WO2017115995A1 - 무선 전력 충전을 위한 자성 차폐 블록 제조 방법 및 그것을 이용한 자성 차폐 블록 및 무선 전력 수신 장치 - Google Patents

무선 전력 충전을 위한 자성 차폐 블록 제조 방법 및 그것을 이용한 자성 차폐 블록 및 무선 전력 수신 장치 Download PDF

Info

Publication number
WO2017115995A1
WO2017115995A1 PCT/KR2016/012497 KR2016012497W WO2017115995A1 WO 2017115995 A1 WO2017115995 A1 WO 2017115995A1 KR 2016012497 W KR2016012497 W KR 2016012497W WO 2017115995 A1 WO2017115995 A1 WO 2017115995A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic shield
wireless power
block
cover tape
magnetic shielding
Prior art date
Application number
PCT/KR2016/012497
Other languages
English (en)
French (fr)
Inventor
이동혁
김형래
송지연
이혜민
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Priority to US16/063,554 priority Critical patent/US20180366262A1/en
Publication of WO2017115995A1 publication Critical patent/WO2017115995A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/361Electric or magnetic shields or screens made of combinations of electrically conductive material and ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction

Definitions

  • the present invention relates to a wireless power transmission technology, and more particularly, to provide a magnetic shield block for a wireless power receiver having high magnetic shielding performance and high permeability, and a method of manufacturing the same.
  • Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver by using a magnetic field induction principle. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves, lasers, high frequencies, and microwaves. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
  • the magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
  • the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
  • the short wavelength wireless power transmission scheme implies, the RF transmission scheme— takes advantage of the fact that energy can be transmitted and received directly in the form of RadioWave.
  • This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
  • the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
  • Wireless power transfer technology can be widely used not only for mobile, but also for the automobile, IT, railroad and consumer electronics industries.
  • the wireless power transmission apparatus is provided with a coil (hereinafter referred to as a transmission coil) for transmitting wireless power, and various shielding materials are used to block transmission of electromagnetic fields or AC power generated by the transmission coil to the control board. do.
  • a coil hereinafter referred to as a transmission coil
  • various shielding materials are used to block transmission of electromagnetic fields or AC power generated by the transmission coil to the control board. do.
  • Representative shielding materials include magnetic shielding sheets and sanddust blocks processed with magnetic metal powder.
  • a magnetic shield for shielding electromagnetic fields received by the receiving coil is also used in the wireless power receiver.
  • the charging efficiency has a disadvantage of less than 70%.
  • the present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a magnetic shield block for a wireless power receiver and a method of manufacturing the same.
  • Another object of the present invention is to provide a magnetic shield block having a high permeability as well as an insulating property against an AC component and a method of manufacturing the same.
  • Another object of the present invention is to provide a magnetic shield block and a method of manufacturing the same for providing a wireless power receiver having a wireless power reception efficiency of 70% or more.
  • the present invention can provide a magnetic shield block for a wireless power receiver and a method of manufacturing the same.
  • a method of manufacturing a magnetic shielding block including disposing a non-conductive magnetic shielding sheet between first to second cover tapes, and displaying a cutting area on one surface of the laminated cover tape. Cutting the indicated cutting area with the step.
  • the non-conductive magnetic shield sheet may be a ferrite series.
  • the ferrite series may be any one of Ni—Zn—Cu series, Ni—Zn series, and Mn—Zn series.
  • the cutting area is circular, the size of the cutting area may be 30mm or less in diameter.
  • the permeability of the non-conductive magnetic shielding sheet may have a real part value of 300 or less and an imaginary part value of 20 or less in a low frequency band of 300 KHz or less.
  • a method of manufacturing a magnetic shielding block wherein the first to nth conductive magnetic shielding sheets are formed using n-1 intermediate adhesive members, and a surface of the lamination block is formed. Marking the cut region, cutting the marked cut region and using the first insulating cover tape and the second insulating cover tape bonded to the upper and lower surfaces of the cut laminated block, respectively; It may include the step of insulating the surface of the.
  • the step of insulating the surface of the laminated block is to cut the first insulating cover tape and the second insulating cover tape so that the cut surface of the laminated block is both covered by the first insulating cover tape and the second insulating cover tape. And bonding the cut first insulating cover tape and the second insulating cover tape to the center of the upper and lower surfaces of the cut laminated block and the bonded first insulating cover tape and the second insulating cover tape. Pressing an edge in the direction of the cut surface may include the step of bonding.
  • the cutting of the first insulating cover tape and the second insulating cover tape may include calculating a diameter to be cut based on the diameter of the upper surface and the n value and the first insulation based on the calculated diameter. Cutting the cover tape and the second insulating cover tape.
  • the conductive magnetic shielding sheet may be any one of nanocrystal-based and amorphous groups.
  • the conductive magnetic shielding sheet may have a thickness of 17 to 25 micrometers ( ⁇ m).
  • the magnetic shield block is used in a wireless power receiver, the diameter may be 30mm or less.
  • Method of manufacturing a magnetic shield block is the first to n-th conductive magnetic shield sheet, the n-1 intermediate adhesive member for bonding the first to n-th conductive magnetic shield sheet and Generating a laminated block using first to second insulating cover tapes attached to each of the outermost conductive magnetic shielded sheets of the first to nth conductive magnetic shielding sheets bonded to each other, and cutting a region on one surface of the laminated block. It may include the step of displaying, cutting the marked cutting area and applying an insulating coating to the cut surface of the cut laminated block.
  • a wireless power receiver is mounted between a control circuit board to which a receiving coil for receiving AC power wirelessly and both terminals of the receiving coil are connected between the receiving coil and the control circuit board. It may include a magnetic shield for blocking the transmission of the received AC power to the control circuit board and an adhesive member for bonding the magnetic shield and the receiving coil to each other.
  • the receiving coil may be any one of a pattern coil and a wound coil.
  • the receiving coil when the diameter of the receiving coil exceeds 25mm, the receiving coil is mounted with the patterned coil, if the diameter of the receiving coil is 25mm or more, the receiving coil may be mounted with the wound coil.
  • the magnetic shield may be a conductive magnetic shield of any one of the nano-crystal-based, Amorphous-based.
  • the magnetic shield may be a non-conductive magnetic shield which is any one of Ni-Zn-Cu series, Ni-Zn series, and Mn-Zn series.
  • the magnetic permeability of the non-conductive magnetic shielding material may have a real part value of 300 or less and an imaginary part value of 20 or less in a low frequency band of 300 KHz or less.
  • the conductive magnetic shielding block includes an n-1 intermediate adhesive member for bonding the first to nth conductive magnetic shielding sheets and the first to nth conductive magnetic shielding sheets to each other.
  • the first to nth conductive magnetic shielding sheets bonded to each other may be cut to a size of a receiving coil and then surface-insulated.
  • At least one of an insulation cover tape and an insulation coating agent may be used for the surface insulation treatment.
  • the insulation coating may be applied to the cut surface to perform the surface insulation treatment.
  • the present invention has the advantage of providing a magnetic shield block and a method of manufacturing the same for a wireless power receiver.
  • the present invention has the advantage of providing a magnetic shield block having a high permeability as well as an insulating property against the AC component and a method of manufacturing the same.
  • the present invention has the advantage of providing a magnetic shielding block and its manufacturing method for providing a wireless power receiver having a wireless power reception efficiency of more than 70%.
