WO2017217391A1 - 端末装置、基地局装置、通信方法、および、集積回路 - Google Patents

端末装置、基地局装置、通信方法、および、集積回路 Download PDF

Info

Publication number
WO2017217391A1
WO2017217391A1 PCT/JP2017/021765 JP2017021765W WO2017217391A1 WO 2017217391 A1 WO2017217391 A1 WO 2017217391A1 JP 2017021765 W JP2017021765 W JP 2017021765W WO 2017217391 A1 WO2017217391 A1 WO 2017217391A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical channel
same
antenna port
physical
terminal device
Prior art date
Application number
PCT/JP2017/021765
Other languages
English (en)
French (fr)
Inventor
友樹 吉村
翔一 鈴木
立志 相羽
麗清 劉
渉 大内
林 貴志
公彦 今村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017217391A1 publication Critical patent/WO2017217391A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to a terminal device, a base station device, a communication method, and an integrated circuit.
  • LTE Long Term Evolution
  • EUTRA Evolved Universal Terrestrial Radio Access
  • 3GPP Third Generation Partnership Project
  • a base station apparatus is also called eNodeB (evolvedvolveNodeB), and a terminal device is also called UE (UserUEEquipment).
  • LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cell shape. A single base station apparatus may manage a plurality of cells.
  • Non-Patent Documents 1, 2, 3, and 4 MIMO spatial multiplexing is specified as a PDSCH transmission method.
  • Non-Patent Document 5 discusses shortening of TTI (Transmission Time Interval) and reduction of processing time.
  • One embodiment of the present invention is a terminal device that can efficiently receive a downlink signal, a communication method used in the terminal device, an integrated circuit mounted in the terminal device, and an efficient transmission of the downlink signal.
  • a base station device capable of
  • the downlink signal may include PDSCH and sPDSCH.
  • one embodiment of the present invention is a terminal device, which includes a receiving unit that receives a first physical channel and a second physical channel, and demodulation that demodulates the first physical channel based on a first reference signal.
  • One embodiment of the present invention is a terminal device, which receives a first physical channel and a second physical channel, and demodulates the first physical channel based on a first reference signal.
  • a demodulator and when a predetermined condition is satisfied, the power (transmission power or reception power) applied to the first physical channel and the second physical channel is assumed to be the same, and
  • the predetermined condition includes a condition that the antenna port corresponding to the first physical channel is the same as the antenna port corresponding to the second physical channel.
  • One aspect of the present invention is a base station apparatus that transmits a modulation unit that modulates a first physical channel and a second physical channel, and transmits the first physical channel and the second physical channel.
  • a power unit (transmission power or reception power) applied to the first physical channel and the second physical channel when a predetermined condition is satisfied, and
  • the condition includes a condition that the antenna port corresponding to the first physical channel is the same as the antenna port corresponding to the second physical channel.
  • One aspect of the present invention is a communication method used for a terminal device, the step of receiving a first physical channel and a second physical channel, and the first physical channel as a first reference signal. And when the predetermined condition is satisfied, it is assumed that the precoder applied to the first physical channel and the second physical channel is the same, and the predetermined condition is The condition that the antenna port corresponding to the first physical channel and the antenna port corresponding to the second physical channel are the same is included.
  • One aspect of the present invention is a communication method used for a terminal device, the step of receiving a first physical channel and a second physical channel, and the first physical channel as a first reference signal.
  • the predetermined condition includes a condition that an antenna port corresponding to the first physical channel and an antenna port corresponding to the second physical channel are the same.
  • One aspect of the present invention is a communication method used in a base station apparatus, the step of modulating a first physical channel and a second physical channel, the first physical channel and the second physical channel Transmitting a physical channel, and when a predetermined condition is satisfied, a precoder applied to the first physical channel and the second physical channel is the same, and the predetermined condition is This includes a condition that the antenna port corresponding to the first physical channel and the antenna port corresponding to the second physical channel are the same.
  • One aspect of the present invention is a communication method used in a base station apparatus, the step of modulating a first physical channel and a second physical channel, the first physical channel, and the second physical channel Transmitting a physical channel, and when a predetermined condition is satisfied, power (transmission power or reception power) applied to the first physical channel and the second physical channel is the same,
  • the predetermined condition includes a condition that an antenna port corresponding to the first physical channel and an antenna port corresponding to the second physical channel are the same.
  • the terminal device can efficiently receive the downlink signal. Moreover, the base station apparatus can transmit a downlink signal efficiently.
  • FIG. 1 is a conceptual diagram of the wireless communication system of the present embodiment.
  • the radio communication system includes terminal apparatuses 1A to 1C and a base station apparatus 3.
  • the terminal devices 1A to 1C are also referred to as the terminal device 1.
  • the terminal device 1 is set with a plurality of serving cells.
  • a technique in which the terminal device 1 communicates via a plurality of serving cells is referred to as cell aggregation or carrier aggregation.
  • One aspect of the present invention may be applied to each of a plurality of serving cells set for the terminal device 1.
  • an aspect of the present invention may be applied to some of the set serving cells.
  • one aspect of the present invention may be applied to each of a plurality of set serving cell groups.
  • an aspect of the present invention may be applied to a part of the set groups of a plurality of serving cells.
  • the plurality of serving cells includes at least one primary cell.
  • the plurality of serving cells may include one or a plurality of secondary cells.
  • the primary cell is a serving cell in which an initial connection establishment (initial connection establishment) procedure has been performed, a serving cell that has started a connection re-establishment procedure, or a cell designated as a primary cell in a handover procedure.
  • a secondary cell may be set when an RRC (Radio-Resource-Control) connection is established or later.
  • a carrier corresponding to a serving cell is referred to as a downlink component carrier.
  • a carrier corresponding to a serving cell is referred to as an uplink component carrier.
  • the downlink component carrier and the uplink component carrier are collectively referred to as a component carrier.
  • the terminal device 1 can perform transmission and / or reception on a plurality of physical channels simultaneously in a plurality of serving cells (component carriers).
  • One physical channel is transmitted in one serving cell (component carrier) among a plurality of serving cells (component carriers).
  • the term “shortened” in one embodiment of the present invention is based on a period (1OS (OFDM symbol), 2OS, 3OS, 4OS, 7OS, etc.) smaller than Nms (for example, N is 1 ms).
  • N is 1 ms.
  • it may indicate that it is related to a communication method for communicating downlink data (payload, transport block, MAC PDU, etc.).
  • shorted may be read as short, shorter, shortening, shortten, or the like.
  • the following downlink physical channels are used in downlink radio communication from the base station apparatus 3 to the terminal apparatus 1.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • DCI Downlink Control Information
  • the downlink control information is also referred to as a DCI format.
  • the downlink control information can include a downlink grant.
  • the downlink grant is also referred to as downlink assignment or downlink allocation.
  • DCI included in PDCCH and EPDCCH may include allocation information for PDSCH, and DCI included in sPDCCH may include a downlink grant for sPDSCH.
  • DCI including the downlink grant for sPDSCH may be referred to as sDCI (shortened DCI).
  • sDCI shortened DCI
  • the PDCCH may include sDCI.
  • the EPDCCH may include sDCI.
  • one downlink grant may be used for scheduling one PDSCH in one cell.
  • the downlink grant may be used for scheduling the PDSCH in the same subframe as the subframe in which the downlink grant is transmitted.
  • One downlink grant may be used for scheduling one sPDSCH in one cell.
  • the downlink grant may be used for scheduling sPDSCH within the same sTTI as the sTTI (shortened Transmission Time Interval) in which the downlink grant is transmitted.
  • the downlink grant may include information related to downlink allocation for one or a plurality of terminal devices 1. That is, the downlink grant includes frequency allocation information (Resource allocation), MCS (Modulation and Coding), number of transmission antenna ports, scramble identity (SCID: Scramble Identity), number of layers, new It may include at least one of data index (New Data Indicator), RV (Redundancy Version), the number of transport blocks, precoder information, and transmission scheme information.
  • frequency allocation information Resource allocation
  • MCS Modulation and Coding
  • SCID Scramble Identity
  • number of layers new It may include at least one of data index (New Data Indicator), RV (Redundancy Version), the number of transport blocks, precoder information, and transmission scheme information.
  • subcarrier spacing and / or symbol length constituting the TTI and the subcarrier spacing and / or symbol length constituting the sTTI may be different.
  • PDSCH and sPDSCH may be used to transmit downlink data (Downlink Shared Channel: DL-SCH).
  • DL-SCH Downlink Shared Channel
  • DL-SCH is a transport channel.
  • a channel used in a medium access control (Medium Access Control: MAC) layer is referred to as a transport channel.
