WO2017217833A1 - 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이의 장치 - Google Patents

메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이의 장치 Download PDF

Info

Publication number
WO2017217833A1
WO2017217833A1 PCT/KR2017/006413 KR2017006413W WO2017217833A1 WO 2017217833 A1 WO2017217833 A1 WO 2017217833A1 KR 2017006413 W KR2017006413 W KR 2017006413W WO 2017217833 A1 WO2017217833 A1 WO 2017217833A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
acetylene
methane
ethylene
hydrogen
Prior art date
Application number
PCT/KR2017/006413
Other languages
English (en)
French (fr)
Inventor
황영규
윤지웅
이평수
박유인
장종산
박용기
홍도영
박선영
송영훈
이대훈
김관태
Original Assignee
한국화학연구원
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 한국기계연구원 filed Critical 한국화학연구원
Publication of WO2017217833A1 publication Critical patent/WO2017217833A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/642Polyester-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream

Definitions

  • the present invention relates to a method for producing hydrogen gas, acetylene gas, ethylene gas or welding gas through a plasma reaction and separation process of methane and a device thereof.
  • Natural gas has methane as its main component, and methane is used as a raw material for producing hydrocarbons above C2, which are petrochemical fuels.
  • methane is a stable compound, high energy is required to convert methane to a compound of C2 or higher, and has been limited to various uses due to the high dissociation energy of the C-H bond of methane. Therefore, various studies have been conducted regarding the activation of C-H bonds of methane. Recently, researches using plasma have been conducted. The activation of methane using plasma has the advantage that the C-H bond can be easily decomposed by the high energy of the plasma and the reaction time can be shortened. On the other hand, since methane is converted by using a glow discharge in a vacuum atmosphere, there is a problem in that the investment cost and operating cost of the process are high.
  • the method of converting methane to C2 or more compounds includes an indirect conversion method through a reforming reaction and a direct conversion method that directly converts each product.
  • the indirect conversion method is a method of converting natural gas into petrochemical raw materials through various routes using the syngas after reforming the natural gas. The indirect conversion method consumes a lot of energy to produce syngas and has a high initial investment cost.
  • the direct conversion method is a method that does not pass through the synthesis gas, oxidative coupling of methane, partial oxidation of methane (POM) and non-oxidative coupling of methane. Etc. can be mentioned. These reactions have the problem that the optimal activation and selective production of the product is difficult in developing methane conversion to commercialization level.
  • the separation techniques of the mixed gas include adsorption (eg, pressure swing absorption), absorption (eg, water scrubbing, methanol scrubbing, polyethylene glycol scrubbing, etc.), and membrane separation (membrane separation).
  • adsorption eg, pressure swing absorption
  • absorption eg, water scrubbing, methanol scrubbing, polyethylene glycol scrubbing, etc.
  • membrane separation membrane separation
  • the membrane separation method has advantages in that energy consumption is reduced, the space required for installing the device is simple, and the scale-up is easy when the mixed gas is separated.
  • the membrane separation method has been widely used in the field of nitrogen generator, hydrogen generator, membrane dehumidifier, inert gas filling device for ship or aircraft, purification of natural gas or biogas, and fuel cell.
  • Korean Patent Publication No. 10-2011-0065038 discloses a method of separating hydrogen using a palladium-copper-nickel alloy separator.
  • Korean Patent Laid-Open Publication No. 10-2009-0110897 uses a hydrogen separation membrane and a hydrogen purification device to separate and purify hydrogen from a hydrogen-containing gas containing at least 1% of at least one component of water, carbon monoxide, carbon dioxide, methane and nitrogen. The method has been disclosed.
  • a method of purifying hydrogen using a palladium-based separator material has a high initial investment cost and needs to be purified at a high temperature (> 500 ° C.).
  • acetylene is used industrially in various applications such as fuel gas in gas welding / cutting applications, atomic absorption spectroscopy applications, and raw material gases in chemical synthesis and microelectronics production.
  • acetylene is very unstable due to high chemical reactivity, and pure acetylene spontaneously causes an explosive reaction when the pressure exceeds 2 bar. Therefore, acetylene can not be filled in more than 1.3 bar in the actual site, it can be stored and used only in a small amount of units is a problem in commercialization.
  • acetylene is usually not easy to separate, and often contains impurities such as methane, ethane, propane, carbon monoxide, and other miscellaneous organic species, rather than only pure acetylene.
  • impurities such as methane, ethane, propane, carbon monoxide, and other miscellaneous organic species, rather than only pure acetylene.
  • acetylene cannot be stored as a homogeneous gas phase in a pressurized gas supply vessel conventionally used for the storage, transport and delivery of industrial gases. Therefore, the acetylene used as the welding gas is being researched to replace the LPG gas, but LPG gas has a disadvantage that the heat amount lower than acetylene.
  • the present invention is to provide a method for producing hydrogen gas, acetylene gas, ethylene gas or welding gas through the plasma reaction and separation process of methane and a device therefor.
  • the present invention is to provide an inert gas (for example, argon) in less than 20vol% welding gas easy to store and store.
  • an inert gas for example, argon
  • the first aspect of the present invention is a plasma discharge gas, formed by plasma reaction of methane-containing gas in the hydrogen gas, acetylene gas, ethylene gas or welding gas manufacturing method through the plasma reaction and separation process of methane, Plasma discharge gas with reduced or removed ethylene and / or acetylene, methane and hydrogen-containing second mixture, using an adsorbent capable of adsorbing ethylene and / or acetylene from the first mixed gas containing methane, hydrogen, ethylene and acetylene A first step of separating the gas and the ethylene and / or acetylene into a concentrated gas; A second step of separating the second mixed gas through a gas separation membrane into a third mixed gas in which plasma discharge gas and methane are concentrated and a hydrogen concentrated gas; And a third step of recycling the third mixed gas into a plasma reaction of the methane-containing gas.
  • a second aspect of the present invention in a method for preparing acetylene enriched gas or ethylene concentrated gas through a plasma reaction and separation process of methane, plasma discharge gas, methane, hydrogen, ethylene and acetylene-containing gas formed by plasma reaction of methane-containing gas Separation from the first mixed gas into a plasma discharge gas with reduced or removed ethylene and acetylene, a second mixed gas containing methane and hydrogen, and a gas containing ethylene and acetylene, using an adsorbent capable of adsorbing ethylene and acetylene A first step of doing; A second step of separating the ethylene and acetylene gas into an acetylene concentrated gas in which ethylene is reduced or removed and an ethylene concentrated gas in which acetylene is reduced or removed, using an adsorbent for selectively adsorbing acetylene; And a third step of recycling the second mixed gas into a plasma reaction of the methane-containing gas
  • a hydrogen concentrate gas, acetylene concentrate gas, ethylene concentrate gas, or welding gas production apparatus through a plasma reaction and separation process of methane, methane and a plasma discharge gas are introduced, and a plasma of methane-containing gas is introduced.
  • an adsorbent separation reactor for separating acetylene into a concentrated gas.
  • a plasma reactor for introducing hydrogen into methane and plasma discharge gas and performing a plasma reaction of the methane-containing gas to form a first mixed gas containing hydrogen and methane, hydrogen, ethylene and acetylene, which are plasma discharge gases;
  • An adsorbent separation reactor for separating ethylene and / or acetylene into a concentrated gas from the fourth mixed gas using an adsorbent capable of adsorbing ethylene and / or acetylene is provided.
  • Dissociation activation energy which can decompose CH bonds of methane
  • ethylene and Acetylene can be produced.
  • the acetylene and / or ethylene can be selectively separated and / or stored, the acetylene and / or ethylene can be concentrated and stored as a welding gas.
  • ethylene and acetylene C2 hydrocarbons are used as important chemical raw materials as monomers to produce various polymers.
  • the inventors found an adsorbent capable of efficiently adsorbing ethylene and / or acetylene at low pressure and room temperature and found that the adsorbent can be used to separate ethylene and / or acetylene from plasma discharge gas, methane, and hydrogen-containing mixed gas.
  • the present invention is based on this.
  • the process of separating ethylene and / or acetylene using an adsorbent can cope with the cryogenic fractional distillation traditionally used in the separation of mixtures of C2 hydrocarbons to improve energy efficiency.
  • the welding gas may include 20 vol% or less of an inert gas (eg, argon) used as a plasma discharge gas, and may preferably contain 10 vol% or less of impurities such as argon and hydrogen. It can improve welding efficiency.
  • an inert gas eg, argon
  • the present invention uses an adsorbent from the mixed gas prior to the process of using a gas separation membrane for separating hydrogen from plasma discharge gas, methane, hydrogen, ethylene and acetylene-containing mixed gas formed by plasma reaction of the methane-containing gas. Another feature is to precede the process of reducing or removing ethylene and acetylene.
  • FIG. 1 is a schematic diagram of a method for producing a hydrogen concentrated gas, acetylene concentrated gas, ethylene concentrated gas and a welding gas according to an embodiment of the present invention.
  • Ethylene and / or acetylene is reduced by using an adsorbent capable of adsorbing ethylene and / or acetylene from the plasma discharge gas, the methane, hydrogen, ethylene and acetylene-containing first mixed gas formed by the plasma reaction of the methane-containing gas. Or a first step of separating the removed plasma discharge gas, the second mixed gas containing methane and hydrogen, and a gas enriched in ethylene and / or acetylene;
  • Plasma with reduced or removed ethylene and acetylene using an adsorbent capable of adsorbing ethylene and acetylene from plasma discharge gas, methane, hydrogen, ethylene and acetylene-containing first mixed gas formed by plasma reaction of methane-containing gas
  • the first step may further include separating the acetylene concentrated gas through the adsorbent and storing it as a welding gas.
  • the method may further include, after the first step, separating and storing high-purity acetylene in which ethylene is reduced or removed using an adsorbent for selectively adsorbing acetylene from a gas in which ethylene and acetylene are concentrated.
  • the method may further include converting the ethylene and acetylene concentrated gas separated in the first step into an ethylene concentrated gas by performing an acetylene conversion reaction.
  • the hydrogen concentrating gas, acetylene condensation gas, ethylene condensation gas or welding gas production apparatus through a plasma reaction and separation process of methane according to an aspect of the present invention
  • an adsorbent capable of adsorbing ethylene and / or acetylene from the first mixed gas, a plasma discharge gas in which ethylene and / or acetylene is reduced or removed, a second mixed gas containing methane and hydrogen, and ethylene and / or Adsorbent separation reactor for separating acetylene into a concentrated gas.
  • the manufacturing apparatus of the present invention may further include a separator reactor for separating the second mixed gas into a third separator gas in which plasma discharge gas and methane are concentrated and hydrogen concentrated gas by passing the gas separator.
  • the manufacturing apparatus of the present invention further comprises means for recycling the third mixed gas separated in the membrane reactor to the plasma reactor, or means for recycling the second mixed gas separated in the adsorbent separation reactor to the plasma reactor. It may be further provided.
  • the manufacturing apparatus of the present invention further includes an adsorbent separation reactor for separating the ethylene and acetylene concentrated gas separated in the adsorbent separation reactor into an ethylene concentrated gas and an acetylene concentrated gas using an acetylene adsorbent for selectively adsorbing acetylene. can do.
  • the production apparatus of the present invention may further include an acetylene conversion reactor for converting to ethylene concentrated gas by performing an acetylene conversion reaction for the ethylene and acetylene concentrated gas separated in the adsorbent separation reactor.
  • a plasma reactor for introducing hydrogen into methane and plasma discharge gas and performing a plasma reaction of the methane-containing gas to form a first mixed gas containing hydrogen and methane, hydrogen, ethylene and acetylene, which are plasma discharge gases;
  • an adsorbent capable of adsorbing ethylene and / or acetylene it may be modified to have an adsorbent separation reactor for separating ethylene and / or acetylene from the fourth mixed gas into a concentrated gas. This case also belongs to the scope of the present invention.
  • the plasma reaction of methane can be performed using the plasma reactor shown in FIG. 2 and the rotary arc plasma reactor shown in FIG. 3.
  • the plasma reaction may be performed by a non-thermal plasma treatment under a catalyst, and may include a C-H bond cleavage reaction.
  • a typical process for pyrolyzing methane (or natural gas) using plasma is the Huels process.
  • the HUSS process is a pyrolysis process using a direct current arc.
  • methane is injected into a high temperature region formed by the arc and pyrolyzed.
  • the reaction is completed by rapid cooling using a liquid propane or the like.
  • Plasma-catalyzed reactions can be used by modifying the above-described hux process.
  • Low temperature plasma having a higher generated electron temperature than the temperature of the gas is preferable, and may be formed through dielectric barrier discharge (DBD), pulse corona discharge, spark discharge, and the like, but is not limited thereto.
  • dielectric barrier discharges are widely used in the industry because they can be discharged at atmospheric pressure and room temperature, operate at very large non-equilibrium conditions at atmospheric pressure, enable high output discharges, and do not require complex pulsed power supplies.
  • the dissociation activation energy that decomposes the strong CH bond of methane (CH 4 ) in the methane-containing gas introduced into the plasma reaction may be provided by the discharge plasma to convert the methane into various radical states, in which case carrier gas Inert gas or hydrogen may be used.
  • carrier gas Inert gas or hydrogen may be used.
  • the inert gas include nitrogen, argon, helium, neon, krypton or mixtures thereof.
  • the methane containing gas may be added alone to the plasma reaction, or may be added together with the carrier gas or with the addition of hydrogen, water (water vapor), hydrocarbons or mixtures thereof.
  • the hydrocarbon introduced with the methane-containing gas may be a C 2 to C 6 hydrocarbon, for example ethane, ethylene or propane, propylene.
  • hydrogen or a hydrocarbon is added to the methane-containing gas, a plurality of CC-bonded compounds may be increased to increase the amount of olefin or aromatic hydrocarbon in the product. Since the aromatic hydrocarbon is a relatively expensive compound, there is also an advantage in terms of economics of the product.
  • the plasma reaction of the methane-containing gas may be carried out in the presence of a catalyst, in which the type of catalyst is not limited as long as it can lower the activation energy upon CH bond decomposition under plasma conditions.
  • a catalyst in which the type of catalyst is not limited as long as it can lower the activation energy upon CH bond decomposition under plasma conditions.
  • the combined system of plasma and catalyst can interact with each other to increase the efficiency of the reaction and improve the selectivity of the product.
  • catalysts include active materials, precious metals, transition metals and typical metals.
  • the active material includes Pt, Ru, Ni, Co, V, Fe, Cu, Ti, Nb, Mo, W, Ta, Pd, Cu or Zn, ZrO 2 , CoO, Co 3 as the active material or carrier Transition metal oxides such as O 4 , MnO, NiO, CuO, ZnO, TiO 2 , V 2 O 5 , Ta 2 O 5 , ZnO, Cr 2 O 3 , FeO, Fe 2 O 3 , Fe 3 O 4 , MgO And typical element oxides such as CaO, BaO, Al 2 O 3 , Ga 2 O 3 , SnO, SnO 2 , SiO 2, and the like.
  • Transition metal oxides such as O 4 , MnO, NiO, CuO, ZnO, TiO 2 , V 2 O 5 , Ta 2 O 5 , ZnO, Cr 2 O 3 , FeO, Fe 2 O 3 , Fe 3 O 4 , MgO
  • typical element oxides such as CaO, BaO, Al 2 O
  • the catalyst or carrier that can be used may include a metal complex oxide such as SrTiO 3 , BaTiO 3 , (LaSr) 2 TiO 4, and the like.
  • usable porous catalysts and carriers may include zeolites, mesopores, activated carbons, layered double hydroxides (LDH), and the like.
  • the catalyst material may be a zeolite, an acid catalyst including an ionic liquid, a base catalyst including MgO, LDH, and an ionic liquid, and a redox catalyst such as Fe 3 O 4 and V 2 O 5 .
  • the active material and the carrier may be appropriately selected depending on the type of reaction, such as oxidative dimerization, partial oxidation or non-oxidation reaction.
  • the catalyst may comprise the form of spheres, pellets, pillars, honeycombs, fibers, porous solid foams, powders.
  • the catalyst having the above form may be filled in the plasma reactor to form a packed-bed reactor.
  • the catalyst may be coated on the inner wall of the reactor in which the plasma-catalytic reaction is performed to form a catalyst layer.
  • Plasma-catalyst reactors can decompose strong C-H bonds of methane using an inert gas as the carrier gas, which can be carried out at relatively low temperatures (eg hundreds of K to 1000 K) by using a catalyst together.
  • the plasma reaction may be performed in the rotary arc plasma reactor of FIG. 3.
  • the rotating arc plasma reactor consists of a high voltage electrode and a ground electrode, and an arc is generated in three-dimensional form when compared to a gliding arc.
  • Rotary arc plasma reactors are designed to gradually reduce the inner diameter in the arcing region to concentrate heat generated.
  • a discharge arc may be injected into the reactor to generate a rotating arc, and methane-containing gas may be injected into a high temperature region generated by the rotating arc to pyrolyze. The generated gas is transferred to the wall as it passes through the reaction space, where it cools and completes the reaction.
  • FIG. 2 may include the rotary arc plasma reactor of FIG. 3 as a plasma reaction apparatus, and may include a power supply, a mass flow controller (MFC), and a gas chromatograph (GC).
  • MFC mass flow controller
  • GC gas chromatograph
  • the oscilloscope is additionally set.
  • the power measuring device may measure power using a 1000: 1 high voltage probe and a current probe, and may be calculated by Equation 1 below.
  • the gas supplied into the reactor of the apparatus may be supplied via a gas supply (MFC), which may be corrected through a flow compensator before use.
  • the components of gas are TCD (Thermal Conductivity Detector-H 2 , O 2 , N 2 , CO, CO 2 ) and FID (Flame Ionization Detector-CH 4 , C 2 H 4 , C 2 H 2) , C 2 H 6 , C 3 H 6 , C 3 H 8 , nC 4 H 10 , iC 4 H 10 ).
  • the purity of the gas supplied into the reactor may be Ar-99.999%, N 2 -99.9%, CH 4 -99.95%, H 2 -99.9%. Conversion of methane, selectivity of hydrogen, hydrocarbons, and specific energy requirements can be calculated by the following equations (2) to (5).
  • the content of methane contained in the methane-containing gas may be 5 vol% to 50 vol%, preferably 10 vol% to 30 vol%, and more preferably 15 vol based on the total volume of the methane-containing gas. % To 25 vol%.
  • the content of methane in the methane-containing gas is less than 10 vol%, the content of methane, which is the target of the plasma reaction, is low, reducing the reaction efficiency, and when the content of the methane is more than 30 vol%, the mixture generated during the plasma reaction. Numerous hydrocarbons in excess of C2 in the gas may be produced, which may reduce efficiency in subsequent separation processes.
  • the present invention also provides a plasma discharge gas in which ethylene and acetylene are reduced or removed, methane and hydrogen, using an adsorbent capable of adsorbing ethylene and / or acetylene from the first mixed gas formed by the plasma reaction of the methane-containing gas.
  • the second mixed gas may be recycled to the plasma reaction of the methane-containing gas, or the second mixed gas may be passed through the gas separation membrane to recycle the plasma discharge gas and the third mixed gas containing the methane to the plasma reaction of the methane-containing gas.
  • the recycled second mixed gas or third mixed gas may be mixed with the methane-containing gas and introduced into a plasma reaction.
  • the first mixed gas formed by the plasma-catalyzed reaction of the methane containing gas may contain a plasma discharge gas, methane, hydrogen, ethylene, and acetylene.
  • the present invention can prepare a plasma discharge gas, methane and hydrogen-containing second mixed gas in which ethylene and / or acetylene is reduced or removed from the first mixed gas by using an adsorbent capable of adsorbing ethylene and / or acetylene. have.
  • Ethylene and / or acetylene adsorbed by the adsorbent may be stored in a state where ethylene and / or acetylene is contained in the pores of the adsorbent, or may be stored separately after desorption.
  • the ethylene and acetylene mixed gas may be separated into ethylene concentrated gas and acetylene concentrated gas, respectively, through an acetylene adsorbent capable of selectively adsorbing acetylene.
  • the adsorbent capable of adsorbing ethylene and / or acetylene may be a porous hybrid organometallic framework (MOF).
  • the porous hybrid organometallic framework (MOF) is a 1-, 2- or 3-dimensional organic / inorganic hybrid material formed by coordinating metal ions or ion clusters with organic molecules, and the structure of the porous hybrid organometallic framework.
  • the voids can accommodate the material and have a much higher porosity than zeolites. Accordingly, the porous hybrid organometallic framework can have a space capable of efficiently containing ethylene and / or acetylene.
  • the porous hybrid organometallic framework preferably has Coordinatively Unsaturated Sites (CUS).
  • Coordination unsaturated sites are ligands that are coordinated to metal ions of the organometallic framework, typically metals from which water or an organic solvent has been removed, and mean positions where other ligands can form coordination bonds again.
  • the coordination unsaturated sites may be formed in the skeleton, or may be formed in the metal ions or organometallic compounds present in the surface or pores of the organometallic framework.
  • a pretreatment step of removing water or solvent components bound to the coordination unsaturated sites may be performed.
  • the porous hybrid organometallic framework capable of adsorbing ethylene and / or acetylene may be pretreated before separating ethylene and / or acetylene from the first mixed gas.
  • the porous hybrid organometallic framework may have coordination unsaturated sites at a density of 0.2 mmol / g to 10 mmol / g. If the density of coordination unsaturated sites of the porous hybrid organometallic framework is less than 0.2 mmol / g, even though the adsorption selectivity to ethylene and acetylene is low, the adsorption capacity of ethylene and acetylene is low and the process efficiency of separation to ethylene and acetylene-containing gas is reduced. do.
