间差门限,确定所述第一目标子帧的优先级高于所述第二目标子帧的优先级;或者,
    所述第一处理器,还用于如果所述时间差不大于时间差门限,确定所述第一目标子帧的优先级低于所述第二目标子帧的优先级。
  31. 如权利要求27所述的用户设备,其特征在于,
    所述第一处理器,还用于获取第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量;根据所述第一时间偏移量和所述第二时间偏移量,确定所述第一控制子帧的第一起始时刻以及所述第二控制子帧的第二起始时刻。
  32. 根据权利要求27所述的用户设备,其特征在于,
    所述第一发射器,还用于当所述第一目标子帧的上行信道包含随机接入信道PRACH时,根据所述第一上行信道信息和所述第二上行信道信息,计算所述第一目标子帧的上行信道的第一保证功率,所述第一保证功率为通过高层信令为所述UE在所述第一目标子帧所在的基站或小区组配置的功率;根据所述第一保证功率和所述第一目标子帧的上行信道的第一需求功率,为所述UE在所述第一目标子帧所在的基站或小区组分配功率。
  33. 根据权利要求32所述的用户设备,其特征在于,
    所述第一发射器,还用于根据所述第二目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第二目标子帧的数据信道和PRACH的发射功率,所述第一目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第一目标子帧的上行信道的第一保证功率。
  34. 根据权利要求32所述的用户设备,其特征在于,为所述UE在所述第二目标子帧所在的基站或小区组分配的预留功率小于或等于所述第一保证功率,并且小于或等于所述UE 的最大发射功率与所述UE在所述第一目标子帧的所在的基站或小区组分配的功率之差。
  35. 根据权利要求27所述的用户设备,其特征在于,
    所述第一发射器,还用于当所述第二目标子帧的上行信道包含随机接入信道PRACH时,所述UE根据所述第一上行信道信息和所述第二上行信道信息,计算所述第二目标子帧的上行信道的第二保证功率,所述第二保证功率为通过高层信令为所述UE在所述第二目标子帧所在的基站或小区组配置的功率;根据所述第二保证功率和所述第二目标子帧的上行信道的第二需求功率,为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
  36. 根据权利要求35所述的用户设备,其特征在于,
    所述第一发射器,还用于根据所述第一目标子帧所在的基站或小区组内的上行数据传输的预留功率因子,所述第一目标子帧的数据信道和PRACH的发射功率,所述第二目标子帧的PRACH的发射功率,以及所述第一目标子帧和所述第二目标子帧发射时间重叠时刻的最大发射功率,计算所述第二目标子帧的上行信道的保证功率。
  37. 根据权利要求35所述的用户设备,其特征在于,为所述UE在所述第一目标子帧所在的基站或小区组分配的预留功率小于或等于所述第二保证功率,并且小于或等于所述UE的最大发射功率与所述UE在所述第二目标子帧的所在的基站或小区组分配的功率之差。
  38. 一种功率分配的基站,其特征在于,所述基站包括:
    第二处理器,用于获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
    所述第二处理器,还用于根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一控制子帧用于传输所述第一目标子帧的控制信息,所述第二控制子帧用于传输所述第二目标子帧的控制信息;
    第二发射器,用于向用户设备UE发送所述第一时间偏移量和所述第二时间偏移量,由所述UE根据所述第一时间偏移量和所述第二时间偏移量确定所述第一控制子帧的第一起始时刻和所述第二控制子帧的第二起始时刻,并根据所述第一起始时刻和所述第二起始时刻为所述UE在所述第一目标子帧所在的基站或小区组分配功率以及为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
  39. 根据权利要求38所述的基站,其特征在于,
    所述第二处理器,还用于根据所述第一上行信道信息和所述第二上行信道信息,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级;
