WO2018000437A1 - 金属电池及其电池管理系统、控制方法 - Google Patents

金属电池及其电池管理系统、控制方法 Download PDF

Info

Publication number
WO2018000437A1
WO2018000437A1 PCT/CN2016/088241 CN2016088241W WO2018000437A1 WO 2018000437 A1 WO2018000437 A1 WO 2018000437A1 CN 2016088241 W CN2016088241 W CN 2016088241W WO 2018000437 A1 WO2018000437 A1 WO 2018000437A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal battery
battery
cell
discharge
energy
Prior art date
Application number
PCT/CN2016/088241
Other languages
English (en)
French (fr)
Inventor
王雷
许柏皋
王文韬
郑大阳
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/088241 priority Critical patent/WO2018000437A1/zh
Priority to CN201680004523.0A priority patent/CN107438917B/zh
Publication of WO2018000437A1 publication Critical patent/WO2018000437A1/zh
Priority to US16/235,615 priority patent/US11031639B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3647Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to the field of metal battery technologies, and in particular, to a metal battery, a battery management system thereof, and a control method.
  • Lithium metal batteries were born before lithium-ion batteries, and in the 1980s, Moli commercialized them and sold more than 2 million lithium-metal batteries. Since then, due to the safety hazards of lithium metal batteries, several serious safety incidents have occurred. Moli was forced to recall a large number of batteries, and the company went bankrupt and was acquired. One of the important safety hazards comes from the internal short circuit of the battery caused by the formation of lithium dendrites of the negative electrode and the associated risk of thermal failure. The birth of lithium-ion batteries is largely to solve the safety problem of lithium metal batteries. By introducing a layered material that can deintercalate lithium lithium, such as graphite, in the negative electrode, the lithium metal is unevenly grown during charging. Dendrites and other problems.
  • the layered material of lithium lithium which can be deintercalated is increased at the negative electrode, the volume ratio and the weight ratio energy density of the cell are decreased.
  • the demand for high-energy-density batteries is increasing, and lithium-ion batteries are reaching the theoretical upper limit of energy density, which is difficult to meet the growing demand, especially in electric vehicles, drones, mobile phones and other applications. field. Therefore, metal batteries, such as lithium metal batteries, magnesium metal batteries, sodium metal batteries, etc., have once again caused widespread interest and productization attempts.
  • the growth of dendrites inside metal cells usually occurs during battery charging.
  • Fig. 1 taking a lithium metal battery as an example, during the charging process of the battery, lithium metal is deposited due to uneven precipitation and growth of lithium metal on the negative electrode, and a thin SEI film is rapidly formed in the lithium metal. The surface is formed.
  • the body expands, causing the SEI film to break. After several cycles, it leads to the formation of dendritic dendrites.
  • dendrites can occur simultaneously or at different times within the cell from different locations on the surface of the negative electrode.
  • the discharge capacity of the battery cell is weakened, and the cycle life is lowered.
  • the formation of lithium dendrites is monitored by introducing a third electrode between the positive and negative electrodes, and a certain degree of intervention can be selected, but the complexity of the internal structure of the battery is increased, and the existing production equipment and processes cannot be matched. .
  • the battery management system is correspondingly complicated.
  • the technical problem mainly solved by the present invention is to provide a simple battery management system, which can effectively detect the formation of dendrites inside the metal core of the metal battery, so as to take safety measures in time to avoid the occurrence of a safety accident.
  • a technical solution adopted by the present invention is to provide a battery management system for managing a battery cell of a metal battery, the battery management system comprising:
  • a detection circuit for detecting electrical parameters of the metal battery
  • control circuit configured to acquire the electrical parameter and determine a safety performance of the battery cell of the metal battery according to the electrical parameter.
  • the detecting circuit includes at least one of the following: a current detecting circuit, a voltage detecting circuit, and a fuel gauge;
  • the electrical parameter includes at least one of: energy of the metal battery, power of the metal battery, voltage of the metal battery, current of the metal battery, energy of the battery, The amount of electricity of the cell, the voltage of the cell, and the current of the cell.
  • control circuit includes at least one of the following: a microprocessor and a circuit board.
  • the battery management system further includes a memory electrically connected to the detection circuit and the control circuit, the memory for storing electrical parameters of the metal battery;
  • the control circuit acquires electrical parameters of the metal battery at different times from the memory, and determines safety performance of the battery cells of the metal battery according to the electrical parameters at different times.
  • the memory is further configured to pre-store a preset value
  • the control circuit determines a change value of the electrical parameter of the metal battery according to the electrical parameter at the different time, and determines a cell of the metal battery according to a comparison result between the change value and the preset value. Security performance.
  • control circuit determines a rate of change of electrical parameters of the metal battery according to electrical parameters of the metal battery at different times in a charging state, and determines according to a comparison result between the rate of change and the preset value. The safety performance of the battery cells of the metal battery.
  • the electrical parameter includes a charging power or/and a charging energy of the metal battery or/and its battery core
  • the control circuit is configured according to the charging power of the metal battery at different times in a constant voltage charging state. a difference between the difference or/and the charging energy to determine a rate of increase of the charging amount or/and the charging energy, and determining that the rate of increase of the charging amount or/and the charging energy is greater than the preset value
  • the cells of the metal battery have dendrites formed inside and the dendrites communicate with the positive and negative electrodes of the cells.
  • the electrical parameter includes a charging current of the metal battery or/and its battery core
  • the control circuit determines the difference according to the charging current at different times when the metal battery is in a constant voltage charging state. Determining a rate of increase of the charging current, and determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative of the cell when the rate of increase of the charging current is greater than the predetermined value pole.
  • the electrical parameter includes charging energy of the metal battery or/and its battery core
  • the control circuit determines the difference of the charging energy according to different times of the metal battery in a constant current charging state. Determining a rate of increase of the charging energy, and determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative of the cell when the rate of increase of the charging energy is less than the predetermined value pole.
  • the electrical parameter includes a charging voltage of the metal battery or/and its battery core
  • the control circuit determines the difference according to the charging voltage at different timings of the metal battery in a constant current charging state. Determining a rate of decrease of the charging voltage, and determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative of the cell when the rate of decrease of the charging voltage is greater than the predetermined value pole.
  • control circuit determines a rate of change of electrical parameters of the metal battery according to electrical parameters of the metal battery at different times in a discharged state, and determines according to a comparison result between the rate of change and the preset value.
  • the safety performance of the battery cells of the metal battery is not limited.
  • the electrical parameter includes a discharge electric quantity or/and a discharge energy of the metal battery or/and its electric core
  • the control circuit is different according to the discharge electric quantity at different timings of the metal battery in a discharge state.
  • the difference between the value or/and the discharge energy determines the rate of increase of the discharge amount or/and the discharge energy, and determines the metal battery when the rate of increase of the discharge amount or/and the discharge energy is less than the preset value
  • the inside of the cell has dendrites formed and the dendrite communicates with the positive and negative electrodes of the cell.
  • the electrical parameter includes a discharge current of the metal battery or a battery thereof, and the control circuit determines the discharge current according to a difference of the discharge current at different times when the metal battery is in a discharge state. a rate of decrease, and when the rate of decrease of the discharge current is greater than the predetermined value, determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • control circuit determines a rate of change of electrical parameters of the metal battery according to electrical parameters at different times when the metal battery is in a resting state, and compares the rate of change with the preset value according to the change rate. The safety performance of the cells of the metal battery is determined.
  • the electrical parameter includes a standing voltage of the metal battery or/and its battery core and/or a remaining remaining power amount
  • the control circuit is configured according to different timings of the metal battery being in a resting state.
  • the difference between the resting voltage or/and the remaining remaining power determines the rate of decrease of the resting voltage or/and the remaining remaining power, and the rate of decrease of the resting voltage or/and the remaining remaining power
  • the value is greater than the preset value, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the metal battery includes a plurality of cells connected in series or/and in parallel
  • the battery management system further includes a memory electrically connected to the detection circuit and the control circuit, respectively, the memory is used for Storing electrical parameters of respective cells of the metal battery;
  • the control circuit acquires electrical parameters of the respective batteries of the metal battery at the same time from the memory, and determines the safety performance of the battery cells of the metal battery according to the electrical parameters at the same time.
  • the memory is further configured to pre-store a preset value
  • the electrical parameter includes a resting voltage of the battery cell
  • the control circuit determines the static between the two batteries according to a standing voltage of the same time when the respective batteries of the metal battery are in a resting state. Setting a voltage difference, and determining a maximum value of the standing voltage difference between the two cells, and a maximum value of the standing voltage difference between the two cells and the preset value The comparison results determine the safety performance of the cells of the metal battery.
  • control circuit determines that dendrite is formed inside the cell of the metal battery when the maximum value of the standing voltage differences between the two cells is greater than the preset value
  • the crystal is connected to the positive and negative electrodes of the cell.
  • the electrical parameter includes a total charge amount or/and a total charge energy from a zero charge to a fully charged full charge process, and a difference or/and a total of the total charge power of the control circuit in two adjacent times
  • the difference in charging energy is greater than the preset value, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the electrical parameter includes total discharge power or/and total discharge energy during a complete discharge from full charge to discharge, and the control circuit determines a difference or/and a total discharge power of two adjacent sources. a difference in total discharge energy, and determining that dendrite is formed inside the cell of the metal battery when the difference in the total discharge amount or/and the difference in the total discharge energy is greater than the predetermined value
  • the dendrite communicates with the positive and negative electrodes of the cell.
  • the electrical parameter includes a total charge amount from a zero charge to a fully charged full charge process, and a total discharge power during a complete discharge process from full charge to discharge, the control circuit determining a charge and discharge a difference between a total charge amount and a total discharge amount during the cycle, and determining that dendrite is formed inside the cell of the metal battery when a difference between the total charge amount and the total discharge amount is greater than the preset value And the dendrite is connected to the positive and negative electrodes of the battery cell.
  • the electrical parameter includes a total charging energy from a zero charge to a fully charged full charge process, and a total discharge energy from a full charge to a fully discharged discharge process, the control circuit determining a charge and discharge Determining the difference between the total charging energy and the total discharge energy during the cycle, and determining that dendrite is formed inside the cell of the metal battery when the difference between the total charging energy and the total discharging energy is greater than the predetermined value And the dendrite is connected to the positive and negative electrodes of the battery cell.
  • the memory is further configured to pre-store a preset value and a full-charge design value of the metal battery or a battery thereof;
  • the electrical parameter includes a total charge quantity or/and a total discharge quantity of the metal battery or/and its battery core, and the control circuit determines the full charge power design value and the total charge power amount and/or total discharge power amount according to the electrical quantity. a difference between the full charge design value and the total charge amount and/or a difference from the total discharge amount, and a difference or/and a difference between the full charge design value and the total charge amount.
  • the difference between the total discharge electric quantities is greater than the preset value, it is determined that dendrites are formed inside the battery cells of the metal battery and the dendrites are connected to the positive and negative electrodes of the electric cells.
  • the memory is further configured to pre-store a preset value and a full-energy design value of the metal battery or a battery thereof;
  • the electrical parameter includes total charging energy or/and total discharge energy of the metal battery or/and its battery core
  • the control circuit determines the full energy design value and the total charging energy or/and total discharge energy according to the full energy design value. a difference between the full energy design value and the total charging energy or/and a difference from the total discharging energy, and a difference or/and a difference between the full energy design value and the total charging energy
  • the difference of the total discharge energy is greater than the preset value, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the battery management system further includes a prompting unit, wherein the control circuit is further configured to control when determining that dendrite is formed inside the battery cell of the metal battery and the dendrite is connected to the positive and negative poles of the battery core
  • the prompting unit performs an abnormal prompt.
  • the prompting unit is at least one of a sound generating device or a display device, wherein
  • the prompting unit When the prompting unit is a sound generating device, the prompting unit performs an abnormal prompt by emitting an alarm sound or voice; or
  • an abnormal prompt is made by flashing a light or displaying a text.
  • control circuit is further configured to cut off a current loop where the metal battery is located when it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the detecting circuit includes a current detecting circuit electrically connected to a charging circuit or/and a discharging circuit of the metal battery for detecting the charging circuit during charging of the metal battery
  • the charging current in, or/and is used to detect a discharge current in the discharge circuit during the discharge of the metal battery.
  • control circuit calculates a charging power amount during the charging process by time integrating the charging current
  • control circuit calculates a discharge quantity during the discharge by time-integrating the discharge current.
  • the detecting circuit includes a voltage detecting circuit electrically connected between the metal battery or the positive and negative electrodes of the battery cell, and configured to detect the metal battery during charging a charging voltage between the positive and negative electrodes of the metal battery or the battery cell, or a discharge voltage between the positive and negative electrodes of the metal battery or the battery cell during the discharge of the metal battery, Alternatively, for detecting a standing voltage between the metal battery or the positive and negative electrodes of the battery cell while the metal battery is in a standing state.
  • the detecting circuit further includes a current detecting circuit electrically connected to the charging circuit or/and the discharging circuit of the metal battery for detecting the charging during the charging process of the metal battery a charging current in the loop, or/and, for detecting a discharge current in the discharge circuit during discharge of the metal battery;
  • the control circuit calculates the charging energy by time-integrating a product of the charging current and the charging voltage, or/and the control circuit performs a product of the discharging current and the discharging voltage. Time integration is performed to calculate the discharge energy.
  • the detecting circuit includes a fuel gauge, and the fuel gauge is electrically connected to a charging circuit or a discharging circuit of the metal battery, and is configured to detect a charging power of the metal battery when the metal battery is in a charging process, Or for detecting a discharge quantity of the metal battery while the metal battery is in a discharge process;
  • the electricity meter is electrically connected to the metal battery or the battery core for detecting the remaining power of the metal battery while the metal battery is in a standing process.
  • the battery management system is disposed inside the housing of the metal battery, and the detection circuit is electrically connected to the battery core of the metal battery.
  • a metal battery including a housing and a battery core housed in the housing, the metal battery further including a housing disposed inside the housing a battery management system for managing the battery core, the battery management system comprising:
  • a detection circuit for detecting electrical parameters of the metal battery
  • control circuit configured to acquire the electrical parameter and determine a safety performance of the battery cell of the metal battery according to the electrical parameter.
  • the detecting circuit includes at least one of the following: a current detecting circuit, a voltage detecting circuit, and a fuel gauge;
  • the electrical parameter includes at least one of: energy of the metal battery, power of the metal battery, voltage of the metal battery, current of the metal battery, energy of the battery, The amount of electricity of the cell, the voltage of the cell, and the current of the cell.
  • control circuit includes at least one of the following: a microprocessor and a circuit board.
  • the battery management system further includes a memory electrically connected to the detection circuit and the control circuit, the memory for storing electrical parameters of the metal battery;
  • the control circuit acquires electrical parameters of the metal battery at different times from the memory, and determines safety performance of the battery cells of the metal battery according to the electrical parameters at different times.
  • the memory is further configured to pre-store a preset value
  • the control circuit determines a change value of the electrical parameter of the metal battery according to the electrical parameter at the different time, and determines a cell of the metal battery according to a comparison result between the change value and the preset value. Security performance.
  • control circuit determines a rate of change of electrical parameters of the metal battery according to electrical parameters of the metal battery at different times in a charging state, and determines according to a comparison result between the rate of change and the preset value. The safety performance of the battery cells of the metal battery.
  • the electrical parameter includes a charging power or/and a charging energy of the metal battery or/and its battery core
  • the control circuit is configured according to the charging power of the metal battery at different times in a constant voltage charging state. a difference between the difference or/and the charging energy to determine a rate of increase of the charging amount or/and the charging energy, and determining that the rate of increase of the charging amount or/and the charging energy is greater than the preset value
  • the cells of the metal battery have dendrites formed inside and the dendrites communicate with the positive and negative electrodes of the cells.
  • the electrical parameter includes a charging current of the metal battery or/and its battery core
  • the control circuit determines the difference according to the charging current at different times when the metal battery is in a constant voltage charging state. Determining a rate of increase of the charging current, and determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative of the cell when the rate of increase of the charging current is greater than the predetermined value pole.
  • the electrical parameter includes charging energy of the metal battery or/and its battery core
  • the control circuit determines the difference of the charging energy according to different times of the metal battery in a constant current charging state. Determining a rate of increase of the charging energy, and determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative of the cell when the rate of increase of the charging energy is less than the predetermined value pole.
  • the electrical parameter includes a charging voltage of the metal battery or/and its battery core
  • the control circuit determines the difference according to the charging voltage at different timings of the metal battery in a constant current charging state. Determining a rate of decrease of the charging voltage, and determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative of the cell when the rate of decrease of the charging voltage is greater than the predetermined value pole.
  • control circuit determines a rate of change of electrical parameters of the metal battery according to electrical parameters of the metal battery at different times in a discharged state, and determines according to a comparison result between the rate of change and the preset value.
  • the safety performance of the battery cells of the metal battery is not limited.
  • the electrical parameter includes a discharge electric quantity or/and a discharge energy of the metal battery or/and its electric core
  • the control circuit is different according to the discharge electric quantity at different timings of the metal battery in a discharge state.
  • the difference between the value or/and the discharge energy determines the rate of increase of the discharge amount or/and the discharge energy, and determines the metal battery when the rate of increase of the discharge amount or/and the discharge energy is less than the preset value
  • the inside of the cell has dendrites formed and the dendrite communicates with the positive and negative electrodes of the cell.
  • the electrical parameter includes a discharge current of the metal battery or a battery thereof, and the control circuit determines the discharge current according to a difference of the discharge current at different times when the metal battery is in a discharge state. a rate of decrease, and when the rate of decrease of the discharge current is greater than the predetermined value, determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • control circuit determines a rate of change of electrical parameters of the metal battery according to electrical parameters at different times when the metal battery is in a resting state, and compares the rate of change with the preset value according to the change rate. The safety performance of the cells of the metal battery is determined.
  • the electrical parameter includes a standing voltage of the metal battery or/and its battery core and/or a remaining remaining power amount
  • the control circuit is configured according to different timings of the metal battery being in a resting state.
  • the difference between the resting voltage or/and the remaining remaining power determines the rate of decrease of the resting voltage or/and the remaining remaining power, and the rate of decrease of the resting voltage or/and the remaining remaining power
  • the value is greater than the preset value, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the metal battery includes a plurality of cells connected in series or/and in parallel
  • the battery management system further includes a memory electrically connected to the detection circuit and the control circuit, respectively, the memory is used for Storing electrical parameters of respective cells of the metal battery;
  • the control circuit acquires electrical parameters of the respective batteries of the metal battery at the same time from the memory, and determines the safety performance of the battery cells of the metal battery according to the electrical parameters at the same time.
  • the memory is further configured to pre-store a preset value
  • the electrical parameter includes a resting voltage of the battery cell
  • the control circuit determines the static between the two batteries according to a standing voltage of the same time when the respective batteries of the metal battery are in a resting state. Setting a voltage difference, and determining a maximum value of the standing voltage difference between the two cells, and a maximum value of the standing voltage difference between the two cells and the preset value The comparison results determine the safety performance of the cells of the metal battery.
  • control circuit determines that dendrite is formed inside the cell of the metal battery when the maximum value of the standing voltage differences between the two cells is greater than the preset value
  • the crystal is connected to the positive and negative electrodes of the cell.
  • the electrical parameter includes a total charge amount or/and a total charge energy from a zero charge to a fully charged full charge process, and a difference or/and a total of the total charge power of the control circuit in two adjacent times
  • the difference in charging energy is greater than the preset value, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the electrical parameter includes total discharge power or/and total discharge energy during a complete discharge from full charge to discharge, and the control circuit determines a difference or/and a total discharge power of two adjacent sources. a difference in total discharge energy, and determining that dendrite is formed inside the cell of the metal battery when the difference in the total discharge amount or/and the difference in the total discharge energy is greater than the predetermined value
  • the dendrite communicates with the positive and negative electrodes of the cell.
  • the electrical parameter includes a total charge amount from a zero charge to a fully charged full charge process, and a total discharge power during a complete discharge process from full charge to discharge, the control circuit determining a charge and discharge a difference between a total charge amount and a total discharge amount during the cycle, and determining that dendrite is formed inside the cell of the metal battery when a difference between the total charge amount and the total discharge amount is greater than the preset value And the dendrite is connected to the positive and negative electrodes of the battery cell.
  • the electrical parameter includes a total charging energy from a zero charge to a fully charged full charge process, and a total discharge energy from a full charge to a fully discharged discharge process, the control circuit determining a charge and discharge Determining the difference between the total charging energy and the total discharge energy during the cycle, and determining that dendrite is formed inside the cell of the metal battery when the difference between the total charging energy and the total discharging energy is greater than the predetermined value And the dendrite is connected to the positive and negative electrodes of the battery cell.
  • the memory is further configured to pre-store a preset value and a full-charge design value of the metal battery or a battery thereof;
  • the electrical parameter includes a total charge quantity or/and a total discharge quantity of the metal battery or/and its battery core, and the control circuit determines the full charge power design value and the total charge power amount and/or total discharge power amount according to the electrical quantity. a difference between the full charge design value and the total charge amount and/or a difference from the total discharge amount, and a difference or/and a difference between the full charge design value and the total charge amount.
  • the difference between the total discharge electric quantities is greater than the preset value, it is determined that dendrites are formed inside the battery cells of the metal battery and the dendrites are connected to the positive and negative electrodes of the electric cells.
  • the memory is further configured to pre-store a preset value and a full-energy design value of the metal battery or a battery thereof;
  • the electrical parameter includes total charging energy or/and total discharge energy of the metal battery or/and its battery core