  • the organometallic skeleton having an unsaturated metal coordination group is a trivalent chromium ion, iron ion, cobalt ion, tungsten ion, molybdenum ion, ruthenium ion, niobium ion, manganese ion, nickel ion, copper ion, zinc ion as a metal. , Titanium ions or zirconium ions.
  • the organometallic skeleton having an unsaturated metal coordination site may include at least one component of trivalent chromium ions, iron ions, cobalt ions, tungsten ions, or molybdenum ions as metals, ethylene and acetylene It is preferable to use a metal component having a specific adsorption force for.
  • the porous hybrid organometallic framework capable of adsorbing ethylene and / or acetylene may comprise Cr (III) metal or Fe (III) metal as the central metal.
  • Porous hybrid organometallic frameworks can be prepared using, without limitation, organic ligands constituting common organometallic frameworks, as long as they can adsorb ethylene and / or acetylene.
  • 1,4-benzenedicarboxylic acid BDCA
  • isophthalic acid 1,3,5-benzenetricarboxylic acid (1,3,5-benzenetricarboxylic acid; BTCA)
  • 2-aminoterephthalic acid 2-nitroterephthalic acid (2-nitroterephthalic acid), 2-methylterephthalic acid, 2-haloterephthalic acid
  • azobenzene tetracarboxylic acid 1,3,5-tricarboxyphenylbenzene (1,3,5-tri (4-carboxyphenyl) benzene), 2,6-naphthalene dicarboxylic acid (NDCA), benzen
  • 1,4-benzenedicarboxylic acid 1,3,5-benzenetricarboxylic acid, 2,5-dihydroxyterephthalic acid, 2,6-naphthalenedicarboxylic acid, azobenzenetetracarboxylic acid or Derivatives thereof may be used, but are not limited thereto.
  • the acetylene adsorbent capable of separating acetylene and ethylene may contain a metal organic framework having unsaturated metal sites.
  • the metal organic framework capable of adsorbing the acetylene may be represented by the following Chemical Formulas 1 to 5.
  • X is Cl, Br, I, F or OH
  • Z or Z ' may be the same or different from each other, and each independently H, NH 2 , Br, I, NO 2 or OH; 0 ⁇ y ⁇ 4
  • M is Fe, Cr, Mn, Al, V.
  • X is Cl, Br, I, F or OH
  • Z or Z ' may be the same or different from each other, and each independently H, NH 2 , Br, I, NO 2 or OH; 0 ⁇ y ⁇ 3
  • M is Fe, Cr, Mn, Al, V.
  • X is Cl, Br, I or F
  • M is Fe, Cr, Mn, Al, V.
  • M is Fe, Cr, Al, V, Mn;
  • X is H -, F -, Cl - , Br -, NO 3 -, BF 4 -, PF 6 -, I -, SO4 2-, HCO 3 - , and R n COO -
  • R n is C 1 -C 6
  • L is a carboxyl group (-COOH), a carboxylic acid anion group (-COO-), an amine group (-NH 2 ) and an imino group (-NH), a nitro group (-NO 2 ), a hydroxyl group (-OH), a halogen group
  • a is a number from 1 to 12
  • b is a number from 0 to 6
  • c is a number from 0
  • the adsorbent may be filled in a tube type reactor.
  • the inside of the reactor may be filled with non-reactive silica particles (silica sand) to reduce the volume, it is possible to treat the adsorbent surface using an inert gas.
  • the adsorbent may be pretreated before use to adsorb ethylene and / or acetylene in the first mixed gas. For example, the pretreatment may be performed in a range of 150 ° C.
  • the first mixed gas may be injected into the reactor to start the adsorptive separation reaction.
  • an inert gas such as helium may be used as the pretreatment gas, and the first mixed gas which is the pretreatment gas and the reaction gas may determine whether the adsorbent passes through the 6-port valve.
  • the reaction gas does not pass through the adsorbent and flows to the GC to analyze the concentration of the reaction gas.
  • the 6-port valve is operated in the opposite direction so that the pretreatment gas does not pass through the adsorbent.
  • the reaction gas is directed toward the GC to measure the concentration of the gas after the reaction.
  • the back pressure regulator can be used to regulate the pressure.
  • the organometallic framework having selective adsorption capacity to ethylene and / or acetylene may be pretreated at 130 to 300 ° C. More preferably, it may be pretreated at 150 to 300 ° C., but is not limited to the above pretreatment conditions as long as it shows a higher adsorption capacity for ethylene and / or acetylene compared to methane, oxygen, argon, and the like. If the pretreatment temperature is lower than 130 ° C., the specific adsorption capacity showing a similar adsorption capacity for all gases may be lost without showing a specific adsorption capacity for a particular gas compared to other gases.
  • the pretreatment temperature is only an example, and may be adjusted when the solvent removal condition or treatment time is changed.
  • any pretreatment of the adsorbent can be used as long as it can remove water or solvent components without causing deformation of the organometallic framework, and can be achieved by heating to a temperature of 100 ° C. or higher, for example, under reduced pressure, The can be achieved by heating to a temperature of 150 °C or more, but is not limited thereto. Or it can be carried out using a method such as vacuum treatment, solvent exchange, sonication, which is a solvent removal method known in the art without limitation.
  • the pretreatment is maintained at 150 ° C. for 1 bar, 12 hours under inert gas, such as helium, or 1 bar, 250 ° C. for 6 hours under inert gas, or 100 ° C. for 6 hours under inert gas. Can be performed.
  • the process may be performed using a known solvent removal method such as vacuum treatment, solvent exchange, ultrasonic treatment without limitation.
  • a plasma discharge gas, methane, acetylene and acetylene is reduced or removed using an adsorbent capable of adsorbing ethylene and / or acetylene from the plasma discharge gas, methane, hydrogen, ethylene, and acetylene-containing first mixed gas
  • a PVSA (pressure-vacuum circulation adsorption) apparatus capable of separating a hydrogen-containing second mixed gas and ethylene and / or acetylene into a concentrated gas.
  • the first mixed gas may be separated by a pressure-vacuum swing adsorption (PVSA) separation method using an adsorbent.
  • PVSA separation method is a method of separating and purifying a gas by using a principle of selectively adsorbing a specific gas in a gas mixture to an adsorbent at a high pressure and then lowering the pressure to desorb the adsorbed gas. More specifically, pressurization at atmospheric pressure or higher pressure to adsorb a large amount of the desired gas to one or more adsorption columns or adsorption beds filled with an adsorbent for selectively adsorbing the desired gas.
  • VSA vacuum swing adsorption
  • the ethylene and acetylene are reduced or removed by the adsorbent so that the plasma mixed gas, the methane and the hydrogen-containing second mixed gas are separated through hydrogen through a gas separation membrane. Can be separated into gases.
  • Figure 6 is separated from the plasma discharge gas, methane and hydrogen-containing second mixed gas with reduced or removed ethylene and / or acetylene, into a plasma discharge gas and a methane concentrated gas-containing third mixed gas and hydrogen concentrated gas using a gas separation membrane
  • the gas separation membrane modules illustrated in FIG. 7 may be connected in series to perform the process illustrated in FIG. 6.
  • the gas separation membrane is preferably passed through hydrogen.
  • the gas separation membrane may be formed of any one or more of a polymer membrane, a zeolite membrane, an inorganic membrane, a carbon membrane, an organic framework membrane, and a mixed substrate membrane in which a polymer membrane and an inorganic material are mixed.
  • the polymer membrane is a polysulfone (polysulfone, PSf), polyimid (PI), polyimide (polyetherimide, PEI), polyethersulfone (polyethersulfone, PES) and polydimethylsiloxane (polydimethylsiloxane (PDMS)) may be one or more.
  • PI polysulfone
  • PEI polyimide
  • PEI polyetherimide
  • PES polyethersulfone
  • PDMS polydimethylsiloxane
  • the third mixed gas in which the plasma discharge gas and the methane are concentrated is discharged through the module in parallel with the direction in which the plasma discharge gas, the methane and the hydrogen-containing second mixed gas flow in the fed side.
  • the hydrogen concentrated gas may be discharged (Permeate side) perpendicular to the direction in which the second mixed gas is introduced.
  • the gas separation membrane may be in the form of porous hollow fiber (hollow fiber), a plurality of parallel or parallel may be provided in the direction in which the second mixed gas flows, as shown in Figure 6, the discharged gas separation membrane Separation membrane for the recovery process to be introduced back to may be further configured.
  • the gas separation membrane module may include an inlet into which a second mixed gas flows and a first outlet provided to face the inlet, and may be provided in a tubular shape provided to connect the inlet and the first outlet.
  • the gas separation membrane module may be provided in parallel in a direction from the inlet toward the first outlet.
  • the gas separation membrane module may further include a second outlet provided between the inlet and the first outlet perpendicularly to the direction from the inlet to the first outlet.
  • the second mixed gas may be introduced into the inlet to be separated into the third mixed gas and the hydrogen concentrated gas through the gas separation membrane, the third mixed gas is discharged through the first outlet, and the hydrogen concentrated gas is the second outlet. Can be discharged through.
  • the reaction efficiency may be improved by reusing the plasma discharge gas and the methane concentrated gas contained in the second mixed gas or the third mixed gas.
  • the temperature of the second mixed gas or the third mixed gas is already raised during the reaction, heat can be transferred to the methane-containing gas introduced during the plasma reaction, thereby improving energy efficiency.
  • the ethylene and / or acetylene concentrated gas provided in the present invention may be used as a welding gas having high energy efficiency.
  • the acetylene enriched gas provided by the present invention may include 20 vol% or less of an inert gas.
  • the hydrogen concentrated gas provided in the present invention may be stored in a storage unit for storing the hydrogen concentrated gas.
  • the present invention may further comprise the step of performing an acetylene conversion reaction for the ethylene and acetylene concentrated gas separated in the first step to convert to ethylene concentrated gas, the hydrogen concentrated gas provided in the present invention is the acetylene conversion It can be fed into the reaction to react with the ethylene and acetylene enriched gas (see Figure 1).
  • the present invention by using the adsorbent capable of adsorbing ethylene and / or acetylene to reduce or remove the ethylene and / or acetylene that can reduce the performance of the gas separation membrane, by performing a hydrogen separation process, the mixed gas efficiently It is possible to provide high purity hydrogen concentrated gas, acetylene concentrated gas, ethylene concentrated gas and / or welding gas by separating the gas, and also to prevent a decrease in the selectivity of the gas separation membrane generated by the presence of ethylene and acetylene. Can improve the efficiency.
  • the present invention can provide a welding gas that is easy to store and store while containing less than 20vol% argon.
  • the present invention can directly use the hydrogen concentrated gas provided through the separation process in the reaction, and can be used by recycling the by-products remaining after the reaction can reduce the process cost.
  • FIG. 1 is a schematic diagram of a method for producing a hydrogen concentrated gas, acetylene concentrated gas, ethylene concentrated gas and welding gas through a plasma reaction and a series of separation process of the methane-containing gas according to an embodiment of the present invention.
  • FIG. 2 is a view showing a plasma reaction apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view showing a rotary arc plasma reactor that can be used in the plasma reaction apparatus of FIG.
  • FIG. 4 is a schematic view of a separation apparatus including an adsorbent capable of adsorbing ethylene and acetylene according to one embodiment of the present invention.
  • PVSA pressure-vacuum circulation adsorption
  • FIG. 6 is a process diagram for separating a plasma discharge gas, a methane, and a hydrogen-containing gas from a plasma discharge gas, a methane, and a hydrogen-containing mixed gas into a plasma discharge gas, a methane-concentrated gas-containing mixed gas, and a hydrogen concentrated gas using a gas separation membrane.
  • FIG. 7 is a view showing a gas separation membrane module according to an embodiment of the present invention.
  • Figure 8 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / methane / hydrogen / argon (gas produced by plasma reaction from methane 10vol% reaction gas) when using the MIL-100 (Cr) adsorbent.
  • Figure 9 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / propane / propylene / methane / hydrogen / argon (gas prepared from methane 20vol% reaction gas) when using a MIL-100 (Cr) adsorbent.
  • FIG. 10 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / ethane / methane / hydrogen (gas prepared from methane 30vol% reaction gas) when using the MIL-100 (Cr) adsorbent.
  • Figure 11 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / methane / hydrogen / argon (gas prepared from methane 10vol% reaction gas) when using the MIL-100 (Fe) adsorbent.
  • FIG. 12 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / methane / hydrogen / argon (gas prepared from methane 20vol% reaction gas) when using the MIL-100 (Fe) adsorbent.
  • Figure 13 is a graph analyzing the separation performance while adjusting the stage-cut under the hydrogen, methane, argon composition according to this embodiment.
  • 15 is a graph confirming the permeation capacity of the PSf membrane for the mixed gas containing acetylene for a long time operation.
  • Production Example 2 manufacture of MIL-100 (Fe)
  • the plasma reaction apparatus includes a power supply, a plasma reactor, a mass flow controller (MFC), a gas chromatograph (GC), and an oscilloscope. .
  • MFC mass flow controller
  • GC gas chromatograph
  • the power supply used an alternating current (AC) power supply (Max current 60A) with a frequency of 20 kHz, and the power measurement device (Tektronix TDS 5054B) used a 1000: 1 high voltage probe and current probe (Tektronix TCP).
  • the power was measured using a 303 current probe & TCPA 300 amplifier.
  • the gas supplied was supplied through MFC (Brooks), which was calibrated using a flow compensator (Defender530, BIOS international) before use.
  • the components of the gas were reacted and / or products H 2 , O 2 , N 2 , CO, CO 2, methane, using the Thermal Conductivity Detector (TCD) and Flame Ionization Detector (FID) from GC (Agilent, HP 6890N).
  • TCD Thermal Conductivity Detector
  • FID Flame Ionization Detector
  • Each gas flow rate was precisely controlled using MFC, and the methane-containing gas introduced into the plasma reaction apparatus regulated the reaction by controlling the content of methane contained in the methane-containing gas to 10-30 vol%.
  • the gas generated after the reaction was analyzed using a gas chromatograph (FID) and mass spectrometer (GC).
  • Table 1 shows the composition of the gas produced after the plasma reaction using a methane-containing gas containing 10 vol%, 20 vol% and 30 vol% of methane.
  • the product gas (the first mixed gas composition after the plasma-catalyst reaction shown in Table 1) prepared with 10 vol%, 20 vol% and 30 vol% methane containing gas was used at room temperature (25) using an adsorbent (MIL-100Cr of Preparation Example 1).
  • Fig. 2 was separated at 10 bar, and the results are shown in Table 2 (the composition of the third mixed gas after passing through the MIL-100Cr adsorbent).
  • Table 3 shows the gas composition (H 2 : 39.67%, CH 4 : 5.55%, Ar: 54.79%) after the hydrogen separation process using the membrane module system (Polysulfone, Polyimide and zeolite) of FIG. 6.
  • the recovery ratio in Table 3 is based on the ratio of Ar: H 2 , which is introduced when the plasma discharge gas (Ar) and methane-containing gas, which are purified and separated from hydrogen by a membrane from Table 2, are recycled to the plasma reactor. 2 means purity and recovery rate.
  • Ar plasma discharge gas
  • methane-containing gas which are purified and separated from hydrogen by a membrane from Table 2
  • Example 2 10vol% From methane-containing gases plasma MIL- the gas formed by the reaction 100 (Cr) Ethylene / Acetylene Separation
  • the catalyst for separation was used by pelletizing 0.6 g of MIL-100 (Cr) powder of Preparation Example 1. At this time, 2g of MIL-100 (Cr) powder was compressed using a compressor (within a compression pressure of 0.1 to 5 ton), and then a pellet-type adsorbent of a constant size was prepared using a metal body (within a size of 50 to 500um). In order to reduce the volume of the adsorbent layer above and below the catalyst bed, non-reactive silica was used.
  • the separation process was performed using a fixed bed reactor for breakthrough with the pretreated and stabilized adsorbent. At this time, the flow rate was kept constant at 15 cc / min.
  • Reaction conditions for separating the ethylene / acetylene from the mixed gas is 30 °C, 1 ⁇ 5bar, the gas passed through the adsorbent was analyzed using a gas spectrometer (FID) and mass spectrometer (GC). Analysis was performed using an alumina column of GC for separation analysis of paraffins / olefins.
  • Figure 8 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / methane / hydrogen / argon (gas produced by plasma reaction from methane 10vol% reaction gas) when using the MIL-100 (Cr) adsorbent. From this, it was found that the separation efficiency of ethylene / acetylene increases as the reaction pressure increases.
  • Example 3 20vol% From methane-containing gases plasma MIL-containing gases (propane, propylene) formed by the reaction 100 (Cr) Ethylene / Acetylene Separation
  • Hydrocarbons having two or more carbon atoms can be separated from the 20 vol% methane containing gas with respect to the propane / propylene containing gas (methane / hydrogen / argon / acetylene / ethylene / propylene / propane) produced in the plasma reaction apparatus. Separation process was performed using MIL-100 (Cr) of Preparation Example 1 as an adsorbent.
  • the separation process was carried out in the same manner as in Example 2, except that 20 vol% methane-containing gas was a propane / propylene-containing gas produced in a plasma reactor and the adsorbent was stabilized with the gas.
  • Figure 9 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / propane / propylene / methane / hydrogen / argon (gas prepared from methane 20vol% reaction gas) when using a MIL-100 (Cr) adsorbent.
  • Example 4 30vol% From methane-containing gases plasma MIL- the gas formed by the reaction 100 (Cr) Ethylene / Acetylene Separation
  • the separation process was carried out in the same manner as in Example 2, except that the target gas was a gas produced in a plasma reaction apparatus from a 30 vol% methane-containing gas, and the adsorbent was stabilized with the gas.
  • FIG. 10 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / ethane / methane / hydrogen (gas prepared from methane 30vol% reaction gas) when using the MIL-100 (Cr) adsorbent.
  • Example 5 10vol% From methane-containing gases plasma MIL- the gas formed by the reaction With 100 (Fe) Ethylene / Acetylene Separation
  • a separation process was performed in the same manner as in Example 2, except that 1.2 g of MIL-100 (Fe) of Preparation Example 2 was used instead of MIL-100 (Cr) as an adsorbent.
  • Breakthrough test results of the mixed gas was 2 to 10 times higher separation efficiency of ethylene and 5-20 times higher separation efficiency of acetylene when Fe-containing MIL-100 was used as the adsorbent (FIG. 11).
  • Figure 11 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / methane / hydrogen / argon (gas prepared from methane 10vol% reaction gas) when using the MIL-100 (Fe) adsorbent.
  • Example 6 20vol% From methane-containing gases plasma MIL-containing gases (propane, propylene) formed by the reaction With 100 (Fe) Ethylene / Acetylene Separation
  • FIG. 12 is a resolution graph showing the adsorption fraction over time of acetylene / ethylene / methane / hydrogen / argon (gas prepared from methane 20vol% reaction gas) when using the MIL-100 (Fe) adsorbent.
  • Example 7 10vol% And 20vol% From methane-containing gases plasma MIL-100 (Fe) is used for gas (propane, propylene containing) formed by reaction PVSA Separation of Ethylene / Acetylene with Device
  • Example 1 to separate a hydrocarbon having two or more carbon atoms with respect to propane / propylene containing gas (methane / hydrogen / argon / acetylene / ethylene / propylene / propane) produced in a plasma reaction apparatus
  • propane / propylene containing gas methane / hydrogen / argon / acetylene / ethylene / propylene / propane
  • propane / propylene containing gas methane / hydrogen / argon / acetylene / ethylene / propylene / propane
  • the catalyst for separation was pelletized 23g of MIL-100 (Fe) powder of Preparation Example 2. Heat treatment was performed at 150 ° C. for 12 hours for pretreatment of the catalyst. After pretreatment, the catalyst was cooled to 25 ° C. and 50 ° C., and then purged with helium. The pretreated adsorbent was stabilized with the product gas produced after the plasma reaction from 10 vol% and 20 vol% methane containing gas.
  • the PVSA separation process was performed using the pretreated and stabilized adsorbent. At this time, the flow rate was kept constant at 1.2 ⁇ 1.7 L / min.
  • the reaction conditions for separating ethylene / acetylene from the mixed gas were 25 and 50 ° C., 0.01-10 bar.
  • Example 8 Methane / hydrogen / argon separation using gas separation membrane
  • Example 9 Separation of methane / hydrogen / argon from mixed gas composition with methane / hydrogen / argon composition of 3.95% / 19.27% / 76.78%
  • the pressure difference between the membrane module inlet and the permeate was applied at 1 bar for the separation, and the stage-cut was adjusted by operating the needle valve of the residue.
  • Figure 13 is a graph analyzing the separation performance while adjusting the stage-cut under the hydrogen, methane, argon composition according to this embodiment. As shown in FIG. 13, when the stage-cut was 0.3, the separation of hydrogen / methane was found to be 6, and the separation of hydrogen / argon was measured at 2.5. Therefore, it was confirmed that the mixed gas is separated through the polysulfone separator. In addition, in Figure 13 it can be seen that the separation performance is improved exponentially as the stage-cut is reduced. The stage-cut is a factor related to the structure of the membrane module, and if the density of the hollow fiber membrane is increased, it is expected that excellent separation performance will be realized even in a high stage-cut condition.
  • Example 10 Example Methane / Hydrogen / Argon Separation with Acetylene Impurity in Mixed Gas Compositions
  • the pressure difference between the membrane module inlet and the permeate was applied at 1 bar for the separation, and the stage-cut was adjusted by operating the needle valve of the residue.
  • 0.5 vol% of acetylene was additionally supplied to the inlet to the mixed gas by adjusting the MFC.
  • FIG. 14 is a graph analyzing the separation performance while adjusting the stage-cut under the assumption that acetylene impurities are present. As shown in FIG. 14, when the stage-cut was 0.3, the separation of hydrogen / methane was found to be 5.5, and the separation of hydrogen / argon was measured as 3. Compared with the case without acetylene it was found that there is no big difference in the separation performance, it was confirmed that the separation of the mixed gas is made.
  • Example 11 acetylene Reduced Long term operation of membrane for mixed gas Penetration
  • FIG. 15 is a graph confirming permeability when the PSf membrane is operated for a long time with respect to a mixed gas containing acetylene at a pressure of 1 bar.
  • the mixed gas was used consisting of 19.17% hydrogen, 76.40% Ar, 3.93% methane and 0.5% acetylene.
  • the decrease in performance due to the presence of a small amount of acetylene was found to be insignificant.
  • FIG. 16 shows selectivity when the inlet gas (inlet gas composition: hydrogen (39.67%), argon (54.79%), methane (5.54%)) is separated using the zeolite membrane module as shown in FIG. 7.
  • inlet gas composition hydrogen (39.67%), argon (54.79%), methane (5.54%)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Geology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이의 장치에 관한 것이다. 본 발명은 저압 및 실온에서 에틸렌 및/또는 아세틸렌을 효율적으로 흡착할 수 있는 흡착제를 사용하여 플라즈마 방전가스, 메탄, 수소 함유 혼합가스로부터 에틸렌 및/또는 아세틸렌을 분리하는 것이 특징이다.