  • a transport channel unit used in the MAC layer is also referred to as a transport block (transport block: TB) or a MAC PDU (Protocol Data Unit).
  • HARQ HybridbrAutomatic Repeat reQuest
  • the transport block is a unit of data that the MAC layer delivers to the physical layer.
  • transport blocks are mapped to code words, and modulation processing and encoding processing are performed for each code word.
  • One codeword is mapped to one or more layers.
  • FIG. 8 is a diagram showing an example of the configuration of the physical layer transmission process 8000.
  • a transmission process 8000 (Transmission process) includes an encoding processing unit 8001 (coding), a scramble processing unit 8002 (Scrambling), a modulation map processing unit 8003 (Modulation mapper), a layer map processing unit 8004 (Layer mapper), and a transmission precoding process.
  • the encoding processing unit 8001 has a function of converting a transport block passed from an upper layer into a coded bit (coded bit) by error correction encoding processing.
  • error correction coding includes turbo code, LDPC (Low Density Parity Check) code, Polar code, convolutional code (convolutional code or Tail biting custom code), block code, RM (Reed Muller) code, and repetition code. included.
  • the encoding processing unit 8001 has a function of passing the encoded bits to the scramble processing unit 8002. Note that in one aspect of the present invention, the encoding process used for a transport block corresponding to TTI may be different from the encoding process used for a transport block corresponding to sTTI.
  • the scramble processing unit 8002 has a function of converting encoded bits into scramble bits by scramble processing.
  • the scramble bit is obtained by taking the sum modulo 2 for the coded bit and the scramble sequence.
  • the scramble sequence may be a sequence generated by a pseudo-random function based on a sequence (for example, C-RNTI) unique to the terminal device 1.
  • the modulation map unit 8003 has a function of converting scramble bits into modulation bits by modulation map processing.
  • the modulation bits are obtained by subjecting the scrambled bits to modulation processing such as QPSK (Quaderature Phase Shift Keying), 16QAM (Quaderature Amplitude Modulation), and 64QAM.
  • the layer map processing unit 8004 has a function of mapping modulation bits to each layer.
  • a layer is an index related to the multiplicity of physical layer signals in the spatial domain. That is, for example, when the number of layers is 1, it means that spatial multiplexing is not performed, and when the number of layers is 2, it means that two types of physical layer signals are spatially multiplexed.
  • the transmission precode processing unit 8005 has a function of generating transmission bits by performing transmission precode processing on the modulation bits mapped to each layer.
  • the transmission precoding process includes, for example, processing by DFT spreading (DFT spread, DFT spreading) or the like.
  • DFT spreading DFT spread, DFT spreading
  • the transmission precoding process does not have to be performed on the modulation bits.
  • processing based on a unit matrix may be performed on the modulation bits as transmission precoding processing.
  • transmission precoding processing may not be performed on modulation bits.
  • processing based on the unit matrix may be performed on the modulation bits as transmission precoding processing.
  • the precode processing unit 8006 has a function of generating transmission bits for each transmission antenna port by multiplying the transmission bits by a precoder.
  • the resource element map processing unit 8007 has a function of performing processing for mapping transmission bits for each transmission antenna port to resource elements.
  • the baseband signal generation processing unit 8008 has a function of converting transmission bits mapped to resource elements into baseband signals.
  • the process of converting the transmission bit into the baseband signal may include, for example, an inverse Fourier transform process (IFFT: Inverse Fast Fourier Transform), windowing (window processing), digital filtering (filtering processing), and the like.
  • IFFT Inverse Fast Fourier Transform
  • windowing window processing
  • filtering processing digital filtering
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • ⁇ Synchronization signal (SS) ⁇ Downlink Reference Signal (DL RS)
  • the synchronization signal is used for the terminal device 1 to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used for the terminal device 1 to perform channel correction of the downlink physical channel.
  • the downlink reference signal is used for the terminal device 1 to calculate downlink channel state information.
  • -CRS Cell-specific Reference Signal
  • URS UE-specific Reference Signal
  • sPDSCH Type 2 URS
  • DMRS Demodulation Reference Signal
  • EPDCCH Type 1 DMRS
  • DMRS Demodulation Reference Signal
  • sPDCCH Type 2 DMRS
  • URS related to PDSCH is also referred to as Type 1 URS.
  • URS related to sPDSCH is also referred to as Type 2 URS.
  • DMRS related to EPDCCH is also referred to as Type 1 DMRS.
  • DMRS related to sPDCCH is also referred to as Type 2 DMRS.
  • the physical channel may be demodulated based on a reference signal associated with the physical channel.
  • the physical channel being associated with the reference signal may be that the physical channel and the reference signal are transmitted from the same antenna port.
  • the CRS may be transmitted on one or a plurality of transmit antenna ports ⁇ 0, 1, 2, 3 ⁇ .
  • the URS may be transmitted on one or more of the transmit antenna ports ⁇ 7, 8, 9, 10, 11, 12, 13, 14 ⁇ .
  • Type 1 DMRS associated with EPDCCH may be transmitted on one or more of the transmit antenna ports ⁇ 107, 108, 109, 110 ⁇ .
  • Type 1 DMRS may be transmitted on one or more of the transmit antenna ports ⁇ 107, 108, 109, 110 ⁇ .
  • the URS signal sequence is a scramble identifier (N SCID ).
  • the terminal device 1 may determine the scramble identifier (N SCID ) and the URS signal sequence based on information on the scramble identifier transmitted from the base station device 3 by PDCCH or sPDCCH.
  • DMRS related to sPDCCH may be transmitted by one or a plurality of transmission antenna ports ⁇ 7, 8, 9, 10, 11, 12, 13, 14 ⁇ .
  • the DMRS associated with sPDCCH may be transmitted on one or more of the transmit antenna ports ⁇ 107, 108, 109, 110 ⁇ .
  • the PDCCH may be transmitted through the same transmission antenna port as the CRS.
  • the EPDCCH may be transmitted on the same transmit antenna port as the type 1 DMRS associated with the EPDCCH.
  • the PDSCH may be transmitted through the same transmission antenna port as CRS or the same transmission antenna port as URS.
  • the sPDSCH may be transmitted on the same transmission antenna port as the CRS or the same transmission antenna port as the URS.
  • the sPDCCH may be transmitted on the same transmit antenna port as the CRS or the same transmit antenna port as the type 2 DMRS related to the sPDCCH.
  • the transmit antenna port used for PDSCH transmission may be given based at least on higher layer parameters and / or downlink grants.
  • the transmit antenna port used for sPDSCH transmission may be given based at least on higher layer parameters and / or downlink grants.
  • the transmit antenna port used for EDPSCH transmission may be given based at least on higher layer parameters.
  • the transmit antenna port used for sPDSCH transmission may be given based at least on higher layer parameters.
  • the antenna port used for sPDSCH transmission may be given based on subframe settings.
  • an antenna port used for sPDSCH transmission in a certain subframe may be the same as an antenna port of type 2 URS when the subframe is set as an MBSFN (Multicast-broadcast single-frequency network) subframe.
  • MBSFN Multicast-broadcast single-frequency network
  • an antenna port used for sPDSCH transmission in a certain subframe may be the same as the CRS antenna port when the subframe is not set as an MBSFN subframe.
  • the antenna port used for sPDCCH transmission may be given based on subframe settings.
  • an antenna port used for sPDCCH transmission in a certain subframe may be the same as an antenna port of type 2 DMRS when the subframe is set to an MBSFN (Multicast-broadcast single-frequency network) subframe.
  • MBSFN Multicast-broadcast single-frequency network
  • an antenna port used for sPDCCH transmission in a certain subframe may be the same as the CRS antenna port when the subframe is not set as an MBSFN subframe.
  • the transmission antenna port may have a virtual antenna configuration.
  • One transmission antenna port may be constituted by a single antenna or may be constituted by a plurality of antennas.
  • the third transmission antenna port and the fourth transmission antenna port being the same may mean that the third transmission antenna port is demodulated based on the fourth transmission antenna port. That is, the difference between the third transmission antenna port and the fourth transmission antenna port may be that the third transmission antenna port is not demodulated based on the fourth transmission antenna port.
  • the fact that the third transmission antenna port is demodulated based on the fourth transmission antenna port means that the fourth transmission antenna port is demodulated based on the channel estimated by the fourth transmission antenna port. Good.
  • the same transmission antenna port may be synonymous with the same antenna port number. Further, the same transmission antenna port may be synonymous with the same index value corresponding to the antenna port number.
  • FIG. 2 is a diagram illustrating a schematic configuration of a radio frame according to the present embodiment.
  • Each radio frame is 10 ms long.
