WO2017217648A1 - 무선 전력 송신 안테나 및 그를 이용한 장치 및 시스템 - Google Patents

무선 전력 송신 안테나 및 그를 이용한 장치 및 시스템 Download PDF

Info

Publication number
WO2017217648A1
WO2017217648A1 PCT/KR2017/003856 KR2017003856W WO2017217648A1 WO 2017217648 A1 WO2017217648 A1 WO 2017217648A1 KR 2017003856 W KR2017003856 W KR 2017003856W WO 2017217648 A1 WO2017217648 A1 WO 2017217648A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
spiral
coil
antenna
power transmission
Prior art date
Application number
PCT/KR2017/003856
Other languages
English (en)
French (fr)
Inventor
이동혁
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Publication of WO2017217648A1 publication Critical patent/WO2017217648A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Definitions

  • the present invention relates to a wireless power transmission technology, and in detail, wireless power transmission antenna for maximizing wireless power transmission efficiency and minimizing heat generation during wireless power transmission to a wireless power receiving device equipped with a metal component in the center of the rear of the main body.
  • the present invention relates to a wireless power transmitter and a wireless charging system using the device.
  • Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and power transmission using short wavelength radio frequency.
  • the magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
  • the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
  • Short-wavelength wireless power transfer schemes simply RF schemes, utilize the fact that energy can be transmitted and received directly in the form of RadioWave.
  • This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
  • the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
  • Wireless power transfer technology can be used in various industries, such as the mobile, IT, railroad and consumer electronics industries.
  • a metal part is located at the center of the rear of the main body, and a shielding material cannot be mounted at the center of the rear of the main body for mounting and integrating various sensors. Accordingly, the electromagnetic field transmitted by the wireless power transmitter is directly absorbed by the metal component, thereby lowering the wireless power transmission efficiency and generating heat around the metal component.
  • the present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a wireless power transmission antenna capable of maximizing wireless power transmission efficiency and minimizing heat generation, and a wireless power transmission apparatus and a wireless charging system having the same. To provide.
  • Another object of the present invention is to provide a wireless power transmission apparatus having an asymmetric wireless power transmission antenna having a multilayer structure such that a propagation direction of a wireless power signal is beamformed to a receiving coil.
  • Another object of the present invention is to provide a wireless power transmission / reception antenna optimized for a small integrated device such as a smart watch and a wireless charging system using the same.
  • the present invention provides a wireless power transmission antenna capable of maximizing wireless power transmission efficiency and minimizing heat generation, a wireless power transmission apparatus and a wireless charging system provided therewith.
  • Wireless power transmission antenna has a multi-layer structure by stacking a spiral transmission coil of a planar shape for transmitting wireless power, the number of windings of the stacked spiral transmission coil is configured differently in at least one layer Can be.
  • the spiral transmission coil may be in the form of any one of a circle, an ellipse, and a polygon.
  • the stacked spiral transmission coils may be connected in series with each other.
  • the number of turns of the spiral transmission coil for each floor may be increased in a direction in which the wireless power is transmitted.
  • the spiral transmission coil may include an outer diameter and an inner diameter, and the closer the outer diameter is to the outer diameter, the greater the stacking thickness of the spiral transmission coil.
  • the spiral transmission coil may include an outer diameter and an inner diameter, but the closer the inner diameter is, the more the stack thickness of the spiral transmission coil may increase.
  • Wireless power transmission apparatus is disposed on the charging bed, the control circuit board and the lower side of the charging bed, has a multilayer structure by stacking a spiral transmission coil of a planar shape for transmitting wireless power, The number of turns of the stacked spiral transmission coils is differently arranged in at least one layer, and the wireless power transmission antenna and the lower side of the wireless power transmission antenna are disposed so that an electromagnetic field transmitted by the wireless power transmission antenna is applied to the control circuit board. It may be configured to include a shield to block the transmission.
  • the spiral transmission coil may be in the form of any one of a circle, an ellipse, and a polygon.
  • the stacked spiral transmission coils may be connected in series with each other.
  • the number of turns of the spiral transmission coil for each floor may be increased in a direction in which the wireless power is transmitted.
  • the spiral transmission coil may include an outer diameter and an inner diameter, and the closer the outer diameter is to the outer diameter, the greater the stacking thickness of the spiral transmission coil.
  • the spiral transmission coil may include an outer diameter and an inner diameter, but the closer the inner diameter is, the more the stack thickness of the spiral transmission coil may increase.
  • the wireless power transmission apparatus may further include a shielding wall configured along an inner diameter of the stacked spiral transmission coil.
  • Wireless charging system has a multi-layer structure by stacking a spiral transmission coil of a planar shape for transmitting wireless power, the number of windings of the stacked spiral transmission coil is different in at least one layer
  • a wireless power transmission apparatus including a configured wireless power transmission antenna, and a wireless power reception antenna for receiving an AC signal induced by an electromagnetic field radiated by the wireless power transmission antenna, and a rectifier for converting the received AC signal into a DC signal. It may include a wireless power receiver.
  • the wireless power receiving antenna includes a spiral receiving coil of a planar shape
  • the shielding material is disposed on the upper end of the spiral receiving coil
  • the shielding material may be disposed only between the inner diameter and the outer diameter of the spiral receiving coil.
  • a metal component is disposed inside the inner diameter of the spiral receiving coil, and the electromagnetic field between the wireless power transmitting antenna and the wireless power receiving antenna such that the radiated electromagnetic field is directed toward the spiral receiving coil without being transmitted to the metal component.
  • a beam can be formed.
  • the wireless power receiving antenna may have a multilayer structure by stacking a spiral receiving coil of a planar shape.
  • the number of turns of the stacked spiral receiving coils may be configured differently in at least one layer.
  • the spiral receiving coil may include an outer diameter and an inner diameter, but the closer the outer diameter is, the more the stack thickness of the spiral receiving coil is increased.
  • the spiral receiving coil may include an outer diameter and an inner diameter, but the closer the inner diameter is, the more the stack thickness of the spiral receiving coil is increased.
  • the wireless power receiver of the wireless charging system may further include a shielding wall configured along an inner diameter of the stacked spiral receiving coil.
  • the spiral transmission coil may be in the form of any one of a circle, an ellipse, and a polygon.
  • the stacked spiral transmission coils may be connected in series with each other.
  • the number of turns of the spiral transmission coil for each floor may be increased in a direction in which the wireless power is transmitted.
  • the spiral transmission coil may include an outer diameter and an inner diameter, and the closer the outer diameter is to the outer diameter, the greater the stacking thickness of the spiral transmission coil.
  • the spiral transmission coil may include an outer diameter and an inner diameter, but the closer the inner diameter is, the more the stack thickness of the spiral transmission coil may increase.
  • the present invention has the advantage of providing a wireless power transmission antenna and a wireless power transmission apparatus mounted thereon that can maximize wireless power transmission efficiency and minimize heat generation.
  • the present invention has the advantage of providing a wireless power transmission apparatus and a wireless charging system using the same that can be beamformed to the receiving coil the propagation direction of the wireless power signal through a multi-layered asymmetric transmission coil.
  • the present invention is to provide a wireless power transmission device that is optimized for a wireless power receiver that is not equipped with a shielding material is disposed in the center portion of the rear rear of the main body, and the wireless power signal is not transmitted to the location. There is this.
  • the present invention has an advantage that can provide a wireless power transmission and reception antenna optimized for a small integrated device such as a smart watch and a wireless charging system using the same.
  • FIG. 1 is a view for explaining the structure of a wireless charging system according to an embodiment of the present invention.
  • FIGS. 2 to 6 are views for explaining the structure of a wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining the configuration of a wireless charging system according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining the structure of a wireless power receiving antenna according to an embodiment of the present invention.
  • FIG. 9 is a view for explaining the structure of a wireless power receiving antenna according to another embodiment of the present invention.
  • Wireless power transmission apparatus is disposed on the charge bed, the control circuit board and the bottom of the charge bed, a spiral transmission coil of a planar shape for transmitting wireless power is laminated to have a multi-layer structure, The number of turns of the stacked spiral transmission coils is differently arranged in at least one layer, and the lower end of the wireless power transmission antenna and the electromagnetic field transmitted by the wireless power transmission antenna are transmitted to the control circuit board. It may include a shield to block the thing.
  • the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components.
  • up (up) or down (down) may include the meaning of the down direction as well as the up direction based on one component.
  • a wireless power transmitter a transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a power transmitter, and the like are used for the convenience of description of the wireless power transmitter that constitutes the wireless power transfer system.
  • a wireless power receiver, a receiver, a receiver, a receiver, a receiver, a receiver, a receiver, and a power receiver may be used interchangeably as a representation of the wireless power receiver.
  • a transmission coil, a primary coil, a primary coil, etc. are mixed for the convenience of description as a representation of a power transmission antenna mounted on a wireless power transmission apparatus and transmitting power in a non-contact manner. Can be used.
  • a receiver coil, a secondary coil, a secondary coil, etc. are mixed for the convenience of description as a representation of a power receiving antenna mounted on the wireless power receiver and receiving power in a non-contact manner. Can be used.
  • the transmitter according to the present invention may be configured in the form of a pad or a cradle, and one transmitter may include a plurality of wireless power transmission means to wirelessly transmit power to a plurality of receivers.
  • the receiver according to the present invention includes a mobile phone, a smart phone, a smart watch, a laptop computer, an electronic dictionary, an electronic book, a digital broadcasting terminal, a personal digital assistant (PDA), It can be used in small electronic devices such as PMP (Portable Multimedia Player), navigation, MP3 player, other electric toothbrushes, wireless earphones, hearing aids, smart rings, and the like, but is not limited thereto. Any device that can be charged is enough.
  • PMP Portable Multimedia Player
  • navigation MP3 player
  • MP3 player other electric toothbrushes
  • wireless earphones wireless earphones
  • hearing aids smart rings, and the like
  • FIG. 1 is a block diagram illustrating a wireless charging system according to an embodiment of the present invention.
