WO2016153286A1 - 복수의 rf 체인을 구비하는 무선 기기에서 측정을 수행하는 방법 - Google Patents

복수의 rf 체인을 구비하는 무선 기기에서 측정을 수행하는 방법 Download PDF

Info

Publication number
WO2016153286A1
WO2016153286A1 PCT/KR2016/002983 KR2016002983W WO2016153286A1 WO 2016153286 A1 WO2016153286 A1 WO 2016153286A1 KR 2016002983 W KR2016002983 W KR 2016002983W WO 2016153286 A1 WO2016153286 A1 WO 2016153286A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
scell
gap
measurement gap
information
Prior art date
Application number
PCT/KR2016/002983
Other languages
English (en)
French (fr)
Inventor
양윤오
이상욱
임수환
정만영
황진엽
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/558,954 priority Critical patent/US10390250B2/en
Publication of WO2016153286A1 publication Critical patent/WO2016153286A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to mobile communications.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • MIMO multiple input multiple output
  • LTE-A 3GPP LTE-Advanced
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the terminal continuously measures the quality of the serving cell (serving cell) providing the current service and the quality of the neighbor cell.
  • These measurements largely include measurement of reference signal received power (RSRP) and measurement of reference signal received power (RSRQ).
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the identification and measurement of another cell operating on a different frequency (inter-frequency) with the serving cell is performed during the time interval determined by the measurement gap (MG).
  • the terminal includes only one RF chain, so that the base station provides only one measurement gap (MG) to the terminal.
  • the terminal has recently been improved to include two or more RF chains for carrier aggregation (CA)
  • the base station still provides only one measurement gap (MG) to the terminal.
  • the UE applies one measurement gap (MG) to all two or more RF chains.
  • the terminal stops transmission and reception with all the cells by the carrier aggregation (CA).
  • CA carrier aggregation
  • the present disclosure aims to solve the above-mentioned problem.
  • one disclosure of the present disclosure provides a method for performing a measurement in a wireless device having a plurality of radio frequency (RF) chains to support multiple carrier aggregation.
  • the method includes receiving from a base station a measurement configuration (MeasConfig) information comprising a measurement gap (MG) for performing measurements on an inter-frequency; If the received measurement gap is one, determining which one of the plurality of carriers to apply to one of the plurality of carriers; And applying the measurement gap to the RF chain for the determined carrier to transmit a measurement report including a result of performing measurement on an inter-frequency to the base station. If the received measurement gap is one, the measurement report may include an indication of which carrier the measurement gap is applied to.
  • MeasConfig measurement configuration
  • MG measurement gap
  • the determining step may include: determining to apply the measurement gap to an RF chain for a primary cell (Pcell) of carrier aggregation (CA).
  • Pcell primary cell
  • CA carrier aggregation
  • the measurement gap may include one or more of a gap pattern ID, a measurement gap length (MGL), and gap offset information.
  • the measurement configuration information may further include cycle information (measCycleSCell) for performing measurement on the inactive Scell when the secondary cell Scell of the carrier aggregation CA is in an inactive state.
  • the cycle information and the measurement gap may be determined such that there is no time interval in which the RF chain needs to be retuned according to the measurement gap MG in the section corresponding to the cycle information for measuring the Scell.
  • the measurement gap MG may be determined to be located in a section in which the Scell is not measured.
  • the method may further include transmitting capability information including one or more of information on carrier aggregation capability and information on dual connectivity (DC) capability to the base station.
  • capability information including one or more of information on carrier aggregation capability and information on dual connectivity (DC) capability to the base station.
  • the transmitted capability information indicates that the wireless device has carrier aggregation (CA) capability or dual connectivity (DC) capability
  • a plurality of measurement gaps (MGs) are included in the received measurement configuration (MeasConfig) information. ) May be included.
  • the gap pattern ID of the first measurement gap and the gap pattern ID of the second measurement gap are designated equal to each other, and the gap offset information and the second measurement of the first measurement gap are determined.
  • the gap offset information of a gap may also be designated the same.
  • the cycle information and the plurality of measurement gaps MG may be designated such that there are no subframes overlapping each other.
  • the wireless device includes: a transceiver for receiving from a base station including measurement configuration (MeasConfig) information including a measurement gap (MG) for performing measurements on an inter-frequency; If the received measurement gap is one, it is determined which one of the plurality of carriers to apply the one measurement gap to the RF chain, and applying the measurement gap to the RF chain for the determined carrier to inter-
  • the processor may include a processor for transmitting a measurement report including a result of performing a measurement on a frequency to the base station.
  • the measurement report may include an indication of which carrier the measurement gap is applied to.
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • 3 shows a structure of a downlink radio frame according to TDD in 3GPP LTE.
  • FIG. 4 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • 5 shows a structure of a downlink subframe.
  • FIG. 6 shows a structure of an uplink subframe in 3GPP LTE.
  • FIGS. 7A and 7B are conceptual diagrams illustrating intra-band carrier aggregation (CA).
  • 8A and 8B are conceptual diagrams illustrating inter-band carrier aggregation.
  • FIG. 9A illustratively shows the structure of a transmitter for intraband continuous carrier aggregation (CA), and FIG. 9B exemplarily shows a structure of the transmitter for interband carrier aggregation (CA).
  • CA intraband continuous carrier aggregation
  • CA interband carrier aggregation
  • FIG. 10 illustrates an example of a pattern in which a CRS is mapped to an RB when a base station uses one antenna port.
  • 11 shows a measurement and measurement reporting procedure.
  • FIG. 12 is a diagram illustrating an environment of a mixed heterogeneous network of macro cells and small cells, which may be a next generation wireless communication system.
  • 13A and 13B show possible scenarios of dual connectivity for macro cells and small cells.
  • FIG. 15 shows the case where Scell is active when applying measurement gap MG to RF chain for PCC (ie Pcell).
  • 16A and 16B illustrate the case where Scell is inactive when applying the measurement gap MG to the RF chain for PCC (ie Pcell).
  • 17A and 17B show the case where the Scell is inactive when applying the measurement gap MG to the RF chain for the SCC (ie Scell).
  • 18A to 18E illustrate examples of applying different measurement gaps MG to PCC and SCC.
  • FIG. 19 is a block diagram illustrating a wireless communication system in which a disclosure of the present specification is implemented.
  • LTE includes LTE and / or LTE-A.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • base station which is used hereinafter, generally refers to a fixed station for communicating with a wireless device, and includes an evolved-nodeb (eNodeB), an evolved-nodeb (eNB), a base transceiver system (BTS), and an access point (e.g., a fixed station). Access Point) may be called.
  • eNodeB evolved-nodeb
  • eNB evolved-nodeb
  • BTS base transceiver system
  • access point e.g., a fixed station.
  • UE User Equipment
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • MT mobile terminal
  • 1 is a wireless communication system.
  • a wireless communication system includes at least one base station (BS) 20.
  • Each base station 20 provides a communication service for a particular geographic area (generally called a cell) 20a, 20b, 20c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are determined relatively based on the UE.
  • downlink means communication from the base station 20 to the UE 10
  • uplink means communication from the UE 10 to the base station 20.
  • the transmitter may be part of the base station 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the base station 20.
  • a wireless communication system can be largely divided into a frequency division duplex (FDD) method and a time division duplex (TDD) method.
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the downlink transmission by the base station and the uplink transmission by the UE cannot be performed at the same time.
  • uplink transmission and downlink transmission are performed in different subframes.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • the radio frame illustrated in FIG. 2 may refer to section 5 of 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)".
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 10
  • a radio frame includes 10 subframes, and one subframe includes two slots. Slots in a radio frame are numbered from 0 to 19 slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be referred to as a scheduling unit for data transmission.
  • one radio frame may have a length of 10 ms
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • one slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols. How many OFDM symbols are included in one slot may vary depending on a cyclic prefix (CP).
  • One slot in a normal CP includes 7 OFDM symbols, and one slot in an extended CP includes 6 OFDM symbols.
  • the OFDM symbol is only for representing one symbol period in the time domain since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), and a multiple access scheme. It does not limit the name.
  • the OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • 3 shows a structure of a downlink radio frame according to TDD in 3GPP LTE.
  • a subframe having indexes # 1 and # 6 is called a special subframe and includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the UE.
  • UpPTS is used to synchronize channel estimation at the base station with uplink transmission synchronization of the UE.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • DL subframe In TDD, a downlink (DL) subframe and an uplink (UL) subframe coexist in one radio frame.
  • Table 1 shows an example of configuration of a radio frame.
  • 'D' represents a DL subframe
  • 'U' represents a UL subframe
  • 'S' represents a special subframe.
  • the UE may know which subframe is the DL subframe or the UL subframe according to the configuration of the radio frame.
  • FIG. 4 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • a slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and NRB resource blocks (RBs) in a frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • RBs resource blocks
  • the number of resource blocks (RBs), that is, NRBs may be any one of 6 to 110.
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the number of subcarriers in one OFDM symbol can be used to select one of 128, 256, 512, 1024, 1536 and 2048.
  • a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
  • 5 shows a structure of a downlink subframe.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • physical channels include a physical downlink shared channel (PDSCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), and a physical hybrid (PHICH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid
  • ARQ Indicator Channel Physical Uplink Control Channel
  • FIG. 6 shows a structure of an uplink subframe in 3GPP LTE.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) for transmitting uplink control information is allocated to the control region.
  • the data area is allocated a PUSCH (Physical Uplink Shared Channel) for transmitting data (in some cases, control information may also be transmitted).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an uplink radio resource allocation request. (scheduling request).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • the PUSCH is mapped to the UL-SCH, which is a transport channel.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the transmission time interval (TTI).
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include a CQI, a precoding matrix indicator (PMI), a HARQ, a rank indicator (RI), and the like.
  • the uplink data may consist of control information only.
  • CA carrier aggregation
  • the carrier aggregation system refers to aggregating a plurality of component carriers (CC).
  • CC component carriers
  • a cell may mean a combination of a downlink component carrier and an uplink component carrier or a single downlink component carrier.
  • a cell may be divided into a primary cell, a secondary cell, and a serving cell.
  • a primary cell means a cell operating at a primary frequency, and is a cell in which a UE performs an initial connection establishment procedure or a connection reestablishment procedure with a base station, or is indicated as a primary cell in a handover process. It means a cell.
  • the secondary cell refers to a cell operating at the secondary frequency, and is established and used to provide additional radio resources once the RRC connection is established.
  • the carrier aggregation system may be divided into a contiguous carrier aggregation system in which aggregated carriers are continuous and a non-contiguous carrier aggregation system in which aggregated carriers are separated from each other.
  • a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently. The case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the carrier aggregation technology may be further divided into an inter-band CA and an intra-band CA technology.
  • the inter-band CA is a method of aggregating and using each CC existing in different bands
  • the intra-band CA is a method of aggregating and using each CC in the same frequency band.
  • the CA technology is more specifically, intra-band contiguous CA, intra-band non-contiguous CA and inter-band discontinuity. Non-Contiguous) CA.
  • FIGS. 7A and 7B are conceptual diagrams illustrating intra-band carrier aggregation (CA).
  • FIG. 7A shows an intra band continguous CA and FIG. 7B shows an intra band non-continguous CA.
  • LTE-Advance various techniques including uplink MIMO and carrier aggregation are added to realize high-speed wireless transmission.
  • the CAs discussed in LTE-Advance can be divided into intra-band Contiguous CAs shown in FIG. 7A and intra-band Non-Contiguous CAs shown in FIG. 7B. .
  • 8A and 8B are conceptual diagrams illustrating inter-band carrier aggregation.
  • FIG. 8A shows the combination of low and high bands for interband CA
  • FIG. 8B shows the combination of similar frequency bands for interband CA.
  • interband carrier aggregation is an inter-band carrier between low-band and high-band carriers having different RF characteristics of the inter-band CA as shown in FIG. 8A.
  • an inter-band CA having a similar frequency that uses a common RF terminal for each component carrier due to similar RF (radio frequency) characteristics as shown in FIG. 8B. Can be divided into
  • the 3GPP LTE / LTE-A system defines operating bands for uplink and downlink as shown in Table 1 above. Based on Table 1, four CA cases of FIGS. 6 and 7 are distinguished.
  • F UL_low means the lowest frequency of the uplink operating band.
  • F UL_high means the highest frequency of the uplink operating band.
  • F DL_low means the lowest frequency of the downlink operating band.
  • F DL_high means the highest frequency of the downlink operating band.
  • FIG. 9A illustratively shows the structure of a transmitter for intraband continuous carrier aggregation (CA), and FIG. 9B exemplarily shows a structure of the transmitter for interband carrier aggregation (CA).
  • CA intraband continuous carrier aggregation
  • CA interband carrier aggregation
  • the transmitter for intra-band carrier aggregation is the respective encoder and modulator for the first component carrier (CC1) and the second component carrier (CC2) (encoder and modulator) 1101-1 / 1101-2, a transform precoder 1012-1 / 1102-2, and a resource element mapper 1013-1 / 1103-2.
  • the transmitter includes an inverse fast Fourier transform (IFFT) unit 1014, a cyclic prefix (CP) insertion unit 1015, a low pass filter (LPF) 1016, an RF chain 1017, and a duplexer 1018. do.
  • the resource element mapper 1013-1 for the first component carrier CC1 and the resource element mapper 1013-2 for the second component carrier CC2 are connected to the one IFFT unit 1014. .
  • Each of the encoders and modulators 1011-1 and 1101-2 encodes and encodes information bits respectively input for the first component carrier CC1 and the second component carrier CC2 according to a predetermined coding scheme. to form (coded data).
  • the coded data is called a codeword.
  • the codewords are then placed into symbols representing positions on the signal constellation. There is no restriction on the modulation scheme.
  • Each of the transform precoders 1012-1/1102-2 processes the input symbols by the MIMO scheme according to the multiple transmit antennas.
  • each of the transform precoders 1012-1/1102-2 may use codebook based precoding.
  • Each resource element mapper 1013-1/1103-2 maps a symbol output from the transform precoder 230 to a resource element.
  • the IFFT unit 1014 performs an Inverse Fast Fourier Transform (IFFT) on symbols output from the respective resource element mappers 1013-1/1103-2.
  • IFFT Inverse Fast Fourier Transform
  • the CP inserter 1015 inserts a cyclic prefix (CP) into a time domain symbol on which the IFFT is performed.
  • CP cyclic prefix
  • the symbol into which the CP is inserted passes through a low pass filter (LPF) 1016, is then synthesized with a carrier while passing through an RF chain 1017, and then transmitted to an antenna via a duplexer 1018.
  • the duplexer 1018 separates a transmit (TX) signal and a receive (RX) signal.
  • OFDM modulation is possible through one IFFT unit 1014, and accordingly, the RF chain 1017 may be independently implemented.
  • the transmitter for the inter-band CA is IFFT unit (1014-1 / 1104-2), CP insertion unit (1015-1 / 1105-2), LPF (1016-1) / 1106-2), the RF chain 1017-1/1107-2, and the duplexer 1018-1/1108-2 are also separately present for the first component carrier CC1 and the second component carrier CC2, respectively.
  • each duplexer 1018-1/1108-2 is synthesized through the diplexer 1019, and the synthesized signal is transmitted through an antenna. That is, the diplexer 1019 synthesizes the first CC CC1 and the second CC CC2 at the time of transmission, and separates them at the time of reception.
  • CA inter-band carrier aggregation
  • transmission information for example, data is easily distorted and changed while being transmitted through a radio channel. Therefore, in order to demodulate such transmission information without error, a reference signal is required.
  • the coarse signal is a signal known in advance between the transmitter and the receiver and is transmitted together with the transmission information. Since the transmission information transmitted from the transmitter undergoes a corresponding channel for each transmission antenna or layer, the reference signal may be allocated for each transmission antenna or layer. Reference signals for each transmission antenna or layer may be distinguished by using resources such as time, frequency, and code. The reference signal may be used for two purposes, namely, demodulation of transmission information and channel estimation.
  • the downlink reference signal includes a cell-specific RS (CRS), a multimedia broadcast and multicast single frequency network (MBSFN) reference signal, a UE-specific RS (URS), and a positioning RS (positioning RS). , PRS) and channel state information reference signal (CSI-RS).
  • CRS is a reference signal transmitted to all UEs in a cell, also called a common reference signal.
  • the CRS may be used for channel measurement for CQI feedback and channel estimation for PDSCH.
  • the MBSFN reference signal may be transmitted in a subframe allocated for MBSFN transmission.
  • the URS is a reference signal received by a specific UE or a specific UE group in a cell and may be referred to as a demodulation RS (DM-RS).
  • DM-RS demodulation RS
  • a specific UE or a specific UE group is mainly used for data demodulation.
  • the PRS may be used for position estimation of the UE.
  • CSI-RS is used for channel estimation for PDSCH of LTE-A UE.
  • the CSI-RS may be relatively sparse in the frequency domain or the time domain and may be punctured in the data region of the general subframe or the MBSFN subframe.
  • FIG. 10 illustrates an example of a pattern in which a CRS is mapped to an RB when a base station uses one antenna port.
  • R0 represents an RE to which a CRS transmitted by antenna port number 0 of a base station is mapped.
  • the CRS is transmitted in every downlink subframe in a cell supporting PDSCH transmission.
  • the CRS may be transmitted on antenna ports 0 through 3.
  • the resource element (RE) assigned to the CRS of one antenna port cannot be used for transmission of another antenna port and should be set to zero.
  • the CRS is transmitted only in the non-MBSFN region.
  • RRM radio resource management
  • the UE 100 monitors the downlink quality of the primary cell (Pcell) based on the CRS. This is called RLM (Radio Link Monitoring).
  • RLM Radio Link Monitoring
  • the UE 100 estimates downlink quality and compares the estimated downlink quality with thresholds, such as Qout and Qin.
  • the threshold Qout is defined as a level at which downlink cannot be stably received, which corresponds to a 10% error of PDCCH transmission in consideration of PCFICH errors.
  • the threshold Qin is defined so that the downlink is significantly more reliable than Qout, which corresponds to a 2% error of PDCCH transmission in consideration of PCFICH errors.
  • 11 shows a measurement and measurement reporting procedure.
  • the serving cell 200a and the neighbor cell 200b transmit cell-specific reference signals (CRSs) to the UE 100
  • CRSs cell-specific reference signals
  • the UE 100 transmits the CRS.
  • the RRC measurement report message including the measurement result is transmitted to the serving cell 200a.
  • the UE 100 may perform the measurement in three ways.
  • RSRP reference signal received power
  • RSSI Received signal strength indicator
  • RSRQ reference symbol received quality
  • RSRQ can be calculated as RSSI / RSSP.
  • the UE 100 receives a Radio Resource Configuration (IE) information element (IE) from the serving cell 100a for the measurement.
  • the Radio Resource Configuration Dedicated Information Element (IE) is used for setting / modifying / releasing a radio bearer or modifying a MAC configuration.
  • the radio resource configuration IE includes subframe pattern information.
  • the subframe pattern information is information on a measurement resource restriction pattern in the time domain for measuring RSRP and RSRQ for a serving cell (eg, primary cell).
  • the UE 100 receives a measurement configuration (hereinafter, also referred to as 'measconfig') information element (IE) from the serving cell 100a for the measurement.
  • a message containing a measurement configuration information element (IE) is called a measurement configuration message.
  • the measurement configuration information element (IE) may be received through an RRC connection reconfiguration message.
  • the UE reports the measurement result to the base station if the measurement result satisfies the reporting condition in the measurement configuration information.
  • a message containing a measurement result is called a measurement report message.
  • the measurement setting IE may include measurement object information.
  • the measurement object information is information about an object on which the UE will perform measurement.
  • the measurement object includes at least one of an intra-frequency measurement object that is an object for intra-cell measurement, an inter-frequency measurement object that is an object for inter-cell measurement, and an inter-RAT measurement object that is an object for inter-RAT measurement.
  • the intra-frequency measurement object indicates a neighboring cell having the same frequency band as the serving cell
  • the inter-frequency measurement object indicates a neighboring cell having a different frequency band from the serving cell
  • the inter-RAT measurement object is
  • the RAT of the serving cell may indicate a neighboring cell of another RAT.
  • Table 4 Measurement Object Field Description carrierFreq Indicates the E-UTRA carrier frequency to which this setting applies.
  • measCycleSCell Shows the cycle for measuring the SCell in the inactive state. The value can be set to 160, 256. or the like. If the value is 160, it indicates that measurement is performed every 160 subframes.
  • the measurement setting IE includes an IE (information element) as shown in the following table.
  • the measGapConfig is used to set or release a measurement gap (MG).
  • the measurement gap MG is a section for performing cell identification and RSRP measurement on an inter frequency different from the serving cell.
  • MGL Measurement Gap Repetition Period Minimum time to take measurements on inter-frequency and inter-RAT over a 480 ms interval 0 6 ms 40 ms 60 ms One 6 ms 80 ms 30 ms
  • the E-UTRAN ie base station
  • MG measurement gap
  • the UE does not transmit or receive any data from the serving cell during the measurement gap period, retunes its RF chain according to the inter-frequency, and then performs measurement at the inter-frequency.
  • a small cell having a small cell coverage radius is expected to be added within the coverage of an existing cell, and the small cell is expected to handle more traffic. Since the existing cell has greater coverage than the small cell, it may be referred to as a macro cell.
  • a description with reference to FIG. 10 is as follows.
  • FIG. 12 is a diagram illustrating an environment of a mixed heterogeneous network of macro cells and small cells, which may be a next generation wireless communication system.
  • the macro cell of the existing base station 200 is a heterogeneous network environment in which a macro cell overlaps with a small cell of one or more small base stations 300a, 300b, 300c, and 300d. Since the existing base station provides greater coverage than the small base station, it is also called a macro base station (Macro eNodeB, MeNB). In this specification, the terms macro cell and macro base station are used interchangeably.
  • the UE connected to the macro cell 200 may be referred to as a macro UE.
  • the macro UE receives a downlink signal from the macro base station and transmits an uplink signal to the macro base station.
  • the macrocell is set as the primary cell and the small cell is set as the secondary cell, thereby filling the coverage gap of the macrocell.
  • the small cell is set as the primary cell (Pcell) and the macro cell as the secondary cell (Scell), it is possible to improve the overall performance (boosting).
  • the small cell may use a frequency band currently allocated to LTE / LTE-A or use a higher frequency band (eg, a band of 3.5 GHz or more).
  • a frequency band currently allocated to LTE / LTE-A or use a higher frequency band (eg, a band of 3.5 GHz or more).
  • the small cell is not used independently, it is also considered to use only as a macro-assisted small cell (macro-assisted small cell) that can be used with the help of the macro cell.
  • Such small cells 300a, 300b, 300c, and 300d may have a similar channel environment, and because they are located at close distances to each other, interference between small cells may be a big problem.
  • small cells 300b and 300c may expand or reduce their coverage. Such expansion and contraction of coverage is called cell breathing. For example, as shown, the small cells 300b and 300c may be turned on or off depending on the situation.
  • the small cell may use a frequency band currently allocated to LTE / LTE-A, or may use a higher frequency band (eg, a band of 3.5 GHz or more).
  • FIGS. 9A-9D Possible scenarios for the dual connectivity are shown in FIGS. 9A-9D.
  • 13A and 13B show possible scenarios of dual connectivity for macro cells and small cells.
  • the UE receives a macro cell as a control plane (hereinafter, referred to as a 'C-plane'), and a small cell is referred to as a user plane (hereinafter, referred to as a 'U-plane'). Can be set.
  • a control plane hereinafter, referred to as a 'C-plane'
  • a user plane hereinafter, referred to as a 'U-plane'
  • the UE may be configured with a small cell as a C-plane and a macro cell as a U-plane.
  • a cell of C-Plane will be referred to as "C-Cell”
  • a cell of U-Plane will be referred to as "U-Cell.”
  • the aforementioned C-Plane refers to RRC connection setup and reset, RRC idle mode, mobility including handover, cell selection, reselection, HARQ process, carrier aggregation (CA) setup and reset, RRC setup It means to support necessary procedures, random access procedures and the like.
  • the aforementioned U-Plane means that the application supports data processing, CSI reporting, HARQ process for application data, and multicasting / broadcasting services.
  • the configuration of the C-plane and the U-plne is as follows.
  • the C-Cell may be set as the primary cell and the U-Cell may be set as the secondary cell.
  • the U-Cell may be configured as a primary cell and the C-Cell may be configured as a secondary cell.
  • the C-Cell may be separately processed and the U-Cell may be configured as a primary cell.
  • both C-Plane and U-Cell may be configured as primary cells.
  • the C-Cell is set to the primary cell and the U-Cell is described below on the assumption that it is set to the secondary cell.
  • the UE receives the macro cell as a C-cell or a primary cell, and the small cell has U- It may be advantageous to be set to cell or secondary cell.
  • the macro cell may be always connected with the UE as the primary cell of the UE.
  • the UE is shown as being dually connected with the eNodeB of the macro cell and the eNodeB of the small cell, but is not limited thereto.
  • the UE may be dually connected to a first eNodeB for a first small cell (or group of first small cells) and a second eNodeB for a second small cell (or group of second small cells). .
  • an eNodeB for a primary cell may be referred to as a master eNodeB (hereinafter, referred to as MeNB).
  • MeNB master eNodeB
  • SeNB secondary eNodeB
  • a cell group including a primary cell (Pcell) by the MeNB may be referred to as a master cell group (MCG) or a PUCCH cell group 1, and a cell group including a secondary cell (Scell) by the SeNB. May be referred to as a Secondary Cell Group (SCG) or PUCCH Cell Group 2.
  • MCG master cell group
  • SCG Secondary Cell Group
  • a secondary cell in which a UE can transmit UCI or a secondary cell in which a UE can transmit PUCCH among secondary cells in a secondary cell group (SCG) may be a super secondary cell (Super SCell) or a primary secondary cell (Primary Scell: PScell). May be referred to.
  • the UE includes only one RF chain, so that the base station provides only one measurement gap (MG) to the UE.
  • the base station still provides only one measurement gap (MG) to the UE.
  • the UE applies one measurement gap (MG) to all two or more RF chains. That is, the UE stops transmitting and receiving with the serving cells on both of the two or more RF chains during the one measurement gap period.