  • the horizontal axis is a time axis.
  • Each radio frame is composed of 10 subframes.
  • Each subframe is 1 ms long and is defined by two consecutive slots.
  • Each of the slots is 0.5 ms long. That is, 10 subframes can be used in each 10 ms interval.
  • the subframe is TTI (also referred to as Transmission Time Interval).
  • TTI also referred to as Transmission Time Interval
  • FIG. 3 is a diagram illustrating a schematic configuration of a downlink slot in the present embodiment.
  • the structure of the downlink slot in one cell is shown.
  • the horizontal axis is a time axis
  • the vertical axis is a frequency axis.
  • l is an OFDM symbol number / index
  • k is a subcarrier number / index.
  • a physical signal or physical channel transmitted in each slot is represented by a resource grid.
  • the resource grid is defined by a plurality of subcarriers and a plurality of OFDM symbols.
  • Each element in the resource grid is referred to as a resource element.
  • a resource element is represented by a subcarrier number / index k and an OFDM symbol number / index l.
  • N DL symb indicates the number of OFDM symbols included in one downlink slot.
  • N DL symb is 7 for normal CP (normal cyclic prefix) in the uplink.
  • N DL symb is 6 for extended CP in the downlink.
  • N DL RB is a downlink bandwidth setting for the serving cell, expressed as a multiple of N RB sc .
  • N RB sc is a (physical) resource block size in the frequency domain expressed by the number of subcarriers.
  • the subcarrier interval Df may be 15 kHz and N RB sc may be 12. That is, N RB sc may be 180 kHz.
  • the subcarrier spacing Df may be different for each channel and / or for each TTI / sTTI.
  • a resource block is used to represent a mapping of physical channels to resource elements.
  • virtual resource blocks and physical resource blocks are defined.
  • a physical channel is first mapped to a virtual resource block. Thereafter, the virtual resource block is mapped to the physical resource block.
  • One physical resource block is defined by N DL symb consecutive OFDM symbols in the time domain and N RB sc consecutive subcarriers in the frequency domain. Therefore, one physical resource block is composed of (N DL symb ⁇ N RB sc ) resource elements.
  • One physical resource block corresponds to one slot in the time domain. Physical resource blocks are numbered (0, 1,..., N DL RB ⁇ 1) in order from the lowest frequency in the frequency domain.
  • FIG. 4 is a diagram illustrating an example of TTI and sTTI in the present embodiment.
  • the TTI may be composed of 2 ⁇ N DL symb OFDM symbols.
  • the number of OFDM symbols constituting the sTTI is any one of ⁇ 2, 3, 4, 7 ⁇ .
  • a TTI / sTTI composed of X OFDM symbols is also referred to as an X symbol TTI.
  • FIG. 5 is a diagram showing an example of physical channel assignment in the downlink of this embodiment.
  • PDCCH 500 includes one or a plurality of OFDM symbols from the top of the subframe (PDCCH length 513) and is transmitted using a bandwidth equal to the cell bandwidth.
  • EPDCCH 501 includes OFDM symbols obtained by removing PDCCH 500 from the entire subframe (EPDCCH length 526), and is transmitted using a part of the cell bandwidth (EPDCCH bandwidth 511).
  • PDSCH 502 includes an OFDM symbol obtained by removing PDCCH 500 from the entire subframe, and is transmitted using a part of the cell bandwidth (a bandwidth obtained by excluding EPDCCH bandwidth 511 and sTTI bandwidth 512 from the cell bandwidth). Is done.
  • sPDCCHs 503, 505, 507, and 509 include a portion of OFDM symbols (sPDCCH lengths 514, 516, 518, and 520) excluding PDCCH 500 from the entire subframe, and are transmitted using sTTI bandwidth 512. Also good.
  • sPDSCHs 504, 506, 508, and 510 include a portion of the OFDM symbol (sPDSCH lengths 515, 517, 519, and 521) excluding PDCCH 500 from the entire subframe, and are transmitted using sTTI bandwidth 512. Also good.
  • the sPDCCHs 503, 505, 507, and 509 and / or the sPDSCHs 504, 506, 508, and 510 may be transmitted using at least one (part) of the bandwidth of the cell.
  • STTI length 522 includes sPDCCH length 514 and sPDSCH length 515.
  • the sTTI length 523 includes the sPDCCH length 516 and the sPDSCH length 517.
  • the sTTI length 524 includes the sPDCCH length 518 and the sPDSCH length 519.
  • the sTTI length 525 includes the sPDCCH length 520 and the sPDSCH length 521.
  • the sTTI lengths 522 to 525 may be common values within the subframe.
  • the sTTI lengths 522 to 525 may be different within a subframe.
  • sPDCCHs 503, 505, 507, and 509 may be sPDSCHs.
  • the first sDCI (First DCI, Slow DCI, First DCI, Slow DCI, the first DCI, etc.) may include sTTI setting information (for example, information on the sTTI bandwidth 512, sTTI lengths 522, 523). 524, 525). That is, the first sDCI does not need to include the allocation information of the sPDSCH to the terminal device 1, and the sTTI bandwidth 512 in which the sPDSCH is expected to be allocated for one or more terminal devices 1. Information may be included.
  • the first sDCI may be transmitted using any of the PDCCH 500 and the sPDCCHs 503, 505, 507, and 509.
  • a CRC (Cyclic Redundancy Check) parity bit added to the first sDCI may be scrambled with respect to the terminal device 1 based on an individual RNTI (Radio Network Temporary Identifier) (for example, C-RNTI).
  • the CRC parity bit added to the first sDCI may be scrambled based on a common RNTI for a plurality of terminal devices 1 (for example, G-RNTI (Group-RNTI), TPC-RNTI, etc.).
  • the terminal device 1 may determine the sTTI bandwidth based on the sTTI setting information included in the first sDCI.
  • the terminal device 1 monitors the sPDCCH including the second sDCI and the PDCCH including the second sDCI based on the setting information of the sTTI included in the first sDCI. Good.
  • the second sDCI (Second DCI, Fast Fast DCI, Second Second DCI, Fast Fast DCI, second DCI, etc.) may include sPDSCH setting information allocated to the terminal device 1 (for example, MCS, RV, NDI, etc.).
  • the second sDCI may include sPDSCH allocation information of the terminal device 1.
  • the second sDCI may be transmitted using any of PDCCH 500 and sPDCCHs 503, 505, 507, and 509.
  • the CRC parity bit added to the second sDCI may be scrambled with respect to the terminal device 1 based on an individual RNTI (Radio Network Temporary Identifier).
  • RNTI Radio Network Temporary Identifier
  • the terminal device 1 When the terminal device 1 detects the second sDCI, the terminal device 1 is assigned to the terminal device 1 based on the sTTI setting information included in the first sDCI and / or the sPDSCH assignment information included in the second sDCI. SPDSCH region to be determined may be determined, and sPDSCH reception processing may be performed.
  • the third sDCI may include sPDSCH setting information assigned to the terminal device 1. Further, the third sDCI may include sPDSCH allocation information of the terminal device 1.
  • the third sDCI may be transmitted using any of PDCCH 500 and sPDCCHs 503, 505, 507, and 509.
  • the CRC parity bit added to the third sDCI may be scrambled with respect to the terminal device 1 based on individual RNTI (Radio Network Temporary Identifier).
  • the terminal device 1 When the terminal device 1 detects the third sDCI, the terminal device 1 is assigned to the terminal device 1 based on the sTTI setting information included in the third sDCI and / or the sPDSCH assignment information included in the third sDCI. SPDSCH region to be determined may be determined, and sPDSCH reception processing may be performed.
  • the first physical channel may be demodulated based on the first reference signal and / or the second reference signal.
  • the second physical channel may be demodulated based on the first reference signal and / or the second reference signal.
  • FIG. 9 is a flowchart showing an example of the operation of the terminal device 1 that receives the first physical channel and the second physical channel.
  • the terminal device 1 performs the operation 1 or the operation 2 based on the condition Y.
  • the terminal device 1 performs the operation 1 when the condition Y is satisfied, and performs the operation 2 when the condition Y is not satisfied.
  • the condition Y is that at least one (partial) element is the same between the first physical channel and the second physical channel.
  • Element Y 1 Transmit antenna port corresponding to the physical channel
  • Element Y 2 Number of physical channel layers
  • Element Y 3 Number of transport blocks transmitted on the physical channel
  • Element Y 4 sTTI corresponding to the physical channel
  • Length / element Y 5 subframe including a physical channel / element Y 6 : physical parameter (numerology) of the physical channel
  • Element Y 3 may be the number of codewords.