  • a wireless charging system includes a wireless power transmitter 10 that largely transmits power wirelessly, a wireless power receiver 20 that receives the transmitted power, and an electronic device 30 that receives the received power. Can be configured.
  • the wireless power transmitter 10 and the wireless power receiver 20 may perform in-band communication for exchanging information using the same frequency band as the operating frequency used for wireless power transmission.
  • the wireless power transmitter 10 and the wireless power receiver 20 perform out-of-band communication for exchanging information using a separate frequency band different from an operating frequency used for wireless power transmission. It can also be done.
  • the information exchanged between the wireless power transmitter 10 and the wireless power receiver 20 may include control information as well as status information of each other.
  • the status information and control information exchanged between the transmitting and receiving end will be more clear through the description of the embodiments to be described later.
  • the in-band communication and the out-of-band communication may provide bidirectional communication, but are not limited thereto. In another embodiment, the in-band communication and the out-of-band communication may provide one-way communication or half-duplex communication.
  • the unidirectional communication may be performed by the wireless power receiver 20 only transmitting information to the wireless power transmitter 10, but is not limited thereto.
  • the wireless power transmitter 10 may transmit information to the wireless power receiver 20. It may be to transmit.
  • bidirectional communication between the wireless power receiver 20 and the wireless power transmitter 10 is possible, but at one time, only one device may transmit information.
  • the wireless power receiver 20 may obtain various state information of the electronic device 30.
  • the state information of the electronic device 30 may include current power usage information, information for identifying a running application, CPU usage information, battery charge status information, battery output voltage / current information, and the like.
  • the information may be obtained from the electronic device 30 and may be utilized for wireless power control.
  • the wireless power transmitter 10 may transmit a predetermined packet indicating whether to support fast charging to the wireless power receiver 20.
  • the wireless power receiver 20 may notify the electronic device 30 when it is determined that the connected wireless power transmitter 10 supports the fast charging mode.
  • the electronic device 30 may indicate that fast charging is possible through predetermined display means provided, for example, it may be a liquid crystal display.
  • the user of the electronic device 30 may control the wireless power transmitter 10 to operate in the fast charge mode by selecting a predetermined fast charge request button displayed on the liquid crystal display.
  • the electronic device 30 may transmit a predetermined quick charge request signal to the wireless power receiver 20.
  • the wireless power receiver 20 may convert the normal low power charging mode into the fast charging mode by generating a charging mode packet corresponding to the received fast charging request signal to the wireless power transmitter 10.
  • FIGS. 2 to 6 are views for explaining the structure of a wireless power transmission apparatus according to an embodiment of the present invention.
  • the apparatus 200 for transmitting power wirelessly may include a charging bed 210, a wireless power transmitting antenna 220, a shielding material 230, and a control circuit board 240.
  • the wireless power transmission antenna 220 and the control circuit board 240 may be electrically connected to each other through a predetermined binding terminal or line.
  • the charging bed 210 is for positioning the device to be charged, but the shape of the charging bed 210 may be flat, but this is only one embodiment and may be implemented in a hemispherical shape, a concave shape, a cup shape, or the like.
  • the lower side of the charging bed 210 may be equipped with a wireless power transmission antenna 220 having a multi-layer spiral transmission coil.
  • the shielding material 230 may block the electromagnetic signal emitted from the wireless power transmission antenna 220 from being transmitted to the control circuit board 240.
  • the shielding material 230 may be a ferrite shielding material, but this is only one embodiment, and another shielding material capable of blocking electromagnetic waves may be used.
  • the shielding material 230 may have a form of a sand dust block, an adhesive sheet, or a metal plate, but is not limited thereto.
  • the control circuit board 240 may be equipped with a microprocessor for controlling the overall operation of the wireless power transmitter 200 as well as various power conversion elements.
  • the wireless power transmission antenna 220 has a multilayer structure in which a spiral transmission coil having a planar shape for transmitting wireless power is stacked, and the stacked spiral transmission coil is stacked.
  • the number of turns of can be configured differently in at least one layer.
  • the spiral transmission coil may be any one of a circle, an ellipse, and a polygon, but is not limited thereto, and may vary according to the shape and internal configuration of the wireless power transmission device 200. .
  • the stacked helical transmission coils may be connected in series with each other, but is not limited thereto, and it should be noted that the stacked helical transmission coils according to another embodiment may be connected in parallel.
  • a spiral transmission coil having a multilayer structure may be configured by using one coated conductive wire.
  • the wireless power transmission antenna 220 increases the number of turns of the spiral transmission coil for each floor as the wireless power is transmitted, that is, closer to the charging bed 210. Can be configured.
  • the spiral transmission coil of the wireless power transmission antenna 220 may be composed of three layers.
  • the number of turns of each layer may be reduced to 6-> 4-> 2 as the distance from the charging bed 210.
  • the number of turns per layer is only one embodiment, it should be noted that depending on the configuration aspect of the wireless power transmission apparatus 200, the number of stacked layers and the number of turns per layer may be configured differently.
  • connection terminal may be electrically connected to each other through a connection terminal or a conductive wire.
  • connection terminal may be different according to the design purpose of those skilled in the art.
  • the wireless power transmitting antenna 220 is a direction in which wireless power is transmitted, that is, closer to the charging bed 210 as shown in FIG. 4A of FIG. 4.
  • the number of turns may be configured to be reduced.
  • the spiral transmission coil 220 includes an outer diameter 410 and an inner diameter 420, but the closer the outer diameter 410 is, the greater the stack thickness of the spiral transmission coil 220. Can be.
  • the stack thickness of the coil may increase.
  • a shielding wall 610 may be configured along an inner diameter 420.
  • Radiation of the electromagnetic field output by the spiral transmission coil 220 through the shielding wall 610 in the inward direction of the spiral transmission coil 220 may be blocked.
  • FIG. 7 is a view for explaining the configuration of a wireless charging system according to an embodiment of the present invention.
  • the wireless charging system 700 has a multilayer structure in which spiral transmission coils having a planar shape for transmitting wireless power are stacked, and the winding number of the stacked spiral transmission coils is different in at least one layer.
  • the wireless power transmitter including the power transmission antenna 220 and the electromagnetic field radiated by the wireless power transmission antenna 220 is induced to receive an AC signal and the wireless power receiving antenna 710 and the received AC signal as a DC signal. It may be configured to include a wireless power receiver including a receiving circuit board 730 including a rectifier to convert.
  • the wireless power receiver antenna 710 may include a spiral receiving coil having a planar shape, and a shielding material 720 may be disposed on an upper end of the spiral receiving coil.
  • the shielding member 720 may be disposed only between the inner diameter and the outer diameter of the spiral receiving coil.
  • metal parts 740 may be disposed inside the inner diameter of the spiral receiving coil 710 as shown by reference numeral 7a.
  • the wireless power transmitting antenna 220 and the spiral receiving coil 710-that is, the electromagnetic field radiated by the wireless power transmitting antenna 220 is directed to the spiral receiving coil 710 without being transmitted to the metal parts 740.
  • the electromagnetic beam 750 may be formed between the wireless power receiving antennas.
  • various sensors may be mounted on one central side of the main body rear cover 760 of the wireless power receiver 700.
  • the sensor may include a biometric sensor such as a body temperature sensor and a heart rate sensor.
  • the electromagnetic beam 750 is formed so that the electromagnetic field radiated by the wireless power transmitting antenna 220 is directed to the spiral receiving coil 710 without being transmitted to the metal component 740 and the sensors, the component due to heat generation. This has the advantage of minimizing damage.
  • the wireless power receiver antenna 710 may have a multilayer structure by stacking a spiral receiver coil having a planar shape.
  • the number of windings of the stacked spiral receiving coils 710 is shown to be the same per layer. However, this is only an example, and as illustrated in FIGS. 8 to 9, which will be described later, per layer of the spiral receiving coil. The number of turns may be configured differently in at least one layer.
  • the spiral receiving coil 710 having a multi-layer structure may be configured by stacking one wire in a spiral manner, but this is only one embodiment, and another embodiment of the present invention uses one wire.
  • a spiral receiving coil 710 having a multilayer structure may be formed by configuring a spiral receiving coil having a planar shape and connecting a plurality of spiral receiving coils in parallel to each other.
  • the present invention can expect the following advantages and effects.
  • the present invention has the advantage of providing a wireless power transmission antenna and a wireless power transmission apparatus mounted thereon capable of maximizing wireless power transmission efficiency and minimizing heat generation.
  • the present invention has the advantage of providing a wireless power transmission apparatus capable of beamforming a radio wave propagation direction of a wireless power signal to a receiving coil through an asymmetric transmission coil having a multilayer structure, and a wireless charging system using the same.
  • the present invention can provide a wireless power transmission device that is optimized for a wireless power receiver that is not equipped with a shielding material that is disposed in the center portion of the rear rear of the main body, and the wireless power signal is not transmitted to the location. There is this.
  • the present invention has an advantage of providing a wireless power transmission and reception antenna optimized for a small integrated device such as a smart watch and a wireless charging system using the same.
  • FIG. 8 is a view for explaining the structure of a wireless power receiving antenna according to an embodiment of the present invention.
  • the spiral receiving coil 810 of the wireless power receiving antenna 800 may include an outer diameter 801 and an inner diameter 802.
  • a shielding material 820 may be disposed on one side of the upper end of the spiral receiving coil 810 having a multilayer structure.
  • the shielding material 820 may be disposed only between the inner diameter 802 and the outer diameter 801 of the spiral receiving coil 810.
  • FIG. 9 is a view for explaining the structure of a wireless power receiving antenna according to another embodiment of the present invention.
  • the spiral receiving coil 910 may include an outer diameter 901 and an inner diameter 902, and the closer the inner diameter 902 is to the laminated thickness of the spiral transmitting coil 910. Can be.
  • the wireless power receiving antenna 900 may further include a shielding wall 920 configured along the inner diameter 902 as well as a shielding material 930 disposed on one side of the upper end of the stacked spiral receiving coil 910. have.
  • the present invention relates to a wireless charging technology, and can be applied to a wireless power transmitting antenna and devices equipped with the same, a wireless charging system including the devices.