  • FIG. 1 is a view for explaining a schematic structure of a wireless power receiving module according to an embodiment of the present invention.
  • FIG. 2 is a schematic process diagram illustrating a method of manufacturing a non-conductive magnetic shielding block according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a conductive magnetic shield block according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a conductive magnetic shield block according to another embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a non-conductive magnetic shielding block according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a conductive magnetic shield block according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of manufacturing a conductive magnetic shield block according to another embodiment of the present invention.
  • FIG. 8 is a graph illustrating wireless power reception efficiency of a wireless power receiving module using a magnetic shield block manufactured according to embodiments of the present invention.
  • the present invention relates to a magnetic shielding block for a wireless power receiver and a method of manufacturing the same, wherein the method of manufacturing the magnetic shielding block according to an embodiment of the present invention comprises a non-conductive magnetic shielding sheet between first and second cover tapes. And arranging and displaying a cutting area on one surface of the laminated cover tape and cutting the displayed cutting area.
  • the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components.
  • up (up) or down (down) may include the meaning of the down direction as well as the up direction based on one component.
  • the apparatus for transmitting wireless power on a wireless power system includes a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a transmitter, The transmission side, the wireless power transmitter, the wireless power transmitter, and the like will be used interchangeably.
  • a representation of a device for receiving power wirelessly from a wireless power transmitter for the convenience of description, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver, a receiver, a receiver, Receivers and the like may be used interchangeably.
  • the wireless power transmitter may be configured in the form of a pad, a cradle, an access point (AP), a small base station, a stand, a ceiling buried, a wall, a cup, and the like. Power may be transmitted to the wireless power receiver.
  • the wireless power transmitter may comprise at least one wireless power transmission means.
  • the wireless power transmission means may use various wireless power transmission standards based on an electromagnetic induction method that generates a magnetic field in the power transmitter coil and charges using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field.
  • the electromagnetic induction wireless power transmission means may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA) which are wireless charging technology standard organizations.
  • the wireless resonant wireless power transmission standard may include a resonant wireless charging technology defined in A4WP (Alliance for Wireless Power).
  • the wireless power transmitter according to another embodiment of the present invention may support both the above-described electromagnetic induction method and electromagnetic resonance method.
  • the wireless power receiver may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters.
  • the wireless power receiving means is an electromagnetic induction method defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA), which are the standard standards for wireless charging technology, and a wireless charging technology of the electromagnetic induction method defined by the Alliance for Wireless Power (A4WP). It may include.
  • FIG. 1 is a view for explaining a schematic structure of a wireless power receiving module according to an embodiment of the present invention.
  • the wireless power receiving module 100 may have a hierarchical structure including a receiving coil 10, an adhesive member 20, and a magnetic autism 30.
  • the reception coil 10 performs a function of receiving a power signal transmitted through a transmission coil of the wireless power transmission device.
  • the receiving coil 10 may be a pattern coil in which a thin wiring pattern is formed, such as a film or a thin printed circuit board, or a winding coil in which an insulation coated coil is formed in a winding shape, but this is only one embodiment.
  • the configuration form of the receiving coil according to an embodiment of the present invention is not particularly limited, and a structure capable of receiving wireless power is sufficient.
  • the receiving coil 10 may be formed in the form of a wiring pattern on at least one surface of the coil substrate, and both ends of the receiving coil may be electrically connected to a control circuit board (not shown).
  • the coil substrate may be an insulating substrate, and may be a printed circuit board (PCB), a ceramic substrate, a pre-molded substrate, a direct bonded copper (DBC) substrate, or an insulated metal substrate (insulated metal substrate (IMS), but is not limited thereto, and a substrate having an insulating property may be sufficient.
  • the coil substrate may be an elastic flexible substrate.
  • the adhesive member 20 bonds the receiving coil 10 and the magnetic shield to each other, and may be formed of a double-sided adhesive tape, but is not limited thereto.
  • the adhesive member 20 is illustrated as being attached to the entirety of one surface of the receiving coil 10 and the magnetic shielding material 30, but this is only an example, and the receiving coil 10 and the magnetic shielding material ( It may be formed to be attached only to a portion of one side of 30).
  • the adhesive member 20 may be in the form of a circular ring, but is not limited thereto.
  • the adhesive member 20 may be formed in such a manner that the adhesive coil 20 and the magnetic shield 30 may be bonded to each other.
  • FIG. 1 illustrates that the adhesive member 20 is in the form of an adhesive sheet
  • the adhesive member 20 is only one embodiment, and the adhesive member 20 according to another embodiment of the present invention is received. It may be an adhesive applied to one surface of the coil 10 or the magnetic shielding material 30 or a resin having adhesiveness.
  • the diameter of the receiving coil 10 formed on the coil substrate according to an embodiment of the present invention may be 30mm or less. If the diameter of the receiving coil 10 should be formed to be 25 mm or less, the receiving coil 10 may be configured as a wound coil rather than a pattern coil. In general, since the wound coil has a lower resistance than the pattern coil, the wireless power reception efficiency may be high. In general, when the resistance of the receiving coil 10 is high, power loss may be high due to heat generated by the resistance component. Therefore, when the diameter of the receiving coil 10 is small, it may be desirable to use a wound coil to minimize the loss rate.
  • the wire diameter of the winding coil may have a range of 1.15 to 0.25 mm.
  • the magnetic shield 30 may be a non-conductive shield of a ferrite series.
  • a ferrite-based shielding material may be Ni-Zn-Cu-based ferrite having a high permeability and a low loss rate of the received power.
  • the magnetic permeability of the Ni-Zn-Cu-based ferrite magnetic shield material 30 has a characteristic in which the real part value is 300 or less and the imaginary part value is 20 or less in the low frequency band (300 KHz or less).
  • a non-conductive shield of Ni-Zn-based or Mn-Zn-based may be used.
  • a nanocrystal-based or amorphous silicon (a-Si) -based amorphous shield may be used.
  • a non-conductive shield such as a ferrite series has a high shielding efficiency with respect to an imaginary part among AC signal components received in the receiving coil 10, and nanocrystal based and amorphous resins receive a conductive shield in the receiving coil 10.
  • the shielding efficiency with respect to the real part among the AC signal components is high.
  • FIG. 2 is a schematic process diagram illustrating a method of manufacturing a non-conductive magnetic shielding block according to an embodiment of the present invention.
  • the non-conductive magnetic shielding block includes a first cover tape disposed on both sides of one non-conductive magnetic shielding sheet 213 and the non-conductive magnetic shielding sheet 213, respectively, as shown at 200a. 211 and the second cover tape 212.
  • the first cover tape 211 and the second cover tape 212 may be a PET-based double-sided adhesive tape, and may perform a function of fixing the non-conductive magnetic shielding sheet 213 which is easily broken.
  • the non-conductive magnetic shield sheet 213 and the first to second cover tapes 211 and 212 are laminated. Thereafter, as shown by reference numeral 200c, after the cutting region 214 is displayed on one side of the cover tape, the indicated cutting region 214 is cut, so that a non-conductive magnetic shielding block such as 200d can be obtained. .