Description

메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이의 장치
본 발명은 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이의 장치에 관한 것이다.
통상, 에너지원으로 석유 및 천연가스 등이 사용된다. 석유는 점차 고갈되는 상황이고 이와 같은 상태가 앞으로도 지속될 전망이나, 천연가스는 석유의 매장량에 비하여 세계 각지에 풍부하게 매장되어 있는 값싼 에너지원이다. 이와 같은 천연가스는 생산지와 소비지 사이의 거리가 멀고, 가스의 특성 상 운반, 수송 및 보관이 어렵다는 문제점이 있다.
천연가스는 메탄을 주성분으로 하는데, 메탄은 석유화학연료인 C2 이상의 탄화수소를 제조하기 위한 원료로 사용된다. 그러나, 메탄은 안정한 화합물이기 때문에, 메탄을 C2 이상의 화합물로 전환하는데 높은 에너지가 필요하며, 메탄의 C-H 결합의 높은 해리에너지로 인하여 다양하게 이용하는데 제약이 되어 왔다. 따라서, 메탄의 C-H 결합의 활성화와 관련하여 다양한 연구가 진행되고 있다. 최근 이와 관련하여, 플라즈마를 이용한 연구가 진행되고 있는데, 플라즈마를 이용한 메탄의 활성화는 플라즈마의 높은 에너지에 의하여 C-H 결합을 쉽게 분해할 수 있으며, 반응시간을 단축할 수 있다는 장점이 있다. 반면, 진공분위기에서 글로우 방전을 이용하여 메탄을 전환하므로 공정의 투자비와 운전비용이 높다는 문제점이 있다.
한편, 메탄에서 C2 이상의 화합물로 전환하는 방법에는, 개질반응을 통한 간접전환방법과 각각의 생성물로 직접 전환하는 직접전환방법이 있다. 간접전환방법은 천연가스를 개질하여 합성가스로 제조한 후에, 상기 합성가스를 이용하여 다양한 경로로 석유화학원료 물질로 전환하는 방법이다. 간접전환방법은 합성가스를 제조하기 위하여 많은 에너지가 소모되며 초기 투자비용이 높다는 단점이 있다. 한편, 직접전환방법은 합성가스를 경유하지 않는 방법으로, 메탄의 산화이량화반응 (oxidative coupling of methane), 부분산화반응 (partial oxidation of methane, POM) 및 비산화반응 (non- oxidative coupling of methane) 등을 들 수 있다. 이와 같은 반응들은 메탄의 전환을 상업화 수준까지 개발함에 있어서 최적의 활성화와 생성물의 선택적 제조가 어렵다는 문제점을 갖고 있다.
한편, 혼합가스의 분리기술로는 흡착법 (예, pressure swing absorption), 흡수법 (예, water scrubbing, methanol scrubbing, polyethylene glycol scrubbing 등), 막분리법 (membrane separation)이 있다. 이들 중 흡착법은 비정상 상태에서의 운전이기 때문에 운전단계에서 여러 가지 운전변수의 예측과 설계가 어려우며 흡착제에 따라서는 수분을 제거하기 위한 전처리 공정을 필요로 한다. 한편, 흡수법에서 정제된 가스는 수분이 포화되어 있으므로, 수분을 제거하기 위한 후처리 공정을 별도로 필요로 한다. 이에 반해, 분리막을 이용하는 막분리법은 기존의 분리공정을 대처할 공정으로 수십 년간 발전되어 왔다. 특히, 막분리법은 혼합가스의 분리 시 종래의 공정에 비하여 에너지 소모가 적고 장치 설치에 필요한 공간이 간소하며 스케일업이 용이하다는 장점이 있다. 또한, 최근에는 막분리법을 이용하여 질소발생장치, 수소발생장치, 막제습기, 선박이나 항공기용 불활성가스 충진장치, 천연가스 또는 바이오가스의 정제, 및 연료전지 등의 분야에서 널리 사용되고 있다.
분리막을 이용한 수소/메탄/아르곤 분리기술의 일례로써, 대한민국 공개특허 제10-2011-0065038호에는 팔라듐-구리-니켈 합금 분리막을 이용하여 수소를 분리하는 방법이 개시된 바 있다. 또한, 대한민국 공개특허 제10-2009-0110897호에는 수소분리막 및 수소정제장치를 사용하여 물, 일산화탄소, 이산화탄소, 메탄 및 질소 중 적어도 하나의 성분을 1% 이상 포함하는 수소 함유가스로부터 수소를 분리 정제하는 방법이 개시된 바 있다. 이와 같이 팔라듐 계열의 분리막 소재를 사용하여 수소를 정제하는 방법은 초기 투자비가 높고, 고온(> 500℃)에서 정제해야 하므로, 에너지 소비가 높아 에너지 효율적으로 분리 장치를 구동하는데 어려움이 있다.
한편, 아세틸렌은 가스 용접/절단 용도에서 연료가스로서 사용되고, 원자 흡광분광 용도에도 사용되고, 화학 합성 및 마이크로일렉트로닉스 제품 제조시 원료가스로 사용되는 등 다양한 용도에서 공업적으로 사용되고 있다. 그러나, 아세틸렌은 높은 화학반응성에 의하여 매우 불안정하고, 순수한 아세틸렌의 경우에는 2bar 정도의 압력을 초과할 시 자발적으로 폭발적 반응을 일으킨다. 따라서, 실제 현장에서는 아세틸렌을 1.3 bar 이상으로는 충진할 수 없으므로, 소량의 단위로만 저장되어 사용될 수 있어 상용화에 문제가 된다. 또한, 통상 아세틸렌은 분리가 용이하지 않아 순수한 아세틸렌만으로 존재하기 보다는 메탄, 에탄, 프로판, 일산화탄소 및 다른 잡다한 유기종 등의 불순물을 포함하는 경우가 많다. 불안정한 성질과 극도의 반응성의 결과로서 아세틸렌은 공업용 가스의 저장, 운반 및 송달에 종래 사용되고 있는 가압 가스 공급 용기 중에 균일 가스 상으로서 저장할 수 없다. 따라서, 용접용 가스로 사용되는 아세틸렌은 LPG 가스로 대체하려는 연구가 진행되고 있으나 LPG 가스의 경우 아세틸렌보다 열량이 낮은 단점이 있다.
본 발명은 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이를 위한 장치를 제공하고자 한다.
또한, 본 발명은 불활성가스(예, 아르곤)를 20vol% 이하로 포함하면서 저장 및 보관이 용이한 용접용 가스를 제공하고자 한다.
본 발명의 제1양태는 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법에 있어서, 메탄 함유가스의 플라즈마 반응에 의해 형성된, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스로부터, 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 제1 단계; 상기 제2 혼합가스를 기체 분리막을 통과시켜 플라즈마 방전가스 및 메탄이 농축된 제3 혼합가스와, 수소 농축가스로 분리하는 제2 단계; 및 상기 제3 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키는 제3 단계;를 포함하는 것이 특징인 방법를 제공한다.
본 발명의 제2양태는 메탄의 플라즈마 반응 및 분리공정을 통한 아세틸렌 농축가스 또는 에틸렌 농축가스 제조방법에 있어서, 메탄 함유가스의 플라즈마 반응에 의해 형성된, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스로부터, 에틸렌 및 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 에틸렌 및 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및 아세틸렌이 농축된 가스로 분리하는 제1 단계; 상기 에틸렌 및 아세틸렌이 농축된 가스로부터, 아세틸렌을 선택적으로 흡착하는 흡착제를 사용하여, 에틸렌이 감소 또는 제거된 아세틸렌 농축가스와 아세틸렌이 감소 또는 제거된 에틸렌 농축가스로 분리하는 제2 단계; 및 상기 제2 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키는 제3 단계;를 포함하는 것이 특징인 방법을 제공한다.
본 발명의 제3양태는 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조장치에 있어서, 메탄 및 플라즈마 방전가스가 투입되고, 메탄 함유가스의 플라즈마 반응을 수행하여, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스를 형성하는 플라즈마 반응기; 및 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 상기 제1 혼합가스로부터, 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 흡착제 분리 반응기를 구비한 것이 특징인 제조 장치를 제공한다.
본 발명의 제4양태는 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조장치에 있어서,
메탄 및 플라즈마 방전가스로 수소가 투입되고, 메탄 함유가스의 플라즈마 반응을 수행하여, 플라즈마 방전가스인 수소와 메탄, 생성된 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스를 형성하는 플라즈마 반응기;
수소를 분리할 수 있는 분리막을 사용하여, 상기 제1 혼합가스로부터, 수소가 감소 또는 제거된 메탄, 에틸렌 및 아세틸렌 함유 제4 혼합가스와, 수소 농축가스를 분리하는 분리막 반응기; 및
에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 상기 제4 혼합가스로부터, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 흡착제 분리 반응기를 구비한 것이 특징인 제조 장치를 제공한다.
이하, 본 발명을 자세히 설명한다.
메탄의 C-H 결합을 분해할 수 있는 해리 활성화 에너지를 방전 플라즈마에 의해 제공받아 쉘가스와 같은 메탄 함유 가스로부터 수소, 에틸렌 및 아세틸렌을 생산할 수 있다. 이때, 아세틸렌 및/또는 에틸렌을 선택적 분리 및/또는 저장할 수 있으면, 상기 아세틸렌 및/또는 에틸렌을 농축하여 용접용 가스로 저장할 수 있다. 또한, 에틸렌 및 아세틸렌과 같은 C2 탄화수소류는 다양한 폴리머를 생산하기 위한 모노머 (monomer)로 중요한 화학원료로 사용된다.
그러나, 플라즈마 방전가스(예, 아르곤)를 포함하는 메탄의 플라즈마 반응 생성물은, 기존의 촉매 및 열분해 공정을 통해 형성된 아세틸렌 및 에틸렌 함유 혼합가스와 조성이 완전히 다르기 때문에, 분리 공정 시 피드 (feed)의 조성이 달라 기존의 분리기술을 적용하기 어려웠다. 나아가, 아세틸렌의 높은 폭발성 때문에 저압 (<2 bar) 및 실온에서 높은 아세틸렌 수용량을 갖는 흡착제가 요구되나, 이와 같은 특성을 구비한 흡착제가 없어 문제되어 왔다. 또한, 용접용 가스로 사용되는 아세틸렌은 저압에서 폭발성 위험성이 있어 보관이 어려웠고, 순수한 아세틸렌으로 제조하는데 다단계의 고가의 공정을 필요로 하는 문제가 있다.
본 발명자들은 저압 및 실온에서 에틸렌 및/또는 아세틸렌을 효율적으로 흡착할 수 있는 흡착제를 찾아 상기 흡착제를 사용하여 플라즈마 방전가스, 메탄, 수소 함유 혼합가스로부터 에틸렌 및/또는 아세틸렌을 분리할 수 있다는 것을 발견하였으며, 본 발명은 이에 기초한 것이다. 흡착제를 사용하여 에틸렌 및/또는 아세틸렌을 분리하는 공정은 C2 탄화수소류의 혼합물의 분리에서 전통적으로 사용되는 극저온 분별증류를 대처할 수 있어 에너지 효율을 향상시킬 수 있다. 또한, 이로 인해 용접용 가스로 사용할 수 있는 아세틸렌 농축가스를 용이하게 제조할 수 있으며, 가압을 필요로 하지 않는 조건에서 상기 흡착제를 이용하여 아세틸렌 농축가스를 제조할 수 있고, 이를 저장하여 용접용 가스를 이용할 수 있다. 상기 용접용 가스는 플라즈마 방전가스로 사용되는 불활성가스(예, 아르곤)가 20vol% 이하로 포함될 수 있고, 바람직하게는 아르곤, 수소 등의 불순물을 10vol% 이하로 함유할 수 있으므로, 용접용 가스로 사용시 용접효율을 향상시킬 수 있다.
한편, 플라즈마 방전 가스, 메탄 및 수소에 비하여 크기가 큰 탄화수소계 물질인 에틸렌 및/또는 아세틸렌이 분리막을 통과하는 경우, 높은 표면 흡착 능력으로 인해서 플라즈마 방전 가스, 메탄 및 수소 함유 혼합가스의 기체 선택성을 저하시킬 수 있으며, 특히 분리막이 고분자 소재인 경우 고분자막을 팽윤 (swelling)시켜 분리막의 선택성을 크게 저하시킬 수 있다. 따라서, 본 발명은 메탄 함유가스의 플라즈마 반응에 의해 형성된, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 혼합가스로부터 수소를 분리하기 위한 기체 분리막을 사용하는 공정 이전에 상기 혼합가스로부터 흡착제를 사용하여 에틸렌 및 아세틸렌을 감소 또는 제거하는 공정을 선행하는 것이 다른 특징이다.
도 1은 본 발명의 일 구체예에 따른 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 및 용접용 가스를 제조하는 방법의 모식도이다.
따라서, 본 발명의 일양태에 따른 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법은
메탄 함유가스의 플라즈마 반응에 의해 형성된, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스로부터, 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 제1 단계;
상기 제2 혼합가스를 기체 분리막을 통과시켜 플라즈마 방전가스 및 메탄이 농축된 제3 혼합가스와, 수소 농축가스로 분리하는 제2 단계; 및
상기 제3 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키는 제3 단계;를 포함한다.
또한, 본 발명의 일양태에 따른 메탄의 플라즈마 반응 및 분리공정을 통한 아세틸렌 농축가스 또는 에틸렌 농축가스 제조방법은,
메탄 함유가스의 플라즈마 반응에 의해 형성된, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스로부터, 에틸렌 및 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 에틸렌 및 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및 아세틸렌이 농축된 가스로 분리하는 제1 단계;
상기 에틸렌 및 아세틸렌이 농축된 가스로부터, 아세틸렌을 선택적으로 흡착하는 흡착제를 사용하여, 에틸렌이 감소 또는 제거된 아세틸렌 농축가스와 아세틸렌이 감소 또는 제거된 에틸렌 농축가스로 분리하는 제2 단계; 및
상기 제2 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키는 제3 단계;를 포함한다.
상기 제1 단계는 상기 흡착제를 통하여 아세틸렌 농축가스를 분리하여 용접용 가스로 저장하는 것을 더 포함할 수 있다.
또한 상기 제1 단계 이후 에틸렌 및 아세틸렌이 농축된 가스로부터, 아세틸렌을 선택적으로 흡착하는 흡착제를 사용하여, 에틸렌이 감소 또는 제거된 고순도 아세틸렌을 분리 및 저장하는 단계를 더 포함할 수 있다.
나아가, 제1 단계에서 분리된 에틸렌 및 아세틸렌 농축 가스에 대해 아세틸렌 전환반응을 수행하여 에틸렌 농축가스로 전환시키는 단계를 더 포함할 수 있다.
나아가, 본 발명의 일양태에 따른 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조장치는,
메탄 및 플라즈마 방전가스가 투입되고, 메탄 함유가스의 플라즈마 반응을 수행하여, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스를 형성하는 플라즈마 반응기; 및
에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 상기 제1 혼합가스로부터, 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 흡착제 분리 반응기를 구비한다.
본 발명의 제조장치는 상기 제2 혼합가스를 기체 분리막을 통과시켜, 플라즈마 방전가스 및 메탄이 농축된 제3 혼합가스와, 수소 농축가스로 분리하는 분리막 반응기를 더 구비할 수 있다. 또한, 본 발명의 제조장치는 상기 분리막 반응기에서 분리된, 제3 혼합가스를 플라즈마 반응기로 재순환시키는 수단을 더 구비하거나, 흡착제 분리 반응기에서 분리된, 제2 혼합가스를 플라즈마 반응기로 재순환시키는 수단을 더 구비할 수 있다. 나아가, 본 발명의 제조장치는 상기 흡착제 분리 반응기에서 분리된 에틸렌 및 아세틸렌 농축 가스를, 선택적으로 아세틸렌을 흡착하는 아세틸렌 흡착제를 사용하여, 에틸렌 농축 가스와 아세틸렌 농축 가스로 분리하는 흡착제 분리 반응기를 더 구비할 수 있다. 또한, 본 발명의 제조장치는 상기 흡착제 분리 반응기에서 분리된 에틸렌 및 아세틸렌 농축 가스에 대해 아세틸렌 전환반응을 수행하여 에틸렌 농축가스로 전환시키는 아세틸렌 전환 반응기를 더 구비할 수 있다.
한편, 플라즈마 방전가스로 수소를 사용하는 경우, 본 발명의 일양태에 따른 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조장치는,
메탄 및 플라즈마 방전가스로 수소가 투입되고, 메탄 함유가스의 플라즈마 반응을 수행하여, 플라즈마 방전가스인 수소와 메탄, 생성된 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스를 형성하는 플라즈마 반응기;
수소를 분리할 수 있는 분리막을 사용하여, 상기 제1 혼합가스로부터, 수소가 감소 또는 제거된 메탄, 에틸렌 및 아세틸렌 함유 제4 혼합가스와, 수소 농축가스를 분리하는 분리막 반응기; 및
에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 상기 제4 혼합가스로부터, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 흡착제 분리 반응기를 구비하도록 변형될 수 있다. 이 경우도 본 발명의 범주에 속한다.