Abstract

본 발명은 무선 전력 전송 효율을 극대화시키고 발열을 최소화시키는 것이 가능한 무선 전력 송신 안테나 및 그것이 구비된 무선 전력 송신 장치 및 무선 충전 시스템에 관한 것으로서, 본 발명의 일 실시예에 따른 무선 전력 송신 장치는 충전 베드와 제어 회로 기판과 상기 충전 베드의 하단에 배치되고, 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 상기 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성된 무선 전력 송신 안테나와 상기 무선 전력 송신 안테나의 하단에 배치되어, 상기 무선 전력 송신 안테나에 의해 송출된 전자기장이 상기 제어 회로 기판에 전달되는 것을 차단하는 차폐재를 포함할 수 있다.

Description

무선 전력 송신 안테나 및 그를 이용한 장치 및 시스템
본 발명은 무선 전력 전송 기술에 관한 것으로서, 상세하게, 본체 후면 중앙에 금속 부품이 장착되는 무선 전력 수신 디바이스로의 무선 전력 전송 시 무선 전력 전송 효율을 극대화시키고 발열 현상을 최소화시키기 위한 무선 전력 송신 안테나의 구조 및 해당 무선 전력 송신 안테나가 탑재된 무선 전력 송신 장치 및 그 장치를 이용한 무선 충전 시스템에 관한 것이다.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 전력 전송 방식 등으로 구분될 수 있다.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
하지만, 종래의 스마트와치와 같은 무선 전력 수신 디바이스의 경우, 본체 후면 중앙 부분에 금속 부품이 위치하고, 각종 센서 등의 장착 및 집적화를 위해 본체 후면 중앙 부분에 차폐재를 장착할 수 없었다. 그에 따라, 무선 전력 송신 장치에 의해 송출된 전자기장이 금속 부품에 직접 흡수되어 무선 전력 전송 효율이 낮아질 뿐만 아니라 금속 부품 주변이 발열되는 문제점이 있었다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 전력 전송 효율을 극대화시키고 발열을 최소화시키는 것이 가능한 무선 전력 송신 안테나 및 그것이 구비된 무선 전력 송신 장치 및 무선 충전 시스템을 제공하는 것이다.
본 발명의 다른 목적은 무선 전력 신호의 전파 방향이 수신 코일에 빔포밍되도록 다층 구조의 비대칭 무선 전력 송신 안테나가 구비된 무선 전력 송신 장치를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 스마트와치와 같은 소형의 집적화된 디바이스에 최적화된 무선 전력 송수신 안테나 및 그를 이용하는 무선 충전 시스템을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 무선 전력 전송 효율을 극대화시키고 발열을 최소화시키는 것이 가능한 무선 전력 송신 안테나 및 그것이 구비된 무선 전력 송신 장치 및 무선 충전 시스템을 제공하는 것이다.
본 발명의 일 실시예에 따른 무선 전력 송신 안테나는 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 상기 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성될 수 있다.
여기서, 상기 나선형 송신 코일은 원형, 타원형, 다각형 중 어느 하나의 형태일 수 있다.
또한, 상기 적층된 나선형 송신 코일은 상호 직렬로 연결될 수 있다.
또한, 상기 층별 상기 나선형 송신 코일의 권선수는 상기 무선 전력이 전송되는 방향으로 증가될 수 있다.
또한, 상기 나선형 송신 코일은 외경과 내경을 포함하되, 상기 외경에 가까울수록 상기 나선형 송신 코일의 적층 두께가 증가할 수 있다.
또한, 상기 나선형 송신 코일은 외경과 내경을 포함하되, 상기 내경에 가까울수록 상기 나선형 송신 코일의 적층 두께가 증가할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신 장치는 충전 베드와 제어 회로 기판와 상기 충전 베드의 하단 일측에 배치되고, 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 상기 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성된 무선 전력 송신 안테나와 상기 무선 전력 송신 안테나의 하단 일측에 배치되어, 상기 무선 전력 송신 안테나에 의해 송출된 전자기장이 상기 제어 회로 기판에 전달되는 것을 차단하는 차폐재를 포함하여 구성될 수 있다.
여기서, 상기 나선형 송신 코일은 원형, 타원형, 다각형 중 어느 하나의 형태일 수 있다.
또한, 상기 적층된 나선형 송신 코일은 상호 직렬로 연결될 수 있다.
또한, 상기 층별 상기 나선형 송신 코일의 권선수는 상기 무선 전력이 전송되는 방향으로 증가될 수 있다.
또한, 상기 나선형 송신 코일은 외경과 내경을 포함하되, 상기 외경에 가까울수록 상기 나선형 송신 코일의 적층 두께가 증가할 수 있다.
또한, 상기 나선형 송신 코일은 외경과 내경을 포함하되, 상기 내경에 가까울수록 상기 나선형 송신 코일의 적층 두께가 증가할 수 있다.
또한, 상기 무선 전력 송신 장치는 상기 적층된 나선형 송신 코일의 내경을 따라 구성된 차폐벽을 더 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 무선 충전 시스템은 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 상기 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성된 무선 전력 송신 안테나를 포함하는 무선 전력 송신 장치와 상기 무선 전력 송신 안테나에 의해 방사된 전자기장이 유도되어 교류 신호를 수신하는 무선 전력 수신 안테나 및 수신된 교류 신호를 직류 신호로 변환하는 정류기를 포함하는 무선 전력 수신 장치를 포함할 수 있다.
여기서, 상기 무선 전력 수신 안테나는 평면 형태의 나선형 수신 코일을 포함하고, 상기 나선형 수신 코일의 상단에 차폐재가 배치되되, 상기 나선형 수신 코일의 내경과 외경 사이에만 상기 차폐재가 배치될 수 있다.
또한, 상기 나선형 수신 코일의 상기 내경 안쪽으로 금속 부품이 배치되되, 상기 방사된 전자기장이 상기 금속 부품에 전달되지 않고 상기 나선형 수신 코일을 향하도록 상기 무선 전력 송신 안테나와 상기 무선 전력 수신 안테나 사이에 전자기 빔이 형성될 수 있다.
또한, 상기 무선 전력 수신 안테나는 평면 형태의 나선형 수신 코일이 적층되어 다층 구조를 가질 수 있다.