  • the control circuit determines the full energy design value and the total charging energy or/and total discharge energy according to the full energy design value. a difference between the full energy design value and the total charging energy or/and a difference from the total discharging energy, and a difference or/and a difference between the full energy design value and the total charging energy
  • the difference of the total discharge energy is greater than the preset value, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the battery management system further includes a prompting unit, wherein the control circuit is further configured to control when determining that dendrite is formed inside the battery cell of the metal battery and the dendrite is connected to the positive and negative poles of the battery core
  • the prompting unit performs an abnormal prompt.
  • the prompting unit is at least one of a sound generating device or a display device, wherein
  • the prompting unit When the prompting unit is a sound generating device, the prompting unit performs an abnormal prompt by emitting an alarm sound or voice; or
  • an abnormal prompt is made by flashing a light or displaying a text.
  • control circuit is further configured to cut off a current loop where the metal battery is located when it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the detecting circuit includes a current detecting circuit electrically connected to a charging circuit or/and a discharging circuit of the metal battery for detecting the charging circuit during charging of the metal battery
  • the charging current in, or/and is used to detect a discharge current in the discharge circuit during the discharge of the metal battery.
  • control circuit calculates a charging power amount during the charging process by time integrating the charging current
  • control circuit calculates a discharge quantity during the discharge by time-integrating the discharge current.
  • the detecting circuit includes a voltage detecting circuit electrically connected between the metal battery or the positive and negative electrodes of the battery cell, and configured to detect the metal battery during charging a charging voltage between the positive and negative electrodes of the metal battery or the battery cell, or a discharge voltage between the positive and negative electrodes of the metal battery or the battery cell during the discharge of the metal battery, Alternatively, for detecting a standing voltage between the metal battery or the positive and negative electrodes of the battery cell while the metal battery is in a standing state.
  • the detecting circuit further includes a current detecting circuit electrically connected to the charging circuit or/and the discharging circuit of the metal battery for detecting the charging during the charging process of the metal battery a charging current in the loop, or/and, for detecting a discharge current in the discharge circuit during discharge of the metal battery;
  • the control circuit calculates the charging energy by time-integrating a product of the charging current and the charging voltage, or/and the control circuit performs a product of the discharging current and the discharging voltage. Time integration is performed to calculate the discharge energy.
  • the detecting circuit includes a fuel gauge, and the fuel gauge is electrically connected to a charging circuit or a discharging circuit of the metal battery, and is configured to detect a charging power of the metal battery when the metal battery is in a charging process, Or for detecting a discharge quantity of the metal battery while the metal battery is in a discharge process;
  • the electricity meter is electrically connected to the metal battery or the battery core for detecting the remaining power of the metal battery while the metal battery is in a standing process.
  • Another technical solution adopted by the present invention is to provide a method for controlling a metal battery, comprising the following steps:
  • the electrical parameter includes at least one of: energy of the metal battery, a quantity of the metal battery, a voltage of the metal battery, a current of the metal battery, an energy of the battery, the The amount of electricity in the cell, the voltage of the cell, and the current of the cell.
  • control method further includes:
  • control method further includes:
  • control method further includes:
  • control method specifically includes:
  • the electrical parameter includes a charging power or/and a charging energy of the metal battery or/and its battery core; and the control method specifically includes:
  • the electrical parameter includes a charging current of the metal battery or/and its battery core; the control method specifically includes:
  • the cell of the metal battery has dendrites formed inside and the dendrite communicates with the positive and negative electrodes of the cell.
  • the electrical parameter includes charging energy of the metal battery or/and its battery core;
  • the control method specifically includes:
  • the cell of the metal battery has dendrites formed inside and the dendrite communicates with the positive and negative electrodes of the cell.
  • the electrical parameter includes a charging voltage of the metal battery or/and its battery core; and the control method specifically includes:
  • the cells of the metal battery have dendrites formed inside and the dendrites communicate with the positive and negative electrodes of the cells.
  • control method specifically includes:
  • the electrical parameter includes a discharge quantity or/and a discharge energy of the metal battery or/and its battery core; and the control method specifically includes:
  • the electrical parameter includes a discharge current of the metal battery or a battery thereof; and the control method specifically includes:
  • the cell of the battery has dendrites formed therein and the dendrite communicates with the positive and negative electrodes of the cell.
  • control method specifically includes:
  • the electrical parameter includes a resting voltage of the metal battery or/and its battery core and/or a remaining remaining power; the control method specifically includes:
  • the metal battery includes a plurality of cells connected in series or/and in parallel, and the control method further includes:
  • the electrical parameter includes a resting voltage of the battery core
  • the control method further includes:
  • control method specifically includes:
  • the electrical parameter includes a total charge power or/and a total charge energy during a complete charging process from zero charge to full charge; the control method specifically includes:
  • the electrical parameter includes total discharge power or/and total discharge energy during a complete discharge process from full charge to discharge;
  • the control method specifically includes:
  • the electrical parameter includes a total charge quantity from a zero charge to a fully charged full charge process, and a total discharge power from a full charge to a complete discharge process of discharging the power;
  • the control method specifically includes:
  • the electrical parameter includes a total charging energy from a zero charge to a fully charged full charge process, and a total discharge energy from a full charge to a fully discharged discharge process;
  • the control method specifically includes:
  • the electrical parameter includes a total charge quantity or/and a total discharge quantity of the metal battery or/and its battery core; and the control method further includes:
  • the electrical parameter includes total charging energy or/and total discharge energy of the metal battery or/and its battery core; and the control method further includes:
  • the battery management system of the present invention judges whether there is lithium dendrite formation inside the battery cell by monitoring the electrical parameters of the metal battery in real time, thereby effectively solving the technical problem of how to detect the generation of dendrites inside the battery, so as to take timely safety measures. Avoid the occurrence of security incidents.
  • FIG. 1 is a schematic view showing a process of forming lithium dendrites inside a cell of a metal battery.
  • FIG. 2 is a schematic view showing the formation of dendritic lithium dendrites in FIG. 1 resulting in short-circuiting of positive and negative electrodes of a metal battery.
  • FIG. 3 is a schematic diagram of an application environment of a battery management system according to an embodiment of the present invention.
  • the battery management system is disposed inside a casing of the metal battery.
  • FIG. 4 is a schematic diagram of an application environment of another battery management system according to an embodiment of the present invention, the battery management system being independent of the metal battery.
  • Fig. 5 is a schematic view showing the state in which the cells of the metal battery of the embodiment of the invention are in a charged state.
  • Fig. 6 is a schematic view showing the state in which the cells of the metal battery of the embodiment of the invention are in a discharged state.
  • Fig. 7 is a schematic view showing a single cell of a metal battery in an embodiment of the present invention in a standing state.
  • Fig. 8 is a schematic view showing a plurality of cells of a metal battery according to an embodiment of the present invention in a standing state.
  • FIG. 9 is a schematic flow chart of a method for controlling a metal battery according to an embodiment of the present invention.
  • Figure 10 is a perspective view of a metal battery in accordance with an embodiment of the present invention.
  • Figure 11 is a cross-sectional view of the metal battery of Figure 10 taken along the line XI-XI.
  • FIG. 3 is a schematic diagram of an application environment of a Battery Management System (BMS) according to an embodiment of the present invention.
  • the battery management system 100 is for managing the cells 21 of the metal battery 200 to monitor the safety performance of the cells 21 of the metal battery 200.
  • the battery management system 100 includes at least a detection circuit 11 and a control circuit 12.
  • the detection circuit 11 is configured to detect electrical parameters of the metal battery 200.
  • the battery management system 100 is disposed inside a housing of the metal battery 200, and the detection circuit 11 is electrically connected to the battery 21 of the metal battery 200.
  • the battery management system 100 can also be independent of the metal battery 200', and the detecting circuit 11 is electrically connected to the metal battery 200'. .
  • the control circuit 12 is configured to acquire the electrical parameter and determine a safety performance of the battery 21 of the metal battery 200 according to the electrical parameter.
  • the control circuit 12 includes at least one of the following: a microprocessor and a circuit board.
  • the detecting circuit 11 includes at least one of a current detecting circuit, a voltage detecting circuit, and a fuel gauge.
  • the electrical parameter includes at least one of: energy of the metal battery, a quantity of the metal battery, a voltage of the metal battery, a current of the metal battery, an energy of the battery, the battery The amount of electricity, the voltage of the cell, and the current of the cell.
  • the voltage can be directly detected by the voltage detecting circuit.
  • the current can be directly detected by the current detecting circuit.
  • the amount of electricity can be directly detected by the fuel gauge, or the current is detected by the current detecting circuit, and then the current is time-integrated to calculate.
  • the energy may first be detected by the voltage detecting circuit, and the current is detected by the current detecting circuit, and then the product of the voltage and the current is time-integrated to calculate.
  • the detecting circuit 11 includes a current detecting circuit electrically connected to the charging circuit or/and the discharging circuit of the metal battery 200 for The metal battery 200 detects a charging current in the charging circuit during charging, or/and is used to detect a discharging current in the discharging circuit while the metal battery 200 is in a discharging process.
  • control circuit 12 calculates the amount of charge during the charging process by time integrating the charging current. Or/and the control circuit 12 calculates the amount of discharged electricity during the discharge by time-integrating the discharge current.
  • the detecting circuit 11 includes a voltage detecting circuit electrically connected between the metal battery 200 or the positive and negative electrodes of the battery cell 21 for the metal
  • the battery 200 is in a charging process to detect a charging voltage between the metal battery 200 or the positive and negative electrodes of the battery cell 21, or to detect the metal battery 200 or the battery during the discharging process of the metal battery 200 a discharge voltage between the positive and negative electrodes of the battery cell 21, or for detecting the static electricity between the positive and negative electrodes of the metal battery 200 or the battery cell 21 during the state in which the metal battery 200 is in a resting state Set the voltage.
  • the detecting circuit 11 includes a current detecting circuit and a voltage detecting circuit
  • the control circuit 12 calculates the charging energy by time-integrating a product of the charging current and the charging voltage.
  • the control circuit 12 calculates the discharge energy by time integrating the product of the discharge current and the discharge voltage.
  • the detection circuit 11 includes a fuel gauge electrically connected to a charging circuit or a discharge circuit of the metal battery 200 for detecting when the metal battery 200 is in a charging process.
  • the charged electric quantity of the metal battery 200 or used to detect the discharged electric quantity of the metal battery 200 during the discharge of the metal battery 200.
  • the fuel gauge is electrically connected to the metal battery 200 or the battery cell 21 for detecting the remaining power of the metal battery 200 during the standing period of the metal battery 200.
  • the battery management system 100 further includes a memory 13 electrically connected to the detection circuit 11 and the control circuit 12 respectively, and the memory 13 is used to store the metal battery 200. Electrical parameters.
  • the control circuit 12 is specifically configured to acquire electrical parameters of the metal battery 200 at different times from the memory 13, and determine safety performance of the battery cells 21 of the metal battery 200 according to the electrical parameters at different times.
  • the memory 13 is further configured to store a preset value in advance.
  • the control circuit 12 is specifically configured to determine a change value of the electrical parameter of the metal battery 200 according to the electrical parameter at the different time, and determine the metal battery 200 according to a comparison result between the change value and the preset value. The safety performance of the battery core 21.
  • the change value may include a change rate, a change trend, and the like, and the preset value may be set as a maximum limit value or a minimum limit value of a normal change range of the change rate, or the preset value may be set to be the The maximum or minimum limit of the normal range of variation of the trend.
  • FIG. 5 is a schematic diagram of the battery cell 21 of the metal battery 200 in the charging state according to the embodiment of the present invention.
  • the metal battery 200 may generate dendrites inside the battery 21 during the charging process and communicate with the positive and negative poles of the battery core 21 to cause a short circuit, thereby consuming a larger portion of the charging amount or charging energy, resulting in the said
  • the electrical parameters of the metal battery 200 or/and the battery cell 21 are relatively hopped, for example, the charging power or the charging energy of the metal battery 200 or/and the battery core 21 exhibits a large rising jump. Or the charging voltage and the charging current of the metal battery 200 or the battery 21 thereof are increased or decreased, and the battery management system 100 can monitor the dendrites during charging of the metal battery 200 for the situations. Generation.
  • control circuit 12 may determine a rate of change of electrical parameters of the metal battery 200 according to electrical parameters of the metal battery 200 at different times in a state of charge, and according to the rate of change
  • the comparison result of the preset values determines the safety performance of the battery cells 21 of the metal battery 200.
  • the charging power of the metal battery 200 can be time-integrated by charging current during the charging process. Calculated. According to the above description, the calculation formula of the charge amount of the metal battery 200 can be expressed as:
  • Q charge is the charge quantity, in mAh or Ah
  • I charge is the charge current, in mA or A.
  • the charging energy of the metal battery 200 can be calculated by time-integrating the product of the charging current and the charging voltage in the charging process. According to the above description, the calculation formula of the charging energy of the metal battery 200 can be expressed as:
  • W charge is the charging energy
  • the unit is Wh or mWh
  • U charge is the charging voltage
  • the unit is mV or V.
  • the current actually used to generate the electric quantity by the battery cell 21 of the metal battery 200 is I cell
  • the actual charging electric quantity of the metal battery 200 itself is Q 0 .
  • the calculation formula of the electric quantity Q 0 actually generated by the battery core 21 of the metal battery 200 can be expressed as:
  • the dendritic leakage current is I leak
  • the charging current I charge I leak + I cell
  • W leak calculated energy consumption of the dendrite can be expressed as:
  • W charge W leak + W 0 , where W 0 is the actual charging energy of the metal battery 200 itself.
  • the rate of change v q of the charging power Q charge can be expressed as:
  • the rate of change v w of the charging energy W charge can be expressed as:
  • the electrical parameter may include a charging current of the metal battery 200 or/and its battery core 21.
  • the control circuit 12 may determine a growth rate of the charging current according to a difference of the charging currents at different times when the metal battery 200 is in a constant voltage state of charge, and increase a rate of the charging current when the charging current is greater than the At the preset value, it is determined that dendrites are formed inside the battery cells 21 of the metal battery 200 and the dendrites communicate with the positive and negative electrodes of the battery cells 21.
  • the cell current I cell also remains unchanged.
  • the dendritic leakage current I leak becomes a short-circuit current and becomes large.
  • the preset value P I1 may be set to be a maximum limit value of the charging current I charge within a normal variation range. According to the above description, the increase of the dendritic leakage current I leak causes the charging current I charge to rise and jump, thereby causing the growth rate of the charging current I charge to be v i >P I1 . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the electrical parameter may include a charge amount or/and a charge energy of the metal battery 200 or/and its battery core 21.
  • the control circuit 12 can determine the growth rate of the charging power or/and the charging energy according to the difference of the charging power or the difference of the charging energy at different times when the metal battery 200 is in the constant voltage charging state. And determining, when the charging power or/and the charging energy growth rate is greater than the preset value, that dendrite is formed inside the battery cell 21 of the metal battery 200 and the dendrite is connected to the battery core 21 Positive and negative.
  • the preset value P Q1 may be set as a maximum limit value of the charging power amount Q charge within a normal variation range.
  • the increase of the dendritic leakage current I leak increases the power consumption Q den of the dendrite consumption.
  • the charging current I charge also rises and jumps, thereby causing the charging power.
  • the Q charge undergoes a rising transition, resulting in an increase rate of the charge quantity Q charge v q >P Q1 . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the preset value P W1 may also be set as a maximum limit value of the charging energy W charge within a normal variation range.
  • the leak current I leak dendrite will increase the energy consumed dendrite W leak increases, so that the charging energy W charge rising transition occurs, resulting in the charging of the energy W charge
  • the growth rate v w >P W1 Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the electrical parameter may include a charging voltage of the metal battery 200 or/and its battery core 21.
  • the control circuit 12 may determine a rate of decrease of the charging voltage according to a difference of the charging voltages at different times when the metal battery 200 is in a constant current charging state, and a rate of decrease in the charging voltage is greater than the At the preset value, it is determined that dendrites are formed inside the battery cells 21 of the metal battery 200 and the dendrites communicate with the positive and negative electrodes of the battery cells 21.
  • the charging current I charge remains substantially unchanged, and the charging voltage U charge drops slowly under normal conditions.
  • the preset value P U1 may be set to be a maximum limit value of the charging voltage U charge within a normal variation range. According to the above description, the increase of the dendritic leakage current I leak causes the battery current I cell to fall and jump, thereby causing the charging voltage U charge to drop and jump, resulting in the charging voltage U charge The rate of decline v u > P U1 . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the electrical parameter can include the charging energy of the metal battery 200 or/and its battery core 21.
  • the control circuit 12 may determine the growth rate of the charging energy according to the difference of the charging energy at different times when the metal battery 200 is in a constant current charging state, and the growth rate of the charging energy is less than the At the preset value, it is determined that dendrites are formed inside the battery cells 21 of the metal battery 200 and the dendrites communicate with the positive and negative electrodes of the battery cells 21.
  • the preset value P W2 may be set as a minimum limit value of the charging energy W charge within a normal variation range.
  • the charging current I charge remains substantially unchanged during constant current charging, and the increase in the dendritic leakage current I leak causes the charging voltage U charge to undergo a falling transition, thereby causing the said The charging energy W charge growth rate is slowed down, resulting in a growth rate of the charging energy W charge v w ⁇ P W2 . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • FIG. 6 is a schematic diagram of the battery cell 21 of the metal battery 200 in the discharge state according to the embodiment of the present invention.
  • the metal battery 200 may also generate dendrites inside the battery 21 during the discharge process and communicate with the positive and negative poles of the battery core 21 to cause a short circuit, thereby consuming a large portion of the discharge amount or discharge energy, resulting in
  • the electrical parameters of the metal battery 200 or/and the battery cell 21 are significantly changed, for example, the discharge capacity or the discharge energy of the metal battery 200 or/the battery 21 thereof has a large drop jump.
  • the discharge voltage and the discharge current of the metal battery 200 or the battery 21 thereof are increased or decreased, and the battery management system 100 can also monitor the discharge of the metal battery 200 for the situations.
  • the formation of dendrites are provided.
  • control circuit 12 may further determine a rate of change of electrical parameters of the metal battery 200 according to electrical parameters of the metal battery 200 at different times in a discharged state, and according to the rate of change
  • the comparison result of the preset values determines the safety performance of the battery cells 21 of the metal battery 200.
  • the current of the battery cell 21 of the metal battery 200 actually used to generate electric power is I cell
  • the actual discharge capacity of the metal battery 200 itself is Q 0 .
  • the calculation formula of the electric quantity Q 0 actually generated by the battery core 21 of the metal battery 200 can be expressed as:
  • the discharge amount of the metal battery 200 can be calculated by time-integrating the discharge current during the discharge. According to the above description, the calculation formula of the discharge amount of the metal battery 200 can be expressed as:
  • Q discharge is the discharge capacity, unit mAh or Ah
  • I discharge is the discharge current, unit mA or A.
  • the discharge energy of the metal battery 200 can be calculated by time-integrating the product of the discharge current and the discharge voltage in the discharge process. According to the above description, the calculation formula of the discharge energy of the metal battery 200 can be expressed as:
  • W disharge is the discharge energy
  • the unit Wh or mWh U discharge is the discharge voltage
  • the unit is mV or V.
  • the electrical parameter can include a discharge current of the metal battery 200 or its battery core 21.
  • the control circuit 12 may determine a rate of decrease of the discharge current according to a difference of the discharge currents at different times when the metal battery 200 is in a discharge state, and a rate of decrease of the discharge current is greater than the preset At the time of the determination, it is determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the current I cell actually used to generate the electric power of the battery cell 21 of the metal battery 200 is slowly reduced under normal conditions.
  • the preset value P I2 may be set to be a maximum limit value of the discharge current I discharge within a normal variation range. According to the above description, the increase of the dendritic leakage current I leak causes the discharge current I discharge to fall and fall, thereby causing the falling rate of the discharge current I discharge to be v i >P I2 . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the discharge voltage U discharge is also known. It will slowly decrease at a normal speed, that is, the rate of change v u of the discharge voltage U discharge is within the normal variation range.
  • the electrical parameter may include a discharge quantity or/and a discharge energy of the metal battery 200 or/and its battery core 21.
  • the control circuit 12 can determine the growth rate of the discharge power or/and the discharge energy according to the difference of the discharge power or the difference of the discharge energy at different times when the metal battery 200 is in a discharge state, and Determining that inside the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative of the battery cell 21 when the rate of increase of the discharge electric quantity or/and the discharge energy is less than the predetermined value. pole.
  • the preset value P Q3 may be set to be a minimum limit value of the discharge electric quantity Q discharge within a normal variation range.
  • the increase of the dendritic leakage current I leak increases the power consumption Q den of the dendrite consumption.
  • the discharge current I discharge also undergoes a falling jump, thereby causing the discharged electric quantity.
  • the Q discharge growth rate is slowed down, resulting in a growth rate of the discharge quantity Q discharge v q ⁇ P Q3 . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the preset value P W3 may also be set to be a minimum limit value of the discharge energy W discharge within a normal variation range.
  • the increase in the dendritic leakage current I leak causes the discharge current I discharge to undergo a falling transition, the discharge voltage U discharge slowly decreasing at a normal speed, and the energy consumed by the dendrite W leak increases, so that the energy W discharge slowing the growth rate of the discharge, resulting in an increase of the discharge energy W discharge rate of v w ⁇ P W3. Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • Fig. 7 is a schematic view showing a single cell 21 of the metal battery 200 in an embodiment of the present invention in a standing state. Since the metal battery 200 is in a stationary state, that is, in a non-charging state and a non-discharging state, it may also cause dendrite to be generated in the interior of the battery cell 21 due to internal or external pressing, impact, or the like. The positive and negative poles of the battery cell 21 cause a short circuit, thereby consuming a large portion of the power, resulting in a relatively significant jump in the electrical parameters of the metal battery 200 or/and its battery core 21, such as the metal battery.
  • the battery management system 100 The formation of the dendrites can also be monitored during discharge of the metal battery 200 for such situations.
  • control circuit 12 determines a rate of change of electrical parameters of the metal battery 200 according to electrical parameters at different times when the metal battery 200 is in a resting state, and according to the rate of change
  • the comparison result of the preset values determines the safety performance of the battery cells 21 of the metal battery 200.
  • the standing voltages of the different times T1 and T2 can be respectively set to U T2 and U T1 , and the rate of change v u of the standing voltage U + ⁇ can be expressed as:
  • T2 is left remaining amount Q T2
  • Q T1 is the remaining charge left remaining rate of change v q
  • the electrical parameter may include a resting voltage or/and a remaining remaining amount of the metal battery 200 or/and its battery core 21.
  • the control circuit 12 may determine the standing voltage or/and the rest according to the difference of the resting voltage or/and the difference of the remaining remaining power at different times when the metal battery 200 is in a resting state. a rate of decrease of the remaining amount of electricity, and determining that dendrites are formed inside the cell 21 of the metal battery 200 when the rate of decrease of the standing voltage or/and the remaining amount of remaining power is greater than the predetermined value
  • the crystal is connected to the positive and negative electrodes of the battery cell 21.
  • the preset value P U3 may be set to be the maximum limit value of the standing voltage U + - within a normal variation range.
  • the dendrite is connected to the positive and negative poles of the battery cell 21 to cause a short circuit, which causes the static voltage U + - to drop and jump, thereby causing the drop of the standing voltage U +- Rate v u >P U3 . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the preset value P Q4 may also be set as the maximum limit value in which the remaining remaining power amount Q remains within the normal variation range.