  • the element Y 4 may be sTTI lengths 522, 523, 524, and 525, sPDCCH lengths 514, 516, 518, and 520, or sPDSCH lengths 515, 517, 519, and 521. .
  • physical parameters for example, be a parameter related to the signal waveform of the physical channel.
  • the parameter related to the signal waveform may be the number of symbols applied to the physical channel, the signal waveform (waveform), the subcarrier interval, the CP length, the sample period, and the like.
  • Operation 1 is that the physical characteristics are the same (assumed) between the first physical channel and the second physical channel, and operation 2 is between the first physical channel and the second physical channel.
  • the physical characteristics are different (assumed).
  • Physical features include, for example, precoder, received power (received power value, received power density, received intensity, etc.), transmission power (transmitted power value, transmitted power density, transmitted intensity, etc.), timing advance (TA: Timing advance) , Arrival angle (AoA: Angle of Arival), Doppler shift, delay spread (or maximum delay time, etc.), delay spread (delay spread, instantaneous delay spread, instantaneous delay spread, etc.), at least QCL (Quasi Co-location) There may be one.
  • the transmission power may be defined by EPRE (Energy Per Resource Element).
  • EPRE Evolution Per Resource Element
  • the EPRE of the downlink physical channel in the OFDM symbol including the CRS may be different from the EPRE of the downlink physical channel in the OFDM symbol not including the CRS.
  • the transmission power is the same between the first physical channel and the second physical channel.
  • the EPREs of the two physical channels are the same, and (ii) the EPRE of the first physical channel in the OFDM symbol that does not include the CRS and the EPRE of the second physical channel in the OFDM symbol that does not include the CRS. Means the same.
  • the transmission antenna ports corresponding to the first physical channel and the second physical channel are the same, the physical characteristics of the first physical channel and the second physical channel are the same (even if assumed) Good).
  • the transmission antenna ports corresponding to the first physical channel and the second physical channel are different, the physical characteristics of the first physical channel and the second physical channel are different (may be assumed).
  • the transmission antenna port corresponding to the first physical channel is different from the transmission antenna port corresponding to the second physical channel
  • the transmission antenna port and the second physical channel corresponding to the first physical channel are different.
  • the physical characteristics of the first physical channel and the second physical channel are the same (may be assumed) when the corresponding transmit antenna ports are in a particular combination.
  • the number of layers of the first physical channel and the second physical channel is the same, the physical characteristics of the first physical channel and the second physical channel are the same (may be assumed).
  • the number of transport blocks transmitted on the first physical channel may be different from the number of transport blocks transmitted on the second physical channel.
  • the physical characteristics of the first physical channel and the second physical channel are different (may be assumed).
  • the number of transport blocks transmitted on the first physical channel and the second physical channel is the same, the physical characteristics of the first physical channel and the second physical channel are the same (assuming that May be good).
  • the transport block transmitted on the first physical channel may be different from the transport block transmitted on the second physical channel.
  • the number of layers of the first physical channel may be different from the number of layers of the second physical channel.
  • the physical characteristics of the first physical channel and the second physical channel are different (may be assumed).
  • the physical characteristics of the first physical channel and the second physical channel are the same (even if it is assumed that Good).
  • the physical characteristics of the first physical channel and the second physical channel are the same (may be assumed).
  • the physical characteristics of the first physical channel and the second physical channel are the same ( May be assumed).
  • the physical characteristics of the first physical channel and the second physical channel are different (even if it is assumed). Good).
  • the physical characteristics of the first physical channel and the second physical channel are different (may be assumed).
  • the physical characteristics of the first physical channel and the second physical channel are the same (may be assumed).
  • the first physical channel and the second physical channel may be sPDCCH.
  • the first physical channel and the second physical channel may be sPDSCH.
  • One of the first physical channel and the second physical channel may be sPDCCH, and the other may be sPDSCH.
  • FIG. 10 is a table showing an example of operation classification of the terminal device 1.
  • Class 1 indicates the type of reference signal used to demodulate the sPDSCH.
  • the classification 2 indicates a notification method for at least one (partial) of the number of sPDSCH layers, the transmission antenna port corresponding to the sPDSCH, and the scramble identifier corresponding to the URS.
  • Class 3 indicates a precoder applied to the sPDSCH.
  • Class 4 indicates the type of reference signal used to demodulate the sPDCCH.
  • Class 5 indicates a precoder applied to sPDCCH.
  • Category 6 shows the relationship of physical features between sPDSCHs.
  • Category 7 shows the physical feature relationship between sPDSCH and sPDCCH.
  • Append 1 indicates that the first sDCI includes a set (or table) of parameters related to the number of TB candidates (eg, 1 or 2) included in the sPDSCH.
  • Example 1 the reference signal used to demodulate sPDSCH is type 2 URS, and (Category 2) at least one of the number of layers of sPDSCH or the transmission antenna port to which sPDSCH corresponds or the scramble identifier to which URS corresponds Is notified by the second sDCI, (Category 3) is not notified of information related to the precoder applied to the sPDSCH, (Category 4) the reference signal used for demodulating the sPDCCH is type 2 DMRS, (Category 5) It is an example of an operation
  • classification 6 of Example 1 when at least one of elements of the element Y 1 and element Y 2 between sPDSCH are identical, may be assumed to physical characteristics between sPDSCH are identical (assuming 1 1). In addition, in the classification 6 of Example 1, when at least one of the elements Y 1 and Y 2 between the sPDSCHs is different, it may be assumed that the physical characteristics between the sPDSCHs are different (Assumption 1-2). .
  • sPDCCH when at least one of the elements Y 1 and element Y 2 between the SPDCCH and sPDSCH are identical, and the SPDCCH is detected in USS (UE-specific Search Space) , sPDCCH It may be assumed that the physical characteristics between sPDSCH and sPDSCH are the same (Assumption 4-1). Further, if the grade 7 of Example 1, when at least one of elements of the element Y 1 and element Y 2 between the SPDCCH and sPDSCH are different, and the SPDCCH is detected in USS (UE-specific Search Space) , sPDCCH It may be assumed that the physical characteristics between sPDSCH and sPDSCH are different (Assumption 4-2). Here, Assumption 1-1 and Assumption 1-2 are collectively referred to as Assumption 1. Assumption 4-1 and Assumption 4-2 are also collectively referred to as Assumption 4.
  • Example 2 (Category 1) the reference signal used for demodulating sPDSCH is type 2 URS, and (Category 2) at least one of the number of layers of sPDSCH or the transmission antenna port corresponding to sPDSCH or the scramble identifier corresponding to URS ( (Partial) is notified by the second sDCI, (classification 3) information on the precoder applied to the sPDSCH is not notified, (classification 4) the reference signal used for demodulation of the sPDCCH is CRS, and (classification 5) It is an operation example when the information regarding the precoder applied to sPDCCH is notified by 1st sDCI, or not notified. In classification 6 of example 2, assumption 1 may be applied to the physical characteristics during sPDSCH. Moreover, in classification 7 of Example 2, in any case, it may be assumed that the physical characteristics between sPDSCH and sPDCCH are different (Assumption 5).
  • Example 3 the reference signal used for demodulating sPDSCH is type 2 URS, and (Category 2) at least one of the number of layers of sPDSCH or the transmission antenna port to which sPDSCH corresponds or the scramble identifier to which URS corresponds ( (Partially) is notified by the first sDCI and / or the second sDCI, (Class 3) is not notified of information related to the precoder applied to the sPDSCH, and (Category 4) is a reference signal used for demodulation of the sPDCCH Is a type 2 DMRS, and (Class 5) is an example of an operation when information on a precoder applied to sPDCCH is not notified.
  • a set (or table) of parameters related to the number of TB candidates (for example, 1 or 2) included in the sPDSCH may be included in the first sDCI. That is, the first sDCI includes information related to a set of parameters applicable to the transmitted sPDSCH in a range (for example, one subframe) to which the sTTI setting information notified by the first sDCI is applied. May be included.
  • FIG. 11 is a diagram illustrating an example of a set of parameters applicable to the sPDSCH.
  • a set of parameters applicable to sPDSCH may be set in the terminal device 1 in advance, or may be notified from the base station device 3 by an upper layer signal.
  • the terminal device 1 transmits the transmission corresponding to the number of transport blocks included in the physical channel and the physical channel based on the information related to the number of transport blocks included in the physical channel and the number of layers of the physical channel notified by the second sDCI. You may acquire at least 1 (part) of the information of the antenna port, the scramble identifier corresponding to URS, and the number of physical channel layers.
  • Category 6 of Example 3 if at least one (part) of element Y 1 , element Y 2 , element Y 3 between sPDSCHs is the same, it is assumed that the physical characteristics between sPDSCHs are the same. (Assumption 2-1).