또한, 상기 적층된 나선형 수신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성될 수 있다.
일 예로, 상기 나선형 수신 코일은 외경과 내경을 포함하되, 상기 외경에 가까울수록 상기 나선형 수신 코일의 적층 두께가 증가할 수 있다.
다른 일 예로, 상기 나선형 수신 코일은 외경과 내경을 포함하되, 상기 내경에 가까울수록 상기 나선형 수신 코일의 적층 두께가 증가할 수 있다.
또한, 상기 무선 충전 시스템의 상기 무선 전력 수신 장치는 상기 적층된 나선형 수신 코일의 내경을 따라 구성되는 차폐벽을 더 포함할 수 있다.
여기서, 상기 나선형 송신 코일은 원형, 타원형, 다각형 중 어느 하나의 형태일 수 있다.
또한, 상기 적층된 나선형 송신 코일은 상호 직렬로 연결될 수 있다.
또한, 상기 층별 상기 나선형 송신 코일의 권선수는 상기 무선 전력이 전송되는 방향으로 증가될 수 있다.
또한, 상기 나선형 송신 코일은 외경과 내경을 포함하되, 상기 외경에 가까울수록 상기 나선형 송신 코일의 적층 두께가 증가할 수 있다.
또한, 상기 나선형 송신 코일은 외경과 내경을 포함하되, 상기 내경에 가까울수록 상기 나선형 송신 코일의 적층 두께가 증가할 수 있다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 따른 방법 및 장치에 대한 효과에 대해 설명하면 다음과 같다.
본 발명은 무선 전력 전송 효율을 극대화시키고 발열을 최소화시키는 것이 가능한 무선 전력 송신 안테나 및 그것이 탑재된 무선 전력 송신 장치를 제공하는 장점이 있다.
또한, 본 발명은 다층 구조의 비대칭 송신 코일을 통해 무선 전력 신호의 전파 방향을 수신 코일에 빔포밍시키는 것이 가능한 무선 전력 송신 장치 및 그것을 이용한 무선 충전 시스템을 제공하는 장점이 있다.
또한, 본 발명은 본체 후면 중앙 부분에 금속 부품이 배치되고, 해당 위치에 무선 전력 신호가 전달되는 것을 차단하는 차폐재 장착이 불가한 무선 전력 수신 장치에 최적화된 무선 전력 송신 장치를 제공할 수 있는 장점이 있다.
또한, 본 발명은 스마트와치와 같은 소형의 집적화된 디바이스에 최적화된 무선 전력 송수신 안테나 및 그를 이용하는 무선 충전 시스템을 제공할 수 있는 장점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선 충전 시스템의의 구조를 설명하기 위한 도면이다.
도 2 내지 6은 본 발명의 일 실시예에 따른 무선 전력 송신 장치의 구조를 설명하기 위한 도면이다.
도 7은 본 발명의 일 실시예에 따른 무선 충전 시스템의 구성을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 무선 전력 수신 안테나의 구조를 설명하기 위한 도면이다.
도 9는 본 발명의 다른 일 실시예에 따른 무선 전력 수신 안테나의 구조를 설명하기 위한 도면이다.
본 발명의 일 실시예에 따른 무선 전력 송신 장치는 충전 베드와 제어 회로 기판과 상기 충전 베드의 하단에 배치되고, 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 상기 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성된 무선 전력 송신 안테나와 상기 무선 전력 송신 안테나의 하단에 배치되어, 상기 무선 전력 송신 안테나에 의해 송출된 전자기장이 상기 제어 회로 기판에 전달되는 것을 차단하는 차폐재를 포함할 수 있다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
실시예의 설명에 있어서, 무선 전력 전송 시스템을 구성하는 무선 전력 송신 장치에 대해 설명의 편의를 위해 무선 전력 송신기, 송신기, 송신단, 송신 장치, 송신측, 파워 전송 장치 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 수신 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신기, 수신단, 수신기, 수신 단말기, 수신측, 수신 장치, 파워 수신 장치 등이 혼용되어 사용될 수 있다.
실시예의 설명에 있어서, 무선 전력 송신 장치에 장착되며, 비접촉 방식으로 전력을 전송하기 위한 전력 송신 안테나에 대한 표현으로 설명의 편의를 위해 송신 코일, 1차 코일, 프라이머리(Primary) 코일 등이 혼용되어 사용될 수 있다.
실시예의 설명에 있어서, 무선 전력 수신 장치에 장착되며, 비접촉 방식으로 전력을 수신하기 위한 전력 수신 안테나에 대한 표현으로 설명의 편의를 위해 수신 코일, 2차 코일, 세턴더리(Secondary) 코일 등이 혼용되어 사용될 수 있다.
본 발명에 따른 송신기는 패드 형태 또는 거치대 형태로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 송신 수단을 구비하여 복수의 수신기에 무선으로 전력을 전달할 수도 있다.
본 발명에 따른 수신기는 휴대폰(mobile phone), 스마트폰(smart phone), 스마트워치(Smart Watch), 노트북 컴퓨터(laptop computer), 전자 사전, 전자북, 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 기타 전동 칫솔, 무선 이어폰, 보청기, 스마트 반지 등과 같은 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 기기라면 족하다.
도 1은 본 발명에 일 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 1을 참조하면, 무선 충전 시스템은 크게 무선으로 전력을 송출하는 무선 전력 송신단(10), 상기 송출된 전력을 수신하는 무선 전력 수신단(20) 및 수신된 전력을 공급 받는 전자기기(30)로 구성될 수 있다.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 동일한 주파수 대역을 이용하여 정보를 교환하는 인밴드(In-band) 통신을 수행할 수 있다. 다른 일예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 상이한 별도의 주파수 대역을 이용하여 정보를 교환하는 대역외(Out-of-band) 통신을 수행할 수도 있다.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20) 사이에 교환되는 정보는 서로의 상태 정보뿐만 아니라 제어 정보도 포함될 수 있다. 여기서, 송수신단 사이에 교환되는 상태 정보 및 제어 정보는 후술할 실시예들의 설명을 통해 보다 명확해질 것이다.
