WO2018000813A1 - 液晶显示面板 - Google Patents

液晶显示面板 Download PDF

Info

Publication number
WO2018000813A1
WO2018000813A1 PCT/CN2017/072464 CN2017072464W WO2018000813A1 WO 2018000813 A1 WO2018000813 A1 WO 2018000813A1 CN 2017072464 W CN2017072464 W CN 2017072464W WO 2018000813 A1 WO2018000813 A1 WO 2018000813A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
liquid crystal
pixels
color filter
pixel
Prior art date
Application number
PCT/CN2017/072464
Other languages
English (en)
French (fr)
Inventor
李卓
何建国
Original Assignee
南京中电熊猫液晶显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中电熊猫液晶显示科技有限公司 filed Critical 南京中电熊猫液晶显示科技有限公司
Publication of WO2018000813A1 publication Critical patent/WO2018000813A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal display panel.
  • TFT-LCD is the mainstream flat panel display product on the market. Because of its small size, low power consumption and no radiation, it has been widely recognized by the market.
  • the market share is the first in flat panel display, with large scale, wide application and rapid development. Especially in recent years, driven by the market, the high generation line has developed rapidly, and the large size and high resolution have become the main development direction of liquid crystal display technology.
  • the introduction of 4K and 8K ultra-high resolution technology on 60-inch panels is leading the color TV market.
  • the VA-type ultra-high resolution LCD panel supported by optical matching technology has become the mainstream of the future development of the color TV market.
  • the light alignment is to irradiate the high-molecular polymer alignment film with the linear polarized ultraviolet light to make the high-molecular polymer have the alignment ability, thereby avoiding the surface contamination of the glass substrate or the alignment film which may be caused during the rubbing alignment process. Scratches, while the optical alignment can achieve multi-domain alignment through the reticle.
  • UV 2 A Ultra Violet Vertical Alignment
  • UV 2 A technology is one of the optical alignment technologies. It is easy to realize the 4-Domain alignment of the panel by UV 2 A technology, and enhance the viewing angle of the panel.
  • a conventional liquid crystal display panel includes a color filter substrate 10 on which a light shielding material 104 and a repeatedly arranged sub-pixel 101 having a red color filter film and a green filter film are disposed.
  • the sub-pixel 102 and the sub-pixel 103 having a blue filter film.
  • four different directions of liquid crystal deflection directions 105 are formed in each of the red sub-pixels (R), each of the green sub-pixels (G), and each of the blue sub-pixels (B).
  • the existing optical alignment method will cause the electric field around the pixel to be opposite to the liquid crystal deflection direction in the sub-pixel.
  • black stripes 106 existing around and in the middle of the sub-pixel are formed, and the black stripes 106 cause a decrease in transmittance of the liquid crystal display panel.
  • FIG. 2 is a schematic plan view of a color film substrate in the prior art.
  • the alignment mode is improved, so that each sub-pixel has only one liquid crystal deflection direction, eliminating the existence of The black stripes in the middle of the sub-pixels can improve the transmittance of the liquid crystal display panel, and the entire liquid crystal display panel still has the characteristics of 4-Domain, so the viewing angle size does not change. Since the black stripe position is adjusted to the periphery of the sub-pixel, the black stripe existing in the middle of the sub-pixel is eliminated, and the transmittance of the display panel is improved as compared with the prior art.
  • FIG. 3 is a schematic view showing the display effect of the liquid crystal display panel composed of the color filter substrate of FIG. 2.
  • FIG. 3 when the liquid crystal display panel displays a monochrome picture, a stripe feeling occurs in the viewing angle direction because the brightness of one column of sub-pixels is different from the brightness of another column of sub-pixels, for example, when viewing a red picture from a viewing angle direction, Different liquid crystal deflection directions have different brightness in the viewing direction. It can be found that the luminance of the red sub-pixel (R) in the vertical direction is uneven and the distance between the two sub-pixels is spaced, and the red color in the middle column is shown in FIG. The brightness of the sub-pixel (R) is lower than that of the remaining two columns of red sub-pixels (R), so that the human eye can produce a streak feeling when viewing a monochrome picture.
  • the technical problem to be solved by the present invention is to provide a liquid crystal display panel to eliminate or reduce the stripe feeling of a monochrome picture, thereby ensuring high transmittance of the liquid crystal display panel, and Improved display quality.
  • the present invention provides a liquid crystal display panel comprising a color filter substrate, an array substrate, and a liquid crystal layer interposed between the color film substrate and the array substrate, wherein the color film substrate is provided with a plurality of matrix arrays a pixel area, each of the pixel areas includes three sub-pixels, each of the sub-pixels includes a filter film of one color, and the color filter films of the three sub-pixels included in each of the pixel areas are different in color,
  • the color filter substrate is repeatedly arranged as one pixel arrangement unit by twelve sub-pixels arranged on four rows and three columns, each of the pixel arrangement units includes four sub-pixels having a first color filter film, and four have a sub-pixel of the two color filter film and four sub-pixels having a third color filter film, wherein four sub-pixels having the same color filter film in each pixel arrangement unit are distributed on different columns,
  • the color film substrate and the array substrate respectively adopt a light alignment direction, and the light alignment direction of the color filter substrate and the light alignment
  • the light alignment direction of the color filter substrate is along a horizontal direction, and the optical alignment directions of the odd-numbered rows and the even-numbered rows of sub-pixels in the color filter substrate are opposite; the optical alignment direction of the array substrate is along a vertical direction And the optical alignment directions of the odd-numbered columns and the even-numbered column sub-pixels in the array substrate are opposite.
  • a light alignment direction of the color filter substrate is along a vertical direction, and an optical alignment direction of the odd-numbered columns and the even-numbered column sub-pixels in the color filter substrate is opposite;
  • a light alignment direction of the array substrate is along a horizontal direction, And the optical alignment directions of the odd rows and the even row subpixels in the array substrate are opposite.
  • each adjacent four sub-pixels in the liquid crystal display panel respectively have a first liquid crystal deflection direction, a second liquid crystal deflection direction, a third liquid crystal deflection direction, and a fourth liquid crystal deflection direction, wherein the first liquid crystal deflection direction, The second liquid crystal deflection direction, the third liquid crystal deflection direction, and the fourth liquid crystal deflection direction are different.
  • Pmn represents the position of the sub-pixel, where m represents the row in which the sub-pixel is located, and n represents the column in which the sub-pixel is located
  • P11 , P21, P32, and P42 are four sub-pixels having the same first color filter film
  • P12, P22, P33, and P43 are four sub-pixels having the same second color filter film, P13, P23, P31, and P41. It is four sub-pixels having the same third color filter film.
  • Pmn represents the position of the sub-pixel, where m represents the row in which the sub-pixel is located, and n represents the column in which the sub-pixel is located
  • P11 , P22, P32, and P43 are four sub-pixels having the same first color filter film
  • P12, P23, P33, and P41 are four sub-pixels having the same second color filter film
  • P13, P21, P31, and P42 It is four sub-pixels having the same third color filter film.
  • the first color filter film is a red filter film
  • the second color filter film is a green filter film
  • the third color filter film is a blue filter film.
  • the present invention also provides a liquid crystal display panel comprising a color filter substrate, an array substrate, and a liquid crystal layer interposed between the color film substrate and the array substrate, wherein the color film substrate is arranged in a matrix a pixel area, each of the pixel areas comprising three sub-pixels, each of the sub-pixels comprising a color filter, the color of the filter film of each of the three sub-pixels
  • the color filter substrate is repeatedly arranged as one pixel arrangement unit with nine sub-pixels arranged on three rows and three columns, each pixel arrangement unit includes three sub-pixels having a first color filter film, and three a sub-pixel having a second color filter film and three sub-pixels having a third color filter film, wherein three sub-pixels having the same color in each pixel arrangement unit are distributed on different columns, the color film substrate and the
  • the array substrate is respectively optically aligned, and the light alignment direction of the color filter substrate and the light alignment direction of the array substrate are perpendicular to each other, and each adjacent
  • the light alignment direction of the color filter substrate is along a horizontal direction, and the optical alignment directions of the odd-numbered rows and the even-numbered rows of sub-pixels in the color filter substrate are opposite; the optical alignment direction of the array substrate is along a vertical direction And the optical alignment directions of the odd-numbered columns and the even-numbered column sub-pixels in the array substrate are opposite.
  • a light alignment direction of the color filter substrate is along a vertical direction, and an optical alignment direction of the odd-numbered columns and the even-numbered column sub-pixels in the color filter substrate is opposite;
  • a light alignment direction of the array substrate is along a horizontal direction, And the optical alignment directions of the odd rows and the even row subpixels in the array substrate are opposite.
  • each adjacent four sub-pixels in the liquid crystal display panel respectively have a first liquid crystal deflection direction, a second liquid crystal deflection direction, a third liquid crystal deflection direction, and a fourth liquid crystal deflection direction, wherein the first liquid crystal deflection direction, The second liquid crystal deflection direction, the third liquid crystal deflection direction, and the fourth liquid crystal deflection direction are different.
  • Pmn represents the position of the sub-pixel, where m represents the row in which the sub-pixel is located, and n represents the column in which the sub-pixel is located
  • P11, P23 and P32 are three sub-pixels having the same first color filter film
  • P12, P21, and P33 are three sub-pixels having the same second color filter film
  • P13, P22, and P31 are three having the same third.
  • the sub-pixel of the color filter film is the position of the sub-pixel, where m represents the row in which the sub-pixel is located, and n represents the column in which the sub-pixel is located
  • the first color filter film is a red filter film
  • the second color filter film is a green filter film
  • the third color filter film is a blue filter film.
  • the sub-pixels having the same color are arranged in a staggered manner, and the optical alignment is performed on the color filter substrate and the array substrate to make the same
  • the sub-pixels of the color have different liquid crystal deflection directions, and the sub-pixels having different liquid crystal deflection directions in the viewing angle direction achieve brightness balance, thereby eliminating or reducing the streaks generated when the monochrome picture is displayed while ensuring the high transmittance of the panel. sense.
  • FIG. 1 is a schematic plan view of a color film substrate in the prior art.
  • FIG. 2 is a schematic plan view of a color film substrate in the prior art.
  • FIG. 3 is a schematic view showing the display effect of the liquid crystal display panel composed of the color filter substrate of FIG. 2.
  • FIG. 4 is a plan view showing a color filter substrate in a first embodiment of the present invention.
