WO2017222207A1 - 전송 파워를 결정하는 방법 및 무선 기기 - Google Patents

전송 파워를 결정하는 방법 및 무선 기기 Download PDF

Info

Publication number
WO2017222207A1
WO2017222207A1 PCT/KR2017/005761 KR2017005761W WO2017222207A1 WO 2017222207 A1 WO2017222207 A1 WO 2017222207A1 KR 2017005761 W KR2017005761 W KR 2017005761W WO 2017222207 A1 WO2017222207 A1 WO 2017222207A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
transmission
mhz
low
cellular uplink
Prior art date
Application number
PCT/KR2017/005761
Other languages
English (en)
French (fr)
Inventor
임수환
양윤오
이상욱
정만영
황진엽
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/307,087 priority Critical patent/US10925018B2/en
Publication of WO2017222207A1 publication Critical patent/WO2017222207A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/246TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter calculated in said terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to mobile communications.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • D2D device to device
  • D2D communication may be performed between terminals located within the coverage of the base station, or may be performed between terminals located outside the coverage of the base station. Furthermore, D2D communication may be performed between a terminal located outside the coverage of the base station and a terminal located within the coverage of the base station.
  • V2X vehicle-to-everything
  • V2X collectively refers to communication technology via the vehicle and all interfaces. Implementations of V2X may vary, for example, from vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-person (V2P), vehicle-to-network (V2N), and the like.
  • the present disclosure aims to suggest methods for solving the above-described problem.
  • one disclosure of the present specification provides a method for the wireless device to determine the transmission power.
  • the method when asynchronous dual transmissions are configured for V2X (Vehicle to everything) and cellular uplink, and when subframe p for cellular uplink transmission and subframe q for V2X transmission overlap each other, Determining whether the subframe p for the cellular uplink transmission precedes the subframe q for the V2X transmission; Based on the determination, determining a reference subframe among the subframe p and the subframe q.
  • the reference subframe may be used to determine the lower limit of the transmission power.
  • the subframe p for the cellular uplink transmission is earlier than the subframe q for the V2X transmission, and the sidelink control information (SCI) is set to a lower priority value than the value specified by the higher layer parameter
  • the subframe p may be determined as the reference subframe.
  • the subframe p for the cellular uplink transmission is earlier than the subframe q for the V2X transmission, and the sidelink control information (SCI) is set to a higher priority value than the value specified by the higher layer parameter.
  • the subframe q may be determined as the reference subframe.
  • the subframe q for the V2X transmission precedes the subframe p for the cellular uplink transmission, and the sidelink control information (SCI) is set to a priority field set to a value lower than a value specified by an upper layer parameter.
  • the subframe p may be determined as the reference subframe.
  • the subframe q for the V2X transmission is ahead of the subframe p for the cellular uplink transmission, and the sidelink control information (SCI) is set to a higher priority value than the value specified by the upper layer parameter
  • the subframe q may be determined as the reference subframe.
  • Subframe pairs (p, q) and (p, q-1) may be considered to determine the tolerance for maximum power.
  • Subframe pairs (p, q) and (p + 1, q) may be considered to determine the tolerance for maximum power.
  • Subframe pairs (p, q) and (p, q + 1) may be considered to determine the tolerance for maximum power.
  • Subframe pairs (p-1, q) and (p, q) may be considered to determine the tolerance for maximum power.
  • the wireless device includes a transmitter for performing asynchronous dual transmissions on a vehicle to everything (V2X) and a cellular uplink; It may include a processor for controlling the transmitter.
  • V2X vehicle to everything
  • the processor is configured to perform the cellular uplink transmission. It may be determined whether subframe p is earlier than subframe q for the V2X transmission.
  • the processor may determine a reference subframe among the subframe p and the subframe q based on the determination.
  • the reference subframe may be used to determine the lower limit of the transmission power.
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • 3 shows a structure of a downlink radio frame according to TDD in 3GPP LTE.
  • FIG. 4 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • 5 shows a structure of a downlink subframe.
  • FIG. 6 shows a structure of an uplink subframe in 3GPP LTE.
  • D2D device to device
  • FIG. 9 shows an example of D2D communication or ProSe communication between UE # 1 and UE # 2 shown in FIG. 8.
  • FIG. 10 illustrates an example in which UE # 2 illustrated in FIG. 8 selects a relay UE.
  • FIG. 11 is an exemplary view illustrating the concept of V2V.
  • 12A to 12C illustrate an SCC operation and an MCC operation.
  • FIG. 13 illustrates an RF structure for E-UTRA cellular communication and V2X communication.
  • 14A to 14D illustrate subframes for E-UTRA uplink transmission (cellular transmission or WAN transmission) and sidelink V2X transmission of B47.
  • FIG. 15 is a flowchart illustrating a method of determining a reference subframe according to a posterior relationship between a subframe for E-UTRA uplink transmission (cellular transmission or WAN transmission) and a subframe for sidelink V2X transmission of B47.
  • 16 is a block diagram illustrating a wireless communication system in which the present disclosure is implemented.
  • LTE includes LTE and / or LTE-A.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • base station which is used hereinafter, generally refers to a fixed station for communicating with a wireless device, and includes an evolved-nodeb (eNodeB), an evolved-nodeb (eNB), a base transceiver system (BTS), and an access point (e. Access Point) may be called.
  • eNodeB evolved-nodeb
  • eNB evolved-nodeb
  • BTS base transceiver system
  • access point e. Access Point
  • UE User Equipment
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • MT mobile terminal
  • 1 is a wireless communication system.
  • a wireless communication system includes at least one base station (BS) 20.
  • Each base station 20 provides a communication service for a particular geographic area (generally called a cell) 20a, 20b, 20c.
  • the UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are determined relatively based on the UE.
  • downlink means communication from the base station 20 to the UE 10
  • uplink means communication from the UE 10 to the base station 20.
  • the transmitter may be part of the base station 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the base station 20.
  • the radio frame illustrated in FIG. 2 may refer to section 5 of 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)".
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 10
  • a radio frame includes 10 subframes, and one subframe includes two slots. Slots in a radio frame are numbered from 0 to 19 slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be referred to as a scheduling unit for data transmission.
  • one radio frame may have a length of 10 ms
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • one slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols. How many OFDM symbols are included in one slot may vary depending on a cyclic prefix (CP).
  • OFDM orthogonal frequency division multiplexing
  • 3 is 3GPP In LTE TDD The structure of the downlink radio frame is shown.
  • a subframe having indexes # 1 and # 6 is called a special subframe and includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the UE.
  • UpPTS is used to synchronize channel estimation at the base station with uplink transmission synchronization of the UE.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • DL subframe In TDD, a downlink (DL) subframe and an uplink (UL) subframe coexist in one radio frame.
  • Table 1 shows an example of configuration of a radio frame.
  • 'D' represents a DL subframe
  • 'U' represents a UL subframe
  • 'S' represents a special subframe.
  • the UE may know which subframe is the DL subframe or the UL subframe according to the configuration of the radio frame.
  • one slot includes a plurality of OFDM symbols in a time domain and N RB resource blocks (RBs) in a frequency domain.
  • N RB resource blocks For example, in the LTE system, the number of resource blocks (RBs), that is, N RBs may be any one of 6 to 110.
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block may include 7x12 resource elements (REs). Can be.
  • REs resource elements
  • the number of subcarriers in one OFDM symbol can be used to select one of 128, 256, 512, 1024, 1536 and 2048.
  • a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
  • 5 shows a structure of a downlink subframe.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • physical channels include a physical downlink shared channel (PDSCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), and a physical hybrid (PHICH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid
  • ARQ Indicator Channel Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the wireless device is transmitted on the PHICH.
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • the PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the UE may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the base station determines the PDCCH format according to the DCI to be sent to the UE, and attaches a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • the CRC masks a unique radio network temporary identifier (RNTI) according to the owner or purpose of the PDCCH. If the PDCCH is for a specific UE, a unique identifier of the UE, for example, a cell-RNTI (C-RNTI) may be masked to the CRC. Alternatively, if the PDCCH is for a paging message, a paging indication identifier, for example, p-RNTI (P-RNTI), may be masked to the CRC.
  • RNTI radio network temporary identifier
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a cyclic redundancy check (CRC) of a received PDCCH (referred to as a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the wireless device, attaches the CRC to the DCI, and masks a unique identifier (RNTI) to the CRC according to the owner or purpose of the PDCCH.
  • RNTI unique identifier
  • the uplink channel includes a PUSCH, a PUCCH, a sounding reference signal (SRS), and a physical random access channel (PRACH).
  • PUSCH PUSCH
  • PUCCH Physical Uplink Control Channel
  • SRS sounding reference signal
  • PRACH physical random access channel
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) for transmitting uplink control information is allocated to the control region.
  • the data area is allocated a PUSCH (Physical Uplink Shared Channel) for transmitting data (in some cases, control information may also be transmitted).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an uplink radio resource allocation request. (scheduling request).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • the PUSCH is mapped to the UL-SCH, which is a transport channel.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include a CQI, a precoding matrix indicator (PMI), a HARQ, a rank indicator (RI), and the like.
  • the uplink data may consist of control information only.
  • RRM radio resource management
  • the UE 100 transmits the CRS. Through the measurement, the measurement results are transmitted to the serving cell 200a. In this case, the UE 100 compares the power of the received CRS based on the received information about the reference signal power.
  • CRSs cell-specific reference signals
  • the UE 100 may perform the measurement in three ways.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference symbol received quality
  • RSRQ can be calculated as RSSI / RSSP.
  • the UE 100 receives a measurement configuration information element (IE) from the serving cell 100a for the measurement.
  • a message containing a measurement configuration information element (IE) is called a measurement configuration message.
  • the measurement configuration information element (IE) may be received through an RRC connection reconfiguration message.
  • the UE reports the measurement result to the base station if the measurement result satisfies the reporting condition in the measurement configuration information.
  • a message containing a measurement result is called a measurement report message.
  • the measurement setting IE may include measurement object information.
  • the measurement object information is information about an object on which the UE will perform measurement.
  • the measurement object includes at least one of an intra-frequency measurement object that is an object for intra-cell measurement, an inter-frequency measurement object that is an object for inter-cell measurement, and an inter-RAT measurement object that is an object for inter-RAT measurement.
  • the intra-frequency measurement object indicates a neighboring cell having the same frequency band as the serving cell
  • the inter-frequency measurement object indicates a neighboring cell having a different frequency band from the serving cell
  • the inter-RAT measurement object is
  • the RAT of the serving cell may indicate a neighboring cell of another RAT.
  • the UE 100 also receives a Radio Resource Configuration information element (IE) as shown.
  • IE Radio Resource Configuration information element
  • the Radio Resource Configuration Dedicated Information Element is used for setting / modifying / releasing a radio bearer or modifying a MAC configuration.
  • the radio resource configuration IE includes subframe pattern information.
  • the subframe pattern information is information on a measurement resource restriction pattern in the time domain for measuring RSRP and RSRQ for a primary cell (ie, primary cell: PCell).
  • CA Carrier Aggregation
  • the carrier aggregation system refers to aggregating a plurality of component carriers (CC).
  • CC component carriers
  • a cell may mean a combination of a downlink component carrier and an uplink component carrier or a single downlink component carrier.
  • a cell may be divided into a primary cell, a secondary cell, and a serving cell.
  • a primary cell means a cell operating at a primary frequency, and is a cell in which a UE performs an initial connection establishment procedure or a connection reestablishment procedure with a base station, or is indicated as a primary cell in a handover process. It means a cell.
  • the secondary cell refers to a cell operating at the secondary frequency, and is established and used to provide additional radio resources once the RRC connection is established.
  • the carrier aggregation system may be divided into a contiguous carrier aggregation system in which aggregated carriers are continuous and a non-contiguous carrier aggregation system in which aggregated carriers are separated from each other.
  • a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently. The case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
  • broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
  • the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell is completed.
  • the configuration may include a general process of receiving common physical layer parameters required for data transmission and reception, media access control (MAC) layer parameters, or parameters required for a specific operation in the RRC layer.
  • MAC media access control
  • the cell in the configuration complete state may exist in an activation or deactivation state.
  • activation means that data is transmitted or received or is in a ready state.
  • the UE may monitor or receive the control channel (PDCCH) and the data channel (PDSCH) of the activated cell in order to identify resources allocated to the UE (which may be frequency, time, etc.).
  • PDCCH control channel
  • PDSCH data channel
  • Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
  • the UE may receive system information (SI) necessary for packet reception from the deactivated cell.
  • SI system information
  • the UE does not monitor or receive the control channel (PDCCH) and the data channel (PDSCH) of the deactivated cell in order to check resources allocated to it (may be frequency, time, etc.).
  • D2D communication expected to be introduced in the next generation communication system will be described below.
  • SNS social network services
  • UE # 1 100-1 As shown in FIG. 8 to reflect the above-described requirements, between UE # 1 100-1, UE # 2 100-2, UE # 3 100-3, or UE # 4 100-. 4), a method of allowing direct communication between the UE # 5 100-5 and the UE # 6 100-6 without the involvement of the base station (eNodeB) 200 has been discussed.
  • the UE # 1 100-1 and the UE # 4 100-4 may directly communicate with the help of the base station (eNodeB) 200.
  • the UE # 4 100-4 may serve as a repeater for the UE # 5 100-5 and the UE # 6 100-6.
  • the UE # 1 100-1 may serve as a relay for the UE # 2 100-2 and the UE # 3 100-3 that are far from the cell center.
  • D2D communication is also called proximity service (ProSe).
  • ProSe proximity service
  • the UE that performs the proximity service is also called a ProSe UE.
  • a link between UEs used for the D2D communication may be referred to as sidelink. Frequency bands that can be used for the side link are as follows.
  • E-UTRA band send reception Duplex mode F UL _low -F UL _high F DL _low -F DL _high 2 2 1850 MHz - 1910 MHz 1850 MHz - 1910 MHz HD 3 3 1710 MHz - 1785 MHz 1710 MHz - 1785 MHz HD 4 4 1710 MHz - 1755 MHz 1710 MHz - 1755 MHz HD 7 7 2500 MHz - 2570 MHz 2500 MHz - 2570 MHz HD 14 14 788 MHz - 798 MHz 788 MHz - 798 MHz HD 20 20 832 MHz - 862 MHz 832 MHz - 862 MHz HD 26 26 814 MHz - 849 MHz 814 MHz - 849 MHz HD 28 28 703 MHz - 748 MHz 703 MHz - 748 MHz HD 31 31 452.5 MHz - 457.5 MHz 452.5 MHz - 457.5 MHz HD 41 41 2496 MHz
