WO2017219694A1 - 冷藏冷冻设备 - Google Patents

冷藏冷冻设备 Download PDF

Info

Publication number
WO2017219694A1
WO2017219694A1 PCT/CN2017/074604 CN2017074604W WO2017219694A1 WO 2017219694 A1 WO2017219694 A1 WO 2017219694A1 CN 2017074604 W CN2017074604 W CN 2017074604W WO 2017219694 A1 WO2017219694 A1 WO 2017219694A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
air
chamber
nitrogen
gas
Prior art date
Application number
PCT/CN2017/074604
Other languages
English (en)
French (fr)
Inventor
刘浩泉
姜波
王丽燕
辛若武
Original Assignee
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司 filed Critical 青岛海尔股份有限公司
Priority to EP17814433.3A priority Critical patent/EP3473956B1/en
Priority to AU2017282744A priority patent/AU2017282744B2/en
Priority to US16/302,089 priority patent/US10890369B2/en
Priority to KR1020187031583A priority patent/KR102142203B1/ko
Priority to RU2018141470A priority patent/RU2716113C1/ru
Priority to JP2018560935A priority patent/JP6665320B2/ja
Publication of WO2017219694A1 publication Critical patent/WO2017219694A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/0438Physical processing only by making use of membranes
    • C01B21/0444Physical processing only by making use of membranes characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0455Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B21/0461Carbon based materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • F25D23/126Water cooler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • C01B2210/0015Physical processing by adsorption in solids characterised by the adsorbent
    • C01B2210/0017Carbon-based materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0045Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments

Definitions

  • the invention relates to the field of article storage, and in particular to a refrigerating and freezing device.
  • the present invention has been made in order to provide a refrigerating and freezing apparatus that overcomes the above problems or at least partially solves the above problems.
  • a further object of the invention is to enable a refrigerated freezer to maintain the biological activity of the food.
  • Another further object of the present invention is to miniaturize the nitrogen generator of a refrigerating and freezing apparatus.
  • a refrigerating and freezing apparatus comprising: a casing defining a storage compartment, a first sealed space and a second sealed space being disposed inside the storage compartment; and a nitrogen generating device,
  • the utility model comprises an adsorption device and a pneumatic compressor, the air compressor is controlled to supply compressed air to the adsorption device, and the adsorption device is configured to prepare nitrogen gas for supplying to the first closed space and for supplying to the second closed space by using compressed air. Oxygen-rich gas.
  • the adsorption device further includes: a first cylinder defining a first adsorption chamber and a nitrogen chamber separated from each other, wherein the nitrogen chamber communicates with the first sealed space; and the second barrel defines an interior thereof An isolated second adsorption chamber and an air chamber; and the air compressor communicates with the air chamber through the air intake tube to controlably supply compressed air to the air chamber; the first adsorption chamber and the second adsorption chamber are each provided with a carbon molecular sieve, air
  • the storage tank alternately supplies compressed air to the first adsorption tank and the second adsorption tank, so that one of the first adsorption tank and the second adsorption tank adsorbs oxygen-rich gas to prepare nitrogen gas, and another adsorption tank pair completes adsorption.
  • the carbon molecular sieve is desorbed, wherein the adsorption chamber for preparing nitrogen is connected to the nitrogen chamber, and the adsorption chamber for desorption is connected to the second sealed space.
  • the nitrogen generator further comprises: a gas path reversing valve having five gas delivery ports, wherein the first gas delivery port is connected to the first adsorption reservoir, and the second gas delivery port is connected to the second adsorption reservoir, and the third The air inlet port communicates with the air chamber, and the air path switching valve is further configured to alternately connect the third air inlet to the first air outlet and the second air outlet, and when the third air outlet is connected to the first air outlet
  • the fourth gas delivery port is connected to the second gas delivery port, the air storage chamber supplies compressed air to the first adsorption chamber, and the fourth gas delivery port discharges the oxygen-enriched gas desorbed by the second adsorption chamber, and the third gas delivery port
  • the fifth gas delivery port is connected to the first gas delivery port
  • the air storage chamber supplies compressed air to the second adsorption storage chamber
  • the fifth gas delivery port discharges the oxygen-enriched gas desorbed by the first adsorption storage tank.
  • the nitrogen generator further includes: a tee pipe connecting the fourth gas outlet port and the fifth gas delivery port, and configured to combine the fourth gas outlet port and the fifth gas delivery port into one oxygen-rich gas exhaust gas mouth.
  • the nitrogen generator further comprises: a three-way solenoid valve having three vents, the first vent of which communicates with the oxygen-enriched gas exhaust port through the oxygen-rich gas output pipe, and the second vent port communicates with the second seal a space, the third vent communicates with the outside air of the refrigerating and freezing device; and the first vent selectively communicates with the second vent or the third vent, and in the case where the first vent communicates with the second vent, the oxygen is rich The body is transported to the inside of the second sealed space, and in the case where the first vent is connected to the third vent, the oxygen-rich gas is discharged to the outside air.
  • a three-way solenoid valve having three vents, the first vent of which communicates with the oxygen-enriched gas exhaust port through the oxygen-rich gas output pipe, and the second vent port communicates with the second seal a space, the third vent communicates with the outside air of the refrigerating and freezing device; and the first vent selectively communicates with the second vent or the third vent, and in the case where the first vent
  • the nitrogen generator further includes: a connecting pipe connecting the first adsorption tank and the second adsorption tank; and a pressure equalizing valve serially connected to the connecting pipe and configured to be in the first adsorption tank and the second adsorption tank One of the stops adsorbs and prepares to desorb when the connecting pipe is opened to equalize the internal pressure of the first adsorption tank and the second adsorption tank.
  • the nitrogen generator further comprises: a first outlet pipe connecting the first adsorption tank and the nitrogen chamber; a second outlet pipe connecting the second adsorption chamber and the nitrogen chamber; and two check valves respectively disposed at the first
  • the air outlet pipe and the second air outlet pipe are configured to allow gas to flow in one direction from the first adsorption tank or the second adsorption tank toward the nitrogen chamber to prevent gas backflow in the nitrogen chamber.
  • the nitrogen generator further includes: a water-oil separator disposed on the air intake pipe and configured to Filter the air entering the air compartment.
  • the first cylinder and the second cylinder are arranged side by side inside the refrigerating and freezing equipment, the first adsorption tank and the nitrogen chamber are arranged along the extending direction of the first cylinder, and the second adsorption tank and the air chamber are along the second cylinder.
  • the extending direction of the body is arranged;
  • the first adsorption tank and the second adsorption chamber are respectively adjacent to the ends of the first cylinder and the second cylinder in the same direction, and the nitrogen chamber and the air chamber are respectively adjacent to the other end of the first cylinder and the second cylinder in the same direction. .
  • the present invention provides a refrigerating and freezing apparatus in which an internal storage space is provided with a first sealed space and a second sealed space.
  • the refrigerating and freezing apparatus is also provided with a nitrogen generating device.
  • the nitrogen generator includes an adsorption device and an air compressor, and the adsorption device is configured to prepare nitrogen gas for supplying to the first sealed space and oxygen-rich gas for supplying to the second closed space by using compressed air supplied from the air compressor. .
  • the refrigerating and freezing apparatus of the present invention increases the oxygen content of the second sealed space by supplying an oxygen-rich gas to the second sealed space, so that the refrigerating and freezing apparatus can ensure the biological activity of the food in the second sealed space.
  • the first sealed space is filled with nitrogen gas, which improves the fresh-keeping ability of the first sealed space, and the nitrogen gas and the remaining oxygen-enriched gas produced by the nitrogen generator are used for preservation and preservation of the refrigerating and freezing equipment, respectively, and the system is fully utilized.
  • the function of the nitrogen plant and the saving of air feedstock are used for preservation and preservation of the refrigerating and freezing equipment, respectively, and the system is fully utilized.
  • the refrigerating and freezing apparatus of the present invention wherein the nitrogen generating device integrates the first adsorption tank and the nitrogen chamber into a first cylinder, and integrates the second adsorption chamber and the air tank into a second cylinder, thereby simplifying the nitrogen generating device Structure.
  • the main body of the entire nitrogen generator has only two cylinders, and the miniaturization of the nitrogen generator is realized so as to be disposed inside the storage device.