  • the cutting region is described as being circular in FIG. 2, the cutting region is only one embodiment, and the shape and size of the cutting region 214 may be different according to the shape and size of the receiving coil. Be careful.
  • the ferrite magnetic shielding material has a brittle characteristic, and the permeability may vary depending on the broken pattern and degree.
  • the non-conductive magnetic shield sheet 213 may be broken into a predetermined pattern so as to have a desired permeability, and the first to second cover tapes 211 and 212 are used for maintaining the formed pattern as it is.
  • the first to second cover tapes 211 and 212 may have an insulating property, hereinafter, a cover tape used in the manufacture of a conductive magnetic shield block for convenience of description may be used in combination with the insulating cover tape. do.
  • the first to second cover tapes 211 and 212 are used to make the non-conductive magnetic shielding block flexible.
  • the non-conductive magnetic shielding block according to the present invention may have durability against external impact.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a conductive magnetic shield block according to an embodiment of the present invention.
  • n conductive magnetic shielding sheets 301 may be bonded to each other using n-1 intermediate adhesive members 302 and laminated, where n is 2 It may be an above natural number.
  • the conductive magnetic shielding sheet according to the embodiment of the present invention may be nanocrystal-based or amorphous, and may have a thickness of 17 ⁇ m to 25 ⁇ m. Therefore, in order to obtain a desired permeability, it should be noted that the number of conductive magnetic shielding sheets included in the conductive magnetic shielding block may differ depending on the magnetic permeability required in the corresponding wireless charging system or wireless power receiving module.
  • the cut region 303 may be displayed on the laminated surface, and the displayed cut region may be cut.
  • the marking and cutting of the cutting area can be performed by hand or by a programmed robot.
  • the shape and size of the cutting region may be determined according to the shape and size of the receiving coil applied to the wireless power receiving module.
  • the conductive magnetic shield cut after lamination through the steps 300a to 300c will be referred to as a first block 304.
  • the top surface and the bottom surface diameter of the first block 304 may be a.
  • the first to second cover tape sheets 305 and 306 may be cut to obtain first to second cover tapes 307 and 308 having a diameter b. .
  • the diameter b of the cut cover tapes 307 and 308 is larger than the diameter a of the first block 304.
  • the diameter b of the cut cover tapes 307 and 308 may be determined based on the diameter a of the first block 304 and the number n of conductive magnetic shield sheets included in the conductive magnetic shield block. Can be. That is, as the number of the conductive magnetic shield sheets increases, the diameter b of the cut cover tapes 307 and 308 may increase.
  • the cut first to second cover tapes 307 and 308 are attached to the top and bottom surfaces of the first block 304, respectively, and then the first to second cover tapes ( The edges of the 307 and 308 are pressed in the direction of the cutting plane of the first block 304, so that the front surface of the first block 304 is covered with a cover tape, as shown at 300g, and the insulating magnetic shield block 310 is covered with a cover tape. This can be produced.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a conductive magnetic shield block according to another embodiment of the present invention.
  • n conductive magnetic shield sheets 301 are arranged to be bonded to each other using n-1 intermediate adhesive members 302, and the outermost conductive magnetic shield sheet includes an insulating cover tape ( 401 may be arranged to attach.
  • the cutting region 404 indicated by reference numeral 400b of FIG. 4 is cut, and the first block 405 as shown by reference numeral 400c is cut. Can be generated.
  • an insulating coating may be applied to the cut surface to produce a conductive shielding block 406 having a surface insulated.
  • FIG. 5 is a flowchart illustrating a method of manufacturing a non-conductive magnetic shielding block according to an embodiment of the present invention.
  • a non-conductive magnetic shielding sheet is disposed between the first and second cover tapes to be laminated (S510), and a cutting area is displayed on one surface of the laminated cover tape. It may be configured to include the step (S520) and the step (S530) for cutting the displayed cutting area.
  • the shape and size of the cutting region may correspond to the shape and size of the receiving coil mounted in the wireless power receiving module.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a conductive magnetic shield block according to an embodiment of the present invention.
  • the method of manufacturing the conductive magnetic shielding block may include cutting the first to nth conductive magnetic shielding sheets using n ⁇ 1 intermediate adhesive members (S610) and cutting one surface of the laminated block.
  • the size of the cut first to second insulating cover tape may be determined based on the upper and lower surfaces of the laminated block and the number n of conductive magnetic shielding sheets included in the conductive magnetic shielding block.
  • the conductive shielding block manufactured by the method of manufacturing the conductive magnetic shielding block of FIG. 6 has an advantage of high insulation properties and corrosion resistance since all surfaces are insulated using an insulating cover tape.
  • the method of manufacturing the conductive magnetic shielding block of FIG. 6 can easily change the number of conductive magnetic shielding sheets included in the conductive shielding block according to the magnetic permeability required by the wireless charging system or the wireless power receiving module. There is an advantage to produce a conductive shielding block having.
  • FIG. 7 is a flowchart illustrating a method of manufacturing a conductive magnetic shield block according to another embodiment of the present invention.
  • the method of manufacturing the conductive magnetic shielding block may include the first to nth layers of the n-1 layer for bonding the first to nth conductive magnetic shielding sheets together with the outermost conductive magnetic shielding sheet.
  • Producing a laminated block using the second insulating cover tape (S710) and displaying a cutting area on one surface of the insulating cover tape of the laminated block (S720) and cutting the displayed cutting area (S730) and the cut paper It may include the step (S740) of applying an insulating coating on the cut surface of the block.
  • the outermost conductive magnetic shielding sheet refers to a sheet disposed at the bottom of the n conductive magnetic shielding sheets and the sheet disposed at the top.
  • the method of manufacturing the conductive magnetic shielding block of FIG. 7 has an advantage of producing a highly conductive shielding block having insulation properties and corrosion resistance since both surfaces are insulated using an insulating cover tape and an insulating coating agent.
  • the method of manufacturing the conductive magnetic shielding block of FIG. 7 can easily change the number of conductive magnetic shielding sheets included in the conductive shielding block according to the magnetic permeability required by the wireless charging system or the wireless power receiving module. There is an advantage to produce a conductive shielding block having.
  • FIG. 8 is a graph illustrating wireless power reception efficiency of a wireless power receiving module using a magnetic shield block manufactured according to embodiments of the present invention.
  • FIG. 8 is an experiment showing a change in the wireless power reception efficiency according to the strength of the received power for the magnetic shield (primary magnetic shield) and the magnetic shield (proposed magnetic shield) according to the present invention.
  • the result graph is an experiment showing a change in the wireless power reception efficiency according to the strength of the received power for the magnetic shield (primary magnetic shield) and the magnetic shield (proposed magnetic shield) according to the present invention. The result graph.
  • the power reception efficiency of the wireless power receiver using the proposed magnetic shielding material has an efficiency improvement of 2% or more compared to the conventional wireless power receiver using the magnetic shielding material in a section in which the received power intensity is 0.9 W or more.
  • the magnetic shielding block manufactured according to the present invention can be applied to a wireless charging device requiring a magnetic shielding material having high shielding performance and high permeability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