  • Physical channels used for the sidelinks are as follows.
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • DMRS Demodulation Reference Signal
  • SSS Sidelink Synchronization Signal
  • the SLSS includes a Primary Side Link Synchronization Signal (PSLSS) and a Secondary Side Link Synchronization Signal (Secondary SLSS: SSLSS).
  • PSLSS Primary Side Link Synchronization Signal
  • SSLSS Secondary Side Link Synchronization Signal
  • FIG. 9 is shown in FIG. UE # 1 and UE # 2 interracial D2D Communication or ProSe An example of communication is shown.
  • the base station 200 broadcasts a system information block (SIB) in a cell.
  • SIB system information block
  • the SIB may include information about a resource pool related to D2D communication.
  • Information about a resource pool associated with the D2D communication may be classified into SIB type 18 and SIB type 19.
  • the SIB type 18 may include resource configuration information for D2D communication.
  • the SIB type 19 may include resource configuration information related to D2D discovery.
  • the SIB type 19 includes discSyncConfig as follows.
  • discSyncConfig Represents a setting as to whether the UE is allowed to receive or transmit synchronization information.
  • the base station E-UTRAN may set discSyncConfig when the UE intends to transmit synchronization information using dedicated signaling.
  • the discSyncConfig includes a SL-SyncConfig.
  • the SL-SyncConfig includes setting information for receiving and transmitting the SLSS as shown in the following table.
  • Table 5 SL-SyncConfig field descriptions discSyncWindow Also called a search window. Represents a synchronization window in which the UE expects SLSS.
  • the value can be set to w1 or w2.
  • the value w1 represents 5 milliseconds, and the value w2 corresponds to the length obtained by dividing the normal CP by 2.
  • syncTxPeriodic It indicates whether the UE transmits the SLSS once or periodically (for example, every 40ms) within each period of the detection signal transmitted by the UE. For periodic transmission, the UE also sends a MasterInformationBlock-SL.
  • syncTxThreshIC Represents a threshold used when within coverage.
  • the UE may transmit a SLSS for side link communication with the counterpart UE.
  • txParameters Contains parameters for settings for transmission
  • the UE # 1 100-1 located within the coverage of the base station 200 establishes an RRC connection with the base station.
  • the UE # 1 100-1 receives an RRC message, for example, an RRC Connection Reconfiguration message, from the base station 200.
  • the RRC message includes a discovery configuration (hereinafter referred to as discConfig).
  • the discConfig includes configuration information on a discovery resource pool (hereinafter referred to as DiscResourcePool).
  • the DiscResourcePool includes information as shown in the table below.
  • DiscResourcePool discPeriod It may also be referred to as a discovery period, and is a period of a resource allocated in a cell for transmitting / receiving a detection message, also called a PSDCH period.
  • the value may be rf32, rf64, rf128, rf256, rf512, rf1024, or the like. This value represents the number of radio frames. That is, when the value is rf32, 32 radio frames are represented.
  • numRepetition represents the number of times a subframeBitmap is repeated to map to a subframe occurring in discPeriod. The base station sets numRepetition and subframeBitmap such that the mapped subframe does not exceed the discPeriod.
  • TF-ResourceConfig Specifies a set of time / frequency resources used for sidelink communication.
  • the TF - ResourceConfig includes information as shown in the table below.
  • the SubframeBitmapSL is shown in the table below.
  • SubframeBitmapSL also indicated as discoverySubframeBitmap, it specifies a subframe bitmap that represents a resource used for sidelinks.
  • the value may be specified as bs4, bs8, bs12, bs16, bs30, bs40, bs40, or the like.
  • the value bs40 means a bit string length of 40.
  • the SL-OffsetIndicator includes information as shown in the following table.
  • SL-OffsetIndicator It may also be referred to as discoveryOffsetIndicator, and indicates an offset of a first period of a resource pool within an SFN cycle.
  • the UE # 1 100-1 detects whether a suitable UE exists in the vicinity for D2D communication or ProSe communication, or the UE # 1 100-1 indicates a presence of a detection signal, Discovery signal) may be transmitted through the PSDCH.
  • the UE # 1 100-1 may transmit a Sidelink Control Informaiton (SCI) including a scheduling assignment (SA) through a PSCCH.
  • SCI Sidelink Control Informaiton
  • SA scheduling assignment
  • the UE # 1 100-1 may transmit a PSSCH including data based on the scheduling assignment SA.
  • the PSCCH includes the SCI similarly to the PDCCH containing a DCI.
  • the SCI includes information necessary for enabling the counterpart UE to receive and demodulate the PSSCH.
  • the SCI may be divided into SCI format 0 and SCI format 1.
  • the SCI format 0 may include the following information.
  • MCS Modulation and Coding Scheme
  • the SCI format 1 may include the following information.
  • MCS Modulation and Coding Scheme
  • FIG. 10 is shown in FIG. UE # 2 goes relay UE An example of selecting is shown.
  • the UE # 2 100-2 located outside the coverage of the base station is located within the coverage of the base station and can operate as a relay UE and the UE # 1 100-1 and D2D.
  • the UE # 2 100-2 receives PSBCH and DMRS for demodulation of the PSBCH from neighboring UEs.
  • the UE # 2 100-2 performs measurement based on the received signals.
  • the measurement includes measurement of Sidelink Reference Signal Received Power (S-RSRP) and measurement of Sidelink Discovery Reference Signal Received Power (SD-RSRP).
  • S-RSRP Sidelink Reference Signal Received Power
  • SD-RSRP Sidelink Discovery Reference Signal Received Power
  • the S-RSRP means the average received power on the RE (Resource Element) including the DMRS for demodulation of the PSBCH received in six of the PBB.
  • the power per RE is determined from the energy received on the portion excluding the CP portion of the OFDM symbol.
  • the SD-RSRP means the average received power on the RE including the DMRS for demodulation of the PSDCH when the CRC check succeeds according to the successful decoding of the PSDCH including the detection signal.
  • the UE # 2 100-2 may operate as a relay UE based on the result of the measurement, that is, the measurement result of the SD-RSRP. Select.
  • V2X vehicle-to-everything
  • V2X may be a vehicle.
  • V2X may be referred to as V2V V2V (vehicle-to-vehicle), and may mean communication between vehicles.
  • vehicles ie, wireless devices mounted on vehicles
  • 100-1, 100-2, and 100-3 may communicate with each other.
  • V2X may mean a person (Persian) or a pedestrian (PEDESTRIAN).
  • V2X may be expressed as vehicle-to-person or vehicle-to-pedestrian (V2P).
  • the pedestrian is not necessarily limited to a person walking on foot, and may include a person riding a bicycle, a driver or a passenger (less than a certain speed) of a vehicle.
  • V2X may be infrastructure / network.
  • V2X may be referred to as vehicle-to-infrastructure (V2I) or vehicle-to-network (V2N), and may mean communication between a vehicle and a roadside unit (RSU) or a vehicle and a network.
  • the roadside device may be a traffic related infrastructure, for example, a device for indicating speed.
  • the roadside device may be implemented in a base station or a fixed terminal.
  • Frequency bands that can be used for the V2X communication are as follows.
  • the PC5 interface means a side link between V2X devices.
  • the Uu interface refers to a link between the V2X device and the base station.
  • V2X communication may be performed simultaneously with the E-UTRA uplink / downlink in the combination of operating bands shown in the table below.
  • V2X communication As described above, operating bands have been defined for V2X communication.
  • a harmonic component and an intermodulation distortion (IMD) component are generated, which may affect the downlink band of the terminal itself. Therefore, in consideration of the harmonic component and the IMD, methods for determining the transmission power of the terminal should be presented.
  • IMD intermodulation distortion
  • the maximum output power must be determined by dividing the case using a single component carrier (SCC) and the case of using a multiple component carrier (intra-band operation) and concurrent V2X operation (converted V2X). do.
  • SCC Action Indicates an action.
  • FIG. 12A an example of performing transmission and reception (Tx / Rx) of one V2X using an SCC, for example, in band 47 is illustrated.
  • 12B illustrates an example of performing V2X transmission / reception (Tx / Rx) on a plurality of intra-band CCs using MCC in band 47.
  • 12C shows an example of performing V2X transmission / reception in the band 47 and also performing V2X transmission / reception in the Uu interface in uplink and downlink of the existing LTE band X.
  • Commercial service in the existing LTE band can be performed by the existing WAN operation (operation), it can also be used for V2X.
  • Table 15 treason Range of band 47 (MHz) analysis 5855-5925 E-UTRA band UL range (MHz) ingredient Harmonic Range (MHz) B1 1920-1980 3rd 5760-5940 Has harmonic effect B5 824-849 7th 5768-5943 Has harmonic effect B19 830-845 7th 5810-5915 Has harmonic effect B20 832-862 7th 5824-6034 Has harmonic effect B21 1448-1463 4th 5792-5852 Side-lobe effect B26 814-849 7th 5698-5943 Has harmonic effect B28 703-748 8th 5624-5984 Has harmonic effect B31 452.5-457.5 13th 5882.5-5947.5 Has harmonic effect B65 1920-2010 3rd 5760-6030 Has harmonic effect
  • E- UTRA Cellular communication V2X Represents an RF structure for communication.
  • an RFIC 130-21 accommodating a plurality of RF chains, a first diplexer 130-29a connected to a first antenna, and a second diplexer 130-29b connected to a second antenna ), Switches 130-28a connected to the first diplexers 130-29a to distinguish a plurality of low bands, and a plurality of intermediate bands connected to the first diplexers 130-29a.
  • a switch 130-28b for dividing, a switch 130-28c for dividing a plurality of high bands connected to the second diplexer 130-29b, and the second diplexer 130-29b Connected to is shown a switch 130-28d to distinguish a plurality of ultra-high bands (ITS spectrum and unlicensed band of 5 GHz).
  • the duplexers 130-26b are connected to the intermediate band switches 130-28b.
  • the PA 130-22b and the LNA 130-23b are connected between the duplexer 130-26b and the RFIC 130-21.
  • duplexers 130-26d are connected to the ultra-high band switches 130-26d.
  • a PA 130-22d and an LNA 130-23d are connected between the duplexer 130-26d and the RFIC 130-21.
  • the duplexers 130-26b connected to the intermediate band switches 130-28b may separate transmission and reception of operating band 3, for example, for V2X communication.
  • V2X transmission power will be described.
  • the maximum power reduction (MPR) value for the V2X physical channel and signal due to simultaneous transmission of PSCCH and PSSCH is defined as follows. Can be.
  • the allowed MPR for the maximum output power of the PSCCH and PSSCH is defined as shown in the table below.
  • the MPR allowed for the maximum output power of the PSCCH and the PSSCH is defined as follows.
  • N RB _ agg is the number of RBs in the channel band
  • N RB _ alloc represents the total number of RBs transmitted simultaneously.
  • CEIL ⁇ M A 0.5 ⁇ means a function to round in 0.5 dB increments.
  • the Additional Maximum Power Reduction (A-MPR) value for the maximum output power of the PSCCH and the PSSCH, which are the V2X physical channels, is It can be defined as follows.
  • the UE is configured for E-UTRA cellular uplink transmission and non-simultaneous transmission of V2X sidelink communication, the configured maximum output power P CMAX, c And power boundary requirements apply.
  • P CMAX , PSSCH and P CMAX , PSCCH , P EMAX, c are specified by the upper layer signal maxTxPower.
  • Power control parameters may be set for the PSSCH.
  • the PSD offset of the PSSCH may be used to determine the transmit power of the PSCCH.
  • the PSD difference between the PSCCH and the PSSCH may be equal to the value of the PSD offset.
  • the UE If the UE is configured for simultaneous transmission of E-UTRA cellular uplink transmission and V2X sidelink communication in the inter-band, the UE sets the maximum output power P CMAX, c , E - UTRA for the configured E-UTRA uplink carrier.
  • the maximum output power P CMAX, c , V2X can be set for the configured V2X carrier.
  • P CMAX _ L, c, E - UTRA and P CMAX _ H, c, E - UTRA are the lower limit and the upper limit for serving cell c.
  • P CMAX _ H, c, V2X are upper limit values.
  • P MAX _L (p, q ) and P CMAX _H (p, q) is as follows.
  • P MAX _L ( p, q ) P CMAX _ L, c, E - UTRA ( p )
  • P CMAX _H (p, q) MIN ⁇ 10 log 10 [p CMAX _ H, c, E - UTRA ( p ) + p CMAX _ H, c, V2X ( q )], P PowerClass ⁇
  • p CMAX _ H , c, V2X and p CMAX _ H, c, E - UTRA are the upper limit values P CMAX _ H, c, V2X ( q ) and the lower limit values P CMAX _ H, c, E - UTRA ( p ) is a linear scale.
  • the total P UMAX of the maximum output power measured for both E-UTRA uplink transmission and V2X transmission is as follows.
  • P UMAX 10 log 10 [p UMAX, c, E - UTRA + p UMAX, c, V2X ],
  • p UMAX, c, E - UTRA Denotes the output power measured for E-UTRA uplink transmission for serving cell c.
  • p UMAX, c, V2X represent the output power measured for the V2X transmission on a linear scale.
  • the UE is configured for synchronous transmission for V2X transmission and E-UTRA uplink transmission, as follows.
  • P CMAX _L (p, q ) and P CMAX _H (p, q) is an upper limit and a lower limit value for the subframe pair (p, q).
  • T LOW (P CMAX ) and T HIGH (P CMAX ) represent the tolerances applicable for P CMAX .
  • P CMAX _L may be adjusted for the overlapping portion of the subframe pairs (p, q) and (p +1, q + 1).
  • the UE When asynchronous transmission is configured for the V2X transmission and the E-UTRA uplink transmission, and when the subframe p for the E-UTRA uplink transmission and the subframe q for the V2X transmission overlap each other, the UE operates as follows. Can be. This will be described with reference to FIGS. 14A to 14D.
  • E- UTRA Uplink transmission (cellular or WAN transmission) and sidelink on B47 V2X Represents subframes for transmission.
  • subframe p for E-UTRA uplink transmission (V2X transmission or WAN transmission) is preceded in time by subframe q for sidelink V2X transmission of B47, and V2X sidelink transmission
  • SCI sidelink control information
  • the terminal determines the subframe p as a reference subframe, and the subframe pair (p, q) and ( Consider p, q-1) to determine the tolerance of P CMAX .
  • subframe p for the E-UTRA uplink transmission is ahead of the subframe q for the sidelink V2X transmission of B47 in time, sidelink control information for V2X sidelink transmission
  • the UE determines the subframe q as a reference subframe, and identifies a subframe pair (p, q) and (p + 1, q).
  • the subframe q for sidelink V2X transmission of B47 is preceded in time by subframe p for E-UTRA uplink transmission, and the sidelink control information for V2X sidelink transmission is provided.
  • the terminal determines the subframe p as a reference subframe, and identifies a subframe pair (p, q) and (p, q + 1). Consider to determine the tolerance of P CMAX .
  • the subframe q for sidelink V2X transmission of B47 is preceded in time by subframe p for E-UTRA uplink transmission, and the sidelink control information for V2X sidelink transmission is provided. If the Priority field of the s) is set higher than the value of the upper layer parameter thresSL-TxPrioritization, the terminal determines the subframe q as the reference subframe, and identifies the subframe pairs (p-1, q) and (p, q). Consider to determine the tolerance of P CMAX .
  • P 'and P CMAX_L' CMAX _H is determined as follows.
  • P 'and P CMAX_L' CMAX _H is determined as follows.
  • P CMAX _ L ,, cE - UTRA (P) and P CMAX _H is a subframe pair (p, q), (p , q-1) or (p, q), (p, q + 1) or (p, q) in the above four cases is a lower limit and an upper limit applicable for the overlapping subframe at , (p + 1, q ) or ( p, q ) , ( p-1, q ).
  • T LOW (P CMAX ) and T HIGH (P CMAX ) represent acceptable limits for P CMAX .
  • Degree 15 is E- UTRA Uplink transmission ( V2X Subframes for side transport or WAN transport and sidelinks in B47 V2X A flowchart illustrating a method of determining a reference subframe according to a posterior relationship between subframes for transmission.
  • the UE has a subframe p for E-UTRA uplink transmission (cellular transmission) as shown in FIGS. 14A to 14D, and a subframe for sidelink V2X transmission of B47. Determines whether q is ahead or not.
  • the terminal determines a reference subframe according to the determination.
  • the terminal determines a subframe pair for determining an allowance for the maximum power.
  • Embodiments of the present invention described so far may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof. Specifically, it will be described with reference to the drawings.
  • Block diagram 16 illustrates a wireless communication system in which the present disclosure is implemented.
  • the base station 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • the processor 210 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 220.
  • the terminal 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the processor 110 implements the proposed functions, processes and / or methods.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서의 일 개시는 무선 기기가 전송 파워를 결정하는 방법을 제시한다. 상기 방법은 V2X(Vehicle to everything)와 셀룰러 상향링크 에 대해 비동기 이중 전송(asynchronous dual transmissions)이 설정된 경우 그리고 셀룰러 상향링크 전송을 위한 서브프레임 p와 V2X 전송을 위한 서브프레임 q가 서로 중첩된 경우, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는지를 결정하는 단계와; 상기 결정에 기초하여, 상기 서브프레임 p와 상기 서브프레임 q 중에서 기준 서브프레임을 결정하는 단계를 포함할 수 있다. 여기서, 상기 기준 서브프레임은 전송 파워의 하한을 결정하는데 사용될 수 있다.