  • the UE retunes only one of the two or more RF chains to the inter-frequency, and then performs measurement at the inter-frequency.
  • the present specification proposes a method that can independently apply the measurement gap (MG) for each RF chain of the UE for the measurement of efficient inter-frequency and inter-RAT.
  • the base station first needs to know the number of RF chains of the UE.
  • the present disclosure proposes to utilize information about the carrier aggregation (CA) capability and the dual connectivity (DC) capability of the UE.
  • CA carrier aggregation
  • DC dual connectivity
  • the serving cell 200a requests a UE capability inquiry from the UE 100 as needed or instructed by a higher layer.
  • the UE 100 transmits UE capability information to the serving cell 200a according to the request.
  • the UE capability information includes at least one of information on carrier capability and information on dual capability.
  • the serving cell 200a checks the number of RF chains of the UE based on the carrier aggregation capability and the dual connectivity capability in the UE capability information. The serving cell 200a sets one or more measurement gaps MG according to the identified number of RF chains of the UE.
  • the base station transmits measurement configuration information including information on the set measurement gap MG and radio resource configuration information to the UE.
  • the UE determines which carrier of the plurality of carriers to apply the measurement gap (MG) to the RF chain.
  • the UE then performs the measurement according to the measurement gap.
  • the UE then delivers a measurement report including the results of the measurements to the base station.
  • the measurement report may include an indication indicating to which carrier the UE applied the measurement gap.
  • CA capability carrier aggregation capability
  • DC capability dual connectivity capability
  • the base station may determine one measurement gap (MG) or multiple measurement gaps. It may forward to the UE. When a plurality of measurement gaps are transmitted, the number of measurement gaps may be equal to or smaller than the number of component carriers due to the carrier aggregation CA. Then, the UE performs the measurement by using the measurement gap (MG) received from the base station. In this case, according to whether the number of measurement gaps MG received from the base station is one or plural, the UE operates as follows.
  • the UE When the UE acquires one measurement gap (MG) from the base station, the UE should apply the one measurement gap (MG) to the RF chain for the PCC (or Pcell) or to the SCC (or Scell). You can decide whether or not to work, depending on the outcome of each decision. In this case, when it is determined that the measurement gap MG is to be applied to an SCC (or Scell), the UE may operate according to whether the Scell is active or inactive. As described above, when the single measurement gap MG is applied only to one CC (ie, one cell) of the carrier aggregation CA, in order to guarantee transmission and reception through the PCC (ie, transmission and reception with the Pcell) in the first place. It may be desirable to apply to an RF chain for an SCC (ie, Scell). However, the application of the single measurement gap MG to the RF chain for the PCC (ie, Pcell) is not excluded. Hereinafter, both cases will be described.
  • the UE when the UE receives one measurement gap (MG), the UE applies the one measurement gap (MG) to the RF chain in charge of the PCC (ie, Pcell), SCC (ie, Scell) It is suggested not to apply to the RF chain in charge.
  • the UE may be classified and operated as follows.
  • FIG. 15 shows the case where Scell is active when applying measurement gap MG to RF chain for PCC (ie Pcell).
  • the interrupted interval may be expressed in subframe units.
  • MCL measurement gap length
  • the measurement gap length (MGL) 6 ms (ie, six subframes)
  • transmission and reception with the Scell on the first subframe and the last subframe are interacted, and only during the middle four subframes (4 ms).
  • both transmission and reception with the Pcell and the Scell were stopped during the measurement gap length (MGL). Therefore, the performance can be improved compared to the existing.
  • 16A and 16B illustrate the case where Scell is inactive when applying the measurement gap MG to the RF chain for PCC (ie Pcell).
  • the UE when the UE receives one measurement gap (MG), the UE applies the one measurement gap (MG) to the RF chain in charge of the SCC (ie, Scell), PCC (ie, Pcell) It is suggested not to apply to the RF chain in charge.
  • the UE may be classified and operated as follows.
  • transmission / reception with the Pcell is interacted in the first subframe and the last subframe among the six subframes corresponding to the measurement gap length (MGL), but the four sub-centers are used.
  • Transmission and reception with the Pcell may be performed during the frame (ie, 4 ms).
  • both transmission and reception with the Pcell and the Scell were stopped during the measurement gap length (MGL). Therefore, the performance can be improved compared to the existing.
  • 17A and 17B show the case where the Scell is inactive when applying the measurement gap MG to the RF chain for the SCC (ie Scell).
  • the base station sets parameters related to the measCycleScell and the measurement gap MG (eg, MGL) so that the overlap does not occur as much as possible.
  • the base station provides the measurement gap (MG) to the UE independently of each other for the PCC and the SCC.
  • a plurality (eg N) of measurement gaps MG for the SCC may be provided.
  • the provision of multiple (eg N) measurement gap (MG) parameters to the UE means that the UE has the ability to perform measurements for inter-frequency and inter-RAT at the same time.
  • the larger the N the more complicated the implementation and the power consumption.
  • the measurement time including cell identification delay and measurement interval
  • N 2
  • the PCC and the SCC are transmitted and received through different RF chains, and in the two SCC cases (the measurement gap MG is not applied to the PCC), two SCCs are mutually different.
  • the measurement gap MG is not applied to the PCC
  • two SCCs are mutually different.
  • the gap MG apply to each of the two SCCs with priority. However, it does not exclude the application of the measurement gap MG including one PCC.
  • the base station recognizes that the UE transmits and receives the PCC and the SCC through different RF chains based on the CA capability received from the UE, and provides a multi-measurement gap (MG) to the UE.
  • the UE can then apply independent measurement gaps (MGs) to the RF chain for the PCC and the RF chain for the SCC. For example, if two measurement gaps MG are provided, for example MG_Pcell and MG_Scell, the UE can apply MG_Pcell to the RF chain for the Pcell and MG_Scell to the RF chain for the Scell.
  • transmission and reception with the Pcell are constrained during the measurement gap length (ie, MGL_pcell) for the Pcell, and furthermore, transmission and reception with the Pcell are interleaved in the first and last subframes of the measurement gap length (ie, MGL_Scell) interval for the Scell. It is shushing.
  • the number of interleaved intervals may vary depending on the settings (gap pattern ID and offset) of MG_Pcell and MG_scell. Specifically with reference to the drawings as follows.
  • 18A to 18E illustrate examples of applying different measurement gaps MG to PCC and SCC.
  • the gap pattern ID of the MG_Pcell and the gap pattern ID of the MG_Scell are set to be the same, when the offset of the MG_Pcell and the offset of the MG_Scell are set to be the same, transmission and reception with the Pcell during the measurement gap length (ie, MGL_Scell) for the Scell are interleaved. It is not shushing.
  • the gap pattern ID of the MG_Pcell and the gap pattern ID of the MG_Scell are set equal to 0, the MGRP for the Pcell and the MGRP for the Scell are equal to 40 ms.
  • the measurement gap length (ie, MGL_Pcell) for the Pcell and the measurement gap length (ie, MGL_Scell) for the Scell coincide with each other. Therefore, since the RF chain for the Pcell and the RF chain for the Scell perform inter-frequency measurements at the measurement gap length MGL at the same time position, they do not cause transmission and reception interaction with each other.
  • the gap pattern ID of MG_Pcell is set to 0
  • the gap pattern ID of MG_Scell is set to 1
  • the offset of MG_Pcell and the offset of MG_Scell are set to be equal to each other
  • the measurement gap length for the Scell that is, MGL_Scell
  • the transmission / reception with the Pcell is not interacted with, while the transmission / reception with the Scell is interacted with during the measurement gap length (ie, MGL_Pcell) for the Pcell.
  • the interaction occurs for two subframes every 80 ms. Specifically, as shown in FIG.
  • the gap pattern ID of the MG_Pcell is set to 0
  • the gap pattern ID of the MG_Scell is set to 1
  • the offset of the MG_Pcell and the offset of the MG_Scell are set to be more than 6 ms
  • the measurement gap length for the Scell that is, Transmitting / receiving with Pcell during MGL_Scell is interacted.
  • the interaction occurs for two subframes every 80 ms. Transmission and reception with the Scell is interacted during the measurement gap length (ie, MGL_Pcell) for the Pcell.
  • the interaction occurs for two subframes every 40 ms. Specifically, as shown in FIG.
  • the base station proposes to set an offset such that the two measurement gap lengths (MGL) overlap as much as possible.
  • the performance of the Pcell of the UE is equal to or smaller than the existing performance.
  • the gap pattern ID of MG_Pcell and the gap pattern ID of MG_Scell are set to be the same, or the gap pattern ID of MG_Pcell is set to 0 and the gap pattern ID of MG_Scell is set to 1, and the offset of MG_Pcell and MG_Scell This is the case when the offset is set equal.
  • the performance of the UE for the Pcell is smaller than the conventional performance.
  • the performance of the Scell of the UE is equal to or smaller than the conventional performance.
  • the gap pattern ID of MG_Pcell and the gap pattern ID of MG_Scell are set to be the same, or the gap pattern ID of MG_Pcell is set to 1 and the gap pattern ID of MG_Scell is set to 0, and the offset of MG_Pcell and MG_Scell This is the case when the offsets are set equal to each other.
  • the performance of the Scell of the UE becomes smaller than the conventional performance.
  • the performance of the Pcell of the UE is equal to or smaller than the conventional performance.
  • the gap pattern ID of MG_Pcell and the gap pattern ID of MG_Scell are set to be equal to each other, or the gap pattern ID of MG_Pcell is set to 0, and the gap pattern ID of MG_Scell is set to 1, and the offset of MG_Pcell and The offset of MG_Scell is set to be the same.
  • the performance of the UE for the Pcell is smaller than the conventional performance.
  • Measurements for inactive Scells are performed every cycle indicated by measCycleScell. If the subframe in which measurement should be performed on the inactive Scell according to the cycle indicated by the measCycleScell overlaps the measurement gap length (ie, MGL_Scell), the UE inter-frequency and inter-RAT on the overlapping subframe. It is suggested to perform only measurements for. Ideally, the base station proposes that the subframe that should perform measurement on the inactive Scell according to the cycle indicated by measCycleScell does not overlap the measurement gap length (ie, MGL_Scell).
  • the UE measures the measurement gap length among the subframes in which the measurement is not performed in the deactivation Scell.
  • Measurements can be performed on the inter-frequency and inter-RAT anywhere regardless of location. However, since this may cause interaction in transmission and reception with the Pcell, this paragraph proposes that the UE perform measurements on inter-frequency and inter-RAT only at the measurement gap length (ie, MGL_Scell) location.
  • the base station sets the offset of the MG_Pcell and the offset of the MG_Scell to be the same as in FIG.
  • the base station sets the subframe to perform measurement on the deactivated Scell according to the cycle indicated by measCycleScell so as not to overlap the measurement gap length (ie, MGL_Scell).
  • the base station recognizes that the UE uses the first RF chain for the PCC and the first SCC, and the second RF chain for the second SCC, based on the CA capability received from the UE. To the UE.
  • the UE may apply a different measurement gap (MG) to the RF chain for each SCC. For example, if the base station provided two measurement gaps MG, for example MG_Scell # 1 and MG_Scell # 2, the UE applies MG_Scell # 1 to the RF chain for Scell # 1 and the RF chain for Scell # 2.
  • MG_Scell # 2 can be applied to.
  • transmission and reception with Scell # 1 is constrained during the measurement gap length (ie, MGL_Scell # 1), and further, transmission and reception with Scell # 1 is with the measurement gap length for Scell # 2 (ie, MGL_Scell # 2).
  • Interaction is performed in the first and last subframes of the interval.
  • the interacted interval that is, the number of subframes, may vary depending on the settings (gap pattern ID, offset) of MG_Scell # 1 and MG_Scell # 2.
  • the measurement gap for Scell # 2 No transmission / reception interaction with Scell # 1 is made during the length (ie, MGL_Scell # 2).
  • the measurement gap length for Scell # 2 ( That is, transmission and reception with Scell # 1 are interacted with during MGL_Scell # 2). The interaction occurs in two subframes. In addition, transmission / reception with Scell # 2 is also interacted with during the measurement gap length (ie, MGL_Scell # 1) for Scell # 1. The interaction occurs in two subframes.
  • the gap pattern ID of MG_Scell # 1 is set to 0, the gap pattern ID of MG_Scell # 2 is set to 1, and the offset of MG_Scell # 1 and the offset of MG_Scell # 2 are set equal to each other, the measurement for Scell # 2 is performed. Transmission and reception with Scell # 1 during the gap length (ie, MGL_Scell # 2) are not interacted with, but transmission and reception with Scell # 2 during the measurement gap length (ie, MGL_Scell # 1) for Scell # 1 may be interacted with. . Interaction occurs in 2 subframes every 80ms.
  • the gap pattern ID of MG_Scell # 1 is set to 0, the gap pattern ID of MG_Scell # 2 is set to 1, and the offset of MG_Scell # 1 and the offset of MG_Scell # 2 are set to be more than 6 ms, then for Scell # 2 Transmission and reception with Scell # 1 are interacted with during the measurement gap length (ie, MGL_Scell # 2). The interaction is generated in two subframes every 80 ms. Transmission and reception with Scell # 2 are also interacted with during the measurement gap length for Scell # 1 (that is, MGL_Scell # 1). The interaction occurs in two subframes every 40 ms.
  • the base station sets MG_Scell # 1 such that the measurement gap length (MGL_Scell # 1) of MG_Scell # 1 and the measurement gap length for MG_Scell # 2 (MGL_Scell # 2) overlap each other as much as possible. It is proposed to set an offset of and an offset of MG_Scell # 2.
  • transmission and reception with a Pcell has been constrained for a measurement gap length (MGL) (6 ms), but according to the present specification, transmission and reception with a Pcell is interaction only during two measurement gap lengths (ie, MGL_Scell # 1 and MGL_Scell # 2). If the gap pattern ID of MG_Scell # 1 and the gap pattern ID of MG_Scell # 2 are set to be equal to each other, and the offset of MG_Scell # 1 and the offset of MG_Scell # 2 are set to be the same, the interaction is two subframes. (Ie 2ms) can be minimized to issue.
  • the interaction is four subs. Occurs in a frame (ie 4ms). Nevertheless, there is still a benefit in terms of performance with the Pcell as it is still small compared to the conventional transmission and reception during 6ms. As a result, when the measurement gaps MG are applied to different RF chains for SCCs, transmission and reception performance with the Pcell can be improved. Therefore, in this section, if a UE supports RF chains for multiple CCs, it is proposed to apply multiple measurement gaps (MGs) to RF chains for SCC first.
  • MGs measurement gaps
  • the transmission / reception performance with the Pcell is equal to or larger than the conventional performance.
  • the transmission / reception performance of Scell # 1 is the same as or smaller than the conventional performance.
  • the gap pattern IDs of MG_Scell # 1 and MG_Scell # 2 are set to be the same, or the gap pattern ID of MG_Scell # 1 is set to 0, the gap pattern ID of MG_Scell # 2 is set to 1, and MG_Scell # This is the case where the offset of 1 and the offset of MG_Scell # 2 are set equal to each other.
  • transmission and reception with Scell # 1 are interacted with during the measurement gap length MGL_Scell # 2 of Scell # 2, so that the transmission and reception performance with Scell # 1 is smaller than the conventional performance.
  • the transmission / reception performance with the Scell # 2 is equal to or smaller than the conventional performance.
  • MG_Scell # 1 and MG_Scell # 2 are set to the same gap pattern ID, or the gap pattern ID of MG_Scell # 2 is set to 0 and the gap pattern ID of MG_Scell # 1 is set to 1, and MG_Scell This is the case where the offset of # 1 and the offset of MG_Scell # 2 are set equal to each other.
  • the transmission and reception with Scell # 2 is interacted during the measurement gap length MGL_Scell # 1 for Scell # 1, so that the transmission and reception performance with Scell # 2 becomes smaller than the conventional performance. Therefore, in this paragraph, in order to minimize the influence of interaction, it is proposed that the base station sets the offset of MG_Scell # 1 and the offset of MG_Scell # 2 to be the same.
  • the transmission / reception performance with the Pcell is equal to or larger than the conventional performance.
  • the transmission / reception performance with the Scell # 1 is the same as or smaller than the conventional performance.
  • the gap pattern ID of MG_Scell # 1 and the gap pattern ID of MG_Scell # 2 are set to be the same, or the gap pattern ID of MG_Scell # 1 is set to 0 and the gap pattern ID of MG_Scell # 2 is set to 1
  • the offset of MG_Scell # 1 and the offset of MG_Scell # 2 are set equal to each other.
  • transmission and reception with Scell # 1 are interacted with during the measurement gap length MGL_Scell # 2 for Scell # 2, so that the transmission and reception performance with Scell # 1 is smaller than the conventional performance.
  • the measurement for the deactivated Scell # 2 is performed every cycle indicated by measCycleScell. If a subframe to which measurement for Scell # 2 is inactive according to the cycle indicated by measCycleScell overlaps with the measurement gap length (i.e., MGL_Scell # 2), then the UE indicates inter-frequency and It is proposed to only perform measurements on inter-RAT. Ideally, it is proposed that the base station sets the measurement gap length (ie, MGL_Scell # 2) so as not to overlap the subframe in which measurement should be performed for Scell # 2 which is inactive according to a cycle indicated by measCycleScell.
  • the UE of the non-measured Scell # 2 in the measurement Measurements of inter-frequency and inter-RAT can be performed anywhere regardless of the measurement gap length (ie, MGL_Scell # 2) location. However, since this may cause interaction in transmission and reception with the Pcell and transmission and reception with Scell # 1, in this paragraph, the UE is directed to the inter-frequency and inter-RAT only at the measurement gap length (ie, MGL_Scell # 2) position. It is suggested to carry out the measurements. In addition, in this paragraph, it is proposed that the base station sets the offsets to be equal to each other in order to minimize the effect of additional interaction.
  • Scell # 1 is inactive, but Scell # 2 is active.
  • the transmission / reception performance with the Pcell is equal to or larger than the conventional performance.
  • the transmission / reception performance with the Scell # 2 is also the same as or smaller than the conventional performance.
  • the gap pattern ID of MG_Scell # 1 and the gap pattern ID of MG_Scell # 2 are the same, or the gap pattern ID of MG_Scell # 2 is set to 0 and the gap pattern ID of MG_Scell # 1 is set to 1,
  • the offset of MG_Scell # 1 and the offset of MG_Scell # 2 are set to be the same.
  • transmission / reception with Scell # 2 is performed during the measurement gap length MGL of Scell # 1, so that transmission / reception performance with Scell # 2 becomes smaller than the conventional performance.
  • the measurement for the deactivated Scell # 1 is performed every cycle indicated by measCycleScell.
  • the cycle indicated by measCycleScell if the subframe in which the measurement for the deactivated Scell # 1 should be performed overlaps with the measurement gap length (i.e., MGL_Scell # 1), the UE inter-frequency and in the corresponding subframe It is proposed to only perform measurements on inter-RAT.
  • the base station is configured such that the measurement gap length (that is, MGL_Scell # 1) does not overlap with the subframe in which measurement should be performed for Scell # 1 which is inactive according to a cycle indicated by measCycleScell.
  • the transmission / reception performance with the Pcell is equal to or larger than the conventional performance.
  • the measurement of the deactivated Scell # 1 is performed every cycle indicated by measCycleScell.
  • the cycle indicated by measCycleScell if the subframe in which the measurement for the deactivated Scell # 1 should be performed overlaps with the measurement gap length (i.e., MGL_Scell # 1), the UE inter-frequency and in the corresponding subframe It is proposed to only perform measurements on inter-RAT.
  • the base station is configured such that the measurement gap length (that is, MGL_Scell # 1) does not overlap with the subframe in which measurement should be performed for Scell # 1 which is inactive according to a cycle indicated by measCycleScell.
  • the UE of the subframe not performing the measurement for the Scell # 1 inactive Measurements of inter-frequency and inter-RAT can be performed anywhere regardless of the measurement gap length (ie, MGL_Scell # 1) location. However, since this may cause interaction in transmission and reception with the Pcell, this paragraph proposes that the UE perform measurements on inter-frequency and inter-RAT only at the measurement gap length (ie, MGL_Scell # 1) position. .
  • the base station may have one measurement gap (MG) or dual connectivity (DC). It is proposed to set the number of measurement gaps (MGs) equal to or smaller than the number of carriers and transmit them to the UE.
  • the UE uses the measurement gap (MG) received from the base station to identify and measure cells using inter-frequency and inter-RAT.
  • the base station provided only one measurement gap MG to the UE, and the UE performed measurement using only one measurement gap MG.
  • transmission and reception with the Pcell is restricted during the measurement gap length (MGL), and the transmission and reception with the PScell is stopped during the measurement gap length (MGL) in the case of the synchronous dual connection (DC), and with the PScell in the case of the asynchronous dual connection (DC).
  • Transmission and reception was stopped for the entire period longer than 1 ms (ie, one subframe) longer than the measurement gap length (MGL).
  • the UE applies different measurement gaps (MGs) to the Pcell and the PScell
  • the transmission and reception with the PScell is stopped only for 6 ms, which is the measurement gap length (MGL), even in the asynchronous dual connection (DC), 1ms compared to the conventional Gain occurs in (i.e. one subframe).
  • the base station proposes that the measurement gap MG is independently set for the RF chain for the Pcell of the UE and the RF chain for the PScell, and provided to the UE. Accordingly, we propose a method for the UE to perform measurements for inter-frequency and inter-RAT. In this case, the UE may apply two independent measurement gaps MG to the Pcell and the PScell, respectively. If the UE also supports the carrier aggregation (CA) in the dual connectivity (DC), the measurement gap (MG) in the Pcell and Scell, or the PScell and Scell may apply the contents of the preceding section.
  • CA carrier aggregation
  • DC dual connectivity
  • the measurement gap (MG) in the Pcell and Scell or the PScell and Scell may apply the contents of the preceding section.
  • the UE When the UE has both DC capability and CA capability, and when the UE performs transmission and reception with the Pcell, PScell, and Scell through separate RF chains, and furthermore, when the UE receives the multi measurement gap (MG), For overall Pcell or PScell performance gain, the UE proposes to apply one measurement gap to the RF chain for Scell first, and then apply the remaining measurement gap (MG) to the RF chain for the Pcell or PScell in order.
  • MG multi measurement gap
  • the NW recognizes the structure in which the UE transmits and receives the Pcell and the PScell to different RF chains through the DC capability received from the UE, and sets a multiple measurement gap (MG).
  • the gap MG can be applied. For example, when two measurement gaps MG are independently set to MG_Pcell and PScell to MG_Pcell and PScell, respectively, in order to minimize interaction between Pcell and PScell, each measurement gap length It is suggested to set the offset so that the (MGL) positions overlap.
  • Transmission and reception with the Pcell is interrupted during the measurement gap length (ie, MGL_Pcell) for the Pcell.
  • transmission and reception with the Pcell is further interacted in the first and last subframe of the measurement gap length (ie, MGL_PScell) interval for the PScell. This interaction may vary depending on the gap pattern ID and the offset of the measurement gap MG. This will be described in detail below.
  • the gap pattern ID of the MG_Pcell and the gap pattern ID of the MG_PScell are set to be the same, but the offset of the MG_Pcell and the offset of the MG_PScell are set to be different from each other by more than 6 ms, transmission and reception with the Pcell during the measurement gap length (ie, MGL_PScell) for the PScell is Can be shuffled. The interaction occurs in two subframes.
  • the gap pattern ID of the MG_Pcell is set to 0
  • the gap pattern ID of the MG_PScell is set to 1
  • the offset of the MG_Pcell and the offset of the MG_PScell are set equal to, the measurement gap length for the Pcell (i.e., MGL_Pcell) with the PScell during the measurement. Transmission and reception are interacted with. The interaction occurs in two subframes every 80 ms. In addition, transmission and reception with the Pcell are not interacted during the measurement gap length (ie, MGL_PScell) for the PScell.
  • the gap pattern ID of the MG_Pcell is set to 0, the gap pattern ID of the MG_PScell is set to 1, and the offset of the MG_Pcell and the offset of the MG_PScell are set to differ by 6 ms or more, during the measurement gap length (ie, MGL_PScell) for the PScell. Transmission and reception with the PCell are interacted. The interaction occurs in two subframes every 80 ms. Transmission and reception with the PScell is interacted during the measurement gap length (ie, MGL_Pcell) for the Pcell. The interaction occurs in two subframes every 40 ms. In order to minimize such interaction, it is proposed to set the offset of the base grill MG_Pcell and the offset of MG_PScell so that MGL_Pcell and MGL_PScell overlap as much as possible.
  • Transmission and reception with the Pcell is interrupted during the measurement gap length (ie, MGL_Pcell) for the Pcell.
  • transmission and reception with the Pcell is further interacted in the first and last subframe of the measurement gap length (ie, MGL_PScell) interval for the PScell. This interaction may vary depending on the gap pattern ID and the offset of the measurement gap MG. This will be described in detail below.
  • the measurement gap for the PScell when the gap pattern ID of the MG_Pcell and the gap pattern ID of the MG_PScell are set to be the same, but the offset of the MG_Pcell and the offset of the MG_PScell are set to be more than 6 ms, the measurement gap for the PScell. Transmission and reception with the Pcell may be interacted with during the length (ie, MGL_PScell). The interaction occurs in two subframes.
  • the gap pattern ID of the MG_Pcell when the gap pattern ID of the MG_Pcell is set to 0, the gap pattern ID of the MG_PScell is set to 1, and the offset of the MG_Pcell and the offset of the MG_PScell are set to be the same, the Pcell is set.
  • Transmission and reception with the PScell during the measurement gap length ie, MGL_Pcell
  • the interaction occurs in two subframes every 80 ms.
  • transmission and reception with the Pcell are not interacted during the measurement gap length (ie, MGL_PScell) for the PScell.
  • the gap pattern ID of the MG_Pcell is set to 0
  • the gap pattern ID of the MG_PScell is set to 1
  • the offset of the MG_Pcell and the offset of the MG_PScell are set to be different by 6 ms or more.
  • Transmission and reception with the Pcell is interacted during the measurement gap length (ie, MGL_PScell) for the PScell.
  • the interaction occurs in two subframes every 80 ms.
  • Transmission and reception with the PScell is interacted during the measurement gap length (ie, MGL_Pcell) for the Pcell.
  • the interaction occurs in two subframes every 40 ms.
  • the base station sets the offset of MG_Pcell and the offset of MG_PScell so that MGL_Pcell and MGL_PScell overlap as much as possible.
  • the UE includes only one RF chain, so that the base station provides only one measurement gap (MG) to the UE.
  • MG measurement gap
  • CA carrier aggregation
  • DC dual connectivity
  • the Pcell and the Scell do not perform scheduling for 6 ms, which is the measurement gap length MGL.
  • the base station needs to know which RF chain the UE applies the measurement gap (MG) to. Therefore, the UE can convey to the base station an indication of which carrier (ie, which cell) the measurement gap is applied to. If the UE has not delivered the indication, the base station may assume that the measurement gap is applied to Scell (ie, SCC).
  • Scell ie, SCC
  • the measurement gap MG can be applied to the RF chain for the Pcell. If the RF chain for the inactive Scell can be used for the measurement for inter-frequency and inter-RAT, the measurement gap may not apply to the RF chain for the Pcell.
  • Embodiments of the present invention described so far may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof. Specifically, it will be described with reference to the drawings.
  • FIG. 19 is a block diagram illustrating a wireless communication system in which a disclosure of the present specification is implemented.
  • the base station 200 includes a processor 201, a memory 202, and an RF unit (RF (radio frequency) unit) 203.
  • the memory 202 is connected to the processor 201 and stores various information for driving the processor 201.
  • the RF unit 203 is connected to the processor 201 to transmit and / or receive a radio signal.
  • the processor 201 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 201.
  • the UE 100 includes a processor 101, a memory 102, and an RF unit 103.
  • the memory 102 is connected to the processor 101 and stores various information for driving the processor 101.
  • the RF unit 103 is connected to the processor 101 and transmits and / or receives a radio signal.
  • the processor 101 implements the proposed functions, processes and / or methods.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