  • the leak current I leak dendrite will increase the amount of power consumed dendrite Leak Q increases, so that the remaining charge Q left to stand falling transition occurs, leading to left remaining remaining rate of descent amount Q v q> P Q4. Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • Fig. 8 is a schematic view showing a state in which a plurality of cells 21 of the metal battery 200 of the embodiment of the present invention are in a standing state.
  • the metal battery 200 includes a plurality of cells 21 connected in series or/and in parallel.
  • the memory 13 is used to store electrical parameters of the individual cells 21 of the metal battery 200.
  • the control circuit 12 can obtain electrical parameters of the respective battery cells 21 of the metal battery 200 at the same time from the memory 13, and determine the battery cells 21 of the metal battery 200 according to the electrical parameters at the same time. Security performance.
  • the electrical parameter may include a resting voltage of the battery cell 21, and the control circuit 12 may be at the same time according to the respective battery cells 21 of the metal battery 200 in a resting state.
  • the standing voltage determines a resting voltage difference between the two cells 21, and determines a maximum value of the standing voltage difference between the two cells 21, and according to the between the two cells 21
  • the comparison of the maximum value of the standing voltage differences with the preset value determines the safety performance of the battery cells 21 of the metal battery 200.
  • control circuit 12 may determine that the cell 21 of the metal battery 200 has dendrites inside when the maximum value of the static voltage differences between the two cells 21 is greater than the preset value.
  • the dendrites are formed to communicate with the positive and negative electrodes of the battery cell 21.
  • the maximum value of the standing voltage difference between the two battery cells 21 can be expressed as:
  • n is the number of the cells 21 of the metal battery 200.
  • the preset value P U4 may be set to be a maximum limit value of the maximum value ⁇ U of the static voltage differences within a normal variation range.
  • the short circuit caused by the dendrite communicating with the positive and negative poles of the battery cell 21 causes the static voltage U + - to fall and fall, thereby causing a static voltage difference between the two two cells 21 .
  • the maximum value ⁇ U>P U4 Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the battery management system 100 can detect the formation of the dendrites in a timely and effective manner by using the methods described in the above embodiments, so as to take safety measures in time to avoid the occurrence of a safety accident.
  • the electrical parameters may include total charge power or/and total charge energy from zero charge to full charge during full charge.
  • the control circuit 12 determines that dendrite is formed inside the battery cell 21 of the metal battery 200 when the difference between the total charge power of the two times or the difference between the total charge energy and the total charge energy is greater than the preset value.
  • the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the difference between the total charge power of two adjacent charges or/and the total charge energy will not be too large during the complete charging process from zero charge to full charge.
  • the difference ⁇ W charge of the total charging energy of two adjacent times can be expressed as:
  • the electrical parameters include total discharge power or/and total discharge energy during a complete discharge from full charge to discharge.
  • the control circuit 12 determines a difference between the total discharge power or/and the total discharge energy of two adjacent times, and the difference between the total discharge power or/and the total discharge energy is greater than the preset At the time of the determination, it is determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the difference between the total discharge power of two adjacent discharges and/or the total discharge energy during the complete discharge from full charge to discharge is not too large.
  • the electrical parameters include a total charge from a zero charge to a fully charged full charge, and a total discharge from a full charge to a fully discharged discharge.
  • the control circuit 12 determines a difference between a total charge amount and a total discharge amount during a charge and discharge cycle, and determines the metal when a difference between the total charge amount and the total discharge amount is greater than the preset value.
  • the cell 21 of the battery 200 has dendrites formed therein and the dendrites communicate with the positive and negative electrodes of the cell 21.
  • the electrical parameters may include total charging energy from zero charge to full charge during full charge, and total discharge energy from full charge to full discharge during discharge.
  • the control circuit 12 determines a difference between a total charging energy and a total discharging energy during a charging and discharging cycle, and determines the metal when a difference between the total charging energy and the total discharging energy is greater than the preset value.
  • the cell 21 of the battery 200 has dendrites formed therein and the dendrites communicate with the positive and negative electrodes of the cell 21.
  • the difference ⁇ Q between the total charge amount of the charge and discharge cycle and the total discharge amount can be expressed as:
  • the difference ⁇ W between the total charging energy and the total discharge energy of a charge and discharge cycle process can be expressed as:
  • the memory 13 is also used to pre-store the full charge design value of the metal battery 200 or its battery core 21.
  • the electrical parameters include the total charge capacity or/and total discharge capacity of the metal battery 200 or/and its battery core 21.
  • the control circuit 12 may determine a difference between the full charge design value and the total charge amount or/and the total discharge amount according to the full charge design value and the total charge amount or/and total discharge amount a difference, and determining a cell of the metal battery 200 when a difference between the full charge design value and the total charge amount or/and a difference from the total discharge amount is greater than the preset value
  • the inside of the 21 has dendrites formed and the dendrites communicate with the positive and negative electrodes of the battery cell 21.
  • the total charge amount Q charge and the total discharge amount Q discharge of the metal battery 200 are not too different from the full charge design value Q design .
  • the preset value P Q8 may be set as a maximum limit value in which the difference between the full-charge design value and the total charge amount is within a normal variation range.
  • the amount of electricity QNB consumed by the dendrite is significantly increased.
  • the total charge amount Q charge may occur.
  • the rising jump causes the difference between the full power design value Q design and the total charging power Q charge ⁇ Q >P Q8 . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the preset value P Q9 may also be set as a maximum limit value in which the difference between the full power design value and the total discharge power is within a normal variation range.
  • the amount of electricity QNB consumed by the dendrite is significantly increased.
  • the discharge electric quantity Q A discharge jump occurs, resulting in a difference ⁇ Q>P Q9 between the full charge design value Q design and the total discharge power Q discharge . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the memory 13 is also used to pre-store the full energy design value of the metal battery 200 or its battery core 21.
  • the electrical parameters include the total charging energy or/and total discharge energy of the metal battery 200 or/and its cells 21.
  • the control circuit 12 may determine a difference between the full energy design value and the total charging energy or/and the total discharge energy according to the full energy design value and the total charging energy or/and the total discharging energy. a difference, and determining a cell of the metal battery 200 when a difference between the full energy design value and the total charging energy or/and a difference from the total discharging energy is greater than the predetermined value.
  • the inside of the 21 has dendrites formed and the dendrites communicate with the positive and negative electrodes of the battery cell 21.
  • the total charging energy W charge and the total discharge energy W discharge of the metal battery 200 are not too different from the full energy design value Q design .
  • the preset value P W7 may be set as a maximum limit value in which the difference between the full energy design value and the total charging energy is within a normal variation range.
  • the preset value P W8 may also be set as a maximum limit value in which the difference between the full energy design value and the total discharge energy is within a normal variation range.
  • the energy Wowl consumed by the dendrite is significantly increased.
  • the discharge energy W A discharge jump occurs, resulting in a difference ⁇ Q>P W8 between the full energy design value W design and the total discharge energy W discharge . Therefore, it can be determined that the inside of the battery cell 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery cell 21.
  • the battery management system 100 can effectively detect the formation of the dendrites by using the methods described in the above embodiments, so as to take safety measures to avoid the occurrence of a safety accident.
  • the battery management system 100 further includes an indication unit 14 for further determining that dendrite is formed inside the battery cell 21 of the metal battery 200 and the dendrite is connected to the The indicator unit 14 is controlled to perform an abnormality prompt when the battery 21 is positive or negative.
  • the indication unit 14 may be at least one of a sound generating device or a display device. Wherein, when the indicating unit 14 adopts the sound generating device, the indicating unit 14 performs an abnormal prompt by emitting an alarm sound or a voice. Alternatively, when the pointing unit 14 employs the display device, an abnormal prompt is made by flashing a light or displaying a text.
  • control circuit 12 is further configured to cut the metal when it is determined that the inside of the battery core 21 of the metal battery 200 has dendrite formation and the dendrite communicates with the positive and negative electrodes of the battery core 21 The current loop in which the battery 200 is located.
  • the battery management system 100 of the present invention monitors the electrical parameters of the metal battery 200 in real time, such as the charge and discharge current, voltage, power, energy, static voltage, and remaining power of the metal battery 200 or/and the battery 21, To determine whether there is lithium dendrite inside the cell 21, thereby effectively solving the technical problem of how to detect the formation of dendrites inside the battery, so as to take timely safety measures to avoid the occurrence of a safety accident.
  • the battery management system 100 has a simple structure and can be well integrated with the existing metal battery 200 and its management system, without adding additional components, and without complicating the structure inside the existing battery core 21, Existing mass produced lithium battery devices and processes are consistent and do not require increased complexity of the battery management system 100.
  • the battery management system 100 of the present invention cannot suppress the formation of dendrites, it can only be successfully detected when the dendrite grows to cause the positive and negative poles to communicate, but this is the most important timing for the safe use of the battery. .
  • FIG. 9 is a schematic flow chart of a method for controlling a metal battery according to an embodiment of the present invention.
  • the control method is for managing a battery cell of a metal battery to monitor the safety performance of the battery cell of the metal battery. It should be noted that the method of the embodiment of the present invention is not limited to the steps and the sequence in the flowchart shown in FIG. According to various embodiments, the steps in the flowchart shown in FIG. 9 may add, remove, or change the order. In the present embodiment, the method may begin at step 901.
  • Step 901 Detect electrical parameters of the metal battery.
  • the electrical parameter comprises at least one of: energy of the metal battery, power of the metal battery, voltage of the metal battery, current of the metal battery, energy of the battery, the electricity The amount of electricity of the core, the voltage of the cell, and the current of the cell.
  • Step 902 Acquire the electrical parameter, and determine a safety performance of the battery of the metal battery according to the electrical parameter.
  • control method may further include the step of storing electrical parameters of the metal battery.
  • the step 902 may specifically include: acquiring electrical parameters of the metal battery at different times, and determining safety performance of the battery cells of the metal battery according to the electrical parameters at different times.
  • control method may further include the step of pre-storing a preset value.
  • the step 902 may specifically include: determining a change value of the electrical parameter of the metal battery according to the electrical parameter at the different time, and determining the power of the metal battery according to a comparison result between the change value and the preset value. Core safety performance.
  • the change value may include a change rate, a change trend, and the like, and the preset value may be set as a maximum limit value or a minimum limit value of a normal change range of the change rate, or the preset value may be set to be the The maximum or minimum limit of the normal range of variation of the trend.
  • the metal battery may generate dendrites inside the battery during charging and communicate with the positive and negative poles of the battery, causing a short circuit, thereby consuming a larger portion of the charging amount or charging energy, resulting in the metal battery or /
  • the electrical parameters of the battery cell and the occurrence of a significant jump such as the metal battery or / and its battery core charging power or charging energy, a large rise jump, or the metal battery or / and
  • the charging voltage of the battery cell, the charging current is increased or decreased, and the like, and the control method can monitor the generation of the dendrites during charging of the metal battery for the situations.
  • the step 902 may specifically include: determining a rate of change of electrical parameters of the metal battery according to electrical parameters of the metal battery at different times in a state of charge, and according to the rate of change
  • the comparison result of the preset values determines the safety performance of the battery cells of the metal battery.
  • the electrical parameter can include a charging current of the metal battery or/and its cells.
  • the step 902 may specifically include: determining a growth rate of the charging current according to a difference of the charging currents at different times when the metal battery is in a constant voltage charging state, and increasing a rate of the charging current when the charging current is greater than
  • the preset value it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the electrical parameter may include a charge quantity or/and a charge energy of the metal battery or/and its cell.
  • the step 902 may specifically include: determining, according to a difference in the charging power or a difference in charging energy of the metal battery in a constant voltage charging state, the charging power or/and the charging energy increase. a rate, and when the rate of increase of the charge amount or/and the charge energy is greater than the predetermined value, determining that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative of the cell pole.
  • the electrical parameter can include a charging voltage of the metal battery or/and its cell.
  • the step 902 may specifically include: determining a rate of decrease of the charging voltage according to a difference of the charging voltages at different times when the metal battery is in a constant current charging state, and decreasing a rate of the charging voltage is greater than
  • the preset value it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the electrical parameter can include a charging energy of the metal battery or/and its cell.
  • the step 902 may specifically include: determining a growth rate of the charging energy according to a difference of the charging energy at different times when the metal battery is in a constant current charging state, and increasing a rate of the charging energy less than When the preset value is described, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • control circuit may further determine a rate of change of electrical parameters of the metal battery according to electrical parameters of the metal battery at different times in a discharged state, and according to the rate of change and the pre- The comparison of the set values determines the safety performance of the cells of the metal battery.
  • the metal battery may generate dendrites inside the battery during the discharge process and connect the positive and negative poles of the battery core to cause a short circuit, thereby consuming a large portion of the discharge electric quantity or discharge energy, resulting in the metal battery.
  • the electrical parameters of the battery cell and the occurrence of a significant jump such as a large drop in the discharge or discharge energy of the metal battery or / and its battery, or the metal battery or /
  • the discharge voltage and the discharge current of the battery cell thereof may rise or fall, and the like, and the control method may also monitor the generation of the dendrites during the discharge of the metal battery for the cases.
  • the step 902 may specifically include: determining a rate of change of electrical parameters of the metal battery according to electrical parameters of the metal battery at different times in a discharged state, and according to the rate of change
  • the comparison result of the preset values determines the safety performance of the battery cells of the metal battery.
  • the electrical parameter can include a discharge current of the metal battery or its cell.
  • the step 902 may specifically include: determining a rate of decrease of the discharge current according to a difference of the discharge currents at different times when the metal battery is in a discharge state, and decreasing a rate of the discharge current is greater than the When the value is set, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the electrical parameter may include a discharge quantity or/and a discharge energy of the metal battery or/and its battery core.
  • the step 902 may specifically include: determining a growth rate of the discharge power or/and the discharge energy according to a difference of the discharge electric quantity or/and a difference of the discharge energy at different times when the metal battery is in a discharge state, And when the growth rate of the discharge electric quantity or/and the discharge energy is less than the preset value, determining that dendrite is formed inside the battery core of the metal battery and the dendrite is connected to the positive and negative poles of the electric core.
  • the metal battery Since the metal battery is in a static state, that is, in a non-charging state and a non-discharging state, it may also cause dendrite to be generated in the interior of the cell to be connected in parallel to the cell due to internal or external extrusion, impact, or the like.
  • the positive and negative poles cause a short circuit, thereby consuming a large portion of the power, resulting in a relatively significant jump in the electrical parameters of the metal battery or/and its battery cells, such as the metal battery or/and its electricity
  • the remaining power of the core has a large drop jump, or the standing voltage of the metal battery or/and its battery core has a large drop jump, etc., and the control method can also discharge the metal battery for the situation.
  • the generation of the dendrites is monitored during the process.
  • the step 902 may specifically include: determining a rate of change of electrical parameters of the metal battery according to electrical parameters at different times when the metal battery is in a resting state, and according to the rate of change
  • the comparison result of the preset value determines the safety performance of the battery cells of the metal battery.
  • the electrical parameter may include a standing voltage or/and a remaining remaining amount of the metal battery or/and its battery cells.
  • the step 902 may specifically include: determining the static voltage or/and the static voltage according to a difference of the static voltage or a difference of the remaining remaining power at different times when the metal battery is in a resting state. Setting a rate of decrease of the remaining amount of electricity, and determining that dendrite is formed inside the cell of the metal battery and the dendrite is formed when the rate of decrease of the standing voltage or/and the remaining amount of remaining power is greater than the predetermined value Connect the positive and negative poles of the battery.
  • control method further includes: storing electrical parameters of respective cells of the metal battery.
  • the step 902 may specifically include: acquiring electrical parameters of the respective batteries of the metal battery at the same time, and determining safety performance of the battery cells of the metal battery according to the electrical parameters at the same time.
  • the electrical parameter can include a resting voltage of the cell.
  • the step 902 may specifically include: determining a static voltage difference between the two batteries according to a standing voltage of the respective batteries of the metal battery at the same time in a resting state, and determining the two batteries Determining the maximum value of the static voltage difference between the two, and determining the safety of the battery cell of the metal battery according to the comparison between the maximum value of the static voltage differences between the two cells and the preset value performance.
  • the step 902 may further include: determining that the inside of the cell of the metal battery has dendrites when a maximum value of the static voltage differences between the two cells is greater than the preset value Forming and the dendrite communicates with the positive and negative electrodes of the cell.
  • the control method adopts the method described in the above embodiments to discover the formation of the dendrites in a timely and effective manner, so as to take safety measures in time to avoid the occurrence of a safety accident.
  • the electrical parameters may include total charge power or/and total charge energy from zero charge to full charge during full charge.
  • the step 902 may specifically include determining that dendrite is formed inside the cell of the metal battery when the difference between the total charge power of the two adjacent times or/and the difference of the total charge energy is greater than the preset value. And the dendrite is connected to the positive and negative electrodes of the battery cell.
  • the electrical parameters include total discharge power or/and total discharge energy during a complete discharge from full charge to discharge.
  • the step 902 may specifically include: determining a difference between the total discharge power or/and the total discharge energy of the two adjacent times, and the difference between the total discharge power or/and the total discharge energy is greater than When the preset value is described, it is determined that dendrite is formed inside the cell of the metal battery and the dendrite is connected to the positive and negative electrodes of the cell.
  • the electrical parameters include a total charge from a zero charge to a fully charged full charge, and a total discharge from a full charge to a fully discharged discharge.
  • the step 902 may specifically include: determining a difference between the total charging power and the total discharging power during a charging and discharging cycle, and determining when the difference between the total charging amount and the total discharging amount is greater than the preset value.
  • the cell of the metal battery has dendrites formed inside and the dendrite communicates with the positive and negative electrodes of the cell.
  • the electrical parameters may include total charging energy from zero charge to full charge during full charge, and total discharge energy from full charge to full discharge during discharge.
  • the step 902 may specifically include: determining a difference between a total charging energy and a total discharging energy during a charging and discharging cycle, and determining when a difference between the total charging energy and the total discharging energy is greater than the preset value.
  • the cell of the metal battery has dendrites formed inside and the dendrite communicates with the positive and negative electrodes of the cell.
  • control method further includes pre-storing a full charge design value of the metal battery or its battery core.
  • the electrical parameters include the total charge capacity or/and total discharge capacity of the metal battery or/and its cells.
  • the step 902 may specifically include: determining, according to the full power design value and the total charging power or/and total discharging power, a difference between the full power design value and the total charging power or/and the total a difference in discharged electric quantity, and determining a power of the metal battery when a difference between the full power design value and the total charge quantity or/and a difference from the total discharge quantity is greater than the preset value Inside the core, dendrites are formed and the dendrites are connected to the positive and negative electrodes of the cell.
  • control method further includes pre-storing a full energy design value of the metal battery or its battery core.
  • the electrical parameters include total charging energy or/and total discharge energy of the metal battery or/and its cells.
  • the step 902 may specifically include: determining, according to the full energy design value and the total charging energy or/and total discharge energy, a difference between the full energy design value and the total charging energy or/and the total a difference in discharge energy, and determining a power of the metal battery when a difference between the full energy design value and the total charging energy or/and a difference from the total discharge energy is greater than the predetermined value Inside the core, dendrites are formed and the dendrites are connected to the positive and negative electrodes of the cell.
  • the battery management system can effectively detect the formation of the dendrites by using the methods described in the above embodiments, so as to take safety measures to avoid the occurrence of a safety accident.
  • control method may further include the steps of:
  • the control method of the metal battery of the invention determines whether there is lithium dendrite formation inside the cell by monitoring the electrical parameters of the metal battery in real time, thereby effectively solving the technical problem of how to detect the generation of dendrites inside the battery, so as to adopt safety in time. Measures to avoid the occurrence of security incidents.
  • an embodiment of the present invention further provides a metal battery 200 including a cover 22 , a housing 23 , and a battery core 21 housed in the housing 23 and the battery management system 100 described above.
  • the battery management system 100 is disposed in the housing 23 in the form of a circuit board.
  • the indicating unit 14 of the battery management system 100 can be disposed on the housing 23 and exposed to the housing 23 . outside. It can be understood that the indicating unit 14 can also be disposed in the casing 23, or a part of the indicating unit 14 is disposed in the casing 23, and a part is disposed on the casing 23.
  • the metal battery 200 can effectively detect the generation of dendrites inside the battery, so as to take safety measures in time to avoid the occurrence of a safety accident.
  • processors may include, but are not limited to, one or more general purpose microprocessors (eg, single or multi-core processors), application specific integrated circuits, dedicated instruction set processors, graphics processing units, physical processing units, digital signal processing Unit, coprocessor, network processing unit, audio processing unit, encryption processing unit, and the like.
  • general purpose microprocessors eg, single or multi-core processors
  • application specific integrated circuits dedicated instruction set processors
  • graphics processing units eg, physical processing units, digital signal processing Unit, coprocessor, network processing unit, audio processing unit, encryption processing unit, and the like.
  • Storage media may include, but are not limited to, any type of disk, including floppy disks, optical disks, DVDs, CD-ROMs, micro hard disks and magneto-optical disks, ROM, RAM, EPROM, EEPROM, DRAM, VRAM, flash memory devices, magnetic or optical cards, nanometers
  • a system including a molecular memory IC) or any type of medium or device suitable for storing instructions and/or data.
  • features of the present invention can be incorporated into software and/or firmware to control the hardware of the processing system and enable the processing system to utilize other results utilizing the results of the present invention.
  • the organization interacts.
  • software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
  • ASICs application specific integrated circuits
  • FPGA field programmable gate array
  • the present invention may conveniently use one or more conventional general purpose or special purpose digital computers, computing devices, machines or microprocessors (including one or more processors, memory and/or programmed in accordance with the teachings of the present disclosure).
  • the computer readable medium is implemented. It will be apparent to those skilled in the software arts that a skilled programmer can conveniently prepare appropriate software coding based on the teachings of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池管理系统(100),用于管理金属电池(200)的电芯(21)。所述电池管理系统(100)包括检测电路(11)以及控制电路(12)。所述检测电路(11)用于检测所述金属电池(200)的电气参数。所述控制电路(12)用于获取所述电气参数,并根据所述电气参数确定所述金属电池(200)的电芯(21)的安全性能。还涉及一种金属电池(200)及其控制方法。