Description

전송 파워를 결정하는 방법 및 무선 기기
본 발명은 이동통신에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
한편, SNS(Social Network Service)에 대한 사용자 요구사항의 증가로 인해 물리적으로 가까운 거리의 단말들 사이의 통신, 즉 D2D(Device to Device) 통신이 요구되고 있다.
D2D 통신은 기지국의 커버리지 내에 위치하는 단말들 끼리 수행될 수도 있고, 기지국의 커버리지 밖에 위치하는 단말들끼리 수행될 수도 있다. 나아가, D2D 통신은 기지국의 커버리지 밖에 위치한 단말과 기지국의 커버리지 내에 위치하는 단말 간에 수행될 수 있다.
전술한 D2D에 관한 내용은 V2X(vehicle-to-everything)에도 적용될 수 있다. V2X는 차량과 모든 인터페이스를 통한 통신 기술을 통칭한다. V2X의 구현 형태는 예를 들어, V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2P(vehicle-to-person), V2N(vehicle-to-network) 등 다양할 수 있다.
그러나, V2X 통신으로 인하여, 하모닉(harmonic) 성분 및 혼변조 왜곡(intermodulation distortion: IMD) 성분이 발생하여, 단말 자신의 하향링크 대역에 영향을 줄 수 있는 문제점이 있다. 따라서, 하모닉 성분 및 IMD를 고려하여, 단말의 전송 파워를 결정하기 위한 방안들이 제시되어야 한다.
또한, V2X 전송과 기지국으로의 셀룰러 전송이 서로 간에 비동기로 설정된 경우, V2X 전송이 앞서는지 혹은 셀룰러 전송이 앞서는지에 따라서 전송 파워를 결정하기 위한 방안들이 제시되어야 한다.
따라서, 본 명세서의 개시는 전술한 문제점을 해결하기 위한 방안들을 제시하는 것을 목적으로 한다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 무선 기기가 전송 파워를 결정하는 방법을 제시한다. 상기 방법은 V2X(Vehicle to everything)와 셀룰러 상향링크에 대해 비동기 이중 전송(asynchronous dual transmissions)이 설정된 경우 그리고 셀룰러 상향링크 전송을 위한 서브프레임 p와 V2X 전송을 위한 서브프레임 q가 서로 중첩된 경우, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는지를 결정하는 단계와; 상기 결정에 기초하여, 상기 서브프레임 p와 상기 서브프레임 q 중에서 기준 서브프레임을 결정하는 단계를 포함할 수 있다. 여기서, 상기 기준 서브프레임은 전송 파워의 하한을 결정하는데 사용될 수 있다.
상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 낮은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 상기 서브프레임 p가 상기 기준 서브프레임으로 결정될 수 있다.
상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 높은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 상기 서브프레임 q가 상기 기준 서브프레임으로 결정될 수 있다.
상기 V2X 전송을 위한 서브프레임 q가 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 낮은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 상기 서브프레임 p가 상기 기준 서브프레임으로 결정될 수 있다.
상기 V2X 전송을 위한 서브프레임 q가 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 높은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 상기 서브프레임 q가 상기 기준 서브프레임으로 결정될 수 있다.
상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 낮은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 서브프레임 쌍 (p, q) 및 (p, q-1)이 최대 파워에 대한 허용치를 결정하기 위해서 고려될 수 있다.
상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 높은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 서브프레임 쌍 (p, q) 및 (p+1, q) 이 최대 파워에 대한 허용치를 결정하기 위해서 고려될 수 있다.
상기 V2X 전송을 위한 서브프레임 q가 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 낮은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 서브프레임 쌍 (p, q) 및 (p, q+1) 이 최대 파워에 대한 허용치를 결정하기 위해서 고려될 수 있다.
상기 V2X 전송을 위한 서브프레임 q가 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 높은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 서브프레임 쌍 (p-1, q) 및 (p, q)이 최대 파워에 대한 허용치를 결정하기 위해서 고려될 수 있다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 전송 파워를 결정하는 무선 기기를 또한 제공한다. 상기 무선 기기는 V2X(Vehicle to everything)와 셀룰러 상향링크에 대해 비동기 이중 전송(asynchronous dual transmissions)을 수행하는 송신부와; 상기 송신부를 제어하는 프로세서를 포함할 수 있다. 상기 프로세서는 상기 V2X와 상기 셀룰러 상향링크에 대해 비동기 이중 전송이 설정된 경우 그리고 셀룰러 상향링크 전송을 위한 서브프레임 p와 V2X 전송을 위한 서브프레임 q가 서로 중첩된 경우, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는지를 결정할 수 있다. 그리고, 상기 프로세서는 상기 결정에 기초하여, 상기 서브프레임 p와 상기 서브프레임 q 중에서 기준 서브프레임을 결정할 수 있다. 여기서, 상기 기준 서브프레임은 전송 파워의 하한을 결정하는데 사용될 수 있다.
본 명세서의 개시에 의하면, 종래 기술의 문제점이 해결된다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 3GPP LTE에서 TDD에 따른 하향링크 무선 프레임의 구조를 나타낸다.
도 4는 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 6은 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 7은 측정 및 측정 보고를 나타낸다.
도 8은 차세대 통신 시스템에서 도입될 것으로 기대되는 D2D(Device to Device) 통신의 개념을 나타낸다.
도 9는 도 8에 도시된 UE#1과 UE#2 간의 D2D 통신 또는 ProSe 통신의 예를 나타낸다.
도 10는 도 8에 도시된 UE#2가 Relay UE를 선택하는 예를 나타낸다.
도 11은 V2V의 개념을 나타낸 예시도이다.
도 12a 내지 도 12c는 SCC 동작과 MCC 동작을 나타낸다.
도 13은 E-UTRA 셀룰러 통신과 V2X 통신을 위한 RF 구조를 나타낸다.
도 14a 내지 도 14d는 E-UTRA 상향링크 전송(셀룰러 전송 또는 WAN 전송)과 B47의 사이드링크 V2X 전송을 위한 서브프레임들을 나타낸다.
도 15은 E-UTRA 상향링크 전송(셀룰러 전송 또는 WAN 전송)을 위한 서브프레임과 B47의 사이드링크 V2X 전송을 위한 서브프레임 간의 선후 관계에 따라 기준 서브프레임을 결정하는 방안을 나타낸 흐름도이다.
도 16은 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
이하에서 사용되는 용어인 기지국은, 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNodeB(evolved-NodeB), eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
그리고 이하, 사용되는 용어인 UE(User Equipment)는, 고정되거나 이동성을 가질 수 있으며, 기기(Device), 무선기기(Wireless Device), 단말(Terminal), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다.
도 1은 무선 통신 시스템이다.
도 1을 참조하여 알 수 있는 바와 같이, 무선 통신 시스템은 적어도 하나의 기지국(20; base station, BS)을 포함한다. 각 기지국(20)은 특정한 지리적 영역(일반적으로 셀이라고 함)(20a, 20b, 20c)에 대해 통신 서비스를 제공한다.
UE은 통상적으로 하나의 셀에 속하는데, UE이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 UE을 기준으로 상대적으로 결정된다.
이하에서, 하향링크는 기지국(20)에서 UE(10)로의 통신을 의미하며, 상향링크는 UE(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(20)의 일부분이고, 수신기는 UE(10)의 일부분일 수 있다. 상향링크에서 송신기는 UE(10)의 일부분이고, 수신기는 기지국(20)의 일부분일 수 있다.
이하에서는, LTE 시스템에 대해서 보다 상세하게 알아보기로 한다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 2에 도시된 무선 프레임은 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 5절을 참조할 수 있다.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)을 포함하고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 무선 프레임 내 슬롯은 0부터 19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 전송시간구간(Transmission Time interval: TTI)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다.
한편, 하나의 슬롯은 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함할 수 있다. 하나의 슬롯에 몇개의 OFDM 심볼이 포함되는지는 순환전치(cyclic prefix: CP)에 따라 달라질 수 있다.
도 3은 3GPP LTE에서 TDD에 따른 하향링크 무선 프레임의 구조를 나타낸다.
이는 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 4절을 참조할 수 있으며, TDD(Time Division Duplex)를 위한 것이다.
인덱스 #1과 인덱스 #6을 갖는 서브프레임은 스페셜 서브프레임이라고 하며, DwPTS(Downlink Pilot Time Slot), GP(Guard Period) 및 UpPTS(Uplink Pilot Time Slot)을 포함한다. DwPTS는 UE에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 UE의 상향 전송 동기를 맞추는 데 사용된다. GP은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD에서는 하나의 무선 프레임에 DL(downlink) 서브프레임과 UL(Uplink) 서브프레임이 공존한다. 표 1은 무선 프레임의 설정(configuration)의 일 예를 나타낸다.
표 1
UL-DL 설정 스위치 포인트 주기(Switch-point periodicity) 서브프레임 인덱스
0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
'D'는 DL 서브프레임, 'U'는 UL 서브프레임, 'S'는 스페셜 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, UE은 무선 프레임의 설정에 따라 어느 서브프레임이 DL 서브프레임 또는 UL 서브프레임인지를 알 수 있다.
표 2
스페셜 서브프레임 설정 하향링크에서 노멀 CP 하향링크에서 확장 CP
DwPTS UpPTS DwPTS DwPTS
상향링크에서 노멀 CP 상향링크에서 확장 CP 상향링크에서 노멀 CP 상향링크에서 확장 CP
0 6592*Ts 2192*Ts 2560*Ts 7680*Ts 2192*Ts 2560*Ts
1 19760*Ts 20480*Ts
2 21952*Ts 23040*Ts
3 24144*Ts 25600*Ts
4 26336*Ts 7680*Ts 4384*Ts 5120*Ts
5 6592*Ts 4384*Ts 5120*ts 20480*Ts
6 19760*Ts 23040*Ts
7 21952*Ts -
8 24144*Ts -
도 4는 3GPP LTE에서 하나의 상향링크 또는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다 .
도 4를 참조하면, 하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM 심벌을 포함하고, 주파수 영역(frequency domain)에서 NRB 개의 자원블록(RB)을 포함한다. 예를 들어, LTE 시스템에서 자원블록(RB)의 개수, 즉 NRB은 6 내지 110 중 어느 하나일 수 있다.
자원블록(resource block: RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7x12개의 자원요소(resource element: RE)를 포함할 수 있다.
한편, 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4의 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 5에서는 노멀 CP를 가정하여 예시적으로 하나의 슬롯 내에 7 OFDM 심벌이 포함하는 것으로 도시하였다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다. PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫 번째 서브프레임의 두 번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, UE은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information: DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