본 명세서의 일 개시는 복수 반송파 집성을 지원하기 위해 복수의 RF(radio frequency) 체인을 구비하는 무선 기기에서 측정을 수행하는 방법을 제공한다. 상기 방법은 기지국으로부터 인터-주파수 상의 측정을 수행하기 위한 측정 갭(MG)을 포함하는 측정 설정(MeasConfig) 정보를 포함하는 수신하는 단계와; 상기 수신된 측정 갭이 1개인 경우, 상기 1개의 측정 갭을 상기 복수의 반송파들 중 어느 반송파를 위한 RF 체인에 적용할지 결정하는 단계와; 상기 측정 갭을 상기 결정된 반송파를 RF 체인에 적용하여 인터-주파수 상의 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 단계를 포함할 수 있다. 상기 수신된 측정 갭이 1개인 경우, 상기 측정 보고는 상기 측정 갭을 어느 반송파에 적용했는지에 대한 인디케이션을 포함할 수 있다.

Description

복수의 RF 체인을 구비하는 무선 기기에서 측정을 수행하는 방법
본 발명은 이동통신에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. 최대 4개의 안테나를 갖는 MIMO(multiple input multiple output)를 채용한다. 최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)에 대한 논의가 진행 중이다.
3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
한편, 단말은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로 측정한다. 이러한 측정은 크게 RSRP(reference signal received power)의 측정과 RSRQ(reference signal received power)의 측정을 포함한다. RSRQ는 RSRP를 RSSI(received signal strength indicator)로 나눈 값으로 대표된다.
한편, 서빙 셀과의 다른 주파수(inter-frequency) 상에서 동작하는 다른 셀의 식별 및 측정은 측정 갭(Measurement Gap: MG)에 의해 정해지는 시간 구간 동안에 수행된다.
기존에는, 단말이 하나의 RF 체인만을 포함하는 것을 가정하여, 기지국이 측정 갭(MG)을 단말에게 하나만 제공하도록 하였다. 그런데, 최근에 단말이 반송파 집성(CA) 등을 위해 2개 이상의 RF 체인을 구비하는 것으로 개선되었지만, 기지국은 여전히 하나의 측정 갭(MG)만을 단말에게 제공하였다. 이와 같이 기지국이 하나의 측정 갭만 제공하는 경우, UE는 하나의 측정 갭(MG)을 2개 이상의 RF 체인에 모두 적용한다. 상기 측정 갭 구간 동안에 상기 단말은 반송파 집성(CA)에 의한 모든 셀과의 송수신을 중단한다. 따라서, 비효율적인 문제점이 존재하였다.
따라서, 본 명세서의 개시는 전술한 문제점을 해결하는 것을 목적으로 한다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 복수 반송파 집성을 지원하기 위해 복수의 RF(radio frequency) 체인을 구비하는 무선 기기에서 측정을 수행하는 방법을 제공한다. 상기 방법은 기지국으로부터 인터-주파수 상의 측정을 수행하기 위한 측정 갭(MG)을 포함하는 측정 설정(MeasConfig) 정보를 포함하는 수신하는 단계와; 상기 수신된 측정 갭이 1개인 경우, 상기 1개의 측정 갭을 상기 복수의 반송파들 중 어느 반송파를 위한 RF 체인에 적용할지 결정하는 단계와; 상기 측정 갭을 상기 결정된 반송파를 위한 RF 체인에 적용하여 인터-주파수 상의 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 단계를 포함할 수 있다. 상기 수신된 측정 갭이 1개인 경우, 상기 측정 보고는 상기 측정 갭을 어느 반송파에 적용했는지에 대한 인디케이션을 포함할 수 있다.
상기 결정 단계는: 상기 측정 갭을 반송파 집성(CA)의 프라이머리 셀(Pcell)을 위한 RF 체인에 적용하는 것으로 결정하는 단계를 포함할 수 있다.
상기 측정 갭은 갭 패턴 ID, 측정 갭 길이(MGL) 및 갭 오프셋 정보 중 하나 이상을 포함할 수 있다. 그리고, 상기 측정 설정 정보는 반송파 집성(CA)의 세컨더리 셀(Scell)이 비활성 상태일 때, 상기 비활성 상태의 Scell에 대한 측정을 수행하기 위한 사이클 정보(measCycleSCell)를 더 포함할 수 있다.
상기 Scell을 측정하기 위한 사이클 정보에 따른 구간 내에 상기 측정 갭(MG)에 따라 RF 체인을 리튜닝해야 하는 시간 구간이 존재하지 않게끔, 상기 사이클 정보와 상기 측정 갭이 정해져 있을 수 있다.
상기 측정 갭(MG)은 상기 Scell을 측정하지 않는 구간에 위치하도록 정해져 있을 수 있다.
상기 방법은 반송파 집성(CA) 능력에 대한 정보 및 이중 연결(DC) 능력에 대한 정보 중 하나 이상을 포함하는 능력 정보를 기지국으로 전송하는 단계를 더 포함할 수 있다.
상기 전송된 능력 정보가 상기 무선 기기가 반송파 집성(CA) 능력을 갖거나, 이중 연결(DC) 능력을 갖고 있다고 지시하는 경우, 상기 수신된 측정 설정(MeasConfig) 정보 내에는 복수 개의 측정 갭(MG)이 포함되어 있을 수 있다.
상기 수신된 측정 갭이 복수 개수인 경우, 제1 측정 갭의 갭 패턴 ID와 제2 측정 갭의 갭 패턴 ID는 서로 동일하게 지정되어 있고, 상기 제1 측정 갭의 갭 오프셋 정보와 상기 제2 측정 갭의 갭 오프셋 정보도 서로 동일하게 지정되어 있을 수 있다.
상기 수신된 측정 갭이 복수 개수인 경우, 상기 사이클 정보와 상기 복수의 측정 갭(MG)은 서로 중첩된 서브프레임이 존재하지 않게끔 지정되어 있을 수 있다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 복수 반송파 집성을 지원하기 위해 복수의 RF(radio frequency) 체인을 구비하고, 측정을 수행하는 무선 기기를 제공한다. 상기 무선 기기는 기지국으로부터 인터-주파수 상의 측정을 수행하기 위한 측정 갭(MG)을 포함하는 측정 설정(MeasConfig) 정보를 포함하는 수신하는 송수신부와; 상기 수신된 측정 갭이 1개인 경우, 상기 1개의 측정 갭을 상기 복수의 반송파들 중 어느 반송파를 위한 RF 체인에 적용할지 결정하고, 상기 측정 갭을 상기 결정된 반송파를 위한 RF 체인에 적용하여 인터-주파수 상의 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 프로세서를 포함할 수 있다. 여기서, 상기 수신된 측정 갭이 1개인 경우, 상기 측정 보고는 상기 측정 갭을 어느 반송파에 적용했는지에 대한 인디케이션을 포함할 수 있다.
본 명세서의 개시에 의하면, 전술한 종래 기술의 문제점이 해결되게 된다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 3GPP LTE에서 TDD에 따른 하향링크 무선 프레임의 구조를 나타낸다.
도 4는 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 6은 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 7a 및 도 7b은 인트라 밴드(intra-band) 캐리어 집성(Carrier Aggregation; CA)을 도시한 개념도이다.
도 8a 및 도 8b은 인터 밴드(inter-band) 캐리어 집성을 도시한 개념도이다.
도 9a는 인트라 밴드의 연속적 반송파 집성(CA)을 위한 송신기의 구조를 에시적으로 나타내고, 도 9b는 인터 밴드 반송파 집성(CA)을 위한 송신기의 구조를 예시적으로 나타낸다.
도 10은 기지국이 하나의 안테나 포트를 사용하는 경우, CRS가 RB에 맵핑되는 패턴의 일 예를 나타낸다.
도 11은 측정 및 측정 보고 절차를 나타낸다.
도 12는 차세대 무선 통신 시스템으로 될 가능성이 있는 매크로 셀과 소규모 셀의 혼합된 이종 네트워크의 환경을 도시한 도면이다.
도 13a 및 도 13b는 매크로 셀과 소규모 셀에 대해 가능한 이중 연결의 시나리오들을 나타낸다.
도 14는 본 명세서의 개시를 간략히 나타낸 신호 흐름도이다.
도 15는 PCC(즉, Pcell)을 위한 RF 체인에 측정 갭(MG)을 적용할 때, Scell은 활성 상태인 경우를 나타낸다.
도 16a 및 도 16b는 PCC(즉, Pcell)을 위한 RF 체인에 측정 갭(MG)을 적용할 때, Scell은 비활성 상태인 경우를 나타낸다.
도 17a 및 17b은 SCC(즉, Scell)을 위한 RF 체인에 측정 갭(MG)을 적용할 때, Scell은 비활성 상태인 경우를 나타낸다.
도 18a 내지 도 18e는 PCC와 SCC에 각기 다른 측정 갭(MG)을 적용하는 예들을 나타낸다.
도 19는 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
이하에서 사용되는 용어인 기지국은, 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNodeB(evolved-NodeB), eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
그리고 이하, 사용되는 용어인 UE(User Equipment)는, 고정되거나 이동성을 가질 수 있으며, 기기(Device), 무선기기(Wireless Device), 단말(Terminal), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다.
도 1은 무선 통신 시스템이다.
도 1을 참조하여 알 수 있는 바와 같이, 무선 통신 시스템은 적어도 하나의 기지국(base station: BS)(20)을 포함한다. 각 기지국(20)은 특정한 지리적 영역(일반적으로 셀이라고 함)(20a, 20b, 20c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다..
UE은 통상적으로 하나의 셀에 속하는데, UE이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 UE을 기준으로 상대적으로 결정된다.
이하에서, 하향링크는 기지국(20)에서 UE(10)로의 통신을 의미하며, 상향링크는 UE(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(20)의 일부분이고, 수신기는 UE(10)의 일부분일 수 있다. 상향링크에서 송신기는 UE(10)의 일부분이고, 수신기는 기지국(20)의 일부분일 수 있다.
한편, 무선 통신 시스템은 크게 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 UE에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
이하에서는, LTE 시스템에 대해서 보다 상세하게 알아보기로 한다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 2에 도시된 무선 프레임은 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 5절을 참조할 수 있다.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)을 포함하고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 무선 프레임 내 슬롯은 0부터 19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 전송시간구간(Transmission Time interval: TTI)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다.
한편, 하나의 슬롯은 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함할 수 있다. 하나의 슬롯에 몇개의 OFDM 심볼이 포함되는지는 순환전치(cyclic prefix: CP)에 따라 달라질 수 있다. 노멀(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다. 여기서, OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
도 3은 3GPP LTE에서 TDD에 따른 하향링크 무선 프레임의 구조를 나타낸다.
이는 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 4절을 참조할 수 있으며, TDD(Time Division Duplex)를 위한 것이다.
인덱스 #1과 인덱스 #6을 갖는 서브프레임은 스페셜 서브프레임이라고 하며, DwPTS(Downlink Pilot Time Slot), GP(Guard Period) 및 UpPTS(Uplink Pilot Time Slot)을 포함한다. DwPTS는 UE에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 UE의 상향 전송 동기를 맞추는 데 사용된다. GP은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD에서는 하나의 무선 프레임에 DL(downlink) 서브프레임과 UL(Uplink) 서브프레임이 공존한다. 표 1은 무선 프레임의 설정(configuration)의 일 예를 나타낸다.
표 1
UL-DL 설정 스위치 포인트 주기(Switch-point periodicity) 서브프레임 인덱스
0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
'D'는 DL 서브프레임, 'U'는 UL 서브프레임, 'S'는 스페셜 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, UE은 무선 프레임의 설정에 따라 어느 서브프레임이 DL 서브프레임 또는 UL 서브프레임인지를 알 수 있다.
표 2
스페셜 서브프레임 설정 하향링크에서 노멀 CP 하향링크에서 확장 CP
DwPTS UpPTS DwPTS DwPTS
상향링크에서 노멀 CP 상향링크에서 확장 CP 상향링크에서 노멀 CP 상향링크에서 확장 CP
0 6592*Ts 2192*Ts 2560*Ts 7680*Ts 2192*Ts 2560*Ts
1 19760*Ts 20480*Ts
2 21952*Ts 23040*Ts
3 24144*Ts 25600*Ts
4 26336*Ts 7680*Ts 4384*Ts 5120*Ts
5 6592*Ts 4384*Ts 5120*ts 20480*Ts
6 19760*Ts 23040*Ts
7 21952*Ts -
8 24144*Ts -
도 4는 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 4를 참조하면, 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역(frequency domain)에서 NRB 개의 자원블록(RB)을 포함한다. 예를 들어, LTE 시스템에서 자원블록(RB)의 개수, 즉 NRB은 6 내지 110 중 어느 하나일 수 있다.
자원블록(resource block: RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element: RE)를 포함할 수 있다.
한편, 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4의 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 5에서는 노멀 CP를 가정하여 예시적으로 하나의 슬롯 내에 7 OFDM 심벌이 포함하는 것으로 도시하였다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫 번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
도 6은 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 6을 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역에는 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)가 할당된다. 데이터 영역은 데이터(경우에 따라 제어 정보도 함께 전송될 수 있다)가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)가 할당된다.
하나의 UE에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다.
UE이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티(frequency diversity) 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(hybrid automatic repeat request) ACK(acknowledgement)/NACK(non-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 무선 자원 할당 요청인 SR(scheduling request) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 전송시간구간(TTI) 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI(precoding matrix indicator), HARQ, RI (rank indicator) 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
<반송파 집성>
이제 반송파 집성(carrier aggregation: CA) 시스템에 대해 설명한다.
반송파 집성 시스템은 다수의 요소 반송파(component carrier: CC)를 집성하는 것을 의미한다. 이러한 반송파 집성에 의해서, 기존의 셀의 의미가 변경되었다. 반송파 집성에 의하면, 셀이라 함은 하향링크 요소 반송파와 상향링크 요소 반송파의 조합, 또는 단독의 하향링크 요소 반송파를 의미할 수 있다.
또한, 반송파 집성에서 셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다. 프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, UE이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다. 세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고 추가적인 무선 자원을 제공하는데 사용된다.
반송파 집성 시스템은 집성되는 반송파들이 연속되어 있는 연속(contiguous) 반송파 집성 시스템과 집성되는 반송파들이 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다. 하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.
한편, 반송파 집성 기술은 다시 인터 밴드(inter-band) CA 와 인트라 밴드(intra-band) CA 기술로 나뉠수 있다. 상기 인터 밴드(inter-band) CA는 서로 다른 대역에 존재하는 각 CC를 집성하여 사용하는 방법이며, 인트라 밴드(intra-band) CA는 동일 주파수 대역내의 각 CC 를 집성하여 사용하는 방법이다. 또한, 상기 CA 기술은 더 상세하게는 다시 인트라 밴드(Intra-Band) 연속(Contiguous) CA, 인트라 밴드(Intra-Band) 비연속(Non-Contiguous) CA와 인터밴드(Inter-Band) 비연속(Non-Contiguous) CA로 나뉘어 진다.
도 7a 및 도 7b은 인트라 밴드(intra-band) 캐리어 집성(Carrier Aggregation; CA)을 도시한 개념도이다.
도 7a는 인트라 밴드 근접(continguous) CA를 나타내고 있고, 도 7b는 인트라 밴드 비근접(non-continguous) CA를 나타내고 있다.
LTE-Advance의 경우 고속 무선 전송의 실현을 위하여 상향링크(Uplink) MIMO 와 캐리어 집성(Carrier Aggregation)을 포함한 다양한 기법이 추가되어 있다. LTE-Advance에서 논의되고 있는 CA는 도 7a에 나타낸 인트라 밴드(intra-band) 연속(Contiguous) CA와 도 7b에 나타낸 인트라 밴드(intra-band) 비연속(Non-Contiguous) CA로 나누어 질 수 있다.
도 8a 및 도 8b은 인터 밴드(inter-band) 캐리어 집성을 도시한 개념도이다.
도 8a는 인터 밴드 CA을 위한 낮은 밴드와 높은 밴드의 결합을 나타내고 있고, 도 8b는 인터 밴드 CA를 위한 비슷한 주파수 밴드의 결합을 나타내고 있다.
즉, 인터 밴드 캐리어 집성은 도 8a에 나타낸 바와 같이 인터 밴드(inter-band) CA의 RF 특성이 서로 다른 낮은 밴드(low-band)와 높은 밴드(high-band)의 캐리어(carrier)들 간의 인터 밴드(inter-band) CA와 도 8b에 나타낸 바와 같이 RF(radio frequency) 특성이 유사하여 각 요소 반송파(component carrier)별로 공통의 RF 단자를 사용할 수 있는 유사 주파수의 인터 밴드(inter-band) CA로 나누어 질 수 있다.
표 3
E-UTRA 동작대역(Operating Band) 상향링크 동작 대역(Uplink (UL) operating band) 하향링크 동작 대역Downlink (DL) operating band 듀플렉스모드Duplex Mode
FUL_low - FUL_high FDL_low - FDL_high
1 1920 MHz 1980 MHz 2110 MHz 2170 MHz FDD
2 1850 MHz 1910 MHz 1930 MHz 1990 MHz FDD
3 1710 MHz 1785 MHz 1805 MHz 1880 MHz FDD
4 1710 MHz 1755 MHz 2110 MHz 2155 MHz FDD
5 824 MHz 849 MHz 869 MHz 894MHz FDD
61 830 MHz 840 MHz 875 MHz 885 MHz FDD
7 2500 MHz 2570 MHz 2620 MHz 2690 MHz FDD
8 880 MHz 915 MHz 925 MHz 960 MHz FDD
9 1749.9 MHz 1784.9 MHz 1844.9 MHz 1879.9 MHz FDD
10 1710 MHz 1770 MHz 2110 MHz 2170 MHz FDD
11 1427.9 MHz 1447.9 MHz 1475.9 MHz 1495.9 MHz FDD
12 699 MHz 716 MHz 729 MHz 746 MHz FDD
13 777 MHz 787 MHz 746 MHz 756 MHz FDD
14 788 MHz 798 MHz 758 MHz 768 MHz FDD
15 Reserved Reserved FDD
16 Reserved Reserved FDD
17 704 MHz 716 MHz 734 MHz 746 MHz FDD
18 815 MHz 830 MHz 860 MHz 875 MHz FDD
19 830 MHz 845 MHz 875 MHz 890 MHz FDD
20 832 MHz 862 MHz 791 MHz 821 MHz FDD
21 1447.9 MHz 1462.9 MHz 1495.9 MHz 1510.9 MHz FDD
22 3410 MHz 3490 MHz 3510 MHz 3590 MHz FDD
23 2000 MHz 2020 MHz 2180 MHz 2200 MHz FDD
24 1626.5 MHz 1660.5 MHz 1525 MHz 1559 MHz FDD
25 1850 MHz 1915 MHz 1930 MHz 1995 MHz FDD
26 814 MHz 849 MHz 859 MHz 894 MHz FDD
27 807 MHz 824 MHz 852 MHz 869 MHz FDD
28 703 MHz 748 MHz 758 MHz 803 MHz FDD
29 N/A N/A 717 MHz 728 MHz FDD
30 2305 MHz 2315 MHz 2350 MHz 2360 MHz FDD
31 452.5 MHz 457.5 MHz 462.5 MHz 467.5 MHz FDD