Description

金属电池及其电池管理系统、控制方法 技术领域
本发明涉及金属电池技术领域,特别涉及一种金属电池及其电池管理系统、控制方法。
背景技术
锂金属电池早于锂离子电池诞生,并且在二十世纪八十年代,Moli公司将其商业化,售卖超过200万只锂金属电池。其后,因为锂金属电池存在的安全隐患,造成了几起严重的安全事故,Moli被迫召回了大量的电池,随后公司破产并被收购。其中一种重要的安全隐患来自于负极锂枝晶的生成带来的电池内部短路及相关的热失效风险。锂离子电池的诞生,很大程度上就是为了解决金属锂电池的安全问题,通过在负极引入可脱嵌锂锂的层状材料,如石墨,解决了锂金属在充电过程中不均匀生长进而形成枝晶及其他问题。然而,由于在负极增加可脱嵌锂锂的层状材料,电芯的体积比和重量比能量密度都有所下降。随着电池应用领域的扩大,对高能量密度的电池需求日益强烈,而锂离子电池将近达到理论的能量密度上限,难于满足不断增长的需求,尤其是在电动汽车、无人机、手机等应用领域。因此,金属电池,如锂金属电池、镁金属电池、钠金属电池等,再次引起了广泛的兴趣和产品化的尝试。
金属电池内部枝晶的生长,通常发生在电池充电过程中。如图1所示,以锂金属电池为例,在电池充电过程中,由于负极上锂金属不均匀的析出、生长,造成锂金属沉积,一层很薄的SEI膜很快在生成的锂金属表面形成。在锂金属生成的过程中,体机会膨胀,导致SEI膜破坏。经过多次循环,进而导致有树枝状枝晶的生成。如此的枝晶,可以在电池内部由负极表面的不同的位置同时或异时发生。如图2所示,随着枝晶的生长,最终刺穿隔膜,到达正极,造成电池内部形成局部的短路,造成发热甚至电池内部的热失控,进而造成不可恢复的严重失效,如着火甚至爆炸。
为了抑制或解决枝晶的生长,现有常见的做法有通过使用不易被刺穿的固态多孔隔膜,或者在正负极之间引入第三电极,来监控枝晶的生长。然而,现有的解决枝晶的方法,都在不同程度上增加了电池的制造难度或者材料成本,而且会降低电池的性能。例如,固态多孔隔膜的使用虽然可以在一定程度上防止枝晶刺穿,但是,固态隔膜的离子导电率通常低于液态或者胶态电解质,并且与正负极很难形成很好的界面,导致电芯的放电能力变弱,循环寿命降低。通过在正负极之间引入第三电极来监控锂枝晶的生成,并可以选择多一定程度的干预,但是增加了电池内部结构的复杂度,造成现有的生产设备和工艺无法与之吻合。引入新的电极,同时带来其他的潜在的失效风险,降低了电芯的可靠性,不可避免的导致生产良率的下降。而且,为了配合第三电极的功能,电池管理系统也要相应的变得复杂。
发明内容
本发明主要解决的技术问题是提供一种简单的电池管理系统,能够有效检测金属电池的电芯内部的枝晶的形成,以便于及时采取安全措施,避免安全事故的发生。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种电池管理系统,用于管理金属电池的电芯,所述电池管理系统包括:
检测电路,用于检测所述金属电池的电气参数;以及
控制电路,用于获取所述电气参数,并根据所述电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述检测电路包括如下至少一种:电流检测电路、电压检测电路、电量计;
或/及,所述电气参数包括如下至少一种:所述金属电池的能量、所述金属电池的电量、所述金属电池的电压、所述金属电池的电流、所述电芯的能量、所述电芯的电量、所述电芯的电压、所述电芯的电流。
进一步地,所述控制电路包括如下至少一种:微处理器、电路板组成电路。
进一步地,所述电池管理系统还包括存储器,所述存储器与所述检测电路以及所述控制电路分别电连接,所述存储器用于存储所述金属电池的电气参数;
其中,所述控制电路从所述存储器中获取所述金属电池在不同时刻的电气参数,并且根据所述不同时刻的电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述存储器还用于预先存储一预设值;
其中,所述控制电路根据所述不同时刻的电气参数确定所述金属电池的电气参数的变化值,并根据所述变化值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述控制电路根据所述金属电池处于充电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电量或/及充电能量,所述控制电路根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电量的差值或/及充电能量的差值确定所述充电电量或/及充电能量的增长速率,并在所述充电电量或/及充电能量的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电流,所述控制电路根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电流的差值确定所述充电电流的增长速率,并在所述充电电流的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电能量,所述控制电路根据所述金属电池处于恒流充电状态下的不同时刻的所述充电能量的差值确定所述充电能量的增长速率,并在所述充电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电压,所述控制电路根据所述金属电池处于恒流充电状态下的不同时刻的所述充电电压的差值确定所述充电电压的下降速率,并在所述充电电压的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述控制电路根据所述金属电池处于放电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的放电电量或/及放电能量,所述控制电路根据所述金属电池处于放电状态下的不同时刻的所述放电电量的差值或/及放电能量的差值确定所述放电电量或/及放电能量的增长速率,并在所述放电电量或/及放电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或其电芯的放电电流,所述控制电路根据所述金属电池处于放电状态下的不同时刻的所述放电电流的差值确定所述放电电流的下降速率,并在所述放电电流的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述控制电路根据所述金属电池处于静置状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的静置电压或/及静置剩余电量,所述控制电路根据所述金属电池处于静置状态下的不同时刻的所述静置电压的差值或/及静置剩余电量的差值确定所述静置电压或/及静置剩余电量的下降速率,并在所述静置电压或/及静置剩余电量的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述金属电池包括多个串联或/及并联的电芯,所述电池管理系统还包括存储器,所述存储器与所述检测电路以及所述控制电路分别电连接,所述存储器用于存储所述金属电池的各个电芯的电气参数;
其中,所述控制电路从所述存储器中获取所述金属电池的各个电芯在同一时刻的电气参数,并且根据所述同一时刻的电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述存储器还用于预先存储一预设值;
其中,所述电气参数包括所述电芯的静置电压,所述控制电路根据所述金属电池的各个电芯处于静置状态下的同一时刻的静置电压确定两两电芯之间的静置电压差,并确定所述两两电芯之间的静置电压差中的最大值,以及根据所述两两电芯之间的静置电压差中的最大值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述控制电路在所述两两电芯之间的静置电压差中的最大值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量或/及总充电能量,所述控制电路在相邻两次的总充电电量的差值或/及总充电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从满电量到放完电的完整放电过程中的总放电电量或/及总放电能量,所述控制电路确定相邻两次的总放电电量的差值或/及总放电能量的差值,并在所述总放电电量的差值或/及所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量、以及从满电量到放完电的完整放电过程中的总放电电量,所述控制电路确定一个充放电循环过程中的总充电电量与总放电电量的差值,并在所述总充电电量与总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电能量、以及从满电量到放完电的完整放电过程中的总放电能量,所述控制电路确定一个充放电循环过程中的总充电能量与总放电能量的差值,并在所述总充电能量与总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述存储器还用于预先存储一预设值以及所述金属电池或其电芯的满电量设计值;
所述电气参数包括所述金属电池或/及其电芯的总充电电量或/及总放电电量,所述控制电路根据所述满电量设计值与所述总充电电量或/及总放电电量确定所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值,并在所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述存储器还用于预先存储一预设值以及所述金属电池或其电芯的满能量设计值;
所述电气参数包括所述金属电池或/及其电芯的总充电能量或/及总放电能量,所述控制电路根据所述满能量设计值与所述总充电能量或/及总放电能量确定所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值,并在所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电池管理系统还包括提示单元,所述控制电路还用于当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时控制所述提示单元进行异常提示。
进一步地,所述提示单元为声音发生装置或显示装置中的至少一种,其中,
当所述提示单元为声音发生装置时,所述提示单元通过发出警报声或语音来进行异常提示;或者
当所述提示单元为显示装置时,通过闪烁灯光或显示文字来进行异常提示。
进一步地,所述控制电路还用于当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时切断所述金属电池所在的电流回路。
进一步地,所述检测电路包括电流检测电路,所述电流检测电路电连接于所述金属电池的充电回路或/及放电回路中,用于在所述金属电池处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池处于放电过程中检测所述放电回路中的放电电流。
进一步地,所述控制电路通过对所述充电电流进行时间积分来计算出所述充电过程中的充电电量;
或/及,所述控制电路通过对所述放电电流进行时间积分来计算出所述放电过程中的放电电量。
进一步地,所述检测电路包括电压检测电路,所述电压检测电路电连接于所述金属电池或所述电芯的正负极之间,用于在所述金属电池处于充电过程中检测所述金属电池或所述电芯的正负极之间的充电电压,或者,用于在所述金属电池处于放电过程中检测所述金属电池或所述电芯的正负极之间的放电电压,或者,用于在所述金属电池处于静置状态过程中检测所述金属电池或所述电芯的正负极之间的静置电压。
进一步地,所述检测电路还包括电流检测电路,所述电流检测电路电连接于所述金属电池的充电回路或/及放电回路中,用于在所述金属电池处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池处于放电过程中检测所述放电回路中的放电电流;
所述控制电路通过对所述充电电流与所述充电电压的乘积进行时间积分以计算出所述充电能量,或/及,所述控制电路通过对所述放电电流与所述放电电压的乘积进行时间积分以计算出所述放电能量。
进一步地,所述检测电路包括电量计,所述电量计电连接于所述金属电池的充电回路或放电回路中,用于在所述金属电池处于充电过程中检测所述金属电池的充电电量,或者,用于在所述金属电池处于放电过程中检测所述金属电池的放电电量;
或者,所述电量计电连接于所述金属电池或所述电芯,用于在所述金属电池处于静置过程中检测所述金属电池的剩余电量。
进一步地,所述电池管理系统设于所述金属电池的壳体内部,所述检测电路与所述金属电池的电芯电连接。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种金属电池,包括壳体以及收纳在所述壳体内的电芯,所述金属电池还包括设于所述壳体内部的电池管理系统,所述电池管理系统用于管理所述电芯,所述电池管理系统包括:
检测电路,用于检测所述金属电池的电气参数;以及
控制电路,用于获取所述电气参数,并根据所述电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述检测电路包括如下至少一种:电流检测电路、电压检测电路、电量计;
或/及,所述电气参数包括如下至少一种:所述金属电池的能量、所述金属电池的电量、所述金属电池的电压、所述金属电池的电流、所述电芯的能量、所述电芯的电量、所述电芯的电压、所述电芯的电流。
进一步地,所述控制电路包括如下至少一种:微处理器、电路板组成电路。
进一步地,所述电池管理系统还包括存储器,所述存储器与所述检测电路以及所述控制电路分别电连接,所述存储器用于存储所述金属电池的电气参数;
其中,所述控制电路从所述存储器中获取所述金属电池在不同时刻的电气参数,并且根据所述不同时刻的电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述存储器还用于预先存储一预设值;
其中,所述控制电路根据所述不同时刻的电气参数确定所述金属电池的电气参数的变化值,并根据所述变化值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述控制电路根据所述金属电池处于充电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电量或/及充电能量,所述控制电路根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电量的差值或/及充电能量的差值确定所述充电电量或/及充电能量的增长速率,并在所述充电电量或/及充电能量的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电流,所述控制电路根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电流的差值确定所述充电电流的增长速率,并在所述充电电流的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电能量,所述控制电路根据所述金属电池处于恒流充电状态下的不同时刻的所述充电能量的差值确定所述充电能量的增长速率,并在所述充电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电压,所述控制电路根据所述金属电池处于恒流充电状态下的不同时刻的所述充电电压的差值确定所述充电电压的下降速率,并在所述充电电压的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述控制电路根据所述金属电池处于放电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的放电电量或/及放电能量,所述控制电路根据所述金属电池处于放电状态下的不同时刻的所述放电电量的差值或/及放电能量的差值确定所述放电电量或/及放电能量的增长速率,并在所述放电电量或/及放电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或其电芯的放电电流,所述控制电路根据所述金属电池处于放电状态下的不同时刻的所述放电电流的差值确定所述放电电流的下降速率,并在所述放电电流的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述控制电路根据所述金属电池处于静置状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的静置电压或/及静置剩余电量,所述控制电路根据所述金属电池处于静置状态下的不同时刻的所述静置电压的差值或/及静置剩余电量的差值确定所述静置电压或/及静置剩余电量的下降速率,并在所述静置电压或/及静置剩余电量的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述金属电池包括多个串联或/及并联的电芯,所述电池管理系统还包括存储器,所述存储器与所述检测电路以及所述控制电路分别电连接,所述存储器用于存储所述金属电池的各个电芯的电气参数;
其中,所述控制电路从所述存储器中获取所述金属电池的各个电芯在同一时刻的电气参数,并且根据所述同一时刻的电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述存储器还用于预先存储一预设值;
其中,所述电气参数包括所述电芯的静置电压,所述控制电路根据所述金属电池的各个电芯处于静置状态下的同一时刻的静置电压确定两两电芯之间的静置电压差,并确定所述两两电芯之间的静置电压差中的最大值,以及根据所述两两电芯之间的静置电压差中的最大值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述控制电路在所述两两电芯之间的静置电压差中的最大值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量或/及总充电能量,所述控制电路在相邻两次的总充电电量的差值或/及总充电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从满电量到放完电的完整放电过程中的总放电电量或/及总放电能量,所述控制电路确定相邻两次的总放电电量的差值或/及总放电能量的差值,并在所述总放电电量的差值或/及所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量、以及从满电量到放完电的完整放电过程中的总放电电量,所述控制电路确定一个充放电循环过程中的总充电电量与总放电电量的差值,并在所述总充电电量与总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电能量、以及从满电量到放完电的完整放电过程中的总放电能量,所述控制电路确定一个充放电循环过程中的总充电能量与总放电能量的差值,并在所述总充电能量与总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述存储器还用于预先存储一预设值以及所述金属电池或其电芯的满电量设计值;
所述电气参数包括所述金属电池或/及其电芯的总充电电量或/及总放电电量,所述控制电路根据所述满电量设计值与所述总充电电量或/及总放电电量确定所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值,并在所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述存储器还用于预先存储一预设值以及所述金属电池或其电芯的满能量设计值;
所述电气参数包括所述金属电池或/及其电芯的总充电能量或/及总放电能量,所述控制电路根据所述满能量设计值与所述总充电能量或/及总放电能量确定所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值,并在所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电池管理系统还包括提示单元,所述控制电路还用于当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时控制所述提示单元进行异常提示。
进一步地,所述提示单元为声音发生装置或显示装置中的至少一种,其中,
当所述提示单元为声音发生装置时,所述提示单元通过发出警报声或语音来进行异常提示;或者
当所述提示单元为显示装置时,通过闪烁灯光或显示文字来进行异常提示。
进一步地,所述控制电路还用于当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时切断所述金属电池所在的电流回路。
进一步地,所述检测电路包括电流检测电路,所述电流检测电路电连接于所述金属电池的充电回路或/及放电回路中,用于在所述金属电池处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池处于放电过程中检测所述放电回路中的放电电流。
进一步地,所述控制电路通过对所述充电电流进行时间积分来计算出所述充电过程中的充电电量;
或/及,所述控制电路通过对所述放电电流进行时间积分来计算出所述放电过程中的放电电量。
进一步地,所述检测电路包括电压检测电路,所述电压检测电路电连接于所述金属电池或所述电芯的正负极之间,用于在所述金属电池处于充电过程中检测所述金属电池或所述电芯的正负极之间的充电电压,或者,用于在所述金属电池处于放电过程中检测所述金属电池或所述电芯的正负极之间的放电电压,或者,用于在所述金属电池处于静置状态过程中检测所述金属电池或所述电芯的正负极之间的静置电压。
进一步地,所述检测电路还包括电流检测电路,所述电流检测电路电连接于所述金属电池的充电回路或/及放电回路中,用于在所述金属电池处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池处于放电过程中检测所述放电回路中的放电电流;
所述控制电路通过对所述充电电流与所述充电电压的乘积进行时间积分以计算出所述充电能量,或/及,所述控制电路通过对所述放电电流与所述放电电压的乘积进行时间积分以计算出所述放电能量。
进一步地,所述检测电路包括电量计,所述电量计电连接于所述金属电池的充电回路或放电回路中,用于在所述金属电池处于充电过程中检测所述金属电池的充电电量,或者,用于在所述金属电池处于放电过程中检测所述金属电池的放电电量;
或者,所述电量计电连接于所述金属电池或所述电芯,用于在所述金属电池处于静置过程中检测所述金属电池的剩余电量。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种金属电池的控制方法,包括以下步骤:
检测所述金属电池的电气参数;以及
获取所述电气参数,并根据所述电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括如下至少一种:所述金属电池的能量、所述金属电池的电量、所述金属电池的电压、所述金属电池的电流、所述电芯的能量、所述电芯的电量、所述电芯的电压、所述电芯的电流。
进一步地,所述控制方法还包括:
当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时,对所述异常进行提示;
或/及,当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时,切断所述金属电池所在的电流回路。
进一步地,所述控制方法还包括:
存储所述金属电池的电气参数;以及
获取所述金属电池在不同时刻的电气参数,并且根据所述不同时刻的电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述控制方法还包括:
预先存储一预设值;以及
根据所述不同时刻的电气参数确定所述金属电池的电气参数的变化值,并根据所述变化值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述控制方法具体包括:
根据所述金属电池处于充电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电量或/及充电能量;所述控制方法具体包括:
根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电量的差值或/及充电能量的差值确定所述充电电量或/及充电能量的增长速率,并在所述充电电量或/及充电能量的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电流;所述控制方法具体包括:
根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电流的差值确定所述充电电流的增长速率,并在所述充电电流的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电能量;所述控制方法具体包括:
根据所述金属电池处于恒流充电状态下的不同时刻的所述充电能量的差值确定所述充电能量的增长速率,并在所述充电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的充电电压;所述控制方法具体包括:
所述金属电池处于恒流充电状态下的不同时刻的所述充电电压的差值确定所述充电电压的下降速率,并在所述充电电压的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述控制方法具体包括:
根据所述金属电池处于放电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的放电电量或/及放电能量;所述控制方法具体包括:
根据所述金属电池处于放电状态下的不同时刻的所述放电电量的差值或/及放电能量的差值确定所述放电电量或/及放电能量的增长速率,并在所述放电电量或/及放电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或其电芯的放电电流;所述控制方法具体包括:
根据所述金属电池处于放电状态下的不同时刻的所述放电电流的差值确定所述放电电流的下降速率,并在所述放电电流的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述控制方法具体包括:
根据所述金属电池处于静置状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述金属电池或/及其电芯的静置电压或/及静置剩余电量;所述控制方法具体包括:
根据所述金属电池处于静置状态下的不同时刻的所述静置电压的差值或/及静置剩余电量的差值确定所述静置电压或/及静置剩余电量的下降速率,并在所述静置电压或/及静置剩余电量的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述金属电池包括多个串联或/及并联的电芯,所述控制方法还包括:
存储所述金属电池的各个电芯的电气参数;以及
获取所述金属电池的各个电芯在同一时刻的电气参数,并且根据所述同一时刻的电气参数确定所述金属电池的电芯的安全性能。