상기 인밴드 통신 및 대역외 통신은 양방향 통신을 제공할 수 있으나, 이에 한정되지는 않으며, 다른 실시예에 있어서는 단방향 통신 또는 반이중 방식의 통신을 제공할 수도 있다.
일 예로, 단방향 통신은 무선 전력 수신단(20)이 무선 전력 송신단(10)으로만 정보를 전송하는 것일 수 있으나, 이에 한정되지는 않으며, 무선 전력 송신단(10)이 무선 전력 수신단(20)으로 정보를 전송하는 것일 수도 있다.
반이중 통신 방식은 무선 전력 수신단(20)과 무선 전력 송신단(10) 사이의 양방향 통신은 가능하나, 어느 한 시점에 어느 하나의 장치에 의해서만 정보 전송이 가능한 특징이 있다.
본 발명의 일 실시예에 따른 무선 전력 수신단(20)은 전자 기기(30)의 각종 상태 정보를 획득할 수도 있다. 일 예로, 전자 기기(30)의 상태 정보는 현재 전력 사용량 정보, 실행중인 응용을 식별하기 위한 정보, CPU 사용량 정보, 배터리 충전 상태 정보, 배터리 출력 전압/전류 정보 등을 포함할 수 있으나, 이에 한정되지는 않으며, 전자 기기(30)로부터 획득 가능하고, 무선 전력 제어에 활용 가능한 정보이면 족하다.
특히, 본 발명의 일 실시예에 따른 무선 전력 송신단(10)은 고속 충전 지원 여부를 지시하는 소정 패킷을 무선 전력 수신단(20)에 전송할 수 있다. 무선 전력 수신단(20)은 접속된 무선 전력 송신단(10)이 고속 충전 모드를 지원하는 것으로 확인된 경우, 이를 전자 기기(30)에 알릴 수 있다. 전자 기기(30)는 구비된 소정 표시 수단-예를 들면, 액정 디스플레이일 수 있음-을 통해 고속 충전이 가능함을 표시할 수 있다.
또한, 전자 기기(30) 사용자는 액정 표시 수단에 표시된 소정 고속 충전 요청 버튼을 선택하여 무선 전력 송신단(10)이 고속 충전 모드로 동작하도록 제어할 수도 있다. 이 경우, 전자 기기(30)는 사용자에 의해 고속 충전 요청 버튼이 선택되면, 소정 고속 충전 요청 신호를 무선 전력 수신단(20)에 전송할 수 있다. 무선 전력 수신단(20)은 수신된 고속 충전 요청 신호에 상응하는 충전 모드 패킷을 생성하여 무선 전력 송신단(10)에 전송함으로써, 일반 저전력 충전 모드를 고속 충전 모드로 전환시킬 수 있다.
도 2 내지 6은 본 발명의 일 실시예에 따른 무선 전력 송신 장치의 구조를 설명하기 위한 도면이다.
도 2를 참조하면, 무선 전력 송신 장치(200)는 크게 충전 베드(210), 무선 전력 송신 안테나(220), 차폐재(230) 및 제어 회로 기판(240)을 포함하여 구성될 수 있다.
도 2에는 명시적으로 도시되어 있지 않으나, 무선 전력 송신 안테나(220)와 제어 회로 기판(240)은 소정 결속 단자 또는 선로를 통해 상호 전기적으로 연결될 수 있음을 주의해야 한다.
충전 베드(210)는 충전 대상 디바이스를 위치시키기 위한 것으로서, 충전 베드(210)의 모양은 평면일 수 있으나, 이는 하나의 실시예에 불과하며, 반구형, 오목형, 컵형 등으로 구현될 수도 있다.
충전 베드(210)의 하부 일측에는 다층 구조의 나선형 송신 코일이 구비된 무선 전력 송신 안테나(220)가 장착될 수 있다.
차폐재(230)은 무선 전력 송신 안테나(220)에서 방사된 전자기 신호가 제어 회로 기판(240)에 전달되는 것을 차단할 수 있다.
일 예로, 차폐재(230)은 페라이트(Ferrite) 계열의 차폐재가 사용될 수 있으나, 이는 하나의 실시예에 불과하며, 전자기파 차단이 가능한 다른 차폐재가 사용될 수도 있다. 또한, 차폐재(230)의 형태는 샌더스트 블록 형태, 접착식 시트 형태, 금속판 형태 등을 가질 수 있으나, 이에 한정되지는 않는다.
제어 회로 기판(240)에는 각종 전력 변환 소자뿐만 아니라 무선 전력 송신 장치(200)의 전체적인 동작을 제어하기 위한 마이크로프로세서가 장착될 수 있다.
이하에서는 도 3을 참조하여 본 발명의 일 실시예에 따른 무선 전력 송신 장치의 단면 구조를 상세히 설명하기로 한다.
본 발명의 일 실시예에 따른 무선 전력 송신 안테나(220)는 도 3에 도시된 바와 같이, 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 상기 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성될 수 있다.
여기서, 상기 나선형 송신 코일은 원형, 타원형, 다각형 중 어느 하나의 형태일 수 있으나, 이에 한정되지는 않으며, 무선 전력 송신 장치(200)의 형태 및 내부 구성에 따라 상이할 수 있다. .
일 실시예로, 적층된 나선형 송신 코일은 상호 직렬로 연결될 수 있으나, 이에 한정되지는 아니하며, 다른 일 실시예에 따른 적층된 나선형 송신 코일은 병렬로 연결될 수도 있음을 주의해야 한다.
일 예로, 적층된 나선형 송신 코일은 상호 직렬로 연결도 연결된 경우, 하나의 피복된 도선을 이용하여 다층 구조를 가지는 나선형 송신 코일이 구성될 수 있다.
일 실시예에 따른 무선 전력 송신 안테나(220)는 상기 도 3에 도시된 바와 같이, 무선 전력이 전송되는 방향-즉, 충전 베드(210)에 가까워질수록 상기 층별 상기 나선형 송신 코일의 권선수가 증가되게 구성될 수 있다.
상기 도 3의 도면 부호 3a를 참조하면, 무선 전력 송신 안테나(220)의 나선형 송신 코일은 3개의 층으로 구성될 수 있다. 이때, 각 층의 권선수는 충전 베드(210)로부터 멀어질수록 6->4->2로 감소될 수 있다. 여기서, 층 별 권선수는 일 실시예에 불과하며, 무선 전력 송신 장치(200)의 구성 태양에 따라 나선형 송신 코일의 적층 개수 및 층 별 권선수는 상이하게 구성될 수 있음을 주의해야 한다.
상기한 도 2 내지 도 3에는 명시적으로 도시되어 있지 않으나. 무선 전력 송신 안테나(220)와 제어 회로 기판(240)은 연결 단자 또는 도선 등을 통해 전기적으로 상호 연결될 수 있음을 주의해야 한다. 이때, 연결 단자의 배치 구조 및 구성 방법은 당업자의 설계 목적에 따라 상이할 수 있다.
다른 일 실시예에 따른 무선 전력 송신 안테나(220)는 도 4의 도면 부호 4a에 도시된 바와 같이 무선 전력이 전송되는 방향-즉, 충전 베드(210)에 가까워질수록 상기 층별 상기 나선형 송신 코일의 권선수가 감소되게 구성될 수도 있다.
도 4를 참조하면, 일 실시예에 따른 나선형 송신 코일(220)은 외경(410)과 내경(420)을 포함하되, 외경(410)에 가까울수록 나선형 송신 코일(220)의 적층 두께가 증가할 수 있다.
도 5를 참조하면, 본 발명의 다른 일 실시예에 따른 나선형 송신 코일(220)은 도면 번호 5a에 도시된 바와 같이 내경(420)에 가까울수록 코일의 적층 두께가 증가할 수도 있다.