32 N/A N/A 1452 MHz 1496 MHz FDD
...
33 1900 MHz 1920 MHz 1900 MHz 1920 MHz TDD
34 2010 MHz 2025 MHz 2010 MHz 2025 MHz TDD
35 1850 MHz 1910 MHz 1850 MHz 1910 MHz TDD
36 1930 MHz 1990 MHz 1930 MHz 1990 MHz TDD
37 1910 MHz 1930 MHz 1910 MHz 1930 MHz TDD
38 2570 MHz 2620 MHz 2570 MHz 2620 MHz TDD
39 1880 MHz 1920 MHz 1880 MHz 1920 MHz TDD
40 2300 MHz 2400 MHz 2300 MHz 2400 MHz TDD
41 2496 MHz 2690 MHz 2496 MHz 2690 MHz TDD
42 3400 MHz 3600 MHz 3400 MHz 3600 MHz TDD
43 3600 MHz 3800 MHz 3600 MHz 3800 MHz TDD
44 703 MHz 803 MHz 703 MHz 803 MHz TDD
3GPP LTE/LTE-A시스템에서는 위의 표 1와 같은 상향링크 및 하향 링크를 위한 동작 대역(operating bands)에 대해서 정의하고 있다. 표 1를 기준으로 도 6과 도 7의 4가지의 CA 케이스(case)가 구분된다.
여기서 FUL_low는 상향 링크 동작 대역의 가장 낮은 주파수를 의미한다. 그리고, FUL_high는 상향링크 동작 대역의 가장 높은 주파수를 의미한다. 또한, FDL_low는 하향 링크 동작 대역의 가장 낮은 주파수를 의미한다. 그리고, FDL_high는 하향링크 동작 대역의 가장 높은 주파수를 의미한다.
도 9a는 인트라 밴드의 연속적 반송파 집성(CA)을 위한 송신기의 구조를 에시적으로 나타내고, 도 9b는 인터 밴드 반송파 집성(CA)을 위한 송신기의 구조를 예시적으로 나타낸다.
먼저, 도 9a를 참조하여 알 수 있는 바와 같이, 인트라 밴드 반송파 집성(CA)를 위한 송신기는 제1 요소 반송파(CC1) 및 제2 요소 반송파(CC2)을 위한 각각의 부호화 및 변조기(encoder and modulator)(1101-1/1101-2), 변환 프리코더(transform precoder)(1012-1/1102-2), 자원 요소 맵퍼(resource element mapper)(1013-1/1103-2)를 포함한다. 또한, 상기 송신기는 IFFT(inverse fast Fourier Transform)부(1014), CP(cyclic prefix) 삽입부(1015), LPF(Low pass filter)(1016), RF 체인(1017), 듀플렉서(1018)을 포함한다. 상기 제1 요소 반송파(CC1)를 위한 자원 요소 맵맵퍼(1013-1)과 상기 제2 요소 반송파(CC2)을 위한 자원 요소 맵퍼(1013-2)는 상기 하나의 IFFT부(1014)에 연결된다.
상기 각각의 부호화 및 변조기(1011-1/1101-2)는 상기 제1 요소 반송파(CC1) 및 제2 요소 반송파(CC2)을 위해 각기 입력되는 정보 비트를 정해진 코딩 방식에 따라 인코딩하여 부호화된 데이터(coded data)를 형성한다. 부호화된 데이터를 코드워드(codeword)라 한다. 이어서, 상기 코드워드를 신호 성상(signal constellation) 상의 위치를 표현하는 심볼로 배치한다. 변조 방식(modulation scheme)에는 제한이 없다.
상기 각각의 변환 프리코더(1012-1/1102-2)는 입력 심볼을 다중 송신 안테나에 따른 MIMO 방식으로 처리한다. 예를 들어, 상기 각각의 변환 프리코더(1012-1/1102-2)는 코드북(codebook) 기반의 프리코딩을 이용할 수 있다.
상기 각각의 자원 요소 맵퍼(1013-1/1103-2)는 상기 변환 프리코더(230)로부터 출력되는 심볼을 자원요소에 맵핑시킨다.
상기 IFFT부(1014)는 상기 각각의 자원 요소 맵퍼(1013-1/1103-2)로부터 출력되는 심볼에 대해 IFFT(Inverse Fast Fourier Transform)를 수행한다.
상기 CP 삽입부(1015)는 상기 IFFT가 수행된 시간 영역 심볼에 CP(cyclic prefix)를 삽입한다.
상기 CP가 삽입된 심볼은 LPF(Low pass filter)(1016)를 거치게 되고, 이후 RF 체인(1017)을 통과하면서 반송파와 합성된 후, 듀플렉서(1018)를 거쳐 안테나로 송신된다. 상기 듀플렉서(1018)은 송신(TX) 신호와 수신(RX) 신호를 분리하는 역할을 수행한다.
이상과 같이, 인트라 밴드의 연속적 CA를 지원하는 송신기의 경우, 하나의 IFFT부(1014)를 통한 OFDM 변조가 가능하며, 이에 따라 RF 체인(1017)도 단독으로 구현 가능하다.
한편, 도 9b를 참조하여 알 수 있는 바와 같이, 인터 밴드 CA를 위한 송신기는 IFFT부(1014-1/1104-2), CP 삽입부(1015-1/1105-2), LPF(1016-1/1106-2), RF 체인(1017-1/1107-2), 듀플렉서(1018-1/1108-2) 마저도 1 요소 반송파(CC1) 및 제2 요소 반송파(CC2)을 위해 각기 별도로 존재한다.
상기 각각의 듀플렉서(1018-1/1108-2)를 통과한 신호는 다이플렉서(1019)를 통과하여 합성되고, 상기 합성된 신호가 안테나를 통해 전송된다. 즉, 상기 다이플렉서(1019)는 송신시에는 상기 1 요소 반송파(CC1)와 제2 요소 반송파(CC2)를 합성하고, 수신시에는 분리한다.
이상과 같이, 인터 밴드 반송파 집성(CA)를 지원하는 송신기의 경우, 처리 대역폭의 한계로 인하여, 각각의 요소 반송파 별로 베이스밴드(baseband)와 RF 체인을두어야 한다.
<참조 신호>
한편, 이하 참조 신호(reference signal, RS)에 대해서 설명하기로 한다.
일반적으로 전송 정보 예컨대, 데이터는 무선채널을 통해 전송되는 동안 쉽게 왜곡, 변경된다. 따라서, 이러한 전송 정보를 오류없이 복조하기 위해서는 참조신호가 필요하다. 참
조신호는 전송기와 수신기 사이에 미리 알고 있는 신호로 전송 정보와 함께 전송된다. 전송기로부터 전송되는 전송 정보는 각 전송 안테나마다 또는 레이어마다 대응하는 채널을 겪기 때문에, 참조신호는 각 전송 안테나별 또는 레이어별로 할당될 수 있다. 각 전송 안테나별 또는 레이어별 참조신호는 시간, 주파수, 코드 등의 자원을 이용하여 구별될 수 있다. 참조신호는 2가지 목적 즉, 전송 정보의 복조(demodulation)와 채널 추정을 위해 사용될 수 있다.
하향링크 참조 신호는 셀 특정 참조 신호(cell-specific RS, CRS), MBSFN(multimedia broadcast and multicast single frequency network) 참조 신호, 단말 특정 참조 신호(UE-specific RS, URS), 포지셔닝 참조 신호(positioning RS, PRS) 및 채널 상태 정보 참조 신호(Channel State Information Reference Signal, CSI-RS)로 구분될 수 있다. CRS는 셀 내 모든 UE에게 전송되는 참조 신호로서 공통 참조 신호(Common Reference Signal)로 불리기도 한다, CRS는 CQI 피드백에 대한 채널 측정과 PDSCH에 대한 채널 추정에 사용될 수 있다. MBSFN 참조 신호는 MBSFN 전송을 위해 할당된 서브프레임에서 전송될 수 있다. URS는 셀 내 특정 UE 또는 특정 UE 그룹이 수신하는 참조 신호로, 복조 참조 신호(demodulation RS, DM-RS)로 불릴 수 있다. DM-RS는 특정 UE 또는 특정 UE 그룹이 데이터 복조에 주로 사용된다. PRS는 UE의 위치 추정에 사용될 수 있다. CSI-RS는 LTE-A UE의 PDSCH에 대한 채널 추정에 사용된다. CSI-RS는 주파수 영역 또는 시간 영역에서 비교적 드물게(sparse) 배치되며, 일반 서브프레임 또는 MBSFN 서브프레임의 데이터 영역에서는 생략(punctured)될 수 있다.
도 10은 기지국이 하나의 안테나 포트를 사용하는 경우, CRS가 RB에 맵핑되는 패턴의 일 예를 나타낸다.
도 10을 참조하면, R0은 기지국의 안테나 포트 번호 0에 의해 전송되는 CRS가 매핑되는 RE를 나타낸다.
CRS는 PDSCH 전송을 지원하는 셀 내의 모든 하향링크 서브프레임에서 전송된다. CRS는 안테나 포트 0 내지 3 상으로 전송될 수 있다.
하나의 안테나 포트의 CRS에 할당된 자원 요소(RE)는 다른 안테나 포트의 전송에 사용될 수 없고, 영(zero)로 설정되어야 한다. 또한, MBSFN(multicast-broadcast single frequency network) 서브프레임에서 CRS는 non-MBSFN 영역에서만 전송된다.
<측정 및 측정 보고>
이동 통신 시스템에서 UE(100)의 이동성(mobility) 지원은 필수적이다. 따라서, UE(100)은 현재 서비스를 제공하는 서빙 셀(serving cell)에 대한 품질 및 이웃셀에 대한 품질을 지속적으로 측정한다. UE(100)은 측정 결과를 적절한 시간에 네트워크에게 보고하고, 네트워크는 핸드오버 등을 통해 UE에게 최적의 이동성을 제공한다. 흔히 이러한 목적의 측정을 무선 자원 관리 측정(radio resource management: RRM)라고 일컫는다.
한편, UE(100)는 CRS에 기반하여 프라이머리 셀(Pcell)의 하향링크 품질을 모니터링 한다. 이를 RLM(Radio Link Monitoring)이라고 한다. RLM을 위해서, UE(100)는 하향링크 품질을 추정하고, 상기 추정된 하향링크 품질을 임계값들, 예컨대 Qout 및 Qin와 비교한다. 상기 임계값 Qout은 하향링크가 안정적으로 수신될 수 없는 레벨로 정의되며, 이는 PCFICH 에러를 고려하여 PDCCH 전송의 10% 에러에 해당한다. 상기 임계값 Qin은 하향링크가 Qout에 비해 너무 현저하게 신뢰할 만한 수준으로 정의되고, 이는 PCFICH 에러를 고려하여 PDCCH 전송의 2% 에러에 해당한다.
도 11은 측정 및 측정 보고 절차를 나타낸다.
도 11을 참조하여 알 수 있는 바와 같이, UE(100)로 상기 서빙셀(200a) 및 이웃셀(200b)이 각기 CRS(Cell-specific Reference Signal)를 전송하면, 상기 UE(100)은 상기 CRS를 통하여, 측정을 수행하고, 그 측정 결과를 포함하는 RRC 측정 보고 메시지를 서빙셀(200a)로 전송한다.
이때, UE(100)은 다음 3가지 방법으로 측정을 수행할 수 있다.
1) RSRP(reference signal received power): 전 대역에 걸쳐 전송되는 CRS를 운반하는 모든 RE의 평균 수신 전력을 나타낸다. 이때 CRS 대신 CSI RS를 운반하는 모든 RE의 평균 수신 전력을 측정할 수도 있다.
2) RSSI(received signal strength indicator): 전체 대역에서 측정된 수신 전력을 나타낸다. RSSI는 신호, 간섭(interference), 열 잡음(thermal noise)을 모두 포함한다.
3) RSRQ(reference symbol received quality): CQI를 나타내며, 측정 대역폭(bandwidth) 또는 서브밴드에 따른 RSRP/RSSI로 결정될 수 있다. 즉, RSRQ는 신호 대 잡음 간섭 비(SINR; signal-to-noise interference ratio)를 의미한다. RSRP는 충분한 이동성(mobility) 정보를 제공하지 못하므로, 핸드오버 또는 셀 재선택(cell reselection) 과정에서는 RSRP 대신 RSRQ가 대신 사용될 수 있다.
RSRQ = RSSI/RSSP로 산출될 수 있다.
한편, 도시된 바와 같이 UE(100)는 상기 측정을 위해 상기 서빙셀(100a)로부터 무선 자원 설정(Radio Resource Configuration) 정보 엘리먼트(IE: Information Element)를 수신한다. 상기 무선 자원 설정(Radio Resource Configuration Dedicated) 정보 엘리먼트(IE: Information Element)는 무선 베어러(Radio Bearer)를 설정/수정/해제하거나, MAC 구성을 수정하는 등을 위해서 사용된다. 상기 무선 자원 설정 IE는 서브프레임 패턴 정보를 포함한다. 상기 서브프레임 패턴 정보는 서빙 셀(예컨대 프라이머리 셀)에 대한 RSRP, RSRQ를 측정하는 데에 대한 시간 도메인 상의 측정 자원 제한 패턴에 대한 정보이다.
한편, UE(100)는 상기 측정을 위해 상기 서빙셀(100a)로부터 측정 설정(measurement configuration; 이하 ‘measconfig’라고도 함) 정보 엘리먼트(IE)를 수신한다. 측정 설정 정보 엘리먼트(IE)를 포함하는 메시지를 측정 설정 메시지라 한다. 여기서 상기 측정 설정 정보 엘리먼트(IE)는 RRC 연결 재설정 메시지를 통해서 수신될 수도 있다. UE은 측정 결과가 측정 설정 정보 내의 보고 조건을 만족하면, 측정 결과를 기지국에게 보고한다. 측정 결과를 포함하는 메시지를 측정 보고 메시지라 한다.
상기 측정 설정 IE는 측정 오브젝트(Measurement object) 정보를 포함할 수 있다. 상기 측정 오브젝트 정보는 UE가 측정을 수행할 오브젝트에 관한 정보이다. 측정 오브젝트는 셀 내 측정의 대상인 intra-frequency 측정 대상, 셀간 측정의 대상인 inter-frequency 측정 대상, 및 inter-RAT 측정의 대상인 inter-RAT 측정 대상 중 적어도 어느 하나를 포함한다. 예를 들어, intra-frequency 측정 대상은 서빙 셀과 동일한 주파수 밴드를 갖는 주변 셀을 지시하고, inter-frequency 측정 대상은 서빙 셀과 다른 주파수 밴드를 갖는 주변 셀을 지시하고, inter-RAT 측정 대상은 서빙 셀의 RAT와 다른 RAT의 주변 셀을 지시할 수 있다.
표 4
측정 오브젝트(Measurement Object) 필드 설명
carrierFreq이 설정이 적용되는 E-UTRA 반송파 주파수를 나타낸다.
measCycleSCell비활성화 상태인 SCell에 대해서 측정하기 위한 사이클을 나타낸다. 값은 160, 256. 등으로 설40정될 수 있다. 값이 160일 경우, 160개의 서브프레임 마다 측정을 수행함을 나타낸다.
한편, 상기 측정 설정 IE는 아래의 표와 같은 IE(정보 엘리먼트)를 포함한다.
표 5
MeasConfig 필드 설명
allowInterruptions값이 True인 경우, 이는 UE가 비활성화된 Scell의 반송파들에 대해서 MeasCycleScell을 이용하여 측정을 수행할 때, 서빙셀과의 송수신이 중단되는 것이 허용됨을 나타낸다.
measGapConfig측정 갭(measurement gap)의 설정 또는 해제
상기 measGapConfig은 측정 갭(measurement gap: MG)을 설정하거나 해제하는데 사용된다.
상기 측정 갭(MG)은 서빙 셀과 다른 주파수(inter frequency) 상의 셀 식별(cell identification) 및 RSRP 측정을 수행하기 위한 구간이다.
표 6
MeasGapConfig 필드 설명
gapOffsetgapOffset의 값으로 gp0과 gp1 중 어느 하나가 설정될 수 있다. gp0은 MGRP=40ms를 갖는 패턴 ID “0”의 갭 오프셋에 대응한다. Gp1은 MGRP=80ms를 갖는 패턴 ID “1”의 갭 오프셋에 대응한다.
표 7
갭 패턴 Id 측정 갭 길이 (Measurement Gap Length: MGL) 측정 갭 반복 구간 (Measurement Gap Repetition Period:MGRP) 480ms 구간 동안 인터-주파수 및 인터-RAT에 대한 측정을 수행할 수 있는 최소 시간
0 6 ms 40 ms 60 ms
1 6 ms 80 ms 30 ms
만약, UE가 인터-주파수 및 인터-RAT의 셀을 식별하고 측정을 하기 위해 측정 갭을 요구하는 경우, E-UTRAN(즉 기지국)은 일정한 갭 구간을 갖는 하나의 측정 갭(MG) 패턴을 제공한다.
상기 UE는 상기 측정 갭 구간 동안에 서빙 셀로부터 어떠한 데이터도 송수신하지 않고, 자신의 RF 체인을 인터-주파수에 맞추어 재조정(retuning)한 후, 해당 인터-주파수에서 측정을 수행한다.
<소규모 셀(small cell)의 도입>
한편, 차세대 이동 통신 시스템에서는 셀 커버리지 반경이 작은 소규모 셀(small cell)이 기존 셀의 커버리지 내에 추가될 것으로 예상되고, 소규모 셀은 보다 많은 트래픽을 처리할 것으로 예상된다. 상기 기존 셀은 상기 소규모 셀에 비해 커버리지가 크므로, 매크로 셀(Macro cell)이라고 칭하기도 한다. 이하 도 10을 참조하여 설명하기로 한다.
도 12는 차세대 무선 통신 시스템으로 될 가능성이 있는 매크로 셀과 소규모 셀의 혼합된 이종 네트워크의 환경을 도시한 도면이다.
도 12를 참조하면, 기존 기지국(200)에 의한 매크로 셀은 하나 이상의 소규모 기지국(300a, 300b, 300c, 300d)에 의한 소규모 셀과 중첩된 이종 네트워크 환경이 나타나 있다. 상기 기존 기지국은 상기 소규모 기지국에 비해 큰 커버리지를 제공하므로, 매크로 기지국(Macro eNodeB, MeNB)라고도 불린다. 본 명세서에서 매크로 셀과 매크로 기지국이라는 용어를 혼용하여 사용하기로 한다. 매크로 셀(200)에 접속된 UE은 매크로 UE(Macro UE)로 지칭될 수 있다. 매크로 UE은 매크로 기지국으로부터 하향링크 신호를 수신하고, 매크로 기지국에게 상향링크 신호를 전송한다.
이와 같은 이종 네트워크에서는 상기 매크로셀을 프라이머리 셀(Pcell)로 설정하고, 상기 소규모 셀을 세컨더리 셀(Scell)로 설정함으로써, 매크로셀의 커버리지 빈틈을 메꿀 수 있다. 또한, 상기 소규모 셀을 프라이머리 셀(Pcell)로 설정하고, 상기 매크로 셀을 세컨더리 셀(Scell)로 설정함으로써, 전체적인 성능을 향상(boosting)시킬수 있다.
한편, 상기 소규모 셀은 현재 LTE/LTE-A로 배정된 주파수 대역을 사용하거나, 혹은 더 높은 주파수 대역(예컨대 3.5GHz 이상의 대역)을 사용할 수도 있다.
다른 한편, 향후 LTE-A 시스템에서는 상기 소규모 셀은 독립적으로는 사용되지 못하고, 매크로 셀의 도움 하에 사용될 수 있는 매크로 셀-보조 소규모 셀(macro-assisted small cell)로만 사용하는 것도 고려하고 있다.
이러한 소규모 셀들(300a, 300b, 300c, 300d)은 서로 비슷한 채널 환경을 가질 수 있고, 서로 근접한 거리에 위치하기 때문에 소규모 셀들 간의 간섭이 큰 문제가 될 수 있다.
이러한 간섭 영향을 줄이기 위해, 소규모 셀(300b, 300c)은 자신의 커버리지를 확장하거나 축소할 수 있다. 이와 같이 커버리지의 확장 및 축소를 셀 숨쉬기(cell breathing)이라고 한다. 예컨대 도시된 바와 같이, 상기 소규모셀(300b, 300c)은 상황에 따라 온(on)되거나, 혹은 오프(off)될 수 있다.
다른 한편, 상기 소규모 셀은 현재 LTE/LTE-A로 배정된 주파수 대역을 사용하거나, 혹은 더 높은 주파수 대역(예컨대 3.5GHz 이상의 대역)을 사용할 수도 있다.
<이중 연결(Dual Connectivity)의 도입>
최근에는, 서로 다른 기지국, 예컨대, 매크로셀의 기지국과 소규모 셀의 기지국에 UE가 동시에 연결할 수 있도록 하는 방안이 연구되고 있다. 이를, 이중 연결이라고 한다.
상기 이중 연결(dual connectivity)을 가능한 시나리오들이 도 9a 내지 도 9d에 나타내었다.
도 13a 및 도 13b는 매크로 셀과 소규모 셀에 대해 가능한 이중 연결의 시나리오들을 나타낸다.
도 13a에 도시된 것과 같이 UE는 매크로 셀을 제어 평면(Control-plane: 이하 ‘C-plane’이라 함)으로 설정받고, 소규모 셀을 사용자 평면(User-plane 이하 ‘U-plane’이라 함)으로 설정받을 수 있다.
또는 도 13b에 도시된 바와 같이, UE는 소규모 셀을 C-plane으로 설정받고, 매크로 셀을 U-plane으로 설정받을 수 있다. 본 명세서에서는 편의를 위해, C-Plane의 셀을 ‘C-Cell’이라 명칭하고, U-Plane의 셀을 ‘U-Cell’이라 하겠다.
여기서, 언급한 C-Plane이라 함은, RRC 연결 설정 및 재설정, RRC 유휴 모드, 핸드오버를 포함한 이동성, 셀 선택, 재선택, HARQ 프로세스, 반송파 집성(CA)의 설정 및 재설정, RRC 설정을 위한 필요한 절차, 랜덤 액세스 절차 등을 지원하는 것을 의미한다. 그리고 언급한 U-Plane이라 함은 애플리케이션의 데이터 처리, CSI 보고, 애플리케이션 데이터에 대한 HARQ 프로세스, 멀티캐스팅/브로드캐스팅 서비스 등을 지원하는 것을 의미한다.
UE의 관점에서, C-plane 및 U-plne의 설정은 다음과 같다. C-Cell은 프라이머리 셀로 설정되고, U-Cell은 세컨더리 셀로 설정될 수 있다. 혹은 반대로, U-Cell은 프라이머리 셀로 설정되고, C-Cell은 세컨더리 셀로 설정될 수 있다. 혹은 C-Cell은 별도로 특별하게 처리하고, U-Cell은 프라이머리 셀로 설정될 수도 있다. 혹은, C-Plane 및 U-Cell은 모두 프라이머리 셀로 설정될 수 있다. 다만, 본 명세서에서 설명의 편의상 C-Cell은 프라이머리 셀로 설정되고, U-Cell은 세컨더리 셀로 설정되는 것으로 가정하여 이하 설명된다.
한편, UE(100)가 짧은 거리를 자주 이동하는 상황에서는 핸드오버가 지나치게 자주 발생할 수 있으므로, 이를 방지하기 위해서는 상기 UE는 상기 매크로 셀을 C-cell 또는 프라이머리 셀로 설정받고, 소규모 셀은 U-cell 또는 세컨더리 셀로 설정받는 것이 유리할 수 있다.
이러한 이유로 매크로 셀은 UE의 프라이머리 셀로서 상기 UE와 항상 연결되어 있을 수 있다.
한편, 도 13a 및 도 13b에서는 UE가 매크로 셀의 eNodeB과 소규모 셀의 eNodeB과 이중 연결되어 있는 것으로 도시되었으나, 이에 한정되는 것은 아니다. 예를 들어, UE는 제1 소규모 셀(혹은 제1 소규모 셀들의 그룹)을 위한 제1 eNodeB와 제2 소규모 셀(혹은 제2 소규모 셀들의 그룹)을 위한 제2 eNodeB에 이중 연결되어 있을 수 있다.
위와 같은 모든 예들을 고려할 때, 프라이머리 셀(Pcell)을 위한 eNodeB를 마스터(Master) eNodeB(이하, MeNB라고 함)라고 할 수 있다. 그리고 세컨더리 셀(Scell)만을 위한 eNodeB를 세컨더리(Secondary) eNodeB(이하, SeNB라고 함)라고 할 수 있다.
상기 MeNB에 의한 프라이머리 셀(Pcell)을 포함하는 셀 그룹을 마스터 셀 그룹(Master Cell Group: MCG) 혹은 PUCCH 셀 그룹1라고 할 수 있고, 상기 SeNB에 의한 세컨더리 셀(Scell)을 포함하는 셀 그룹을 세컨더리 셀 그룹(Secondary Cell Group: SCG) 혹은 PUCCH 셀 그룹2라고 할 수 있다.
한편, 세컨더리 셀 그룹(SCG) 내의 세컨더리 셀들 중 UE가 UCI를 전송할 수 있는 세컨더리 셀 혹은 UE가 PUCCH를 전송할 수 있는 세컨더리 셀을 슈퍼 세컨더리 셀(Super SCell) 혹은 프라이머리 세컨더리 셀(Primary Scell: PScell)로 지칭될 수도 있다.
<반송파 집성(CA) 및 이중 연결(DC)에서 측정 갭(MG)의 비효율성>
기존에는, UE가 하나의 RF 체인만을 포함하는 것을 가정하여, 기지국이 측정 갭(MG)을 UE에게 하나만 제공하도록 하였다. 그런데, UE가 반송파 집성(CA) 및 이중 연결(DC)을 위해 2개 이상의 RF 체인을 구비하는 것으로 개선되었지만, 기지국은 여전히 하나의 측정 갭(MG)만을 UE에게 제공하였다. 이와 같이 기지국이 하나의 측정 갭만 제공하는 경우, UE는 하나의 측정 갭(MG)을 2개 이상의 RF 체인에 모두 적용한다. 즉, 상기 UE는 상기 하나의 측정 갭 구간 동안에 상기 2개 이상의 RF 체인들 모두를 통한 서빙셀들과의 송수신을 중단한다. 그리고 상기 UE는 상기 2개 이상의 RF 체인들 중 어느 하나만을 인터-주파수에 맞추어 재조정(retuning)한 후, 해당 인터-주파수에서 측정을 수행한다. 이와 같이, 상기 UE가 측정 갭(MG)를 하나만 수신하고, 그에 따라 1개의 RF 체인만을 인터-주파수에 맞추어 재조정할지라도, 자신의 2개 이상의 RF 체인들 모두를 통한 서빙셀들과의 송수신을 중단하기 때문에, 비효율적이다.