    所述第二处理器,还用于如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,确定满足第一预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一预设条件为所述第一控制子帧的第一起始时刻在所述第二控制子帧的第二起 始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差大于时间差门限;
    所述第二处理器,还用于如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,确定满足第二预设条件的第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第二预设条件为所述第二控制子帧的第二起始时刻在所述第一控制子帧的第一起始时刻之前,或者,所述第一控制子帧的第一起始时刻与所述第二控制子帧的第二起始时刻之间的时间差不大于时间差门限。
  40. 一种计算机存储介质,其特征在于,所述存储介质上存储计算机程序,所述计算机程序被处理器执行时实现以下步骤:
    确定第一控制子帧的第一起始时刻以及第二控制子帧的第二起始时刻,所述第一控制子帧用于传输第一目标子帧的控制信息,所述第二控制子帧用于传输第二目标子帧的控制信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
    根据所述第一起始时刻和所述第二起始时刻,确定所述第一目标子帧的优先级是否高于所述第二目标子帧的优先级,并确定所述第一目标子帧上的第一上行信道信息以及所述第二目标子帧上的第二上行信道信息;
    如果所述第一目标子帧的优先级高于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为用户设备UE在所述第一目标子帧所在的基站或小区组分配功率,为所述UE在所述第二目标子帧所在的基站或小区组分配所述UE的预留功率;
    如果所述第一目标子帧的优先级低于所述第二目标子帧的优先级,根据所述第一上行信道信息和所述第二上行信道信息,为所述UE在所述第二目标子帧所在的基站或小区组分配功率,为所述UE在所述第一目标子帧所在的基站或小区组分配所述UE的预留功率。
  41. 一种计算机存储介质,其特征在于,所述存储介质上存储计算机程序,所述计算机程序被处理器执行时实现以下步骤:
    获取第一目标子帧上的第一上行信道信息以及第二目标子帧上的第二上行信道信息,所述第二目标子帧的发射时间与所述第一目标子帧的发射时间重叠,所述第二目标子帧与所述第一目标子帧具有不同的子帧长度,所述第二目标子帧与所述第一目标子帧属于不同基站或不同小区组;
    根据所述第一上行信道信息和所述第二上行信道信息,确定第一控制子帧的第一时间偏移量和第二控制子帧的第二时间偏移量,所述第一控制子帧用于传输所述第一目标子帧的控制信息,所述第二控制子帧用于传输所述第二目标子帧的控制信息;
    向用户设备UE发送所述第一时间偏移量和所述第二时间偏移量,由所述UE根据所述第一时间偏移量和所述第二时间偏移量确定所述第一控制子帧的第一起始时刻和所述第二控制子帧的第二起始时刻,并根据所述第一起始时刻和所述第二起始时刻为所述UE在所述第一目标子帧所在的基站或小区组分配功率以及为所述UE在所述第二目标子帧所在的基站或小区组分配功率。
PCT/CN2017/090044 2016-06-30 2017-06-26 功率分配的方法和装置 WO2018001205A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17819202.7A EP3468264B1 (en) 2016-06-30 2017-06-26 Method and device for power allocation
US16/234,969 US10531402B2 (en) 2016-06-30 2018-12-28 Power allocation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610511895.4 2016-06-30
CN201610511895.4A CN107567098B (zh) 2016-06-30 2016-06-30 功率分配的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/234,969 Continuation US10531402B2 (en) 2016-06-30 2018-12-28 Power allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2018001205A1 true WO2018001205A1 (zh) 2018-01-04