  • FIG. 5 is a plan view schematically showing a liquid crystal display panel composed of the color filter substrate of FIG. 4.
  • FIG. 6 is a schematic view showing the display effect when the monochrome screen is displayed by using the liquid crystal display panel of FIG. 5.
  • Fig. 7 is a view showing the display luminance of liquid crystal molecules in different liquid crystal deflection directions.
  • Figure 8 is a plan view showing a color filter substrate in a second embodiment of the present invention.
  • FIG. 9 is a schematic plan view showing a liquid crystal display panel composed of the color filter substrate of FIG.
  • FIG. 10 is a schematic view showing the display effect when the monochrome screen is displayed by using the liquid crystal display panel of FIG. 9.
  • Figure 11 is a plan view showing a color filter substrate in a third embodiment of the present invention.
  • Fig. 12 is a plan view schematically showing a liquid crystal display panel comprising the color filter substrate of Fig. 11.
  • FIG. 13 is a schematic view showing the display effect when the monochrome screen is displayed by using the liquid crystal display panel of FIG.
  • a liquid crystal display panel includes a color filter substrate 10 , an array substrate 20 , and a liquid crystal interposed between the color filter substrate 10 and the array substrate 20 .
  • Layer (not shown).
  • the liquid crystal display panel of the present embodiment comprises the array substrate 20 and the color filter substrate 10.
  • the array substrate 20 and the color filter substrate 10 may adopt the current structure or other modified structures, and the invention is not limited thereto.
  • FIG. 4 is a schematic plan view of a color filter substrate according to an embodiment of the present invention.
  • a plurality of pixel regions arranged in a matrix are disposed on the color filter substrate 10, each pixel region includes three sub-pixels, and each sub-pixel includes one color.
  • the color filter films of the three sub-pixels included in each pixel region are different in color, and are respectively red, green, and blue filter films.
  • the thickness of the three different color filter films can vary. In the present embodiment, the film thickness of the red filter film was 1.95 ⁇ m, the thickness of the green filter film was 2.00 ⁇ m, and the thickness of the blue filter film was 2.05 ⁇ m.
  • the color filter substrate 10 is repeatedly arranged as one pixel array unit 11 by twelve sub-pixels arranged in four rows and three columns, and each pixel array unit 11 includes four sub-pixels 101 having a first color filter film, Four sub-pixels 102 having a second color filter film and four sub-pixels 103 having a third color filter film.
  • the first color filter film is, for example, a red filter film (R)
  • the second color filter film is, for example, a green filter film (G)
  • the third color filter film is, for example, a blue filter film. (B).
  • each pixel array unit 11 Four sub-pixels having the same color filter film in each pixel array unit 11 are distributed on different columns.
  • four sub-pixels 101 having a red filter film (R) in each pixel array unit 11 are staggered in the first column and the second column, and each of the pixel array units 11 has a green filter.
  • the four sub-pixels 102 of the light film (G) are staggered in the second column and the third column, and the four sub-pixels 103 having the blue color filter film (B) in each of the pixel array units 11 are staggered in the first row.
  • each pixel arrangement unit 11 is arranged in twelve sub-pixels on four rows and three columns, and Pmn represents the position of the sub-pixel, where m represents the row where the sub-pixel is located, and n represents the sub-pixel.
  • P11, P21, P32, and P42 are four sub-pixels 101 having the same first color filter film (the red filter film R in this embodiment), and P12, P22, P33, and P43 are four.
  • the sub-pixels 102 having the same second color filter film (the green filter film G in this embodiment), P13, P23, P31, and P41 are four filter films having the same third color (in this embodiment, Sub-pixel 103 of blue filter film B).
  • the color filter substrate 10 is based on glass, and is arranged in an array of red, green and blue color filter films, and the filter film region can transmit light of a corresponding color and is distributed outside the filter film.
  • There is a light-shielding material 104 and the filter films of different sub-pixels are spaced apart by the light-shielding material 104, and the area where the light-shielding material 104 is distributed is not transparent.
  • the light shielding material 104 is generally selected from a resin material, and the light shielding capability is one. The general requirement is greater than 4, and the film thickness is generally around 1.6um.
  • FIG. 5 is a schematic plan view of a liquid crystal display panel comprising the color filter substrate 10, the array substrate 20, and the color filter substrate 10 and the array substrate 20.
  • the liquid crystal layer between the layers (not shown).
  • the color filter substrate 10 and the array substrate 20 respectively adopt a light alignment direction, and the light alignment direction of the color filter substrate 10 and the light alignment direction of the array substrate 20 are perpendicular to each other, wherein the arrow 12 is the ultraviolet of the color filter substrate 10 In the light alignment direction, the arrow 22 is the ultraviolet light alignment direction of the array substrate 20.
  • the light alignment direction of the color filter substrate 10 is along a horizontal direction, and the optical alignment directions of the odd-numbered rows and the even-numbered rows of sub-pixels in the color filter substrate 10 are opposite, for example, in the color filter substrate 10.
  • the light alignment direction of the odd row sub-pixels is from left to right along the horizontal direction, and the light alignment direction of the even rows of sub-pixels in the color filter substrate 10 is from right to left along the horizontal direction; the light of the array substrate 20
  • the alignment direction is along the vertical direction, and the optical alignment directions of the odd-numbered columns and the even-numbered column sub-pixels in the array substrate 20 are opposite.
  • the optical alignment direction of the odd-numbered column sub-pixels in the array substrate 20 is from the top to the vertical direction.
  • the light alignment direction of the even-numbered sub-pixels in the array substrate 20 is from bottom to top along the vertical direction.
  • the wavelength of the ultraviolet light used for the alignment is 313 nm, the energy is 20 mJ, and the liquid crystal pretilt angle is 88.5 degrees. Due to the common alignment force of the array substrate 20 and the color filter substrate 10, the liquid crystal has a certain deflection direction, wherein the arrow 105 represents the ultraviolet light alignment.
  • the liquid crystal display panel proposed in this embodiment is a liquid crystal display panel using ultraviolet light vertical alignment, and the liquid crystal used is a negative liquid crystal, but the application of the present invention is not limited to the ultraviolet vertical alignment. LCD panel type.
  • the liquid crystal display panel which is aligned by ultraviolet light has four different liquid crystal deflection directions.
  • each adjacent four sub-pixels in the liquid crystal display panel respectively have different liquid crystal deflection directions.
  • the adjacent four sub-pixels P31, P22, P41, and P42 are exemplified, wherein the liquid crystal in the sub-pixel P31 has a first liquid crystal deflection direction 105a, and the liquid crystal in the sub-pixel P41 has a second liquid crystal deflection direction 105b, and the sub-pixel P32
  • the liquid crystal in the liquid crystal has a third liquid crystal deflection direction 105c
  • the liquid crystal in the sub-pixel P42 has a fourth liquid crystal deflection direction 105d, wherein the first liquid crystal deflection direction 105a, the second liquid crystal deflection direction 105b, the third liquid crystal deflection direction 105c, and the fourth liquid crystal The deflection directions 105d are different.
  • the other four adjacent sub-pixels such as
  • the light alignment direction of the color filter substrate 10 and the light alignment direction of the array substrate 20 may also be interchanged, that is, the light alignment direction of the color filter substrate 10 is along a vertical direction.
  • the light alignment direction of the odd-numbered columns and the even-numbered column sub-pixels in the color filter substrate 10 is opposite, for example, the light-aligning direction of the odd-numbered column sub-pixels in the color filter substrate 10 is from top to bottom along the vertical direction, and the color film
  • the light alignment direction of the even-numbered sub-pixels in the substrate 10 is from bottom to top along the vertical direction; the light alignment direction of the array substrate 20 is along the horizontal direction, and the light of the odd-numbered rows and the even-numbered rows of the sub-pixels in the array substrate 20
  • the alignment direction is opposite.
  • the optical alignment direction of the odd-line sub-pixels in the array substrate 20 is from left to right along the horizontal direction
  • the optical alignment direction of the even-numbered sub-pixels in the array substrate 20 is from the right in the horizontal direction. To the left. According to the optical alignment in this manner, it is also possible to achieve different liquid crystal deflection directions for each adjacent four sub-pixels in the liquid crystal display panel.
  • the liquid crystal outside the pixel electrode is reversed to the pixel electrode, and at the edge position of the pixel electrode, when the liquid crystal deflection direction in the pixel electrode and the liquid crystal outside the pixel electrode are reversed
  • black stripes 106 appear, and it can be seen from FIG. 5 that the black stripes 106 are all blocked by the light shielding material 104, so that the aperture ratio of the liquid crystal display panel is not reduced.
  • the liquid crystal pretilt angles of the four sub-pixels having different liquid crystal deflection directions inside the liquid crystal display panel are different in the same viewing angle direction. Under the influence of this, there will be a difference in brightness.
  • the four sub-pixels having the same color filter film in each pixel array unit 11 are staggered and the liquid crystal deflection directions are different, and each of the monochrome images includes liquid crystal deflection.
  • Sub-pixels with different directions although the sub-pixels of different liquid crystal deflection directions have different brightness in the viewing direction direction, since each of the monochrome pictures includes sub-pixels having different liquid crystal deflection directions, the brightness is balanced, and the monochrome picture display can be eliminated. The resulting sense of stripes.
  • FIG. 6 is a schematic diagram of the liquid crystal display panel of the present embodiment viewing a red screen in the direction of the upper viewing angle.
  • This liquid crystal display panel employs the color filter substrate shown in FIG. 4 and the ultraviolet light alignment mode shown in FIG.
  • four sub-pixels having the same color filter film are alternately arranged in a pixel array unit 11 and the liquid crystal deflection directions are different, wherein the four sub-pixels P11 and P21 having the red filter film are
  • the liquid crystal deflection directions of P32 and P42 are the first liquid crystal deflection direction 105a, the second liquid crystal deflection direction 105b, the third liquid crystal deflection direction 105c, and the fourth liquid crystal deflection direction 105d, respectively.
  • the difference in brightness is mainly affected by the liquid crystal pretilt direction on the side of the array substrate 20, and the liquid crystal pretilt direction on the side of the color filter substrate 10 has substantially no influence.
  • the first liquid crystal deflection direction 105a and the second The sub-pixel corresponding to the liquid crystal deflection direction 105b has a liquid crystal pretilt direction toward the lower viewing angle direction
  • the sub-pixel corresponding to the third liquid crystal deflection direction 105c and the fourth liquid crystal deflection direction 105d has a liquid crystal pretilt direction toward the upper viewing angle direction.