기지국은 UE에게 보내려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(radio network temporary identifier: RNTI)가 마스킹된다. 특정 UE을 위한 PDCCH라면 UE의 고유 식별자, 예를 들어 C-RNTI(cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보 블록(system information block: SIB)을 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. UE의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 복호를 사용한다. 블라인드 복호는 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC(Cyclic Redundancy Check)에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 기지국은 무선기기에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(RNTI)를 CRC에 마스킹한다.
상향링크 채널은 PUSCH, PUCCH, SRS(Sounding Reference Signal), PRACH(Physical Random Access Channel)을 포함한다.
도 6은 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 6을 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역에는 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)가 할당된다. 데이터 영역은 데이터(경우에 따라 제어 정보도 함께 전송될 수 있다)가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)가 할당된다.
하나의 UE에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다.
UE이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(hybrid automatic repeat request) ACK(acknowledgement)/NACK(non-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 무선 자원 할당 요청인 SR(scheduling request) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI(precoding matrix indicator), HARQ, RI(rank indicator) 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
도 7은 측정 및 측정 보고를 나타낸다.
이동 통신 시스템에서 UE(100)의 이동성(mobility) 지원은 필수적이다. 따라서, UE(100)은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로 측정한다. UE(100)은 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 UE에게 최적의 이동성을 제공한다. 흔히 이러한 목적의 측정을 무선 자원 관리 측정 (RRM(radio resource management) measurement)라고 일컫는다.
도 7을 참조하여 알 수 있는 바와 같이, UE(100)로 상기 서빙셀(200a) 및 이웃셀(200b)이 각기 CRS(Cell-specific Reference Signal)를 전송하면, 상기 UE(100)은 상기 CRS를 통하여, 측정을 수행하고, 그 측정 결과를 서빙셀 (200a)로 전송한다. 이때, UE(100)은 수신된 기준 신호 전력(reference signal power)에 대한 정보에 기초하여, 상기 수신되는 CRS의 파워를 비교한다.
이때, UE(100)은 다음 3가지 방법으로 측정을 수행할 수 있다.
1) RSRP(reference signal received power): 전 대역에 걸쳐 전송되는 CRS를 운반하는 모든 RE의 평균 수신 전력을 나타낸다. 이때 CRS 대신 CSI(Channel State Information)-RS(Reference Signal)를 운반하는 모든 RE의 평균 수신 전력을 측정할 수도 있다.
2) RSSI(received signal strength indicator): 전체 대역에서 측정된 수신 전력을 나타낸다. RSSI는 신호, 간섭(interference), 열 잡음(thermal noise)을 모두 포함한다.
3) RSRQ(reference symbol received quality): CQI를 나타내며, 측정 대역폭(bandwidth) 또는 서브밴드에 따른 RSRP/RSSI로 결정될 수 있다. 즉, RSRQ는 신호 대 잡음 간섭 비(SINR; signal-to-noise interference ratio)를 의미한다. RSRP는 충분한 이동성(mobility) 정보를 제공하지 못하므로, 핸드오버 또는 셀 재선택(cell reselection) 과정에서는 RSRP 대신 RSRQ가 대신 사용될 수 있다.
RSRQ = RSSI/RSSP로 산출될 수 있다.
한편, UE(100)는 상기 측정을 위해 상기 서빙셀(100a)로부터 측정 설정(measurement configuration) 정보 엘리먼트(IE: Information Element)를 수신한다. 측정 설정 정보 엘리먼트(IE)를 포함하는 메시지를 측정 설정 메시지라 한다. 여기서 상기 측정 설정 정보 엘리먼트(IE)는 RRC 연결 재설정 메시지를 통해서 수신될 수도 있다. UE은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다. 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
상기 측정 설정 IE는 측정 오브젝트(Measurement object) 정보를 포함할 수 있다. 상기 측정 오브젝트 정보는 UE가 측정을 수행할 오브젝트에 관한 정보이다. 측정 오브젝트는 셀내 측정의 대상인 intra-frequency 측정 대상, 셀간 측정의 대상인 inter-frequency 측정 대상, 및 inter-RAT 측정의 대상인 inter-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, intra-frequency 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, inter-frequency 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, inter-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
한편, UE(100)는 도시된 바와 같이 무선 자원 설정(Radio Resource Configuration) 정보 엘리먼트(IE)도 수신한다.
상기 무선 자원 설정(Radio Resource Configuration Dedicated) 정보 엘리먼트(IE: Information Element)는 무선 베어러(Radio Bearer)를 설정/수정/해제하거나, MAC 구성을 수정하는 등을 위해서 사용된다. 상기 무선 자원 설정 IE는 서브프레임 패턴 정보를 포함한다. 상기 서브프레임 패턴 정보는 1차 셀(즉, Primary Cell: PCell)에 대한 RSRP, RSRQ를 측정하는 데에 대한 시간 도메인 상의 측정 자원 제한 패턴에 대한 정보이다.
<반송파 집성(Carrier Aggregation: CA)>
이제 반송파 집성 시스템에 대해 설명한다.
반송파 집성 시스템은 다수의 요소 반송파(component carrier: CC)를 집성하는 것을 의미한다. 이러한 반송파 집성에 의해서, 기존의 셀의 의미가 변경되었다. 반송파 집성에 의하면, 셀이라 함은 하향링크 요소 반송파와 상향링크 요소 반송파의 조합, 또는 단독의 하향링크 요소 반송파를 의미할 수 있다.
또한, 반송파 집성에서 셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다. 프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, UE이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다. 세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고 추가적인 무선 자원을 제공하는데 사용된다.
반송파 집성 시스템은 집성되는 반송파들이 연속되어 있는 연속(contiguous) 반송파 집성 시스템과 집성되는 반송파들이 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다. 하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.
1개 이상의 요소 반송파를 집성할 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
한편, 반송파 집성에서 특정 세컨더리 셀을 통하여 패킷(packet) 데이터의 송수신이 이루어지기 위해서는, UE은 먼저 특정 세컨더리 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC(media access control) 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. UE은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. UE은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, UE은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
< D2D (Device to Device) 통신>
다른 한편, 이하에서는 차세대 통신 시스템에서 도입될 것으로 기대되는 D2D 통신에 대해서 설명하기로 한다.
도 8은 차세대 통신 시스템에서 도입될 것으로 기대되는 D2D (Device to Device) 통신의 개념을 나타낸다.
SNS(Social Network Service)에 대한 사용자 요구사항의 증가로 인해 물리적으로 가까운 거리의 UE들 사이의 통신, 즉 D2D(Device to Device) 통신이 요구되고 있다.
전술한 요구 사항을 반영하기 위해서 도 8에 도시된 바와 같이, UE#1(100-1), UE#2(100-2), UE#3(100-3) 간에 또는 UE#4(100-4), UE#5(100-5), UE#6(100-6) 간에 기지국(eNodeB)(200)의 개입 없이 직접적으로 통신을 할 수 있도록 하는 방안이 논의 되고 있다. 물론, 기지국(eNodeB)(200)의 도움 하에 UE#1(100-1)와 UE#4(100-4) 간에 직접적으로 통신을 할 수 있다. 한편, UE#4(100-4)는 UE#5(100-5), UE#6(100-6)를 위해 중계기로서의 역할을 수행할 수도 있다. 마찬가지로, UE#1(100-1)는 셀 중심에서 멀리 떨어져 있는 UE#2(100-2), UE#3(100-3)를 위해 중계기로서의 역할을 수행할 수도 있다.
한편, D2D 통신은 근접 서비스(Proximity Service: ProSe)라고 불리기도 한다. 그리고 근접 서비스를 수행하는 UE를 ProSe UE라고 부르기도 한다. 그리고 상기 D2D 통신에 사용되는 UE간의 링크를 사이드링크(Sidelink)라고 부르기도 한다. 상기 사이드 링크에 사용될 수 있는 주파수 대역은 다음과 같다.
표 3
사이드 링크 대역 E-UTRA 대역 전송 수신 듀플렉스 모드
FUL _low - FUL _high FDL _low - FDL _high
2 2 1850 MHz - 1910 MHz 1850 MHz - 1910 MHz HD
3 3 1710 MHz - 1785 MHz 1710 MHz - 1785 MHz HD
4 4 1710 MHz - 1755 MHz 1710 MHz - 1755 MHz HD
7 7 2500 MHz - 2570 MHz 2500 MHz - 2570 MHz HD
14 14 788 MHz - 798 MHz 788 MHz - 798 MHz HD
20 20 832 MHz - 862 MHz 832 MHz - 862 MHz HD
26 26 814 MHz - 849 MHz 814 MHz - 849 MHz HD
28 28 703 MHz - 748 MHz 703 MHz - 748 MHz HD
31 31 452.5MHz - 457.5MHz 452.5MHz - 457.5MHz HD
41 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz HD
상기 사이드링크에 사용되는 물리 채널은 다음과 같은 것들이 있다.
- PSSCH(Physical Sidelink Shared Channel)
- PSCCH(Physical Sidelink Control Channel)
- PSDCH(Physical Sidelink Discovery Channel)
- PSBCH(Physical Sidelink Broadcast Channel)
또한, 사이드 링크에서 사용되는 물리 시그널은 다음과 같은 것들이 있다.
- 복조 참조 신호(Demodulation Reference signal: DMRS)
- 사이드링크 동기 신호(Sidelink Synchronization signal: SLSS)
상기 SLSS는 프라이머리 사이드링크 동기 신호(Primary SLSS; PSLSS)와 세컨더리 사이드링크 동기신호(Secondary SLSS: SSLSS)가 존재한다.
도 9는 도 8에 도시된 UE #1과 UE #2 간의 D2D 통신 또는 ProSe 통신의 예를 나타낸다.
도 9를 참조하면, 기지국(200)은 시스템 정보 블록(System Information Block: SIB)를 셀 내에 브로드캐스팅한다.
상기 SIB는 D2D 통신과 관련된 자원 풀에 대한 정보를 포함할 수 있다. 상기 D2D 통신과 관련된 자원 풀에 대한 정보는 SIB 타입 18과 SIB 타입 19로 구분될 수 있다.
상기 SIB 타입 18은 D2D 통신을 위한 자원 설정 정보를 포함할 수 있다. 그리고, 상기 SIB 타입 19는 D2D 탐지(discovery)와 관련된 자원 설정 정보를 포함할 수 있다.