  • FIG. 1 is a schematic view of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a nitrogen generator of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a direction of a pneumatic directional control valve of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing another direction of a pneumatic directional control valve of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • Figure 5 is a schematic illustration of the control principle of a pneumatic reversing valve of a refrigerating and freezing apparatus in accordance with one embodiment of the present invention.
  • FIG. 1 is a schematic view of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • the refrigerating and freezing apparatus may be a refrigerating apparatus such as a refrigerator or a freezer, and includes a tank 10 and a nitrogen generator 13.
  • the casing 10 defines a storage compartment, and the interior of the storage compartment is provided with a first sealed space 11 and a second sealed space 12.
  • the inside of the first sealed space 11 is filled with nitrogen gas for preserving the food inside thereof, and the first sealed space 11 can be used for storing vegetables, fruits and the like.
  • the inside of the second sealed space 12 is filled with an oxygen-rich gas for maintaining the biological activity of the food therein, and the second sealed space 12 can be used for storing aquatic products such as fish.
  • the nitrogen generator 13 of the present embodiment uses the PSA nitrogen production method to remove oxygen in the air to produce pure nitrogen.
  • PSA Pressure Swing Adsorption is currently a mainstream technology for producing gases. Pressure swing adsorption specifically refers to pressurizing the mixed gas under the condition of constant temperature, and adsorbing excess impurity gas by the adsorbent to obtain a relatively pure single gas, and then using reduced pressure (vacuum) or atmospheric pressure. The method desorbs the impurity gas in the adsorbent to make secondary use of the adsorbent.
  • Carbon molecular sieve is a common adsorbent for achieving oxygen-nitrogen separation and extracting nitrogen from air.
  • the PSA nitrogen production method utilizes this principle to produce pure nitrogen by using air as a raw material and using pressure swing adsorption technology to selectively adsorb oxygen and nitrogen by carbon molecular sieves to separate nitrogen and oxygen in the air.
  • the nitrogen generator 13 of the present embodiment fills the remaining air after nitrogen production, that is, oxygen-enriched gas, into the second sealed space 12 to maintain the biological activity of the food therein and to ensure the cleanliness of the food.
  • the nitrogen generator 13 of the present embodiment includes an adsorption device 21 and an air compressor 20, wherein the air compressor 20 is configured to supply compressed air to the adsorption device 21 in a controlled manner, and the adsorption device 21 is configured to be prepared by using compressed air for supply to the first Nitrogen in a confined space 11 and an oxygen-rich gas for supplying to the second enclosed space 12.
  • the refrigerating and freezing apparatus of the present invention increases the nitrogen content of the first sealed space 11 and the oxygen content of the second sealed space 12 by supplying nitrogen gas to the first sealed space 11 and supplying oxygen-enriched gas to the second sealed space 12, so that the refrigeration is frozen.
  • the device can improve the fresh-keeping ability of the first sealed space 11 and ensure the biological activity of the food in the second sealed space 12.
  • the adsorption device 21 in this embodiment further includes a first cylinder 211 and a second cylinder 212.
  • the first cylinder 211 defines a first adsorption tank 213 and a nitrogen chamber 214 separated from each other, and the nitrogen chamber 214 communicates with the first sealed space 11;
  • the second cylinder 212 defines a second adsorption chamber 215 and an air chamber separated from each other. 216.
  • the air compressor 20 communicates with the air tank 216 through the air intake pipe to controlly supply compressed air to the air tank 216; the first adsorption tank 213 and the second adsorption tank 215 are each provided with a carbon molecular sieve, and the air tank 216 is controlled alternately.
  • the first adsorption tank 213 and the second adsorption tank 215 are supplied with compressed air, so that one of the first adsorption tank 213 and the second adsorption tank 215 adsorbs the oxygen-rich gas to prepare nitrogen gas, and the other adsorption tank completes the adsorption.
  • the carbon molecular sieve is desorbed.
  • the adsorption chamber for preparing nitrogen gas is connected to the nitrogen chamber 214, and the adsorption chamber for desorption is connected to the second sealed space 12.
  • the air compressor 20 supplies compressed air to the first adsorption chamber 213, the air pressure in the first adsorption chamber 213 rises, the carbon molecular sieve inside adsorbs the oxygen-rich gas in the air, and the remaining nitrogen gas is input into the nitrogen chamber.
  • nitrogen gas is further introduced into the first sealed space 11 by the nitrogen chamber 214.
  • the air pressure in the second adsorption chamber 215 is lowered, and the carbon molecular sieve inside thereof desorbs the adsorbed oxygen-rich gas and supplies it to the second sealed space 12.
  • the nitrogen generating device 13 of the present embodiment integrates the first adsorption chamber 213 and the nitrogen chamber 214 into a first cylinder 211, and integrates the second adsorption chamber 215 and the air chamber 216 into a second cylinder 212, compared to conventional nitrogen production.
  • the device 13 simplifies the structure and realizes miniaturization of the nitrogen generator 13.
  • the nitrogen generator 13 of the present embodiment further includes a gas passage switching valve 22.
  • 3 is a schematic view showing one direction of the air passage switching valve 22 of the refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing another direction of the air passage switching valve 22 of the refrigerating and freezing apparatus according to an embodiment of the present invention.
  • the gas path switching valve 22 has five gas delivery ports, the first gas delivery port 221 communicates with the first adsorption reservoir 213, the second gas delivery port 222 communicates with the second adsorption reservoir 215, and the third gas delivery port 223 communicates with the air.
  • Warehouse 216 communicates with the air.
  • the gas path switching valve 22 is also configured such that the third gas delivery port 223 alternately communicates with the first gas delivery port 221 and the second gas delivery port 222.
  • the third air inlet 223 communicates with the first gas delivery port 221
  • the fourth gas delivery port 224 communicates with the second gas delivery port 222
  • the air storage chamber 216 supplies compressed air to the first adsorption reservoir 213, and is supplied by the fourth gas delivery port.
  • the port 224 discharges the oxygen-enriched gas desorbed by the second adsorption chamber 215; when the third gas delivery port 223 communicates with the second gas delivery port 222, the fifth gas delivery port 225 communicates with the first gas delivery port 221, and the air storage chamber 216
  • the second adsorption chamber 215 supplies compressed air, and is discharged from the fifth adsorption port 225 by the oxygen-enriched gas desorbed by the first adsorption chamber 213.
  • the air passage switching valve 22 in this embodiment is a three-position five-way solenoid valve
  • FIG. 5 is a schematic diagram showing the control principle of the air passage switching valve of the refrigerating and freezing apparatus according to an embodiment of the present invention.
  • Pneumatic reversing valve 22 There is a first coil 226 and a second coil 227. When the first coil 226 is energized, the third air inlet 223 communicates with the first air inlet 221, the fourth air inlet 224 communicates with the second air inlet 222, and the air enters the first adsorption chamber 213 by the air chamber 216, first The internal pressure of the adsorption chamber 213 is increased, and the carbon molecular sieve adsorbs the oxygen-rich gas.
  • the air chamber 216 stops supplying air to the second adsorption chamber 215, the air pressure in the second adsorption chamber 215 is lowered, and desorption is started, and the oxygen-enriched gas desorbed by the second adsorption chamber 215 enters the air path reversing valve through the second gas delivery tube. Within 22, it is finally discharged by the fourth gas delivery port 224.