  • the direction of the arrow indicated by 40 is the observation direction, and the liquid crystal pretilt direction of the liquid crystal 31 is opposite to the observation direction, and the liquid crystal pretilt angle direction of the liquid crystal 32 is oriented toward the observation direction.
  • the pretilt angle of the liquid crystal is as the liquid crystal 31
  • the brightness observed is greater than the brightness when the liquid crystal pretilt direction is the liquid crystal 32, that is, the subpixel of the liquid crystal pretilt direction opposite to the observation direction is larger than the liquid crystal pretilt angle toward the observation direction.
  • the brightness of the pixel can be known, and the sub-pixel corresponding to the first liquid crystal deflection direction 105a and the second liquid crystal deflection direction 105b is higher in brightness than the third liquid crystal deflection direction 105c and the fourth liquid crystal deflection direction 105d when viewed in the upper viewing direction.
  • the brightness of the sub-pixels can be known, and the sub-pixel corresponding to the first liquid crystal deflection direction 105a and the second liquid crystal deflection direction 105b is higher in brightness than the third liquid crystal deflection direction 105c and the fourth liquid crystal deflection direction 105d when viewed in the upper viewing direction.
  • the sub-pixel 102 having the green filter film and the sub-pixel 103 having the blue filter film are dark opaque, and the sub-pixel having the red filter film 101 is a light-transmissive light, and it can be seen from the upper viewing direction that the sub-pixels (ie, P11, P21) of the red filter film corresponding to the first liquid crystal deflection direction 105a and the second liquid crystal deflection direction 105b have higher brightness.
  • the sub-pixels (i.e., P32, P42) of the red filter film corresponding to the third liquid crystal deflection direction 105c and the fourth liquid crystal deflection direction 105d have low luminance.
  • each of the pixel array units 11 includes four red sub-pixels having different liquid crystal deflection directions, the red picture is displayed in every three columns of sub-pixels.
  • the display achieves brightness equalization and eliminates the streaks that are produced when a monochrome picture is displayed.
  • the diameter of the pupil is about 3.5 mm, and the distance of the liquid crystal display panel is 2 m by an ordinary human eye.
  • the brightness of the stripe is the same and the distance is less than 193 um, the human eye cannot distinguish.
  • the sub-pixels of the same color in each pixel arrangement unit 11 are alternately arranged, and the interval between the sub-pixels of the same color is less than 193 um, thereby ensuring that the human eye is not able to view the picture in the direction of the viewing angle. The resulting sense of stripes.
  • a liquid crystal display panel includes a color filter substrate 10 , an array substrate 20 , and a liquid crystal interposed between the color filter substrate 10 and the array substrate 20 .
  • Layer (not shown).
  • FIG. 8 is a schematic plan view of a color filter substrate according to an embodiment of the present invention.
  • a plurality of pixel regions arranged in a matrix are disposed on the color filter substrate 10, each pixel region includes three sub-pixels, and each sub-pixel includes one color.
  • the color filter films of the three sub-pixels included in each pixel region are different in color, and are respectively red, green, and blue filter films.
  • the color filter substrate 10 is repeatedly arranged as one pixel array unit 11 by twelve sub-pixels arranged in four rows and three columns, and each pixel array unit 11 includes four sub-pixels 101 having a first color filter film, Four sub-pixels 102 having a second color filter film and four sub-pixels 103 having a third color filter film.
  • the first color filter film is, for example, a red filter film (R)
  • the second color filter film is, for example, a green filter film (G)
  • the third color filter film is, for example, a blue filter film.
  • the color filter substrate 10 further includes a light shielding material 104, and the filter films of the different sub-pixels are spaced apart by the light shielding material 104.
  • each pixel array unit 11 Four sub-pixels having the same color filter film in each pixel array unit 11 are distributed on different columns.
  • four sub-pixels 101 having a red filter film (R) in each pixel array unit 11 are staggered in the first column, the second column, and the third column, and each pixel array unit 11 is arranged.
  • Four sub-pixels 102 having a green filter film (G) are staggered in the first column, the second column, and the third column, and each of the pixel arrangement units 11 has a blue filter film (B)
  • the sub-pixels 103 are staggered in the first column, the second column, and the third column.
  • each pixel arrangement unit 11 is arranged in twelve sub-pixels on four rows and three columns, and Pmn represents the position of the sub-pixel, where m represents the row where the sub-pixel is located, and n represents the sub-pixel.
  • P11, P22, P32, and P43 are four sub-pixels 101 having the same first color filter film (the red filter film R in this embodiment), and P12, P23, P33, and P41 are four.
  • the sub-pixels 102 having the same second color filter film (the green filter film G in this embodiment), P13, P21, P31, and P42 are four filter films having the same third color (in this embodiment, Sub-pixel 103 of blue filter film B).
  • the liquid crystal display panel includes a color filter substrate 10, an array substrate 20, and a liquid crystal layer (not shown) interposed between the color filter substrate 10 and the array substrate 20.
  • the color filter substrate 10 and the array substrate 20 respectively adopt a light alignment direction, and the light alignment direction of the color filter substrate 10 and the light alignment direction of the array substrate 20 are perpendicular to each other, wherein the arrow 12 is the ultraviolet of the color filter substrate 10 In the light alignment direction, the arrow 22 is the ultraviolet light alignment direction of the array substrate 20.
  • the light alignment direction of the color filter substrate 10 is along a horizontal direction, and the optical alignment directions of the odd-numbered rows and the even-numbered rows of sub-pixels in the color filter substrate 10 are opposite, for example, in the color filter substrate 10.
  • the light alignment direction of the odd row sub-pixels is from left to right along the horizontal direction, and the light alignment direction of the even rows of sub-pixels in the color filter substrate 10 is from right to left along the horizontal direction; the light of the array substrate 20
  • the alignment direction is along the vertical direction, and the optical alignment directions of the odd-numbered columns and the even-numbered column sub-pixels in the array substrate 20 are opposite.
  • the optical alignment direction of the odd-numbered column sub-pixels in the array substrate 20 is from the top to the vertical direction.
  • the light alignment direction of the even-numbered sub-pixels in the array substrate 20 is from bottom to top along the vertical direction.
  • the liquid crystal has a certain deflection direction, wherein the arrow 105 represents the deflection direction of the liquid crystal inside the panel after the ultraviolet light alignment.
  • the liquid crystal display panel proposed in this embodiment is a liquid crystal display panel adopting ultraviolet light vertical alignment, and the liquid crystal used is a negative liquid crystal, but the application of the present invention is not limited to the liquid crystal display panel type of ultraviolet light vertical alignment.
  • the liquid crystal display panel which is aligned by ultraviolet light has four different liquid crystal deflection directions.
  • Each of the four sub-pixels in the liquid crystal display panel has different liquid crystal deflection directions, that is, each adjacent four sub-pixels has a first liquid crystal deflection direction 105a, a second liquid crystal deflection direction 105b, and a third liquid crystal deflection direction.
  • 105c and a fourth liquid crystal deflection direction 105d wherein the first liquid crystal deflection direction 105a, the second liquid crystal deflection direction 105b, the third liquid crystal deflection direction 105c, and the fourth liquid crystal deflection direction 105d are different.
  • the light alignment direction of the color filter substrate 10 and the light alignment direction of the array substrate 20 may also be interchanged, that is, the light alignment direction of the color filter substrate 10 is along a vertical direction. And the optical alignment direction of the odd-numbered columns and the even-numbered sub-pixels in the color filter substrate 10 is opposite; the optical alignment direction of the array substrate 20 is along the horizontal direction, and the light of the odd-numbered rows and the even-numbered rows of the sub-pixels in the array substrate 20 The alignment direction is reversed. According to the optical alignment in this manner, it is also possible to achieve different liquid crystal deflection directions for each adjacent four sub-pixels in the liquid crystal display panel.
  • the liquid crystal outside the pixel electrode is reversed to the pixel electrode, and at the edge position of the pixel electrode, when the liquid crystal deflection direction in the pixel electrode and the liquid crystal outside the pixel electrode are reversed
  • black stripes 106 appear, and it can be seen from FIG. 9 that the black stripes 106 are all blocked by the light shielding material 104, so that the aperture ratio of the liquid crystal display panel is not reduced.
  • the liquid crystal pretilt angles of the four sub-pixels having different liquid crystal deflection directions inside the liquid crystal display panel are different in the same viewing angle direction. Under the influence of this, there will be a difference in brightness.
  • the four sub-pixels having the same color filter film in each pixel array unit 11 are staggered and the liquid crystal deflection directions are different, and each of the monochrome images includes liquid crystal deflection.
  • Sub-pixels with different directions although the sub-pixels of different liquid crystal deflection directions have different brightness in the viewing direction direction, since each of the monochrome pictures includes sub-pixels having different liquid crystal deflection directions, the brightness is balanced, and the monochrome picture display can be eliminated. The resulting sense of stripes.
  • FIG. 10 is a schematic diagram of the liquid crystal display panel of the present embodiment viewing a red screen in the direction of the upper viewing angle.
  • This liquid crystal display panel employs the color filter substrate shown in FIG. 8 and the ultraviolet light alignment mode shown in FIG.
  • four sub-pixels having the same color filter film are alternately arranged in a pixel array unit 11 and the liquid crystal deflection directions are different, wherein the four sub-pixels P11 and P43 having the red filter film are
  • the liquid crystal deflection directions of P32 and P22 are the first liquid crystal deflection direction 105a, the second liquid crystal deflection direction 105b, the third liquid crystal deflection direction 105c, and the fourth liquid crystal deflection direction 105d, respectively.
  • the difference in brightness is mainly affected by the liquid crystal pretilt direction on the side of the array substrate 20, and the liquid crystal pretilt direction on the side of the color filter substrate 10 has substantially no influence.
  • the first liquid crystal deflection direction 105a and the second The sub-pixel corresponding to the liquid crystal deflection direction 105b has a liquid crystal pretilt direction toward the lower viewing angle direction
  • the sub-pixel corresponding to the third liquid crystal deflection direction 105c and the fourth liquid crystal deflection direction 105d has a liquid crystal pretilt direction toward the upper viewing angle direction.
  • the sub-pixels corresponding to the first liquid crystal deflection direction 105a and the second liquid crystal deflection direction 105b when viewed in the upper viewing direction are higher in brightness than the third liquid crystal deflection direction 105c and The brightness of the sub-pixel corresponding to the liquid crystal deflection direction 105d.
  • the sub-pixel 102 having the green filter film and the sub-pixel 103 having the blue filter film are dark opaque, and the sub-pixel having the red filter film