<본 명세서의 개시>
따라서, 본 본 명세서는 효율적인 인터-주파수 및 인터-RAT에 대한 측정을 위해 측정 갭(MG)을 UE의 RF 체인 별로 독립적으로 적용할 수 있는 방안을 제안한다. 이와 같이, 측정 갭(MG)을 UE의 RF 체인 별로 독립적으로 적용할 수 있도록 하기 위하여, 먼저 기지국은 UE의 RF 체인 개수를 알아야 한다. 이를 가능하게 하기 위해서, 본 명세서의 개시는 UE의 반송파 집성(CA) 능력(capability)와 이중 연결(DC) 능력에 대한 정보를 활용하는 것을 제안한다.
도 14는 본 명세서의 개시를 간략히 나타낸 신호 흐름도이다.
도 14를 참조하면, 서빙 셀(200a)은 필요에 따라 혹은 상위 계층에 의한 지시에 따라 상기 UE(100)에게 UE 능력 조회를 요청한다.
그러면, 상기 UE(100)는 상기 요청에 따라 UE 능력 정보를 서빙 셀(200a)로 전달한다. 이때, 상기 UE 능력 정보는 반송파 집성 능력(CA capability)에 대한 정보와 이중 연결 능력(DC capability)에 대한 정보 중 하나 이상을 포함한다.
그러면, 상기 서빙 셀(200a)는 상기 UE 능력 정보 내의 상기 반송파 집성 능력 및 상기 이중 연결 능력에 기초하여, UE의 RF 체인 개수를 확인한다. 그리고, 상기 서빙 셀(200a)는 상기 확인된 UE의 RF 체인 개수에 따라 측정 갭(MG)을 하나 또는 복수개 세팅한다.
그리고, 상기 기지국은 상기 세팅된 측정 갭(MG)에 대한 정보를 포함하는 측정 설정 정보와 그리고 무선 자원 설정 정보를 상기 UE로 전송한다.
그러면, 상기 UE가 복수의 RF 체인을 구비한 경우, 상기 UE는 상기 측정 갭(MG)을 복수의 반송파들 중 어느 반송파를 위한 RF 체인에 적용할지를 결정한다.
이어서, 상기 UE는 상기 측정 갭에 따라 측정을 수행한다. 그리고, 상기 UE는 상기 측정에 대한 결과를 포함하는 측정 보고를 상기 기지국으로 전달한다. 이때, 상기 측정 보고에는 상기 UE가 상기 측정 갭을 어느 반송파에 적용하였는지를 나타내는 인디케이션을 포함할 수 있다.
이하, 상기 UE가 반송파 집성 능력(CA capability)를 가진 경우와 그리고 이중 연결 능력(DC capability)를 가진 경우에 대해서 각기 설명하기로 한다.
I. 반송파 집성 능력(CA capability)을 가진 UE
UE가 반송파 집성 능력(CA capability)을 기지국에게 알려주고, 인터-주파수및 인터-RAT을 위한 측정을 위해서 측정 갭(MG)을 요구할 경우, 기지국은 1개 측정 갭(MG) 혹은 다수의 측정 갭을 상기 UE에게 전달할 수 있다. 상기 측정 갭이 다수개 전달되는 경우, 상기 측정 갭의 개수는 상기 반송파 집성(CA)에 의한 요소 반송파의 개수와 동일하거나 그 보다 작을 수 있다. 그러면, 상기 UE는 상기 기지국으로부터 수신한 측정 갭(MG)을 이용하여, 측정을 수행한다. 이때, 상기 기지국으로부터 수신한 측정 갭(MG)의 개수가 1개인지 복수개인지에 따라, 상기 UE는 다음과 같이 구분하여 동작한다.
I-1. UE가 하나의 측정 갭(MG)을 수신한 경우.
UE가 기지국으로부터 하나의 측정 갭(MG)를 획득한 경우, 상기 UE는 상기 하나의 측정 갭(MG)를 PCC(혹은 Pcell)을 위한 RF 체인에 적용해야 할지 아니면 SCC(혹은 Scell)에 적용해야 할지를 결정하고, 각 결정 결과에 따라 다르게 동작할 수 있다. 이때, 상기 측정 갭(MG)이 SCC(혹은 Scell)에 적용되기로 결정된 경우, 상기 UE는 상기 Scell이 활성상태인지 비활성상태인지에 따라 구분하여 동작할 수 있다. 이와 같이 상기 하나의 측정 갭(MG)을 반송파 집성(CA)의 하나의 CC(즉, 하나의 셀)에만 적용할 경우, PCC을 통한 송수신(즉, Pcell과의 송수신)을 우선적으로 보장하기 위해서, SCC(즉, Scell)을 위한 RF 체인에 적용하는 것이 바람직할 수 있다. 그러나, 상기 하나의 측정 갭(MG)을 PCC(즉, Pcell)을 위한 RF 체인에 적용하는 것을 배제하는 것은 아니며, 이하에서는 2가지 경우에 대해서 모두 설명하기로 한다.
I-1-1. PCC(즉, Pcell)을 위한 RF 체인에 측정 갭(MG)을 적용하는 경우
본 절에서는 UE가 하나의 측정 갭(MG)을 수신하는 경우, 상기 UE는 상기 하나의 측정 갭(MG)을 PCC(즉, Pcell)를 담당하는 RF 체인에 적용하고, SCC(즉, Scell)을 담당하는 RF 체인에는 적용하지 않는 것을 제안한다. 이때, Scell이 활성 상태인지 아니면 비활성 상태인지에 따라, 상기 UE는 다음과 같이 구분하여 동작할 수 있다.
i) Scell이 활성 상태일 경우
UE가 하나의 RF 체인만을 포함하는 상황에서, PCC의 주파수 변경을 위해 RF 체인을 재조정(retuning)하게 되면, 활성 상태인 Scell과의 송수신이 인터렵션(interruption)되게 된다. 이에 대해서 도 15를 참조하여 설명하기로 한다.
도 15는 PCC(즉, Pcell)을 위한 RF 체인에 측정 갭(MG)을 적용할 때, Scell은 활성 상태인 경우를 나타낸다.
도 15를 참조하여 알 수 있는 바와 같이, 상기 인터럽션되는 구간은 서브프레임 단위로 표현될 수 있다. 구체적으로, 측정 갭 길이(MGL)가 6ms(즉, 6개 서브프레임)일 때, 처음 서브프레임과 마지막 서브프레임 상에서 Scell과의 송수신은 인터렵션되고, 중간의 4 개 서브프레임(4ms)동안에만 Scell과의 송수신을 할 수 있게 된다. 그러나, 기존에는 측정 갭 길이(MGL) 동안에 Pcell과의 송수신 및 Scell과의 송수신이 모두 중단되었다. 따라서, 기존 대비 성능이 향상될 수 있다.
ii) Scell이 비활성화 상태일 경우
앞서 설명한 바와 같이, PCC의 주파수 변경을 위해 RF 체인을 재조정하게 되면, 측정 갭 길이(MGL)에 해당하는 6개의 서브프레임들 중에서 처음 서브프레임과 마지막 서브프레임에서는, Scell과의 송수신이 인터렵션된다. 또한 앞서 설명한 바와 같이, 비활성화 상태인 Scell에 대한 측정은 measCycleScell에 지시된 사이클 마다 수행된다. 이에 대해서 도 16a 및 도 16b를 참조하여 설명하기로 한다.
도 16a 및 도 16b는 PCC(즉, Pcell)을 위한 RF 체인에 측정 갭(MG)을 적용할 때, Scell은 비활성 상태인 경우를 나타낸다.
도 16a를 참조하여 알 수 있는 바와 같이, Scell과의 송수신이 인터렵션되는 처음 서브프레임과 마지막 서브프레임이 measCycleScell에 지시되어 측정을 수행해야 할 서브프레임과 겹치게 되면, 상기 측정이 불가능하게 되는 문제점이 있다. 그러므로, 도 16b에 도시된 바와 같이, 상기 중첩이 최대한 발생하지 않도록, 기지국이 상기 measCycleScell과 상기 측정 갭(MG)과 관련된 파라미터(예컨대, MGL)를 설정하도록 하는 것을 제안한다. 대안적으로, 상기 기지국이 상기 중첩의 발생 방지에 실패한 경우, 상기 UE는 상기 중첩된 서브프레임 상에서는 비활성화 상태인 Scell의 측정을 수행하지 않을 수 있다.
I-1-2. SCC(즉, Scell)을 위한 RF 체인에 측정 갭(MG)을 적용하는 경우.
본 절에서는 UE가 하나의 측정 갭(MG)을 수신하는 경우, 상기 UE는 상기 하나의 측정 갭(MG)을 SCC(즉, Scell)를 담당하는 RF 체인에 적용하고, PCC(즉, Pcell)을 담당하는 RF 체인에는 적용하지 않는 것을 제안한다. 이때, Scell이 활성 상태인지 아니면 비활성 상태인지에 따라, 상기 UE는 다음과 같이 구분하여 동작할 수 있다.
i) Scell이 활성 상태일 경우
SCC의 주파수 변경을 위해 RF 체인을 재조정하게 되면, 측정 갭 길이(MGL)에 해당하는 6개의 서브프레임들 중에서 처음 서브프레임과 마지막 서브프레임에서는, Pcell과의 송수신이 인터렵션되지만, 가운데 4개의 서브프레임(즉, 4ms) 동안에는 Pcell과의 송수신을 할 수 있다. 그러나, 기존에는 측정 갭 길이(MGL) 동안에 Pcell과의 송수신 및 Scell과의 송수신이 모두 중단되었다. 따라서, 기존 대비 성능이 향상될 수 있다.
ii) Scell이 비활성 상태인 경우
도 17a 및 17b은 SCC(즉, Scell)을 위한 RF 체인에 측정 갭(MG)을 적용할 때, Scell은 비활성 상태인 경우를 나타낸다.
도 17a에 도시된 바와 같이, RF 재조정에 따라 인터렵션이 발생하는 처음 서브프레임과 마지막 서브프레임이 measCycleScell에 지시되어 측정을 수행해야 할 서브프레임과 겹치게 되면, 상기 측정이 불가능하게 되는 문제점이 있다. 그러므로, 도 17b에 도시된 바와 같이 본 단락에서는 상기 중첩이 최대한 발생하지 않도록, 기지국이 상기 measCycleScell과 상기 측정 갭(MG)과 관련된 파라미터(예컨대, MGL)를 설정하도록 하는 것을 제안한다.
한편, 측정 갭 길이(MGL)에 해당하는 6개의 서브프레임들 중에서 처음 서브프레임과 마지막 서브프레임에서는, Pcell과의 송수신이 인터렵션되지만, 가운데 4개의 서브프레임(즉, 4ms) 동안에는 Pcell과의 송수신을 할 수 있다. 그러나, 기존에는 측정 갭 길이(MGL) 동안에 Pcell과의 송수신 및 Scell과의 송수신이 모두 중단되었다. 따라서, 기존 대비 성능이 향상될 수 있다. 성능을 더 향상시키기 위해, 측정 갭 길이(MGL)에 해당하는 6개 서브프레임들 중에서 첫 번째 서브프레임 상에서는 인터-주파수로의 RF 재조정을 수행하되, 마지막 서브프레임 상에서는 비활성화 상태인 Scell의 주파수로의 RF 재조정을 하지 않는 것을 제안한다. 이에 따라, 5개의 서브프레임(즉, 5ms) 동안에는 Pcell과의 송수신을 할 수 있게 된다.
I-2. UE가 복수 개의 측정 갭(MG)을 수신한 경우
본 절에서는 기지국이 측정 갭(MG)을 PCC와 SCC에 대해 서로 독립적으로 UE에게 제공하는 것을 제안한다. 이 경우, SCC를 위한 측정 갭(MG)은 다수 개(예컨대, N개)가 제공될 수 있다. 다수 개(예컨대, N개)의 측정 갭(MG) 파라미터가 UE에게 제공되는 것은, UE가 동시에 인터-주파수 및 인터-RAT에 대한 측정을 수행할 수 있는 능력을 갖추고 있음을 의미하게 된다. 이때, UE가 올바르게 측정을 수행하기 위해서는, N이 클수록 구현 복잡도와 전력 소모가 증가하게 된다. 반면에 N이 클수록 측정 소요 시간(셀 식별 지연 및 측정 구간 포함)은 감소하게 된다. 예를 들어, N=2인 경우, 인터-주파수 및 인터-RAT에 대한 측정을 수행하는 시간이 종래 기본 시간 배수인자 Nfreq에서 Nfreq/2로 감소하게 된다. 결과적으로 구현 복잡도, 전력 소모, 그리고 측정 소요 시간을 고려하여, 적당한 N 값을 설정해야 한다. 본 절에서는 반송파 집성(CA)으로서 1개의 PCC, 1개의 SCC를 고려하고, UE의 구현 복잡도와 전력 소모를 고려하여, N=2를 제안한다. 즉, SCC가 2이상일 경우, UE은 독립적인 2개의 측정 갭(MG) 파라미터를 이용하여, 1개의 PCC와 1개의 SCC에 적용할 수 있고, 혹은 PCC를 제외한 2개의 SCC에 각각 적용하는 것을 생각할 수 있다. 이 경우는, UE가 반송파 집성을 위해 다중 RF 체인을 구비한 경우에 해당한다. 예를 들면, 1개의 PCC 및 1개의 SCC 경우, PCC와 SCC가 다른 RF 체인을 통해 송수신되는 구조이고, 2개의 SCC 경우(PCC에는 측정 갭(MG)을 적용하지 않음)는 2개이 SCC가 서로 다른 RF 체인을 통해 송수신되는 구조를 생각할 수 있다. 반면에, 반송파 집성을 하나의 RF 체인을 가지고 지원하는 경우(인트라-밴드 연속적 CA 경우)는 다중 측정 갭(MG) 적용을 하지 않고, 상기 I-1 절에 따라 하나의 측정 갭(MG)이 적용되는 것을 제안한다. 만약 3개 CC이상일 경우(1개의 PCC, 2개 이상의 SCC), UE가 1개의 PCC와 2개의 SCC를 서로 다른 RF 체인을 통해 송수신하는 경우에는, Pcell의 송수신을 최대 보장하기 위해서, 2개의 측정 갭(MG)이 2개의 SCC에 각각 우선순위로 적용하는 것을 제안한다. 그러나 1개의 PCC를 포함하여 측정 갭(MG)을 적용하는 것을 배제하지는 않는다.
I-2-1. PCC와 SCC에 각기 다른 측정 갭(MG)을 적용하는 경우.
기지국은 UE로부터 수신한 CA capability에 기초하여, UE가 PCC와 SCC를 서로 다른 RF 체인을 통해 송수신함을 인지하고, 다중 측정 갭(MG)을 UE에게 제공한다. 그러면, UE는 PCC를 위한 RF 체인과 SCC를 위한 RF 체인에 각기 독립적인 측정 갭(MG)을 적용할 수 있다. 예를 들어, 2개의 측정 갭(MG), 예컨대 MG_Pcell과 MG_Scell이 제공되면, UE는 MG_Pcell을 Pcell을 위한 RF 체인에 적용하고, MG_Scell을 Scell을 위한 RF 체인에 적용할 수 있다. 이 경우, Pcell과의 송수신은 Pcell을 위한 측정 갭 길이(즉, MGL_pcell) 동안 제약되고, 나아가 상기 Pcell과의 송수신은 Scell을 위한 측정 갭 길이(즉, MGL_Scell) 구간의 처음과 마지막 서브프레임에서 인터렵션 된다. 상기 인터렵션되는 구간, 즉 서브프레임의 개수는 MG_Pcell과 MG_scell의 설정(갭 패턴 ID, 오프셋)에 따라 달라 질 수 있다. 구체적으로 도면을 참조하여 설명하면 다음과 같다.
도 18a 내지 도 18e는 PCC와 SCC에 각기 다른 측정 갭(MG)을 적용하는 예들을 나타낸다.
먼저, MG_Pcell의 갭 패턴 ID와 MG_Scell의 갭 패턴 ID가 동일하게 설정되면, MG_Pcell의 오프셋과 MG_Scell의 오프셋이 동일하게 설정된 경우, Scell을 위한 측정 갭 길이(즉, MGL_Scell) 동안에 Pcell과의 송수신은 인터렵션되지 않는다. 구체적으로, 도 18a에 도시된 바와 같이, MG_Pcell의 갭 패턴 ID와 MG_Scell의 갭 패턴 ID가 모두 0번으로 동일하게 설정되면, Pcell을 위한 MGRP와 Scell을 위한 MGRP가 40ms로 서로 동일하게 된다. 이때, 오프셋도 동일하게 설정되면, Pcell을 위한 측정 갭 길이(즉, MGL_Pcell)와 Scell을 위한 측정 갭 길이(즉, MGL_Scell)이 서로 일치하게 된다. 그러므로 동일한 시간 위치의 측정 갭 길이(MGL)에서 Pcell을 위한 RF 체인과 Scell을 위한 RF 체인이 인터-주파수 측정을 수행하기 때문에, 서로 간에 송수신 인터렵션을 야기하지 않는다.
한편, MG_Pcell의 갭 패턴 ID와 MG_Scell의 갭 패턴 ID가 동일하게 설정되고, MG_Pcell의 오프셋과 MG_Scell의 오프셋이 6ms 이상 차이나도록 설정된 경우, Scell을 위한 측정 갭 길이(즉, MGL_Scell) 동안에 Pcell과의 송수신은 인터렵션된다. 인터렵션은 2개의 서브프레임 동안 발생한다. 마찬가지로, Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안에 Scell과의 송수신은 인터렵션된다. 상기 인터렵션은 2개의 서브프레임 동안 발생하게 된다. 구체적으로, 도 18b에 도시된 바와 같이, MG_Pcell의 갭 패턴 ID와 MG_Scell의 갭 패턴 ID가 모두 0번으로 동일하게 설정되면, Pcell을 위한 MGRP와 Scell을 위한 MGRP가 40ms로 서로 동일하게 된다. 그런데, 오프셋들이 서로 6ms 이상 차이나도록 설정되면, 인터렵션이 발생한다.
다른 한편, MG_Pcell의 갭 패턴 ID가 0으로 설정되고, MG_Scell의 갭 패턴 ID가 1로 설정되고, MG_Pcell의 오프셋과 MG_Scell의 오프셋이 서로 동일하게 설정되면, Scell을 위한 측정 갭 길이(즉, MGL_Scell) 동안에 Pcell과의 송수신은 인터렵션되지 않고, Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안에 Scell과의 송수신은 인터렵션된다. 상기 인터렵션은 80ms 마다 2개의 서브프레임 동안 발생하게 된다. 구체적으로, 도 18c에 도시된 바와 같이, MG_Pcell의 갭 패턴 ID가 0번으로 설정되면 MGRP는 40ms이 되고, MG_Scell의 갭 패턴 ID가 1번으로 설정되면 MGRP는 80ms이 된다. 이때, MG_Pcell의 오프셋과 MG_Scell의 오프셋이 서로 동일하게 설정되더라도, 인터렵션이 발생하게 된다.
또 다른 한편, MG_Pcell의 갭 패턴 ID가 0으로 설정되고, MG_Scell의 갭 패턴 ID가 1로 설정되고, MG_Pcell의 오프셋과 MG_Scell의 오프셋이 6ms 이상 차이나도록 설정된 경우, Scell을 위한 측정 갭 길이(즉, MGL_Scell) 동안에 Pcell과의 송수신은 인터렵션된다. 상기 인터렵션은 80ms 마다 2개의 서브프레임 동안 발생하게 된다. Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안에 Scell과의 송수신은 인터렵션된다. 상기 인터렵션은 40ms 마다 2개의 서브프레임 동안 발생하게 된다. 구체적으로, 도 18d에 도시된 바와 같이, MG_Pcell의 갭 패턴 ID가 0번으로 설정되면 MGRP는 40ms이 되고, MG_Scell의 갭 패턴 ID가 1번으로 설정되면 MGRP는 80ms이 된다. 이때, MG_Pcell의 오프셋과 MG_Scell의 오프셋이 서로 6ms 이상 차이나게 설정되면, 인터렵션이 발생하게 된다.
따라서, 상기 인터렵션을 최소화하기 위해서, 기지국은 상기 2개의 측정 갭 길이(MGL)가 최대한 중첩되도록 오프셋을 설정할 것을 것을 제안한다.
i) Scell이 활성 상태일 경우
UE의 Pcell에 대한 성능은 기존 성능과 같거나 작게 된다. 같은 경우는 MG_Pcell의 갭 패턴 ID와 MG_Scell의 갭 패턴 ID가 서로 동일하게 설정된 경우, 혹은 MG_Pcell의 갭 패턴 ID은 0으로 설정되고 MG_Scell의 갭 패턴 ID는 1로설정 경우, 그리고 MG_Pcell의 오프셋과 MG_Scell의 오프셋이 동일하게 설정된 경우이다. 그 이외의 경우에서는 Pcell과의 송수신은 Scell를 위한 측정 갭 길이(MGL) 동안에 인터렵션되기 때문에, UE의 Pcell에 대한 성능은 종래 성능보다 작게 된다.
UE의 Scell에 대한 성능은 종래 성능과 같거나 작게 된다. 같은 경우는 MG_Pcell의 갭 패턴 ID와 MG_Scell의 갭 패턴 ID가 서로 동일하게 설정된 경우, 혹은 MG_Pcell의 갭 패턴 ID가 1로 설정되고 MG_Scell의 갭 패턴 ID는 0으로 설정된 경우, 그리고 MG_Pcell의 오프셋과 MG_Scell의 오프셋이 서로 동일하게 설정된 경우이다. 그 이외의 경우에서는 Scell과의 송수신은 Pcell을 위한 측정 갭 길이(MGL)동안에 인터렵션되기 때문에, UE의 Scell에 대한 성능은 종래 성능보다 작게 된다.
그러므로, 본 절에서는 인터렵션 영향을 최소화하기 위해서 MG_Pcell의 오프셋과 MG_Scell의 오프셋을 서로 동일하게 설정하는 것을 제안한다.
ii) Scell이 비활성 상태일 경우
UE의 Pcell에 대한 성능은 종래 성능과 같거나 작게 된다. 같은 경우는 MG_Pcell의 갭 패턴 ID와 MG_Scell의 갭 패턴 ID가 서로 동일하게 설정된 경우, 혹은, MG_Pcell의 갭 패턴 ID는 0으로 설정되고, MG_Scell의 갭 패턴 ID는 1로 설정된 경우, 그리고 MG_Pcell의 오프셋과 MG_Scell의 오프셋이 서로 동일하게 설정된 경우이다. 그 이외의 경우에서는 Pcell과의 송수신은 Scell을 위한 측정 갭 길이(MGL) 동안에 인터렵션되기 때문에, UE의 Pcell에 대한 성능은 종래 성능보다 작게 된다.
비활성 상태인 Scell에 대한 측정은 measCycleScell에 지시된 사이클 마다 수행된다. 상기 measCycleScell에 의해 지시된 사이클에 따라 비활성 상태인 Scell에 대해 측정을 수행해야 하는 서브프레임이 측정 갭 길이(즉, MGL_Scell)와 겹친다면, 상기 겹치는 서브프레임 상에서 상기 UE가 인터-주파수 및 인터-RAT에 대한 측정만을 수행할 것을 제안한다. 이상적으로는 measCycleScell에 의해 지시된 사이클에 따라 비활성화 상태의 Scell에 대한 측정을 수행해야 하는 서브프레임이 상기 측정 갭 길이(즉, MGL_Scell)와 겹치지 않게끔, 기지국이 설정할 것을 제안한다. 상기 비활성화 상태인 Scell에 대해 측정을 수행하지 않는 서브프레임이 상기 측정 갭 길이(즉, MGL_Scell)와 중첩되면, 상기 UE은 비활성화 상태인 Scell에 대해 측정을 수행하지 않는 서브프레임들 중에서 상기 측정 갭 길이(즉, MGL_Scell) 위치와 상관없이 어디에서나 인터-주파수 및 인터-RAT에 대한 측정을 수행할 수 있다. 그러나, 이것은 Pcell과의 송수신에 인터렵션을 야기할 수 있기 때문에, 본 단락에서는 UE가 측정 갭 길이(즉, MGL_Scell) 위치에서만 인터-주파수 및 인터-RAT에 대한 측정을 수행할 것을 제안한다. 그리고, 추가 인터렵션 영향을 최소화하기 위해서, 본 단락에서는 도 18e에서와 같이 기지국이 MG_Pcell의 오프셋과 MG_Scell의 오프셋을 서로 동일하게 설정하는 것을 제안한다. 또한, 도 18e에서와 같이 measCycleScell에 의해 지시된 사이클에 따라 비활성화 상태의 Scell에 대한 측정을 수행해야 하는 서브프레임이 상기 측정 갭 길이(즉, MGL_Scell)와 겹치지 않게끔, 기지국이 설정할 것을 제안한다
I-2-2. 다중 SCC에 각기 다른 측정 갭(MG)을 적용하는 경우.
기지국은 UE로부터 수신한 CA capability에 기초하여, UE가 PCC와 제1 SCC를 위해서는 제1 RF 체인을 사용하고, 제2 SCC를 위해서는 제2 RF 체인을 사용함을 인지하고, 다중 측정 갭(MG)을 UE에게 제공한다. UE는 각 SCC를 위한 RF 체인에 서로 다른 측정 갭(MG)을 적용할 수 있다. 예를 들어, 기지국이 2개의 측정 갭(MG), 예컨대 MG_Scell#1 및 MG_Scell#2을 제공한 경우, UE는 Scell#1을 위한 RF 체인에 MG_Scell#1을 적용하고 Scell#2을 위한 RF 체인에 MG_Scell#2을 적용할 수 있다. 이 경우, Scell#1과의 송수신은 측정 갭 길이(즉, MGL_Scell#1) 동안 제약되고, 추가로 상기 Scell#1과의 송수신은 상기 Scell#2을 위한 측정 갭 길이(즉, MGL_Scell#2) 구간의 처음과 마지막 서브프레임에서 인터렵션 된다. 상기 인터렵션되는 구간, 즉 서브프레임 개수는 MG_Scell#1과 MG_Scell#2의 설정(갭 패턴 ID, offset)에 따라 달라 질 수 있다.
부연 설명하면, MG_Scell#1의 갭 패턴 ID와 MC_Scell#2의 갭 패턴 ID가 동일하게 설정되고, MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 동일하게 설정된 경우, Scell#2을 위한 측정 갭 길이(즉, MGL_Scell#2) 동안에 Scell#1과의 송수신 인터렵션되지 않는다. MG_Scell#1의 갭 패턴 ID와 MC_Scell#2의 갭 패턴 ID가 동일하게 설정되고, MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 6ms 이상 차이 나도록 설정된 경우, Scell#2을 위한 측정 갭 길이(즉, MGL_Scell#2) 동안에 Scell#1과의 송수신은 인터렵션된다. 상기 인터렵션은 2개의 서브프레임에서 발생한다. 그리고, Scell#1을 위한 측정 갭 길이(즉, MGL_Scell#1) 동안에 Scell#2과의 송수신도 인터렵션된다. 상기 인터렵션은 2개의 서브프레임에서 발생하게 된다.