Family

ID=60786475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090044 WO2018001205A1 (zh) 2016-06-30 2017-06-26 功率分配的方法和装置

Country Status (4)

Country Link
US (1) US10531402B2 (zh)
EP (1) EP3468264B1 (zh)
CN (1) CN107567098B (zh)
WO (1) WO2018001205A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709724A4 (en) * 2017-11-09 2021-06-23 Ntt Docomo, Inc. USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
CN110149705A (zh) 2018-02-12 2019-08-20 维沃移动通信有限公司 上行传输方法和设备
CN110475372B (zh) * 2018-05-10 2021-09-24 维沃移动通信有限公司 一种上行传输方法及终端
CN110536393B (zh) * 2018-08-10 2022-07-15 中兴通讯股份有限公司 一种功率控制方法、装置及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220768A (zh) * 2012-01-21 2013-07-24 中兴通讯股份有限公司 一种载波聚合系统中上行信号功率削减方法及装置
CN104081838A (zh) * 2012-01-30 2014-10-01 松下电器(美国)知识产权公司 无线通信终端装置及发送功率控制方法
WO2015156521A1 (ko) * 2014-04-08 2015-10-15 엘지전자 주식회사 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 상향링크 제어 정보 송신 방법 및 이를 위한 장치
WO2015168910A1 (zh) * 2014-05-08 2015-11-12 华为技术有限公司 一种功率分配方法及装置
WO2016000241A1 (zh) * 2014-07-03 2016-01-07 华为技术有限公司 一种用户设备及功率分配的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9521632B2 (en) * 2011-08-15 2016-12-13 Google Technology Holdings LLC Power allocation for overlapping transmission when multiple timing advances are used
CN104427604B (zh) * 2013-08-28 2018-10-12 上海诺基亚贝尔股份有限公司 一种用于分配上行功率的方法和设备
CN104936297B (zh) * 2014-03-18 2020-01-10 北京三星通信技术研究有限公司 配置有包含d2d子帧服务小区的系统的功率控制方法及用户设备
EP3131349B1 (en) * 2014-04-18 2020-08-26 Huawei Technologies Co., Ltd. Power configuration method, user equipment and base station
WO2016010123A1 (ja) * 2014-07-18 2016-01-21 シャープ株式会社 端末装置、基地局装置、および通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220768A (zh) * 2012-01-21 2013-07-24 中兴通讯股份有限公司 一种载波聚合系统中上行信号功率削减方法及装置
CN104081838A (zh) * 2012-01-30 2014-10-01 松下电器(美国)知识产权公司 无线通信终端装置及发送功率控制方法
WO2015156521A1 (ko) * 2014-04-08 2015-10-15 엘지전자 주식회사 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 상향링크 제어 정보 송신 방법 및 이를 위한 장치
WO2015168910A1 (zh) * 2014-05-08 2015-11-12 华为技术有限公司 一种功率分配方法及装置
WO2016000241A1 (zh) * 2014-07-03 2016-01-07 华为技术有限公司 一种用户设备及功率分配的方法

Also Published As

Publication number Publication date
EP3468264A4 (en) 2019-05-01
US20190141642A1 (en) 2019-05-09
EP3468264B1 (en) 2020-12-30
CN107567098A (zh) 2018-01-09
US10531402B2 (en) 2020-01-07
CN107567098B (zh) 2021-06-15
EP3468264A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
US10645642B2 (en) System information transmission method, base station, and user equipment
US10299234B2 (en) Synchronization method, base station, and user equipment
WO2018001205A1 (zh) 功率分配的方法和装置
JP6383999B2 (ja) 電力割り当て方法、ユーザ機器及び基地局
JP7230225B2 (ja) 伝送リソース検出方法、伝送リソース決定方法と通信機器
WO2019061529A1 (zh) 网络切片中分配资源的方法、设备和计算机可读存储介质
CN113647181A (zh) 混合服务场景中的多个准予处置
WO2017070824A1 (zh) 缩短时延的上行数据传输方法、装置以及通信系统
WO2017049558A1 (zh) 上行数据传输的方法和装置
WO2020029300A1 (zh) 一种tdd系统中的资源分配方法和设备
WO2018082467A1 (zh) 一种调度方法、终端及基站
WO2016161606A1 (zh) 消息发送/接收方法、覆盖增强等级确定/获取方法及相关设备
WO2021037332A1 (en) Prioritization of buffered data units technical field
WO2022077519A1 (zh) 一种信息传输方法及装置
US9924497B2 (en) Method for transmitting signal in device-to-device proximity service, base station, and user equipment
JP2023521398A (ja) リソース決定方法及び機器
US11026115B2 (en) Multi-air-interface communication method and apparatus
CN111277375B (zh) 一种资源分配的方法及装置
US10873879B2 (en) Data transmission method, device, and system
US20200396757A1 (en) Downlink transmission resource allocation method and apparatus
WO2015117475A1 (zh) 一种获取资源的方法及装置
CN107690199B (zh) 一种分配资源和随机接入的方法及设备
CN112399573B (zh) 一种波束分配方法及装置
WO2022077505A1 (zh) 一种传输资源确定方法及装置
WO2021023294A1 (zh) 信息传输方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017819202

Country of ref document: EP

Effective date: 20190102