  • Example 4 (Category 1) the reference signal used for demodulation of sPDSCH is type 2 URS, and (Category 2) the number of layers of sPDSCH or the transmission antenna port corresponding to sPDSCH or the scramble identifier corresponding to URS ( A part) is reported by the first sDCI (set of parameters applicable to sPDSCH) and / or the second sDCI, and (class 3) information about the precoder applied to sPDSCH is not reported (classification) 4)
  • This is an example of operation when the reference signal used for demodulating sPDCCH is CRS, and (Category 5) information about the precoder applied to sPDCCH is notified by the first sDCI or not notified.
  • assumption 2 may be applied to the physical characteristics during sPDSCH.
  • assumption 5 may be applied to a physical feature between sPDSCH and sPDCCH.
  • Example 5 (Category 1) the reference signal used for demodulation of sPDSCH is CRS, and (Category 2) the number of layers of sPDSCH or the transmission antenna port corresponding to sPDSCH or at least one scramble identifier corresponding to URS (one Part) is notified by the second sDCI, (classification 3) information on the precoder applied to the sPDSCH is notified by the second sDCI, and (classification 4) the reference signal used for demodulation of the sPDCCH is type 2 DMRS, (Category 5) This is an example of operation when information related to the precoder applied to the sPDCCH is not notified.
  • information on the sPDSCH precoder may be notified by the second sDCI (Assumption 3-1). Further, in the classification 6 of Example 5, it is notified information about precoder only for a sPDSCH is, when the element Y 5 between sPDSCH the same, be assumed that the physical characteristics between sPDSCH are identical Good (Assumption 3-2). Further, in the classification 6 of Example 5, is notified information about precoder only for a sPDSCH is, when the element Y 5 between sPDSCH different, may be assumed to physical characteristics between sPDSCH different ( Assumption 3-3).
  • assumption 1 may be applied to the physical characteristics between sPDSCH and sPDCCH.
  • Assumption 3-1, Assumption 3-2 and Assumption 3-3 are collectively referred to as Assumption 3.
  • the assumption of terminal apparatus 1 including assumption 3 being applied in the first subframe type and assumption 1 being applied in the second subframe type is also referred to as assumption 7.
  • the assumption of the terminal device 1 including that the assumption 4 is applied is also referred to as an assumption 9.
  • the first subframe type may be a subframe that is not an MBSFN subframe.
  • the second subframe type may be an MBSFN subframe.
  • the base station apparatus 3 may broadcast information indicating the MBSFN subframe.
  • the terminal device 1 may receive information indicating the MBSFN subframe from the base station device 3. *
  • the reference signal for sPDSCH and / or sPDCCH according to one embodiment of the present invention is set to CRS because the reference signal used for demodulation of sPDSCH and / or sPDCCH in the first subframe type is It may mean that it is set to CRS. That is, the sPDSCH and / or the reference signal used for demodulating the sPDCCH according to one aspect of the present invention is set to CRS in the second subframe type including other than the first subframe type. And / or a reference signal used for demodulation of sPDCCH may not be set in CRS. That is, in Example 5 to Example 8, in the case of the first subframe type, the reference signal used for demodulation of sPDSCH may be type 2 URS, and the reference signal used for demodulation of sPDCCH may be type 2 DMRS. *
  • (class 1) the reference signal used for demodulation of sPDSCH is CRS
  • (class 2) the number of layers of sPDSCH or at least one scramble identifier corresponding to the transmit antenna port or URS corresponding to sPDSCH (one Part) is notified by the second sDCI
  • (classification 3) information about the precoder applied to the sPDSCH is notified by the second sDCI
  • (classification 4) the reference signal used for demodulation of the sPDCCH is CRS
  • Classification 5 An example of operation when information about the precoder applied to the sPDCCH is notified or not notified by the first sDCI.
  • assumption 7 may be applied to the physical features during sPDSCH.
  • the assumption 4 may be applied to the physical characteristics between the sPDSCH and the sPDCCH.
  • the assumption of terminal apparatus 1 including assumption 6 being applied in the first subframe type and assumption 4 being applied in the second subframe type is also referred to as assumption 10.
  • the reference signal used for (Category 1) sPDSCH demodulation is CRS, and (Category 2) the number of sPDSCH layers, the transmission antenna port to which sPDSCH corresponds, or the scramble identifier to which URS corresponds (one Part) is notified by the first sDCI (set of parameters applicable to the sPDSCH) and / or the second sDCI, and (Category 3) information about the precoder applied to the sPDSCH is transmitted to the first sDCI (sPDSCH).
  • sPDCCH demodulation is type 2 DMRS and (Category 5) is applied to sPDCCH It is an operation example when no notification is made.
  • Assumption 3 may be applied to the physical characteristics during sPDSCH.
  • assumption 2 may be applied to the physical characteristics between sPDSCHs.
  • assumption 9 may be applied to physical characteristics between sPDSCH and sPDCCH.
  • the assumption of the terminal device 1 including the assumption 3 applied to the first subframe type and the assumption 2 applied to the second subframe type is also referred to as an assumption 8.
  • (class 1) the reference signal used for demodulating sPDSCH is CRS
  • (class 2) the number of layers of sPDSCH or the transmission antenna port to which sPDSCH corresponds or the scramble identifier to which URS corresponds (one Part) is notified by the first sDCI (set of parameters applicable to the sPDSCH) and / or the second sDCI, and (Category 3) information about the precoder applied to the sPDSCH is transmitted to the first sDCI (sPDSCH).
  • a set of applicable parameters) and / or the second sDCI, and (Category 4) the reference signal used for demodulation of sPDCCH is CRS, and (Category 5) information about the precoder applied to sPDCCH is When notified by the first sDCI or when not notified It is an example of operation.
  • assumption 8 may be applied to the physical features during sPDSCH.
  • assumption 10 may be applied to the physical feature between sPDSCH and sPDCCH.
  • the reference signal used for demodulation of sPDSCH is type 2 URS.
  • Category 2 At least one (partial) of the number of layers of sPDSCH or the transmission antenna port to which sPDSCH corresponds or the scramble identifier to which URS corresponds
  • the operation of the terminal device 1 may be based on Example 1.
  • the reference signal used for demodulation of sPDSCH is type 2 URS.
  • Category 2 At least one (partial) of the number of layers of sPDSCH or the transmission antenna port to which sPDSCH corresponds or the scramble identifier to which URS corresponds
  • the operation of the terminal apparatus 1 may be based on Example 2.
  • the reference signal used for demodulating sPDSCH is CRS.
  • At least one (partial) of the number of layers of sPDSCH or the transmit antenna port or URS to which sPDSCH corresponds is the first. Operation of the terminal device 1 when notified by the third sDCI, (classification 3) the precoder applied to the sPDSCH is notified by the third sDCI, and (classification 4) the reference signal used for demodulation of the sPDCCH is type 2 DMRS May be based on Example 5.
  • the reference signal used for demodulation of sPDSCH is CRS.
  • Category 2 The number of layers of sPDSCH or the transmission antenna port or URS corresponding to sPDSCH is notified by the third sDCI, ( Classification 3)
  • the operation of terminal apparatus 1 may be based on Example 6.
  • the first sDCI, the second sDCI, and the third sDCI may include at least one physical parameter.
  • the terminal device 1 is configured to perform physical communication between the first physical channel and the second physical channel based on a physical parameter acquired based on at least one of the first sDCI, the second sDCI, and the third sDCI. A feature relationship may be assumed.
  • the present embodiment may be applied to the base station device 3.
  • the first to eighth examples may be applied to the base station device 3.
  • the base station apparatus 3 when the terminal apparatus 1 assumes that the physical characteristics between physical channels are the same, the base station apparatus 3 must transmit a physical channel having the same physical characteristics.
  • the base station device 3 may transmit physical channels having different physical characteristics, or physical channels having the same physical characteristics. May be sent.
  • FIG. 6 is a schematic block diagram showing the configuration of the terminal device 1 in the present embodiment.
  • the terminal device 1 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, and a transmission / reception antenna 109.
  • the upper layer processing unit 101 includes a radio resource control unit 1011 and a scheduling unit 1013.
  • the reception unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, a radio reception unit 1057, and a channel measurement unit 1059.
  • the transmission unit 107 includes an encoding unit 1071, a PUSCH generation unit 1073, a PUCCH generation unit 1075, a multiplexing unit 1077, a radio transmission unit 1079, and an uplink reference signal generation unit 10711.
  • the upper layer processing unit 101 outputs uplink data generated by a user operation or the like to the transmission unit 107.