본 발명은 무선 전력 수신기를 위한 자성 차폐 블록 및 그것의 제조 방법에 관한 것으로서, 본 발명의 일 실시예에 따른 자성 차폐 블록을 제조하는 방법은 제1 내지 제2 커버 테이프 사이에 비전도성 자성 차폐 시트를 배치하여 합지하는 단계와 상기 합지된 커버 테이프의 일면에 절단 영역을 표시하는 단계와 표시된 절단 영역을 절단하는 단계를 포함할 수 있다.

Description

무선 전력 충전을 위한 자성 차폐 블록 제조 방법 및 그것을 이용한 자성 차폐 블록 및 무선 전력 수신 장치
본 발명은 무선 전력 전송 기술에 관한 것으로서, 상세하게, 자성 차폐 성능 및 투자율이 높은 무선 전력 수신기를 위한 자성 차폐 블록 및 그것을 제조하는 방법을 제공하는 것이다.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저, 고주파, 마이크로웨이브와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 전송 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 챠량, IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
일반적으로, 무선 전력 송신 장치에는 무선 전력 전송을 위한 코일-이하, 송신 코일이라 명함-이 구비되며, 송신 코일에 의해 발생되는 전자기장 또는 AC 전력이 제어 기판에 전달되는 것을 차단하기 위한 각종 차폐재가 사용된다.
대표적인 차폐재로는 자성 차폐 시트(Magnetic Shielding Sheet) 및 자성을 갖는 금속 분말을 가공한 샌더스트 블록(Sandust Block)이 대표적이다.
또한, 무선 전력 수신 장치에도 수신 코일에 수신되는 전자기장을 차폐하기 위한 자성 차폐재가 사용되고 있다.
하지만, 현재 스마트 워치에 탑재되는 소형 무선 충전 수신 모듈의 경우, 그 크기로 인해 송신 코일과의 결합 계수를 높이기 어려우며, 이에 따라 충전 효율이 70%이하인 단점이 있었다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 전력 수신기를 위한 자성 차폐 블록 및 그것의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 AC 성분에 대한 절연 특성뿐만 아니라 투자율이 높은 자성 차폐 블록 및 그것의 제조 방법을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 무선 전력 수신 효율이 70%이상인 무선 전력 수신기를 제공하기 위한 자성 차폐 블록 및 그것의 제조 방법을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 무선 전력 수신기를 위한 자성 차폐 블록 및 그것의 제조 방법을 제공할 수 있다.
본 발명의 일 실시예에 따른 자성 차폐 블록을 제조하는 방법은 제1 내지 제2 커버 테이프 사이에 비전도성 자성 차폐 시트를 배치하여 합지하는 단계와 상기 합지된 커버 테이프의 일면에 절단 영역을 표시하는 단계와 표시된 절단 영역을 절단하는 단계를 포함할 수 있다.
여기서, 상기 비전도성 자성 차폐 시트는 페라이트(Ferrite) 계열일 수 있다.
일 예로, 상기 페라이트 계열은 Ni-Zn-Cu 계열, Ni-Zn 계열, Mn-Zn 계열 중 어느 하나일 수 있다.
또한, 상기 절단 영역은 원형이며, 상기 절단 영역의 크기는 직경이 30mm이하일 수 있다.
또한, 상기 비전도성 자성 차폐 시트의 투자율은 300KHz 이하 저주파 대역에서 실수부 값이 300이하이고, 허수부 값이 20이하일 수 있다.
본 발명의 다른 일 실시예에 따른 자성 차폐 블록을 제조하는 방법은 제1 내지 제n 전도성 자성 차폐 시트를 n-1개의 중간 접착 부재를 이용하여 합지 블록을 생성하는 단계와 상기 합지 블록의 일면에 절단 영역을 표시하는 단계와 상기 표시된 절단 영역을 절단하는 단계와 상기 절단된 합지 블록의 상부면 및 하부면에 각각 접착되는 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 이용하여 상기 절단된 합지 블록의 표면을 절연하는 단계를 포함할 수 있다.
여기서, 상기 합지 블록의 표면을 절연하는 단계는 상기 합지 블록의 절단면이 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프에 의해 모두 감싸지도록 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 절단하는 단계와 상기 절단된 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 상기 절단된 합지 블록의 상부면 및 하부면 중앙에 접착시키는 단계와 상기 접착된 제1 절연 커버 테이프 및 제2 절연 커버 테이프의 가장자리를 상기 절단면 방향으로 눌러 접착시키는 단계를 포함할 수 있다.
또한, 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 절단하는 단계는 상기 상부면의 직경 및 상기 n 값에 기반하여 절단될 직경을 산출하는 단계와 상기 산출된 직경에 기반하여 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 절단하는 단계를 포함할 수 있다.
또한, 상기 전도성 자성 차폐 시트는 나노크리스탈 계열, 아몰포스 계열 중 어느 하나일 수 있다.
또한, 상기 전도성 자성 차폐 시트의 두께는 17 ~ 25 마이크로미터(μm)일 수 있다.
또한, 상기 자성 차폐 블록은 무선 전력 수신기에 사용되며, 직경이 30mm이하일 수 있다.
본 발명의 또 다른 일 실시예에 따른 자성 차폐 블록을 제조하는 방법은 제1 내지 제n 전도성 자성 차폐 시트, 상기 제1 내지 제n 전도성 자성 차폐 시트를 상호 접착시키는 n-1개의 중간 접착 부재 및 접착된 상기 제1 내지 제n 전도성 자성 차폐 시트 중 최외각 전도성 자성 차폐 시트 각각에 부착되는 제1 내지 제2 절연 커버 테이프를 이용하여 합지 블록을 생성하는 단계와 상기 합지 블록의 일면에 절단 영역을 표시하는 단계와 상기 표시된 절단 영역을 절단하는 단계와 상기 절단된 합지 블록의 절단면에 절연용 코팅제를 도포하는 단계를 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 수신 장치는 무선으로 AC 전력을 수신하는 수신 코일과 상기 수신 코일의 양 단자가 연결되는 제어 회로 기판과 상기 수신 코일과 상기 제어 회로 기판 사이에 장착되어 상기 수신된 AC 전력이 상기 제어 회로 기판에 전달되는 것을 차단하는 자성 차폐재와 상기 자성 차폐재와 상기 수신 코일을 상호 접착시키기 위한 접착 부재를 포함할 수 있다.
여기서, 상기 수신 코일은 패턴형 코일, 권선형 코일 중 어느 하나일 수 있다.
또한, 상기 수신 코일의 직경이 25mm를 초과하면, 상기 수신 코일은 상기 패턴형 코일로 장착되고, 상기 수신 코일의 직경이 25mm 이상면, 상기 수신 코일은 상기 권선형 코일로 장착될 수 있다.
또한, 상기 자성 차폐재는 나노크리스탈 계열, 아몰포스 계열 중 어느 하나의 전도성 자성 차폐재일 수 있다.
또한, 상기 자성 차폐재는 Ni-Zn-Cu 계열, Ni-Zn 계열, Mn-Zn 계열 중 어느 하나인 비전도성 자성 차폐재일 수 있다.
여기서, 상기 비전도성 자성 차폐재의 투자율은 300KHz 이하 저주파 대역에서 실수부 값이 300이하이고, 허수부 값이 20이하일 수 있다.
본 발명의 또 다른 일 실시예에 따른 전도성 자성 차폐 블록은 제1 내지 제n 전도성 자성 차폐 시트와 상기 제1 내지 제n 전도성 자성 차폐 시트를 상호 접착시키는 n-1 중간 접착 부재를 포함하되, 상기 상호 접착된 상기 제1 내지 제n 전도성 자성 차폐 시트가 수신 코일의 크기로 절삭된 후 표면 절연 처리될 수 있다.
여기서, 상기 표면 절연 처리에 절연 커버 테이프, 절연 코팅제 중 적어도 하나가 사용될 수 있다.
또한, 상기 절삭된 표면에 상기 절연 코팅제가 도포되어 상기 표면 절연 처리될 수 있다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 따른 방법 및 장치에 대한 효과에 대해 설명하면 다음과 같다.
본 발명은 무선 전력 수신기를 위한 자성 차폐 블록 및 그것의 제조 방법을 제공하는 장점이 있다.
또한, 본 발명은 AC 성분에 대한 절연 특성뿐만 아니라 투자율이 높은 자성 차폐 블록 및 그것의 제조 방법을 제공하는 장점이 있다.
또한, 본 발명은 무선 전력 수신 효율이 70%이상인 무선 전력 수신기를 제공하기 위한 자성 차폐 블록 및 그것의 제조 방법을 제공하는 장점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선 전력 수신 모듈의 개략적인 구조를 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 따른 비전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 개략적인 공정도이다.
도 3은 본 발명의 일 실시예에 따른 전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 공정도이다.