메탄의 플라즈마 반응은 도 2에 도시된 플라즈마 반응 장치 및 도 3에 도시된 회전아크 플라즈마 반응기를 사용하여 수행될 수 있다.
상기 플라즈마 반응은 촉매 하에서 저온 플라즈마 (non-thermal plasma) 처리에 의하여 수행되고, C-H 결합 분해 (C-H bond cleavage) 반응을 포함할 수 있다.
플라즈마를 이용하여 메탄 (또는, 천연가스)을 열분해하는 대표적인 공정으로는 휼스 공정 (Huels process)이 있다. 휼스 공정은 DC (direct current) 아크 (Arc)를 이용한 열분해 공정으로, 방전 가스를 주입하여 아크를 생성시키면 아크에 의해 형성된 고온의 영역에 메탄을 주입하여 열분해하고, 이에 의하여 생성된 가스를 물이나 액체 프로판 등을 이용해 급속 냉각하여 반응을 완결하게 된다. 플라즈마-촉매 반응은, 전술한 휼스 공정을 변형하여 사용될 수 있다. 가스의 온도보다 생성된 전자 온도가 상대적으로 높은 저온 플라즈마가 바람직하며, 유전체 장벽 방전 (dielectric barrier discharge, DBD), 펄스 코로나 방전, 스파크 방전 등을 통해 형성될 수 있으나, 이에 제한되지 않는다. 여기서, 유전체 장벽 방전은 대기압과 상온에서 방전 가능하며, 대기압에서 아주 큰 비-평형 조건에서 동작하고, 고 출력 방전을 할 수 있으며 복잡한 펄스 전력 공급기가 없어도 되기 때문에 산업체에서 널리 이용되고 있다.
플라즈마 반응에 투입되는 메탄 함유가스 중 메탄 (CH4)의 강한 C-H 결합을 분해하는 해리 활성화 에너지는 방전 플라즈마에 의해 제공받아 상기 메탄을 여러 라디칼 상태로 전환시킬 수 있는데, 이때 캐리어 가스 (carrier gas)로 불활성가스 또는 수소를 사용할 수 있다. 상기 불활성가스의 비제한적인 예로는 질소, 아르곤, 헬륨, 네온, 크립톤 또는 이의 혼합물 등이 있다.
상기 메탄 함유가스를 저온 플라즈마 처리한 후 촉매 존재 하에 C-H 결합 분해 반응을 수행하는 과정에서, 아르곤 가스를 캐리어 가스로 사용한 경우는 다른 불활성가스를 캐리어 가스로 사용한 경우 보다 메탄의 C-H 결합을 잘 분해시킴으로써 더 많은 메탄이 전환될 수 있다는 것을 확인하였으며, 따라서 본 발명은 아르곤 가스를 불활성가스로 사용하는 것이 바람직하다.
메탄 함유가스는 플라즈마 반응에 단독으로 투입되거나, 캐리어 가스와 함께 또는 수소, 물 (수증기), 탄화수소 또는 이의 혼합물이 추가되어 투입될 수 있다. 바람직하기로, 상기 메탄 함유가스와 함께 투입되는 탄화수소는 C2 내지 C6인 탄화수소일 수 있으며, 예를 들어 에탄 (ethane), 에틸렌 (ethylene) 또는 프로판 (propane), 프로필렌 (propylene)일 수 있다. 상기 메탄 함유가스 중에 수소 또는 탄화수소를 추가할 경우에는 다수의 C-C 결합된 화합물이 증가하여, 생성물 중의 올레핀 (olefin) 또는 방향족 탄화수소 (aromatic hydrocarbon)의 양을 증가시킬 수 있다. 상기 방향족 탄화수소는 비교적 고가의 화합물이므로, 생성물의 경제성 측면에서도 이득이 있다.
메탄 함유가스의 플라즈마 반응은 촉매 존재 하에 수행될 수 있으며, 이때 촉매는 플라즈마 상태 하에서의 C-H 결합 분해 시 활성화 에너지를 낮출 수 있는 한 그 종류는 제한되지 않는다. 플라즈마와 촉매의 복합 시스템은 상호 복합적으로 작용하여 반응의 효율을 높이고 생성물의 선택성을 개선할 수 있다. 사용 가능한 촉매의 비제한적인 예는 활성물질로 귀금속, 전이금속 및 전형금속을 포함한다. 특히 활성물질로는 Pt, Ru, Ni, Co, V, Fe, Cu, Ti, Nb, Mo, W, Ta, Pd, Cu 또는 Zn를 포함하고, 활성물질 또는 담체로 ZrO2, CoO, Co3O4, MnO, NiO, CuO, ZnO, TiO2, V2O5, Ta2O5, ZnO, Cr2O3, FeO, Fe2O3, Fe3O4, 등의 전이금속 산화물, MgO, CaO, BaO, Al2O3, Ga2O3, SnO, SnO2, SiO2 등의 전형원소 산화물 등을 포함할 수 있다. 또한, 사용 가능한 촉매 또는 담체로는 SrTiO3, BaTiO3, (LaSr)2TiO4 등의 금속복합 산화물을 포함할 수 있다. 또한 사용 가능한 다공성 촉매 및 담체로는 제올라이트, 메조세공체, 활성탄소체 (Activated carbon), 층간산화물 (Layered double hydroxides, LDH) 등이 포함될 수 있다. 특히 촉매 물질로는 제올라이트, 이온성액체를 포함한 산촉매, MgO, LDH, 및 이온성 액체 포함 염기촉매, Fe3O4, V2O5 등의 산화환원촉매 등이 사용될 수 있다. 상기 활성물질 및 담체는 산화이량화반응, 부분산화반응 또는 비산화반응 등의 반응 종류에 따라 적절히 선택될 수 있다.
상기 촉매는 구 (sphere), 펠렛 (pellet), 기둥 (monolith), 허니컴 (honeycomb), 섬유 (fibres), 다공성 고체 (porous solid foam), 가루 (powder)의 형태를 포함할 수 있다. 위와 같은 형태를 갖는 촉매는 상기 플라즈마 반응기 내부에 충진되어 충진층 반응기 (Packed-bed reactor)를 형성시킬 수 있다. 또한, 상기 촉매는 상기 플라즈마-촉매 반응이 수행되는 반응기 내벽에 코팅되어 촉매층을 형성시킬 수 있다.
플라즈마-촉매 반응기는 불활성 가스를 캐리어 가스로 이용하여 메탄의 강한 C-H 결합을 분해할 수 있으며, 이때 촉매를 함께 사용함으로써 비교적 낮은 온도 (예컨대, 수백 K 내지 1000 K)에서 수행될 수 있다.
상기 플라즈마 반응은 도 3의 회전 아크 플라즈마 반응기에서 수행될 수 있다. 회전 아크 플라즈마 반응기는 고전압 전극과 그라운드 (ground) 전극으로 이루어지며, 글라이딩 아크와 비교할 때 3차원 형태로 아크가 발생한다. 회전 아크 플라즈마 반응기는 아크가 발생하는 영역에서 하부방향으로 내부 직경을 점차 감소시켜 발생되는 열이 집중될 수 있도록 만든 것이다. 상기 반응기 내로 방전 가스를 주입하여 회전 아크를 발생시키고, 회전 아크에 의해 발생된 고온의 영역에 메탄 함유가스를 주입하여 열분해 시킬 수 있다. 생성된 가스는 반응 공간을 통과하면서 벽면으로 열전달되어 냉각이 이루어지며 반응을 완결한다.
도 2는 플라즈마 반응 장치로 전술한 도 3의 회전 아크 플라즈마 반응기를 구비할 수 있으며, 전원 공급 장치 (power supply), 가스 공급장치 (MFC, Mass Flow Controller), 가스 분석장치 (GC, Gas Chromatography), 전력측정장치 (Oscilloscope)가 추가로 셋팅된 것이다. 상기 전력측정장치는 1000:1 고전압 프로브 (probe)와 전류 프로브 (current probe)를 이용하여 전력을 측정할 수 있고, 하기 식 (1)에 의하여 계산될 수 있다.
Figure PCTKR2017006413-appb-I000001
(식 1)
상기 장치 중 반응기로 내로 공급되는 가스는 가스 공급장치 (MFC)를 통하여 공급될 수 있고, 상기 가스 공급장치는 사용 전에 유량 보정기를 통하여 보정될 수 있다. 가스의 성분은 가스 분석장치 (GC)의 TCD (Thermal Conductivity Detector-H2, O2, N2, CO, CO2)와 FID (Flame Ionization Detector-CH4, C2H4, C2H2, C2H6, C3H6, C3H8, n-C4H10, i-C4H10)를 사용하여 분석할 수 있다. 예컨대, 상기 반응기 내로 공급되는 가스의 순도는 Ar-99.999%, N2-99.9%, CH4-99.95%, H2-99.9%일 수 있다. 메탄의 변환률 (Conversion)과 수소, 탄화수소류 (hydrocarbons)의 선택도 (Selectivity), 에너지 효율 (Specific Energy Requirement)은 하기 식 (2)~(5)에 의해 계산될 수 있다.
Figure PCTKR2017006413-appb-I000002
(식 2)
Figure PCTKR2017006413-appb-I000003
(식 3)
Figure PCTKR2017006413-appb-I000004
(식 4)
Figure PCTKR2017006413-appb-I000005
(식 5)
상기 메탄 함유가스 중 포함된 메탄의 함량은 메탄 함유가스 총부피를 기준으로 5 vol% 내지 50 vol%일 수 있고, 바람직하게는 10 vol% 내지 30 vol%일 수 있으며, 더욱 바람직하게는 15 vol% 내지 25 vol%일 수 있다.
메탄 함유가스 중 포함된 메탄의 함량이 10 vol% 미만인 경우에는, 플라즈마 반응의 대상물인 메탄의 함량이 낮아 반응효율을 저하시키고, 상기 메탄의 함량이 30 vol% 초과인 경우 플라즈마 반응 시 생성되는 혼합가스 중 C2를 초과하는 탄화수소류 물질이 다수 생성되어 후속 분리공정에 효율을 저하시킬 수 있다.
또한, 본 발명은 메탄 함유가스의 플라즈마 반응에 의해 형성된 제1혼합가스로부터, 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 에틸렌 및 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키거나, 또는 제2 혼합가스를 기체 분리막을 통과시켜 플라즈마 방전가스 및 메탄이 농축된 제3 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시킬 수 있다. 상기 재순환되는 제2 혼합가스 또는 제3 혼합가스는 상기 메탄 함유가스와 혼합되어 플라즈마 반응에 투입될 수 있는데, 이때 상기 메탄 함유가스 중 포함된 메탄의 함량이 15 vol% 내지 25 vol%인 경우에는, 제2혼합가스 또는 제3 혼합가스를 메탄 함유가스와 혼합 시 별도의 농도 조절이 필요하지 않으므로 공정효율을 향상시킬 수 있다.
메탄 함유가스의 플라즈마-촉매 반응에 의해 형성되는 제1 혼합가스는 플라즈마 방전가스, 메탄, 수소, 에틸렌, 및 아세틸렌을 함유할 수 있다. 본 발명은 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 상기 제1 혼합가스로부터 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스를 준비할 수 있다. 상기 흡착제에 의하여 흡착된 에틸렌 및/또는 아세틸렌은 흡착제의 기공 내 에틸렌 및/또는 아세틸렌이 수용되어 있는 상태로 저장될 수 있거나, 탈착시킨 후 별도로 저장할 수도 있다. 추가적으로 상기 에틸렌 및 아세틸렌 혼합가스는 선택적으로 아세틸렌을 흡착할 수 있는 아세틸렌 흡착제를 통하여 각각 에틸렌 농축가스 및 아세틸렌 농축가스로 분리될 수 있다.
에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제는 다공성 하이브리드 유기금속 골격체 (MOF)일 수 있다. 상기 다공성 하이브리드 유기금속 골격체(MOF)는 금속이온 또는 이온 클러스터가 유기분자와 배위해서 형성된 1-, 2- 또는 3-차원 구조의 유기물/무기물 하이브리드 물질로서, 상기 다공성 하이브리드 유기금속 골격체의 구조 내 빈 공간을 통하여 물질을 수용할 수 있으며, 기공도가 제올라이트보다 훨씬 높다. 따라서, 다공성 하이브리드 유기금속 골격체는 에틸렌 및/또는 아세틸렌을 효율적으로 수용할 수 있는 공간을 구비할 수 있다.
상기 다공성 하이브리드 유기금속 골격체는 배위불포화자리 (Coordinatively Unsaturated Sites: CUS)를 갖는 것이 바람직하다. 배위불포화자리는 유기금속 골격체의 금속 이온에 배위되어 있는 리간드, 대표적으로 물 또는 유기용매 등이 제거된 금속의 배위 가능 자리로서 다른 리간드가 다시 배위결합을 형성할 수 있는 위치를 의미한다. 상기 배위불포화자리는 골격에 형성될 수도 있고, 유기금속 골격체의 표면이나 세공 내에 존재하는 금속 이온이나 유기금속 화합물에 형성될 수도 있다. 유기금속 골격체의 배위불포화자리를 확보하기 위하여, 상기 배위불포화자리에 결합된 물 또는 용매성분을 제거하는 전처리 단계를 진행할 수 있다. 따라서, 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 다공성 하이브리드 유기금속 골격체는 제1 혼합가스로부터 에틸렌 및/또는 아세틸렌을 분리하기 전에 전처리될 수 있다. 바람직하게, 다공성 하이브리드 유기금속 골격체는 0.2 mmol/g 내지 10 mmol/g의 밀도로 배위불포화자리를 갖는 것일 수 있다. 다공성 하이브리드 유기금속 골격체의 배위불포화자리의 밀도가 0.2 mmol/g 미만일 경우 에틸렌 및 아세틸렌에 대한 흡착 선택성을 갖더라도 에틸렌 및 아세틸렌의 흡착 용량이 낮아 에틸렌 및 아세틸렌 함유 가스에 대한 분리의 공정효율이 감소한다. 한편, 10 mmol/g를 초과하는 경우 구조상 유기금속 골격체를 형성하기 어려울 뿐만 아니라 실험적으로도 달성하기 어려운 밀도이다. 상기 불포화 금속 배위자리를 갖는 유기금속 골격체는 금속으로서 3가의 크롬 이온, 철 이온, 코발트 이온, 텅스텐 이온, 몰리브데늄 이온, 루테늄 이온, 니오븀 이온, 망간 이온, 니켈 이온, 구리 이온, 아연 이온, 티타늄 이온 또는 지르코늄 이온을 포함할 수 있다. 보다 바람직하게, 상기 불포화 금속 배위자리를 갖는 유기금속 골격체는 금속으로서 3가의 크롬 이온, 철 이온, 코발트 이온, 텅스텐 이온 또는 몰리브데늄 이온 가운데 최소한 하나의 성분을 포함할 수 있고, 에틸렌 및 아세틸렌 대한 특이적인 흡착력을 갖는 금속성분을 사용하는 것이 바람직하다. 예컨대, 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 다공성 하이브리드 유기금속 골격체는 중심금속으로 Cr(III) 금속 또는 Fe(III) 금속을 포함할 수 있다.
다공성 하이브리드 유기금속 골격체는 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 한, 일반적인 유기금속 골격체를 구성하는 유기물 리간드를 제한없이 사용하여 제조할 수 있다. 예컨대, 1,4-벤젠디카르복실산(1,4-benzenedicarboxylic acid; BDCA), 이소프탈산(isophthalic acid), 1,3,5-벤젠트리카르복실산(1,3,5-benzenetricarboxylic acid; BTCA), 2,5-디히드록시테레프탈산(2,5-dihydroxyterephthalic acid; or 2,5-dihydroxy-1,4-benzene dicarboxylic acid), 2-아미노테레프탈산(2-aminoterephthalic acid), 2-니트로테레프탈산(2-nitroterephthalic acid), 2-메틸테레프탈산(2-methylterephthalic acid), 2-할로테레프탈산(2-haloterephthalic acid), 아조벤젠테트라카르복실산(azobenzene tetracarboxylic acid), 1,3,5-트리카르복시페닐벤젠(1,3,5-tri(4-carboxyphenyl)benzene), 2,6-나프탈렌디카르복실산(2,6-naphthalene dicarboxylic acid; NDCA), 벤젠-1,3,5-트리벤조산(benzene-1,3,5-tribenzoic acid; BTB), 퓨마르산(fumaric acid), 글루탈산(glutaric acid), 2,5-퓨란디카르복실산(2,5-furanedicarboxylic acid; FDCA), 1,4-피리딘디카르복실산(1,4-pyridinedicarboxylic acid), 2-메틸이미다졸(2-methylimidazole), 알킬치환 이미다졸(alkyl-substituted imidazole), 방향족치환 이미다졸(aromatic ring-substituted imidazole), 2,5-피라진디카르복실산(2,5-pyrazinedicarboxylic acid), 1,4-벤젠디피라졸(1,4-benzene dipyrazole), 3,5-디메틸-피라졸레이트-4-카르복실레이트(3,5-dimethyl-pyrazolate-4-carboxylate), 4-(3,5-디메틸-1H-피라졸-4-일)벤조에이트(4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoate), 1,4-(4-비스피라졸일)벤젠(1,4-(4-bispyrazolyl) benzene), 또는 이들의 유도체를 하나 이상 사용할 수 있다. 바람직하게는 1,4-벤젠디카르복실산, 1,3,5-벤젠트리카르복실산, 2,5-디히드록시테레프탈산, 2,6-나프탈렌디카르복실산, 아조벤젠테트라카르복실산 또는 이들의 유도체를 사용할 수 있으나, 이에 제한되지 않는다.
한편, 아세틸렌과 에틸렌을 분리할 수 있는 아세틸렌 흡착제는 불포화 금속 자리를 갖는 금속 유기 골격체(metal organic framework)를 함유할 수 있다. 상기 아세틸렌을 흡착할 수 있는 금속 유기 골격체는 하기 화학식 1 내지 5로 나타낼 수 있다.
[화학식 1]
M3X(H2O)2O[C6Z4-yZ'y(CO2)2]3
여기에서, X는 Cl, Br, I, F 또는 OH; Z 또는 Z'는 서로 같거나 다를 수 있으며, 각각 독립적으로 H, NH2, Br, I, NO2 또는 OH; 0 ≤ y ≤ 4; M은 Fe, Cr, Mn, Al, V이다.
[화학식 2]
M3O(H2O)2X[C6Z3-yZ'y(CO2)3]2
여기에서, X는 Cl, Br, I, F 또는 OH; Z 또는 Z'는 서로 같거나 다를 수 있으며, 각각 독립적으로 H, NH2, Br, I, NO2 또는 OH; 0 ≤ y ≤ 3; M은 Fe, Cr, Mn, Al, V이다.
[화학식 3]