상기 SIB 타입 19는 아래와 같이 discSyncConfig를 포함한다.
표 4
SIB 타입 19
discSyncConfig UE가 동기 정보를 수신하거나 전송하는 것이 허용되는지에 대한 설정을 나타낸다. 기지국(E-UTRAN)은 전용 시그널링을 이용하여 UE가 동기 정보를 전송하도록 하려고 할 때, discSyncConfig를 설정할 수 있다.
상기 discSyncConfig는 SL-SyncConfig를 포함한다. 상기 SL-SyncConfig는 아래의 표와 같이 SLSS의 수신 및 SLSS의 전송을 위한 설정 정보를 포함한다.
표 5
SL-SyncConfig 필드 설명
discSyncWindow 검색 윈도우(searching window)로도 불린다. UE가 SLSS를 기대하는 동기 윈도우를 나타낸다. 값은 w1 또는 w2로 설정될 수 있다. 값 w1은 5 밀리세컨을 나타내고, 값 w2는 노멀 CP를 2로 나눈 길이에 해당한다.
syncTxPeriodic UE가 전송하는 탐지 신호의 각 주기 내에서 UE가 SLSS를 한번 전송하는지 아니면 주기적(예컨대 매 40ms 마다)으로 전송하는지를 나타낸다. 주기적 전송의 경우, UE는 MasterInformationBlock-SL을 또한 전송한다.
syncTxThreshIC 커버리지 내에 있을 때 사용되는 임계값을 나타낸다. 사이드 링크 통신을 위해 선택된 상대방 UE(셀처럼 인식됨)에 대해 측정된 RSRP 값이 상기 임계값 보다 낮을 경우, UE는 상기 상대방 UE와의 사이드 링크 통신을 위해 SLSS를 전송할 수 있다.
txParameters 전송을 위한 설정에 대한 파라미터를 포함한다
한편, 상기 기지국(200)의 커버리지 내에 위치하는 상기 UE#1(100-1)은 상기 기지국과 RRC 연결을 수립한다.
그리고, 상기 UE#1(100-1)은 상기 기지국(200)으로부터 RRC 메시지, 예컨대, RRC Connection Reconfiguration 메시지를 수신한다. 상기 RRC 메시지는 탐지 설정(discovery configuration; 이하, discConfig라고 함)을 포함한다. 상기 discConfig는 탐지를 위한 자원 풀(discover resource pool; 이하 DiscResourcePool이라 함)에 대한 설정 정보를 포함한다. 상기 DiscResourcePool은 아래의 표와 같은 정보를 포함한다.
표 6
DiscResourcePool
discPeriod discovery period 로도 표기될 수 있고, 탐지 메시지 전송/수신을 위해 셀 내에서 할당되는 자원의 주기로서, PSDCH 주기 라고도 불린다. 값은 rf32, rf64, rf128, rf256, rf512, rf1024 등이 될 수 있다. 이러한 값은 무선 프레임의 개수를 나타낸다. 즉, 값이 rf32일 경우, 32개의 무선 프레임을 나타낸다.
numRepetition discPeriod 내에서 발생하는 서브프레임에 매핑하기 위한 subframeBitmap이 반복되는 횟수 값을 나타낸다. 기지국은 상기 매핑된 서브프레임이 상기 discPeriod를 넘지 않도록, numRepetition과 subframeBitmap을 설정한다.
TF-ResourceConfig 사이드링크 통신에 사용되는 시간/주파수 자원의 세트를 지정한다.
상기 TF - ResourceConfig는 아래의 표와 같은 정보를 포함한다.
표 7
SL-TF-ResourceConfig-r12 ::= SEQUENCE { prb-Num-r12 INTEGER (1..100), prb-Start-r12 INTEGER (0..99), prb-End-r12 INTEGER (0..99), offsetIndicator-r12 SL-OffsetIndicator-r12, subframeBitmap-r12 SubframeBitmapSL-r12}
상기 SubframeBitmapSL는 아래의 표와 같다.
표 8
SubframeBitmapSL discoverySubframeBitmap로도 표기될 수 있고, 사이드링크에 사용되는 자원을 나타내는 서브프레임 비트맵을 지정한다. 값은 bs4, bs8, bs12, bs16, bs30, bs40, bs40 등으로 지정될 수 있다. 에컨댄 값 bs40은 비트 스트링 길이 40을 의미한다.
상기 SL-OffsetIndicator은 아래의 표와 같은 정보를 포함한다.
표 9
SL-OffsetIndicator discoveryOffsetIndicator로도 표기될 수 있고, SFN 사이클 내에서 자원 풀의 제1 주기의 오프셋을 나타낸다.
SL-OffsetIndicatorSync SyncOffsetIndicator으로 표기될 수도 있고, 동기 자원이 포함되는 SFN들과 서브프레임드의 관계를 수식에 따라 나타낸다.(SFN*10+ Subframe Number) mod 40 = SL - OffsetIndicatorSync.
한편, UE#1(100-1)는 D2D 통신 또는 ProSe 통신을 위해 주변에 적합한 UE가 존재하는지 탐지하기 위하여, 혹은 상기 UE#1(100-1)는 자신의 존재를 알리기 위하여, 탐지 신호(Discovery Signal)를 PSDCH를 통해 전송할 수 있다.
또한, 상기 UE#1(100-1)는 스케줄링 할당(scheduling assignment: SA)을 포함하는 SCI(Sidelink control Informaiton)을 PSCCH를 통해 전송할 수 있다. 그리고, 상기 UE#1(100-1)는 상기 스케줄링 할당(SA)에 기초하여, 데이터를 포함하는 PSSCH를 전송할 수 있다.
상기 PSCCH는 PDCCH가 DCI를 포함하는 것과 유사하게 상기 SCI를 포함한다. 상기 SCI는 상대방 UE가 PSSCH를 수신하고 복조할 수 있도록 하기 위해 필요한 정보를 포함한다.
상기 SCI는 SCI 포맷 0과 SCI 포맷 1으로 나뉠 수 있다.
상기 SCI 포맷 0은 다음과 같은 정보를 포함할 수 있다.
- 주파수 호핑 플래그
- 자원 블록 할당 및 호핑 자원 할당
- 시간 자원 패턴
- MCS(Modulation and Coding Scheme)
- Time advance indication
- Group destination ID
한편, 상기 SCI 포맷 1은 다음과 같은 정보를 포함할 수 있다.
- 우선순위(Priority): 만약 사이드링크가 후술하는 V2X(Vehicle to everything)를 위해 사용될 경우, PPPP(ProSe Per-Packet Priority)를 지시한다.
- 자원 예약
- 주파수 자원 위치
- 초기 전소오가 재전송 간의 시간 갭
- MCS(Modulation and Coding Scheme)
- 재전송 인덱스
도 10은 도 8에 도시된 UE #2가 Relay UE를 선택하는 예를 나타낸다.
도 10을 도 8과 함께 참조하면, 기지국의 커버리지 밖에 위치한 UE#2(100-2)는 기지국의 커버리지 내에 위치하여 중계(Relay) UE로 동작할 수 있는 UE#1(100-1)과 D2D 통신하기 위하여, 이웃하는 UE들로부터의 탐지 신호 및 상기 탐지 신호의 복조를 위한 DMRS를 수신한다. 또한, 상기 UE#2(100-2)는 이웃하는 UE들로부터 PSBCH 및 상기 PSBCH의 복조를 위한 DMRS를 수신한다.
그러면, 상기 UE#2(100-2)는 수신한 신호들에 기초하여 측정을 수행한다.
상기 측정은 S-RSRP(Sidelink Reference Signal Received Power)의 측정 및 SD-RSRP(Sidelink Discovery Reference Signal Received Power)의 측정을 포함한다.
여기서, 상기 S-RSRP는 가운데 6개 PBB 내에서 수신되는 PSBCH의 복조를 위한 DMRS를 포함하는 RE(Resource Element) 상에서의 평균 수신 전력을 의미한다. 이때, RE 당 파워는 OFDM 심볼에서 CP 부분을 제외한 부분 상에서 수신된 에너지로부터 결정된다.
상기 SD-RSRP는 탐지 신호를 포함하는 PSDCH의 성공적 디코딩에 따라 CRC 검사가 성공한 경우에, 상기 PSDCH의 복조를 위한 DMRS를 포함하는 RE 상에서의 평균 수신 전력을 의미한다.
상기 측정이 완료하면, 상기 UE#2(100-2)는 상기 측정의 결과, 즉 SD-RSRP의측정 결과에 기초하여, 중계(Relay) UE로 동작할 수 있는 UE#1(100-1)를 선택한다.
<V2X(VEHICLE-TO-EVERYTHIHG)>
전술한 D2D에 관한 내용은 V2X(vehicle-to-everything)에도 적용될 수 있다. V2X는 차량과 모든 인터페이스를 통한 통신 기술을 통칭한다. V2X의 구현 형태는 다음과 같을 수 있다.
먼저, V2X 에서 'X'는 차량(VEHICLE)일 수도 있다. 이 경우, V2X는 V2V V2V(vehicle-to-vehicle)라 표시할 수 있으며, 차량들 간의 통신을 의미할 수 있다.
도 11은 V2V의 개념을 나타낸 예시도이다 .
도 11을 참조하여 알 수 있는 바와 같이, 차량들(즉, 차량에 탑재된 무선 장치들)(100-1, 100-2, 100-3)은 서로 통신을 수행할 수 있다.
한편, V2X에서 'X' 는 사람(Persian) 또는 보행자(PEDESTRIAN)를 의미할 수 있다. 이 경우, V2X는 V2P(vehicle-to-person or vehicle-to-pedestrian)로 표시할 수 있다. 여기서, 보행자는 반드시 걸어서 이동하는 사람에 국한되는 것이 아니며 자전거를 타고 있는 사람, (일정 속도 이하)차량의 운전자 또는 승객도 포함할 수 있다.
또는 'X'는 인프라 스트럭쳐(Infrastructure)/네트워크(Network)일 수 있다. 이 경우 V2X는 V2I(vehicle-to-infrastructure) 또는 V2N(vehicle-to-network) 이라 표시할 수 있으며 차량과 도로변 장치(ROADSIDE UNIT: RSU) 또는 차량과 네트워크와의 통신을 의미할 수 있다. 도로변 장치는 교통 관련 인프라 스트럭쳐 예컨대, 속도를 알려주는 장치일 수 있다. 도로변 장치는 기지국 또는 고정된 단말 등에 구현될 수 있다.
상기 V2X 통신을 위해 사용될 수 있는 주파수 대역은 다음과 같다.
표 10
E-UTRA 동작 대역 V2X 동작 대역 V2X UE 전송 V2X UE 수신 듀플렉스 모드 인터페이스
FUL _ low - FUL _high FDL _ low - FDL _high
47 47 5855 MHz - 5925 MHz 5855 MHz - 5925 MHz TDD PC5
3 3 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD Uu
7 7 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD Uu
8 8 880 MHz - 915 MHz 925 MHz - 960 MHz FDD Uu
39 39 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD Uu
41 41 2496 MHz - 2690 MHz 2496 MHz - 2690 MHz TDD Uu
여기서 PC5 인터페이스는 V2X 기기 간의 사이드링크를 의미한다. 그리고 상기 Uu 인터페이스는 V2X 기기와 기지국 간의 링크를 의미한다.
한편, V2X 통신은 아래의 표에 나타난 동작 대역의 조합에서 E-UTRA uplink/downlink와 동시 수행될 수 있다.
표 11
V2X 동시 설정 동작 대역 인터페이스 상향링크 (UL) 동작 대역기지국이 수신UE가 전송 하향링크(DL) 동작 대역기지국이 전송UE가 수신 듀플렉스 모드
FUL _ low - FUL _high FDL _ low - FDL _high
V2X_3-47 3 Uu 1710 MHz - 1785 MHz 1805 MHz - 1880 MHz FDD
47 PC5 5855 MHz - 5925 MHz 5855 MHz 5925 MHz TDD
V2X_7-47 7 Uu 2500 MHz - 2570 MHz 2620 MHz - 2690 MHz FDD
47 PC5 5855 MHz - 5925 MHz 5855 MHz 5925 MHz TDD
V2X_8-47 8 Uu 880 MHz - 915 MHz 925 MHz - 960 MHz FDD
47 PC5 5855 MHz - 5925 MHz 5855 MHz 5925 MHz TDD
V2X_39-47 39 Uu 1880 MHz - 1920 MHz 1880 MHz - 1920 MHz TDD
47 PC5 5855 MHz - 5925 MHz 5855 MHz 5925 MHz TDD
V2X_41-47 41 Uu 2496 MHz - 2690 MHz 2496 MHz 2690 MHz TDD
47 PC5 5855 MHz - 5925 MHz 5855 MHz 5925 MHz TDD
한편, V2X 통신이 인트라 밴드 다중 요소 반송파(Multiple Component Carriers: MCC)로 동작될 수 있도록 하기 위해 아래와 같은 동작 대역들을 제시된다.
표 12
V2X MCC Band V2X 동작 대역 인터페이스
V2X_47 47 PC5
<본 명세서의 개시>
전술한 바와 같이 V2X 통신을 위해 동작 대역들이 정의되었다. 그러나, V2X 통신으로 인하여, 하모닉(harmonic) 성분 및 혼변조 왜곡(intermodulation distortion: IMD) 성분이 발생하여, 단말 자신의 하향링크 대역에 영향을 줄 수 있는 문제점이 있다. 따라서, 이러한 하모닉 성분 및 IMD를 고려하여, 단말의 전송 파워를 결정하기 위한 방안들이 제시되어야 한다.
먼저, 최대 출력 파워는 SCC(Single Component Carrier)를 사용하는 경우와 MCC(Multiple Component Carrier, intra-band operation) 및 동시적인(concurrent) V2X 동작(inter-band operation) 을 사용하는 경우로 나누어 결정되어야 한다.
도 12a 내지 도 12c는 SCC 동작과 MCC 동작을 나타낸다.
도 12a를 참조하면, 예컨대 대역 47에서 SCC를 사용하여 하나의 V2X 송수신(Tx/Rx)을 수행하는 예가 나타나 있다. 그리고, 도 12b를 참조하면, 대역 47에서 MCC를 사용하여 복수의 인트라 밴드 반송파(intra-band CCs)에서의 V2X 송수신(Tx/Rx)을 수행하는 예가 나타나 있다. 그리고 도 12c를 참조하면, 대역 47에서 하나의 V2X 송수신을 수행하고, 기존 LTE 대역 X의 상향링크와 하향링크에서 Uu 인터페이스에서 V2X 송수신을 또한 수행하는 예가 나타나 있다. 기존 LTE 대역에서의 상용서비스는 기존의 WAN 동작(operation) 이 수행될 수 있으며, 또한 V2X 용으로 사용될 수도 있다.