  • the pixel 101 is in a bright state, and it can be seen from the upper viewing direction that the sub-pixels (ie, P11, P43) of the red filter film corresponding to the first liquid crystal deflection direction 105a and the second liquid crystal deflection direction 105b have higher brightness.
  • the sub-pixels (ie, P32, P22) of the red filter film corresponding to the third liquid crystal deflection direction 105c and the fourth liquid crystal deflection direction 105d are low in brightness.
  • the entire liquid crystal display panel is The red picture achieves brightness balance and eliminates the streaks that are produced when a monochrome picture is displayed.
  • a liquid crystal display panel includes a color filter substrate 10 , an array substrate 20 , and a liquid crystal interposed between the color filter substrate 10 and the array substrate 20 .
  • Layer (not shown).
  • FIG. 11 is a schematic plan view of a color filter substrate according to an embodiment of the present invention.
  • a plurality of pixel regions arranged in a matrix are disposed on the color filter substrate 10, each pixel region includes three sub-pixels, and each sub-pixel includes one color.
  • the color filter films of the three sub-pixels included in each pixel region are different in color, and are respectively red, green, and blue filter films.
  • the color filter substrate 10 is repeatedly arranged as one pixel array unit 11 in nine sub-pixels arranged in three rows and three columns, and each pixel array unit 11 includes three sub-pixels 101 and three having a first color filter film.
  • the first color filter film is, for example, a red filter film (R)
  • the second color filter film is, for example, a green filter film (G)
  • the third color filter film is, for example, a blue filter film.
  • the color filter substrate 10 further includes a light shielding material 104, and the filter films of the different sub-pixels are spaced apart by the light shielding material 104.
  • Three sub-pixels having the same color filter film in each pixel array unit 11 are distributed on different columns.
  • three sub-pixels 101 having a red filter film (R) in each pixel array unit 11 are staggered in the first column, the second column, and the third column, and each pixel array unit 11 is arranged.
  • Three sub-pixels 102 having a green filter film (G) are staggered in the first column, the second column, and the third column
  • three sub-pixels 103 having a blue color filter film (B) in each pixel array unit 11 are staggered in the first column, the second column, and the third column.
  • each of the nine pixel sub-pixels arranged in three rows and three columns in each pixel arrangement unit 11 represents the position of the sub-pixel with Pmn, where m represents the row where the sub-pixel is located, and n represents the sub-pixel.
  • P11, P23, and P32 are three sub-pixels 101 having the same first color filter film (the red filter film R in this embodiment), and P12, P21, and P33 are the same as the third.
  • the sub-pixels 102, P13, P22, and P31 of the color filter film are three filter films having the same third color (the blue filter film B in this embodiment).
  • Subpixel 103 is the same third color filter film.
  • FIG. 12 is a plan view showing a liquid crystal display panel comprising the color filter substrate 10, the array substrate 20, and the color filter substrate 10 and the array substrate 20.
  • the liquid crystal layer between the layers (not shown).
  • the color filter substrate 10 and the array substrate 20 respectively adopt a light alignment direction, and the light alignment direction of the color filter substrate 10 and the light alignment direction of the array substrate 20 are perpendicular to each other, wherein the arrow 12 is the ultraviolet of the color filter substrate 10 In the light alignment direction, the arrow 22 is the ultraviolet light alignment direction of the array substrate 20.
  • the light alignment direction of the color filter substrate 10 is along a horizontal direction, and the optical alignment directions of the odd-numbered rows and the even-numbered rows of sub-pixels in the color filter substrate 10 are opposite, for example, in the color filter substrate 10.
  • the light alignment direction of the odd row sub-pixels is from left to right along the horizontal direction, and the light alignment direction of the even rows of sub-pixels in the color filter substrate 10 is from right to left along the horizontal direction; the light of the array substrate 20
  • the alignment direction is along the vertical direction, and the optical alignment directions of the odd-numbered columns and the even-numbered column sub-pixels in the array substrate 20 are opposite.
  • the optical alignment direction of the odd-numbered column sub-pixels in the array substrate 20 is from the top to the vertical direction.
  • the light alignment direction of the even-numbered sub-pixels in the array substrate 20 is from bottom to top along the vertical direction.
  • the liquid crystal has a certain deflection direction, wherein the arrow 105 represents the deflection direction of the liquid crystal inside the panel after the ultraviolet light alignment.
  • the liquid crystal display panel proposed in this embodiment is a liquid crystal display panel adopting ultraviolet light vertical alignment, and the liquid crystal used is a negative liquid crystal, but the application of the present invention is not limited to the liquid crystal display panel type of ultraviolet light vertical alignment.
  • the liquid crystal display panel which is aligned by ultraviolet light has four different liquid crystal deflection directions.
  • each adjacent four sub-pixels in the liquid crystal display panel respectively have different liquid crystal deflection directions, that is, each adjacent four sub-pixels respectively have a first liquid crystal deflection direction 105a and a second liquid crystal deflection direction.
  • 105b, a third liquid crystal deflection direction 105c and a fourth liquid crystal deflection direction 105d wherein the first liquid crystal deflection direction 105a, the second liquid crystal deflection direction 105b, the third liquid crystal deflection direction 105c, and the fourth liquid crystal deflection direction 105d are different.
  • the light alignment direction of the color filter substrate 10 and the light alignment direction of the array substrate 20 may also be interchanged, that is, the light alignment direction of the color filter substrate 10 is along a vertical direction. And the optical alignment direction of the odd-numbered columns and the even-numbered sub-pixels in the color filter substrate 10 is opposite; the optical alignment direction of the array substrate 20 is along the horizontal direction, and the light of the odd-numbered rows and the even-numbered rows of the sub-pixels in the array substrate 20 The alignment direction is reversed. According to the optical alignment in this manner, it is also possible to achieve different liquid crystal deflection directions for each adjacent four sub-pixels in the liquid crystal display panel.
  • the liquid crystal outside the pixel electrode is reversed to the pixel electrode, and at the edge position of the pixel electrode, when the liquid crystal deflection direction in the pixel electrode and the liquid crystal outside the pixel electrode are reversed
  • black stripes 106 appear, and it can be seen from FIG. 12 that the black stripes 106 are all blocked by the light shielding material 104, so that the aperture ratio of the liquid crystal display panel is not reduced.
  • the liquid crystal pretilt angles of the four sub-pixels having different liquid crystal deflection directions inside the liquid crystal display panel are different in the same viewing angle direction. Under the influence of this, there will be a difference in brightness.
  • the liquid crystal display panel provided in this embodiment three sub-pixels having the same color filter film in each pixel array unit 11 are staggered and the liquid crystal deflection directions are different, and each of the monochrome images includes liquid crystal deflection.
  • Sub-pixels with different directions although the sub-pixels of different liquid crystal deflection directions have different brightness in the viewing direction direction, since each of the monochrome pictures includes sub-pixels having different liquid crystal deflection directions, the brightness is balanced, and the monochrome picture display can be eliminated. The resulting sense of stripes.
  • FIG. 13 is a schematic diagram of the liquid crystal display panel of the present embodiment viewing a red screen in the direction of the upper viewing angle.
  • This liquid crystal display panel employs the color filter substrate shown in FIG. 11 and the ultraviolet light alignment mode shown in FIG.
  • three sub-pixels having the same color filter film are staggered in a pixel array unit 11 and the liquid crystal deflection directions are different, wherein the three sub-pixels P11 and P23 having the red filter film are
  • the liquid crystal deflection directions of P32 are the first liquid crystal deflection direction 105a, the second liquid crystal deflection direction 105b, and the third liquid crystal deflection direction 105c, respectively.
  • the difference in brightness is mainly affected by the liquid crystal pretilt direction on the side of the array substrate 20.
  • the liquid crystal pretilt direction on the side of the color filter substrate 10 has substantially no influence, and the first liquid crystal at this time.
  • the sub-pixel corresponding to the deflection direction 105a and the second liquid crystal deflection direction 105b has a liquid crystal pretilt angle direction toward the lower viewing angle direction, and at this time, the third liquid crystal deflection direction 105c and the fourth liquid crystal deflection direction 105d correspond to the sub-pixels, and the liquid crystal pre- The inclination direction is toward the upper viewing direction. According to the liquid crystal optical knowledge as shown in FIG.
  • the sub-pixels corresponding to the first liquid crystal deflection direction 105a and the second liquid crystal deflection direction 105b when viewed in the upper viewing direction are higher in brightness than the third liquid crystal deflection direction 105c and The brightness of the sub-pixel corresponding to the liquid crystal deflection direction 105d.
  • the sub-pixel 102 having the green filter film and the sub-pixel 103 having the blue filter film are dark opaque, and the sub-pixel having the red filter film 101 is a light-transmissive light, and it can be seen from the upper viewing direction that the sub-pixels (ie, P11, P23) of the red filter film corresponding to the first liquid crystal deflection direction 105a and the second liquid crystal deflection direction 105b have higher brightness.
  • the sub-pixel (i.e., P32) of the red filter film corresponding to the third liquid crystal deflection direction 105c has a low luminance.
  • each of the pixel array units 11 includes three red sub-pixels having different liquid crystal deflection directions, the red color is displayed in the entire liquid crystal display panel.
  • the picture achieves brightness balance and eliminates the streaks that are produced when a monochrome picture is displayed.
  • the liquid crystal display panel provided by the above embodiments achieves the purpose of eliminating the stripe feeling in the viewing angle direction, and effectively ensures a large viewing angle and a high transmittance of the liquid crystal display panel.
  • the liquid crystal display panel displays a monochrome picture
  • the sub-pixels having the same color filter film adopt a staggered arrangement and have different liquid crystal deflection directions
  • the sub-pixels having different liquid crystal deflection directions in the viewing angle direction realize brightness. Balance, so as to ensure the high transmittance of the panel, while eliminating or reducing the streaks generated when the monochrome screen is displayed.
  • the embodiment of the invention provides a liquid crystal display panel.
  • the sub-pixels having the same color are arranged in a staggered manner, and the optical alignment is performed on the color filter substrate and the array substrate to make the same color.
  • the sub-pixels have different liquid crystal deflection directions, and the sub-pixels having different liquid crystal deflection directions in the viewing angle direction achieve brightness balance, thereby eliminating or reducing the stripe feeling generated when the monochrome picture is displayed while ensuring high transmittance of the panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