M3O(H2O)2X1 - y(OH)y[C6H3(CO2)3]2
여기에서, 0 ≤ y ≤ 1; X는 Cl, Br, I 또는 F; M은 Fe, Cr, Mn, Al, V이다.
[화학식 4]
M3X1 - y(OH)y(H2O)2O[C6H4(CO2)2]3
여기에서, X는 Cl, Br, I 또는 F; 0 ≤ y ≤ 1; M은 Fe, Cr, Mn, Al, V이다.
[화학식 5]
MaObXcLd
여기에서, M는 Fe, Cr, Al, V, Mn; X는 H-, F-, Cl-, Br-, NO3 -, BF4 -, PF6 -, I-, SO42-, HCO3 - 및 RnCOO-(Rn은 C1-C6 알킬기)로 이루어지는 군에서 선택되는 하나 이상의 음이온 리간드; L은 카르복실기(-COOH), 카르복실산 음이온기(-COO-), 아민기(-NH2)및 이미노기(-NH), 니트로기(-NO2), 히드록시기(-OH), 할로겐기(-X) 및 슬폰산기(-SO3H)로 이루어진 군에서 선택되는 하나 이상의 유기 리간드; a는 1 내지 12의 수, b는 0 내지 6의 수, c는 0 내지 12의 수 및 d는 1 내지 12의 수이다.
도 4는 본 발명에서 사용가능한 일례로 에틸렌 및 아세틸렌을 흡착할 수 있는 흡착제를 포함하는 분리 장치를 개략적으로 나타낸 도면이다. 도 4를 참조하면, 상기 흡착제는 튜브 (Tube) 타입 반응기에 충진 (catalyst bed)될 수 있다. 또한, 반응기의 내부에는 부피를 감소시키기 위하여 반응성이 없는 석영 입자 (silica sand)가 충진될 수 있으며, 불활성 가스를 이용하여 흡착제 표면을 처리할 수 있다. 상기 흡착제는 제1 혼합가스 중 에틸렌 및/또는 아세틸렌을 흡착하는 데 사용하기 전에 전처리될 수 있다. 예컨대, 상기 전처리는 150℃ 내지 250℃ 범위에서 수행될 수 있으며, 전처리 후 흡착분리 온도까지 냉각될 수 있다. 또한, 흡착제의 온도를 운전온도에서 일정한 시간 동안 (대략 5분 내지 10분) 유지한 후, 상기 제1 혼합가스를 반응기에 주입하여 흡착 분리 반응을 시작할 수 있다. 이때, 전처리 가스는 헬륨 등의 불활성 가스를 사용할 수 있고, 상기 전처리 가스와 반응가스인 제1 혼합가스는 6-포트 밸브 (port valve)를 이용하여 흡착제 통과 여부를 결정할 수 있다. 전처리 시에는 상기 반응가스는 흡착제를 통과하지 않고 반응가스의 농도를 분석하기 위해 GC 쪽으로 흐르며, 흡착 시작 시 6-포트 밸브를 반대 방향으로 작동하여 전처리 가스는 흡착제를 통과하지 않고 바로 벤트 (vent)되며, 반응가스는 흡착제를 통과 후 반응 후 가스의 농도를 측정하기 위해 GC쪽으로 향하며, 이를 이용하여 반응 후 가스 농도를 분석한다. 반응기의 압력을 1bar 이상에서 작동하기 위해서는 후방 압력 조절기 (back pressure regulator)를 이용하여 압력을 조절할 수 있다.
에틸렌 및/또는 아세틸렌에 대한 선택적 흡착능을 갖는 유기금속 골격체는 130 내지 300℃에서 전처리한 것일 수 있다. 보다 바람직하게는 150 내지 300℃에서 전처리한 것일 수 있으나, 메탄, 산소, 아르곤 등에 비해 에틸렌 및/또는 아세틸렌에 대해 보다 높은 흡착능을 나타내는 한 상기 전처리 조건에 제한되지 않는다. 전처리 온도가 130℃ 미만으로 낮은 경우 다른 가스에 비해 특정 가스에 대한 현저히 높은 흡착량을 보이는 특이적인 흡착능을 나타내지 않고, 모든 가스에 대해 유사한 흡착량을 나타내는 특이적인 흡착능을 상실할 수 있는데, 이는 용매나 미반응된 잔류물들이 유기금속 골격체의 기공입구를 차단하여 흡착하려는 가스가 다공성 유기금속 골격체의 내부로 경유하면서 충분한 접촉을 하지 못하였기 때문인 것으로 사료된다. 상기 전처리 온도는 예시일 뿐, 용매의 제거 조건이나 처리시간을 달리할 경우 조절될 수 있다.
또한, 흡착제의 전처리는 유기금속 골격체의 변형을 유발하지 않고 물 또는 용매성분을 제거할 수 있으면 어떠한 방법도 사용가능하며, 예컨대, 감압 하에 100℃ 이상의 온도로 가열하여 달성할 수 있으며, 바람직하게는 150℃ 이상의 온도로 가열하여 달성할 수 있으나, 이에 제한되지 않는다. 또는 당업계에 공지된 용매 제거 방법인 진공처리, 용매교환, 초음파 처리 등의 방법을 제한 없이 이용하여 수행될 수 있다. 예컨대, 본 실시예에서는 전처리는 헬륨 등과 같은 불활성가스 하에서 1bar, 12시간 동안 150℃를 유지하거나, 불활성가스 하에서 1bar, 6시간 동안 250℃, 또는 불활성가스 하에서 1bar, 6시간 동안 100℃ 를 유지하여 수행될 수 있다. 또한, 전술한 바와 같이, 상기 과정은 진공처리, 용매교환, 초음파 처리 등의 공지의 용매 제거 방법을 제한 없이 이용하여 수행될 수 있다.
도 5는 플라즈마 방전가스, 메탄, 수소, 에틸렌, 및 아세틸렌 함유 제1 혼합가스로부터 에틸렌 및/또는 아세틸렌를 흡착할 수 있는 흡착제를 사용하여, 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리할 수 있는 PVSA (압력-진공순환흡착) 장치를 개략적으로 나타낸 도면이다.
도 5를 참조하면, 상기 제1 혼합가스는 흡착제를 이용하는 압력-진공순환흡착 (Pressure-vacuum Swing Adsorption; PVSA) 분리법에 의하여 분리될 수 있다. 상기 PVSA 분리법은 고압에서 가스혼합물 중의 특정 가스를 선택적으로 흡착제에 흡착시킨 후 압력을 낮추면 흡착되었던 가스가 탈착되는 원리를 이용하여 가스를 분리 정제하는 방법이다. 보다 상세하게는 원하는 가스를 선택적으로 흡착하는 흡착제로 충진된 하나 이상의 흡착 컬럼 또는 흡착탑 (Adsorption Bed)에 상기 원하는 가스를 다량 흡착시키기 위하여 상압 또는 그 이상의 압력으로 가압하는 단계 (Pressurization), 흡착된 가스를 탈착시키기 위하여 감압하는 단계 (Blowdown), 탈착된 가스를 회수하기 위한 정화 단계 (Purge) 등을 연속적 및 반복적으로 수행함으로써 선택적으로 흡착된 가스와 흡착이 잘되지 않는 가스를 고순도로 분리 정제할 수 있다. 감압의 경우, 진공 펌프를 사용하여 1기압 이하에서 흡착된 가스를 탈착시키기도 하는데, 이러한 방법을 진공순환흡착 (Vacuum Swing Adsorption; VSA) 분리법이라 한다. 상기 방법에서 흡착제에서 회수되는 가스의 작업 용량 (Working capacity)은 정해진 흡착 온도 및 압력 조건에서의 흡착량과 탈착 온도 및 압력 조건에서 흡착제에 남아 있는 흡착량의 차이로 정의된다.
본 발명에서, 흡착제에 의하여 에틸렌 및 아세틸렌이 감소 또는 제거되어 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스는 기체 분리막을 통해 수소를 분리하는 단계를 통해 플라즈마 방전가스 및 메탄 농축가스 함유 제3 혼합가스로 분리될 수 있다.
도 6는 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스로부터, 기체 분리막을 이용하여 플라즈마 방전가스 및 메탄 농축가스 함유 제3 혼합가스와 수소 농축가스로 분리하는 공정도이며, 예컨대, 도 7에 도시된 기체 분리막 모듈들을 직렬로 연결하여 도 6에 예시된 공정을 수행할 수 있다.
본 발명에서 기체 분리막은 수소를 통과시키는 것이 바람직하다.
기체 분리막 모듈에 포함될 수 있는 기체 분리막으로는 중공사막 외에도 평판형 모듈 (Flat module), 나권형 모듈 (Spiral wound) 등도 사용이 가능하다. 상기 기체 분리막은 고분자 분리막, 무기막인 제올라이트막, 탄소막, 유기 골격체막, 및 고분자막과 무기질을 혼합한 혼합기질막 중 어느 하나 이상으로 이루어질 수 있으며, 바람직하기로는 상기 고분자 분리막은 폴리설폰 (polysulfone, PSf), 폴리이미드 (polyimid, PI), 폴리이써이미드 (polyetherimide, PEI), 폴리이써설폰 (polyethersulfone, PES) 및 폴리디메틸실란(polydimethylsiloxane, PDMS) 중 어느 하나 이상일 수 있다.
도 6 및 도 7을 참조하면, 플라즈마 방전가스 및 메탄이 농축된 제3 혼합가스는 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스가 유입 (Feed side)되는 방향에 나란하게 상기 모듈을 통하여 배출 (Retentate side)되고, 상기 수소 농축가스는 상기 제2 혼합가스가 유입되는 방향에 수직하게 배출 (Permeate side)될 수 있다. 또한, 상기 기체 분리막은 다공성의 중공사 (hollow fiber)의 형태일 수 있으며, 상기 제2 혼합가스가 유입되는 방향에 도 6과 같이 나란하거나 평행되게 복수개가 구비될 수 있으며, 배출되는 가스를 분리막으로 다시 유입시키는 회수 공정을 위한 분리막이 추가로 구성될 수 있다.
상기 기체 분리막 모듈은 제2 혼합가스가 유입되는 인렛과 상기 인렛과 대면하도록 구비되는 제1 아웃렛을 포함하되, 상기 인렛과 제1 아웃렛을 연결하도록 구비되는 튜브형으로 구비될 수 있다. 상기 기체 분리막 모듈은 상기 인렛에서 제1 아웃렛으로 향하는 방향으로 복수개가 나란하게 구비될 수 있다. 또한, 상기 기체 분리막 모듈은 상기 인렛 및 제1 아웃렛 사이에 상기 인렛에서 제1 아웃렛으로 향하는 방향에 대하여 수직하게 구비되는 제2 아웃렛을 더 포함할 수 있다. 제2 혼합가스는 인렛으로 유입되어 상기 기체 분리막을 통하여 제3 혼합가스와 수소 농축가스로 분리될 수 있고, 상기 제3 혼합가스는 제1 아웃렛을 통하여 배출되고, 상기 수소 농축가스는 제2 아웃렛을 통하여 배출될 수 있다.
본 발명은 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키거나, 또는 제2 혼합가스를 기체 분리막을 통과시켜 플라즈마 방전가스 및 메탄이 농축된 제3 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키는 단계를 포함할 수 있다.
상기 제2 혼합가스 또는 제3 혼합가스 중에 포함된 플라즈마 방전가스 및 메탄 농축가스를 재사용함으로써 반응효율을 향상시킬 수 있다. 또한, 상기 제2 혼합가스 또는 제3 혼합가스는 반응과정에서 온도가 이미 상승되어 있으므로, 상기 플라즈마 반응 시 도입되는 메탄 함유가스 측으로 열을 전달할 수 있어 에너지 효율을 향상시킬 수 있다.
한편, 본 발명에서 제공하는 에틸렌 및/또는 아세틸렌 농축 가스는 에너지 효율이 높은 용접용 가스로 사용될 수 있다. 또한, 본 발명에서 제공하는 아세틸렌 농축 가스는 불활성가스를 20 vol% 이하로 포함할 수 있다.
또한, 본 발명에서 제공하는 수소 농축가스는 수소 농축가스를 저장하는 저장부로 저장될 수 있다.
본 발명은, 제1 단계에서 분리된 에틸렌 및 아세틸렌 농축 가스에 대해 아세틸렌 전환반응을 수행하여 에틸렌 농축가스로 전환시키는 단계를 더 포함할 수 있으며, 상기 본 발명에서 제공하는 수소 농축가스는 상기 아세틸렌 전환반응으로 공급되어 상기 에틸렌 및 아세틸렌 농축가스와 반응하게 할 수 있다(도 1 참조).
본 발명에 따른 메탄 함유가스의 플라즈마 반응 및 분리공정을 통해, 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 및/또는 용접용 가스를 제공할 수 있다. 이때, 플라즈마 반응시 메탄 함유가스 중 포함된 메탄의 함량에 따라 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 및 용접용 가스의 제조 효율을 조절할 수 있다.
또한, 본 발명은 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여 기체 분리막의 성능을 저하시킬 수 있는 에틸렌 및/또는 아세틸렌을 감소 또는 제거한 후, 수소 분리공정을 수행함으로써, 효율적으로 혼합가스를 분리하여 고순도의 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 및/또는 용접용 가스를 제공할 수 있을 뿐만아니라, 에틸렌 및 아세틸렌의 존재에 의하여 발생되는 기체 분리막의 선택성 저하를 방지할 수 있으므로 공정의 효율을 향상시킬 수 있다.
또한, 본 발명은 아르곤을 20vol% 이하로 포함하면서 저장 및 보관이 용이한 용접용 가스를 제공할 수 있다.
나아가, 본 발명은 분리공정을 통해 제공되는 수소 농축가스를 반응 내 직접 이용할 수 있고, 반응 후 남은 부산물을 재순환시켜 사용할 수 있으므로 공정비를 절감할 수 있다.
도 1은 본 발명의 일 구체예에 따라 메탄 함유가스의 플라즈마 반응 및 일련의 분리공정을 통해 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 및 용접용 가스를 제조하는 방법의 모식도이다.
도 2는 본 발명의 일 구체예 따른 플라즈마 반응 장치를 나타낸 도면이다.
도 3은 도 2의 플라즈마 반응 장치에서 사용될 수 있는 회전아크 플라즈마 반응기를 나타낸 도면이다.
도 4는 본 발명의 일 구체예에 따라 에틸렌 및 아세틸렌을 흡착할 수 있는 흡착제를 포함하는 분리 장치를 개략적으로 나타낸 도면이다.
도 5는 본 발명의 일 구체예에 따른 에틸렌 및/또는 아세틸렌를 흡착할 수 있는 흡착제를 사용하여, C2 혼합가스와 수소, 메탄, 아르곤 함유 혼합가스로 분리할 수 있는 PVSA (압력-진공순환흡착) 장치를 개략적으로 나타낸 도면이다.
도 6는 본 발명의 일 구체예에 따라 플라즈마 방전 가스, 메탄 및 수소 함유 혼합가스로부터, 기체 분리막을 이용하여 플라즈마 방전가스 및 메탄 농축가스 함유 혼합가스와 수소 농축가스로 분리하는 공정도이다.
도 7은 본 발명의 일 구체예에 따른 기체 분리막 모듈을 나타낸 도면이다.
도 8은 MIL-100(Cr) 흡착제 사용시 아세틸렌/에틸렌/메탄/수소/아르곤(메탄 10vol% 반응 가스로부터 플라즈마 반응에 의해 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
도 9는 MIL-100(Cr) 흡착제 사용시 아세틸렌/에틸렌/프로판/프로필렌/메탄/수소/아르곤(메탄 20vol% 반응 가스로부터 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
도 10는 MIL-100(Cr) 흡착제 사용시 아세틸렌/에틸렌/에탄/메탄/수소(메탄 30vol% 반응 가스로부터 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
도 11은 MIL-100(Fe) 흡착제 사용시 아세틸렌/에틸렌/메탄/수소/아르곤(메탄 10vol% 반응 가스로부터 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
도 12은 MIL-100(Fe) 흡착제 사용시 아세틸렌/에틸렌/메탄/수소/아르곤(메탄 20vol% 반응 가스로부터 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
도 13은 본 실시예에 따른 수소, 메탄, 아르곤 조성 하에서 Stage-cut을 조절해가면서 분리 성능을 분석한 그래프이다.
도 14는 아세틸렌 불순물이 존재한다는 가정 하에서 Stage-cut을 조절해 가면서 분리 성능을 분석한 그래프이다.
도 15은 아세틸렌을 포함하는 혼합가스에 대한 PSf 분리막의 장기 운전하여 투과능을 확인한 그래프이다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러나, 하기 실시예들은 본 발명의 바람직한 일 실시예일뿐 본 발명의 권리 범위가 하기 실시예들에 의하여 제한되는 것은 아니다.
제조예 1 : MIL-100( Cr )의 제조
100 ㎖ 테프론 반응기에 0.52 g의 Cr 금속과 1.41 g의 1,3,5-벤젠트리카르복실산(1,3,5-benzenetricarboxylic acid; BTCA)을 첨가한 후, 48 g의 물과 4 ㎖의 HF를 첨가하여 반응물의 최종 몰비가 Cr : BTCA : H2O : HF = 1 : 0.67 : 289 : 2가 되도록 하였다. 상기 반응물을 테프론 용기(vessel)에 넣고 상온에서 30분간 교반한 후, 오토클레이브 (autoclave) 반응기에 장착하고 전기 히팅 오븐에서 220℃로 2일간 결정화 반응을 수행하였다. 실온으로 냉각한 생성물을 끓는 물로 세척하고, 60℃ 에탄올로 정제한 후, 100℃에서 건조하여 다공성 유무기 혼성체 MIL-100(Cr)을 수득하였다. 최종 생성물의 결정 XRD 패턴이 문헌에 개시된 값과 일치하는 것을 확인하였다 (Angew. Chem. Int. Ed., 2004, 43: 6296).
제조예 2 : MIL-100(Fe)의 제조
테프론 반응기에 철 질산염(iron(III) nitrate; Fe((NO3)36H2O) 67 mmol 및 1,3,5-벤젠트리카르복실산(1,3,5-benzenetricarboxylic acid; BTCA) 44 mmol을 첨가한 후, 증류수를 가하여 반응물의 최종 몰비가 Fe : BTCA : H2O = 1 : 0.66 : 278이 되도록 하였다. 상기 반응물을 상온에서 500 rpm으로 20분간 교반하여 균일한 반응물이 되도록 하였다. 상기 반응물을 함유한 반응기를 160℃에서 12시간 동안 유지하여 결정화 반응을 수행하였다. 실온으로 냉각시키고 증류수로 세척한 후 건조하여 다공성 유무기 혼성체 MIL-100(Fe)을 수득하였다.
실시예 1 : 플라즈마 반응기를 이용하여 아세틸렌의 생성
메탄으로부터 아세틸렌의 제조를 위해, 도 2 및 도 3에서 도시된 플라즈마 반응 장치를 사용하였다.