한편, MCC 동작을 위해서는 누설되는 하모닉 성분이 있는지 검토해야 한다. 아래의 표는 기존 LTE 대역 3과 대역 47의 조합을 사용하는 V2X 동작으로 인해 하모닉 성분이 E-UTRA 통신으로 누설되는지를 나타낸다
표 13
UE UL 반송파 fx_low fx_high fy_low fy_high
UL 주파수(MHz) 1710 1785 5855 5925
2차 하모닉 주파수 제한 2*fx_low 2*fx_high 2* fy_low 2* fy_high
2차 하모닉 주파수 제한 (MHz) 3420 3570 11710 11850
3차 하모닉 주파수 제한 3*fx_low 3*fx_high 3* fy_low 3* fy_high
3차 하모닉 주파수 제한 (MHz) 5130 5355 17565 17775
2개-톤 2차 IMD 성분 |fy_low - fx_high| |fy_high - fx_low| |fy_low + fx_low| |fy_high + fx_high|
IMD 주파수 제한 (MHz) 4070 4215 7565 7710
2개-톤 3차 IMD 성분 |2*fx_low - fy_high| |2*fx_high - fy_low| |2*fy_low - fx_high| |2*fy_high - fx_low|
IMD 주파수 제한 (MHz) 2505 2285 9925 10140
2개-톤 3차 IMD 성분 |2*fx_low + fy_low| |2*fx_high + fy_high| |2*fy_low + fx_low| |2*fy_high + fx_high|
IMD 주파수 제한 (MHz) 9275 9495 13420 13635
2개-톤 4차 IMD 성분 |3*fx_low - fy_high| |3*fx_high - fy_low| |3*fy_low - fx_high| |3*fy_high - fx_low|
IMD 주파수 제한 (MHz) 795 500 15780 16065
2개-톤 4차 IMD 성분 |3*fx_low + fy_low| |3*fx_high + fy_high| |3*fy_low + fx_low| |3*fy_high + fx_high|
IMD 주파수 제한 (MHz) 10985 11280 19275 19560
2개-톤 4차 IMD 성분 |2*fx_low - 2*fy_high| |2*fx_high - 2*fy_low| |2*fx_low + 2*fy_low| |2*fx_high + 2*fy_high|
IMD 주파수 제한 (MHz) 8430 8140 15130 15420
2개-톤 5차 IMD 성분 |fx_low - 4*fy_high| |fx_high - 4*fy_low| |fy_low - 4*fx_high| |fy_high - 4*fx_low|
IMD frequency limits (MHz) 21990 21635 1285 915
2개-톤 5차 IMD 성분 |fx_low + 4*fy_low| |fx_high + 4*fy_high| |fy_low + 4*fx_low| |fy_high + 4*fx_high|
IMD 주파수 제한 (MHz) 25130 25485 12695 13065
2개-톤 5차 IMD 성분 |2*fx_low - 3*fy_high| |2*fx_high - 3*fy_low| |2*fy_low - 3*fx_high| |2*fy_high - 3*fx_low|
IMD 주파수 제한 (MHz) 14355 13995 6355 6720
2개-톤 5차 IMD 성분 |2*fx_low + 3*fy_low| |2*fx_high + 3*fy_high| |2*fy_low + 3*fx_low| |2*fy_high + 3*fx_high|
IMD 주파수 제한 (MHz) 20985 21345 16840 17205
아래의 표는 기존 LTE 대역 8과 대역 47의 조합을 사용하는 V2X 동작으로 인해 하모닉 성분이 E-UTRA 통신으로 누설되는지를 나타낸다
표 14
UE UL 반송파 fx_low fx_high fy_low fy_high
UL 주파수(MHz) 880 915 5855 5925
2차 하모닉 주파수 제한 2*fx_low 2*fx_high 2* fy_low 2* fy_high
2차 하모닉 주파수 제한 (MHz) 1760 1830 11710 11850
3차 하모닉 주파수 제한 3*fx_low 3*fx_high 3* fy_low 3* fy_high
3차 하모닉 주파수 제한 (MHz) 2640 2745 17565 17775
2개-톤 2차 IMD 성분 |fy_low - fx_high| |fy_high - fx_low| |fy_low + fx_low| |fy_high + fx_high|
IMD 주파수 제한 (MHz) 4940 5045 6735 6840
2개-톤 3차 IMD 성분 |2*fx_low - fy_high| |2*fx_high - fy_low| |2*fy_low - fx_high| |2*fy_high - fx_low|
IMD 주파수 제한 (MHz) 4165 4025 10795 10970
2개-톤 3차 IMD 성분 |2*fx_low + fy_low| |2*fx_high + fy_high| |2*fy_low + fx_low| |2*fy_high + fx_high|
IMD 주파수 제한 (MHz) 7615 7755 12590 12765
2개-톤 4차 IMD 성분 |3*fx_low - fy_high| |3*fx_high - fy_low| |3*fy_low - fx_high| |3*fy_high - fx_low|
IMD 주파수 제한 (MHz) 3285 3110 16650 16895
2개-톤 4차 IMD 성분 |3*fx_low + fy_low| |3*fx_high + fy_high| |3*fy_low + fx_low| |3*fy_high + fx_high|
IMD 주파수 제한 (MHz) 8495 8670 18445 18690
2개-톤 4차 IMD 성분 |2*fx_low - 2*fy_high| |2*fx_high - 2*fy_low| |2*fx_low + 2*fy_low| |2*fx_high + 2*fy_high|
IMD 주파수 제한 (MHz) 10090 9880 13470 13680
2개-톤 5차 IMD 성분 |fx_low - 4*fy_high| |fx_high - 4*fy_low| |fy_low - 4*fx_high| |fy_high - 4*fx_low|
IMD 주파수 제한 (MHz) 22820 22505 2195 2405
2개-톤 5차 IMD 성분 |fx_low + 4*fy_low| |fx_high + 4*fy_high| |fy_low + 4*fx_low| |fy_high + 4*fx_high|
IMD 주파수 제한 (MHz) 24300 24615 9375 9585
2개-톤 5차 IMD 성분 |2*fx_low - 3*fy_high| |2*fx_high - 3*fy_low| |2*fy_low - 3*fx_high| |2*fy_high - 3*fx_low|
IMD 주파수 제한 (MHz) 16015 15735 8965 9210
2개-톤 5차 IMD 성분 |2*fx_low + 3*fy_low| |2*fx_high + 3*fy_high| |2*fy_low + 3*fx_low| |2*fy_high + 3*fx_high|
IMD 주파수 제한 (MHz) 19325 19605 14350 14595
위의 표를 정리하면 아래의 표와 같이 하모닉 성분들이 대역 47이 누설되는 것을 알 수 있다.
표 15
대역 대역 47의 범위(MHz) 분석
5855 - 5925
E-UTRA 대역 UL 범위 (MHz) 성분 Harmonic Range (MHz)
B1 1920 - 1980 3차 5760 - 5940 하모닉 영향 있음
B5 824 - 849 7차 5768 - 5943 하모닉 영향 있음
B19 830 - 845 7차 5810 - 5915 하모닉 영향 있음
B20 832 - 862 7차 5824 - 6034 하모닉 영향 있음
B21 1448 - 1463 4차 5792 - 5852 사이드 로브(Side-lobe) 영향 있음
B26 814 - 849 7차 5698 - 5943 하모닉 영향 있음
B28 703 - 748 8차 5624 - 5984 하모닉 영향 있음
B31 452.5 - 457.5 13차 5882.5 - 5947.5 하모닉 영향 있음
B65 1920 - 2010 3차 5760 - 6030 하모닉 영향 있음
도 13은 E- UTRA 셀룰러 통신과 V2X 통신을 위한 RF 구조를 나타낸다.
도 13을 참조하면, 다수의 RF 체인을 수용하는 RFIC (130-21), 제1 안테나에 연결된 제1 다이플렉서(130-29a), 제2 안테나에 연결된 제2 다이플렉서(130-29b), 상기 제1 다이플렉서(130-29a)에 연결되어 다수의 저대역을 구분하기 위한 스위치(130-28a), 상기 제1 다이플렉서(130-29a)에 연결되어 다수의 중간 대역을 구분하기 위한 스위치(130-28b), 상기 제2 다이플렉서(130-29b)에 연결되어 다수의 고대역을 구분하기 위한 스위치(130-28c), 상기 제2 다이플렉서(130-29b)에 연결되어 다수의 초고대역 (ITS 스펙트럼 및 5GHz의 비면허 대역)을 구분하기 위한 스위치(130-28d)가 나타나 있다.
상기 중간 대역 스위치(130-28b)에는 듀플렉서(130-26b)가 연결된다. 상기 듀플렉서(130-26b)와 상기 RFIC(130-21) 사이에는 PA(130-22b)와 LNA(130-23b)가 연결되어 있다.
마찬가지로, 상기 초고대역 스위치(130-26d)에는 듀플렉서(130-26d)가 연결된다. 상기 듀플렉서(130-26d)와 상기 RFIC(130-21) 사이에는 PA(130-22d)와 LNA(130-23d)가 연결되어 있다.
상기 중간 대역 스위치(130-28b)에 연결된 듀플렉서(130-26b)는 예컨대 V2X 통신을 위한 동작 대역 3의 송신과 수신을 분리할 수 있다.
한편, 이하에서는 V2X 전송 파워에 대해서 설명하기로 한다.
I. V2X 통신을 위한 최대 출력 파워
단말이 E-UTRA 셀룰러 상향링크 전송과 V2X 사이드링크 통신의 비-동시적인 전송이 설정된 경우, PSCCH 및 PSSCH의 동시 전송으로 인한 V2X 물리 채널과 신호에 대한 MPR(Maximum Power Reduction) 값은 아래와 같이 정의될 수 있다.
특히, PSCCH와 PSSCH의 동시 전송을 위한 연속적인 할당의 경우, PSCCH와 PSSCH의 최대 출력 파워에 대해 허용되는 MPR은 아래의 표와 같이 정의된다.
표 16
변조 채널 대역폭/ 전송 대역폭 (NRB) MPR (dB)
1.4MHz 3.0MHz 5MHz 10MHz 15MHz 20MHz
QPSK ≤≤ 1.5
16 QAM ≤≤ 2
특히, PSCCH와 PSSCH의 동시 전송을 위한 비연속적인 할당의 경우, PSCCH와 PSSCH의 최대 출력 파워에 대해 허용되는 MPR은 아래의 수식과 같이 정의된다.
[수식 1]
MPR CEIL {MA, 0.5}
여기서 MA는 다음과 같이 정의된다.
MA = 4.5 ; 0.00< A ≤ 0.2
5.5 -5.833A ; 0.2< A ≤0.6
2.0 ; 0.6< A ≤1.00
여기서, A = NRB _ alloc / NRB이다
상기 NRB_agg는 채널 대역 내에 RB들의 개수이고, NRB_alloc는 동시에 전송되는 RB들의 전체 개수를 나타낸다.
CEIL{MA, 0.5}는 0.5dB 단위로 반올림하는 함수를 의미한다.
II. V2X 통신을 위한 최대 출력 파워와 추가적인 요구 사항
단말이 E-UTRA 셀룰러 상향링크 전송 및 V2X 사이드링크 통신의 비-동시적인 전송이 설정된 경우, V2X 물리 채널인 PSCCH 및 PSSCH의 최대 출력 파워에 대해 허용되는 A-MPR(Additional Maximum Power Reduction) 값은 아래와 같이 정의될 수 있다.
표 17
리소스 할당 방식 주파수 (MHz) 리소스 전송수 Blocks (N RB) RB 시작 요구되는 A-MPR (dB)
연속 할당 5860 [≤≤ 10] [0] [12]
[5] [6]
[10] [4]
[≥≥ 15] [0.5]
[>10 & ≤≤22] [0] [11.5]
[5] [10]
[10] [8]
[15] [4.5]
[20 and 25] [2.5]
[≥≥ 30] [1]
[>22] [0 and 5] [9]
[10] [8]
[15] [7.5]
[20] [4.5]
5870, 5910, 5920 [<20] ≥≥ 0 [3]
[≥≥ 20 and ≤≤45] [2]
[>45] [3]
5880, 5890, 5900 [<10] ≥≥ 0 [1.5]
[≥≥ 10 and ≤≤38] [0]
[>42] [1.5]
비연속 할당 5860 [≤≤ 5] ≥≥ 0 [12]
[>5] [10]
5870, 5910, 5920 [≤≤ 5] ≥≥ 0 [3.5]
[>5 & ≤≤42] [1.5]
[>42] [3]
5880, 5890, 5900 [≤≤18] ≥≥ 0 [2]
[>18 & ≤≤42] [1]
[>42] [1.5]
이는 아래 표 18의 A-SEM(Additional SEM) 및 아래 표 19의 A-SE규격을 만족하기 위해서 설정된 A-MPR 값이다.
표 18
스펙트럼 방사 제한 (dBm)/ 채널 대역폭
ΔfOOB (MHz) 10 MHz 측정 대역폭
± 0-0.5
Figure PCTKR2017005761-appb-I000001
100 kHz
± 0.5-5
Figure PCTKR2017005761-appb-I000002
100 kHz
± 5-10
Figure PCTKR2017005761-appb-I000003
100 kHz
표 19
47 E-UTRA 대역 1, 3, 5, 7, 8, 22, 26, 28, 34, 39, 40, 41, 42, 44, 45, 65 FDL_low - FDL_high -50 1
주파수 범위 5925 - 5950 -30 1
주파수 범위 5815 - 5855 -30 1
III. V2X 통신을 위해 설정된 전송 파워
단말이 E-UTRA 셀룰러 상향링크 전송 및 V2X 사이드링크 통신의 비-동시적인 전송이 설정된 경우, 설정된 최대 출력 파워 PCMAX, c 와 파워 경계 요구사항이 적용된다.
PCMAX,PSSCH 와 PCMAX,PSCCH, PEMAX,c는 상위 계층 시그널 maxTxPower에 의해서 지정된다.
파워 제어 파라미터는 PSSCH를 위해서 설정될 수 있다. PSSCH의 PSD 오프셋은 PSCCH의 전송 파워를 결정하기 위해서 사용될 수 있다. PSCCH와 PSSCH 간의 PSD 차이는 상기 PSD 오프셋의 값과 같을 수 있다.
단말이 인터-밴드에서 E-UTRA 셀룰러 상향링크 전송과 V2X 사이드링크 통신의 동시 전송이 설정된 경우, 단말은 설정된 E-UTRA 상향링크 반송파에 대해서 최대 출력 파워 PCMAX, c , E - UTRA 를 설정하고, 설정된 V2X 반송파에 대해서 최대 출력 파워 PCMAX, c , V2X 를 설정할 수 있다.