  • the upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and radio resource control. Process the (Radio Resource Control: RRC) layer. Further, upper layer processing section 101 generates control information for controlling receiving section 105 and transmitting section 107 based on downlink control information received by PDCCH, and outputs the control information to control section 103.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the radio resource control unit 1011 included in the upper layer processing unit 101 manages various setting information of the own device. For example, the radio resource control unit 1011 manages the set serving cell. Also, the radio resource control unit 1011 generates information arranged in each uplink channel and outputs the information to the transmission unit 107. When the received downlink data is successfully decoded, the radio resource control unit 1011 generates an ACK and outputs an ACK to the transmitting unit 107. When the received downlink data fails to be decoded, the radio resource control unit 1011 returns NACK. And NACK is output to the transmission unit 107.
  • the scheduling unit 1013 included in the higher layer processing unit 101 stores the downlink control information received via the receiving unit 105.
  • the scheduling unit 1013 controls the transmission unit 107 via the control unit 103 so as to transmit the PUSCH according to the received uplink grant in a subframe four times after the subframe that has received the uplink grant.
  • the scheduling unit 1013 controls the reception unit 105 via the control unit 103 so as to receive the PDSCH according to the received downlink grant in the subframe that has received the downlink grant.
  • the control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the higher layer processing unit 101. Control unit 103 outputs the generated control signal to receiving unit 105 and transmitting unit 107 to control receiving unit 105 and transmitting unit 107.
  • the receiving unit 105 separates, demodulates, and decodes the received signal received from the base station apparatus 3 via the transmission / reception antenna 109 according to the control signal input from the control unit 103, and sends the decoded information to the upper layer processing unit 101. Output.
  • the radio reception unit 1057 performs orthogonal demodulation on the downlink signal received via the transmission / reception antenna 109, and converts the orthogonally demodulated analog signal into a digital signal.
  • the wireless reception unit 1057 performs fast Fourier transform (FFT) on the digital signal to extract a frequency domain signal.
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 separates the extracted signal into a PDCCH, a PDSCH, and a downlink reference signal.
  • the demultiplexing unit 1055 outputs the separated downlink reference signal to the channel measuring unit 1059.
  • Demodulation section 1053 demodulates PDCCH and PDSCH with respect to modulation schemes such as QPSK, 16QAM (Quadrature Amplitude Modulation), 64QAM, and outputs the result to decoding section 1051.
  • modulation schemes such as QPSK, 16QAM (Quadrature Amplitude Modulation), 64QAM, and outputs the result to decoding section 1051.
  • the decoding unit 1051 decodes the downlink data and outputs the decoded downlink data to the higher layer processing unit 101.
  • Channel measurement section 1059 calculates an estimated value of the downlink propagation path from the downlink reference signal, and outputs the estimated value to demultiplexing section 1055.
  • the channel measurement unit 1059 calculates channel state information and outputs the channel state information to the upper layer processing unit 101.
  • the channel measurement unit 1059 may assume that the physical characteristics between the first physical channel and the second physical channel are the same based on the condition Y. Further, the channel measurement unit 1059 may assume that the physical characteristics between the first physical channel and the second physical channel are different based on the condition Y.
  • the terminal device 1 when it is assumed that the arrival angles between the first physical channel and the second physical channel are the same, the terminal device 1 performs angle estimation based on the first physical channel and the second physical channel. You may go. For example, the terminal device 1 may average the angle estimation values of the first physical channel and the second physical channel. For example, when it is assumed that the arrival angles between the first physical channel and the second physical channel are different, the terminal device 1 performs the first angle estimation based on the first physical channel, The second angle estimation may be performed based on the channels.
  • the terminal device 1 may estimate the Doppler shift (or Doppler shift, Doppler spread, Doppler spread, etc.) between the first physical channel and the second physical channel.
  • the Doppler shift may be estimated based on the physical channel and the second physical channel.
  • the terminal device 1 may average the Doppler shift estimation values of the first physical channel and the second physical channel.
  • the Doppler shift estimation value may be used for channel estimation (for example, two-dimensional MMSE (Minimum Mean Square Error)), and can improve the channel estimation value.
  • the terminal device 1 estimates the first Doppler shift based on the first physical channel
  • a second Doppler shift may be estimated based on the physical channel.
  • the terminal device 1 calculates the delay spread based on the first physical channel and the second physical channel. It may be estimated. For example, the terminal device 1 may average the Doppler shift estimation values of the first physical channel and the second physical channel. The Doppler shift estimated value may be used for channel estimation or the like, and can improve the channel estimated value.
  • the terminal device 1 estimates the first delay spread based on the first physical channel, A second delay spread may be estimated based on the physical channel.
  • the terminal device 1 performs the delay spread based on the first physical channel and the second physical channel. It may be estimated. For example, the terminal device 1 may average the delay spread estimation values of the first physical channel and the second physical channel. The delay spread estimation value may be used for estimating fading of a communication path between the terminal device 1 and the base station device 3. In other words, when it is assumed that the delay spread between the first physical channel and the second physical channel is the same, the terminal device 1 uses, for example, the frequency selectivity of the first physical channel and the second physical channel. Fading estimators can be averaged. When it is assumed that the delay spread between the first physical channel and the second physical channel is different, the terminal device 1 estimates the first delay spread based on the first physical channel, and the second delay The second delay spread may be estimated based on the physical channel.
  • the terminal device 1 sets the received power based on the first physical channel and the second physical channel. It may be estimated. For example, the terminal device 1 may average the delay spread estimation values of the first physical channel and the second physical channel. The received power estimation value estimated in the terminal device 1 may be used for channel estimation, setting of a power amplifier used for power adjustment of a received signal, a report to the base station device 3, and the like. Further, when it is assumed that the received power between the first physical channel and the second physical channel is different, the terminal device 1 estimates the first received power based on the first physical channel, The second received power may be estimated based on the physical channel.
  • the terminal device 1 when it is assumed that the precoders between the first physical channel and the second physical channel are the same, the terminal device 1 performs channel estimation based on the first physical channel and the second physical channel. May be. For example, the terminal device 1 may average the channel estimation values of the first physical channel and the second physical channel. When it is assumed that the precoders between the first physical channel and the second physical channel are different, the terminal device 1 estimates the first channel based on the first physical channel, and the second physical channel The second channel may be estimated based on
  • the terminal device 1 uses the first antenna. From this set, it may be assumed that the first physical channel and the second physical channel are being transmitted. For example, when it is not assumed that the first transmission antenna port for the first physical channel and the second transmission antenna port for the second physical channel are QCL, the terminal device 1 It may be assumed that the first physical channel is transmitted from the set of antennas and the second physical channel is transmitted from the second set of antennas. Here, it is assumed that the first transmission antenna port and the second transmission antenna port are QCL from the first physical channel and the second transmission antenna port transmitted from the first transmission antenna port. It may be envisaged that the second physical channel to be transmitted is transmitted from the same set of antennas (or physically).
  • the set of antennas may be composed of a plurality of antennas or a single antenna.
  • the terminal device 1 uses the estimated value related to the physical characteristics of the first physical channel and the estimated value related to the physical characteristics of the second physical channel. May be used for time interpolation (for example, linear interpolation, spline interpolation, MMSE interpolation, etc.).
  • the terminal device 1 determines that the assumption of the physical characteristics between the first physical channel and the second physical channel is based on the condition Y. It does not have to be. That is, when the frequency at which the first physical channel and the second physical channel are received is different, the terminal device 1 has different physical characteristics between the first physical channel and the second physical channel regardless of the condition Y.
  • the terminal device 1 determines the physical characteristics between the first physical channel and the second physical channel based on the condition Z. It may be assumed.
  • the condition Z may be that in any case, it is assumed that the physical characteristics of the first physical channel and the second physical channel are different.
  • the condition Z is applied to the first physical feature and may not be applied to the second physical feature.
  • the first physical feature may be a precoder
  • the second physical feature may be at least one (part) of a physical feature other than the precoder.
  • the transmission unit 107 generates an uplink reference signal according to the control signal input from the control unit 103, encodes and modulates uplink data and uplink control information input from the higher layer processing unit 101, and PUCCH,
  • the PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 3 via the transmission / reception antenna 109.
  • the encoding unit 1071 encodes the uplink control information and the uplink data input from the higher layer processing unit 101, and outputs the encoded bits to the PUSCH generation unit and / or the PUCCH generation unit.
  • the PUSCH generation unit 1073 generates a modulation symbol by modulating the encoded bits input from the encoding unit 1071, generates a PUSCH / sPUSCH signal by performing DFT on the modulation symbol, and also performs a PUSCH subjected to DFT. / SPUSCH signal is output to multiplexing section 1077.