도 4는 본 발명의 다른 일 실시예에 따른 전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 공정도이다.
도 5는 본 발명의 일 실시예에 따른 비전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 순서도이다.
도 6은 본 발명의 일 실시예에 따른 전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 순서도이다.
도 7은 본 발명의 다른 일 실시예에 따른 전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 순서도이다.
도 8은 본 발명의 실시예들에 따라 제조된 자성 차폐 블록을 이용한 무선 전력 수신 모듈의 무선 전력 수신 효율을 설명하기 위한 그래프이다.
본 발명은 무선 전력 수신기를 위한 자성 차폐 블록 및 그것의 제조 방법에 관한 것으로서, 본 발명의 일 실시예에 따른 자성 차폐 블록을 제조하는 방법은 제1 내지 제2 커버 테이프 사이에 비전도성 자성 차폐 시트를 배치하여 합지하는 단계와 상기 합지된 커버 테이프의 일면에 절단 영역을 표시하는 단계와 표시된 절단 영역을 절단하는 단계를 포함할 수 있다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
후술할 실시예들의 설명에 있어서, 무선 전력 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선으로 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.
본 발명에 따른 무선 전력 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태, 컵 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 파워를 전송할 수도 있다. 이를 위해, 무선 전력 송신기는 적어도 하나의 무선 파워 전송 수단을 구비할 수도 있다. 여기서, 무선 파워 전송 수단은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 여기서, 전자기 유도 방식의 무선파워 전송 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신기는 전자기 공진 방식에 기반한 다양한 무선 전력 전송 표준이 적용될 수도 있다. 일 예로, 전자기 공진 방식의 무선 전력 전송 표준은 A4WP(Alliance for Wireless Power)에서 정의된 공진 방식의 무선 충전 기술을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신기는 상기한 전자기 유도 방식 및 전자기 공진 방식을 모두 지원할 수도 있다.
또한, 본 발명의 일 실시예에 따른 무선 전력 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 2개 이상의 송신기로부터 동시에 무선 파워를 수신할 수도 있다. 여기서, 무선 전력 수신 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식 및 A4WP(Alliance for Wireless Power)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선 전력 수신 모듈의 개략적인 구조를 설명하기 위한 도면이다.
도 1을 참조하면, 무선 전력 수신 모듈(100)은 수신 코일(10), 접착 부재(20) 및 자성 자폐재(30)를 포함된 계층 구조를 가질 수 있다.
수신 코일(10)은 무선 전력 송신 장치의 송신 코일을 통해 송출되는 전력 신호를 수신하는 기능을 수행한다. 일 예로, 수신 코일(10)은 필름이나 박형의 인쇄 회로 기판 등에 두께가 얇은 배선 패턴이 형성된 패턴 코일이거나 절연 피복된 코일이 권선형으로 형성된 권선형 코일일 수 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 실시예에 따른 수신 코일의 구성 형태는 특별히 제한되지 않으며, 무선 전력 수신이 가능한 구조이면 충분하다.
본 발명의 일 실시예에 따른 수신 코일(10)은 코일 기판의 적어도 일면에 배선 패턴의 형태로 형성될 수 있으며, 수신 코일의 양단은 제어 회로 기판(미도시)과 전기적으로 연결될 수 있다. 여기서, 코일 기판은 절연 기판일 수 있으며, 인쇄회로기판(printed circuit board, PCB), 세라믹 기판, 프리-몰딩(pre-molded) 기판, 또는 DBC(direct bonded copper) 기판이거나, 절연된 금속 기판(insulated metal substrate, IMS)일 수 있으나, 이에 한정되지는 않으며, 절연 특성이 있는 기판이면 족하다. 또한, 코일 기판은 탄성이 있는 유연성 기판일 수도 있다.
접착 부재(20)는 수신 코일(10)과 자성 차폐재(30)를 상호 접착시키며, 양면 접착 테이프로 형성될 수 있으나, 이에 한정되지는 않는다. 상기 도 1에서는 접착 부재(20)가 수신 코일(10) 및 자성 차폐재(30)의 일면 전체에 부착되는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 수신 코일(10) 및 자성 차폐재(30)의 일면 일부에만 부착되도록 형성될 수도 있다. 일 예로, 접착 부재(20)는 원형 링 형태일 수 있으나, 이에 한정되지는 않으며, 수신 코일(10)과 자성 차폐재(30)를 상호 접착이 가능한 형태이면 족하다.
상기한 도 1에는 접착 부재(20)가 양면 접착 시트(adhesive sheet) 형태인 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 접착 부재(20)는 수신 코일(10)이나 자성 차폐재(30)의 일면에 도포되는 접착제나 접착성을 갖는 수지일 수도 있다.
본 발명의 일 실시예에 따른 코일 기판에 형성되는 수신 코일(10)의 직경은 30mm이하일 수 있다. 만약, 수신 코일(10)의 직경이 25mm이하로 형성되어야 하는 경우, 수신 코일(10)은 패턴 코일이 아닌 권선형 코일로 구성될 수 있다. 일반적으로, 패턴 코일 대비 권선형 코일이 저항이 낮으므로, 무선 전력 수신 효율이 높을 수 있다. 일반적으로 수신 코일(10)의 저항이 높으면, 저항 성분에 의한 발열 등에 의해 전력 손실이 높을 수 있다. 따라서, 수신 코일(10)의 직경이 작아지는 경우, 손실률을 최소화하기 위해 권선형 코일이 사용되는 것이 바람직할 수 있다.
본 발명의 일 실시예에 따른 수신 코일(10)이 권선형 코일인 경우, 권선 코일의 도선 지름은 1.15~0.25mm의 범위를 가질 수 있다.
자성 차폐재(30)는 페라이트(Ferrite)의 계열의 비전도성 차폐재가 사용될 수 있다. 일 예로, 페라이트 계열의 차폐재로 고투자율을 갖고 수신된 전력의 손실률이 낮은 Ni-Zn-Cu 계열의 페라이트가 적용될 수 있다. 이때, Ni-Zn-Cu 계열의 페라이트가 적용된 자성 차폐재(30)의 투자율은 저주파 대역(300KHz 이하 대역)에서 실수부 값이 300이하이고, 허수부 값이 20이하인 특성을 갖는다.
본 발명의 다른 일 실시예에 따른 자성 차폐재(30)로 Ni-Zn 계열, Mn-Zn 계열의 비전도성 차폐재가 사용될 수도 있다.
본 발명의 또 다른 일 실시예에 따른 자성 차폐재(30)로 나노크리스탈(Nanocrystal) 계열 또는 비정질 실리콘(a-Si)인 아몰포스(Amorphous) 계열의 전도성 차폐재가 사용될 수 있다.
일반적으로, 페라이트 계열과 같은 비전도성 차폐재는 수신 코일(10)에 수신된 AC 신호 성분 중 허수부에 대한 차폐 효율이 높고, 나노크리스탈 계열 및 아몰포스 계열의 전도성 차폐재는 수신 코일(10)에 수신된 AC 신호 성분 중 실수부에 대한 차폐 효율이 높은 특징이 있다.
도 2는 본 발명의 일 실시예에 따른 비전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 개략적인 공정도이다.
도 2를 참조하면, 비전도성 자성 차폐 블록은 도면 부호 200a에 도시된 바와 같이, 하나의 비전도성 자성 차폐 시트(213)와 비전도성 자성 차폐 시트(213)의 양면에 각각 배치되는 제1 커버 테이프(211)와 제2 커버 테이프(212)를 포함하여 구성될 수 있다. 여기서, 제1 커버 테이프(211)와 제2 커버 테이프(212)는 PET 계열의 양면 접착 테이프일 수 있으며, 부스러지기 쉬운 비전도성 자성 차폐 시트(213)를 고정시키는 기능을 수행할 수 있다.
도면 부호, 200b와 같이, 비전도성 자성 차폐 시트(213)와 제1 내지 제2 커버 테이프(211, 212)는 합지된다. 이후, 도면 부호 200c에 도시된 바와 같이, 커버 테이프의 일측에 절단 영역(214)이 표시된 후, 표시된 절단 영역(214)이 절단되어, 도면 부호 200d와 같은 비전도성 자성 차폐 블록이 획득될 수 있다. 상기한 도 2의 도면 부호 200c에는 절단 영역이 원형인 것으로 설명되고 있으나, 이는 하나의 실시예에 불과하며, 절단 영역(214)의 모양 및 크기는 수신 코일의 형태 및 크기에 따라 상이할 수도 있음을 주의해야 한다.