만약 서브프레임 p에서 E-UTRA 셀룰러 상향링크 전송을 위해 설정된 최대 출력 파워를 PCMAX c , E - UTRA (p)로 나타낼 경우, 상기 PCMAX c , E - UTRA (p)는 아래의 경계 내에서 설정되어야 한다.
[수식 2]
PCMAX _ L, c,E - UTRA (p) ≤ PCMAX, c,E - UTRA (p) ≤ PCMAX _ H, c,E - UTRA (p)
여기서, PCMAX _ L, c,E - UTRA PCMAX _ H, c,E - UTRA 는 서빙 셀 c에 대한 하한과 상한 값이다.
만약 서브프레임 q에서 V2X 전송을 위해 설정된 최대 출력 파워를 PCMAX c , V2X (q) 로 나타낼 경우, 상기 PCMAX c , V2X (q) 는 아래의 경계 내에서 설정되어야 한다.
[수식 3]
PCMAX, c,V2X (q) ≤ PCMAX _ H, c,V2X (q)
여기서, PCMAX _ H, c,V2X 는 상한 값이다.
서브프레임 p에서 E-UTRA 상향링크 반송파의 전송과 서브프레임 q에서 V2X 사이드링크 전송이 시간적으로 중첩될 경우, 서브프레임 쌍 (p,q)에서 설정된 최대 출력 파워의 토탈 PCMAX (p,q)은 동기 및 비동기 동작에서 아래의 경계 내에서 설정되어야 한다.
[수식 4]
PCMAX _L (p,q) ≤ PCMAX (p,q) ≤ PCMAX _H (p,q)
여기서, PMAX _L (p,q )와 PCMAX _H (p,q)는 다음과 같다.
PMAX _L (p,q) = PCMAX _ L, c,E - UTRA (p)
PCMAX _H (p,q) = MIN {10 log10 [pCMAX _ H, c,E - UTRA (p) + pCMAX _ H, c,V2X (q)], PPowerClass}
그리고 pCMAX _ H ,c,V2X 와 pCMAX _ H, c,E - UTRA 는 상기 상한 값 PCMAX _ H, c,V2X (q) 및 상기 하한 값 PCMAX _ H, c,E - UTRA (p)을 선형 스케일로 표현한 값이다.
E-UTRA 상향링크 전송 및 V2X 전송 둘 다에 대해서 측정된 최대 출력 파워의 토탈 PUMAX는 다음과 같다.
[수식 5]
PUMAX = 10 log10 [pUMAX, c,E - UTRA + pUMAX, c,V2X ],
여기서, pUMAX, c,E - UTRA 는 서빙 셀 c에 대한 E-UTRA 상향링크 전송에 대해 측정된 출력 파워를 나타낸다. 그리고, pUMAX, c,V2X 는 V2X 전송에 대해 측정된 출력 파워를 선형 스케일로 나타낸다.
단말이 V2X 전송과 E-UTRA 상향링크 전송에 대해 동기 전송이 설정된 경우, 다음과 같다.
[수식 6]
PCMAX _L(p, q) - TLOW (PCMAX _L(p, q)) ≤ PUMAX ≤ PCMAX _H(p, q) + THIGH (PCMAX _H(p, q))
여기서, PCMAX _L (p,q)와 PCMAX _H (p,q)는 서브프레임 쌍(p, q)에 대한 상한 및 하한 값이다. 그리고, TLOW(PCMAX)와 THIGH(PCMAX)는 PCMAX에 대해 적용가능한 허용치를 나타낸다. PCMAX _L는 서브프레임 쌍 (p, q) and (p +1, q+1)의 중첩 부분에 대해서 조정될 수 있다.
단말이 V2X 전송과 E-UTRA 상향링크 전송에 대해서 비동기 전송이 설정된 경우, 그리고 E-UTRA 상향링크 전송을 위한 서브프레임 p와 V2X 전송을 위한 서브프레임 q가 서로 중첩된 경우, 다음과 같이 동작할 수 있다. 이에 대해서 도 14a 내지 도 14d를 참조하여 설명하기로 한다.
도 14a 내지 도 14d는 E- UTRA 상향링크 전송(셀룰러 전송 또는 WAN 전송)과 B47의 사이드링크 V2X 전송을 위한 서브프레임들을 나타낸다.
1. 만약 도 14a에 도시된 바와 같이, E-UTRA 상향링크 전송( V2X 전송 또는 WAN 전송)을 위한 서브프레임 p가 B47의 사이드링크 V2X 전송을 위한 서브프레임 q보다 시간적으로 앞서고, V2X 사이드링크 전송을 위한 SCI(sidelink control information)의 Priority 필드가 상위 계층 파라미터 thresSL-TxPrioritization의 값보다 낮게 설정된 경우, 상기 단말은 상기 서브프레임 p를 기준 서브프레임으로 결정하고, 서브프레임 쌍 (p,q) 및 (p,q-1)를 PCMAX의 허용치를 결정하기 위해서 고려한다.
2. 만약 도 14b에 도시된 바와 같이, E-UTRA 상향링크 전송을 위한 서브프레임 p가 B47의 사이드링크 V2X 전송을 위한 서브프레임 q보다 시간적으로 앞서고, V2X 사이드링크 전송을 위한 SCI(sidelink control information)의 Priority 필드가 상위 계층 파라미터 thresSL-TxPrioritization의 값보다 높게 설정된 경우, 상기 단말은 상기 서브프레임 q를 기준 서브프레임으로 결정하고, 서브프레임 쌍 (p,q) 및 (p+1,q)를 PCMAX의 허용치를 결정하기 위해서 고려한다.
3. 만약 도 14c에 도시된 바와 같이, B47의 사이드링크 V2X 전송을 위한 서브프레임 q가 E-UTRA 상향링크 전송을 위한 서브프레임 p 보다 시간적으로 앞서고, V2X 사이드링크 전송을 위한 SCI(sidelink control information)의 Priority 필드가 상위 계층 파라미터 thresSL-TxPrioritization의 값보다 낮게 설정된 경우, 상기 단말은 상기 서브프레임 p를 기준 서브프레임으로 결정하고, 서브프레임 쌍 (p,q) 및 (p,q+1) 를 PCMAX의 허용치를 결정하기 위해서 고려한다.
4. 만약 도 14d에 도시된 바와 같이, B47의 사이드링크 V2X 전송을 위한 서브프레임 q가 E-UTRA 상향링크 전송을 위한 서브프레임 p 보다 시간적으로 앞서고, V2X 사이드링크 전송을 위한 SCI(sidelink control information)의 Priority 필드가 상위 계층 파라미터 thresSL-TxPrioritization의 값보다 높게 설정된 경우, 상기 단말은 상기 서브프레임 q를 기준 서브프레임으로 결정하고, 서브프레임 쌍 (p-1, q) 및 (p, q) 를 PCMAX의 허용치를 결정하기 위해서 고려한다.
상기 기준 서브프레임 p 동안에, 상기 E-UTRA 상향링크 전송이 앞서는 경우, P'CMAX_L와 P'CMAX _H는 다음과 같이 정해진다.
P'CMAX _ L = PCMAX _ L,,cE - UTRA (p)
P'CMAX _ H = MAX {PCMAX _ H (p,q -1) , PCMAX _ H (p,q)} or P'CMAX _ H = MAX {PCMAX _ H (p,q) , PCMAX _ H (p,q +1)}
상기 기준 서브프레임 q 동안에, 상기 B47의 V2X 전송이 앞서는 경우, P'CMAX_L와 P'CMAX _H는 다음과 같이 정해진다.
P'CMAX _ L = PCMAX _ L ,cE - UTRA (p)
P'CMAX _ H = MAX {PCMAX _ H (p,q) , PCMAX _ H (p+ 1,q)} or P'CMAX _ H = MAX {PCMAX _ H (p-1,q) , PCMAX _ H (p,q)}
여기서, PCMAX _ L,,cE - UTRA (p)와 PCMAX _H는 상기 4가지 경우에 있어서 서브프레임 쌍(p,q), (p, q-1) 또는 ( p,q ), (p, q+1) 또는 ( p,q ), (p+ 1,q ) 또는 ( p,q ), (p-1, q)에서 중첩 서브프레임에 대해 적용가능한 하한 및 상한 값이다.
P'CMAX _ L - TLOW (P'CMAX _ L) ≤ PUMAX ≤ P'CMAX _H + THIGH (P'CMAX _H)
상기 TLOW(PCMAX)와 THIGH(PCMAX)는 PCMAX에 대해 적용가능한 허용치를 나타낸다.
15은 E- UTRA 상향링크 전송( V2X 전송 또는 WAN 전송)을 위한 서브프레임과 B47의 사이드링크 V2X 전송을 위한 서브프레임 간의 선후 관계에 따라 기준 서브프레임을 결정하는 방안을 나타낸 흐름도이다.
도 15를 참조하면, 앞서 설명한 바와 같이, 단말은 도 14a 내지 도 14d에도시된 바와 같이, E-UTRA 상향링크 전송(셀룰러 전송)을 위한 서브프레임 p가 B47의 사이드링크 V2X 전송을 위한 서브프레임 q 보다 앞서는지 아닌지를 결정한다.
그리고 상기 단말은 상기 결정에 따라 기준 서브프레임을 결정한다.
그리고, 상기 단말은 최대 파워에 대한 허용치를 결정하기 위한 서브프레임 쌍 결정한다.
지금까지 설명한, 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 구체적으로는 도면을 참조하여 설명하기로 한다.
도 16은 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다 .
기지국(200)은 프로세서(processor, 210), 메모리(memory, 220) 및 RF부(RF(radio frequency) unit, 230)을 포함한다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(220)에 의해 구현될 수 있다.
단말(100)은 프로세서(110), 메모리(120) 및 RF부(130)을 포함한다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 무선 기기가 전송 파워를 결정하는 방법으로서,
    V2X(Vehicle to everything)와 셀룰러 상향링크에 대해 비동기 이중 전송(asynchronous dual transmissions)이 설정된 경우 그리고 셀룰러 상향링크 전송을 위한 서브프레임 p와 V2X 전송을 위한 서브프레임 q가 서로 중첩된 경우, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는지를 결정하는 단계와;
    상기 결정에 기초하여, 상기 서브프레임 p와 상기 서브프레임 q 중에서 기준 서브프레임을 결정하는 단계를 포함하고,
    상기 기준 서브프레임은 전송 파워의 하한을 결정하는데 사용되는 것을 특징으로 하는 방법.
  2. 제1항에 있어서, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 낮은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 상기 서브프레임 p가 상기 기준 서브프레임으로 결정되는 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 높은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 상기 서브프레임 q가 상기 기준 서브프레임으로 결정되는 것을 특징으로 하는 방법.
  4. 제1항에 있어서, 상기 V2X 전송을 위한 서브프레임 q가 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 낮은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 상기 서브프레임 p가 상기 기준 서브프레임으로 결정되는 것을 특징으로 하는 방법.
  5. 제1항에 있어서, 상기 V2X 전송을 위한 서브프레임 q가 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 높은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 상기 서브프레임 q가 상기 기준 서브프레임으로 결정되는 것을 특징으로 하는 방법.
  6. 제1항에 있어서, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 낮은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 서브프레임 쌍 (p, q) 및 (p, q-1)이 최대 파워에 대한 허용치를 결정하기 위해서 고려되는 것을 특징으로 하는 방법.
  7. 제1항에 있어서, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 높은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 서브프레임 쌍 (p, q) 및 (p+1, q) 이 최대 파워에 대한 허용치를 결정하기 위해서 고려되는 것을 특징으로 하는 방법.
  8. 제1항에 있어서, 상기 V2X 전송을 위한 서브프레임 q가 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 낮은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 서브프레임 쌍 (p, q) 및 (p, q+1) 이 최대 파워에 대한 허용치를 결정하기 위해서 고려되는 것을 특징으로 하는 방법.
  9. 제1항에 있어서, 상기 V2X 전송을 위한 서브프레임 q가 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p 보다 앞서는 경우, 그리고 SCI(sidelink control information)은 상위 계층 파라미터에 의해서 지정된 값 보다 높은 값으로 설정된 우선 순위(priority) 필드를 포함하는 경우, 서브프레임 쌍 (p-1, q) 및 (p, q)이 최대 파워에 대한 허용치를 결정하기 위해서 고려되는 것을 특징으로 하는 방법.
  10. 전송 파워를 결정하는 무선 기기로서,
    V2X(Vehicle to everything)와 셀룰러 상향링크에 대해 비동기 이중 전송(asynchronous dual transmissions)을 수행하는 송신부와;
    상기 송신부를 제어하는 프로세서를 포함하고,
    상기 프로세서는 상기 V2X와 상기 셀룰러 상향링크에 대해 상기 비동기 이중 전송이 설정된 경우 그리고 셀룰러 상향링크 전송을 위한 서브프레임 p와 V2X 전송을 위한 서브프레임 q가 서로 중첩된 경우, 상기 셀룰러 상향링크 전송을 위한 상기 서브프레임 p가 상기 V2X 전송을 위한 서브프레임 q 보다 앞서는지를 결정하고,
    상기 프로세서는 상기 결정에 기초하여, 상기 서브프레임 p와 상기 서브프레임 q 중에서 기준 서브프레임을 결정하고,
    상기 기준 서브프레임은 전송 파워의 하한을 결정하는데 사용되는 것을 특징으로 하는 방법.
PCT/KR2017/005761 2016-06-22 2017-06-02 전송 파워를 결정하는 방법 및 무선 기기 WO2017222207A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/307,087 US10925018B2 (en) 2016-06-22 2017-06-02 Method and wireless device for determining transmission power