  • the communication mode is changed accordingly, and the first adsorption chamber 213 is desorbed and the second adsorption chamber 215 is adsorbed, which is not described herein.
  • the first air inlet 221 and the second air inlet 222 are both closed, and the air chamber 216 does not supply air to the first adsorption tank 213 and the second adsorption tank 215.
  • the nitrogen generator 13 of the present embodiment further includes a tee pipe 23.
  • the tee 23 communicates with the fourth gas delivery port 224 and the fifth gas delivery port 225, and is configured to combine the two gas delivery ports (ie, the fourth gas delivery port 224 and the fifth gas delivery port 225) into one oxygen-rich gas.
  • the oxygen-enriched gas generated by the nitrogen generator 13 of the present embodiment is alternately discharged from the fourth gas delivery port 224 and the fifth gas delivery port 225, and the three-way pipe 23 collects the oxygen gas discharged from the two gas delivery ports together, and then The oxygen-rich gas exhaust port 231 is discharged.
  • the nitrogen generator 13 of the present embodiment further includes a three-way solenoid valve 24.
  • the three-way solenoid valve 24 has three vents, and the first vent 241 communicates with the oxygen-enriched gas exhaust port 231 through the oxygen-rich gas output pipe, and the second vent port 242 communicates with the second sealed space 12, and the third vent thereof 243 Connect the outside air of the refrigerating and freezing equipment.
  • the first vent 241 selectively communicates with the second vent 242 or the third vent 243, and in the case where the first vent 241 communicates with the second vent 242, the oxygen-enriched gas is delivered to the inside of the second sealed space 12, In the case where the first vent 241 communicates with the third vent 243, the oxygen-rich gas is discharged to the outside air.
  • the refrigerating and freezing apparatus of the present embodiment can selectively charge the oxygen-enriched gas generated by the nitrogen generating unit 13 into the outside air of the second sealed space 12 or the refrigerating and freezing apparatus.
  • the second vent 242 communicates with the inside of the second sealed space 12, and when the first vent 241 of the three-way solenoid valve 24 communicates with the second vent 242, the oxygen-rich gas is discharged from the second vent 242 and is input to the second sealed space 12 internal.
  • the third vent 243 of the three-way solenoid valve 24 communicates with the outside of the refrigerating and freezing apparatus. When the first vent 241 communicates with the third vent 243, the oxygen-enriched gas is discharged into the outside air by the third vent 243.
  • the discharge of oxygen-rich gas into the outside air can increase the oxygen concentration in the user's room and improve the user's comfort.
  • the nitrogen generator 13 further includes a connecting pipe 25 and a pressure equalizing valve 26.
  • the connecting pipe 25 communicates with the first adsorption tank 213 and the second adsorption tank 215.
  • the pressure equalizing valve 26 is serially connected to the connecting pipe 25 and configured to be in the first When one of the adsorption tank 213 and the second adsorption tank 215 stops adsorbing and prepares to desorb, the connection pipe 25 is opened to equalize the air pressure inside the first adsorption tank 213 and the second adsorption tank 215.
  • the second adsorption chamber 215 ends the desorption process, ready to enter the adsorption process, at which time the pressure equalization valve 26 is opened, the first adsorption chamber 213 and the first The two adsorption chambers 215 are in communication. Since the first adsorption chamber 213 is in a high air pressure state, the second adsorption chamber 215 is in a low air pressure state, and the gas in the first adsorption chamber 213 rapidly flows into the second adsorption chamber 215, and the internal pressures of the two adsorption chambers are the same. The air pressure in the first adsorption chamber 213 drops rapidly, which is favorable for subsequent desorption, and the air pressure in the second adsorption chamber 215 rises rapidly, which is favorable for subsequent oxygen adsorption.
  • the nitrogen generator 13 further includes a first air outlet pipe 271, a second air outlet pipe 272, and two check valves 28.
  • the first air outlet pipe 271 communicates with the first adsorption tank 213 and the nitrogen gas tank 214.
  • the second outlet pipe 272 is connected to the second adsorption tank 215 and the nitrogen tank 214.
  • the first adsorption chamber 213 and the second adsorption chamber 215 will generate nitrogen gas into the nitrogen chamber 214 through the above two tubes.
  • Two check valves 28 are respectively disposed on the first air outlet pipe 271 and the second air outlet pipe 272 to allow gas to flow in one direction from the first adsorption tank 213 or the second adsorption tank 215 toward the nitrogen gas tank 214 to prevent the nitrogen gas tank 214 from flowing. Internal gas reflux.
  • the nitrogen generator 13 further includes a water separator, and the oil water separator is disposed on the air intake pipe to filter the air entering the air tank 216.
  • an air intake filter is added to the suction end of the air compressor 20 to remove impurities from the air to prevent the carbon molecular sieve from deactivating.
  • first cylinder 211 and the second cylinder 212 are juxtaposed inside the casing 10 of the refrigerating and freezing apparatus, and one ends of the first adsorption tank 213 and the second adsorption tank 215 are disposed in the same direction, and the air One end of the bin 216 and the nitrogen bunker 214 are oriented in the other direction to facilitate pipe routing. That is, the first adsorption chamber 213 and the nitrogen chamber 214 are arranged in the extending direction of the first cylinder 211, and the second adsorption chamber 215 and the air chamber 216 are arranged in the extending direction of the second cylinder 212.
  • first adsorption chamber 213 at the end of the first cylindrical body 211 is disposed in the same direction as the end of the second adsorption chamber 215 at the end of the second cylindrical body 212, and the nitrogen chamber 214 is located at the end of the first cylindrical body 211.
  • One end is disposed in the same direction as the end of the air chamber 216 at the end of the second cylinder 212.
  • the first adsorption chamber 213 and the second adsorption chamber 215 are respectively adjacent to the ends of the first cylinder 211 and the second cylinder 212 in the same direction
  • the nitrogen chamber 214 and the air chamber 216 are adjacent to the first cylinder 211 and The other end of the second cylinder 212 in the same direction.
  • the present embodiment provides a refrigerating and freezing apparatus in which an internal storage space is provided with a first sealed space 11 and a second sealed space 12.
  • the refrigerating and freezing apparatus is also provided with a nitrogen generator 13.
  • the nitrogen generator 13 includes an adsorption device 21 configured to be prepared using compressed air for supply to the first dense The nitrogen in the closed space 11 and the oxygen-rich gas for supplying to the second closed space 12.
  • the refrigerating and freezing apparatus of the present invention increases the oxygen content of the second sealed space 12 by supplying the oxygen-enriched gas to the second sealed space 12, thereby ensuring the biological activity of the food in the second sealed space 12.
  • the first sealed space 11 is filled with nitrogen gas, which improves the fresh-keeping ability of the first sealed space 11.
  • the nitrogen gas and the remaining oxygen-enriched gas produced by the nitrogen generator 13 are used for preservation and preservation of the refrigerating and freezing equipment, respectively, and fully utilized.
  • the function of the nitrogen generator 13 is saved, and the air raw material is saved.
  • the nitrogen generator 13 integrates the first adsorption tank 213 and the nitrogen chamber 214 into the first cylinder 211, and the second adsorption tank 215 and the air tank 216 into the second cylinder. 212, thereby simplifying the structure of the nitrogen generator 13.
  • the main body of the entire nitrogen generator 13 has only two cylinders, and the miniaturization of the nitrogen generator 13 is realized so as to be disposed inside the storage device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冷藏冷冻设备,其内部储物空间设置有第一密封空间(11)和第二密封空间(12)。冷藏冷冻设备设置有制氮装置(13),制氮装置(13)包括吸附装置(21)以及空压机(20)。空压机(20)向吸附装置(21)提供压缩空气,吸附装置(21)利用压缩空气制备提供至第一密封空间(11)的氮气和提供至第二密封空间(12)的富氧气体。该设备提高了第一密封空间(11)的保鲜能力,保证了第二密封空间(12)内食物的生物活性。