MG_Scell#1의 갭 패턴 ID가 0으로 설정되고, MG_Scell#2의 갭 패턴 ID는 1로 설정되고, MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 동일하게 설정되면, Scell#2를 위한 측정 갭 길이(즉, MGL_Scell#2) 동안에 Scell#1과의 송수신은 인터렵션되지 않지만, Scell#1를 위한 측정 갭 길이(즉, MGL_Scell#1) 동안에 Scell#2과의 송수신은 인터렵션될 수 있다. 인터렵션은 80ms 마다 2 서브프레임에서 발생하게 된다.
MG_Scell#1의 갭 패턴 ID는 0으로 설정되고, MG_Scell#2의 갭 패턴 ID는 1로 설정되고, MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 6ms 이상 차이나도록 설정되면, Scell#2을 위한 측정 갭 길이(즉, MGL_Scell#2) 동안에 Scell#1과의 송수신은 인터렵션된다. 상기 인터렵션은 80ms 마다 2개 서브프레임 에서 발생하게 된다. 그리고 Scell#1을 위한 측정 갭 길이(즉, MGL_Scell#1) 동안에 Scell#2과의 송수신도 인터렵션된다. 상기 인터렵션은 40ms 마다 2개의 서브프레임에서 발생하게 된다.
이와 같은 인터렵션을 최소화하기 위해서, 본 절에서는 MG_Scell#1의 측정 갭 길이(MGL_Scell#1)와 MG_Scell#2(MGL_Scell#2)을 위한 측정 갭 길이가 서로 최대한 중첩되도록, 상기 기지국이 MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋을 설정하는 것을 제안한다.
종래에는 Pcell과의 송수신이 측정 갭 길이(MGL)(6ms)동안 제약되었지만, 본 명세서에 따르면, Pcell과의 송수신은 2개의 측정 갭 길이(즉, MGL_Scell#1과 MGL_Scell#2) 동안에만 인터렵션되기 때문에, MG_Scell#1의 갭 패턴 ID와 MG_Scell#2의 갭 패턴 ID가 서로 동일하도록 설정되고, MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 동일하게끔 설정되면, 인터렵션은 2개의 서브프레임(즉, 2ms)에서만 발행하도록 최소화될 수 있다. 반면, MG_Scell#1의 갭 패턴 ID와 MG_Scell#2의 갭 패턴 ID가 서로 동일하도록 설정되되, MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 6ms 이상 차이나도록 설정되면, 인터렵션은 4개의 서브프레임(즉, 4ms)에서 발생한다. 그래도, 종래 6ms 동안에 송수신이 인터렵션 되었던 것에 비교하면 여전히 작기 때문에 결과적으로 Pcell과의 성능 관점에서 이득이 있다. 결과적으로, SCC들을 위해 서로 다른 RF 체인에 각기 측정 갭(MG)을 적용한 경우에, Pcell과의 송수신 성능은 향상될 수 있다. 그러므로, 본 절에서는 UE가 다중 CC별로 RF 체인을 지원한다면, 다중 측정 갭(MG)을 SCC를 위한 RF 체인들에 우선 적용하도록 하는 것을 제안한다.
i) Scell#1 및 Scell#2 모두 활성 상태인 경우
Pcell과의 송수신 성능은 종래 성능과 같거나 크게 된다. 그리고, Scell#1의 송수신 성능은 종래 성능과 같거나 작게 된다. 같은 경우는 MG_Scell#1과 MG_Scell#2의 갭 패턴 ID가 서로 동일하게 설정된 경우이거나, 혹은 MG_Scell#1의 갭 패턴 ID는 0으로 설정되고 MG_Scell#2의 갭 패턴 ID는 1로 설정되고, MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 동일하게 설정된 경우이다. 그 이외의 경우에서는 Scell#1과의 송수신은 Scell#2의 측정 갭 길이(MGL_Scell#2) 동안에 인터렵션되기 때문에, Scell#1과의 송수신 성능은 종래 성능보다 작게 된다.
Scell#2과의 송수신 성능은 종래 성능과 같거나 작게 된다. 같은 경우는 MG_Scell#1과 MG_Scell#2이 서로 동일한 갭 패턴 ID로 설정된 경우이거나, 혹은 MG_Scell#2의 갭 패턴 ID는 0으로 설정되고 MG_Scell#1의 갭 패턴 ID는 1로 설정된 경우, 그리고, MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 동일하게 설정된 경우이다. 그 이외의 경우에서는 Scell#2과의 송수신은 Scell#1을 위한 측정 갭 길이(MGL_Scell#1) 동안에 인터렵션되기 때문에, Scell#2과의 송수신 성능은 종래 성능보다 작게 된다. 그러므로, 본 단락에서는 인터렵션 영향을 최소화하기 위해서, 기지국이 MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋을 서로 동일하게 설정해주도록 하는 것을 제안한다.
ii) Scell#1은 활성 상태이나, Scell#2는 비활성 상태인 경우,
Pcell과의 송수신 성능은 종래 성능과 같거나 크게 된다. 그리고, Scell#1과의 송수신 성능은 종래 성능과 같거나 작게 된다. 같은 경우는 MG_Scell#1의 갭 패턴 ID와 MG_Scell#2의 갭 패턴 ID가 서로 동일하게 설정된 경우, 혹은 MG_Scell#1의 갭 패턴 ID는 0으로 설정되고 MG_Scell#2의 갭 패턴 ID이 1로 설정된 경우, 그리고 MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 동일하게 설정된 경우이다. 그 이외의 경우에서는 Scell#1과의 송수신은 Scell#2을 위한 측정 갭 길이(MGL_Scell#2) 동안에 인터렵션되기 때문에, Scell#1과의 송수신 성능은 종래 성능보다 작게 된다.
한편, 앞서 설명한 바와 같이, 비활성화 상태인 Scell#2에 대한 측정은 measCycleScell에 지시되는 사이클 마다 수행된다. measCycleScell에 의해 지시된 사이클에 따라 비활성화 상태인 Scell#2에 대한 측정을 수행해야 하는 서브프레임이 측정 갭 길이(즉, MGL_Scell#2)와 겹친다면, 상기 UE는 상기 해당 서브프레임에서는 인터-주파수 및 인터-RAT에 대한 측정만을 수행하도록 하는 것을 제안한다. 이상적으로는, 기지국이 measCycleScell에 지시된 사이클에 따라 비활성화 상태인 Scell#2에 대해 측정을 수행해야 할 서브프레임과 측정 갭 길이(즉, MGL_Scell#2)가 겹치지 않도록 설정할 것을 제안한다. 비활성화 상태인 Scell#2에 대한 측정을 수행하지 않은 서브프레임과 측정 갭 길이(즉, MGL_Scell#2)가 중첩하면, UE는 비활성화 상태인 Scell#2에 대한 측정을 수행하지 않은 서브프레임들 중에서 상기 측정 갭 길이(즉, MGL_Scell#2) 위치와 상관없이 어디에서나 인터-주파수 및 인터-RAT에 대한 측정을 수행할 수 있다. 그러나, 이것은 Pcell과의 송수신 및 Scell#1과의 송수신에 인터렵션을 야기할 수 있기 때문에, 본 단락에서는 UE가 측정 갭 길이(즉, MGL_Scell#2) 위치에서만 인터-주파수 및 인터-RAT에 대한 측정을 수행할 것을 제안한다. 그리고, 본 단락에서는 추가 인터렵션 영향을 최소화하기 위해서 오프셋이 서로 동일하게 되도록 기지국이 설정 하는 것을 제안한다.
iii) Scell#1은 비활성 상태이나, Scell#2는 활성 상태인 경우
Pcell과의 송수신 성능은 종래 성능과 같거나 크게 된다. 그리고, Scell#2과의 송수신 성능도 종래 성능과 같거나 작게 된다. 같은 경우는 MG_Scell#1의 갭 패턴 ID와 MG_Scell#2의 갭 패턴 ID가 서로 동일한 경우이거나, 혹은 MG_Scell#2의 갭 패턴 ID는 0으로 설정되고 MG_Scell#1의 갭 패턴 ID는 1로 설정된 경우, 그리고 MG_Scell#1의 오프셋과 MG_Scell#2의 오프셋이 서로 동일하게 설정된 경우이다. 그 이외의 경우에서는 Scell#2과의 송수신은 Scell#1의 측정 갭 길이(MGL) 동안 인터렵션되기 때문에, Scell#2과의 송수신 성능은 종래 성능보다 작게 된다.
한편, 앞서 설명한 바와 같이, 비활성화 상태인 Scell#1에 대한 측정은 measCycleScell에 지시되는 사이클 마다 수행된다. measCycleScell에 의해 지시된 사이클에 따라 비활성화 상태인 Scell#1에 대한 측정을 수행해야 하는 서브프레임이 측정 갭 길이(즉, MGL_Scell#1)와 겹친다면, 상기 UE는 상기 해당 서브프레임에서는 인터-주파수 및 인터-RAT에 대한 측정만을 수행하도록 하는 것을 제안한다. 이상적으로는, 기지국이 measCycleScell에 지시된 사이클에 따라 비활성화 상태인 Scell#1에 대해 측정을 수행해야 할 서브프레임과 측정 갭 길이(즉, MGL_Scell#1)가 겹치지 않도록 설정해줄 것을 제안한다. 비활성화 상태인 Scell#1에 대한 측정을 수행하지 않은 서브프레임과 측정 갭 길이(즉, MGL_Scell#1)가 중첩하면, UE는 비활성화 상태인 Scell#1에 대한 측정을 수행하지 않은 서브프레임들 중에서 상기 측정 갭 길이(즉, MGL_Scell#1) 위치와 상관없이 어디에서나 인터-주파수 및 인터-RAT에 대한 측정를 수행할 수 있다. 그러나, 이것은 Pcell과의 송수신 및 Scell#2과의 송수신에 인터렵션을 발생시킬 수 있기 때문에, 본 단락에서는 UE가 측정 갭 길이(즉, MGL_Scell#1) 위치에서만 인터-주파수 및 인터-RAT에 대한 측정을 수행할 것을 제안한다. 그리고, 본 단락에서는 추가 인터렵션 영향을 최소화하기 위해서 오프셋이 서로 동일하게 되도록 기지국이 설정 하는 것을 제안한다.
iv) Scell#1과 Scell#2 모두 비활성 상태인 경우
Pcell과의 송수신 성능은 종래 성능과 같거나 크게 된다.
앞서 설명한 바와 같이, 비활성화 상태인 Scell#1에 대한 측정은 measCycleScell에 지시되는 사이클 마다 수행된다. measCycleScell에 의해 지시된 사이클에 따라 비활성화 상태인 Scell#1에 대한 측정을 수행해야 하는 서브프레임이 측정 갭 길이(즉, MGL_Scell#1)와 겹친다면, 상기 UE는 상기 해당 서브프레임에서는 인터-주파수 및 인터-RAT에 대한 측정만을 수행하도록 하는 것을 제안한다. 이상적으로는, 기지국이 measCycleScell에 지시된 사이클에 따라 비활성화 상태인 Scell#1에 대해 측정을 수행해야 할 서브프레임과 측정 갭 길이(즉, MGL_Scell#1)가 겹치지 않도록 설정해줄 것을 제안한다. 비활성화 상태인 Scell#1에 대한 측정을 수행하지 않은 서브프레임과 측정 갭 길이(즉, MGL_Scell#1)가 중첩하면, UE는 비활성화 상태인 Scell#1에 대한 측정을 수행하지 않은 서브프레임들 중에서 상기 측정 갭 길이(즉, MGL_Scell#1) 위치와 상관없이 어디에서나 인터-주파수 및 인터-RAT에 대한 측정를 수행할 수 있다. 그러나, 이것은 Pcell과의 송수신에 인터렵션을 발생시킬 수 있기 때문에, 본 단락에서는 UE가 측정 갭 길이(즉, MGL_Scell#1) 위치에서만 인터-주파수 및 인터-RAT에 대한 측정을 수행할 것을 제안한다.
마찬가지로, 비활성화 상태인 Scell#2에 대한 측정은 measCycleScell에 지시되는 사이클 마다 수행된다. 이는, 위 단락의 Scell#1에 대한 설명과 동일하므로, 재차 설명하지 않고, 위 단락의 설명을 따르기로 한다.
II. 이중 연결 능력(DC capability)을 가진 UE
UE가 이중 연결 능력(DC capability)을 기지국에게 알려주고, 인터-주파수및 인터-RAT을 위한 측정을 위해서 측정 갭(MG)을 요구할 경우, 기지국은 1개의 측정 갭(MG) 혹은 이중 연결(DC)을 위한 반송파의 개수와 동일한 개수 혹은 그 보다 작은 개수의 측정 갭(MG)들을 설정하고, UE에게 전달해주는 것을 제안한다. UE는 기지국으로부터 수신한 측정 갭(MG)을 사용하여 인터-주파수 및 인터-RAT을 사용하는 셀을 식별 및 측정한다. 기존에는 기지국이 하나의 측정 갭(MG)만을 UE에게 제공하였고, UE는 하나의 측정 갭(MG)만을 이용하여, 측정을 수행하였다. 이때, 측정 갭 길이(MGL) 동안 Pcell과의 송수신이 제약되고, 동기 이중 연결(DC)인 경우 PScell과의 송수신은 측정 갭 길이(MGL)동안 중단되고, 비동기 이중 연결(DC)인 경우 PScell과의 송수신은 측정 갭 길이(MGL)보다 1ms (즉, 1개 서브프레임) 이상 긴 전체 구간 동안 중단되었다. 반면, UE가 Pcell과 PScell에 서로 다른 측정 갭(MG)을 적용하게 되면, 비동기 이중 연결(DC) 경우에도 PScell과의 송수신은 측정 갭 길이(MGL)인 6ms 동안만 중단되기 때문에, 기존 대비 1ms(즉, 1개 서브프레임)에서 이득이 발생한다.
II-1. 다중 측정 갭(MG)을 적용하는 경우.
기지국은 측정 갭(MG)을 UE의 Pcell을 위한 RF 체인과 PScell을 위한 RF 체인에 대해 각기 독립적으로 설정하고 UE에게 제공해주는 것을 제안한다. 그에 따라 UE가 인터-주파수 및 인터-RAT에 대한 측정을 수행하는 방법을 제안한다. 이 경우, UE은 독립적인 2개의 측정 갭(MG)을 Pcell와 PScell에 각기 적용할 수 있다. 만약 UE가 이중 연결(DC)에서 반송파 집성(CA)도 지원할 경우, Pcell과 Scell, 혹은 PScell과 Scell에서의 측정 갭(MG)은 앞선 I절의 내용을 적용할 수 있다.
UE가 DC capability와 CA capability를 모두 갖춘 경우, 그리고 UE가 Pcell, PScell, Scell과의 송수신을 각기 별도의 RF 체인을 통해 수행하는 경우, 나아가 상기 UE가 다중 측정 갭(MG)을 수신한 경우, 전체 Pcell 혹은 PScell 성능 이득을 위하여, 상기 UE는 하나의 측정 갭을 Scell을 위한 RF 체인에 우선 적용하고, 나머지 측정 갭(MG)을 Pcell 혹은 PScell을 위한 RF 체인에 차순위로 적용하는 것을 제안한다.
NW은 UE로부터 수신된 DC capability를 통해서 UE이 Pcell와 PScell가 다른 RF chain으로 송수신하는 구조를 인지하고, 다중 측정 갭(MG)을 설정하면, UE은 Pcell와 PScell 의 다른 RF chain에 독립적인 측정 갭(MG)을 적용할 수 있다. 예를 들어, 2개의 측정 갭(MG)이 각각 Pcell에 MG_Pcell, PScell에 측정 갭(MG)_PScell이 독립적으로 설정될 때, Pcell 및 PScell의 서로간의 인터렵션을 최소화하기 위해서, 각각의 측정 갭 길이(MGL) 위치가 중첩되도록 offset를 설정하는 것을 제안한다.
II-1-1. 동기 이중 연결(DC)에서 Pcell과 PScell에 독립적인 측정 갭(MG)을 적용하는 경우.
Pcell과의 송수신은 Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안 중단된다. 추가로, 상기 Pcell과의 송수신은 추가로 PScell을 위한 측정 갭 길이(즉, MGL_PScell) 구간의 처음과 마지막 서브프레임에서 인터렵션된다. 이러한 인터렵션은 측정 갭(MG)의 갭 패턴 ID와 오프셋에 따라 달라 질 수 있다. 이에 대해서 상세하게 설명하면 다음과 같다.
MG_Pcell의 갭 패턴 ID와 MG_PScell의 갭 패턴 ID가 동일하게 설정되고, MG_Pcell의 오프셋과 MG_PScell의 오프셋이 동일하게 설정된 경우, PScell의 측정 갭 길이(MGL_PScell) 동안에 Pcell과의 송수신은 인터럽션되지 않는다.
MG_Pcell의 갭 패턴 ID와 MG_PScell의 갭 패턴 ID가 동일하게 설정되되, MG_Pcell의 오프셋과 MG_PScell의 오프셋이 6ms 이상 차이나도록 설정된 경우, PScell을 위한 측정 갭 길이(즉, MGL_PScell) 동안에 Pcell과의 송수신은 인터렵션될 수 있다. 상기 인터렵션은 2개의 서브프레임에서 발생하게 된다.
MG_Pcell의 갭 패턴 ID가 0으로 설정되고, MG_PScell의 갭 패턴 ID가 1로 설정되고, MG_Pcell의 오프셋과 MG_PScell의 오프셋이 동일하게 설정되면, Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안에 PScell과의 송수신은 인터렵션된다. 상기 인터렵션은 80ms 마다 2개 서브프레임에서 발생한다. 그리고, 상기 Pcell과의 송수신은 PScell을 위한 측정 갭 길이(즉, MGL_PScell)동안에 인터렵션되지 않는다.
MG_Pcell의 갭 패턴 ID가 0으로 설정되고, MG_PScell의 갭 패턴 ID가 1로 설정되고, MG_Pcell의 오프셋과 MG_PScell의 오프셋이 6ms 이상 차이가 나도록 설정되면, PScell을 위한 측정 갭 길이(즉, MGL_PScell) 동안에 Pcell과의 송수신은 인터렵션된다. 상기 인터렵션은 80ms 마다 2개 서브프레임에서 발생하게 한다. Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안에 PScell과의 송수신은 인터렵션된다. 상기 인터렵션은 40ms 마다 2개의 서브프레임에서 발생하게 된다. 이러한 인터렵션을 최소화하기 위해서는, MGL_Pcell과 MGL_PScell이 가능한 중첩되도록, 기지구이 MG_Pcell의 오프셋과 MG_PScell의 오프셋을 설정해 줄 것을 제안한다.
II-1-2. 비동기 이중 연결(DC)에서 Pcell과 PScell에 독립적인 측정 갭(MG)을 적용하는 경우.
Pcell과의 송수신은 Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안 중단된다. 추가로, 상기 Pcell과의 송수신은 추가로 PScell을 위한 측정 갭 길이(즉, MGL_PScell) 구간의 처음과 마지막 서브프레임에서 인터렵션된다. 이러한 인터렵션은 측정 갭(MG)의 갭 패턴 ID와 오프셋에 따라 달라 질 수 있다. 이에 대해서 상세하게 설명하면 다음과 같다.
앞선 II-1-1절과 동일하게, MG_Pcell의 갭 패턴 ID와 MG_PScell의 갭 패턴 ID가 동일하게 설정되고, MG_Pcell의 오프셋과 MG_PScell의 오프셋이 동일하게 설정된 경우, PScell의 측정 갭 길이(MGL_PScell) 동안에 Pcell과의 송수신은 인터럽션되지 않는다.
또한, 앞선 II-1-1절과 동일하게, MG_Pcell의 갭 패턴 ID와 MG_PScell의 갭 패턴 ID가 동일하게 설정되되, MG_Pcell의 오프셋과 MG_PScell의 오프셋이 6ms 이상 차이나도록 설정된 경우, PScell을 위한 측정 갭 길이(즉, MGL_PScell) 동안에 Pcell과의 송수신은 인터렵션될 수 있다. 상기 인터렵션은 2개의 서브프레임에서 발생하게 된다.
또한, 앞선 II-1-1절과 동일하게, MG_Pcell의 갭 패턴 ID가 0으로 설정되고, MG_PScell의 갭 패턴 ID가 1로 설정되고, MG_Pcell의 오프셋과 MG_PScell의 오프셋이 동일하게 설정되면, Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안에 PScell과의 송수신은 인터렵션된다. 상기 인터렵션은 80ms 마다 2개 서브프레임에서 발생한다. 그리고, 상기 Pcell과의 송수신은 PScell을 위한 측정 갭 길이(즉, MGL_PScell)동안에 인터렵션되지 않는다.
또한, 앞선 II-1-1절과 동일하게, MG_Pcell의 갭 패턴 ID가 0으로 설정되고, MG_PScell의 갭 패턴 ID가 1로 설정되고, MG_Pcell의 오프셋과 MG_PScell의 오프셋이 6ms 이상 차이가 나도록 설정되면, PScell을 위한 측정 갭 길이(즉, MGL_PScell) 동안에 Pcell과의 송수신은 인터렵션된다. 상기 인터렵션은 80ms 마다 2개 서브프레임에서 발생하게 한다. Pcell을 위한 측정 갭 길이(즉, MGL_Pcell) 동안에 PScell과의 송수신은 인터렵션된다. 상기 인터렵션은 40ms 마다 2개의 서브프레임에서 발생하게 된다. 이러한 인터렵션을 최소화하기 위해서는, MGL_Pcell과 MGL_PScell이 가능한 중첩되도록, 기지국이 MG_Pcell의 오프셋과 MG_PScell의 오프셋을 설정해 줄 것을 제안한다.
III. 본 명세서의 개시를 간략하게 요약한 제안 내용
기존에는, UE가 하나의 RF 체인만을 포함하는 것을 가정하여, 기지국이 측정 갭(MG)을 UE에게 하나만 제공하도록 하였다. 그런데, UE가 반송파 집성(CA) 및 이중 연결(DC)을 위해 2개 이상의 RF 체인을 구비하는 것으로 개선되었지만, 기지국은 여전히 하나의 측정 갭(MG)만을 UE에게 제공하였다. 이로 인해 비효율적인 측정이 수행되었다.
따라서, UE가 다중 RF 체인을 구비하는 경우, 다음과 같이 제안한다.
i) Scell(즉, SCC)가 활성 상태인 경우,
측정 갭(MG)가 적용되는 경우, 측정 갭 길이(MGL)인 6ms 동안에 Pcell 및 Scell은 스케줄링을 수행하지 않는다.
Pcell과의 송수신 효율을 증가시키기 위해서는, Scell을 위한 RF 체인에 대해 측정 갭(MG)을 적용하고, Pcell의 RF 체인에는 적용하지 않는 것이 유리하다.
측정 갭 길이(MGL) 동안에 Scell을 위한 RF 체인을 주파수 재조정하게 되면, Pcell과의 송수신은 2개의 서브프레임 에서 인터렵션된다.
Scell과의 송수신 효율을 증가시키기 위해서는, Pcell을 위한 RF 체인에 대해 측정 갭(MG)을 적용하고, Scell의 RF 체인에는 적용하지 않는 것이 유리하다.
측정 갭 길이(MGL) 동안에 Pcell을 위한 RF 체인을 주파수 재조정하게 되면, Scell과의 송수신은 2개의 서브프레임 에서 인터렵션된다.
그러므로, 기지국이 서브프레임의 스케줄링을 보다 효율적으로 할 수 있도록 하기 위하여, 기지국은 UE가 어느 RF 체인에 측정 갭(MG)을 적용하는지를 알 필요가 있다. 그러므로, UE는 상기 측정 갭을 어느 반송파(즉, 어느 셀)에 적용했는지에 대한 인디케이션을 상기 기지국에 전달할 수 있다. 만약, 상기 UE가 상기 인디케이션을 전달하지 않은 경우, 상기 기지국은 상기 측정 갭이 Scell(즉, SCC)에 적용된다고 가정할 수 있다.
ii) Scell(즉, SCC)가 비활성 상태인 경우
측정 갭(MG)은 Pcell을 위한 RF 체인에 적용될 수 있다. 만약, 상기 비활성화 상태인 Scell을 위한 RF 체인이 인터-주파수 및 인터-RAT에 대한 측정에 이용될 수 있다면, 상기 측정 갭은 Pcell을 위한 RF 체인에 적용되지 않을 수 있다.
지금까지 설명한, 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 구체적으로는 도면을 참조하여 설명하기로 한다.
도 19는 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(200)은 프로세서(processor, 201), 메모리(memory, 202) 및 RF부(RF(radio 주파수) unit, 203)을 포함한다. 메모리(202)는 프로세서(201)와 연결되어, 프로세서(201)를 구동하기 위한 다양한 정보를 저장한다. RF부(203)는 프로세서(201)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(201)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(201)에 의해 구현될 수 있다.
UE(100)는 프로세서(101), 메모리(102) 및 RF부(103)을 포함한다. 메모리(102)는 프로세서(101)와 연결되어, 프로세서(101)를 구동하기 위한 다양한 정보를 저장한다. RF부(103)는 프로세서(101)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(101)는 제안된 기능, 과정 및/또는 방법을 구현한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (17)