  • PUCCH generation section 1075 generates a PUCCH / sPUCCH signal based on the encoded bits and / or SR input from encoding section 1071, and outputs the generated PUCCH / sPUCCH signal to multiplexing section 1077. .
  • the uplink reference signal generation unit 10711 generates an uplink reference signal and outputs the generated uplink reference signal to the multiplexing unit 1077.
  • the multiplexing unit 1075 receives the signal input from the PUSCH generation unit 1073 and / or the signal input from the PUCCH generation unit 1075 and / or the uplink reference signal generation unit 10711 according to the control signal input from the control unit 103.
  • the uplink reference signal input from is multiplexed to the uplink resource element for each transmission antenna port.
  • the radio transmission unit 1077 converts the multiplexed signal into an inverse fast Fourier transform (Inverse Fast Fourier Transform).
  • Transform: IFFT inverse fast Fourier transform
  • SC-FDMA modulation generate baseband digital signals
  • convert baseband digital signals to analog signals and generate in-phase and quadrature components of intermediate frequencies from analog signals
  • an extra frequency component for the intermediate frequency band is removed, an intermediate frequency signal is converted to a high frequency signal (up convert: up convert), an extra frequency component is removed, power amplification is performed, and the transmission / reception antenna 109 Output and send.
  • FIG. 7 is a schematic block diagram showing the configuration of the base station apparatus 3 in the present embodiment.
  • the base station apparatus 3 includes an upper layer processing unit 301, a control unit 303, a reception unit 305, a transmission unit 307, and a transmission / reception antenna 309.
  • the upper layer processing unit 301 includes a radio resource control unit 3011 and a scheduling unit 3013.
  • the reception unit 305 includes a data demodulation / decoding unit 3051, a control information demodulation / decoding unit 3053, a demultiplexing unit 3055, a wireless reception unit 3057, and a channel measurement unit 3059.
  • the transmission unit 307 includes an encoding unit 3071, a modulation unit 3073, a multiplexing unit 3075, a radio transmission unit 3077, and a downlink reference signal generation unit 3079.
  • the upper layer processing unit 301 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing. Further, upper layer processing section 301 generates control information for controlling receiving section 305 and transmitting section 307 and outputs the control information to control section 303.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource
  • the radio resource control unit 3011 included in the higher layer processing unit 301 generates downlink data, RRC signal, MAC CE (Control Element) arranged in the downlink PDSCH, or obtains it from the higher node, and the HARQ control unit 3013. Output to.
  • the radio resource control unit 3011 manages various setting information of each terminal device 1. For example, the radio resource control unit 3011 performs management of the serving cell set in the terminal device 1 and the like.
  • the scheduling unit 3013 included in the higher layer processing unit 301 manages PUSCH and PUCCH radio resources allocated to the terminal device 1.
  • the scheduling unit 3013 When the PUSCH radio resource is allocated to the terminal device 1, the scheduling unit 3013 generates an uplink grant indicating the allocation of the PUSCH radio resource, and outputs the generated uplink grant to the transmission unit 307.
  • the control unit 303 generates a control signal for controlling the reception unit 305 and the transmission unit 307 based on the control information from the higher layer processing unit 301.
  • the control unit 303 outputs the generated control signal to the reception unit 305 and the transmission unit 307 and controls the reception unit 305 and the transmission unit 307.
  • the receiving unit 305 separates, demodulates and decodes the received signal received from the terminal device 1 via the transmission / reception antenna 309 according to the control signal input from the control unit 303, and outputs the decoded information to the higher layer processing unit 301. .
  • the radio reception unit 3057 orthogonally demodulates the uplink signal received via the transmission / reception antenna 309, and converts the orthogonally demodulated analog signal into a digital signal.
  • the radio reception unit 3057 performs fast Fourier transform (FFT) on the digital signal, extracts a frequency domain signal, and outputs the signal to the demultiplexing unit 3055.
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 demultiplexes the signal input from the radio receiving unit 3057 into signals such as PUCCH, PUSCH, and uplink reference signal. Note that this separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 3011 by the base station device 3 and notified to each terminal device 1.
  • the demultiplexing unit 3055 compensates for the propagation paths of the PUCCH and the PUSCH from the propagation path estimation value input from the channel measurement unit 3059. Further, the demultiplexing unit 3055 outputs the separated uplink reference signal to the channel measurement unit 3059.
  • the demultiplexing unit 3055 acquires the modulation symbol of the uplink data and the modulation symbol of the uplink control information (HARQ-ACK) from the separated PUCCH and PUSCH signals.
  • the demultiplexing unit 3055 outputs the uplink data modulation symbol acquired from the PUSCH signal to the data demodulation / decoding unit 3051.
  • the demultiplexing unit 3055 outputs the modulation symbol of the uplink control information (HARQ-ACK) acquired from the PUCCH signal or the PUSCH signal to the control information demodulation / decoding unit 3053.
  • the channel measurement unit 3059 measures an estimated value of the propagation path, channel quality, and the like from the uplink reference signal input from the demultiplexing unit 3055, and outputs it to the demultiplexing unit 3055 and the upper layer processing unit 301.
  • the data demodulation / decoding unit 3051 decodes the uplink data from the modulation symbol of the uplink data input from the demultiplexing unit 3055.
  • the data demodulation / decoding unit 3051 outputs the decoded uplink data to the higher layer processing unit 301.
  • Control information demodulation / decoding section 3053 decodes HARQ-ACK from the modulation symbol of HARQ-ACK input from demultiplexing section 3055. Control information demodulation / decoding section 3053 outputs the decoded HARQ-ACK to higher layer processing section 301.
  • the transmission unit 307 generates a downlink reference signal according to the control signal input from the control unit 303, encodes and modulates the downlink control information and downlink data input from the higher layer processing unit 301, and performs PDCCH , The PDSCH, and the downlink reference signal are multiplexed, and the signal is transmitted to the terminal device 1 via the transmission / reception antenna 309.
  • the encoding unit 3071 encodes downlink control information and downlink data input from the higher layer processing unit 301.
  • the modulation unit 3073 modulates the coded bits input from the coding unit 3071 using a modulation scheme such as BPSK, QPSK, 16QAM, or 64QAM. Modulation section 3073 may apply precoding to the modulation symbols. Note that precoding may be multiplication (applied) by a precoder. The first precoder applied to the first physical channel to which the first modulation symbol is transmitted is the same as the second precoder applied to the second physical channel to which the second modulation symbol is transmitted. If this is assumed by the terminal device 1, the modulation unit 3073 must apply the same precoder to the first modulation symbol and the second modulation symbol.
  • the first precoder applied to the first physical channel to which the first modulation symbol is transmitted is different from the second precoder applied to the second physical channel to which the second modulation symbol is transmitted.
  • the modulation unit 3073 may apply the same precoder to the first modulation symbol and the second modulation symbol, or the first modulation symbol and the second modulation symbol. Different precoders may be applied to.
  • the downlink reference signal generation unit 3079 generates a downlink reference signal.
  • Multiplexer 3075 multiplexes the modulation symbols and downlink reference signals for each channel to generate transmission symbols.
  • the multiplexing unit 3075 may apply precoding to the transmission symbols.
  • the precoding applied to the transmission symbol by the multiplexing unit 3075 may be applied to the downlink reference signal and / or the modulation symbol. Also, precoding applied to the downlink reference signal and precoding applied to the modulation symbol may be the same or different.
  • the first precoder applied to the first physical channel in which the first transmission symbol is transmitted is the same as the second precoder applied to the second physical channel in which the second transmission symbol is transmitted. If this is assumed by the terminal device 1, the multiplexing unit 3075 must apply the same precoder to the first transmission symbol and the second transmission symbol.
  • the first precoder applied to the first physical channel to which the first transmission symbol is transmitted is different from the second precoder applied to the second physical channel to which the second transmission symbol is transmitted.
  • the multiplexing unit 3075 may apply the same precoder to the first transmission symbol and the second transmission symbol, or the first transmission symbol and the second transmission symbol. Different precoders may be applied to.
  • the wireless transmission unit 3077 generates a time symbol by performing inverse fast Fourier transform (Inverse Fourier Transform: IFFT) on the multiplexed transmission symbols and the like.
  • Radio transmission section 3077 performs modulation of the OFDM method on the time symbol, generates a baseband digital signal, converts the baseband digital signal to an analog signal, and converts the in-phase component and quadrature component of the intermediate frequency from the analog signal. Is generated, the extra frequency components for the intermediate frequency band are removed, the intermediate frequency signal is converted to a high frequency signal (up-convert: up convert), the extra frequency components are removed, and the carrier signal (Carrier signal, Carrier, RF signal, etc.) are generated.