进一步地,所述电气参数包括所述电芯的静置电压,所述控制方法还包括:
预先存储一预设值;
根据所述金属电池的各个电芯处于静置状态下的同一时刻的静置电压确定两两电芯之间的静置电压差,并确定所述两两电芯之间的静置电压差中的最大值,以及根据所述两两电芯之间的静置电压差中的最大值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述控制方法具体包括:
当所述两两电芯之间的静置电压差中的最大值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量或/及总充电能量;所述控制方法具体包括:
当相邻两次的总充电电量的差值或/及总充电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从满电量到放完电的完整放电过程中的总放电电量或/及总放电能量;所述控制方法具体包括:
确定相邻两次的总放电电量的差值或/及总放电能量的差值,并在所述总放电电量的差值或/及所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量、以及从满电量到放完电的完整放电过程中的总放电电量;所述控制方法具体包括:
确定一个充放电循环过程中的总充电电量与总放电电量的差值,并在所述总充电电量与总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括从零电量到充满电的完整充电过程中的总充电能量、以及从满电量到放完电的完整放电过程中的总放电能量;所述控制方法具体包括:
确定一个充放电循环过程中的总充电能量与总放电能量的差值,并在所述总充电能量与总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的总充电电量或/及总放电电量;所述控制方法还包括:
预先存储一预设值以及所述金属电池或其电芯的满电量设计值;以及
根据所述满电量设计值与所述总充电电量或/及总放电电量确定所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值,并在所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
进一步地,所述电气参数包括所述金属电池或/及其电芯的总充电能量或/及总放电能量;所述控制方法还包括:
预先存储一预设值以及所述金属电池或其电芯的满能量设计值;以及
根据所述满能量设计值与所述总充电能量或/及总放电能量确定所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值,并在所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
本发明的电池管理系统通过实时监控金属电池的电气参数来判断电芯内部是否有锂枝晶生成,从而有效地解决了如何检测电池内部枝晶的生成的技术问题,以便于及时采取安全措施,避免安全事故的发生。
附图说明
图1是金属电池的电芯内部的锂枝晶的生成过程的示意图。
图2是图1中的树枝状锂枝晶的生成导致金属电池的电芯正负极短路的示意图。
图3是本发明实施例的一种电池管理系统的应用环境示意图,所述电池管理系统设于所述金属电池的壳体内部。
图4是本发明实施例的另一种电池管理系统的应用环境示意图,所述电池管理系统独立于所述金属电池。
图5是本发明实施例的金属电池的电芯处于充电状态的示意图。
图6是本发明实施例的金属电池的电芯处于放电状态的示意图。
图7是本发明实施例的金属电池的单个电芯处于静置状态的示意图。
图8是本发明实施例的金属电池的多个电芯处于静置状态的示意图。
图9是本发明实施例的一种金属电池的控制方法流程示意图。
图10是本发明实施例的一种金属电池的立体图。
图11是图10中的金属电池沿XI-XI方向的剖视图。
主要元件符号说明
电池管理系统 100
检测电路 11
控制电路 12
存储器 13
指示单元 14
金属电池 200、200’
电芯 21
盖体 22
壳体 23
步骤 901、902
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图3,是本发明实施例的一种电池管理系统100(Battery Management System,简称BMS)的应用环境示意图。所述电池管理系统100用于管理金属电池200的电芯21,以监控所述金属电池200的电芯21的安全性能。
所述电池管理系统100至少包括检测电路11以及控制电路12。其中,所述检测电路11用于检测所述金属电池200的电气参数。
在一种实施例中,所述电池管理系统100设于所述金属电池200的壳体内部,所述检测电路11与所述金属电池200的电芯21电连接。
可以理解的是,在另一种实施例中,如图4所示,所述电池管理系统100也可独立于所述金属电池200’,所述检测电路11与所述金属电池200’电连接。
所述控制电路12用于获取所述电气参数,并根据所述电气参数确定所述金属电池200的电芯21的安全性能。
其中,所述控制电路12包括如下至少一种:微处理器、电路板组成电路。
所述检测电路11包括如下至少一种:电流检测电路、电压检测电路、电量计。所述电气参数包括如下至少一种:所述金属电池的能量,所述金属电池的电量、所述金属电池的电压、所述金属电池的电流、所述电芯的能量、所述电芯的电量、所述电芯的电压、所述电芯的电流。
其中,所述电压可通过所述电压检测电路直接检测出来。所述电流可通过所述电流检测电路直接检测出来。所述电量可通过所述电量计直接检测出来,或者先通过所述电流检测电路检测出电流,再对所述电流进行时间积分来计算出来。所述能量可先通过所述电压检测电路检测出电压,以及通过所述电流检测电路检测出电流,再对所述电压和所述电流的乘积进行时间积分来计算出来。
举例来说,在其中一种实施例中,所述检测电路11包括电流检测电路,所述电流检测电路电连接于所述金属电池200的充电回路或/及放电回路中,用于在所述金属电池200处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池200处于放电过程中检测所述放电回路中的放电电流。
在其中一种实施例中,所述控制电路12通过对所述充电电流进行时间积分来计算出所述充电过程中的充电电量。或/及,所述控制电路12通过对所述放电电流进行时间积分来计算出所述放电过程中的放电电量。
在其中一种实施例中,所述检测电路11包括电压检测电路,所述电压检测电路电连接于所述金属电池200或所述电芯21的正负极之间,用于在所述金属电池200处于充电过程中检测所述金属电池200或所述电芯21的正负极之间的充电电压,或者,用于在所述金属电池200处于放电过程中检测所述金属电池200或所述电芯21的正负极之间的放电电压,或者,用于在所述金属电池200处于静置状态过程中检测所述金属电池200或所述电芯21的正负极之间的静置电压。
在其中一种实施例中,所述检测电路11包括电流检测电路和电压检测电路,所述控制电路12通过对所述充电电流与所述充电电压的乘积进行时间积分以计算出所述充电能量。或/及,所述控制电路12通过对所述放电电流与所述放电电压的乘积进行时间积分以计算出所述放电能量。
在其中一种实施例中,所述检测电路11包括电量计,所述电量计电连接于所述金属电池200的充电回路或放电回路中,用于在所述金属电池200处于充电过程中检测所述金属电池200的充电电量,或者,用于在所述金属电池200处于放电过程中检测所述金属电池200的放电电量。
或者,所述电量计电连接于所述金属电池200或所述电芯21,用于在所述金属电池200处于静置过程中检测所述金属电池200的剩余电量。
在本实施例中,所述电池管理系统100还包括存储器13,所述存储器13与所述检测电路11以及所述控制电路12分别电连接,所述存储器13用于存储所述金属电池200的电气参数。
所述控制电路12具体用于从所述存储器13中获取所述金属电池200在不同时刻的电气参数,并且根据所述不同时刻的电气参数确定所述金属电池200的电芯21的安全性能。
进一步地,在本实施例中,所述存储器13还用于预先存储一预设值。所述控制电路12具体用于根据所述不同时刻的电气参数确定所述金属电池200的电气参数的变化值,并根据所述变化值与所述预设值的比较结果确定所述金属电池200的电芯21的安全性能。
其中,所述变化值可包括变化速率、变化趋势等,该预设值可设为所述变化速率的正常变化范围的最大极限值或最小极限值,或者,该预设值可设为所述变化趋势的正常变化范围的最大极限值或最小极限值。
请参阅图5,是本发明实施例的金属电池200的电芯21处于充电状态的示意图。由于所述金属电池200在充电过程中电芯21内部可能会生成枝晶并连通所述电芯21的正负极而造成短路,从而消耗掉较大部分的充电电量或充电能量,导致所述金属电池200或/及其电芯21的电气参数发生比较明显的跳变的情形,例如,所述金属电池200或/及其电芯21的充电电量或充电能量出现较大的上升跳变,或所述金属电池200或/及其电芯21的充电电压、充电电流发生上升或下降跳变等,所述电池管理系统100可针对该些情形在金属电池200充电过程中监控所述枝晶的生成。
在其中一种实施例中,所述控制电路12可根据所述金属电池200处于充电状态下的不同时刻的电气参数确定所述金属电池200的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池200的电芯21的安全性能。
具体地,以所述金属电池200具有单个电芯为例,当所述金属电池200处于充电过程中时,所述金属电池200的充电电量可通过对所述充电过程中的充电电流进行时间积分计算出来。根据以上描述,所述金属电池200的充电电量的计算公式可表示为:
Figure WO40009-appb-I000001
其中,Qcharge为充电电量,单位mAh或Ah,Icharge为充电电流,单位mA或A。
所述金属电池200的充电能量可通过对所述充电过程中的充电电流与充电电压的乘积进行时间积分计算出来。根据以上描述,所述金属电池200的充电能量的计算公式可表示为:
Figure WO40009-appb-I000002
其中,Wcharge为充电能量,单位Wh或mWh,Ucharge为充电电压,单位mV或V。
在电池内部,所述金属电池200的电芯21实际用于产生电量的电流为Icell,所述金属电池200本身的实际充电电量为Q0。其中,所述金属电池200的电芯21实际产生的电量Q0的计算公式可表示为:
Figure WO40009-appb-I000003
若所述金属电池200的电芯21内部有枝晶形成,则枝晶漏电流为Ileak,所述充电电流Icharge=Ileak+Icell,充电电压Ucharge=Ucell=IcellRcell,其中,Rcell为所述电芯21的阻值。
所述枝晶消耗的电量Qleak的计算公式可表示为:
Figure WO40009-appb-I000004
且Qcharge=Qleak+Q0
所述枝晶消耗的能量Wleak的计算公式可表示为:
Figure WO40009-appb-I000005
且Wcharge=Wleak+W0,其中,W0为所述金属电池200本身的实际充电能量。
分别设定不同时刻T1、T2的充电电流为IT2、IT1,其中,T2>T1,时间间隔△t=T2-T1,则充电电流Icharge的变化速率vi可表示为:
vi=△Icharge/△t=|IT2-IT1|/△t。
分别设定不同时刻T1、T2的充电电流为UT2、UT1,则充电电压Ucharge的变化速率vu可表示为:
vu=△Ucharge/△t=|UT2-UT1|/△t。
分别设定不同时刻T1、T2的充电电量为QT2、QT1,则充电电量Qcharge的变化速率vq可表示为:
vq=△Qcharge/△t=|QT2-QT1|/△t。
分别设定不同时刻T1、T2的充电能量为WT2、WT1,则充电能量Wcharge的变化速率vw可表示为:
vw=△Wcharge/△t=|WT2-WT1|/△t。
在其中一种实施例中,所述电气参数可包括所述金属电池200或/及其电芯21的充电电流。
所述控制电路12可根据所述金属电池200处于恒压充电状态下的不同时刻的所述充电电流的差值确定所述充电电流的增长速率,并在所述充电电流的增长速率大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,在恒压充电过程中,由于所述充电电压Ucharge基本上保持不变,因此,所述电芯电流Icell也保持不变。
若所述枝晶已经连通所述电芯21的正负极而造成所述电芯21内部短路,则所述枝晶漏电流Ileak成为短路电流且会变得很大。
可设定所述预设值PI1为所述充电电流Icharge在正常变化范围内的最大极限值。根据以上的描述可知,所述枝晶漏电流Ileak的增大会使所述充电电流Icharge发生上升跳变,从而导致所述充电电流Icharge的增长速率vi>PI1。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
在其中另一种实施例中,所述电气参数可包括所述金属电池200或/及其电芯21的充电电量或/及充电能量。
所述控制电路12可根据所述金属电池200处于恒压充电状态下的不同时刻的所述充电电量的差值或/及充电能量的差值确定所述充电电量或/及充电能量的增长速率,并在所述充电电量或/及充电能量的增长速率大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,可设定所述预设值PQ1为所述充电电量Qcharge在正常变化范围内的最大极限值。根据以上的描述可知,所述枝晶漏电流Ileak的增大会使所述枝晶消耗的电量Qleak增大,如上所述,所述充电电流Icharge也发生上升跳变,从而使充电电量Qcharge发生上升跳变,导致所述充电电量Qcharge的增长速率vq>PQ1。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也可设定所述预设值PW1为所述充电能量Wcharge在正常变化范围内的最大极限值。根据以上的描述可知,所述枝晶漏电流Ileak的增大会使所述枝晶消耗的能量Wleak也增大,从而使所述充电能量Wcharge发生上升跳变,导致充电能量Wcharge的增长速率vw>PW1。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
在其中又一种实施例中,所述电气参数可包括所述金属电池200或/及其电芯21的充电电压。
所述控制电路12可根据所述金属电池200处于恒流充电状态下的不同时刻的所述充电电压的差值确定所述充电电压的下降速率,并在所述充电电压的下降速率大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,在恒流充电过程中,所述充电电流Icharge基本上保持不变,所述充电电压Ucharge在正常情况下会缓慢下降。
可设定所述预设值PU1为所述充电电压Ucharge在正常变化范围内的最大极限值。根据以上的描述可知,所述枝晶漏电流Ileak的增大会使所述电芯电流Icell发生下降跳变,从而使所述充电电压Ucharge发生下降跳变,导致所述充电电压Ucharge的下降速率vu>PU1。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
在其中再一种实施例中,所述电气参数可包括所述金属电池200或/及其电芯21的充电能量。
所述控制电路12可根据所述金属电池200处于恒流充电状态下的不同时刻的所述充电能量的差值确定所述充电能量的增长速率,并在所述充电能量的增长速率小于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,可设定所述预设值PW2为所述充电能量Wcharge在正常变化范围内的最小极限值。如上所述,在恒流充电过程中所述充电电流Icharge基本上保持不变,且所述枝晶漏电流Ileak的增大会使所述充电电压Ucharge发生下降跳变,从而使所述充电能量Wcharge增长速度减慢,导致充电能量Wcharge的增长速率vw<PW2。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
此外,可以理解的是,在恒流充电过程中,由于充电电流Icharge保持不变,则充电电量Qcharge会以正常的速度增长,即充电能量Qcharge的变化速率vq在正常变化范围内。
请参阅图6,是本发明实施例的金属电池200的电芯21处于放电状态的示意图。由于所述金属电池200在放电过程中电芯21内部也可能会生成枝晶并连通所述电芯21的正负极而造成短路,从而消耗掉较大部分的放电电量或放电能量,导致所述金属电池200或/及其电芯21的电气参数发生比较明显的跳变的情形,例如所述金属电池200或/及其电芯21的放电电量或放电能量出现较大的下降跳变,或所述金属电池200或/及其电芯21的放电电压、放电电流发生上升或下降跳变等,所述电池管理系统100也可针对该些情形在所述金属电池200放电过程中监控所述枝晶的生成。
在一种实施例中,所述控制电路12还可根据所述金属电池200处于放电状态下的不同时刻的电气参数确定所述金属电池200的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池200的电芯21的安全性能。
具体地,以所述金属电池200具有单个电芯21为例,当所述金属电池200处于放电过程中时,在电池内部,所述金属电池200的电芯21实际用于产生电量的电流为Icell,所述金属电池200本身的实际放电电量为Q0。其中,所述金属电池200的电芯21实际产生的电量Q0的计算公式可表示为:
Figure WO40009-appb-I000006
所述金属电池200的放电电量可通过对所述放电过程中的放电电流进行时间积分计算出来。根据以上描述,所述金属电池200的放电电量的计算公式可表示为:
Figure WO40009-appb-I000007
其中,Qdischarge为放电电量,单位mAh或Ah,Idischarge为放电电流,单位mA或A。
所述金属电池200的放电能量可通过对所述放电过程中的放电电流与放电电压的乘积进行时间积分计算出来。根据以上描述,所述金属电池200的放电能量的计算公式可表示为:
Figure WO40009-appb-I000008
其中,Wdisharge为放电能量,单位Wh或mWh,Udischarge为放电电压,单位mV或V。
若所述金属电池200的电芯21内部有枝晶形成,则所述放电电流Idischarge=Icell-Ileak,放电电压Udischarge=Ucell=IcellRcell,放电电量Qdischarge=Q0-Qleak,放电能量Wdisharge=W0-Wleak
分别设定不同时刻T1、T2的放电电流为IT2、IT1,其中,T2>T1,时间间隔△t=T2-T1,则放电电流Idischarge的变化速率vi可表示为:
vi=△Idischarge/△t=|IT2-IT1|/△t。
分别设定不同时刻T1、T2的充电电压为UT2、UT1,则放电电压Udischarge的变化速率vu可表示为:
vu=△Udischarge/△t=|UT2-UT1|/△t。
分别设定不同时刻T1、T2的充电电量为QT2、QT1,则放电电量Qdischarge的变化速率vq可表示为:
vq=△Qdischarge/△t=|QT2-QT1|/△t。
分别设定不同时刻T1、T2的充电能量为WT2、WT1,则放电能量Wdischarge的变化速率vw可表示为:
vw=△Wdischarge/△t=|WT2-WT1|/△t。
在其中一种实施例中,所述电气参数可包括所述金属电池200或其电芯21的放电电流。
所述控制电路12可根据所述金属电池200处于放电状态下的不同时刻的所述放电电流的差值确定所述放电电流的下降速率,并在所述放电电流的下降速率大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,在放电过程中,在电池内部,由于所述金属电池200的电芯21实际用于产生电量的电流Icell在正常情况下缓慢减小。
可设定所述预设值PI2为所述放电电流Idischarge在正常变化范围内的最大极限值。根据以上的描述可知,所述枝晶漏电流Ileak的增大会使所述放电电流Idischarge发生下降跳变,从而导致所述放电电流Idischarge的下降速率vi>PI2。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
此外,如上所述,在放电过程中,所述金属电池200的电芯21实际用于产生电量的电流Icell在正常情况下缓慢减小,根据以上的描述可知,所述放电电压Udischarge也会以正常的速度缓慢减小,即放电电压Udischarge的变化速率vu在正常变化范围内。
在其中另一种实施例中,所述电气参数可包括所述金属电池200或/及其电芯21的放电电量或/及放电能量。
所述控制电路12可根据所述金属电池200处于放电状态下的不同时刻的所述放电电量的差值或/及放电能量的差值确定所述放电电量或/及放电能量的增长速率,并在所述放电电量或/及放电能量的增长速率小于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,可设定所述预设值PQ3为所述放电电量Qdischarge在正常变化范围内的最小极限值。根据以上的描述可知,所述枝晶漏电流Ileak的增大会使所述枝晶消耗的电量Qleak增大,如上所述,所述放电电流Idischarge也发生下降跳变,从而使放电电量Qdischarge增长速度减慢,导致所述放电电量Qdischarge的增长速率vq<PQ3。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也可设定所述预设值PW3为所述放电能量Wdischarge在正常变化范围内的最小极限值。如上所述,所述枝晶漏电流Ileak的增大会使所述放电电流Idischarge发生下降跳变,所述放电电压Udischarge以正常的速度缓慢减小,而所述枝晶消耗的能量Wleak也增大,从而使所述放电能量Wdischarge增长速度减慢,导致放电能量Wdischarge的增长速率vw<PW3。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
图7是本发明实施例的金属电池200的单个电芯21处于静置状态的示意图。由于所述金属电池200在静置状态,即非充电、非放电状态下时,因为内部或外部的挤压、撞击等原因,也可能导致在所述电芯21内部生成枝晶并联通所述电芯21的正负极而造成短路,从而消耗掉较大部分的电量,导致所述金属电池200或/及其电芯21的电气参数发生比较明显的跳变的情形,例如所述金属电池200或/及其电芯21剩余电量出现较大的下降跳变,或所述金属电池200或/及其电芯21的静置电压出现较大的下降跳变等,所述电池管理系统100也可针对该些情形在金属电池200在放电过程中监控所述枝晶的生成。
在一种实施例中,所述控制电路12根据所述金属电池200处于静置状态下的不同时刻的电气参数确定所述金属电池200的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池200的电芯21的安全性能。
具体地,当所述金属电池200处于静置状态中时,所述电芯21的正负极之间的静置电压U+-在正常情况下缓慢减小,静置剩余电量Q在正常情况下也缓慢减小,且Q=Q-Qleak
可分别设定不同时刻T1、T2的静置电压为UT2、UT1,则静置电压U+-的变化速率vu可表示为:
vu=△U+-/△t=|UT2-UT1|/△t。
分别设定不同时刻T1、T2的静置剩余电量为QT2、QT1,则所述静置剩余电量Q的变化速率vq可表示为:
vq=△Q/△t=|QT2-QT1|/△t。
在其中一种实施例中,所述电气参数可包括所述金属电池200或/及其电芯21的静置电压或/及静置剩余电量。
所述控制电路12可根据所述金属电池200处于静置状态下的不同时刻的所述静置电压的差值或/及静置剩余电量的差值确定所述静置电压或/及静置剩余电量的下降速率,并在所述静置电压或/及静置剩余电量的下降速率大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,可设定所述预设值PU3为所述静置电压U+-在正常变化范围内的最大极限值。根据以上的描述可知,所述枝晶联通所述电芯21的正负极而造成短路会使所述静置电压U+-发生下降跳变,从而导致所述静置电压U+-的下降速率vu>PU3。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也可设定所述预设值PQ4为所述静置剩余电量Q在正常变化范围内的最大极限值。根据以上的描述可知,所述枝晶漏电流Ileak的增大会使所述枝晶消耗的电量Qleak也增大,使所述静置剩余电量Q发生下降跳变,从而导致静置剩余电量Q的下降速率vq>PQ4。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
图8是本发明实施例的金属电池200的多个电芯21处于静置状态的示意图。所述金属电池200包括多个串联或/及并联的电芯21。
在一种实施例中,所述存储器13用于存储所述金属电池200的各个电芯21的电气参数。所述控制电路12可从所述存储器13中获取所述金属电池200的各个电芯21在同一时刻的电气参数,并且根据所述同一时刻的电气参数确定所述金属电池200的电芯21的安全性能。
在其中一种实施例中,所述电气参数可包括所述电芯21的静置电压,所述控制电路12可根据所述金属电池200的各个电芯21处于静置状态下的同一时刻的静置电压确定两两电芯21之间的静置电压差,并确定所述两两电芯21之间的静置电压差中的最大值,以及根据所述两两电芯21之间的静置电压差中的最大值与所述预设值的比较结果确定所述金属电池200的电芯21的安全性能。
进一步地,所述控制电路12可在所述两两电芯21之间的静置电压差中的最大值大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,所述两两电芯21之间的静置电压差中的最大值可表示为:
Figure WO40009-appb-I000009
其中,n为所述金属电池200的电芯21的个数。
在正常情况下,所述两两电芯21之间的静置电压差相差不会太大。
可设定所述预设值PU4为所述静置电压差中的最大值△U在正常变化范围内的最大极限值。由于所述枝晶联通所述电芯21的正负极而造成短路会使所述静置电压U+-发生下降跳变,从而导致所述两两电芯21之间的静置电压差中的最大值△U>PU4。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
所述电池管理系统100采用上述各个实施例所述的方法可及时、有效地发现所述枝晶的形成,以便于及时采取安全措施,避免安全事故的发生。
在一种实施例中,所述电气参数可包括从零电量到充满电的完整充电过程中的总充电电量或/及总充电能量。
所述控制电路12在相邻两次的总充电电量的差值或/及总充电能量的差值大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,在正常情况下,从零电量到充满电的完整充电过程中,相邻两次的总充电电量的差值或/及总充电能量的差值不会太大。