상기 플라즈마 반응 장치는 전원 공급 장치 (power supply), 플라즈마 반응기 (plasma reactor), 가스 공급장치 (MFC, Mass Flow Controller), 가스 분석장치 (GC, Gas Chromatography), 전력측정장치 (Oscilloscope)로 구성된다.
전원 공급 장치는 주파수 20kHz의 AC (Alternating Current) 전원장치 (Max current 60A)를 사용하였고, 전력측정장치 (Tektronix TDS 5054B)는 1000:1 고전압 프로브 (probe)와 전류 프로브 (current probe) (Tektronix TCP 303 current probe & TCPA 300 amplifier)를 사용하여 전력을 측정하였다. 공급되는 가스는 MFC (Brooks)를 통해 공급하였고, MFC는 사용하기 전에 유량 보정기 (Defender530, BIOS international)를 통해 보정되었다. 가스의 성분은 GC (Agilent, HP 6890N)의 TCD (Thermal Conductivity Detector)와 FID (Flame Ionization Detector)를 사용하여 반응물 및/또는 생성물인 H2, O2, N2, CO, CO2, 메탄, 아세틸렌, 에틸렌, C2H6, C3H6, C3H8, n-C4H10, i-C4H10을 분석하였다.
각각의 가스 유량은 MFC를 이용하여 정밀하게 조절하였으며, 상기 플라즈마 반응 장치로 투입되는 메탄 함유가스는 상기 메탄 함유가스 중 포함되는 메탄의 함량을 10~30vol%로 조절하여 반응을 조절하였다. 반응 후 생성된 가스는 GC (Gas Chromatograph)의 FID 및 매스 스펙트로미터 (Mass Spectrometer)를 이용하여 분석하였다.
각각 10 vol%, 20 vol% 및 30 vol%의 메탄을 함유하는 메탄 함유가스를 이용하여 플라즈마 반응 후 생성된 가스의 조성을 표 1에 나타내었다. 상기 플라즈마 반응 장치로 투입되는 메탄 함유가스 중 포함된 메탄의 함량에 따라 아세틸렌, 수소 및 탄화수소의 함량 변화가 있었으며, 메탄의 함량이 높을수록 플라즈마-촉매 반응후에 형성된 아세틸렌의 함량이 증가하는 것을 알 수 있다. 10vol%, 20vol% 및 30vol% 메탄 함유 가스로 제조된 생성 가스(표 1에 제시된 플라즈마-촉매 반응 후 제1 혼합가스 조성)를, 흡착제 (제조예 1의 MIL-100Cr)를 이용하여 상온(25도), 10bar에서 분리하였고, 그 결과를 표 2 (MIL-100Cr 흡착제 통과 후 제3 혼합가스의 조성)에 나타내었다.
CH4 함유가스, 10 vol % CH4 CH4 함유가스, 20 vol % CH4 CH4 함유가스, 30 vol % CH4
H2 18.8 37.048 80.564
CH4 3.85 5.18 10.0
C2H2 2.25 5.946 9.0
C2H4 0.2 0.657 0.4
C2H6 0 0.017 0.03
C3H6 0 0.006 0.006
C3H8 0 0 0
C4H10 0 0.004 0
Ar 74.9 51.169 0
CH4 함유가스, 10vol% CH4 CH4 함유가스, 20vol% CH4 CH4 함유가스, 30vol% CH4
H2 19.27 39.67 88.89
CH4 3.95 5.55 11.11
Ar 79.78 54.79 0
Recycle ratioAr : H2 = 2:1 Recycle ratioAr : H2 =3:1
10vol% CH4 20vol% CH4 10vol% CH4 20vol% CH4
H2 순도(%) 99 95 99 95
H2 회수율(%) 86.9 88.6 91.2 88.8
표 1 및 표 2를 참조하면, 메탄 함유가스를 이용하여 플라즈마 반응 후 제조된 생성가스는 제조예 1의 MIL-100Cr 흡착제를 통과하는 과정에서 C2 내지 C4의 탄화수소 가스가 완전히 제거됨을 확인할 수 있었다.
표 3에서는 도 6의 분리막 모듈 시스템 (Polysulfone, Polyimide 및 제올라이트)을 이용하여 수소 분리공정 후의 가스 조성 (H2 : 39.67%, CH4 : 5.55%, Ar: 54.79%)을 나타내었다. 표 3에서의 회수율 (Recycle ratio)은 표 2의 가스로부터 수소를 분리막으로 정제분리한 플라즈마 방전가스(Ar) 및 메탄 함유 가스를 플라즈마 반응기로 재 순환할 때 들어가는 Ar:H2의 비율에 따른 H2의 순도 및 회수율을 의미한다. 표 3에서 보는 바와 같이 도 6에서 구성된 분리막 시스템을 사용할 경우 플라즈마 반응기로 순환되는 비율을 1:2 (H2:Ar)을 하였을 경우 고순도의 수소 정제 및 회수가 가능하다는 것을 확인할 수 있었다.
실시예 2 : 10vol% 메탄 함유 가스로부터 플라즈마 반응에 의해 형성된 가스를 MIL- 100(Cr)로 에틸렌/아세틸렌 분리
실시예 1에 따라 10vol% 메탄 함유 가스로부터 플라즈마 반응 장치에서 제조된 가스(메탄/수소/아르곤/에틸렌/아세틸렌)로부터 에틸렌/아세틸렌을 분리하기 위해, 에틸렌 및 아세틸렌을 흡착할 수 있는 흡착제를 사용하는, 도 4에 도시된 분리 시스템을 사용하였다. 각각의 가스의 유량은 MFC (Mass Flow Controller)를 이용하여 정밀하게 조절하였으며, 유량의 방향을 결정하기 위해 6-port 밸브를 이용하여 전처리, 반응가스 안정화, 흡착 반응을 조절하였다.
아세틸렌/에틸렌/수소/메탄/아르곤을 분리하기 위해 튜브(tube)형 반응기(직경=1/4 인치, 길이 30cm) (도 4 참조)를 사용하였다.
분리를 위한 촉매는 제조예 1의 MIL-100(Cr) 분말 0.6g을 펠렛화하여 사용하였다. 이때, MIL-100(Cr) 분말 2g을 압축기를 이용하여(압축 압력 0.1~5 ton 이내) 압축 후 금속체(사이즈 50~500um 이내)를 사용하여 일정한 크기의 펠렛형 흡착제를 제조하였다. 흡착제층(catalyst bed) 상하에는 흡착제층 부피를 감소하기 위해 반응성이 없는 실리카를 사용하였다.
흡착제의 전처리를 위해 100~250℃에서 각각 6시간 동안 가열한 후 30℃로 냉각시킨 후 헬륨을 이용하여 퍼징(purging)하였다. 전처리가 마무리된 흡착제는 표 1에 나타낸 플라즈마 반응 후 생성된 가스(10vol% 메탄으로부터 제조된 생성가스)로 안정화시켰다.
상기 전처리 및 안정화된 흡착제를 구비한 파과용 흡착층 반응기 (Fixed bed reactor for breakthrough)을 이용해서 분리공정을 수행하였다. 이때 유속은 15cc/min으로 일정하게 유지하였다. 혼합가스로부터 에틸렌/아세틸렌을 분리하기 위한 반응조건은 30℃, 1~5bar이며, 흡착제를 통과한 가스는 GC (Gas Chromatograph)의 FID 및 매스 스펙트로미터 (Mass Spectrometer)를 이용하여 분석하였다. 파라핀/올레핀의 분리 분석을 위해 GC의 알루미나 컬럼을 사용하여 분석하였다.
상기의 혼합가스의 파과분리(Breakthrough separation) 실험 결과는 Cr 함유 MIL-100를 흡착제로 사용한 경우 에틸렌의 분리 성능이 메탄/수소/아르곤 보다 약 2~30배 높고 아세틸렌의 분리 성능이 10~80배 높았다(도 8).
도 8은 MIL-100(Cr) 흡착제 사용시 아세틸렌/에틸렌/메탄/수소/아르곤(메탄 10vol% 반응 가스로부터 플라즈마 반응에 의해 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다. 이로부터 반응 압력이 증가할수록 에틸렌/아세틸렌의 분리 효능이 증가하는 것을 알 수 있었다.
실시예 3 : 20vol% 메탄 함유 가스로부터 플라즈마 반응에 의해 형성된 가스(프로판, 프로필렌 함유)를 MIL- 100(Cr)로 에틸렌/아세틸렌 분리
실시예 1에 따라 20vol% 메탄 함유 가스로부터 플라즈마 반응 장치에서 제조된 프로판/프로필렌 함유 가스(메탄/수소/아르곤/아세틸렌/에틸렌/프로필렌/프로판)에 대해, 2개 이상의 탄소수를 갖는 탄화수소를 분리할 수 있는 흡착제로 제조예 1의 MIL-100(Cr)를 사용하여, 분리공정을 수행하였다.
분리공정 처리대상이 20vol% 메탄 함유 가스로부터 플라즈마 반응 장치에서 제조된 프로판/프로필렌 함유 가스이고, 상기 가스로 흡착제를 안정화시킨 것을 제외하고는, 실시예 2와 동일한 방법으로 분리공정을 수행하였다.
상기 혼합가스의 파과분리 실험 결과는 Cr 함유 MIL-100를 흡착제로 사용한 경우 에틸렌의 분리 성능이 메탄/수소/아르곤 보다 5~20배 높고, 아세틸렌의 분리성능이 10~50배 높았다. 미량 포함된 프로판/프로필렌의 분리 성능은 메탄/수소/아르곤 보다 10~100배 높으므로, 에틸렌/아세틸렌과 분리 가능함을 알 수 있었다(도 9).
도 9는 MIL-100(Cr) 흡착제 사용시 아세틸렌/에틸렌/프로판/프로필렌/메탄/수소/아르곤(메탄 20vol% 반응 가스로부터 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
실시예 4 : 30vol% 메탄 함유 가스로부터 플라즈마 반응에 의해 형성된 가스를 MIL- 100(Cr)로 에틸렌/아세틸렌 분리
실시예 1에 따라 30vol% 메탄 함유 가스로부터 플라즈마 반응 장치에서 제조된 가스(메탄/수소/아세틸렌/에틸렌/에탄)에 대해, 2개 이상의 탄소수를 갖는 탄화수소를 분리할 수 있는 흡착제로 제조예 1의 MIL-100(Cr)를 사용하여, 분리공정을 수행하였다.
분리공정 처리대상이 30vol% 메탄 함유 가스로부터 플라즈마 반응 장치에서 제조된 가스이고, 상기 가스로 흡착제를 안정화시킨 것을 제외하고는, 실시예 2와 동일한 방법으로 분리공정을 수행하였다.
상기 혼합가스의 파괴분리 실험 결과는 Cr 함유 MIL-100를 흡착제로 사용한 경우 에틸렌의 분리 성능이 메탄/수소 보다 5~20배 높고, 아세틸렌의 분리 성능이 10~50배 높으므로, 에틸렌/아세틸렌과 분리 가능함을 알 수 있었다(도 10).
도 10는 MIL-100(Cr) 흡착제 사용시 아세틸렌/에틸렌/에탄/메탄/수소(메탄 30vol% 반응 가스로부터 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
실시예 5: 10vol% 메탄 함유 가스로부터 플라즈마 반응에 의해 형성된 가스를 MIL- 100(Fe)로 에틸렌/아세틸렌 분리
흡착제로 MIL-100(Cr) 대신 제조예 2의 MIL-100(Fe) 1.2g을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 분리공정을 수행하였다.
상기 혼합가스의 파과분리 실험 결과는 Fe 함유 MIL-100를 흡착제로 사용한 경우 에틸렌의 분리 효능이 2~10배 높고, 아세틸렌의 분리성능이 5-20배 높았다(도 11).
도 11은 MIL-100(Fe) 흡착제 사용시 아세틸렌/에틸렌/메탄/수소/아르곤(메탄 10vol% 반응 가스로부터 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
실시예 6 : 20vol% 메탄 함유 가스로부터 플라즈마 반응에 의해 형성된 가스(프로판, 프로필렌 함유)를 MIL- 100(Fe)로 에틸렌/아세틸렌 분리
흡착제로 MIL-100(Cr) 대신 제조예 2의 MIL-100(Fe) 1.2g을 사용한 것을 제외하고는 실시예 3과 동일한 방법으로 분리공정을 수행하였다.
상기 혼합가스의 파과분리 실험 결과는 Fe 함유 MIL-100를 흡착제로 사용한 경우 에틸렌의 분리 성능이 메탄/수소/아르곤 보다 2~10배 높고, 아세틸렌의 분리 성능이 5~20배 높았다. 또한, 프로판/프로필렌의 분리 성능은 메탄/수소/아르곤 보다 10~100배 높으므로, 에틸렌/아세틸렌과 분리 가능함을 알 수 있었다(도 12).
도 12은 MIL-100(Fe) 흡착제 사용시 아세틸렌/에틸렌/메탄/수소/아르곤(메탄 20vol% 반응 가스로부터 제조된 가스)의 시간에 따른 흡착 분율을 나타내는 분리능 그래프이다.
실시예 7 : 10vol% 20vol% 메탄 함유 가스로부터 플라즈마 반응에 의해 형성된 가스(프로판, 프로필렌 함유)를, MIL-100(Fe) 사용 PVSA 장치로 에틸렌/아세틸렌의 분리
실시예 1에 따라, 메탄 함유 가스로부터 플라즈마 반응 장치에서 제조된 프로판/프로필렌 함유 가스(메탄/수소/아르곤/아세틸렌/에틸렌/프로필렌/프로판)에 대해, 2개 이상의 탄소수를 갖는 탄화수소를 분리하기 위해 도 5에 도시된 분리시스템을 사용하였으며, 이때, PVSA용 튜브(tube)형 반응기(직경=3/8 인치, 길이 60cm, 2개의 반응기)를 사용하였다.
분리를 위한 촉매는 제조예 2의 MIL-100(Fe) 분말 23g을 펠렛화하여 사용하였다. 촉매의 전처리를 위해 150℃에서 각각 12시간 동안 열처리하였으며 전처리 후 25℃ 및 50℃로 냉각시킨 후 헬륨을 이용하여 퍼징(purging)하였다. 전처리가 마무리된 흡착제는 10vol% 및 20vol% 메탄 함유 가스로부터 플라즈마 반응 후 제조된 생성가스로 안정화시켰다.
상기 전처리 및 안정화된 흡착제를 이용해서 PVSA 분리공정을 수행하였다. 이때 유속은 1.2~1.7 L/min으로 일정하게 유지하였다. 혼합가스로부터 에틸렌/아세틸렌을 분리하기 위한 반응 조건은 25 및 50℃, 0.01~10bar이었다.
각각 10vol% 및 20vol% 메탄 함유 가스로부터 플라즈마 반응 후 제조된 생성가스에 대한 상기의 PVSA 분리 실험 결과는 표 4에 도시하였다. 상기 생성가스 내 아세틸렌 순도에 따라 흡착탑 후 아세틸렌의 농도는 55~88%까지 농축 성능을 보여 주며, 에틸렌까지 포함할 경우 58~92%까지 농축이 가능하였다. 플라즈마 반응 후 제조된 생성가스의 아세틸렌의 농도(2.3~6.0%)를 15~25배 높은 아세틸렌으로 농축이 가능하였다. 아세틸렌 및 에틸렌의 회수율은 84~92%로 아주 높은 수준이며 아세틸렌 및 에틸렌의 농도가 높을수록 회수율이 감소하는 경향이 보였다. 아세틸렌의 생산성은 흡착제 1kg당 2.0~15.0 mol/h 높은 생산성을 보였다. 표 4에서는 압력진공순환흡착 분리법 이용 후 가스 농도를 나타내었다.
Figure PCTKR2017006413-appb-T000001
실시예 8 : 기체 분리막을 이용한 메탄/수소/아르곤 분리
메탄/수소/아르곤 분리를 위해 도 7에서 도시된 바와 같이 기체 분리막으로 폴리술폰 중공사막을 구비한 기체 분리막 모듈을 사용하여 혼합가스 분리를 실시하였다. 스테이지-컷 (stage-cut) (유입가스 유량/분리막으로 투과되는 유량)를 조절하여 일부 혼합가스는 분리막을 투과하게 하고, 투과되지 않은 가스들은 잔유물 (retentate)로 빠져 나가게 구성하였다. 분리막 모듈의 유입부측 가스 유량은 MFC를 이용하여 정밀하게 조절하였으며, 상기 잔유물의 유량은 니들벨브(needle valve) 을 이용하여 조절하였다. 잔유물로 빠져나가는 가스를 가스 크로마토그래피(Gas Chromatograph)를 이용하여 분석하였다.
실시예 9 : 메탄/수소/아르곤 조성이 3.95%/19.27%/76.78%인 혼합가스 조성으로부터 메탄/수소/아르곤 분리
상기 분리를 위해 분리막 모듈 유입부와 투과부의 압력차이를 1 bar로 인가하였으며, 잔유물의 니들 벨브를 조작하여 스테이지-컷을 조절하였다.
도 13은 본 실시예에 따른 수소, 메탄, 아르곤 조성 하에서 Stage-cut을 조절해가면서 분리 성능을 분석한 그래프이다. 도 13에서 보는 바와 같이 스테이지-컷이 0.3이었을 경우 수소/메탄의 분리도가 6으로 나오는 것을 확인할 수 있었고, 수소/아르곤의 분리도는 2.5로 측정되었다. 따라서, 폴리술폰 분리막을 통해서 혼합가스의 분리가 이루어지는 것을 확인할 수 있었다. 또한, 도 13에서 스테이지-컷이 줄어들수록 분리 성능이 기하급수적으로 향상되는 것을 확인할 수 있었다. 스테이지-컷은 분리막 모듈의 구조에 관계되는 인자로써 중공사막의 밀집도를 증가시키면, 스테이지-컷이 높은 조건에서도 우수한 분리 성능이 구현될 것으로 판단된다
실시예 10 : 실시예 9에서 사용한 혼합가스 조성에서 아세틸렌 불순물이 존재할 경우의 메탄/수소/아르곤 분리
상기 분리를 위해 분리막 모듈 유입부와 투과부의 압력차이를 1 bar로 인가하였으며, 잔유물의 니들 벨브를 조작하여 스테이지-컷을 조절하였다. 0.5 vol%의 아세틸렌을 MFC를 조절하여 혼합가스에 유입부에 추가적으로 공급하였다.
도 14는 아세틸렌 불순물이 존재한다는 가정 하에서 Stage-cut을 조절해 가면서 분리 성능을 분석한 그래프이다. 도 14에서 보는 바와 같이 스테이지-컷이 0.3이었을 경우 수소/메탄의 분리도가 5.5으로 나오는 것을 확인할 수 있었고, 수소/아르곤의 분리도는 3으로 측정되었다. 아세틸렌이 없는 경우와 비교해 볼 때 분리성능에 있어서 큰 차이가 나지 않음을 알 수 있었고, 혼합가스의 분리가 이루어진다는 것을 확인할 수 있었다.
실시예 11 : 아세틸렌이 감소된 혼합가스에 대한 분리막의 장기 운전시 투과능
도 15은 압력은 1bar로 하여 아세틸렌을 포함하는 혼합가스에 대해 PSf 분리막을 장기 운전하는 경우 투과능을 확인한 그래프이다. 상기 혼합가스는 19.17% 수소, 76.40% Ar, 3.93% 메탄 및 0.5% 아세틸렌으로 이루어진 것을 이용하였다. 도 15에서 확인되듯이 장기적으로 운용을 하였을 경우에도 소량의 아세틸렌의 존재에 따른 성능감소는 미미한 것으로 확인되었다.
도 16는 도 7에 도시된 바와 같은 제올라이트 분리막 모듈을 사용하여 유입가스 (유입가스 조성 : 수소 (39.67%), 아르곤 (54.79%), 메탄 (5.54%))를 분리하였을 시 선택도를 나타낸다. 도 16에서는 제올라이트 분리막을 사용한 경우, 폴리술폰 고분자 막에 비해서 높은 분리 성능을 보인다는 것을 확인할 수 있었고, 압력이 증가할수록 분리도가 향상되게 나타났다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (21)