Description

冷藏冷冻设备 技术领域
本发明涉及物品存储领域,特别涉及一种冷藏冷冻设备。
背景技术
随着人们生活水平的不断提高,水产品已经逐渐走上人们的餐桌,即使在偏离沿海的内陆地区,鲜活水产品也是随处可见。传统的家用冰箱一般仅仅能够实现水产品的冷冻保鲜功能,就是在低温条件下,尤其是当温度降到零下10℃以下时,水产品体内的水分结成冰,形成一个细菌不能生长发育的环境,进而实现水产品冷藏保鲜。
但是,冷冻保鲜只是延缓了水产品的氧化过程,无法保证水产品的存活,因此必然导致其新鲜程度下降。另外,在对水产进行冷藏和冷冻后,会造成水产品营养价值下降,且冷冻后的水产品需要较长时间的解冻才能够进行烹饪,而在解冻过程中水产品的营养价值会再次流失,因此传统的冰箱既增加了时间成本,又造成了水产品营养价值的大量流失以及新鲜程度的下降,进而影响了食物的品质。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的冷藏冷冻设备。
本发明一个进一步的目的是使得冷藏冷冻设备能够维持食物的生物活性。
本发明的另一个进一步的目的是使冷藏冷冻设备的制氮装置小型化。
根据本发明的一个方面,本发明提供了一种冷藏冷冻设备,包括:箱体,限定有储物间室,储物间室内部设置有第一密封空间和第二密封空间;制氮装置,其包括吸附装置以及空压机,空压机受控地向吸附装置提供压缩空气,吸附装置配置成利用压缩空气制备用于提供至第一密闭空间的氮气和用于提供至第二密闭空间的富氧气体。
可选地,吸附装置还包括:第一筒体,其内部限定有相互隔离的第一吸附仓以及氮气仓,氮气仓连通第一密封空间;第二筒体,其内部限定有相互 隔离的第二吸附仓以及空气仓;并且空压机通过空气进气管连通空气仓,以受控地向空气仓提供压缩空气;第一吸附仓和第二吸附仓内均设置有碳分子筛,空气仓受控地交替向第一吸附仓和第二吸附仓提供压缩空气,使第一吸附仓和第二吸附仓中的一个吸附仓吸附富氧气体以制备氮气时,另一个吸附仓对完成吸附的碳分子筛进行解吸,其中制备氮气的吸附仓连通至氮气仓,进行解吸的吸附仓连通至第二密封空间。
可选地,制氮装置还包括:气路换向阀,具有五个输气口,其第一输气口连通第一吸附仓,其第二输气口连通第二吸附仓,其第三输气口连通空气仓,并且气路换向阀还配置成使第三输气口交替地连通第一输气口以及第二输气口,在第三输气口连通第一输气口时,其第四输气口连通第二输气口,空气仓向第一吸附仓提供压缩空气,并由第四输气口排出第二吸附仓解吸出的富氧气体,在第三输气口连通第二输气口时,其第五输气口连通第一输气口,空气仓向第二吸附仓提供压缩空气,并由第五输气口排出第一吸附仓解吸出的富氧气体。
可选地,制氮装置还包括:三通管,连通第四输气口和第五输气口,并配置成将第四输气口和第五输气口合并为一个富氧气体排气口。
可选地,制氮装置还包括:三通电磁阀,其具有三个通气口,其第一通气口通过富氧气体输出管连通富氧气体排气口,其第二通气口连通第二密封空间,其第三通气口连通冷藏冷冻设备的外界空气;并且第一通气口可选择地连通第二通气口或第三通气口,在第一通气口连通第二通气口的情况下,富氧气体输送至第二密封空间内部,在第一通气口连通第三通气口的情况下,富氧气体排放至外界空气。
可选地,制氮装置还包括:连接管,连通第一吸附仓与第二吸附仓;以及均压阀,串接在连接管上,并配置成在第一吸附仓与第二吸附仓中的一个停止吸附并准备解吸时打开连接管,以使得第一吸附仓与第二吸附仓内部气压均衡。
可选地,制氮装置还包括:第一出气管,连通第一吸附仓和氮气仓;第二出气管,连通第二吸附仓和氮气仓;以及两个单向阀,分别设置于第一出气管、第二出气管上,配置成,允许气体由第一吸附仓或第二吸附仓朝向氮气仓单向流通,以防止氮气仓内气体回流。
可选地,制氮装置还包括:油水分离器,设置于空气进气管上,配置成 对进入空气仓的空气进行过滤。
可选地,第一筒体和第二筒体并排设置于冷藏冷冻设备内部,第一吸附仓和氮气仓沿第一筒体的延伸方向排列布置,第二吸附仓和空气仓沿第二筒体的延伸方向排列布置;且
第一吸附仓和第二吸附仓分别邻近第一筒体和第二筒体的同一方向的端部,氮气仓和空气仓分别邻近第一筒体和第二筒体的同一方向的另一端部。
本发明提供了一种冷藏冷冻设备,其内部储物空间设置有第一密封空间和第二密封空间。冷藏冷冻设备还设置有制氮装置。制氮装置包括吸附装置和空压机,吸附装置配置成利用空压机提供的压缩空气制备用于提供至第一密闭空间的氮气和用于提供至第二密闭空间的富氧气体。。本发明的冷藏冷冻设备通过向第二密封空间提供富氧气体,增加第二密封空间的氧气含量,使得冷藏冷冻设备能够保证第二密封空间内食物的生物活性。
另外,第一密封空间被充入氮气,提高了第一密封空间的保鲜能力,制氮装置的生产的氮气和剩余的富氧气体分别用于冷藏冷冻设备的保鲜和保活,充分利用了制氮装置的机能,并且节省了空气原料。
进一步地,本发明的冷藏冷冻设备,其中制氮装置将第一吸附仓和氮气仓整合为第一筒体,将第二吸附仓和空气仓整合为第二筒体,从而简化了制氮装置的结构。整个制氮装置的主体只有两个筒体,实现了制氮装置的小型化,以便布置于储物装置内部。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻设备的示意图;
图2是根据本发明一个实施例的冷藏冷冻设备的制氮装置的示意图;
图3是根据本发明一个实施例的冷藏冷冻设备的气路换向阀的一个方向示意图;
图4是根据本发明一个实施例的冷藏冷冻设备的气路换向阀的另一个方向示意图;以及
图5是根据本发明一个实施例的冷藏冷冻设备的气路换向阀的控制原理的示意图。
具体实施方式
本实施例首先提供了一种冷藏冷冻设备,图1是根据本发明一个实施例的冷藏冷冻设备的示意图。该冷藏冷冻设备可以为冰箱、冰柜等冷藏装置,其包括:箱体10和制氮装置13。箱体10限定有储物间室,储物间室内部设置有第一密封空间11和第二密封空间12。第一密封空间11内部被充入氮气,以用于对其内部的食物进行保鲜,第一密封空间11可用于储藏蔬菜、水果等食物。第二密封空间12内部被充入富氧气体,以用于保持其内部食物的生物活性,第二密封空间12可用于储鱼类等水产品。
本实施例的制氮装置13利用PSA制氮方法,将空气中氧气去除从而产生纯净的氮气。PSA变压吸附(Pressure Swing Adsorption)是目前生产气体的一项主流技术。变压吸附具体是指在温度不变的情况下,对混合气体进行加压,并利用吸附剂吸附多余的杂质气体从而获得较为纯净的单一气体,再用减压(抽真空)或常压的方法使得吸附剂内的杂质气体解吸出来,以对吸附剂进行二次利用。碳分子筛是目前实现氧氮分离、从空气中提取氮气的常用吸附剂,在吸附压力相同时,碳分子筛对氧的吸附量大大高于对氮的吸附量。PSA制氮方法利用这一原理,以空气为原料,运用变压吸附技术,利用碳分子筛对氧和氮的选择性吸附,实现空气中的氮和氧分离,从而生产出纯净的氮气。本实施例的制氮装置13将制氮后的剩余的空气,即富氧气体充入第二密封空间12,以保持其内部食物的生物活性,并保证食物的清洁度。
本实施例的制氮装置13包括吸附装置21以及空压机20,其中空压机20配置成受控地向吸附装置21提供压缩空气,吸附装置21配置成利用压缩空气制备用于提供至第一密闭空间11的氮气和用于提供至第二密闭空间12的富氧气体。本发明的冷藏冷冻设备通过向第一密封空间11提供氮气、向第二密封空间12提供富氧气体,增加了第一密封空间11的氮气含量和第二密封空间12的氧气含量,使得冷藏冷冻设备能够提高第一密封空间11的保鲜能力、保证第二密封空间12内食物的生物活性。