分别设定相邻两次的总充电电量为Q2、Q1,则相邻两次的总充电电量的差值△Qcharge可表示为:
△Qcharge=|Q2-Q1|。
分别设定相邻两次的总充电能量为W2、W1,则相邻两次的总充电能量的差值△Wcharge可表示为:
△Wcharge=|W2-W1|。
可设定所述预设值PQ5为相邻两次的所述总充电电量的差值在正常变化范围内的最大极限值。由于总充电电量Qcharge=Qleak+Q0,所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的电量Qleak会显著增大,从而使总充电电量Qcharge也会发生上升跳变,导致相邻两次的所述总充电电量的差值△Qcharge>PQ5。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也可设定所述预设值PW4为相邻两次的所述总充电能量的差值在正常变化范围内的最大极限值。由于总充电能量Wcharge=Wleak+W0,所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的能量会显著增大,从而使总充电能量Wcharge也会发生上升跳变,导致相邻两次的所述总充电能量的差值△Wcharge>PW4。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也就是说,通过记录所述金属电池200每次的总充电电量Qcharge及/或总充电能量Wcharge,并分析所述总充电电量Qcharge及/或总充电能量Wcharge的变化趋势,并当所述总充电电量Qcharge及/或总充电能量Wcharge发生上升跳变时,即可确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
在一种实施例中,所述电气参数包括从满电量到放完电的完整放电过程中的总放电电量或/及总放电能量。
所述控制电路12确定相邻两次的总放电电量或/及总放电能量的差值,并在所述总放电电量的差值或/及所述总放电能量的差值大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,在正常情况下,从满电量到放完电的完整放电过程中,相邻两次的总放电电量的差值或/及总放电能量的差值不会太大。
分别设定相邻两次的总放电电量为Q2、Q1,则相邻两次的总放电电量的差值△Qdischarge可表示为:
△Qdischarge=|Q2-Q1|。
分别设定相邻两次的总放电能量为W2、W1,则相邻两次的总放电能量的差值△Wdischarge可表示为:
△Wdischarge=|W2-W1|。
可设定所述预设值PQ6为相邻两次的所述总放电电量的差值在正常变化范围内的最大极限值。由于总放电电量Qdischarge=Qcell-Qleak,所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的电量Qleak会显著增大,从而使总放电电量Qdischarge也会发生下降跳变,导致相邻两次的所述总放电电量的差值△Qdischarge>PQ6。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也可设定所述预设值PW5为相邻两次的所述总放电能量的差值在正常变化范围内的最大极限值。由于总放电能量Wdischarge=Wcell-Wleak,所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的能量Wleak会显著增大,从而使总放电能量Wdischarge也会发生下降跳变,导致相邻两次的所述总放电能量的差值△Wdischarge>PW5。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也就是说,通过记录所述金属电池200每次的总放电电量Qdischarge及/或总放电能量Wdischarge,并分析所述总放电电量Qdischarge及/或总放电能量Wdischarge的变化趋势,并当所述总放电电量Qdischarge及/或总放电能量Wdischarge发生下降跳变时,即可确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
在一种实施例中,所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量、以及从满电量到放完电的完整放电过程中的总放电电量。
所述控制电路12确定一个充放电循环过程中的总充电电量与总放电电量的差值,并在所述总充电电量与总放电电量的差值大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
在一种实施例中,所述电气参数可包括从零电量到充满电的完整充电过程中的总充电能量、以及从满电量到放完电的完整放电过程中的总放电能量。
所述控制电路12确定一个充放电循环过程中的总充电能量与总放电能量的差值,并在所述总充电能量与总放电能量的差值大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,在正常情况下,在一个充放电循环过程中,从零电量到充满电的完整充电过程,到从满电量到放完电的完整放电过程中,所述总充电电量与所述总放电电量的差值、或/及所述总充电能量与所述总放电能量的差值不会太大。
一个充放电循环过程的所述总充电电量与所述总放电电量的差值△Q可表示为:
△Q=|Qcharge-Qdischarge|。
一个充放电循环过程的所述总充电能量与所述总放电能量的差值△W可表示为:
△W=|Wcharge-Wdischarge|。
可设定所述预设值PQ7为在一个充放电循环过程中的所述总充电电量与所述总放电电量的差值在正常变化范围内的最大极限值。由于所述总充电电量与所述总放电电量Qdischarge之间的关系为:Qcharge=Qdischarge+Qleak,所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的电量Qleak会显著增大,从而使所述总放电电量Qdischarge相对于所述总充电电量Qcharge也发生下降跳变,导致所述总充电电量与所述总放电电量的差值△Q>PQ7。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也可设定所述预设值PW6为在一个充放电循环过程中的所述总充电能量与所述总放电能量的差值在正常变化范围内的最大极限值。由于所述总充电能量与所述总放电能量Wdischarge之间的关系为:Wcharge=Wdischarge+Wleak,所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的能量Wleak会显著增大,从而使所述总放电能量Wdischarge相对于所述总充电能量Wcharge也发生下降跳变,导致所述总充电能量与所述总放电能量的差值△W>PW6。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
在一种实施例中,所述存储器13还用于预先存储所述金属电池200或其电芯21的满电量设计值。所述电气参数包括所述金属电池200或/及其电芯21的总充电电量或/及总放电电量。
所述控制电路12可根据所述满电量设计值与所述总充电电量或/及总放电电量确定所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值,并在所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,理论上,若所述金属电池200处于正常性能状态下,所述金属电池200的总充电电量Qcharge、总放电电量Qdischarge与所述满电量设计值Qdesign相差不会太大。
若所述金属电池200的电芯21内部有枝晶形成,则总充电电量Qcharge=Q0+Qleak,总放电电量Qdischarge=Q0-Qleak
所述满电量设计值Qdesign与所述总充电电量Qcharge的差值△Q可表示为:
△Q=|Qdesign-Qcharge|。
所述满电量设计值Qdesign与所述总放电电量Qdischarge的差值△Q可表示为:
△Q=|Qdesign-Qdischarge|。
可设定所述预设值PQ8为所述满电量设计值与所述总充电电量的差值在正常变化范围内的最大极限值。所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的电量Qleak会显著增大,根据以上描述可知,所述总充电电量Qcharge会发生上升跳变,从而导致所述满电量设计值Qdesign与所述总充电电量Qcharge的差值△Q>PQ8。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也可设定所述预设值PQ9为所述满电量设计值与所述总放电电量的差值在正常变化范围内的最大极限值。如上所述,所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的电量Qleak会显著增大,根据以上描述可知,所述放电电量Qdischarge会发生下降跳变,从而导致所述满电量设计值Qdesign与所述总放电电量Qdischarge的差值△Q>PQ9。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
在一种实施例中,所述存储器13还用于预先存储所述金属电池200或其电芯21的满能量设计值。所述电气参数包括所述金属电池200或/及其电芯21的总充电能量或/及总放电能量。
所述控制电路12可根据所述满能量设计值与所述总充电能量或/及总放电能量确定所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值,并在所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值大于所述预设值时,确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
具体地,理论上,若所述金属电池200处于正常性能状态下,所述金属电池200的总充电能量Wcharge、总放电能量Wdischarge与所述满能量设计值Qdesign相差不会太大。
若所述金属电池200的电芯21内部有枝晶形成,则总充电能量Wcharge=W0+Wleak,总放电能量Wdischarge=W0-Wleak
所述满能量设计值Wdesign与所述总充电能量Wcharge的差值△W可表示为:
△W=|Wdesign-Wcharge|。
所述满能量设计值Wdesign与所述总放电能量Wdischarge的差值△W可表示为:
△W=|Wdesign-Wdischarge|。
可设定所述预设值PW7为所述满能量设计值与所述总充电能量的差值在正常变化范围内的最大极限值。所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的能量Wleak会显著增大,根据以上描述可知,所述总充电能量Wcharge会发生上升跳变,从而导致所述满能量设计值Qdesign与所述总充电能量Wcharge的差值△Q>PW7。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
也可设定所述预设值PW8为所述满能量设计值与所述总放电能量的差值在正常变化范围内的最大极限值。如上所述,所述枝晶形成且所述枝晶连通所述电芯21的正负极时,所述枝晶消耗的能量Wleak会显著增大,根据以上描述可知,所述放电能量Wdischarge会发生下降跳变,从而导致所述满能量设计值Wdesign与所述总放电能量Wdischarge的差值△Q>PW8。因此,可据此确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极。
所述电池管理系统100采用上述各个实施例所述的方法可有效地发现所述枝晶的形成,以便于采取安全措施,避免安全事故的发生。
在本实施例中,所述电池管理系统100还包括指示单元14,所述控制电路12还用于当确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极时控制所述指示单元14进行异常提示。
所述指示单元14可为声音发生装置或显示装置中的至少一种。其中,当所述指示单元14采用声音发生装置时,所述指示单元14通过发出警报声或语音来进行异常提示。或者,当所述指示单元14采用显示装置时,通过闪烁灯光或显示文字来进行异常提示。
在本实施例中,所述控制电路12还用于当确定所述金属电池200的电芯21内部有枝晶形成且所述枝晶连通所述电芯21的正负极时切断所述金属电池200所在的电流回路。
本发明的电池管理系统100通过实时监控金属电池200的电气参数,例如所述金属电池200或/及电芯21的充放电电流、电压、电量、能量,静置电压,静置剩余电量等,来判断电芯21内部是否有锂枝晶生成,从而有效地解决了如何检测电池内部枝晶的生成的技术问题,以便于及时采取安全措施,避免安全事故的发生。
此外,所述电池管理系统100结构简单,可与现有的金属电池200及其管理系统很好地融合,无需增加额外的部件,也无需对现有电芯21内部的结构进行复杂化,与现有的大规模生产的锂电池设备和工艺吻合,并且无需增加电池管理系统100的复杂度。采用本发明的电池管理系统100虽然无法做到抑制枝晶的生成,只能在枝晶生长到导致正负极联通才能够成功检测出来,但是对于电池的安全使用,这已经是最重要的时机。
图9是本发明实施例的一种金属电池的控制方法流程示意图。所述控制方法用于管理金属电池的电芯,以监控所述金属电池的电芯的安全性能。应说明的是,本发明实施例的所述方法并不限于图9所示的流程图中的步骤及顺序。根据不同的实施例,图9所示的流程图中的步骤可以增加、移除、或者改变顺序。在本实施方式中,所述方法可以从步骤901开始。
步骤901,检测所述金属电池的电气参数。
其中,所述电气参数包括如下至少一种:所述金属电池的能量、所述金属电池的电量、所述金属电池的电压、所述金属电池的电流、所述电芯的能量、所述电芯的电量、所述电芯的电压、所述电芯的电流。
步骤902,获取所述电气参数,并根据所述电气参数确定所述金属电池的电芯的安全性能。
在本实施例中,所述控制方法还可包括步骤:存储所述金属电池的电气参数。
所述步骤902具体可包括:获取所述金属电池在不同时刻的电气参数,并且根据所述不同时刻的电气参数确定所述金属电池的电芯的安全性能。
进一步地,在本实施例中,所述控制方法还可包括步骤:预先存储一预设值。
所述步骤902具体可包括:根据所述不同时刻的电气参数确定所述金属电池的电气参数的变化值,并根据所述变化值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
其中,所述变化值可包括变化速率、变化趋势等,该预设值可设为所述变化速率的正常变化范围的最大极限值或最小极限值,或者,该预设值可设为所述变化趋势的正常变化范围的最大极限值或最小极限值。
由于所述金属电池在充电过程中电芯内部可能会生成枝晶并连通所述电芯的正负极而造成短路,从而消耗掉较大部分的充电电量或充电能量,导致所述金属电池或/及其电芯的电气参数发生比较明显的跳变的情形,例如所述金属电池或/及其电芯的充电电量或充电能量出现较大的上升跳变,或所述金属电池或/及其电芯的充电电压、充电电流发生上升或下降跳变等,所述控制方法可针对该些情形在金属电池充电过程中监控所述枝晶的生成。
在一种实施例中,所述步骤902具体可包括:根据所述金属电池处于充电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
在其中一种实施例中,所述电气参数可包括所述金属电池或/及其电芯的充电电流。
所述步骤902具体可包括:根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电流的差值确定所述充电电流的增长速率,并在所述充电电流的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在其中另一种实施例中,所述电气参数可包括所述金属电池或/及其电芯的充电电量或/及充电能量。
所述步骤902具体可包括:根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电量的差值或/及充电能量的差值确定所述充电电量或/及充电能量的增长速率,并在所述充电电量或/及充电能量的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在其中又一种实施例中,所述电气参数可包括所述金属电池或/及其电芯的充电电压。
所述步骤902具体可包括:根据所述金属电池处于恒流充电状态下的不同时刻的所述充电电压的差值确定所述充电电压的下降速率,并在所述充电电压的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在其中再一种实施例中,所述电气参数可包括所述金属电池或/及其电芯的充电能量。
所述步骤902具体可包括:根据所述金属电池处于恒流充电状态下的不同时刻的所述充电能量的差值确定所述充电能量的增长速率,并在所述充电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在一种实施例中,所述控制电路还可根据所述金属电池处于放电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
由于所述金属电池在放电过程中电芯内部也可能会生成枝晶并连通所述电芯的正负极而造成短路,从而消耗掉较大部分的放电电量或放电能量,导致所述金属电池或/及其电芯的电气参数发生比较明显的跳变的情形,例如所述金属电池或/及其电芯的放电电量或放电能量出现较大的下降跳变,或所述金属电池或/及其电芯的放电电压、放电电流发生上升或下降跳变等,所述控制方法也可针对该些情形在所述金属电池放电过程中监控所述枝晶的生成。
在一种实施例中,所述步骤902具体可包括:根据所述金属电池处于放电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
在其中一种实施例中,所述电气参数可包括所述金属电池或其电芯的放电电流。
所述步骤902具体可包括:根据所述金属电池处于放电状态下的不同时刻的所述放电电流的差值确定所述放电电流的下降速率,并在所述放电电流的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在其中另一种实施例中,所述电气参数可包括所述金属电池或/及其电芯的放电电量或/及放电能量。
所述步骤902具体可包括:根据所述金属电池处于放电状态下的不同时刻的所述放电电量的差值或/及放电能量的差值确定所述放电电量或/及放电能量的增长速率,并在所述放电电量或/及放电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
由于所述金属电池在静置状态,即非充电、非放电状态下时,因为内部或外部的挤压、撞击等原因,也可能导致在所述电芯内部生成枝晶并联通所述电芯的正负极而造成短路,从而消耗掉较大部分的电量,导致所述金属电池或/及其电芯的电气参数发生比较明显的跳变的情形,例如所述金属电池或/及其电芯剩余电量出现较大的下降跳变,或所述金属电池或/及其电芯的静置电压出现较大的下降跳变等,所述控制方法也可针对该些情形在金属电池在放电过程中监控所述枝晶的生成。
在一种实施例中,所述步骤902具体可包括:根据所述金属电池处于静置状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
在其中一种实施例中,所述电气参数可包括所述金属电池或/及其电芯的静置电压或/及静置剩余电量。
所述步骤902具体可包括:根据所述金属电池处于静置状态下的不同时刻的所述静置电压的差值或/及静置剩余电量的差值确定所述静置电压或/及静置剩余电量的下降速率,并在所述静置电压或/及静置剩余电量的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在一种实施例中,针对所述金属电池包括多个串联或/及并联的电芯的情形,所述控制方法还包括:存储所述金属电池的各个电芯的电气参数。
所述步骤902具体可包括:获取所述金属电池的各个电芯在同一时刻的电气参数,并且根据所述同一时刻的电气参数确定所述金属电池的电芯的安全性能。
在其中一种实施例中,所述电气参数可包括所述电芯的静置电压。所述步骤902具体可包括:根据所述金属电池的各个电芯处于静置状态下的同一时刻的静置电压确定两两电芯之间的静置电压差,并确定所述两两电芯之间的静置电压差中的最大值,以及根据所述两两电芯之间的静置电压差中的最大值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
进一步地,所述步骤902具体还可包括:当所述两两电芯之间的静置电压差中的最大值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
所述控制方法采用上述各个实施例所述的方法可及时、有效地发现所述枝晶的形成,以便于及时采取安全措施,避免安全事故的发生。
在一种实施例中,所述电气参数可包括从零电量到充满电的完整充电过程中的总充电电量或/及总充电能量。
所述步骤902具体可包括:当相邻两次的总充电电量的差值或/及总充电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在一种实施例中,所述电气参数包括从满电量到放完电的完整放电过程中的总放电电量或/及总放电能量。
所述步骤902具体可包括:确定相邻两次的总放电电量或/及总放电能量的差值,并在所述总放电电量的差值或/及所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在一种实施例中,所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量、以及从满电量到放完电的完整放电过程中的总放电电量。
所述步骤902具体可包括:确定一个充放电循环过程中的总充电电量与总放电电量的差值,并在所述总充电电量与总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在一种实施例中,所述电气参数可包括从零电量到充满电的完整充电过程中的总充电能量、以及从满电量到放完电的完整放电过程中的总放电能量。
所述步骤902具体可包括:确定一个充放电循环过程中的总充电能量与总放电能量的差值,并在所述总充电能量与总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在一种实施例中,所述控制方法还包括:预先存储所述金属电池或其电芯的满电量设计值。所述电气参数包括所述金属电池或/及其电芯的总充电电量或/及总放电电量。
所述步骤902具体可包括:根据所述满电量设计值与所述总充电电量或/及总放电电量确定所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值,并在所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
在一种实施例中,所述控制方法还包括:预先存储所述金属电池或其电芯的满能量设计值。所述电气参数包括所述金属电池或/及其电芯的总充电能量或/及总放电能量。
所述步骤902具体可包括:根据所述满能量设计值与所述总充电能量或/及总放电能量确定所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值,并在所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
所述电池管理系统采用上述各个实施例所述的方法可有效地发现所述枝晶的形成,以便于采取安全措施,避免安全事故的发生。
可以理解的是,为了便于采取安全措施,避免安全事故的发生,所述控制方法还可包括步骤:
当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时,对所述异常进行提示;
或/及,当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时,切断所述金属电池所在的电流回路。
本发明的金属电池的控制方法通过实时监控金属电池的电气参数来判断电芯内部是否有锂枝晶生成,从而有效地解决了如何检测电池内部枝晶的生成的技术问题,以便于及时采取安全措施,避免安全事故的发生。
请一并参阅图10、11,本发明实施例还提供一种金属电池200,包括盖体22、壳体23以及收纳在所述壳体23内的电芯21和上述电池管理系统100。其中,所述电池管理系统100以电路板的形式设于所述壳体23内,所述电池管理系统100的指示单元14可设于所述壳体23上,并暴露于所述壳体23外面。可以理解的是,所述指示单元14也可以设于所述壳体23内,或者,所述指示单元14的一部分设于所述壳体23内,一部分设于所述壳体23上。
所述金属电池200通过采用所述电池管理系统100,从而可以有效地检测电池内部枝晶的生成,以便于及时采取安全措施,避免安全事故的发生。
本发明的许多特征能够以、使用或借助于硬件、软件、固件或它们的组合来执行。因此,本发明的特征可以使用处理系统(例如,包括一个或多个处理器)来实现。示例性的处理器可以包括但不限于一个或多个通用微处理器(例如,单核或多核处理器)、专用集成电路、专用指令集处理器、图形处理单元、物理处理单元、数字信号处理单元、协处理器、网络处理单元、音频处理单元、加密处理单元等。
本发明的特征能够以、使用或借助于计算机程序产品来实现,所述计算机程序产品是在其上/其中储存有指令的一个或多个存储介质或者一个或多个计算机可读介质,所述指令可以用于对处理系统进行编程以执行本文所述的任何特征。存储介质可以包括但不限于任何类型的盘,包括软盘、光盘、DVD、CD-ROM、微硬盘和磁光盘、ROM、RAM、EPROM、EEPROM、DRAM、VRAM、闪存设备、磁卡或光卡、纳米系统(包括分子存储器IC)或者任何类型的适合于储存指令和/或数据的介质或设备。
通过储存于一个或多个机器可读介质中的任何一个上,本发明的特征可以并入软件和/或固件中以控制处理系统的硬件,并使处理系统能够与利用本发明的结果的其他机构进行交互。此类软件或固件可以包括但不限于应用代码、设备驱动程序、操作系统和执行环境/容器。
本发明的特征还可以例如使用诸如专用集成电路(ASIC)和现场可编程门阵列(FPGA)器件等硬件组件而以硬件实现。实现硬件状态机以执行本文所述的功能对于相关领域技术人员而言将会是显而易见的。
此外,本发明可以便利地使用一个或多个常规的通用或专用数字计算机、计算设备、机器或微处理器(包括根据本公开内容的教导而编程的一个或多个处理器、存储器和/或计算机可读介质)来实现。对于软件领域技术人员将会显而易见的是,熟练的编程者可以基于本公开内容的教导而方便地准备适当的软件编码。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (89)