一种液晶显示面板,包括彩膜基板(10)和阵列基板(20),彩膜基板(10)上设有呈矩阵排列的多个像素区域,每个像素区域包括三个子像素,每个子像素包括一种颜色的滤光膜,每个像素区域包括的三个子像素的滤光膜的颜色各不相同,彩膜基板(10)以排列在四行三列上的十二个子像素作为一个像素排列单元(11)重复排列,每个像素排列单元(11)内包括四个具有第一颜色滤光膜的子像素(101)、四个具有第二颜色滤光膜的子像素(102)和四个具有第三颜色滤光膜的子像素(103),每个像素排列单元(11)内具有相同颜色滤光膜的四个子像素分布在不同列上,彩膜基板(10)和阵列基板(20)分别采取光配向,彩膜基板(10)的光配向方向(12)与阵列基板(20)的光配向方向(22)相互垂直,液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。

Description

液晶显示面板
本专利申请要求2016年06月27日提交的中国专利申请号为201610471426.2,申请人为南京中电熊猫液晶显示科技有限公司,发明名称为“彩膜基板及液晶显示装置”的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本发明涉及显示技术领域,尤其是涉及一种液晶显示面板。
背景技术
TFT-LCD是目前市场上主流的平板显示产品,因其体积小、功耗低、无辐射等优点得到了市场的广泛认同,市场占有率居平板显示首位,规模大、应用广、发展快。尤其近年来在市场推动下,高世代线迅猛发展,大尺寸、高分辨率成为液晶显示技术的主要发展方向。60寸以上面板引入4K及8K超高分辨率技术更是引领彩电市场走向,光配向技术支持下的VA型超高分辨率液晶面板已经成为彩电市场未来发展的主流。
光配向是利用线性偏极化的紫外光照射具有感光能力的高分子聚合物配向膜,使高分子聚合物具有配向能力,避免了摩擦配向过程中可能造成的玻璃基板表面污染或对配向膜的刮伤,同时光配向可以透过光罩实现多畴(Domain)配向。UV2A(Ultra Violet Vertical Alignment)技术是光配向技术的一种,通过UV2A技术容易实现面板的4-Domain配向,增强面板的视角表现。
图1为现有技术一中彩膜基板的平面示意图。如图1所示,一般现有的液晶显示面板包括彩膜基板10,所述彩膜基板10上布置有遮光材料104以及重复排列的具有红色滤光膜的子像素101、具有绿色滤光膜的子像素102和具有蓝色滤光膜的子像素103。光配向后在每个红色子像素(R)、每个绿色子像素(G)以及每个蓝色子像素(B)内形成四个不同方向的液晶偏转方向105。采用现有的光配向方式会因子像素周边的电场与子像素内液晶偏转方向对立 而形成在该子像素周边和中间存在的黑色条纹106,该黑色条纹106会造成液晶显示面板透过率降低。
图2为现有技术二中彩膜基板的平面示意图。如图2所示,现有技术二鉴于上述现有技术一中UV2A配向方式的缺点,在此基础上进行了配向方式的改进,使每个子像素只有一个液晶偏转方向,消除了存在于子像素中间的黑色条纹,从而可以提高液晶显示面板的透过率,而整个液晶显示面板仍然具有4-Domain的特性,因此视角大小并未发生变化。由于黑色条纹位置被调整到子像素周边,消除了子像素中间存在的黑色条纹,显示面板的透过率相比现有技术一提高了。
图3为采用图2中彩膜基板所组成的液晶显示面板的显示效果示意图。如图3所示,当液晶显示面板显示单色画面时,在视角方向会出现因为一列子像素的亮度与另一列子像素的亮度不同而产生条纹感,例如从视角方向观察红色画面时,由于不同的液晶偏转方向在视角方向的亮度不同,可以发现在竖向上红色子像素(R)的亮度出现了间隔性的亮暗不均且间隔两个子像素的距离,图3中位于中间一列的红色子像素(R)的亮度低于其余两列红色子像素(R)的亮度,从而人眼观看单色画面时会产生条纹感。
发明内容
为克服上述现有技术中的缺陷,本发明所要解决的技术问题为提供一种液晶显示面板,以消除或者减轻单色画面的条纹感,从而既能保证液晶显示面板的高透过率,又改善了显示画质。
本发明提供一种液晶显示面板,包括彩膜基板、阵列基板以及夹设于所述彩膜基板与所述阵列基板之间的液晶层,所述彩膜基板上设有呈矩阵排列的多个像素区域,每个所述像素区域包括三个子像素,每个所述子像素包括一种颜色的滤光膜,每个所述像素区域包括的三个子像素的滤光膜的颜色各不相同,所述彩膜基板以排列在四行三列上的十二个子像素作为一个像素排列单元重复排列,每个像素排列单元内包括四个具有第一颜色滤光膜的子像素、四个具有第二颜色滤光膜的子像素和四个具有第三颜色滤光膜的子像素,每个像素排列单元内具有相同颜色滤光膜的四个子像素分布在不同列上,所 述彩膜基板和所述阵列基板分别采取光配向,所述彩膜基板的光配向方向与所述阵列基板的光配向方向相互垂直,所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。
进一步地,所述彩膜基板的光配向方向沿着水平方向,且所述彩膜基板中奇数行与偶数行子像素的光配向方向相反;所述阵列基板的光配向方向沿着竖直方向,且所述阵列基板中奇数列与偶数列子像素的光配向方向相反。
进一步地,所述彩膜基板的光配向方向沿着竖直方向,且所述彩膜基板中奇数列与偶数列子像素的光配向方向相反;所述阵列基板的光配向方向沿着水平方向,且所述阵列基板中奇数行与偶数行子像素的光配向方向相反。
进一步地,所述液晶显示面板内每相邻四个子像素分别具有第一液晶偏转方向、第二液晶偏转方向、第三液晶偏转方向和第四液晶偏转方向,其中所述第一液晶偏转方向、所述第二液晶偏转方向、所述第三液晶偏转方向和所述第四液晶偏转方向各不相同。
进一步地,每个像素排列单元内排列在四行三列上的十二个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P21、P32、P42为四个具有相同第一颜色滤光膜的子像素,P12、P22、P33、P43为四个具有相同第二颜色滤光膜的子像素,P13、P23、P31、P41为四个具有相同第三颜色滤光膜的子像素。
进一步地,每个像素排列单元内排列在四行三列上的十二个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P22、P32、P43为四个具有相同第一颜色滤光膜的子像素,P12、P23、P33、P41为四个具有相同第二颜色滤光膜的子像素,P13、P21、P31、P42为四个具有相同第三颜色滤光膜的子像素。
进一步地,所述第一颜色滤光膜为红色滤光膜,所述第二颜色滤光膜为绿色滤光膜,所述第三颜色滤光膜为蓝色滤光膜。
本发明还提供一种液晶显示面板,包括彩膜基板、阵列基板以及夹设于所述彩膜基板与所述阵列基板之间的液晶层,所述彩膜基板上设有呈矩阵排列的多个像素区域,每个所述像素区域包括三个子像素,每个所述子像素包括一种颜色的滤光膜,每个所述像素区域包括的三个子像素的滤光膜的颜色 各不相同,所述彩膜基板以排列在三行三列上的九个子像素作为一个像素排列单元重复排列,每个像素排列单元包括三个具有第一颜色滤光膜的子像素、三个具有第二颜色滤光膜的子像素和三个具有第三颜色滤光膜的子像素,每个像素排列单元内具有相同颜色的三个子像素分布在不同列上,所述彩膜基板和所述阵列基板分别采取光配向,所述彩膜基板的光配向方向与所述阵列基板的光配向方向相互垂直,所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。
进一步地,所述彩膜基板的光配向方向沿着水平方向,且所述彩膜基板中奇数行与偶数行子像素的光配向方向相反;所述阵列基板的光配向方向沿着竖直方向,且所述阵列基板中奇数列与偶数列子像素的光配向方向相反。
进一步地,所述彩膜基板的光配向方向沿着竖直方向,且所述彩膜基板中奇数列与偶数列子像素的光配向方向相反;所述阵列基板的光配向方向沿着水平方向,且所述阵列基板中奇数行与偶数行子像素的光配向方向相反。
进一步地,所述液晶显示面板内每相邻四个子像素分别具有第一液晶偏转方向、第二液晶偏转方向、第三液晶偏转方向和第四液晶偏转方向,其中所述第一液晶偏转方向、所述第二液晶偏转方向、所述第三液晶偏转方向和所述第四液晶偏转方向各不相同。
进一步地,每个像素排列单元内排列在三行三列上的九个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P23、P32为三个具有相同第一颜色滤光膜的子像素,P12、P21、P33为三个具有相同第二颜色滤光膜的子像素,P13、P22、P31为三个具有相同第三颜色滤光膜的子像素。
进一步地,所述第一颜色滤光膜为红色滤光膜,所述第二颜色滤光膜为绿色滤光膜,所述第三颜色滤光膜为蓝色滤光膜。
与现有技术相比,本发明实施例通过改变彩膜基板上子像素的排布方式,具有相同颜色的子像素采用交错排布,而且通过对彩膜基板和阵列基板进行光配向,使得相同颜色的子像素具有不同的液晶偏转方向,在视角方向上具有不同液晶偏转方向的子像素实现了亮度平衡,从而在保证面板高透过率的同时,消除或减轻单色画面显示时产生的条纹感。
附图概述
图1为现有技术一中彩膜基板的平面示意图。
图2为现有技术二中彩膜基板的平面示意图。
图3为采用图2中彩膜基板所组成的液晶显示面板的显示效果示意图。
图4为本发明第一实施例中彩膜基板的平面示意图。
图5为使用图4的彩膜基板所组成的液晶显示面板的平面示意图。
图6为采用图5的液晶显示面板在显示单色画面时的显示效果示意图。
图7为示意液晶分子在不同液晶偏转方向时的显示亮度示意图。
图8为本发明第二实施例中彩膜基板的平面示意图。
图9为使用图8的彩膜基板所组成的液晶显示面板的平面示意图。
图10为采用图9的液晶显示面板在显示单色画面时的显示效果示意图。
图11为本发明第三实施例中彩膜基板的平面示意图。
图12为使用图11的彩膜基板所组成的液晶显示面板的平面示意图。
图13为采用图12的液晶显示面板在显示单色画面时的显示效果示意图。
本发明的较佳实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
第一实施例
请参图4至图6,为本发明第一实施例提供的液晶显示面板,包括彩膜基板10、阵列基板20以及夹设于所述彩膜基板10与所述阵列基板20之间的液晶层(图未示)。
本实施例所提出的液晶显示面板包括阵列基板20和彩膜基板10组成,阵列基板20和彩膜基板10可以采用现行的结构或其他有所变更的结构,本发明不对此做限制。
图4为本实施例所提出的彩膜基板的平面示意图,在彩膜基板10上设有呈矩阵排列的多个像素区域,每个像素区域包括三个子像素,每个子像素包括一种颜色的滤光膜,每个像素区域包括的三种子像素的滤光膜的颜色各不相同,分别为红色、绿色、蓝色的滤光膜。三种不同颜色滤光膜的厚度可以有所不同。本实施例中,红色滤光膜的膜厚为1.95um、绿色滤光膜的厚度为2.00um、蓝色滤光膜的厚度为2.05um。
所述彩膜基板10以排列在四行三列上的十二个子像素作为一个像素排列单元11重复排列,每个像素排列单元11内包括四个具有第一颜色滤光膜的子像素101、四个具有第二颜色滤光膜的子像素102和四个具有第三颜色滤光膜的子像素103。本实施例中,第一颜色滤光膜例如为红色滤光膜(R),第二颜色滤光膜例如为绿色滤光膜(G),第三颜色滤光膜例如为蓝色滤光膜(B)。
每个像素排列单元11内具有相同颜色滤光膜的四个子像素分布在不同列上。本实施例中,每个像素排列单元11内的具有红色滤光膜(R)的四个子像素101交错排布在第一列和第二列上,每个像素排列单元11内的具有绿色滤光膜(G)的四个子像素102交错排布在第二列和第三列上,每个像素排列单元11内的具有蓝色滤光膜(B)的四个子像素103交错排布在第一列和第三列上。