일반적으로, 페라이트 계열의 자성 차폐재는 부서지는 특성이 있으며, 부서진 패턴 및 정도에 따라 투자율이 달라질 수 있다. 원하는 투자율을 갖도록 비전도성 자성 차폐 시트(213)는 소정 패턴으로 부서질 수 있으며, 제1 내지 제2 커버 테이프(211, 212)는 형성된 패턴이 그대로 유지시키기 위한 용도로 사용된다. 여기서, 제1 내지 제2 커버 테이프(211, 212)는 절연 특성을 가질 수 있으며, 이하, 설명의 편의를 위한 전도성 자성 차폐 블록의 제조에 사용되는 커버 테이프를 절연 커버 테이프와 혼용하여 사용하기로 한다.
또한, 제1 내지 제2 커버 테이프(211, 212)는 비전도성 자성 차폐 블록이 유연성을 갖도록 하기 위해 사용된다. 따라서, 본 발명에 따른 비전도성 자성 차폐 블록은 외부 충격에 대한 내구성을 가질 수 있다.
도 3은 본 발명의 일 실시예에 따른 전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 공정도이다.
도 3의 도면 부호 300a 내지 300b에 도시된 바와 같이, n개의 전도성 자성 차폐 시트(301)가 n-1개의 중간 접착 부재(302)를 이용하여 상호 접착되어 합지될 수 있다, 여기서, n은 2 이상의 자연수일 수 있다. 본 발명의 일 실시예에 따른 전도성 자성 차폐 시트는 나노크리스탈 계열 또는 아몰포스 계열일 수 있으며, 두께가 17μm~25μm일 수 있다. 따라서, 원하는 투자율을 획득하기 위해, 전도성 자성 차폐 블록에 포함되는 전도성 자성 차폐 시트의 개수는 해당 무선 충전 시스템 또는 무선 전력 수신 모듈에서 요구되는 투자율에 따라 상이할 수 있음을 주의해야 한다.
이 후, 도면 부호 330b 및 300c에 도시된 바와 같이, 합지된 일면에 절단 영역(303)이 표시되고, 표시된 절단 영역이 절단될 수 있다. 여기서, 절단 영역의 표시 및 절단은 수작업 또는 프로그램된 로봇에 의해 수행될 수 있다. 절단 영역의 형태 및 크기는 무선 전력 수신 모듈에 적용되는 수신 코일의 형태 및 크기에 따라 결정될 수 있다.
이하 설명의 편의를 위해, 상기한 300a 내지 300c 단계를 통해 합지 후 절단된 전도성 자성 차폐재를 제1 블록(304)이라 명하기로 한다. 이때, 제1 블록(304)의 상단면 및 하단면 직경은 a일 수 있다.
도면 부호 300d 내지 300e에 도시된 바와 같이, 제1 내지 제2 커버 테이프 시트(305, 306)를 절단하여 직경 b의 크기를 가지는 제1 내지 제2 커버 테이프(307, 308)가 획득될 수 있다.
이때, 절단된 커버 테이프(307, 308)의 직경(b)은 제1 블록(304)의 직경(a)보다 크다. 일 예로, 절단된 커버 테이프(307, 308)의 직경(b)은 제1 블록(304)의 직경(a)과 전도성 자성 차폐 블록에 포함되는 전도성 자성 차폐 시트의 개수(n)에 기반하여 결정될 수 있다. 즉, 전도성 자성 차폐 시트의 개수가 증가할수록 절단된 커버 테이프(307, 308)의 직경(b)은 증가할 수 있다.
도면 부호 300f에 도시된 바와 같이, 절단된 제1 내지 제2 커버 테이프(307, 308)는 각각 제1 블록(304)의 상단면 및 하단면에 부착된 후, 제1 내지 제2 커버 테이프(307, 308)의 가장자리가 제1 블록(304)의 절단면 방향으로 눌려져, 도면 부호 300g에 도시된 바와 같이, 제1 블록(304)의 전면이 커버 테이프로 감싸진 절연형 자성 차폐 블록(310)이 생산될 수 있다.
도 4는 본 발명의 다른 일 실시예에 따른 전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 공정도이다.
도 4의 도면 부호 400a를 참조하면, n개의 전도성 자성 차폐 시트(301)가 n-1개의 중간 접착 부재(302)를 이용하여 상호 접착되도록 배치되고, 최외각 전도성 자성 차폐 시트에는 절연 커버 테이프(401)가 부착되도록 배치될 수 있다.
상기 400a 단계에서 배치된 n개의 전도성 자성 차폐 시트(301)는 합지된 후 도 4의 도면 부호 400b에 표시된 절단 영역(404)이 절단되어, 도면 부호 400c에 도시된 바와 같은 제1 블록(405)이 생성될 수 있다. 이때, 제1 블록(405)의 절단면을 절연 처리하기 위해 도면 부호 400d에 도시된 바와 같이, 절단면에 절연 코팅제가 도포되어 전면이 표면 절연 처리된 전도성 차폐 블록(406)이 생산될 수 있다.
도 5는 본 발명의 일 실시예에 따른 비전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 순서도이다.
도 5를 참조하면, 비전도성 자성 차폐 블록의 제조 방법은 제1 내지 제2 커버 테이프 사이에 비전도성 자성 차폐 시트를 배치하여 합지하는 단계(S510)와 합지된 커버 테이프의 일면에 절단 영역을 표시하는 단계(S520)와 표시된 절단 영역을 절단하는 단계(S530)를 포함하여 구성될 수 있다. 여기서, 절단 영역의 형태 및 크기는 무선 전력 수신 모듈에 장착되는 수신 코일의 형태 및 크기에 대응될 수 있다.
도 6은 본 발명의 일 실시예에 따른 전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 순서도이다.
도 6을 참조하면, 전도성 자성 차폐 블록의 제조 방법은 제1 내지 제n 전도성 자성 차폐 시트를 n-1개의 중간 접착 부재를 이용하여 합지 블록을 생산하는 단계(S610)와 합지 블록의 일면에 절단 영역을 표시하는 단계(S620)와 합지 블록에 표시된 절단 영역을 절단하는 단계(S630)와 절단된 합지 블록의 상부면 및 하부면에 각각 접착되는 제1 내지 제2 절연 커버 테이프를 절단된 합지 블록의 상부면 및 하부면의 직경보다 크게 절단하는 단계(S640)와 절단된 제1 내지 제2 절연 커버 테이프를 절단된 합지 블록의 상부면 및 하부면의 중앙에 부착한 후, 부착된 절연 커버 테이프의 가장자리를 절단된 합지 블록의 절단면 방향으로 눌러 접착시키는 단계(S650)를 포함할 수 있다.
여기서, 절단된 제1 내지 제2 절연 커버 테이프의 크기는 합지 블록의 상/하면 크기 및 전도성 자성 차폐 블록에 포함된 전도성 자성 차폐 시트의 개수(n)에 기반하여 결정될 수 있다.
따라서, 상기한 도 6의 전도성 자성 차폐 블록의 제조 방법으로 제조된 전도성 차폐 블록은 절연 커버 테이프를 이용하여 표면이 모두 절연 처리되므로 절연 특성 및 부식에 대한 내구성이 높은 장점이 있다.
또한, 상기한 도 6의 전도성 자성 차폐 블록의 제조 방법은 해당 무선 충전 시스템 또는 무선 전력 수신 모듈에서 요구되는 투자율에 따라 전도성 차폐 블록에 포함되는 전도성 자성 차폐 시트의 개수를 쉽게 변경할 수 있으므로 다양한 투자율을 갖는 전도성 차폐 블록을 생산할 수 있는 장점이 있다.
도 7은 본 발명의 다른 일 실시예에 따른 전도성 자성 차폐 블록의 제조 방법을 설명하기 위한 순서도이다.
도 7을 참조하면, 전도성 자성 차폐 블록의 제조 방법은 제1 내지 제n 전도성 자성 차폐 시트를 상호 접착시키기 위한 n-1 층의 중간 접착 부재와 최외곽 전도성 자성 차폐 시트 각각에 부착되는 제1 내지 제2 절연 커버 테이프를 이용하여 합지 블록을 생산하는 단계(S710)와 합지 블록의 절연 커버 테이프 일면에 절단 영역을 표시하는 단계(S720)와 표시된 절단 영역을 절단하는 단계(S730)와 절단된 합지 블록의 절단면에 절연 코팅제를 도포하는 단계(S740)을 포함할 수 있다. 여기서, 최외곽 전도성 자성 차폐 시트는 적층된 n개의 전도성 자성 차폐 시트 중 가장 하단에 위치한 시트와 가장 상단에 위치한 시트를 의미한다.
따라서, 상기한 도 7의 전도성 자성 차폐 블록의 제조 방법은 절연 커버 테이프 및 절연 코팅제를 이용하여 표면이 모두 절연 처리되므로 절연 특성 및 부식에 대한 내구성인 높은 전도성 차폐 블록을 생산할 수 있는 장점이 있다.
또한, 상기한 도 7의 전도성 자성 차폐 블록의 제조 방법은 해당 무선 충전 시스템 또는 무선 전력 수신 모듈에서 요구되는 투자율에 따라 전도성 차폐 블록에 포함되는 전도성 자성 차폐 시트의 개수를 쉽게 변경할 수 있으므로 다양한 투자율을 갖는 전도성 차폐 블록을 생산할 수 있는 장점이 있다.
도 8은 본 발명의 실시예들에 따라 제조된 자성 차폐 블록을 이용한 무선 전력 수신 모듈의 무선 전력 수신 효율을 설명하기 위한 그래프이다.
상세하게 도 8은 종래의 무선 전력 수신 모듈에 사용되는 자성 차폐재(종래 자성 차폐재) 및 본 발명에 따른 자성 차폐재(제안 자성 차폐재)에 대한 수신 전력의 세기에 따른 무선 전력 수신 효율의 변화를 보여주는 실험 결과 그래프이다.
도 8을 참조하면, 수신 전력의 세기가 0.9W 이상인 구간에서, 제안 자성 차폐재를 이용한 무선 전력 수신기의 전력 수신 효율이 종래 자성 차폐재를 이용한 무선 전력 수신기에 비해 2%이상의 효율 개선이 있음을 보여준다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명에 따라 제조된 자성 차폐 블록은 차폐 성능 및 투자율이 높은 자성 차폐재가 요구되는 무선 충전 장치에 적용될 수 있다.