  1. 一种电池管理系统,用于管理金属电池的电芯,其特征在于:所述电池管理系统包括:
    检测电路,用于检测所述金属电池的电气参数;以及
    控制电路,用于获取所述电气参数,并根据所述电气参数确定所述金属电池的电芯的安全性能。
  2. 如权利要求1所述的电池管理系统,其特征在于:所述检测电路包括如下至少一种:电流检测电路、电压检测电路、电量计;
    或/及,所述电气参数包括如下至少一种:所述金属电池的能量、所述金属电池的电量、所述金属电池的电压、所述金属电池的电流、所述电芯的能量、所述电芯的电量、所述电芯的电压、所述电芯的电流。
  3. 如权利要求1所述的电池管理系统,其特征在于:所述控制电路包括如下至少一种:微处理器、电路板组成电路。
  4. 如权利要求1所述的电池管理系统,其特征在于:所述电池管理系统还包括存储器,所述存储器与所述检测电路以及所述控制电路分别电连接,所述存储器用于存储所述金属电池的电气参数;
    其中,所述控制电路从所述存储器中获取所述金属电池在不同时刻的电气参数,并且根据所述不同时刻的电气参数确定所述金属电池的电芯的安全性能。
  5. 如权利要求4所述的电池管理系统,其特征在于:所述存储器还用于预先存储一预设值;
    其中,所述控制电路根据所述不同时刻的电气参数确定所述金属电池的电气参数的变化值,并根据所述变化值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  6. 如权利要求5所述的电池管理系统,其特征在于:所述控制电路根据所述金属电池处于充电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  7. 如权利要求6所述的电池管理系统,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电量或/及充电能量,所述控制电路根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电量的差值或/及充电能量的差值确定所述充电电量或/及充电能量的增长速率,并在所述充电电量或/及充电能量的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  8. 如权利要求6所述的电池管理系统,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电流,所述控制电路根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电流的差值确定所述充电电流的增长速率,并在所述充电电流的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  9. 如权利要求6所述的电池管理系统,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电能量,所述控制电路根据所述金属电池处于恒流充电状态下的不同时刻的所述充电能量的差值确定所述充电能量的增长速率,并在所述充电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  10. 如权利要求6所述的电池管理系统,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电压,所述控制电路根据所述金属电池处于恒流充电状态下的不同时刻的所述充电电压的差值确定所述充电电压的下降速率,并在所述充电电压的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  11. 如权利要求5所述的电池管理系统,其特征在于:所述控制电路根据所述金属电池处于放电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  12. 如权利要求11所述的电池管理系统,其特征在于:所述电气参数包括所述金属电池或/及其电芯的放电电量或/及放电能量,所述控制电路根据所述金属电池处于放电状态下的不同时刻的所述放电电量的差值或/及放电能量的差值确定所述放电电量或/及放电能量的增长速率,并在所述放电电量或/及放电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  13. 如权利要求11所述的电池管理系统,其特征在于:所述电气参数包括所述金属电池或其电芯的放电电流,所述控制电路根据所述金属电池处于放电状态下的不同时刻的所述放电电流的差值确定所述放电电流的下降速率,并在所述放电电流的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  14. 如权利要求5所述的电池管理系统,其特征在于:所述控制电路根据所述金属电池处于静置状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  15. 如权利要求14所述的电池管理系统,其特征在于:所述电气参数包括所述金属电池或/及其电芯的静置电压或/及静置剩余电量,所述控制电路根据所述金属电池处于静置状态下的不同时刻的所述静置电压的差值或/及静置剩余电量的差值确定所述静置电压或/及静置剩余电量的下降速率,并在所述静置电压或/及静置剩余电量的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  16. 如权利要求1所述的电池管理系统,其特征在于:所述金属电池包括多个串联或/及并联的电芯,所述电池管理系统还包括存储器,所述存储器与所述检测电路以及所述控制电路分别电连接,所述存储器用于存储所述金属电池的各个电芯的电气参数;
    其中,所述控制电路从所述存储器中获取所述金属电池的各个电芯在同一时刻的电气参数,并且根据所述同一时刻的电气参数确定所述金属电池的电芯的安全性能。
  17. 如权利要求16所述的电池管理系统,其特征在于:所述存储器还用于预先存储一预设值;
    其中,所述电气参数包括所述电芯的静置电压,所述控制电路根据所述金属电池的各个电芯处于静置状态下的同一时刻的静置电压确定两两电芯之间的静置电压差,并确定所述两两电芯之间的静置电压差中的最大值,以及根据所述两两电芯之间的静置电压差中的最大值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  18. 如权利要求17所述的电池管理系统,其特征在于:所述控制电路在所述两两电芯之间的静置电压差中的最大值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  19. 如权利要求5所述的电池管理系统,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量或/及总充电能量,所述控制电路在相邻两次的总充电电量的差值或/及总充电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  20. 如权利要求5所述的电池管理系统,其特征在于:所述电气参数包括从满电量到放完电的完整放电过程中的总放电电量或/及总放电能量,所述控制电路确定相邻两次的总放电电量的差值或/及总放电能量的差值,并在所述总放电电量的差值或/及所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  21. 如权利要求5所述的电池管理系统,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量、以及从满电量到放完电的完整放电过程中的总放电电量,所述控制电路确定一个充放电循环过程中的总充电电量与总放电电量的差值,并在所述总充电电量与总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  22. 如权利要求5所述的电池管理系统,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电能量、以及从满电量到放完电的完整放电过程中的总放电能量,所述控制电路确定一个充放电循环过程中的总充电能量与总放电能量的差值,并在所述总充电能量与总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  23. 如权利要求4所述的电池管理系统,其特征在于:所述存储器还用于预先存储一预设值以及所述金属电池或其电芯的满电量设计值;
    所述电气参数包括所述金属电池或/及其电芯的总充电电量或/及总放电电量,所述控制电路根据所述满电量设计值与所述总充电电量或/及总放电电量确定所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值,并在所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  24. 如权利要求4所述的电池管理系统,其特征在于:所述存储器还用于预先存储一预设值以及所述金属电池或其电芯的满能量设计值;
    所述电气参数包括所述金属电池或/及其电芯的总充电能量或/及总放电能量,所述控制电路根据所述满能量设计值与所述总充电能量或/及总放电能量确定所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值,并在所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  25. 如权利要求1所述的电池管理系统,其特征在于:所述电池管理系统还包括提示单元,所述控制电路还用于当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时控制所述提示单元进行异常提示。
  26. 如权利要求25所述的电池管理系统,其特征在于:所述提示单元为声音发生装置或显示装置中的至少一种,其中,
    当所述提示单元为声音发生装置时,所述提示单元通过发出警报声或语音来进行异常提示;或者
    当所述提示单元为显示装置时,通过闪烁灯光或显示文字来进行异常提示。
  27. 如权利要求1或25所述的电池管理系统,其特征在于:所述控制电路还用于当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时切断所述金属电池所在的电流回路。
  28. 如权利要求2所述的电池管理系统,其特征在于:所述检测电路包括电流检测电路,所述电流检测电路电连接于所述金属电池的充电回路或/及放电回路中,用于在所述金属电池处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池处于放电过程中检测所述放电回路中的放电电流。
  29. 如权利要求28所述的电池管理系统,其特征在于:所述控制电路通过对所述充电电流进行时间积分来计算出所述充电过程中的充电电量;
    或/及,所述控制电路通过对所述放电电流进行时间积分来计算出所述放电过程中的放电电量。
  30. 如权利要求2所述的电池管理系统,其特征在于:所述检测电路包括电压检测电路,所述电压检测电路电连接于所述金属电池或所述电芯的正负极之间,用于在所述金属电池处于充电过程中检测所述金属电池或所述电芯的正负极之间的充电电压,或者,用于在所述金属电池处于放电过程中检测所述金属电池或所述电芯的正负极之间的放电电压,或者,用于在所述金属电池处于静置状态过程中检测所述金属电池或所述电芯的正负极之间的静置电压。
  31. 如权利要求30所述的电池管理系统,其特征在于:所述检测电路还包括电流检测电路,所述电流检测电路电连接于所述金属电池的充电回路或/及放电回路中,用于在所述金属电池处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池处于放电过程中检测所述放电回路中的放电电流;
    所述控制电路通过对所述充电电流与所述充电电压的乘积进行时间积分以计算出所述充电能量,或/及,所述控制电路通过对所述放电电流与所述放电电压的乘积进行时间积分以计算出所述放电能量。
  32. 如权利要求2所述的电池管理系统,其特征在于:所述检测电路包括电量计,所述电量计电连接于所述金属电池的充电回路或放电回路中,用于在所述金属电池处于充电过程中检测所述金属电池的充电电量,或者,用于在所述金属电池处于放电过程中检测所述金属电池的放电电量;
    或者,所述电量计电连接于所述金属电池或所述电芯,用于在所述金属电池处于静置过程中检测所述金属电池的剩余电量。
  33. 如权利要求1所述的电池管理系统,其特征在于:所述电池管理系统设于所述金属电池的壳体内部,所述检测电路与所述金属电池的电芯电连接。
  34. 一种金属电池,包括壳体以及收纳在所述壳体内的电芯,其特征在于:所述金属电池还包括设于所述壳体内部的电池管理系统,所述电池管理系统用于管理所述电芯,所述电池管理系统包括:
    检测电路,用于检测所述金属电池的电气参数;以及
    控制电路,用于获取所述电气参数,并根据所述电气参数确定所述金属电池的电芯的安全性能。
  35. 如权利要求34所述的金属电池,其特征在于:所述检测电路包括如下至少一种:电流检测电路、电压检测电路、电量计;
    或/及,所述电气参数包括如下至少一种:所述金属电池的能量、所述金属电池的电量、所述金属电池的电压、所述金属电池的电流、所述电芯的能量、所述电芯的电量、所述电芯的电压、所述电芯的电流。
  36. 如权利要求34所述的金属电池,其特征在于:所述控制电路包括如下至少一种:微处理器、电路板组成电路。
  37. 如权利要求34所述的金属电池,其特征在于:所述电池管理系统还包括存储器,所述存储器与所述检测电路以及所述控制电路分别电连接,所述存储器用于存储所述金属电池的电气参数;
    其中,所述控制电路从所述存储器中获取所述金属电池在不同时刻的电气参数,并且根据所述不同时刻的电气参数确定所述金属电池的电芯的安全性能。
  38. 如权利要求37所述的金属电池,其特征在于:所述存储器还用于预先存储一预设值;
    其中,所述控制电路根据所述不同时刻的电气参数确定所述金属电池的电气参数的变化值,并根据所述变化值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  39. 如权利要求38所述的金属电池,其特征在于:所述控制电路根据所述金属电池处于充电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  40. 如权利要求39所述的金属电池,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电量或/及充电能量,所述控制电路根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电量的差值或/及充电能量的差值确定所述充电电量或/及充电能量的增长速率,并在所述充电电量或/及充电能量的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  41. 如权利要求39所述的金属电池,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电流,所述控制电路根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电流的差值确定所述充电电流的增长速率,并在所述充电电流的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  42. 如权利要求39所述的金属电池,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电能量,所述控制电路根据所述金属电池处于恒流充电状态下的不同时刻的所述充电能量的差值确定所述充电能量的增长速率,并在所述充电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  43. 如权利要求39所述的金属电池,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电压,所述控制电路根据所述金属电池处于恒流充电状态下的不同时刻的所述充电电压的差值确定所述充电电压的下降速率,并在所述充电电压的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  44. 如权利要求38所述的金属电池,其特征在于:所述控制电路根据所述金属电池处于放电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  45. 如权利要求44所述的金属电池,其特征在于:所述电气参数包括所述金属电池或/及其电芯的放电电量或/及放电能量,所述控制电路根据所述金属电池处于放电状态下的不同时刻的所述放电电量的差值或/及放电能量的差值确定所述放电电量或/及放电能量的增长速率,并在所述放电电量或/及放电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  46. 如权利要求44所述的金属电池,其特征在于:所述电气参数包括所述金属电池或其电芯的放电电流,所述控制电路根据所述金属电池处于放电状态下的不同时刻的所述放电电流的差值确定所述放电电流的下降速率,并在所述放电电流的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  47. 如权利要求38所述的金属电池,其特征在于:所述控制电路根据所述金属电池处于静置状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  48. 如权利要求47所述的金属电池,其特征在于:所述电气参数包括所述金属电池或/及其电芯的静置电压或/及静置剩余电量,所述控制电路根据所述金属电池处于静置状态下的不同时刻的所述静置电压的差值或/及静置剩余电量的差值确定所述静置电压或/及静置剩余电量的下降速率,并在所述静置电压或/及静置剩余电量的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  49. 如权利要求34所述的金属电池,其特征在于:所述金属电池包括多个串联或/及并联的电芯,所述电池管理系统还包括存储器,所述存储器与所述检测电路以及所述控制电路分别电连接,所述存储器用于存储所述金属电池的各个电芯的电气参数;
    其中,所述控制电路从所述存储器中获取所述金属电池的各个电芯在同一时刻的电气参数,并且根据所述同一时刻的电气参数确定所述金属电池的电芯的安全性能。
  50. 如权利要求49所述的金属电池,其特征在于:所述存储器还用于预先存储一预设值;
    其中,所述电气参数包括所述电芯的静置电压,所述控制电路根据所述金属电池的各个电芯处于静置状态下的同一时刻的静置电压确定两两电芯之间的静置电压差,并确定所述两两电芯之间的静置电压差中的最大值,以及根据所述两两电芯之间的静置电压差中的最大值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  51. 如权利要求50所述的金属电池,其特征在于:所述控制电路在所述两两电芯之间的静置电压差中的最大值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  52. 如权利要求38所述的金属电池,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量或/及总充电能量,所述控制电路在相邻两次的总充电电量的差值或/及总充电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  53. 如权利要求38所述的金属电池,其特征在于:所述电气参数包括从满电量到放完电的完整放电过程中的总放电电量或/及总放电能量,所述控制电路确定相邻两次的总放电电量的差值或/及总放电能量的差值,并在所述总放电电量的差值或/及所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  54. 如权利要求38所述的金属电池,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量、以及从满电量到放完电的完整放电过程中的总放电电量,所述控制电路确定一个充放电循环过程中的总充电电量与总放电电量的差值,并在所述总充电电量与总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  55. 如权利要求38所述的金属电池,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电能量、以及从满电量到放完电的完整放电过程中的总放电能量,所述控制电路确定一个充放电循环过程中的总充电能量与总放电能量的差值,并在所述总充电能量与总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  56. 如权利要求37所述的金属电池,其特征在于:所述存储器还用于预先存储一预设值以及所述金属电池或其电芯的满电量设计值;
    所述电气参数包括所述金属电池或/及其电芯的总充电电量或/及总放电电量,所述控制电路根据所述满电量设计值与所述总充电电量或/及总放电电量确定所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值,并在所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  57. 如权利要求37所述的金属电池,其特征在于:所述存储器还用于预先存储一预设值以及所述金属电池或其电芯的满能量设计值;
    所述电气参数包括所述金属电池或/及其电芯的总充电能量或/及总放电能量,所述控制电路根据所述满能量设计值与所述总充电能量或/及总放电能量确定所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值,并在所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  58. 如权利要求34所述的金属电池,其特征在于:所述电池管理系统还包括提示单元,所述控制电路还用于当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时控制所述提示单元进行异常提示。
  59. 如权利要求58所述的金属电池,其特征在于:所述提示单元为声音发生装置或显示装置中的至少一种,其中,
    当所述提示单元为声音发生装置时,所述提示单元通过发出警报声或语音来进行异常提示;或者
    当所述提示单元为显示装置时,通过闪烁灯光或显示文字来进行异常提示。
  60. 如权利要求34或58所述的金属电池,其特征在于:所述控制电路还用于当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时切断所述金属电池所在的电流回路。
  61. 如权利要求35所述的金属电池,其特征在于:所述检测电路包括电流检测电路,所述电流检测电路电连接于所述金属电池的充电回路或/及放电回路中,用于在所述金属电池处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池处于放电过程中检测所述放电回路中的放电电流。
  62. 如权利要求61所述的金属电池,其特征在于:所述控制电路通过对所述充电电流进行时间积分来计算出所述充电过程中的充电电量;
    或/及,所述控制电路通过对所述放电电流进行时间积分来计算出所述放电过程中的放电电量。
  63. 如权利要求35所述的金属电池,其特征在于:所述检测电路包括电压检测电路,所述电压检测电路电连接于所述金属电池或所述电芯的正负极之间,用于在所述金属电池处于充电过程中检测所述金属电池或所述电芯的正负极之间的充电电压,或者,用于在所述金属电池处于放电过程中检测所述金属电池或所述电芯的正负极之间的放电电压,或者,用于在所述金属电池处于静置状态过程中检测所述金属电池或所述电芯的正负极之间的静置电压。
  64. 如权利要求63所述的金属电池,其特征在于:所述检测电路还包括电流检测电路,所述电流检测电路电连接于所述金属电池的充电回路或/及放电回路中,用于在所述金属电池处于充电过程中检测所述充电回路中的充电电流,或/及,用于在所述金属电池处于放电过程中检测所述放电回路中的放电电流;
    所述控制电路通过对所述充电电流与所述充电电压的乘积进行时间积分以计算出所述充电能量,或/及,所述控制电路通过对所述放电电流与所述放电电压的乘积进行时间积分以计算出所述放电能量。
  65. 如权利要求35所述的金属电池,其特征在于:所述检测电路包括电量计,所述电量计电连接于所述金属电池的充电回路或放电回路中,用于在所述金属电池处于充电过程中检测所述金属电池的充电电量,或者,用于在所述金属电池处于放电过程中检测所述金属电池的放电电量;
    或者,所述电量计电连接于所述金属电池或所述电芯,用于在所述金属电池处于静置过程中检测所述金属电池的剩余电量。
  66. 一种金属电池的控制方法,包括以下步骤:
    检测所述金属电池的电气参数;以及
    获取所述电气参数,并根据所述电气参数确定所述金属电池的电芯的安全性能。
  67. 如权利要求66所述的控制方法,其特征在于:所述电气参数包括如下至少一种:所述金属电池的能量、所述金属电池的电量、所述金属电池的电压、所述金属电池的电流、所述电芯的能量、所述电芯的电量、所述电芯的电压、所述电芯的电流。
  68. 如权利要求66所述的控制方法,其特征在于:所述控制方法还包括:
    当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时,对所述异常进行提示;
    或/及,当确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极时,切断所述金属电池所在的电流回路。
  69. 如权利要求66所述的控制方法,其特征在于:所述控制方法还包括:
    存储所述金属电池的电气参数;以及
    获取所述金属电池在不同时刻的电气参数,并且根据所述不同时刻的电气参数确定所述金属电池的电芯的安全性能。
  70. 如权利要求69所述的控制方法,其特征在于:所述控制方法还包括:
    预先存储一预设值;以及
    根据所述不同时刻的电气参数确定所述金属电池的电气参数的变化值,并根据所述变化值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  71. 如权利要求70所述的控制方法,其特征在于:所述控制方法具体包括:
    根据所述金属电池处于充电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  72. 如权利要求71所述的控制方法,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电量或/及充电能量;所述控制方法具体包括:
    根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电量的差值或/及充电能量的差值确定所述充电电量或/及充电能量的增长速率,并在所述充电电量或/及充电能量的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  73. 如权利要求71所述的控制方法,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电流;所述控制方法具体包括:
    根据所述金属电池处于恒压充电状态下的不同时刻的所述充电电流的差值确定所述充电电流的增长速率,并在所述充电电流的增长速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  74. 如权利要求71所述的控制方法,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电能量;所述控制方法具体包括:
    根据所述金属电池处于恒流充电状态下的不同时刻的所述充电能量的差值确定所述充电能量的增长速率,并在所述充电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  75. 如权利要求71所述的控制方法,其特征在于:所述电气参数包括所述金属电池或/及其电芯的充电电压;所述控制方法具体包括:
    所述金属电池处于恒流充电状态下的不同时刻的所述充电电压的差值确定所述充电电压的下降速率,并在所述充电电压的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  76. 如权利要求70所述的控制方法,其特征在于:所述控制方法具体包括:
    根据所述金属电池处于放电状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  77. 如权利要求76所述的控制方法,其特征在于:所述电气参数包括所述金属电池或/及其电芯的放电电量或/及放电能量;所述控制方法具体包括:
    根据所述金属电池处于放电状态下的不同时刻的所述放电电量的差值或/及放电能量的差值确定所述放电电量或/及放电能量的增长速率,并在所述放电电量或/及放电能量的增长速率小于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  78. 如权利要求76所述的控制方法,其特征在于:所述电气参数包括所述金属电池或其电芯的放电电流;所述控制方法具体包括:
    根据所述金属电池处于放电状态下的不同时刻的所述放电电流的差值确定所述放电电流的下降速率,并在所述放电电流的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  79. 如权利要求70所述的控制方法,其特征在于:所述控制方法具体包括:
    根据所述金属电池处于静置状态下的不同时刻的电气参数确定所述金属电池的电气参数的变化速率,并根据所述变化速率与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  80. 如权利要求79所述的控制方法,其特征在于:所述电气参数包括所述金属电池或/及其电芯的静置电压或/及静置剩余电量;所述控制方法具体包括:
    根据所述金属电池处于静置状态下的不同时刻的所述静置电压的差值或/及静置剩余电量的差值确定所述静置电压或/及静置剩余电量的下降速率,并在所述静置电压或/及静置剩余电量的下降速率大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  81. 如权利要求66所述的控制方法,其特征在于:所述金属电池包括多个串联或/及并联的电芯,所述控制方法还包括:
    存储所述金属电池的各个电芯的电气参数;以及
    获取所述金属电池的各个电芯在同一时刻的电气参数,并且根据所述同一时刻的电气参数确定所述金属电池的电芯的安全性能。
  82. 如权利要求81所述的控制方法,其特征在于:所述电气参数包括所述电芯的静置电压,所述控制方法还包括:
    预先存储一预设值;
    根据所述金属电池的各个电芯处于静置状态下的同一时刻的静置电压确定两两电芯之间的静置电压差,并确定所述两两电芯之间的静置电压差中的最大值,以及根据所述两两电芯之间的静置电压差中的最大值与所述预设值的比较结果确定所述金属电池的电芯的安全性能。
  83. 如权利要求82所述的控制方法,其特征在于:所述控制方法具体包括:
    当所述两两电芯之间的静置电压差中的最大值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  84. 如权利要求70所述的控制方法,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量或/及总充电能量;所述控制方法具体包括:
    当相邻两次的总充电电量的差值或/及总充电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  85. 如权利要求70所述的控制方法,其特征在于:所述电气参数包括从满电量到放完电的完整放电过程中的总放电电量或/及总放电能量;所述控制方法具体包括:
    确定相邻两次的总放电电量的差值或/及总放电能量的差值,并在所述总放电电量的差值或/及所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  86. 如权利要求70所述的控制方法,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电电量、以及从满电量到放完电的完整放电过程中的总放电电量;所述控制方法具体包括:
    确定一个充放电循环过程中的总充电电量与总放电电量的差值,并在所述总充电电量与总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  87. 如权利要求70所述的控制方法,其特征在于:所述电气参数包括从零电量到充满电的完整充电过程中的总充电能量、以及从满电量到放完电的完整放电过程中的总放电能量;所述控制方法具体包括:
    确定一个充放电循环过程中的总充电能量与总放电能量的差值,并在所述总充电能量与总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  88. 如权利要求69所述的控制方法,其特征在于:所述电气参数包括所述金属电池或/及其电芯的总充电电量或/及总放电电量;所述控制方法还包括:
    预先存储一预设值以及所述金属电池或其电芯的满电量设计值;以及
    根据所述满电量设计值与所述总充电电量或/及总放电电量确定所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值,并在所述满电量设计值与所述总充电电量的差值或/及与所述总放电电量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
  89. 如权利要求69所述的控制方法,其特征在于:所述电气参数包括所述金属电池或/及其电芯的总充电能量或/及总放电能量;所述控制方法还包括:
    预先存储一预设值以及所述金属电池或其电芯的满能量设计值;以及
    根据所述满能量设计值与所述总充电能量或/及总放电能量确定所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值,并在所述满能量设计值与所述总充电能量的差值或/及与所述总放电能量的差值大于所述预设值时,确定所述金属电池的电芯内部有枝晶形成且所述枝晶连通所述电芯的正负极。
PCT/CN2016/088241 2016-07-01 2016-07-01 金属电池及其电池管理系统、控制方法 WO2018000437A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/088241 WO2018000437A1 (zh) 2016-07-01 2016-07-01 金属电池及其电池管理系统、控制方法
CN201680004523.0A CN107438917B (zh) 2016-07-01 2016-07-01 金属电池及其电池管理系统、控制方法
US16/235,615 US11031639B2 (en) 2016-07-01 2018-12-28 Metal battery, and management system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/088241 WO2018000437A1 (zh) 2016-07-01 2016-07-01 金属电池及其电池管理系统、控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/235,615 Continuation US11031639B2 (en) 2016-07-01 2018-12-28 Metal battery, and management system and control method thereof