  1. 복수 반송파 집성을 지원하기 위해 복수의 RF(radio frequency) 체인을 구비하는 무선 기기에서 측정을 수행하는 방법으로서,
    기지국으로부터 인터-주파수 상의 측정을 수행하기 위한 측정 갭(MG)을 포함하는 측정 설정(MeasConfig) 정보를 포함하는 수신하는 단계와;
    상기 수신된 측정 갭이 1개인 경우, 상기 1개의 측정 갭을 상기 복수의 반송파들 중 어느 반송파를 위한 RF 체인에 적용할지 결정하는 단계와;
    상기 측정 갭을 상기 결정된 반송파를 위한 RF 체인에 적용하여 인터-주파수 상의 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 단계를 포함하고,
    상기 수신된 측정 갭이 1개인 경우, 상기 측정 보고는 상기 측정 갭을 어느 반송파에 적용했는지에 대한 인디케이션을 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서, 상기 결정 단계는
    상기 측정 갭을 반송파 집성(CA)의 프라이머리 셀(Pcell)을 위한 RF 체인에 적용하는 것으로 결정하는 단계를 포함하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 측정 갭은 갭 패턴 ID, 측정 갭 길이(MGL) 및 갭 오프셋 정보 중 하나 이상을 포함하고,
    상기 측정 설정 정보는 반송파 집성(CA)의 세컨더리 셀(Scell)이 비활성 상태일 때, 상기 비활성 상태의 Scell에 대한 측정을 수행하기 위한 사이클 정보(measCycleSCell)를 더 포함하는 것을 특징으로 하는 방법.
  4. 제3항에 있어서,
    상기 Scell을 측정하기 위한 사이클 정보에 따른 구간 내에 상기 측정 갭(MG)에 따라 RF 체인을 리튜닝해야 하는 시간 구간이 존재하지 않게끔, 상기 사이클 정보와 상기 측정 갭이 정해져 있는 것을 특징으로 하는 방법.
  5. 제3항에 있어서,
    상기 측정 갭(MG)은 상기 Scell을 측정하지 않는 구간에 위치하도록 정해져 있는 것을 특징으로 하는 방법.
  6. 제3항에 있어서,
    반송파 집성(CA) 능력에 대한 정보 및 이중 연결(DC) 능력에 대한 정보 중 하나 이상을 포함하는 능력 정보를 기지국으로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  7. 제6항에 있어서,
    상기 전송된 능력 정보가 상기 무선 기기가 반송파 집성(CA) 능력을 갖거나, 이중 연결(DC) 능력을 갖고 있다고 지시하는 경우, 상기 수신된 측정 설정(MeasConfig) 정보 내에는 복수 개의 측정 갭(MG)이 포함되어 있는 것을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 수신된 측정 갭이 복수 개수인 경우, 제1 측정 갭의 갭 패턴 ID와 제2 측정 갭의 갭 패턴 ID는 서로 동일하게 지정되어 있고, 상기 제1 측정 갭의 갭 오프셋 정보와 상기 제2 측정 갭의 갭 오프셋 정보도 서로 동일하게 지정되어 있는 것을 특징으로 하는 방법.
  9. 제7항에 있어서,
    상기 수신된 측정 갭이 복수 개수인 경우, 상기 사이클 정보와 상기 복수의 측정 갭(MG)은 서로 중첩된 서브프레임이 존재하지 않게끔 지정되어 있는 것을 특징으로 하는 방법.
  10. 복수 반송파 집성을 지원하기 위해 복수의 RF(radio frequency) 체인을 구비하고, 측정을 수행하는 무선 기기로서,
    기지국으로부터 인터-주파수 상의 측정을 수행하기 위한 측정 갭(MG)을 포함하는 측정 설정(MeasConfig) 정보를 포함하는 수신하는 송수신부와;
    상기 수신된 측정 갭이 1개인 경우, 상기 1개의 측정 갭을 상기 복수의 반송파들 중 어느 반송파를 위한 RF 체인에 적용할지 결정하고, 상기 측정 갭을 상기 결정된 반송파를 위한 RF 체인에 적용하여 인터-주파수 상의 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 프로세서를 포함하고,
    상기 수신된 측정 갭이 1개인 경우, 상기 측정 보고는 상기 측정 갭을 어느 반송파에 적용했는지에 대한 인디케이션을 포함하는 것을 특징으로 하는 무선 기기.
  11. 제10항에 있어서, 상기 프로세서는
    상기 측정 갭을 반송파 집성(CA)의 프라이머리 셀(Pcell)을 위한 RF 체인에 적용하는 것으로 결정하는 것을 특징으로 하는 무선 기기.
  12. 제10항에 있어서,
    상기 측정 갭은 갭 패턴 ID, 측정 갭 길이(MGL) 및 갭 오프셋 정보 중 하나 이상을 포함하고,
    상기 측정 설정 정보는 반송파 집성(CA)의 세컨더리 셀(Scell)이 비활성 상태일 때, 상기 비활성 상태의 Scell에 대한 측정을 수행하기 위한 사이클 정보(measCycleSCell)를 더 포함하는 것을 특징으로 하는 무선 기기.
  13. 제12항에 있어서,
    상기 Scell을 측정하기 위한 사이클 정보에 따른 구간 내에 상기 측정 갭(MG)에 따라 RF 체인을 리튜닝해야 하는 시간 구간이 존재하지 않게끔, 상기 사이클 정보와 상기 측정 갭이 정해져 있는 것을 특징으로 하는 무선 기기.
  14. 제12항에 있어서,
    상기 측정 갭(MG)은 상기 Scell을 측정하지 않는 구간에 위치하도록 정해져 있는 것을 특징으로 하는 무선 기기.
  15. 제12항에 있어서, 상기 송수신부는
    반송파 집성(CA) 능력에 대한 정보 및 이중 연결(DC) 능력에 대한 정보 중 하나 이상을 포함하는 능력 정보를 기지국으로 전송하는 것을 특징으로 하는 무선 기기.
  16. 제15항에 있어서,
    상기 전송된 능력 정보가 상기 무선 기기가 반송파 집성(CA) 능력을 갖거나, 이중 연결(DC) 능력을 갖고 있다고 지시하는 경우, 상기 수신된 측정 설정(MeasConfig) 정보 내에는 복수 개의 측정 갭(MG)이 포함되어 있는 것을 특징으로 하는 무선 기기.
  17. 제16항에 있어서,
    상기 수신된 측정 갭이 복수 개수인 경우, 제1 측정 갭의 갭 패턴 ID와 제2 측정 갭의 갭 패턴 ID는 서로 동일하게 지정되어 있고, 상기 제1 측정 갭의 갭 오프셋 정보와 상기 제2 측정 갭의 갭 오프셋 정보도 서로 동일하게 지정되어 있는 것을 특징으로 하는 무선 기기.
PCT/KR2016/002983 2015-03-26 2016-03-24 복수의 rf 체인을 구비하는 무선 기기에서 측정을 수행하는 방법 WO2016153286A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/558,954 US10390250B2 (en) 2015-03-26 2016-03-24 Method for performing measurement in wireless device having plurality of RF chains