具体地,如图4所示,每个像素排列单元11内排列在四行三列上的十二个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P21、P32、P42为四个具有相同第一颜色滤光膜(本实施例中为红色滤光膜R)的子像素101,P12、P22、P33、P43为四个具有相同第二颜色滤光膜(本实施例中为绿色滤光膜G)的子像素102,P13、P23、P31、P41为四个具有相同第三颜色滤光膜(本实施例中为蓝色滤光膜B)的子像素103。
优选的,彩膜基板10以玻璃为基底,阵列式排布红、绿、蓝三种颜色的滤光膜,滤光膜区域可以透过相应颜色的光线,在滤光膜之外的区域分布有遮光材料104,不同子像素的滤光膜之间通过遮光材料104间隔开,遮光材料104分布的区域不能透光。遮光材料104一般选用树脂材料,遮光能力一 般要求大于4,膜厚一般在1.6um左右。
图5为使用本实施例彩膜基板所组成的液晶显示面板的平面示意图,所述液晶显示面板包括彩膜基板10、阵列基板20以及夹设于所述彩膜基板10与所述阵列基板20之间的液晶层(图未示)。所述彩膜基板10和所述阵列基板20分别采取光配向,所述彩膜基板10的光配向方向与所述阵列基板20的光配向方向相互垂直,其中箭头12为彩膜基板10的紫外光配向方向,箭头22为阵列基板20的紫外光配向方向。在本实施例中,所述彩膜基板10的光配向方向沿着水平方向,且所述彩膜基板10中奇数行与偶数行子像素的光配向方向相反,例如所述彩膜基板10中奇数行子像素的光配向方向为沿着水平方向从左至右,所述彩膜基板10中偶数行子像素的光配向方向为沿着水平方向从右至左;所述阵列基板20的光配向方向沿着竖直方向,且所述阵列基板20中奇数列与偶数列子像素的光配向方向相反,例如所述阵列基板20中奇数列子像素的光配向方向为沿着竖直方向从上至下,所述阵列基板20中偶数列子像素的光配向方向为沿着竖直方向从下至上。配向所用紫外光波长为313nm、能量为20mJ,液晶预倾角为88.5度,受阵列基板20和彩膜基板10共同配向力的影响,液晶会有一定的偏转方向,其中箭头105代表经过紫外光配向后的面板内部液晶的偏转方向。
以65英寸4K液晶显示面板为例,本实施例中所提出的液晶显示面板为采用紫外光垂直配向的液晶显示面板,所用液晶为负性液晶,但本发明应用并不仅限于紫外光垂直配向的液晶显示面板类型。
可以看到经过紫外光配向的液晶显示面板,有四个不同的液晶偏转方向。其中,所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。例如,以相邻四个子像素P31、P22、P41、P42为例,其中子像素P31内的液晶具有第一液晶偏转方向105a,子像素P41内的液晶具有第二液晶偏转方向105b,子像素P32内的液晶具有第三液晶偏转方向105c,子像素P42内的液晶具有第四液晶偏转方向105d,其中第一液晶偏转方向105a、第二液晶偏转方向105b、第三液晶偏转方向105c和第四液晶偏转方向105d各不相同。同样地,其他相邻的四个子像素如P11、P12、P21、P22,也分别具有各不相同的液晶偏转方向。
在其他实施例中,所述彩膜基板10的光配向方向和所述阵列基板20的光配向方向也可以互换,亦即:所述彩膜基板10的光配向方向沿着竖直方向,且所述彩膜基板10中奇数列与偶数列子像素的光配向方向相反,例如所述彩膜基板10中奇数列子像素的光配向方向为沿着竖直方向从上至下,所述彩膜基板10中偶数列子像素的光配向方向为沿着竖直方向从下至上;所述阵列基板20的光配向方向沿着水平方向,且所述阵列基板20中奇数行与偶数行子像素的光配向方向相反,例如所述阵列基板20中奇数行子像素的光配向方向为沿着水平方向从左至右,所述阵列基板20中偶数行子像素的光配向方向为沿着水平方向从右至左。按照这种方式进行光配向,同样可以实现所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。
受子像素中像素电极(图未示)边缘电场的影响,像素电极外侧的液晶会倒向像素电极,在像素电极的边缘位置,当像素电极内的液晶偏转方向与像素电极外侧的液晶倒向方向相对时,就会出现黑色条纹106,根据图5可以看到黑色条纹106全都被遮光材料104遮挡,因此不会减小液晶显示面板的开口率。根据已知的紫外光配向特性和负性液晶光学特性,当液晶显示面板显示白画面时,由于液晶显示面板内部的液晶偏转方向不同的四个子像素其液晶预倾角的方向不同,在同一视角方向下观察时受此影响会出现亮度差。但是按照本实施例所提供的液晶显示面板,每个像素排列单元11内具有相同颜色滤光膜的四个子像素是交错排布的且液晶偏转方向不同,每一种单色画面包含有液晶偏转方向不同的子像素,虽然不同液晶偏转方向的子像素在视角方向亮度不同,但是由于每一种单色画面包含的液晶偏转方向不同的子像素实现了亮度均衡,而且可以消除单色画面显示时产生的条纹感。
图6为本实施例所提出的液晶显示面板在上视角方向观察红色画面的示意图。此液晶显示面板采用图4所示的彩膜基板和图5所示的紫外光配向方式。本实施例提供的液晶显示面板,在一个像素排列单元11内,具有相同颜色滤光膜的四个子像素交错排布且液晶偏转方向不同,其中具有红色滤光膜的四个子像素P11、P21、P32、P42的液晶偏转方向分别为第一液晶偏转方向105a、第二液晶偏转方向105b、第三液晶偏转方向105c和第四液晶偏转方向105d。
上视角方向观察时,亮度差异主要受阵列基板20一侧的液晶预倾角方向影响,此时彩膜基板10一侧的液晶预倾角方向基本没有影响,此时第一液晶偏转方向105a和第二液晶偏转方向105b所对应的子像素,其液晶预倾角方向朝向下视角方向,此时第三液晶偏转方向105c和第四液晶偏转方向105d所对应的子像素,其液晶预倾角方向朝向上视角方向。
根据如图7所示的液晶光学知识,以40所示箭头方向为观察方向,液晶31的液晶预倾角方向与观察方向相反,液晶32的液晶预倾角方向朝向观察方向。当液晶预倾角方向如液晶31时所观察到的亮度大于当液晶预倾角方向如液晶32时的亮度,即液晶预倾角方向与观察方向相反的子像素其亮度大于液晶预倾角朝向观察方向的子像素的亮度,可以知道上视角方向观察时,第一液晶偏转方向105a和第二液晶偏转方向105b所对应的子像素,其亮度高于第三液晶偏转方向105c和第四液晶偏转方向105d所对应的子像素的亮度。
如图6所示,当液晶显示面板显示红色画面时,具有绿色滤光膜的子像素102和具有蓝色滤光膜的子像素103为暗态不透光,具有红色滤光膜的子像素101为亮态透光,从上视角方向观察时可以看到,第一液晶偏转方向105a和第二液晶偏转方向105b所对应的红色滤光膜的子像素(即P11、P21)亮度较高,第三液晶偏转方向105c和第四液晶偏转方向105d所对应的红色滤光膜的子像素(即P32、P42)亮度较低。但是由于具有红色滤光膜的四个子像素101采取了交错排布的方式,而且每个像素排列单元11内都包含有四种液晶偏转方向不同的红色子像素,因此每三列子像素中红色画面显示实现了亮度均衡,而且消除了单色画面显示时产生的条纹感。
同样推理可以得知,当液晶显示面板显示绿色画面或者蓝色画面,在视角方向下观察液晶显示面板时,每三列子像素中的单色画面亮度都实现了亮度均衡,而且可以消除单色画面显示时产生的条纹感。
又以普通人眼在观察液晶显示面板时的瞳孔直径大约为3.5mm,以普通人眼观察液晶显示面板距离为2m来评价,当条纹的亮度大小相同,且距离小于193um时,人眼无法分辨条纹的间距,本实施例中每个像素排列单元11内同种颜色的子像素交错排布,同种颜色子像素之间的间隔小于193um,因此可以确保消除视角方向上人眼观看画面时所产生的条纹感。
第二实施例
请参图8至图10,为本发明第二实施例提供的液晶显示面板,包括彩膜基板10、阵列基板20以及夹设于所述彩膜基板10与所述阵列基板20之间的液晶层(图未示)。
图8为本实施例所提出的彩膜基板的平面示意图,在彩膜基板10上设有呈矩阵排列的多个像素区域,每个像素区域包括三个子像素,每个子像素包括一种颜色的滤光膜,每个像素区域包括的三种子像素的滤光膜的颜色各不相同,分别为红色、绿色、蓝色的滤光膜。
所述彩膜基板10以排列在四行三列上的十二个子像素作为一个像素排列单元11重复排列,每个像素排列单元11内包括四个具有第一颜色滤光膜的子像素101、四个具有第二颜色滤光膜的子像素102和四个具有第三颜色滤光膜的子像素103。本实施例中,第一颜色滤光膜例如为红色滤光膜(R),第二颜色滤光膜例如为绿色滤光膜(G),第三颜色滤光膜例如为蓝色滤光膜(B)。彩膜基板10还包括遮光材料104,不同子像素的滤光膜之间通过遮光材料104间隔开。
每个像素排列单元11内具有相同颜色滤光膜的四个子像素分布在不同列上。本实施例中,每个像素排列单元11内的具有红色滤光膜(R)的四个子像素101交错排布在第一列、第二列和第三列上,每个像素排列单元11内的具有绿色滤光膜(G)的四个子像素102交错排布在第一列、第二列和第三列上,每个像素排列单元11内的具有蓝色滤光膜(B)的四个子像素103交错排布在第一列、第二列和第三列上。
具体地,如图8所示,每个像素排列单元11内排列在四行三列上的十二个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P22、P32、P43为四个具有相同第一颜色滤光膜(本实施例中为红色滤光膜R)的子像素101,P12、P23、P33、P41为四个具有相同第二颜色滤光膜(本实施例中为绿色滤光膜G)的子像素102,P13、P21、P31、P42为四个具有相同第三颜色滤光膜(本实施例中为蓝色滤光膜B)的子像素103。
图9为使用本实施例彩膜基板所组成的液晶显示面板的平面示意图,所 述液晶显示面板包括彩膜基板10、阵列基板20以及夹设于所述彩膜基板10与所述阵列基板20之间的液晶层(图未示)。所述彩膜基板10和所述阵列基板20分别采取光配向,所述彩膜基板10的光配向方向与所述阵列基板20的光配向方向相互垂直,其中箭头12为彩膜基板10的紫外光配向方向,箭头22为阵列基板20的紫外光配向方向。在本实施例中,所述彩膜基板10的光配向方向沿着水平方向,且所述彩膜基板10中奇数行与偶数行子像素的光配向方向相反,例如所述彩膜基板10中奇数行子像素的光配向方向为沿着水平方向从左至右,所述彩膜基板10中偶数行子像素的光配向方向为沿着水平方向从右至左;所述阵列基板20的光配向方向沿着竖直方向,且所述阵列基板20中奇数列与偶数列子像素的光配向方向相反,例如所述阵列基板20中奇数列子像素的光配向方向为沿着竖直方向从上至下,所述阵列基板20中偶数列子像素的光配向方向为沿着竖直方向从下至上。受阵列基板20和彩膜基板10共同配向力的影响,液晶会有一定的偏转方向,其中箭头105代表经过紫外光配向后的面板内部液晶的偏转方向。
本实施例中所提出的液晶显示面板为采用紫外光垂直配向的液晶显示面板,所用液晶为负性液晶,但本发明应用并不仅限于紫外光垂直配向的液晶显示面板类型。
可以看到经过紫外光配向的液晶显示面板,有四个不同的液晶偏转方向。其中,所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向,即每相邻四个子像素分别具有第一液晶偏转方向105a、第二液晶偏转方向105b、第三液晶偏转方向105c和第四液晶偏转方向105d,其中第一液晶偏转方向105a、第二液晶偏转方向105b、第三液晶偏转方向105c和第四液晶偏转方向105d各不相同。