图2是根据本发明一个实施例的冷藏冷冻设备的制氮装置13的示意图。本实施例中的吸附装置21还包括:第一筒体211、第二筒体212。第一筒体211内部限定有相互隔离的第一吸附仓213以及氮气仓214,氮气仓214连通第一密封空间11;第二筒体212内部限定有相互隔离的第二吸附仓215以及空气仓216。空压机20通过空气进气管连通空气仓216,以受控地向空气仓216提供压缩空气;第一吸附仓213和第二吸附仓215内均设置有碳分子筛,空气仓216受控地交替向第一吸附仓213和第二吸附仓215提供压缩空气,使第一吸附仓213和第二吸附仓215中的一个吸附仓吸附富氧气体以制备氮气时,另一个吸附仓对完成吸附的碳分子筛进行解吸。制备氮气的吸附仓连通至氮气仓214,进行解吸的吸附仓连通至第二密封空间12。例如,空压机20向第一吸附仓213提供压缩空气,第一吸附仓213内的气压升高,其内部的碳分子筛对空气中的富氧气体进行吸附,并将剩余的氮气输入氮气仓214,再由氮气仓214将氮气输入第一密封空间11。同时,第二吸附仓215内的气压降低,其内部的碳分子筛解吸出吸附的富氧气体,并向第二密封空间12提供。本实施例的制氮装置13将第一吸附仓213和氮气仓214整合为第一筒体211,将第二吸附仓215和空气仓216整合为第二筒体212,相比较传统的制氮装置13,简化了其结构,实现了制氮装置13的小型化。
本实施例的制氮装置13还包括:气路换向阀22。图3是根据本发明一个实施例的冷藏冷冻设备的气路换向阀22的一个方向示意图;图4是根据本发明一个实施例的冷藏冷冻设备的气路换向阀22的另一个方向示意图。气路换向阀22具有五个输气口,其第一输气口221连通第一吸附仓213,其第二输气口222连通第二吸附仓215,其第三输气口223连通空气仓216。气路换向阀22还配置成使第三输气口223交替地连通第一输气口221以及第二输气口222。在第三输气口223连通第一输气口221时,其第四输气口224连通第二输气口222,空气仓216向第一吸附仓213提供压缩空气,并由第四输气口224排出第二吸附仓215解吸出的富氧气体;在第三输气口223连通第二输气口222时,其第五输气口225连通第一输气口221,空气仓216向第二吸附仓215提供压缩空气,并由第五输气口225排出第一吸附仓213解吸出的富氧气体。
本实施例中的气路换向阀22为三位五通电磁阀,图5是根据本发明一个实施例的冷藏冷冻设备的气路换向阀的控制原理的示意图。气路换向阀22 具有第一线圈226和第二线圈227。当第一线圈226通电时,第三输气口223连通第一输气口221,第四输气口224连通第二输气口222,空气由空气仓216进入第一吸附仓213,第一吸附仓213内部气压升高,碳分子筛对富氧气体进行吸附。同时,空气仓216停止对第二吸附仓215提供空气,第二吸附仓215内气压降低,并开始解吸,第二吸附仓215解吸出的富氧气体经第二输气管进入气路换向阀22内,最终由第四输气口224排出。当第二线圈227通电时,连通方式相应改变,第一吸附仓213解吸、第二吸附仓215吸附,这里不进行赘述。在第一线圈226和第二线圈227均断电时,第一输气口221、第二输气口222均封闭,空气仓216不向第一吸附仓213和第二吸附仓215提供空气。
本实施例的制氮装置13还包括:三通管23。三通管23连通第四输气口224和第五输气口225,并配置成将两个输气口(即第四输气口224和第五输气口225)合并为一个富氧气体排气口231。本实施例的制氮装置13产生的富氧气体交替地由第四输气口224和第五输气口225排出,三通管23将两个输气口排出的氧气汇集到一起,再由富氧气体排气口231排出。
本实施例的制氮装置13还包括:三通电磁阀24。三通电磁阀24具有三个通气口,其第一通气口241通过富氧气体输出管连通富氧气体排气口231,其第二通气口242连通第二密封空间12,其第三通气口243连通冷藏冷冻设备的外界空气。第一通气口241可选择地连通第二通气口242或第三通气口243,在第一通气口241连通第二通气口242的情况下,富氧气体输送至第二密封空间12内部,在第一通气口241连通第三通气口243的情况下,富氧气体排放至外界空气。
本实施例的冷藏冷冻设备可以将制氮装置13产生的富氧气体选择性地充入第二密封空间12或者冷藏冷冻设备的外界空气。第二通气口242连通第二密封空间12内部,在三通电磁阀24的第一通气口241连通第二通气口242时,富氧气体由第二通气口242排出并输入第二密封空间12内部。三通电磁阀24的第三通气口243连通冷藏冷冻设备外部,在第一通气口241连通第三通气口243时,富氧气体由第三通气口243排入外界空气。富氧气体排入外界空气可以增加用户室内的氧气浓度,提高用户的舒适感。
制氮装置13还包括:连接管25和均压阀26。连接管25连通第一吸附仓213与第二吸附仓215。均压阀26串接在连接管25上,并配置成在第一 吸附仓213与第二吸附仓215中的一个停止吸附并准备解吸时打开连接管25,以使得第一吸附仓213与第二吸附仓215内部气压均衡。例如,在第一吸附仓213结束吸附过程,准备进入解吸过程时,相应的,第二吸附仓215结束解吸过程,准备进入吸附过程,此时均压阀26打开,第一吸附仓213与第二吸附仓215连通。由于第一吸附仓213处于高气压状态,第二吸附仓215处于低气压状态,第一吸附仓213内气体迅速流入第二吸附仓215内,并使得两个吸附仓内部气压相同。第一吸附仓213内气压迅速下降,有利于后续的解吸,第二吸附仓215内气压迅速上升,有利于后续的氧气吸附。
上述制氮装置13还包括第一出气管271、第二出气管272以及两个单向阀28。第一出气管271连通第一吸附仓213和氮气仓214。第二出气管272连通第二吸附仓215和氮气仓214。第一吸附仓213和第二吸附仓215通过上述两根管将产生出氮气输入氮气仓214。两个单向阀28分别设置于第一出气管271、第二出气管272上,以允许气体由第一吸附仓213或第二吸附仓215朝向氮气仓214单向流通,以防止氮气仓214内气体回流。
上述制氮装置13还包括油水分离器,油水分离器设置于空气进气管上,以对进入空气仓216的空气进行过滤。在一些可替代的实施例中,在空压机20吸气端增加进气过滤器,去除空气中的杂质,防止碳分子筛失去活性。
在另外一些实施例中,第一筒体211和第二筒体212并列设置于冷藏冷冻设备的箱体10内部,并且第一吸附仓213和第二吸附仓215的一端朝向同一方向设置,空气仓216和氮气仓214的一端朝向另外一个方向设置,以利于管路走线。也即是,第一吸附仓213和氮气仓214沿第一筒体211的延伸方向排列布置,第二吸附仓215和空气仓216沿第二筒体212的延伸方向排列布置。第一吸附仓213的位于第一筒体211端部的一端与第二吸附仓215的位于第二筒体212端部的一端朝向同一方向设置,氮气仓214的位于第一筒体211端部的一端与空气仓216的位于第二筒体212端部的一端朝向另一同一方向设置。换句话说,第一吸附仓213和第二吸附仓215分别邻近第一筒体211和第二筒体212的同一方向的端部,氮气仓214和空气仓216分别邻近第一筒体211和第二筒体212的同一方向的另一端部。
本实施例提供了一种冷藏冷冻设备,其内部储物空间设置有第一密封空间11和第二密封空间12。冷藏冷冻设备还设置有制氮装置13。制氮装置13包括吸附装置21,吸附装置21配置成利用压缩空气制备用于提供至第一密 闭空间11的氮气和用于提供至第二密闭空间12的富氧气体。本发明的冷藏冷冻设备通过向第二密封空间12提供富氧气体,增加了第二密封空间12的氧气含量,保证了第二密封空间12内食物的生物活性。
另外,第一密封空间11被充入氮气,提高了第一密封空间11的保鲜能力,制氮装置13生产的氮气和剩余的富氧气体分别用于冷藏冷冻设备的保鲜和保活,充分利用了制氮装置13的机能,并且节省了空气原料。
进一步地,本实施例的冷藏冷冻设备中,制氮装置13将第一吸附仓213和氮气仓214整合为第一筒体211,将第二吸附仓215和空气仓216整合为第二筒体212,从而简化了制氮装置13的结构。整个制氮装置13的主体只有两个筒体,实现了制氮装置13的小型化,以便布置于储物装置内部。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (9)