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562138411P 2015-03-26 2015-03-26
US62/138,411 2015-03-26
US201562164500P 2015-05-20 2015-05-20
US62/164,500 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016153286A1 true WO2016153286A1 (ko) 2016-09-29

Family

ID=56977592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002983 WO2016153286A1 (ko) 2015-03-26 2016-03-24 복수의 rf 체인을 구비하는 무선 기기에서 측정을 수행하는 방법

Country Status (2)

Country Link
US (1) US10390250B2 (ko)
WO (1) WO2016153286A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260158A (zh) * 2016-12-28 2018-07-06 中国移动通信有限公司研究院 一种异频测量方法及装置
WO2018186721A1 (ko) * 2017-04-07 2018-10-11 삼성전자 주식회사 통신 시스템에서 핸드오버 수행 방법 및 장치
WO2018213396A1 (en) * 2017-05-16 2018-11-22 Intel IP Corporation Per ue network controlled small gap (ncsg) signalling
WO2019060493A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated APPROVING A SUBASSEMBLY OF RECEIVING CHAINS OF A COMPONENT CARRIER OUT OF MIMO COMMUNICATION FOR PERFORMING INTERFERENCE POSITIONING REFERENCE SIGNAL MEASUREMENT
WO2019060505A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated SELECTING A COMPONENT CARRIER FOR MULTIPLE OUTPUT MULTIPLE INPUT MULTIPLE COMMUNICATION (MIMO) REMOTE TUNING TO PERFORM AN INTER-FREQUENCY POSITIONING REFERENCE SIGNAL MEASUREMENT
CN111587598A (zh) * 2018-01-11 2020-08-25 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2021000754A1 (zh) * 2019-07-01 2021-01-07 华为技术有限公司 一种测量上报的方法、网络节点
EP3677064A4 (en) * 2017-08-21 2021-06-16 Nokia Technologies Oy SINGLE MEASURING GAP FOR MAIN AND SECONDARY NODE MEASUREMENTS

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11140749B2 (en) * 2016-12-13 2021-10-05 Apple Inc. User equipment (UE), generation node-B (GNB) and methods for signaling of control information for pre-coding
US11895547B2 (en) * 2017-02-03 2024-02-06 Apple Inc. Network controlled small gap configuration
CN108633044B (zh) * 2017-03-24 2021-12-28 华为技术有限公司 数据传输方法、终端设备及接入网设备
MX2020005016A (es) * 2017-11-16 2020-08-27 Ericsson Telefon Ab L M Configuracion de intervalo de medicion en conectividad dual.
KR20200093057A (ko) * 2018-01-11 2020-08-04 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 측정에서 또는 더 많은 측정들에서의 변경을 다루기 위한 제1 기지국, 제2 기지국, 사용자 장비, 및 그에 의해 수행되는 방법들
US10880857B2 (en) * 2018-04-02 2020-12-29 Intel Corporation Inter-radio access technology positioning measurements in new radio systems
SG11202009555YA (en) * 2018-04-13 2020-10-29 Nokia Technologies Oy Improving idle mode radio measurements
CN110621071B (zh) * 2018-06-20 2022-06-17 维沃移动通信有限公司 一种测量间隔的处理方法、终端及网络节点
US11558790B2 (en) * 2018-07-23 2023-01-17 Apple Inc. Configuration of multiple measurement gap patterns
WO2020033582A1 (en) * 2018-08-09 2020-02-13 Intel Corporation Techniques in measurement gap configuration in new radio (nr) related communications
WO2020060951A1 (en) * 2018-09-17 2020-03-26 Intel Corporation Techniques in multiple measurement gaps in new radio (nr)
WO2022011492A1 (en) * 2020-07-13 2022-01-20 Qualcomm Incorporated Configuring a retuning gap and amplitude and phase continuity for sensing and wireless communications
CN116724522A (zh) * 2021-01-15 2023-09-08 苹果公司 装置、用于用户装备的方法、用户装备和用于网络元件的方法
US11706758B2 (en) * 2021-02-04 2023-07-18 Qualcomm Incorporated Narrow band radio frequency chain component carrier scheduling techniques
EP4047963B1 (en) * 2021-02-22 2024-04-10 Nokia Technologies Oy Managing network sensing capabilities in a wireless network
EP4320909A1 (en) * 2021-04-06 2024-02-14 Qualcomm Incorporated Techniques for performing measurements using multiple measurement gap occasions
WO2023028980A1 (en) * 2021-09-03 2023-03-09 Lenovo (Beijing) Limited Methods and apparatuses for configuring a ranging period for a ue in cellular networks
WO2023200628A1 (en) * 2022-04-15 2023-10-19 Apple Inc. Concurrent measurement gaps for multiple radio access technologies (rats)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110009117A1 (en) * 2008-02-06 2011-01-13 Volker Breuer Flexible Sharing of Measurement Gaps
US20120178465A1 (en) * 2011-01-10 2012-07-12 Mediatek, Inc. Measurement Gap Configuration in Wireless Communication Systems with Carrier Aggregation
US20140341192A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
US20150001682A1 (en) * 2013-06-28 2015-01-01 Taiwan Semiconductor Manufacturing Company Limited Wafer edge protection structure
WO2015023222A1 (en) * 2013-08-12 2015-02-19 Telefonaktiebolaget L M Ericsson (Publ) Clustered periodic gaps for measurements in a heterogeneous network

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101845049B1 (ko) * 2010-11-08 2018-04-04 삼성전자주식회사 멀티 캐리어 환경에서 측정을 수행하기 위한 방법 및 장치
WO2012141644A1 (en) * 2011-04-11 2012-10-18 Telefonaktiebolaget L M Ericsson (Publ) Methods, user equipments and radio network controllers in a wireless network for controlling downlink communication
EP2579487B1 (en) * 2011-10-03 2014-05-21 ST-Ericsson SA Non-contiguous carrier aggregation
KR20140081118A (ko) * 2012-12-21 2014-07-01 삼성전자주식회사 이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치
US9392512B2 (en) 2013-07-11 2016-07-12 Apple Inc. Multiple cell measurement and data reception in a wireless communication device
US9749938B2 (en) * 2014-01-31 2017-08-29 Futurewei Technologies, Inc. Device, network, and method of cell discovery
EP3585098A3 (en) * 2014-02-12 2020-04-01 Nokia Technologies Oy Special handling of low priority cells
US20150245235A1 (en) * 2014-02-24 2015-08-27 Yang Tang Measurement gap patterns

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110009117A1 (en) * 2008-02-06 2011-01-13 Volker Breuer Flexible Sharing of Measurement Gaps
US20120178465A1 (en) * 2011-01-10 2012-07-12 Mediatek, Inc. Measurement Gap Configuration in Wireless Communication Systems with Carrier Aggregation
US20140341192A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
US20150001682A1 (en) * 2013-06-28 2015-01-01 Taiwan Semiconductor Manufacturing Company Limited Wafer edge protection structure
WO2015023222A1 (en) * 2013-08-12 2015-02-19 Telefonaktiebolaget L M Ericsson (Publ) Clustered periodic gaps for measurements in a heterogeneous network

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260158A (zh) * 2016-12-28 2018-07-06 中国移动通信有限公司研究院 一种异频测量方法及装置
WO2018186721A1 (ko) * 2017-04-07 2018-10-11 삼성전자 주식회사 통신 시스템에서 핸드오버 수행 방법 및 장치
US11146997B2 (en) 2017-04-07 2021-10-12 Samsung Electronics Co., Ltd. Method and device for performing handover in communication system
WO2018213396A1 (en) * 2017-05-16 2018-11-22 Intel IP Corporation Per ue network controlled small gap (ncsg) signalling
CN110537375B (zh) * 2017-05-16 2022-08-02 苹果公司 每ue网络控制的小间隙(ncsg)信令
CN110537375A (zh) * 2017-05-16 2019-12-03 英特尔Ip公司 每ue网络控制的小间隙(ncsg)信令
US11212716B2 (en) 2017-05-16 2021-12-28 Apple Inc. Per UE network controlled small gap (NCSG) signalling
EP3677064A4 (en) * 2017-08-21 2021-06-16 Nokia Technologies Oy SINGLE MEASURING GAP FOR MAIN AND SECONDARY NODE MEASUREMENTS
US11368866B2 (en) 2017-08-21 2022-06-21 Nokia Technologies Oy Single measurement gap for master node and secondary node measurements
WO2019060505A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated SELECTING A COMPONENT CARRIER FOR MULTIPLE OUTPUT MULTIPLE INPUT MULTIPLE COMMUNICATION (MIMO) REMOTE TUNING TO PERFORM AN INTER-FREQUENCY POSITIONING REFERENCE SIGNAL MEASUREMENT
US10804983B2 (en) 2017-09-22 2020-10-13 Qualcomm Incorporated Tuning a subset of receive chains of a component carrier away from MIMO communication to perform an inter-frequency positioning reference signal measurement
CN111133711B (zh) * 2017-09-22 2022-05-24 高通股份有限公司 一种用户设备ue及其操作方法、非暂时性计算机可读媒体
CN111133711A (zh) * 2017-09-22 2020-05-08 高通股份有限公司 将分量载波的接收链的子集调谐离开mimo通信以执行频率间定位参考信号测量
WO2019060493A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated APPROVING A SUBASSEMBLY OF RECEIVING CHAINS OF A COMPONENT CARRIER OUT OF MIMO COMMUNICATION FOR PERFORMING INTERFERENCE POSITIONING REFERENCE SIGNAL MEASUREMENT
CN111587598A (zh) * 2018-01-11 2020-08-25 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2021000754A1 (zh) * 2019-07-01 2021-01-07 华为技术有限公司 一种测量上报的方法、网络节点

Also Published As

Publication number Publication date
US20180084448A1 (en) 2018-03-22
US10390250B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2016153286A1 (ko) 복수의 rf 체인을 구비하는 무선 기기에서 측정을 수행하는 방법
WO2019160266A1 (en) Method for measuring frame timing difference and user equipment performing the method
WO2017222207A1 (ko) 전송 파워를 결정하는 방법 및 무선 기기
WO2019194490A1 (ko) 측정을 수행하는 방법, 사용자 장치 및 기지국
WO2018062937A1 (ko) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
WO2018128297A1 (ko) 측정 정보를 보고하는 방법 및 이를 위한 단말
WO2015163633A1 (ko) 측정 수행 방법 및 단말
WO2018021821A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 이를 지원하는 장치
WO2018231030A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2017160100A2 (ko) 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치
WO2014051254A1 (ko) 상향링크 전송 방법 및 장치
WO2017217719A1 (en) Method for receiving signals and wireless device thereof
WO2019050197A1 (ko) 싱크 래스터에 따라 ssb를 수신하는 방법 및 사용자 장치
WO2018004246A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2016052911A1 (ko) 탐색 신호에 기반한 소규모 셀 측정 방법 및 사용자 장치
WO2018021865A1 (ko) 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 지원하는 장치
WO2019098525A1 (ko) En-dc 상황에서 측정을 수행하는 방법 및 사용자 장치
WO2015190842A1 (ko) 반송파 집성에서 이중 연결로 전환하는 방법 및 사용자 장치
WO2014185673A1 (ko) 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치
WO2017123047A1 (ko) V2v 단말의 시간 동기 방법
WO2018030841A1 (ko) 무선 통신 시스템에서 단말이 참조 신호 측정 정보를 보고하는 방법 및 이를 지원하는 장치
WO2018084660A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2016036097A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법
WO2014123387A1 (ko) 단말의 간섭 제거를 위한 지원 정보 전송 방법 및 서빙셀 기지국
WO2016072765A2 (ko) 소규모 셀 측정 방법 및 사용자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16769104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15558954

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16769104

Country of ref document: EP

Kind code of ref document: A1