Claims (20)

  1. 자성 차폐 블록을 제조하는 방법에 있어서,
    제1 내지 제2 커버 테이프 사이에 비전도성 자성 차폐 시트를 배치하여 합지하는 단계;
    상기 합지된 커버 테이프의 일면에 절단 영역을 표시하는 단계; 및
    표시된 절단 영역을 절단하는 단계
    를 포함하는, 자성 차폐 블록 제조 방법.
  2. 제1항에 있어서,
    상기 비전도성 자성 차폐 시트는 페라이트(Ferrite) 계열인, 자성 차폐 블록 제조 방법.
  3. 제2항에 있어서,
    상기 페라이트 계열은 Ni-Zn-Cu 계열, Ni-Zn 계열, Mn-Zn 계열 중 어느 하나인, 자성 차폐 블록 제조 방법.
  4. 제1항에 있어서,
    상기 절단 영역은 원형이며, 상기 절단 영역의 크기는 직경이 30mm이하인 것을 특징으로 하는, 자성 차폐 블록 제조 방법.
  5. 제1항에 있어서,
    상기 비전도성 자성 차폐 시트의 투자율은 300KHz 이하 저주파 대역에서 실수부 값이 300이하이고, 허수부 값이 20이하인 것을 특징으로 하는, 자성 차폐 블록 제조 방법.
  6. 자성 차폐 블록을 제조하는 방법에 있어서,
    제1 내지 제n 전도성 자성 차폐 시트를 n-1개의 중간 접착 부재를
    이용하여 합지 블록을 생성하는 단계;
    상기 합지 블록의 일면에 절단 영역을 표시하는 단계;
    상기 표시된 절단 영역을 절단하는 단계; 및
    상기 절단된 합지 블록의 상부면 및 하부면에 각각 접착되는 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 이용하여 상기 절단된 합지 블록의 표면을 절연하는 단계
    를 포함하는, 자성 차폐 블록 제조 방법.
  7. 제1항에 있어서,
    상기 합지 블록의 표면을 절연하는 단계는
    상기 합지 블록의 절단면이 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프에 의해 모두 감싸지도록 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 절단하는 단계;
    상기 절단된 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 상기 절단된 합지 블록의 상부면 및 하부면 중앙에 접착시키는 단계; 및
    상기 접착된 제1 절연 커버 테이프 및 제2 절연 커버 테이프의 가장자리를 상기 절단면 방향으로 눌러 접착시키는 단계
    를 포함하는, 자성 차폐 블록 제조 방법.
  8. 제7항에 있어서,
    상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 절단하는 단계는
    상기 상부면의 직경 및 상기 n 값에 기반하여 절단될 직경을 산출하는 단계; 및
    상기 산출된 직경에 기반하여 상기 제1 절연 커버 테이프 및 제2 절연 커버 테이프를 절단하는 단계
    를 포함하는, 자성 차폐 블록 제조 방법.
  9. 제6항에 있어서,
    상기 전도성 자성 차폐 시트는 나노크리스탈 계열, 아몰포스 계열 중 어느 하나인 것을 특징으로 하는, 자성 차폐 블록 제조 방법.
  10. 제6항에 있어서,
    상기 전도성 자성 차폐 시트의 두께는 17 ~ 25 마이크로미터(μm)인, 자성 차폐 블록 제조 방법.
  11. 제6항에 있어서,
    상기 자성 차폐 블록은 무선 전력 수신기에 사용되며, 직경이 30mm 이하인 것을 특징으로 하는, 자성 차폐 블록 제조 방법.
  12. 무선 전력 수신 장치에 있어서;
    무선으로 AC 전력을 수신하는 수신 코일;
    상기 수신 코일의 양 단자가 연결되는 제어 회로 기판;
    상기 수신 코일과 상기 제어 회로 기판 사이에 장착되어 상기 수신된 AC 전력이 상기 제어 회로 기판에 전달되는 것을 차단하는 자성 차폐재; 및
    상기 자성 차폐재와 상기 수신 코일을 상호 접착시키기 위한 접착 부재
    를 포함하는, 무선 전력 수신 장치.
  13. 제12항에 있어서,
    상기 수신 코일은 패턴형 코일, 권선형 코일 중 어느 하나인 것을 특징으로 하는, 무선 전력 수신 장치.
  14. 제13항에 있어서,
    상기 수신 코일의 직경이 25mm를 초과하면, 상기 수신 코일은 상기 패턴형 코일로 장착되고, 상기 수신 코일의 직경이 25mm 이상면, 상기 수신 코일은 상기 권선형 코일로 장착되는, 무선 전력 수신 장치.
  15. 제11항에 있어서,
    상기 자성 차폐재는 나노크리스탈 계열, 아몰포스 계열 중 어느 하나의 전도성 자성 차폐재인, 무선 전력 수신 장치.
  16. 제12항에 있어서,
    상기 자성 차폐재는 Ni-Zn-Cu 계열, Ni-Zn 계열, Mn-Zn 계열 중 어느 하나인 비전도성 자성 차폐재인, 무선 전력 수신 장치.
  17. 제16항에 있어서,
    상기 비전도성 자성 차폐재의 투자율은 300KHz 이하 저주파 대역에서 실수부 값이 300이하이고, 허수부 값이 20이하인 것을 특징으로 하는, 무선 전력 수신 장치.
  18. 제12항에 있어서,
    상기 자성 차폐재는
    제1 내지 제n 전도성 자성 차폐 시트; 및
    상기 제1 내지 제n 전도성 자성 차폐 시트를 상호 접착시키는 n-1 중간 접착 부재
    를 포함하고, 상기 상호 접착된 상기 제1 내지 제n 전도성 자성 차폐 시트가 상기 수신 코일의 크기로 절삭된 후 표면 절연 처리되는 것을 특징으로 하는, 무선 전력 수신 장치.
  19. 제18항에 있어서,
    상기 표면 절연 처리에 절연 커버 테이프, 절연 코팅제 중 적어도 하나가 사용되고, , 무선 전력 수신 장치.
  20. 제19항에 있어서,
    상기 절삭된 표면에 상기 절연 코팅제가 도포되어 상기 표면 절연 처리되는 것을 특징으로 하는, 무선 전력 수신 장치.
PCT/KR2016/012497 2015-12-28 2016-11-02 무선 전력 충전을 위한 자성 차폐 블록 제조 방법 및 그것을 이용한 자성 차폐 블록 및 무선 전력 수신 장치 WO2017115995A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/063,554 US20180366262A1 (en) 2015-12-28 2016-11-02 Method of manufacturing magnetic shielding block for wireless power charging, and magnetic shielding block and wireless power receiving device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0187494 2015-12-28
KR1020150187494A KR20170077534A (ko) 2015-12-28 2015-12-28 무선 전력 충전을 위한 자성 차폐 블록 제조 방법 및 그것을 이용한 자성 차폐 블록 및 무선 전력 수신 장치