  1. 一种冷藏冷冻设备,包括:
    箱体,其内限定有储物间室,所述储物间室内部设置有第一密封空间和第二密封空间;以及
    制氮装置,其包括吸附装置以及空压机,所述空压机配置成受控地向所述吸附装置提供压缩空气,所述吸附装置配置成利用压缩空气制备用于提供至所述第一密闭空间的氮气和用于提供至所述第二密闭空间的富氧气体。
  2. 根据权利要求1所述的冷藏冷冻设备,其中,所述吸附装置还包括:
    第一筒体,其内部限定有相互隔离的第一吸附仓以及氮气仓,所述氮气仓连通所述第一密封空间;
    第二筒体,其内部限定有相互隔离的第二吸附仓以及空气仓;并且
    所述空压机通过空气进气管连通所述空气仓,以受控地向所述空气仓提供压缩空气;
    所述第一吸附仓和所述第二吸附仓内均设置有碳分子筛,所述空气仓受控地交替向所述第一吸附仓和所述第二吸附仓提供压缩空气,使所述第一吸附仓和所述第二吸附仓中的一个吸附仓吸附富氧气体以制备氮气时,另一个吸附仓对完成吸附的所述碳分子筛进行解吸,其中制备氮气的吸附仓连通至所述氮气仓,进行解吸的吸附仓连通至所述第二密封空间。
  3. 根据权利要求2所述的冷藏冷冻设备,其中,所述制氮装置还包括:
    气路换向阀,具有五个输气口,其第一输气口连通所述第一吸附仓,其第二输气口连通所述第二吸附仓,其第三输气口连通所述空气仓,并且所述气路换向阀还配置成使所述第三输气口交替地连通所述第一输气口以及所述第二输气口,在所述第三输气口连通所述第一输气口时,其第四输气口连通所述第二输气口,所述空气仓向所述第一吸附仓提供压缩空气,并由所述第四输气口排出所述第二吸附仓解吸出的富氧气体,在所述第三输气口连通所述第二输气口时,其第五输气口连通所述第一输气口,所述空气仓向所述第二吸附仓提供压缩空气,并由所述第五输气口排出所述第一吸附仓解吸出的富氧气体。
  4. 根据权利要求3所述的冷藏冷冻设备,其中,所述制氮装置还包括:
    三通管,连通所述第四输气口和所述第五输气口,并配置成将所述第四输气口和所述第五输气口合并为一个富氧气体排气口。
  5. 根据权利要求4所述的冷藏冷冻设备,其中,所述制氮装置还包括:
    三通电磁阀,其具有三个通气口,其第一通气口通过富氧气体输出管连通所述富氧气体排气口,其第二通气口连通所述第二密封空间,其第三通气口连通所述冷藏冷冻设备的外界空气;并且
    所述第一通气口可选择地连通所述第二通气口或所述第三通气口,在所述第一通气口连通所述第二通气口的情况下,富氧气体输送至所述第二密封空间内部,在所述第一通气口连通所述第三通气口的情况下,富氧气体排放至所述外界空气。
  6. 根据权利要求2所述的冷藏冷冻设备,其中,所述制氮装置还包括:
    连接管,连通所述第一吸附仓与所述第二吸附仓;以及
    均压阀,串接在所述连接管上,并配置成在所述第一吸附仓与所述第二吸附仓中的一个停止吸附并准备解吸时打开所述连接管,以使得所述第一吸附仓与所述第二吸附仓内部气压均衡。
  7. 根据权利要求2所述的冷藏冷冻设备,其中,所述制氮装置还包括:
    第一出气管,连通所述第一吸附仓和所述氮气仓;
    第二出气管,连通所述第二吸附仓和所述氮气仓;以及
    两个单向阀,分别设置于所述第一出气管、所述第二出气管上,配置成,允许气体由所述第一吸附仓或所述第二吸附仓朝向所述氮气仓单向流通,以防止所述氮气仓内气体回流。
  8. 根据权利要求2所述的冷藏冷冻设备,其中,所述制氮装置还包括:
    油水分离器,设置于所述空气进气管上,配置成对进入所述空气仓的空气进行过滤。
  9. 根据权利要求2所述的冷藏冷冻设备,其中
    所述第一筒体和所述第二筒体并排设置于所述冷藏冷冻设备内部,所述 第一吸附仓和所述氮气仓沿所述第一筒体的延伸方向排列布置,所述第二吸附仓和所述空气仓沿所述第二筒体的延伸方向排列布置;且
    所述第一吸附仓和所述第二吸附仓分别邻近所述第一筒体和所述第二筒体的同一方向的端部,所述氮气仓和所述空气仓分别邻近所述第一筒体和所述第二筒体的同一方向的另一端部。
PCT/CN2017/074604 2016-06-20 2017-02-23 冷藏冷冻设备 WO2017219694A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17814433.3A EP3473956B1 (en) 2016-06-20 2017-02-23 Refrigeration and freezing device
AU2017282744A AU2017282744B2 (en) 2016-06-20 2017-02-23 Refrigerating and freezing device
US16/302,089 US10890369B2 (en) 2016-06-20 2017-02-23 Refrigerating and freezing device
KR1020187031583A KR102142203B1 (ko) 2016-06-20 2017-02-23 냉장 냉동 디바이스
RU2018141470A RU2716113C1 (ru) 2016-06-20 2017-02-23 Холодильное и морозильное устройство
JP2018560935A JP6665320B2 (ja) 2016-06-20 2017-02-23 冷蔵冷凍機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610443121.2 2016-06-20
CN201610443121.2A CN106115637B (zh) 2016-06-20 2016-06-20 冷藏冷冻设备