在其他实施例中,所述彩膜基板10的光配向方向和所述阵列基板20的光配向方向也可以互换,亦即:所述彩膜基板10的光配向方向沿着竖直方向,且所述彩膜基板10中奇数列与偶数列子像素的光配向方向相反;所述阵列基板20的光配向方向沿着水平方向,且所述阵列基板20中奇数行与偶数行子像素的光配向方向相反。按照这种方式进行光配向,同样可以实现所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。
受子像素中像素电极(图未示)边缘电场的影响,像素电极外侧的液晶会倒向像素电极,在像素电极的边缘位置,当像素电极内的液晶偏转方向与像素电极外侧的液晶倒向方向相对时,就会出现黑色条纹106,根据图9可以看到黑色条纹106全都被遮光材料104遮挡,因此不会减小液晶显示面板的开口率。根据已知的紫外光配向特性和负性液晶光学特性,当液晶显示面板显示白画面时,由于液晶显示面板内部的液晶偏转方向不同的四个子像素其液晶预倾角的方向不同,在同一视角方向下观察时受此影响会出现亮度差。但是按照本实施例所提供的液晶显示面板,每个像素排列单元11内具有相同颜色滤光膜的四个子像素是交错排布的且液晶偏转方向不同,每一种单色画面包含有液晶偏转方向不同的子像素,虽然不同液晶偏转方向的子像素在视角方向亮度不同,但是由于每一种单色画面包含的液晶偏转方向不同的子像素实现了亮度均衡,而且可以消除单色画面显示时产生的条纹感。
图10为本实施例所提出的液晶显示面板在上视角方向观察红色画面的示意图。此液晶显示面板采用图8所示的彩膜基板和图9所示的紫外光配向方式。本实施例提供的液晶显示面板,在一个像素排列单元11内,具有相同颜色滤光膜的四个子像素交错排布且液晶偏转方向不同,其中具有红色滤光膜的四个子像素P11、P43、P32、P22的液晶偏转方向分别为第一液晶偏转方向105a、第二液晶偏转方向105b、第三液晶偏转方向105c和第四液晶偏转方向105d。
上视角方向观察时,亮度差异主要受阵列基板20一侧的液晶预倾角方向影响,此时彩膜基板10一侧的液晶预倾角方向基本没有影响,此时第一液晶偏转方向105a和第二液晶偏转方向105b所对应的子像素,其液晶预倾角方向朝向下视角方向,此时第三液晶偏转方向105c和第四液晶偏转方向105d所对应的子像素,其液晶预倾角方向朝向上视角方向。根据如图7所示的液晶光学知识,可以知道上视角方向观察时,第一液晶偏转方向105a和第二液晶偏转方向105b所对应的子像素,其亮度高于第三液晶偏转方向105c和第四液晶偏转方向105d所对应的子像素的亮度。
如图10所示,当液晶显示面板显示红色画面时,具有绿色滤光膜的子像素102和具有蓝色滤光膜的子像素103为暗态不透光,具有红色滤光膜的子 像素101为亮态透光,从上视角方向观察时可以看到,第一液晶偏转方向105a和第二液晶偏转方向105b所对应的红色滤光膜的子像素(即P11、P43)亮度较高,第三液晶偏转方向105c和第四液晶偏转方向105d所对应的红色滤光膜的子像素(即P32、P22)亮度较低。但是由于四个具有红色滤光膜的子像素101采取了交错排布的方式,而且每个像素排列单元11内都包含有四种液晶偏转方向不同的红色子像素,因此在整个液晶显示面板中红色画面实现了亮度均衡,而且消除了单色画面显示时产生的条纹感。
同样推理可以得知,当液晶显示面板显示绿色画面或者蓝色画面,在视角方向下观察液晶显示面板时,整个液晶显示面板中单色画面都实现了亮度均衡,而且可以消除单色画面显示时产生的条纹感。
第三实施例
请参图11至图13,为本发明第三实施例提供的液晶显示面板,包括彩膜基板10、阵列基板20以及夹设于所述彩膜基板10与所述阵列基板20之间的液晶层(图未示)。
图11为本实施例所提出的彩膜基板的平面示意图,在彩膜基板10上设有呈矩阵排列的多个像素区域,每个像素区域包括三个子像素,每个子像素包括一种颜色的滤光膜,每个像素区域包括的三种子像素的滤光膜的颜色各不相同,分别为红色、绿色、蓝色的滤光膜。
所述彩膜基板10以排列在三行三列上的九个子像素作为一个像素排列单元11重复排列,每个像素排列单元11内包括三个具有第一颜色滤光膜的子像素101、三个具有第二颜色滤光膜的子像素102和三个具有第三颜色滤光膜的子像素103。本实施例中,第一颜色滤光膜例如为红色滤光膜(R),第二颜色滤光膜例如为绿色滤光膜(G),第三颜色滤光膜例如为蓝色滤光膜(B)。彩膜基板10还包括遮光材料104,不同子像素的滤光膜之间通过遮光材料104间隔开。
每个像素排列单元11内具有相同颜色滤光膜的三个子像素分布在不同列上。本实施例中,每个像素排列单元11内的具有红色滤光膜(R)的三个子像素101交错排布在第一列、第二列和第三列上,每个像素排列单元11内的具有绿色滤光膜(G)的三个子像素102交错排布在第一列、第二列和第三列 上,每个像素排列单元11内的具有蓝色滤光膜(B)的三个子像素103交错排布在第一列、第二列和第三列上。
具体地,如图11所示,每个像素排列单元11内排列在三行三列上的九个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P23、P32为三个具有相同第一颜色滤光膜(本实施例中为红色滤光膜R)的子像素101,P12、P21、P33为三个具有相同第二颜色滤光膜(本实施例中为绿色滤光膜G)的子像素102,P13、P22、P31为三个具有相同第三颜色滤光膜(本实施例中为蓝色滤光膜B)的子像素103。
图12为使用本实施例彩膜基板所组成的液晶显示面板的平面示意图,所述液晶显示面板包括彩膜基板10、阵列基板20以及夹设于所述彩膜基板10与所述阵列基板20之间的液晶层(图未示)。所述彩膜基板10和所述阵列基板20分别采取光配向,所述彩膜基板10的光配向方向与所述阵列基板20的光配向方向相互垂直,其中箭头12为彩膜基板10的紫外光配向方向,箭头22为阵列基板20的紫外光配向方向。在本实施例中,所述彩膜基板10的光配向方向沿着水平方向,且所述彩膜基板10中奇数行与偶数行子像素的光配向方向相反,例如所述彩膜基板10中奇数行子像素的光配向方向为沿着水平方向从左至右,所述彩膜基板10中偶数行子像素的光配向方向为沿着水平方向从右至左;所述阵列基板20的光配向方向沿着竖直方向,且所述阵列基板20中奇数列与偶数列子像素的光配向方向相反,例如所述阵列基板20中奇数列子像素的光配向方向为沿着竖直方向从上至下,所述阵列基板20中偶数列子像素的光配向方向为沿着竖直方向从下至上。受阵列基板20和彩膜基板10共同配向力的影响,液晶会有一定的偏转方向,其中箭头105代表经过紫外光配向后的面板内部液晶的偏转方向。
本实施例中所提出的液晶显示面板为采用紫外光垂直配向的液晶显示面板,所用液晶为负性液晶,但本发明应用并不仅限于紫外光垂直配向的液晶显示面板类型。
可以看到经过紫外光配向的液晶显示面板,有四个不同的液晶偏转方向。其中,所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向,即每相邻四个子像素分别具有第一液晶偏转方向105a、第二液晶偏转方向 105b、第三液晶偏转方向105c和第四液晶偏转方向105d,其中第一液晶偏转方向105a、第二液晶偏转方向105b、第三液晶偏转方向105c和第四液晶偏转方向105d各不相同。
在其他实施例中,所述彩膜基板10的光配向方向和所述阵列基板20的光配向方向也可以互换,亦即:所述彩膜基板10的光配向方向沿着竖直方向,且所述彩膜基板10中奇数列与偶数列子像素的光配向方向相反;所述阵列基板20的光配向方向沿着水平方向,且所述阵列基板20中奇数行与偶数行子像素的光配向方向相反。按照这种方式进行光配向,同样可以实现所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。
受子像素中像素电极(图未示)边缘电场的影响,像素电极外侧的液晶会倒向像素电极,在像素电极的边缘位置,当像素电极内的液晶偏转方向与像素电极外侧的液晶倒向方向相对时,就会出现黑色条纹106,根据图12可以看到黑色条纹106全都被遮光材料104遮挡,因此不会减小液晶显示面板的开口率。根据已知的紫外光配向特性和负性液晶光学特性,当液晶显示面板显示白画面时,由于液晶显示面板内部的液晶偏转方向不同的四个子像素其液晶预倾角的方向不同,在同一视角方向下观察时受此影响会出现亮度差。但是按照本实施例所提供的液晶显示面板,每个像素排列单元11内具有相同颜色滤光膜的三个子像素是交错排布的且液晶偏转方向不同,每一种单色画面包含有液晶偏转方向不同的子像素,虽然不同液晶偏转方向的子像素在视角方向亮度不同,但是由于每一种单色画面包含的液晶偏转方向不同的子像素实现了亮度均衡,而且可以消除单色画面显示时产生的条纹感。
图13为本实施例所提出的液晶显示面板在上视角方向观察红色画面的示意图。此液晶显示面板采用图11所示的彩膜基板和图12所示的紫外光配向方式。本实施例提供的液晶显示面板,在一个像素排列单元11内,具有相同颜色滤光膜的三个子像素交错排布且液晶偏转方向不同,其中具有红色滤光膜的三个子像素P11、P23、P32的液晶偏转方向分别为第一液晶偏转方向105a、第二液晶偏转方向105b和第三液晶偏转方向105c。
上视角方向观察时,亮度差异主要受阵列基板20一侧的液晶预倾角方向影响,此时彩膜基板10一侧的液晶预倾角方向基本没有影响,此时第一液晶 偏转方向105a和第二液晶偏转方向105b所对应的子像素,其液晶预倾角方向朝向下视角方向,此时第三液晶偏转方向105c和第四液晶偏转方向105d所对应的子像素,其液晶预倾角方向朝向上视角方向。根据如图7所示的液晶光学知识,可以知道上视角方向观察时,第一液晶偏转方向105a和第二液晶偏转方向105b所对应的子像素,其亮度高于第三液晶偏转方向105c和第四液晶偏转方向105d所对应的子像素的亮度。
如图13所示,当液晶显示面板显示红色画面时,具有绿色滤光膜的子像素102和具有蓝色滤光膜的子像素103为暗态不透光,具有红色滤光膜的子像素101为亮态透光,从上视角方向观察时可以看到,第一液晶偏转方向105a和第二液晶偏转方向105b所对应的红色滤光膜的子像素(即P11、P23)亮度较高,第三液晶偏转方向105c所对应的红色滤光膜的子像素(即P32)亮度较低。但是由于三个具有红色滤光膜的子像素101采取了交错排布的方式,而且每个像素排列单元11内都包含有三种液晶偏转方向不同的红色子像素,因此在整个液晶显示面板中红色画面实现了亮度均衡,而且消除了单色画面显示时产生的条纹感。
同样推理可以得知,当液晶显示面板显示绿色画面或者蓝色画面,在视角方向下观察液晶显示面板时,整个液晶显示面板中单色画面都实现了亮度均衡,而且可以消除单色画面显示时产生的条纹感。
以上各实施例提供的液晶显示面板实现了消除视角方向下条纹感的目的,有效保证了液晶显示面板的大视角和高透过率。当液晶显示面板在显示单色画面时,由于具有相同颜色滤光膜的子像素采用交错排布方式且具有不同的液晶偏转方向,因此在视角方向上具有不同液晶偏转方向的子像素实现了亮度平衡,从而在保证面板高透过率的同时,消除或减轻单色画面显示时产生的条纹感。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例提供液晶显示面板,通过改变彩膜基板上子像素的排布方式,具有相同颜色的子像素采用交错排布,而且通过对彩膜基板和阵列基板进行光配向,使得相同颜色的子像素具有不同的液晶偏转方向,在视角方向上具有不同液晶偏转方向的子像素实现了亮度平衡,从而在保证面板高透过率的同时,消除或减轻单色画面显示时产生的条纹感。