  1. 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법에 있어서,
    메탄 함유가스의 플라즈마 반응에 의해 형성된, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스로부터, 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 제1 단계;
    상기 제2 혼합가스를 기체 분리막을 통과시켜 플라즈마 방전가스 및 메탄이 농축된 제3 혼합가스와, 수소 농축가스로 분리하는 제2 단계; 및
    상기 제3 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키는 제3 단계;를 포함하는 것이 특징인 방법.
  2. 메탄의 플라즈마 반응 및 분리공정을 통한 아세틸렌 농축가스 또는 에틸렌 농축가스 제조방법에 있어서,
    메탄 함유가스의 플라즈마 반응에 의해 형성된, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스로부터, 에틸렌 및 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 에틸렌 및 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및 아세틸렌이 농축된 가스로 분리하는 제1 단계;
    상기 에틸렌 및 아세틸렌이 농축된 가스로부터, 아세틸렌을 선택적으로 흡착하는 흡착제를 사용하여, 에틸렌이 감소 또는 제거된 아세틸렌 농축가스와 아세틸렌이 감소 또는 제거된 에틸렌 농축가스로 분리하는 제2 단계; 및
    상기 제2 혼합가스를 메탄 함유가스의 플라즈마 반응으로 재순환시키는 제3 단계;를 포함하는 것이 특징인 방법.
  3. 제1항 또는 제2항에 있어서, 메탄 함유가스의 플라즈마 반응은 메탄의 C-H 결합을 분해할 수 있는 해리 활성화 에너지를 방전 플라즈마에 의해 제공받아 메탄을 라디칼 상태로 전환시키는 반응을 포함하는 것이 특징인 방법.
  4. 제1항 또는 제2항에 있어서, 메탄 함유가스의 플라즈마 반응은 촉매 존재 하에 수행되는 것이 특징인 방법.
  5. 제1항 또는 제2항에 있어서, 에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제는 다공성 하이브리드 유기금속 골격체(metal organic framework, MOF)인 것이 특징인 방법.
  6. 제1항 또는 제2항에 있어서, 제1단계에서 에틸렌 및/또는 아세틸렌이 농축된 가스는 흡착제의 기공 내 에틸렌 및/또는 아세틸렌이 수용되어 있는 상태인 것이 특징인 방법.
  7. 제5항에 있어서, 상기 다공성 하이브리드 유기금속 골격체는 중심금속으로 Cr(III) 금속 또는 Fe(III) 금속을 포함하는 것이 특징인 방법.
  8. 제1항에 있어서, 상기 기체 분리막은 고분자 분리막, 무기막인 제올라이트막, 탄소막, 유기 골격체막, 및 고분자막과 무기질을 혼합한 혼합기질막 중 어느 하나 이상인 것이 특징인 방법.
  9. 제8항에 있어서, 상기 고분자 분리막은 폴리설폰 (polysulfone, PSf), 폴리이미드 (polyimid, PI), 폴리이써이미드 (polyetherimide, PEI), 폴리이써설폰 (polyethersulfone, PES) 및 폴리디메틸실란(polydimethylsiloxane, PDMS) 중 어느 하나 이상인 것이 특징이 방법.
  10. 제1항 또는 제2항에 있어서, 상기 메탄 함유가스 중 포함된 메탄의 함량은 메탄 함유가스 총부피를 기준으로 5 vol% 내지 50 vol%인 것이 특징인 방법.
  11. 제1항 또는 제2항에 있어서, 상기 제1 단계는 상기 흡착제를 통하여 아세틸렌 농축가스를 분리하여 용접용 가스로 저장하는 것을 더 포함하는 것이 특징인 방법.
  12. 제1항 또는 제2항에 있어서, 상기 제1 단계 이후 에틸렌 및 아세틸렌이 농축된 가스로부터, 아세틸렌을 선택적으로 흡착하는 흡착제를 사용하여, 에틸렌이 감소 또는 제거된 고순도 아세틸렌을 분리 및 저장하는 단계를 더 포함하는 것이 특징인 방법.
  13. 제11항에 있어서, 상기 아세틸렌 농축가스는 불활성가스를 20 vol% 이하로 포함하는 것이 특징인 방법.
  14. 제1항 또는 제2항에 있어서, 제1 단계에서 분리된 에틸렌 및 아세틸렌 농축 가스에 대해 아세틸렌 전환반응을 수행하여 에틸렌 농축가스로 전환시키는 단계를 더 포함하는 것이 특징인 방법.
  15. 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조장치에 있어서,
    메탄 및 플라즈마 방전가스가 투입되고, 메탄 함유가스의 플라즈마 반응을 수행하여, 플라즈마 방전가스, 메탄, 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스를 형성하는 플라즈마 반응기; 및
    에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 상기 제1 혼합가스로부터, 에틸렌 및/또는 아세틸렌이 감소 또는 제거된 플라즈마 방전 가스, 메탄 및 수소 함유 제2 혼합가스와, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 흡착제 분리 반응기
    를 구비한 것이 특징인 제조 장치.
  16. 제15항에 있어서, 상기 제2 혼합가스를 기체 분리막을 통과시켜, 플라즈마 방전가스 및 메탄이 농축된 제3 혼합가스와, 수소 농축가스로 분리하는 분리막 반응기를 더 구비한 것이 특징인 제조 장치.
  17. 제16항에 있어서, 상기 분리막 반응기에서 분리된, 제3 혼합가스를 플라즈마 반응기로 재순환시키는 수단을 더 구비한 것이 특징인 제조 장치.
  18. 제15항에 있어서, 상기 흡착제 분리 반응기에서 분리된, 제2 혼합가스를 플라즈마 반응기로 재순환시키는 수단을 더 구비한 것이 특징인 제조 장치.
  19. 제15항에 있어서, 상기 흡착제 분리 반응기에서 분리된 에틸렌 및 아세틸렌 농축 가스를, 선택적으로 아세틸렌을 흡착하는 아세틸렌 흡착제를 사용하여, 에틸렌 농축 가스와 아세틸렌 농축 가스로 분리하는 흡착제 분리 반응기를 더 구비한 것이 특징인 제조 장치.
  20. 제15항에 있어서, 상기 흡착제 분리 반응기에서 분리된 에틸렌 및 아세틸렌 농축 가스에 대해 아세틸렌 전환반응을 수행하여 에틸렌 농축가스로 전환시키는 아세틸렌 전환 반응기를 더 구비한 것이 특징인 제조 장치.
  21. 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조장치에 있어서,
    메탄 및 플라즈마 방전가스로 수소가 투입되고, 메탄 함유가스의 플라즈마 반응을 수행하여, 플라즈마 방전가스인 수소와 메탄, 생성된 수소, 에틸렌 및 아세틸렌 함유 제1 혼합가스를 형성하는 플라즈마 반응기;
    수소를 분리할 수 있는 분리막을 사용하여, 상기 제1 혼합가스로부터, 수소가 감소 또는 제거된 메탄, 에틸렌 및 아세틸렌 함유 제4 혼합가스와, 수소 농축가스를 분리하는 분리막 반응기; 및
    에틸렌 및/또는 아세틸렌을 흡착할 수 있는 흡착제를 사용하여, 상기 제4 혼합가스로부터, 에틸렌 및/또는 아세틸렌이 농축된 가스로 분리하는 흡착제 분리 반응기를 구비한 것이 특징인 제조 장치.
PCT/KR2017/006413 2016-06-17 2017-06-19 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이의 장치 WO2017217833A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160076023A KR101969200B1 (ko) 2016-06-17 2016-06-17 메탄 함유 혼합가스를 이용한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 및 용접용 가스 제조방법 및 이의 장치
KR10-2016-0076023 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017217833A1 true WO2017217833A1 (ko) 2017-12-21