Publications (1)

Publication Number Publication Date
WO2017219694A1 true WO2017219694A1 (zh) 2017-12-28

Family

ID=57470637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074604 WO2017219694A1 (zh) 2016-06-20 2017-02-23 冷藏冷冻设备

Country Status (8)

Country Link
US (1) US10890369B2 (zh)
EP (1) EP3473956B1 (zh)
JP (1) JP6665320B2 (zh)
KR (1) KR102142203B1 (zh)
CN (1) CN106115637B (zh)
AU (1) AU2017282744B2 (zh)
RU (1) RU2716113C1 (zh)
WO (1) WO2017219694A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106115637B (zh) * 2016-06-20 2018-04-20 青岛海尔股份有限公司 冷藏冷冻设备
CN113446800B (zh) * 2020-03-24 2022-05-31 合肥华凌股份有限公司 保鲜装置及冰箱

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000191A (zh) * 2006-01-11 2007-07-18 王冬雷 一种带制氮保鲜功能的冰箱、冰柜
JP4192337B2 (ja) * 1999-05-25 2008-12-10 三菱電機株式会社 冷蔵庫
CN106115637A (zh) * 2016-06-20 2016-11-16 青岛海尔股份有限公司 冷藏冷冻设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352646A (en) * 1976-10-22 1978-05-13 Daikin Ind Ltd Method of caastoring unripe fruit
NZ226929A (en) * 1988-11-11 1992-02-25 Transphere Systems Ltd Storing produce in container with controlled atmosphere: carbon dioxide supplied from store of dry ice
US5451248A (en) * 1990-07-19 1995-09-19 The Boc Group Plc Storage and transportation of goods under controlled atmospheres
KR930013654A (ko) * 1991-12-30 1993-07-22 이헌조 냉장고의 질소 발생장치
JP3148778B2 (ja) 1993-03-29 2001-03-26 日本電信電話株式会社 音声の符号化方法
US5649995A (en) * 1995-03-09 1997-07-22 Nitec, Inc. Nitrogen generation control systems and methods for controlling oxygen content in containers for perishable goods
JP3662701B2 (ja) * 1997-02-12 2005-06-22 株式会社前川製作所 低温ca用吸着分離システム
CN1238445A (zh) * 1999-04-19 1999-12-15 梁小刚 多功能气调保鲜冷藏柜
EP1912521B1 (en) * 2005-08-12 2017-07-12 Arçelik Anonim Sirketi A cooling device
KR100877812B1 (ko) * 2006-12-28 2009-01-12 에펠산업(주) 가압 밀폐 공간을 구비한 냉장고 및 그 제어방법
CN101726146A (zh) * 2008-10-17 2010-06-09 河南新飞电器有限公司 变压吸附降氧冰箱
JP2010144993A (ja) * 2008-12-18 2010-07-01 Panasonic Corp 冷蔵庫
JP2010149993A (ja) * 2008-12-25 2010-07-08 Toppan Printing Co Ltd 紙製リール
CN103090620A (zh) * 2012-10-24 2013-05-08 徐东明 一种保鲜冰箱的保鲜气体循环利用装置
JP5884877B2 (ja) * 2013-10-03 2016-03-15 ダイキン工業株式会社 コンテナ用冷凍装置
RU160225U1 (ru) * 2015-10-29 2016-03-10 Общество с ограниченной ответственностью "Малое инновационное предприятие "Энергосберегающие технологии" (ООО "МИП "Энергосберегающие технологии") Адсорбционная установка получения кислорода
CN105674676A (zh) * 2015-12-29 2016-06-15 青岛海尔股份有限公司 保鲜抽屉及使用该保鲜抽屉的冰箱

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192337B2 (ja) * 1999-05-25 2008-12-10 三菱電機株式会社 冷蔵庫
CN101000191A (zh) * 2006-01-11 2007-07-18 王冬雷 一种带制氮保鲜功能的冰箱、冰柜
CN106115637A (zh) * 2016-06-20 2016-11-16 青岛海尔股份有限公司 冷藏冷冻设备

Also Published As

Publication number Publication date
CN106115637A (zh) 2016-11-16
AU2017282744A1 (en) 2018-11-22
KR102142203B1 (ko) 2020-08-07
KR20180133875A (ko) 2018-12-17
EP3473956B1 (en) 2020-06-24
CN106115637B (zh) 2018-04-20
EP3473956A1 (en) 2019-04-24
JP2019518190A (ja) 2019-06-27
RU2716113C1 (ru) 2020-03-05
US20190145691A1 (en) 2019-05-16
AU2017282744B2 (en) 2019-09-26
US10890369B2 (en) 2021-01-12
JP6665320B2 (ja) 2020-03-13
EP3473956A4 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
RU2714760C1 (ru) Холодильник
CN103090614A (zh) 一种用冰箱保鲜食品的方法
WO2017219694A1 (zh) 冷藏冷冻设备
CN106642913A (zh) 冷藏冷冻装置
CN106813441A (zh) 具备高氧储肉功能的冷藏冷冻装置
CN103090622A (zh) 一种保鲜冰箱的保鲜气体循环利用装置
KR100672476B1 (ko) 진공저장장치 및 이를 이용한 냉장고
WO2021129386A1 (zh) 一种冰箱
CN106247731B (zh) 冷藏冷冻装置
CN206352918U (zh) 具备高氧储肉功能的冷藏冷冻装置
CN215305120U (zh) 一种控氧装置和厨房电器
CN105923613B (zh) 制氮装置与冰箱
CN206291587U (zh) 冷藏冷冻装置
CN206291586U (zh) 冷藏冷冻装置
CN215605075U (zh) 一种控氧装置和厨房电器
JPH0353872A (ja) 複数の収納室を有する冷却収納体
CN116164475A (zh) 一种采用真空变压吸附制氮装置的冰箱、冰柜
CN114532867A (zh) 一种控氧装置和厨房电器
CN114532866A (zh) 一种控氧装置和厨房电器
CN115507603A (zh) 一种制氮集氧保鲜冰箱及保鲜方法
CN111408235A (zh) 降氧装置及冰箱
CN106348260A (zh) 一种氮气发生装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187031583

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018560935

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017282744

Country of ref document: AU

Date of ref document: 20170223

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017814433

Country of ref document: EP

Effective date: 20190121