Publications (1)

Publication Number Publication Date
WO2018000437A1 true WO2018000437A1 (zh) 2018-01-04

Family

ID=60459080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088241 WO2018000437A1 (zh) 2016-07-01 2016-07-01 金属电池及其电池管理系统、控制方法

Country Status (3)

Country Link
US (1) US11031639B2 (zh)
CN (1) CN107438917B (zh)
WO (1) WO2018000437A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017000216A1 (zh) * 2015-06-30 2017-01-05 深圳市大疆创新科技有限公司 充电控制电路、充电装置、充电系统及充电控制方法
CN108336437B (zh) * 2017-12-21 2020-05-05 维沃移动通信有限公司 一种电池检测装置、方法及移动终端
US11215668B2 (en) * 2018-06-15 2022-01-04 David Chee-Fai Soo Precision battery energy measuring system
CN109856552B (zh) * 2019-01-28 2021-01-26 蜂巢能源科技(无锡)有限公司 车辆及其基于电流值的电池异常检测方法和装置
CN109856551B (zh) * 2019-01-28 2021-03-19 蜂巢能源科技有限公司 车辆及其基于电压值的电池异常检测方法和装置
US11750012B2 (en) * 2019-09-29 2023-09-05 Ningde Amperex Technology Limited Electronic device and method for charging a battery
CN110568362B (zh) * 2019-10-12 2021-12-31 东软睿驰汽车技术(沈阳)有限公司 一种电芯性能参数的确定方法和装置
CN110838603B (zh) * 2019-11-12 2022-07-05 淮安信息职业技术学院 一种电动汽车电池电量和温度智能管理系统及方法
CN110824372A (zh) * 2019-11-25 2020-02-21 Oppo广东移动通信有限公司 一种判断电池内短路的方法、设备和电子设备
CN112698224B (zh) * 2020-12-03 2023-01-06 Oppo广东移动通信有限公司 剩余电量估算方法、装置、设备及可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821801A (zh) * 2005-02-18 2006-08-23 松下电器产业株式会社 二次电池的内部短路检测装置和检测方法、二次电池的电池组件及电子设备
CN101460859A (zh) * 2006-06-06 2009-06-17 松下电器产业株式会社 电池组件的异常判断方法及电池组件
JP2010277979A (ja) * 2009-05-22 2010-12-09 Shuji Onita フォイル構造をした二次電池の内部短絡現象の検知方法
CN102117937A (zh) * 2011-01-12 2011-07-06 合肥国轩高科动力能源有限公司 一种磷酸铁锂电池的自放电筛选方法
CN202121011U (zh) * 2011-06-03 2012-01-18 武汉市弘阳科技发展有限公司 金属锂复合结构锂离子电池负极
CN102565611A (zh) * 2011-12-27 2012-07-11 惠州市亿能电子有限公司 动力电池的内短路检测方法
CN103545564A (zh) * 2012-07-16 2014-01-29 联想(北京)有限公司 充电电池单元及其缺陷检测方法
CN105229483A (zh) * 2013-03-13 2016-01-06 蒂艾克思股份有限公司 用于检测电池组中的内部短路的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013029242B1 (pt) 2011-05-17 2021-06-22 Indiana University Research And Technology Corporation Célula de bateria de lítio metálico
WO2016004320A2 (en) 2014-07-02 2016-01-07 Pellion Technologies, Inc. Multi-electrode electrochemical cell and method of making the same
IL239852A (en) * 2015-07-08 2016-12-29 Algolion Ltd Lithium-ion battery safety monitoring

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821801A (zh) * 2005-02-18 2006-08-23 松下电器产业株式会社 二次电池的内部短路检测装置和检测方法、二次电池的电池组件及电子设备
CN101460859A (zh) * 2006-06-06 2009-06-17 松下电器产业株式会社 电池组件的异常判断方法及电池组件
JP2010277979A (ja) * 2009-05-22 2010-12-09 Shuji Onita フォイル構造をした二次電池の内部短絡現象の検知方法
CN102117937A (zh) * 2011-01-12 2011-07-06 合肥国轩高科动力能源有限公司 一种磷酸铁锂电池的自放电筛选方法
CN202121011U (zh) * 2011-06-03 2012-01-18 武汉市弘阳科技发展有限公司 金属锂复合结构锂离子电池负极
CN102565611A (zh) * 2011-12-27 2012-07-11 惠州市亿能电子有限公司 动力电池的内短路检测方法
CN103545564A (zh) * 2012-07-16 2014-01-29 联想(北京)有限公司 充电电池单元及其缺陷检测方法
CN105229483A (zh) * 2013-03-13 2016-01-06 蒂艾克思股份有限公司 用于检测电池组中的内部短路的系统和方法

Also Published As

Publication number Publication date
CN107438917B (zh) 2019-09-10
US20190140325A1 (en) 2019-05-09
CN107438917A (zh) 2017-12-05
US11031639B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2018000437A1 (zh) 金属电池及其电池管理系统、控制方法
WO2020189915A1 (ko) 배터리 관리 장치
WO2018080049A1 (ko) 무선 전력 송수신 장치의 무선 충전 코일 및 그의 제조 방법.
WO2020080804A1 (en) Electronic device and method for wired or wireless charging in electronic device
WO2020189918A1 (ko) 배터리 관리 장치
WO2013157744A1 (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
WO2020022578A1 (ko) 무선 충전을 이용하여 통신 채널을 제어하는 전자 장치 및 전자 장치의 동작 방법
WO2013027993A2 (en) Mobility state enhancements
WO2023063496A1 (en) Energy storage system
WO2015056963A1 (ko) 혼합 양극재를 포함하는 이차 전지의 상태 추정 장치 및 그 방법
AU2019359728B2 (en) Electronic device and method for wired or wireless charging in electronic device
WO2020085631A1 (ko) 무선 전력 전송 방법 및 장치
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021054723A1 (ko) 배터리 관리 장치 및 방법, 및 이를 포함하는 배터리 시스템
WO2023085515A1 (en) Energy storage system
WO2009145431A2 (ko) 전자감독 시스템 및 그 방법
WO2022086178A1 (en) Method for detecting foreign object using sensor coil and electronic device
WO2009145433A2 (ko) 특정 범죄자 위치추적 시스템 및 그의 인증방법
WO2023063497A1 (en) Energy storage system
WO2021118170A1 (ko) 배터리의 열화 모델에 따라 배터리의 상태를 추정하는 배터리 상태 추정 장치 및 방법, 배터리에서 측정되는 파라미터의 모델을 이용하는 배터리 이상 진단 장치 및 방법
WO2024029912A1 (ko) 집전체
WO2023068785A1 (en) Aerosol-generating device
WO2023068789A1 (en) Aerosol-generating device
WO2023063495A1 (en) Energy storage system
WO2022270846A1 (en) Aerosol-generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906836

Country of ref document: EP

Kind code of ref document: A1