도 6을 참조하면, 본 발명의 일 실시예에 따른 도면 부호 6a에 도시된 바와 같이, 내경(420)을 따라 차폐벽(610)이 구성될 수도 있다.
차폐벽(610)을 통해 나선형 송신 코일(220)에 의해 출력되는 전자기장이 나선형 송신 코일(220)의 내측 방향으로 방사되는 것이 차단될 수 있다.
도 7은 본 발명의 일 실시예에 따른 무선 충전 시스템의 구성을 설명하기 위한 도면이다.
도 7을 참조하면, 무선 충전 시스템(700)은 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성된 무선 전력 송신 안테나(220)를 포함하는 무선 전력 송신 장치와 무선 전력 송신 안테나(220)에 의해 방사된 전자기장이 유도되어 교류 신호를 수신하는 무선 전력 수신 안테나(710) 및 수신된 교류 신호를 직류 신호로 변환하는 정류기 등을 포함하는 수신 회로 기판(730)을 포함하는 무선 전력 수신 장치를 포함하여 구성될 수 있다.
무선 전력 수신 안테나(710)는 평면 형태의 나선형 수신 코일을 포함하고, 나선형 수신 코일의 상단에 차폐재(720)가 배치될 수 있다. 이때, 차폐재(720)는 나선형 수신 코일의 내경과 외경 사이에만 배치될 수 있다. 이를 통해, 무선 전력 수신 장치에 사용되는 차폐재를 최소화할 수 있을 뿐만 아니라 도면 부호 7a에 도시된 바와 같이, 수신 회로 기판(730)의 중앙 부분에 차폐재가 없으므로 수신 회로 기판(730)의 설계 자유도를 높일 수 있다. 또한, 수신 회로 구성뿐만 아니라 무선 전력 수신 장치가 장착되는 디바이스-예를 들면, 스마트워치 등을 포함함-의 부품 배치 및 설계 자유도가 높아질 수 있다.
또한, 나선형 수신 코일(710)의 내경 안쪽에 도면 부호 7a에 도시된 바와 같이, 금속 부품(740)들이 배치될 수 있다. 이때, 무선 전력 송신 안테나(220)에 의해 방사된 전자기장이 금속 부품(740)들에 전달되지 않고 나선형 수신 코일(710)을 향하도록 무선 전력 송신 안테나(220)과 나선형 수신 코일(710)-즉, 무선 전력 수신 안테나- 사이에 전자기 빔(750)이 형성될 수 있다.
또한, 무선 전력 수신 장치(700)의 본체 후면 커버(760)의 중앙 일측에는 각종 센서가 장착될 수도 있다. 일 예로, 센서는 체온 센서, 심박 센서 등의 생체 센서가 포함될 수 있다. 본원 발명은 무선 전력 송신 안테나(220)에 의해 방사된 전자기장이 금속 부품(740) 및 센서들에 전달되지 않고 나선형 수신 코일(710)을 향하도록 전자기 빔(750)이 형성되므로, 발열로 인한 부품 손상을 최소화시킬 수 있는 장점이 있다.
무선 전력 수신 안테나(710)는 평면 형태의 나선형 수신 코일이 적층되어 다층 구조를 가질 수 있다.
상기 도 7에는 적층된 나선형 수신 코일(710)의 권선수가 층 별 동일한 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 후술할 도 8 내지 9에 도시된 바와 같이, 나선형 수신 코일의 층 별 권선수는 적어도 하나의 층에서 상이하게 구성될 수도 있다.
일 예로, 하나의 도선을 나선형으로 적층하여 다층 구조를 가지는 나선형 수신 코일(710)을 구성될 수 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예는 하나의 도선을 이용하여 평면 형태의 나선형 수신 코일을 구성하고, 복수의 나선형 수신 코일을 상호 병렬로 연결하여 다층 구조를 가지는 나선형 수신 코일(710)이 형성될 수도 있다.
상기한 도 7의 무선 충전 시스템 구성을 통해, 본원 발명은 다음과 같은 장점 및 효과를 기대할 수 있다.
첫째, 본 발명은 무선 전력 전송 효율을 극대화시키고 발열을 최소화시키는 것이 가능한 무선 전력 송신 안테나 및 그것이 탑재된 무선 전력 송신 장치를 제공하는 장점이 있다.
둘째, 본 발명은 다층 구조의 비대칭 송신 코일을 통해 무선 전력 신호의 전파 방향을 수신 코일에 빔포밍시키는 것이 가능한 무선 전력 송신 장치 및 그것을 이용한 무선 충전 시스템을 제공하는 장점이 있다.
셋째, 본 발명은 본체 후면 중앙 부분에 금속 부품이 배치되고, 해당 위치에 무선 전력 신호가 전달되는 것을 차단하는 차폐재 장착이 불가한 무선 전력 수신 장치에 최적화된 무선 전력 송신 장치를 제공할 수 있는 장점이 있다.
넷째, 본 발명은 스마트와치와 같은 소형의 집적화된 디바이스에 최적화된 무선 전력 송수신 안테나 및 그를 이용하는 무선 충전 시스템을 제공할 수 있는 장점이 있다.
도 8은 본 발명의 일 실시예에 따른 무선 전력 수신 안테나의 구조를 설명하기 위한 도면이다.
도 8을 참조하면, 무선 전력 수신 안테나(800)의 나선형 수신 코일(810)은 외경(801)과 내경(802)을 포함할 수 있다.
도 8에 도시된 바와 같이, 다층 구조를 가지는 나선형 수신 코일(810)의 층 별 권선수가 상이한 경우, 외경(801)에 가까울수록 나선형 수신 코일(810)의 적층 두께가 증가할 수 있다.
다층 구조를 가지는 나선형 수신 코일(810)의 상단 일측에는 차폐재(820)가 배치될 수 있다. 이때, 차폐재(820)는 나선형 수신 코일(810)의 내경(802)과 외경(801) 사이에만 배치될 수 있다. 이를 통해, 무선 전력 수신 장치에 사용되는 차폐재의 양을 최소화할 수 있을 뿐만 아니라 상기한 도 7의 도면 부호 7a에 도시된 바와 같이, 수신 회로 기판(730)의 중앙 부분에 차폐재가 배치되지 않으므로 수신 회로 기판(730)의 설계 자유도를 높일 수 있는 장점이 있다. 또한, 수신 회로 구성뿐만 아니라 무선 전력 수신 장치가 장착되는 디바이스-예를 들면, 스마트워치 등을 포함함-의 부품 배치 및 설계 자유도가 높아질 수 있다.
도 9는 본 발명의 다른 일 실시예에 따른 무선 전력 수신 안테나의 구조를 설명하기 위한 도면이다.
도 9를 참조하면, 나선형 수신 코일(910)은 외경(901)과 내경(902)을 포함하여 구성될 수 있으며, 내경(902)에 가까울수록 나선형 송신 코일(910)의 적층 두께가 증가하게 구성될 수 있다.
또한, 무선 전력 수신 안테나(900)는 적층된 나선형 수신 코일(910)의 상단 일측에 배치되는 차폐재(930)뿐만 아니라 내경(902)을 따라 구성되는 차폐벽(920)을 더 포함하여 구성될 수도 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 충전 기술에 관한 것으로서, 무선 전력 송신 안테나 및 그것이 장착된 장치들, 해당 장치들을 포함하는 무선 충전 시스템 등에 적용될 수 있다.