Family

ID=60663672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006413 WO2017217833A1 (ko) 2016-06-17 2017-06-19 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이의 장치

Country Status (2)

Country Link
KR (1) KR101969200B1 (ko)
WO (1) WO2017217833A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579332A (zh) * 2018-07-11 2018-09-28 湖南科技大学 一种分离混合气体中高沸点可凝组份的吸附反应器及方法
KR20200046835A (ko) * 2018-10-25 2020-05-07 서강대학교산학협력단 유전체 장벽 방전 플라즈마법을 이용한 COx 수소화 반응을 통해 경질탄화수소를 제조하는 방법
US20200398245A1 (en) * 2018-02-09 2020-12-24 China Petroleum & Chemical Corporation Low temperature plasma reaction device and hydrogen sulfide decomposition method
CN113908808A (zh) * 2021-06-17 2022-01-11 郑州密斯卡化工科技有限公司 一种mof分离材料在n2/o2分离中的应用
CN114146583A (zh) * 2021-11-30 2022-03-08 中国矿业大学(北京) 一种MIL-100(Fe)/PDMS膜的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102356638B1 (ko) * 2020-03-16 2022-01-27 한국기계연구원 탄화수소계 물질의 아세틸렌 또는 에틸렌 전환방법 및 그 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000070131A (ko) * 1997-01-13 2000-11-25 죠지 에이치 밀레이 복합탄소분자 제조 방법 및 장치
KR20090110897A (ko) * 2007-02-19 2009-10-23 미츠비시 가스 가가쿠 가부시키가이샤 수소 정제 방법, 수소 분리막 및 수소 정제 장치
KR20110065038A (ko) * 2009-12-09 2011-06-15 한국에너지기술연구원 팔라듐-구리-니켈 합금 수소 분리막의 제조방법
KR20140126161A (ko) * 2013-04-22 2014-10-30 한국화학연구원 플라즈마-촉매를 이용한 c-h 결합 분해 장치 및 수소 및/또는 c2 이상의 탄화수소를 생산하는 방법
KR20160045223A (ko) * 2014-10-16 2016-04-27 한국화학연구원 결정성 하이브리드 나노세공체 흡착제의 올레핀 및 아세틸렌 함유 혼합기체의 분리 정제 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000070131A (ko) * 1997-01-13 2000-11-25 죠지 에이치 밀레이 복합탄소분자 제조 방법 및 장치
KR20090110897A (ko) * 2007-02-19 2009-10-23 미츠비시 가스 가가쿠 가부시키가이샤 수소 정제 방법, 수소 분리막 및 수소 정제 장치
KR20110065038A (ko) * 2009-12-09 2011-06-15 한국에너지기술연구원 팔라듐-구리-니켈 합금 수소 분리막의 제조방법
KR20140126161A (ko) * 2013-04-22 2014-10-30 한국화학연구원 플라즈마-촉매를 이용한 c-h 결합 분해 장치 및 수소 및/또는 c2 이상의 탄화수소를 생산하는 방법
KR20160045223A (ko) * 2014-10-16 2016-04-27 한국화학연구원 결정성 하이브리드 나노세공체 흡착제의 올레핀 및 아세틸렌 함유 혼합기체의 분리 정제 방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200398245A1 (en) * 2018-02-09 2020-12-24 China Petroleum & Chemical Corporation Low temperature plasma reaction device and hydrogen sulfide decomposition method
US11691119B2 (en) * 2018-02-09 2023-07-04 China Petroleum & Chemical Corporation Low temperature plasma reaction device and hydrogen sulfide decomposition method
CN108579332A (zh) * 2018-07-11 2018-09-28 湖南科技大学 一种分离混合气体中高沸点可凝组份的吸附反应器及方法
CN108579332B (zh) * 2018-07-11 2024-01-19 遵义师范学院 一种分离混合气体中高沸点可凝组份的吸附反应器及方法
KR20200046835A (ko) * 2018-10-25 2020-05-07 서강대학교산학협력단 유전체 장벽 방전 플라즈마법을 이용한 COx 수소화 반응을 통해 경질탄화수소를 제조하는 방법
KR102159158B1 (ko) 2018-10-25 2020-09-23 서강대학교 산학협력단 유전체 장벽 방전 플라즈마법을 이용한 COx 수소화 반응을 통해 경질탄화수소를 제조하는 방법
CN113908808A (zh) * 2021-06-17 2022-01-11 郑州密斯卡化工科技有限公司 一种mof分离材料在n2/o2分离中的应用
CN114146583A (zh) * 2021-11-30 2022-03-08 中国矿业大学(北京) 一种MIL-100(Fe)/PDMS膜的制备方法

Also Published As

Publication number Publication date
KR20170143079A (ko) 2017-12-29
KR101969200B1 (ko) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2017217833A1 (ko) 메탄의 플라즈마 반응 및 분리공정을 통한 수소 농축가스, 아세틸렌 농축가스, 에틸렌 농축가스 또는 용접용 가스 제조방법 및 이의 장치
AU2019325589B2 (en) Systems and methods for processing gases
US11471852B2 (en) Systems and methods for processing gases
WO2016093558A1 (ko) 프로판-함유 공급원료의 탈수소반응 생성물로부터 프로필렌을 분리하는 방법
WO2016064084A1 (ko) 쉘-앤-튜브형 천연가스 개질용 반응기 및 이를 이용한 합성가스 또는 수소가스의 제조방법
WO2015156582A1 (ko) 복합 금속 촉매 조성물과 이를 이용한 1,4-사이클로헥산디메탄올 제조방법 및 장치
WO2018212594A1 (ko) 담체의 메조 기공내 금속-유기 클러스터가 분산되어 있는 다공성 복합체 및 이를 이용한 프로판-프로필렌 기체 혼합물의 분리방법
EA020383B1 (ru) Способ превращения природного газа в ароматические углеводороды с электрохимическим отделением водорода и с получением электрического тока и водорода
AU2021210948A1 (en) Systems and methods for processing gases
CN109219576B (zh) 低聚硅烷的制造方法
EP0603767B1 (en) Deoxygenation of non-cryogenically produced nitrogen with a hydrocarbon
KR102094881B1 (ko) 플라즈마-촉매를 이용한 메탄올, 포름알데하이드 및 c2 이상의 탄화수소 중 어느 하나 이상을 생산하는 방법 및 메탄 전환 장치
WO2007016993A1 (en) Method for preparing linear alpha-olefins
WO2020022725A1 (ko) 탄소나노튜브의 제조방법
KR20070054671A (ko) 시클로펜타논의 제조 방법
EP1074535A1 (en) Process for the synthesis of hydrocarbons
KR101807782B1 (ko) 플라즈마-촉매를 이용한 c-h 결합 분해 장치 및 수소 및/또는 c2 이상의 탄화수소를 생산하는 방법
EP1140744A1 (en) Process for the production of olefins
CN113149803B (zh) 一种含乙炔裂解气中高级炔烃高效脱除工艺
WO2022221492A1 (en) Systems and methods for processing gases
US3287884A (en) Separation and recovery of acetylene from gases containing the same
WO2023163573A1 (ko) 이산화탄소와 수소의 직접 반응을 통한 탄화수소 화합물 합성 반응용 촉매, 이의 제조방법 및 이를 이용한 탄화수소 화합물 합성 방법
WO2024090946A1 (ko) 제철 부생가스를 이용하여 플라스틱 원료를 제조하는 방법
KR20220048169A (ko) 메탄의 비산화 직접전환 방법
JP5027544B2 (ja) テトラシクロドデセンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813656

Country of ref document: EP

Kind code of ref document: A1