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662353038P 2016-06-22 2016-06-22
US62/353,038 2016-06-22
US201762455624P 2017-02-07 2017-02-07
US62/455,624 2017-02-07

Publications (1)

Publication Number Publication Date
WO2017222207A1 true WO2017222207A1 (ko) 2017-12-28

Family

ID=60784328

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2017/005761 WO2017222207A1 (ko) 2016-06-22 2017-06-02 전송 파워를 결정하는 방법 및 무선 기기
PCT/KR2017/005759 WO2017222206A1 (ko) 2016-06-22 2017-06-02 V2x 통신을 위한 온/오프 파워 타임 마스크를 적용하는 방법 및 단말

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005759 WO2017222206A1 (ko) 2016-06-22 2017-06-02 V2x 통신을 위한 온/오프 파워 타임 마스크를 적용하는 방법 및 단말

Country Status (2)

Country Link
US (2) US10925018B2 (ko)
WO (2) WO2017222207A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151773A1 (ko) * 2018-01-30 2019-08-08 엘지전자 주식회사 무선통신시스템에서 두 개 이상의 반송파, 대역폭 파트에서 자원을 선택하고 사이드 링크 신호를 전송하는 방법
WO2020022756A1 (ko) * 2018-07-24 2020-01-30 주식회사 아이티엘 차량 통신을 지원하는 무선통신 시스템에서 무선 통신을 수행하는 방법 및 그 장치
WO2022075740A1 (ko) * 2020-10-06 2022-04-14 엘지전자 주식회사 Nr v2x에서 우선 순위 비교 기반의 sl drx 동작 방법 및 장치
WO2023001217A1 (zh) * 2021-07-22 2023-01-26 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019949B2 (ja) * 2017-02-03 2022-02-16 ソニーグループ株式会社 リレー通信装置、基地局、方法及び記録媒体
EP3484188B1 (en) * 2017-11-13 2022-09-21 Robert Bosch GmbH Road-side network node, method to operate the road-side node, network infrastructure node, method to operate the network infrastructure node, and network setup
KR102618497B1 (ko) * 2018-06-01 2023-12-27 삼성전자주식회사 무선 차량 통신 시스템에서 신호 송수신 방법 및 장치
US10999871B2 (en) * 2018-06-08 2021-05-04 Qualcomm Incorporated Random access procedure for CV2X
US10972950B2 (en) * 2018-07-20 2021-04-06 Qualcomm Incorporated Methods and apparatus for handover enhancements
WO2020033381A1 (en) * 2018-08-07 2020-02-13 Idac Holdings, Inc. Nr v2x - methods for data transmission in wireless systems
CN111247856B (zh) * 2018-09-28 2023-05-05 联发科技股份有限公司 侧边链路车联网通信方法及其用户设备
EP3841691B1 (en) * 2018-10-01 2024-07-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. User equipment and method for transmitting synchronization signal block of same
WO2020077645A1 (zh) * 2018-10-19 2020-04-23 Oppo广东移动通信有限公司 一种参数配置方法、终端设备及存储介质
US11229042B2 (en) * 2019-02-12 2022-01-18 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining and communicating multi-stage sidelink control information
WO2020204504A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 사이드링크 동기 신호 블록을 생성하는 방법 및 장치
EP3734885A1 (en) * 2019-05-02 2020-11-04 Panasonic Intellectual Property Corporation of America User equipment and network node involved in communication
CN112350806B (zh) * 2019-08-08 2023-07-21 上海朗桦通信技术有限公司 一种被用于无线通信的节点中的方法和装置
DE102019128568B4 (de) * 2019-10-23 2023-06-29 Audi Ag Verfahren zur Kommunikation
US11206715B2 (en) * 2019-12-18 2021-12-21 Cisco Technology, Inc. Systems and methods for integrating a broadband network gateway into a 5G network
CN113242116B (zh) * 2020-01-23 2022-11-18 大唐移动通信设备有限公司 直通链路的解调导频参考信号的发送、接收方法及终端
WO2022203575A1 (en) * 2021-03-23 2022-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Side link (sl) user equipment (ue) cell selection at out-of-coverage and in-coverage transition
US11665653B2 (en) * 2021-08-02 2023-05-30 Qualcomm Incorporated Transmit power control for sidelink groups

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140301256A1 (en) * 2013-04-03 2014-10-09 Nokia Solutions And Networks Oy Uplink Power Control Enhancement for Dynamic Time Division Duplex Uplink-Downlink Reconfiguration
WO2015105398A1 (en) * 2014-01-13 2015-07-16 Samsung Electronics Co., Ltd. Uplink transmissions for dual connectivity
WO2015116866A1 (en) * 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Uplink transmissions in wireless communications
WO2015153382A1 (en) * 2014-03-31 2015-10-08 Qualcomm Incorporated Power sharing and power headroom reporting in dual connectivity scenarios

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523975B1 (ko) * 2008-12-01 2015-06-10 삼성전자주식회사 계층적 셀 구조에서의 소출력 셀 간섭 제어 방법
US20110039583A1 (en) 2009-08-17 2011-02-17 Motorola, Inc. Muting time masks to suppress serving cell interference for observed time difference of arrival location
WO2015114052A1 (en) * 2014-01-31 2015-08-06 Telefonaktiebolaget L M Ericsson (Publ) Interference mitigation of d2d communications in different coverage scenarios
MX366501B (es) 2014-08-06 2019-07-11 Interdigital Patent Holdings Inc Prioridad de dispositivo a dispositivo (d2d) y control de acceso.
RU2649874C1 (ru) 2014-09-02 2018-04-05 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ передачи сигнала синхронизации и аппаратура для терминала связи "устройство-устройство" в системе беспроводной связи
KR102367890B1 (ko) * 2014-09-25 2022-02-25 엘지전자 주식회사 무선 통신 시스템에서 동기 신호 전송 방법
WO2017033490A1 (ja) * 2015-08-21 2017-03-02 株式会社Nttドコモ ユーザ装置、基地局、通信方法及び指示方法
KR20170112945A (ko) * 2016-04-01 2017-10-12 삼성전자주식회사 이동통신 시스템에서 기기 간 통신과 셀룰라 통신의 공존 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140301256A1 (en) * 2013-04-03 2014-10-09 Nokia Solutions And Networks Oy Uplink Power Control Enhancement for Dynamic Time Division Duplex Uplink-Downlink Reconfiguration
WO2015105398A1 (en) * 2014-01-13 2015-07-16 Samsung Electronics Co., Ltd. Uplink transmissions for dual connectivity
WO2015116866A1 (en) * 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Uplink transmissions in wireless communications
WO2015153382A1 (en) * 2014-03-31 2015-10-08 Qualcomm Incorporated Power sharing and power headroom reporting in dual connectivity scenarios

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIRGIL COMSA: "Reply LS on Pcmax definition of asynchronous overlapping transmissions in DC", R1-163372, 3GPP TSG RAN WG1 MEETING #84BIS, 3 April 2016 (2016-04-03), XP051080646 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151773A1 (ko) * 2018-01-30 2019-08-08 엘지전자 주식회사 무선통신시스템에서 두 개 이상의 반송파, 대역폭 파트에서 자원을 선택하고 사이드 링크 신호를 전송하는 방법
US11510179B2 (en) 2018-01-30 2022-11-22 Lg Electronics Inc. Method for selecting resource from two or more carriers and bandwidth part and transmitting sidelink signal in wireless communication system
WO2020022756A1 (ko) * 2018-07-24 2020-01-30 주식회사 아이티엘 차량 통신을 지원하는 무선통신 시스템에서 무선 통신을 수행하는 방법 및 그 장치
WO2022075740A1 (ko) * 2020-10-06 2022-04-14 엘지전자 주식회사 Nr v2x에서 우선 순위 비교 기반의 sl drx 동작 방법 및 장치
WO2023001217A1 (zh) * 2021-07-22 2023-01-26 上海推络通信科技合伙企业(有限合伙) 一种用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
US20190124491A1 (en) 2019-04-25
WO2017222206A1 (ko) 2017-12-28
US10925018B2 (en) 2021-02-16
US10631259B2 (en) 2020-04-21
US20190141650A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2017222207A1 (ko) 전송 파워를 결정하는 방법 및 무선 기기
WO2018128297A1 (ko) 측정 정보를 보고하는 방법 및 이를 위한 단말
WO2017123047A1 (ko) V2v 단말의 시간 동기 방법
WO2019194490A1 (ko) 측정을 수행하는 방법, 사용자 장치 및 기지국
WO2016153286A1 (ko) 복수의 rf 체인을 구비하는 무선 기기에서 측정을 수행하는 방법
WO2019160266A1 (en) Method for measuring frame timing difference and user equipment performing the method
WO2017160100A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치
WO2019050197A1 (ko) 싱크 래스터에 따라 ssb를 수신하는 방법 및 사용자 장치
WO2019098525A1 (ko) En-dc 상황에서 측정을 수행하는 방법 및 사용자 장치
WO2015163633A1 (ko) 측정 수행 방법 및 단말
WO2021182863A1 (ko) 무선 통신 시스템에서 무선 링크 품질 평가 방법 및 장치
WO2017171284A1 (en) Method for determining transmission timing in v2x ue
WO2018030744A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 채널 송수신 방법 및 이를 지원하는 장치
WO2014051254A1 (ko) 상향링크 전송 방법 및 장치
WO2016036182A1 (ko) 무선 통신 시스템에서 디바이스들 간의 통신을 수행하는 방법 및 이를 수행하는 장치
WO2016013901A1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 파워 제어 방법 및 이를 위한 장치
WO2019139254A1 (ko) 복수의 수신 빔을 사용하여 측정을 수행하는 방법 및 사용자 장치
WO2016163802A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 cca를 수행하는 방법 및 이를 지원하는 장치
WO2014123387A1 (ko) 단말의 간섭 제거를 위한 지원 정보 전송 방법 및 서빙셀 기지국
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2014185673A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2015102281A1 (ko) 복수의 파라미터 조합에 따른 랜덤 액세스 절차를 수행하는 방법 및 mtc 기기
WO2016052911A1 (ko) 탐색 신호에 기반한 소규모 셀 측정 방법 및 사용자 장치
WO2018030841A1 (ko) 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치
WO2016036097A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815620

Country of ref document: EP

Kind code of ref document: A1