Publications (1)

Publication Number Publication Date
WO2017115995A1 true WO2017115995A1 (ko) 2017-07-06

Family

ID=59225870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012497 WO2017115995A1 (ko) 2015-12-28 2016-11-02 무선 전력 충전을 위한 자성 차폐 블록 제조 방법 및 그것을 이용한 자성 차폐 블록 및 무선 전력 수신 장치

Country Status (3)

Country Link
US (1) US20180366262A1 (ko)
KR (1) KR20170077534A (ko)
WO (1) WO2017115995A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102018646B1 (ko) * 2017-10-31 2019-09-04 주식회사 에이텀 트랜스포머

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087820A (ko) * 2005-01-31 2006-08-03 주식회사 에이엠아이 씨 박형 전자파 쉴드 테이프, 이를 이용한 전자파 차폐 구조 및 그 제조방법
JP2011176248A (ja) * 2010-01-26 2011-09-08 Ohse Kenkyusho:Kk 電子機器用のシールド材と、それを使用する電子機器のシールド構造
KR20130072181A (ko) * 2011-12-21 2013-07-01 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
KR20140087515A (ko) * 2012-12-31 2014-07-09 이은정 전자파 차폐용 시트 및 그 제조방법
KR20150032382A (ko) * 2013-09-16 2015-03-26 (주)상아프론테크 초박형 및 고투자율의 wpc 및 nfc 겸용 하이브리드 자성시트 및 그 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836634B1 (ko) * 2006-10-24 2008-06-10 주식회사 한림포스텍 무선 데이타 통신과 전력 전송이 가능한 무접점 충전장치,충전용 배터리팩 및 무접점 충전장치를 이용한 휴대용단말기
GB201121938D0 (en) * 2011-12-21 2012-02-01 Dames Andrew N Supply of grid power to moving vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060087820A (ko) * 2005-01-31 2006-08-03 주식회사 에이엠아이 씨 박형 전자파 쉴드 테이프, 이를 이용한 전자파 차폐 구조 및 그 제조방법
JP2011176248A (ja) * 2010-01-26 2011-09-08 Ohse Kenkyusho:Kk 電子機器用のシールド材と、それを使用する電子機器のシールド構造
KR20130072181A (ko) * 2011-12-21 2013-07-01 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
KR20140087515A (ko) * 2012-12-31 2014-07-09 이은정 전자파 차폐용 시트 및 그 제조방법
KR20150032382A (ko) * 2013-09-16 2015-03-26 (주)상아프론테크 초박형 및 고투자율의 wpc 및 nfc 겸용 하이브리드 자성시트 및 그 제조방법

Also Published As

Publication number Publication date
US20180366262A1 (en) 2018-12-20
KR20170077534A (ko) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2018066822A1 (ko) 무선 충전을 위한 코일 블록 및 그것의 제조 방법
WO2017023080A1 (ko) 차량용 무선전력 송신모듈
WO2019151693A1 (ko) 안테나 성능을 개선시키는 무선 충전 수신기
KR101773093B1 (ko) 무선 전력 충전기를 위한 자성 차폐 블록 제조 방법
WO2018147649A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
KR20140111799A (ko) 무선 충전용 코일 기판 및 이를 구비하는 전자 기기
WO2017069581A1 (ko) 차량용 안테나 모듈
WO2017074104A1 (ko) 무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈
WO2018048281A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
WO2017078285A1 (ko) 무선 전력 송신기
KR20170051139A (ko) 무선 전력 수신 장치
US10398067B2 (en) Magnetic shielding member and wireless power receiver including the same
KR20210129618A (ko) 무선 전력 송수신 장치
WO2018101677A1 (ko) 무선 전력 수신 장치
KR102154258B1 (ko) 무선 전력 수신 장치 및 그를 구비한 휴대용 단말
WO2017115995A1 (ko) 무선 전력 충전을 위한 자성 차폐 블록 제조 방법 및 그것을 이용한 자성 차폐 블록 및 무선 전력 수신 장치
WO2017217648A1 (ko) 무선 전력 송신 안테나 및 그를 이용한 장치 및 시스템
WO2016111496A1 (ko) 자기장 차폐시트 및 이를 포함하는 무선전력 전송모듈
KR20180100749A (ko) 전자파 차폐 구조를 가지는 코일 어셈블리
WO2017073868A1 (ko) 무선 전력 수신 장치
KR20200076304A (ko) 무선충전코일 및 무선충전장치
WO2019088505A1 (ko) 무선충전장치
WO2018021687A1 (ko) 무선 전력 송신기 및 무선 전력 수신기
WO2017099442A1 (ko) 무선 전력 송신기의 송신 코일 형성 장치, 송신 코일 모듈, 및 이의 제작방법
KR20200104589A (ko) 무선충전코일

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881948

Country of ref document: EP

Kind code of ref document: A1