Claims (10)

  1. 충전 베드;
    제어 회로 기판;
    상기 충전 베드의 하단에 배치되고, 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 상기 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성된 무선 전력 송신 안테나; 및
    상기 무선 전력 송신 안테나의 하단에 배치되어, 상기 무선 전력 송신 안테나에 의해 송출된 전자기장이 상기 제어 회로 기판에 전달되는 것을 차단하는 차폐재
    를 포함하는, 무선 전력 송신 장치.
  2. 제1항에 있어서,
    상기 나선형 송신 코일은 원형, 타원형, 다각형 중 어느 하나의 형태이고, 다층 구조를 가지는 상기 나선형 송신 코일은 상호 직렬로 연결되는, 무선 전력 송신 장치.
  3. 제1항에 있어서,
    상기 층별 상기 나선형 송신 코일의 권선수는 상기 무선 전력이 전송되는 방향으로 증가되고, 상기 나선형 송신 코일은 외경과 내경을 포함하되,
    상기 외경에 가까울수록 상기 나선형 송신 코일의 적층 두께가 증가하는, 무선 전력 송신 장치.
  4. 제1항에 있어서,
    상기 층별 상기 나선형 송신 코일의 권선수는 상기 무선 전력이 전송되는 방향으로 증가되고, 상기 나선형 송신 코일은 외경과 내경을 포함하되,
    상기 내경에 가까울수록 상기 나선형 송신 코일의 적층 두께가 증가하는, 무선 전력 송신 장치.
  5. 제3항 또는 제4항에 있어서,
    상기 적층된 나선형 송신 코일의 상기 내경을 따라 구성된 차폐벽을 더 포함하는, 무선 전력 송신 장치.
  6. 무선 전력을 전송하기 위한 평면 형태의 나선형 송신 코일이 적층되어 다층 구조를 가지며, 상기 적층된 나선형 송신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성된 무선 전력 송신 안테나를 포함하는 무선 전력 송신 장치; 및
    상기 무선 전력 송신 안테나에 의해 방사된 전자기장이 유도되어 교류 신호를 수신하는 무선 전력 수신 안테나 및 수신된 교류 신호를 직류 신호로 변환하는 정류기를 포함하는 무선 전력 수신 장치
    를 포함하는, 무선 충전 시스템.
  7. 제6항에 있어서,
    상기 무선 전력 수신 안테나는 평면 형태의 나선형 수신 코일을 포함하고, 상기 나선형 수신 코일의 상단에 차폐재가 배치되고, 상기 나선형 수신 코일의 내경과 외경 사이에만 상기 차폐재가 배치되는 것을 특징으로 하는, 무선 충전 시스템.
  8. 제7항에 있어서,
    상기 나선형 수신 코일의 상기 내경 안쪽으로 금속 부품이 배치되되, 상기 방사된 전자기장이 상기 금속 부품에 전달되지 않고 상기 나선형 수신 코일을 향하도록 상기 무선 전력 송신 안테나와 상기 무선 전력 수신 안테나 사이에 전자기 빔이 형성되는 것을 특징으로 하는, 무선 충전 시스템.
  9. 제6항에 있어서,
    상기 무선 전력 수신 안테나는 평면 형태의 나선형 수신 코일이 적층되어 다층 구조를 가지고, 상기 적층된 나선형 수신 코일의 권선수가 적어도 하나의 층에서 상이하게 구성되는, 무선 충전 시스템.
  10. 제9항에 있어서,
    상기 나선형 수신 코일은 외경과 내경을 포함하되,
    상기 외경 또는 상기 내경 중 어느 하나에 가까울수록 상기 나선형 수신 코일의 적층 두께가 증가하고, 상기 적층된 나선형 수신 코일의 내경을 따라 차폐벽이 구성되는, 무선 충전 시스템.
PCT/KR2017/003856 2016-06-13 2017-04-10 무선 전력 송신 안테나 및 그를 이용한 장치 및 시스템 WO2017217648A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160073276A KR20170140666A (ko) 2016-06-13 2016-06-13 무선 전력 송신 안테나 및 그를 이용한 장치 및 시스템
KR10-2016-0073276 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017217648A1 true WO2017217648A1 (ko) 2017-12-21