Claims (13)

  1. 一种液晶显示面板,包括彩膜基板、阵列基板以及夹设于所述彩膜基板与所述阵列基板之间的液晶层,所述彩膜基板上设有呈矩阵排列的多个像素区域,每个所述像素区域包括三个子像素,每个所述子像素包括一种颜色的滤光膜,每个所述像素区域包括的三个子像素的滤光膜的颜色各不相同,其特征在于,所述彩膜基板以排列在四行三列上的十二个子像素作为一个像素排列单元重复排列,每个像素排列单元内包括四个具有第一颜色滤光膜的子像素、四个具有第二颜色滤光膜的子像素和四个具有第三颜色滤光膜的子像素,每个像素排列单元内具有相同颜色滤光膜的四个子像素分布在不同列上,所述彩膜基板和所述阵列基板分别采取光配向,所述彩膜基板的光配向方向与所述阵列基板的光配向方向相互垂直,所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。
  2. 根据权利要求1所述的液晶显示面板,其特征在于,所述彩膜基板的光配向方向沿着水平方向,且所述彩膜基板中奇数行与偶数行子像素的光配向方向相反;所述阵列基板的光配向方向沿着竖直方向,且所述阵列基板中奇数列与偶数列子像素的光配向方向相反。
  3. 根据权利要求1所述的液晶显示面板,其特征在于,所述彩膜基板的光配向方向沿着竖直方向,且所述彩膜基板中奇数列与偶数列子像素的光配向方向相反;所述阵列基板的光配向方向沿着水平方向,且所述阵列基板中奇数行与偶数行子像素的光配向方向相反。
  4. 根据权利要求1所述的液晶显示面板,其特征在于,所述液晶显示面板内每相邻四个子像素分别具有第一液晶偏转方向、第二液晶偏转方向、第三液晶偏转方向和第四液晶偏转方向,其中所述第一液晶偏转方向、所述第二液晶偏转方向、所述第三液晶偏转方向和所述第四液晶偏转方向各不相同。
  5. 根据权利要求1所述的液晶显示面板,其特征在于,每个像素排列单元内排列在四行三列上的十二个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P21、P32、P42为四个具有相同第一颜色滤光膜的子像素,P12、P22、P33、P43为四个具有相同第二颜色滤光膜的子像素,P13、P23、P31、P41为四个具有相同第三颜 色滤光膜的子像素。
  6. 根据权利要求1所述的液晶显示面板,其特征在于,每个像素排列单元内排列在四行三列上的十二个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P22、P32、P43为四个具有相同第一颜色滤光膜的子像素,P12、P23、P33、P41为四个具有相同第二颜色滤光膜的子像素,P13、P21、P31、P42为四个具有相同第三颜色滤光膜的子像素。
  7. 根据权利要求1所述的液晶显示面板,其特征在于,所述第一颜色滤光膜为红色滤光膜,所述第二颜色滤光膜为绿色滤光膜,所述第三颜色滤光膜为蓝色滤光膜。
  8. 一种液晶显示面板,包括彩膜基板、阵列基板以及夹设于所述彩膜基板与所述阵列基板之间的液晶层,所述彩膜基板上设有呈矩阵排列的多个像素区域,每个所述像素区域包括三个子像素,每个所述子像素包括一种颜色的滤光膜,每个所述像素区域包括的三个子像素的滤光膜的颜色各不相同,其特征在于,所述彩膜基板以排列在三行三列上的九个子像素作为一个像素排列单元重复排列,每个像素排列单元包括三个具有第一颜色滤光膜的子像素、三个具有第二颜色滤光膜的子像素和三个具有第三颜色滤光膜的子像素,每个像素排列单元内具有相同颜色的三个子像素分布在不同列上,所述彩膜基板和所述阵列基板分别采取光配向,所述彩膜基板的光配向方向与所述阵列基板的光配向方向相互垂直,所述液晶显示面板内每相邻四个子像素分别具有不同的液晶偏转方向。
  9. 根据权利要求8所述的液晶显示面板,其特征在于,所述彩膜基板的光配向方向沿着水平方向,且所述彩膜基板中奇数行与偶数行子像素的光配向方向相反;所述阵列基板的光配向方向沿着竖直方向,且所述阵列基板中奇数列与偶数列子像素的光配向方向相反。
  10. 根据权利要求8所述的液晶显示面板,其特征在于,所述彩膜基板的光配向方向沿着竖直方向,且所述彩膜基板中奇数列与偶数列子像素的光配向方向相反;所述阵列基板的光配向方向沿着水平方向,且所述阵列基板中奇数行与偶数行子像素的光配向方向相反。
  11. 根据权利要求8所述的液晶显示面板,其特征在于,所述液晶显示面板内每相邻四个子像素分别具有第一液晶偏转方向、第二液晶偏转方向、第三液晶偏转方向和第四液晶偏转方向,其中所述第一液晶偏转方向、所述第二液晶偏转方向、所述第三液晶偏转方向和所述第四液晶偏转方向各不相同。
  12. 根据权利要求8所述的液晶显示面板,其特征在于,每个像素排列单元内排列在三行三列上的九个子像素中,以Pmn代表子像素的位置,其中m代表子像素所在的行,n代表子像素所在的列,则P11、P23、P32为三个具有相同第一颜色滤光膜的子像素,P12、P21、P33为三个具有相同第二颜色滤光膜的子像素,P13、P22、P31为三个具有相同第三颜色滤光膜的子像素。
  13. 根据权利要求8所述的液晶显示面板,其特征在于,所述第一颜色滤光膜为红色滤光膜,所述第二颜色滤光膜为绿色滤光膜,所述第三颜色滤光膜为蓝色滤光膜。
PCT/CN2017/072464 2016-06-27 2017-01-24 液晶显示面板 WO2018000813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610481426.2 2016-06-27
CN201610481426.2A CN106125388B (zh) 2016-06-27 2016-06-27 液晶显示装置

Publications (1)

Publication Number Publication Date
WO2018000813A1 true WO2018000813A1 (zh) 2018-01-04

Family

ID=57265865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072464 WO2018000813A1 (zh) 2016-06-27 2017-01-24 液晶显示面板

Country Status (2)

Country Link
CN (1) CN106125388B (zh)
WO (1) WO2018000813A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699901A (zh) * 2023-07-28 2023-09-05 武汉华星光电半导体显示技术有限公司 显示面板

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125388B (zh) * 2016-06-27 2019-04-05 南京中电熊猫液晶显示科技有限公司 液晶显示装置
CN107329329B (zh) * 2017-08-22 2019-12-24 深圳市华星光电技术有限公司 液晶显示面板及其uv2a配向方法
TWI678583B (zh) * 2018-10-05 2019-12-01 友達光電股份有限公司 顯示裝置
CN110993824A (zh) * 2019-12-19 2020-04-10 京东方科技集团股份有限公司 Oled显示屏及其制备方法、显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258488A (ja) * 2003-02-27 2004-09-16 Seiko Epson Corp カラー表示装置及び電子機器
CN101088042A (zh) * 2004-12-28 2007-12-12 统宝香港控股有限公司 彩色液晶显示装置
US20110304808A1 (en) * 2010-06-11 2011-12-15 Youn Hak Jeong Liquid crystal display
CN103257480A (zh) * 2013-05-27 2013-08-21 南京中电熊猫液晶显示科技有限公司 一种液晶va模式的配向方法
CN104483779A (zh) * 2014-11-20 2015-04-01 深圳市华星光电技术有限公司 Uv2a像素结构
CN104570531A (zh) * 2015-02-05 2015-04-29 京东方科技集团股份有限公司 阵列基板及显示装置
CN104756000A (zh) * 2012-10-22 2015-07-01 Nlt科技股份有限公司 液晶显示装置及其制造方法
CN106125388A (zh) * 2016-06-27 2016-11-16 南京中电熊猫液晶显示科技有限公司 彩膜基板及液晶显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004258488A (ja) * 2003-02-27 2004-09-16 Seiko Epson Corp カラー表示装置及び電子機器
CN101088042A (zh) * 2004-12-28 2007-12-12 统宝香港控股有限公司 彩色液晶显示装置
US20110304808A1 (en) * 2010-06-11 2011-12-15 Youn Hak Jeong Liquid crystal display
CN104756000A (zh) * 2012-10-22 2015-07-01 Nlt科技股份有限公司 液晶显示装置及其制造方法
CN103257480A (zh) * 2013-05-27 2013-08-21 南京中电熊猫液晶显示科技有限公司 一种液晶va模式的配向方法
CN104483779A (zh) * 2014-11-20 2015-04-01 深圳市华星光电技术有限公司 Uv2a像素结构
CN104570531A (zh) * 2015-02-05 2015-04-29 京东方科技集团股份有限公司 阵列基板及显示装置
CN106125388A (zh) * 2016-06-27 2016-11-16 南京中电熊猫液晶显示科技有限公司 彩膜基板及液晶显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116699901A (zh) * 2023-07-28 2023-09-05 武汉华星光电半导体显示技术有限公司 显示面板
CN116699901B (zh) * 2023-07-28 2023-12-01 武汉华星光电半导体显示技术有限公司 显示面板

Also Published As

Publication number Publication date
CN106125388B (zh) 2019-04-05
CN106125388A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2018000813A1 (zh) 液晶显示面板
US7599035B2 (en) Liquid crystal display device and method of driving the same
TWI421576B (zh) 可調整視角之液晶顯示面板
CN100511407C (zh) 液晶显示器件及其驱动方法
KR101219319B1 (ko) 액정표시장치
US20190146271A1 (en) Transparent liquid crystal display
RU2012125271A (ru) Жидкокристаллическое устройство отображения и способ для его изготовления
US10788721B2 (en) Liquid crystal display
US9110304B2 (en) Two-dimensional and three-dimensional switchable liquid crystal display device and displaying method thereof
US9091901B2 (en) Stereoscopic image display device
US20130258213A1 (en) Electronic Display Projection Assembly Having Substantially White Off State
US20050052603A1 (en) In-plane switching mode liquid crystal display device and method of fabricating the same
WO2017049884A1 (zh) 一种阵列基板、曲面显示面板、曲面显示装置
US20130258217A1 (en) Stereoscopic image display device
CN105824159A (zh) 辅助面板和显示装置
US20150049068A1 (en) Liquid crystal display panel and 3d image system
KR100846980B1 (ko) 액정표시장치
WO2021036499A1 (zh) 显示面板及显示装置
TWI480648B (zh) 配向平衡之多視域液晶顯示器
KR101318761B1 (ko) 영상표시장치
CN213519032U (zh) 显示面板及显示装置
CN104375318B (zh) 液晶显示面板及使用其的三维显示系统
CN107357089B (zh) 液晶显示面板及光配向方法
JP2014041243A (ja) 液晶表示装置及び液晶プロジェクター
JP2012226216A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17818814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17818814

Country of ref document: EP

Kind code of ref document: A1