Family

ID=60664030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003856 WO2017217648A1 (ko) 2016-06-13 2017-04-10 무선 전력 송신 안테나 및 그를 이용한 장치 및 시스템

Country Status (2)

Country Link
KR (1) KR20170140666A (ko)
WO (1) WO2017217648A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615237B1 (ko) 2018-06-27 2023-12-19 삼성전자주식회사 적층 코일 구조 및 이를 포함하는 전자 장치
KR20200106786A (ko) * 2019-03-05 2020-09-15 삼성전자주식회사 무선으로 전력을 송신하는 무선 전력 송신 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181816B1 (ko) * 2011-06-20 2012-09-11 유노시스템 주식회사 무접점 충전 시스템의 다층 코일 구조
KR20130049608A (ko) * 2011-11-04 2013-05-14 엘지이노텍 주식회사 무선전력 수신장치 및 그 제어 방법
WO2013142720A1 (en) * 2012-03-21 2013-09-26 Mojo Mobility, Inc. Systems and methods for wireless power transfer
KR20150131910A (ko) * 2014-05-16 2015-11-25 삼성전기주식회사 무선 전력 송신 장치
KR101610678B1 (ko) * 2015-08-05 2016-04-08 한혜운 정보 전송 기능이 구비된 무선 충전 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181816B1 (ko) * 2011-06-20 2012-09-11 유노시스템 주식회사 무접점 충전 시스템의 다층 코일 구조
KR20130049608A (ko) * 2011-11-04 2013-05-14 엘지이노텍 주식회사 무선전력 수신장치 및 그 제어 방법
WO2013142720A1 (en) * 2012-03-21 2013-09-26 Mojo Mobility, Inc. Systems and methods for wireless power transfer
KR20150131910A (ko) * 2014-05-16 2015-11-25 삼성전기주식회사 무선 전력 송신 장치
KR101610678B1 (ko) * 2015-08-05 2016-04-08 한혜운 정보 전송 기능이 구비된 무선 충전 장치

Also Published As

Publication number Publication date
KR20170140666A (ko) 2017-12-21

Similar Documents

Publication Publication Date Title
WO2018066822A1 (ko) 무선 충전을 위한 코일 블록 및 그것의 제조 방법
WO2017023080A1 (ko) 차량용 무선전력 송신모듈
WO2019151693A1 (ko) 안테나 성능을 개선시키는 무선 충전 수신기
WO2016098927A1 (ko) 멀티 모드 무선 전력 수신 장치 및 방법
WO2017078285A1 (ko) 무선 전력 송신기
JP2006314181A (ja) 非接触充電装置及び非接触充電システム並びに非接触充電方法
WO2017069581A1 (ko) 차량용 안테나 모듈
WO2016133322A1 (ko) 무선 전력 송신 장치 및 무선 전력 송신 방법
JP2012143091A (ja) 遠隔無線駆動充電装置
WO2019172595A1 (ko) 무선전력 송신장치
KR20130119585A (ko) 무선 전력 송수신 코일 장치
JP2020089259A (ja) 電力中継装置及びシステム
KR20210129618A (ko) 무선 전력 송수신 장치
WO2017217648A1 (ko) 무선 전력 송신 안테나 및 그를 이용한 장치 및 시스템
WO2016114629A1 (ko) 무선 전력 전송 장치
WO2018101677A1 (ko) 무선 전력 수신 장치
KR102154258B1 (ko) 무선 전력 수신 장치 및 그를 구비한 휴대용 단말
KR20190027676A (ko) 무선 충전을 위한 코일 어셈블리
KR20180100749A (ko) 전자파 차폐 구조를 가지는 코일 어셈블리
WO2018230991A1 (ko) 차량용 무선전력 송신장치
WO2017073868A1 (ko) 무선 전력 수신 장치
WO2019231223A1 (ko) 발열 성능이 개선된 무선 전력 송신 장치
WO2017115995A1 (ko) 무선 전력 충전을 위한 자성 차폐 블록 제조 방법 및 그것을 이용한 자성 차폐 블록 및 무선 전력 수신 장치
KR20170123866A (ko) 회로 기판 일체형 다중 모드 안테나 및 그를 이용한 장치
WO2019088505A1 (ko) 무선충전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813473

Country of ref document: EP

Kind code of ref document: A1