  • IFFT inverse fast Fourier transform
  • the wireless transmission unit 3077 amplifies the power of the carrier wave signal, and outputs to the transmission / reception antenna 309 for transmission.
  • the terminal device 1 assumes that the first physical parameter for IFFT applied to the first time symbol and the second physical parameter for IFFT applied to the second time symbol are the same. In this case, the wireless transmission unit 3077 must make the first physical parameter and the second physical parameter the same.
  • the wireless transmission unit 3077 may make the first physical parameter and the second physical parameter the same or different.
  • the terminal device 1 It is the terminal device 1 that the first received power of the first physical channel to which the first carrier signal is transmitted and the second received power of the second physical channel to which the second carrier signal is transmitted are the same. , The wireless transmission unit 3077 must make the first power amplification value and the second power amplification value the same. The terminal device 1 assumes that the first received power of the first physical channel in which the first carrier signal is transmitted is different from the second received power of the second physical channel in which the second carrier signal is transmitted. In this case, the wireless transmission unit 3077 may make the first power amplification value and the second power amplification value the same or different.
  • Each of the units included in the terminal device 1 and the base station device 3 may be configured as a circuit.
  • a first aspect of the present embodiment is a terminal device 1, which is a first physical channel, a first reference signal related to the first physical channel, a second physical channel, and the A receiver for receiving a second reference signal related to a second physical channel; and demodulating the first physical channel based on the first reference signal and / or the second reference signal; A demodulator that demodulates the second physical channel based on the first reference signal and / or the second reference signal, wherein the demodulator includes the first physical channel, the first physical channel, Whether to assume that the physical characteristics of two physical channels, the first reference signal, and the second reference signal are the same, a part of the following first to third conditions: Or, based on the whole.
  • the physical feature includes transmission power.
  • the physical feature includes a precoder.
  • the first physical channel and the first reference signal are mapped to a first band in a first set of OFDM symbols
  • the second The physical channel and the second reference signal are mapped to a second band in a second set of OFDM symbols
  • the demodulator is the same precoder in the first band and the second band. Is not assumed to apply.
  • the second aspect of the present embodiment is the base station device 3, which is related to the first physical channel, the modulation unit that generates the second physical channel, and the first physical channel.
  • a downlink reference signal generation unit configured to generate a first reference signal and a second reference signal related to the second physical channel; the first physical channel; the first reference signal; Whether to apply the same transmission power to the first physical channel and the second physical channel, comprising a physical channel and a wireless transmission unit that transmits the second reference signal, The determination is made based on a part or all of the following first to third conditions.
  • a third aspect of the present embodiment is a communication method for the terminal device 1 and relates to the first physical channel and the first physical channel.
  • the physical feature includes transmission power.
  • the physical feature includes a precoder.
  • the first physical channel and the first reference signal are mapped to a first band in a first set of OFDM symbols;
  • the second physical channel and the second reference signal are mapped to a second band in a second set of OFDM symbols; It is not assumed that the same precoder is applied in the first band and the second band.
  • a fourth aspect of the present embodiment is an integrated circuit mounted on the terminal device 1, and includes a first physical channel, a first reference signal related to the first physical channel, a second A reception circuit that receives a physical channel and a second reference signal related to the second physical channel; and the first reference signal and / or the first reference signal based on the second reference signal.
  • a demodulation circuit that demodulates a physical channel and demodulates the second physical channel based on the first reference signal and / or the second reference signal, the demodulation circuit including the first reference signal Whether the physical characteristics of the second physical channel, the second physical channel, the first reference signal, and the second reference signal are assumed to be the same from the first condition to the third condition. Based on some or all of the conditions To cross.
  • the physical feature includes transmission power.
  • the physical feature includes a precoder.
  • the first physical channel and the first reference signal are mapped to a first band in a first set of OFDM symbols
  • the second The physical channel and the second reference signal are mapped to a second band in a second set of OFDM symbols
  • the demodulation circuit is the same precoder in the first band and the second band. Is not assumed to apply.
  • One embodiment of the present invention is a terminal device, which receives a first physical channel and a second physical channel, and demodulates the first physical channel based on a first reference signal.
  • the precoder applied to the first physical channel and the second physical channel is the same when the predetermined condition is not satisfied in the terminal device. Not expected.
  • the predetermined condition further includes a condition that a subframe in which the first physical channel and the second physical channel are transmitted is the same. Including.
  • One aspect of the present invention is the terminal device, wherein the predetermined condition further includes the number of first transport blocks transmitted on the first physical channel and the second physical channel. Including the condition that the number of second transport blocks to be transmitted is the same.
  • One aspect of the present invention is the terminal apparatus, wherein the first physical channel in the first sTTI is scheduled by a first downlink grant included in the first sTTI, The second physical channel in the sTTI is scheduled by the second downlink grant included in the second sTTI, and the antenna port corresponding to the first physical channel is scheduled by the first downlink grant. The antenna port corresponding to the second physical channel is notified by the second downlink grant.
  • One aspect of the present invention is a terminal device, which receives a first physical channel and a second physical channel, and demodulates the first physical channel based on a first reference signal.
  • a demodulator and when a predetermined condition is satisfied, the power (transmission power or reception power) applied to the first physical channel and the second physical channel is assumed to be the same, and
  • the predetermined condition includes a condition that the antenna port corresponding to the first physical channel is the same as the antenna port corresponding to the second physical channel.
  • One aspect of the present invention is the terminal apparatus, wherein power (transmission power or reception power) applied to the first physical channel and the second physical channel when the predetermined condition is not satisfied. Power) is not assumed to be the same.
  • One aspect of the present invention is the terminal apparatus, wherein the power applied to the first physical channel and the second physical channel is the same as that in the first OFDM symbol.
  • the power of one physical channel and the power of the second physical channel in the second OFDM symbol are the same, the power of the first physical channel in the third OFDM symbol, and the fourth OFDM symbol
  • the second OFDM symbol includes a CRS
  • the third OFDM symbol and the fourth OFDM symbol include the CRS, Does not include CRS.
  • the predetermined condition includes a condition in which a subframe in which the first physical channel and the second physical channel are transmitted is the same.
  • One aspect of the present invention is the terminal device, wherein the predetermined condition includes a number of transport blocks transmitted on the first physical channel and a transformer transmitted on the second physical channel. Includes the condition that the number of port blocks is the same.
  • the terminal apparatus wherein the first physical channel in the first sTTI is scheduled by a first downlink grant included in the first sTTI, The second physical channel in the sTTI is scheduled by the second downlink grant included in the second sTTI, and the antenna port corresponding to the first physical channel is scheduled by the first downlink grant. The antenna port corresponding to the second physical channel is notified by the second downlink grant.
  • One aspect of the present invention is a base station apparatus that transmits a modulation unit that modulates a first physical channel and a second physical channel, and transmits the first physical channel and the second physical channel. And when the predetermined condition is satisfied, the precoder applied to the first physical channel and the second physical channel is the same, and the predetermined condition is the first condition This includes a condition that the antenna port corresponding to the physical channel and the antenna port corresponding to the second physical channel are the same. (13A) One aspect of the present invention is the base station apparatus, wherein precoders applied to the first physical channel and the second physical channel are different when the predetermined condition is not satisfied.
  • One aspect of the present invention is the base station apparatus, wherein the predetermined condition further includes a condition that a subframe in which the first physical channel and the second physical channel are transmitted is the same including.
  • the predetermined condition further includes the number of first transport blocks transmitted on the first physical channel and the second physical Including the condition that the number of second transport blocks transmitted on the channel is the same.
  • One aspect of the present invention is the base station apparatus, wherein the first physical channel in the first sTTI is scheduled by a first downlink grant included in the first sTTI, The second physical channel in the second sTTI is scheduled by the second downlink grant included in the second sTTI, and the antenna port corresponding to the first physical channel is the first downlink grant. And the antenna port corresponding to the second physical channel is notified by the second downlink grant.
  • One aspect of the present invention is a base station device that transmits a first physical channel and a second physical channel, a modulator that modulates the first physical channel and the second physical channel, and transmits the first physical channel and the second physical channel A power unit (transmission power or reception power) applied to the first physical channel and the second physical channel when a predetermined condition is satisfied, and The condition includes a condition that the antenna port corresponding to the first physical channel is the same as the antenna port corresponding to the second physical channel.
  • One aspect of the present invention is the base station apparatus, wherein when the predetermined condition is not satisfied, power applied to the first physical channel and the second physical channel (transmission power or Received power) is different.
  • One aspect of the present invention is the base station apparatus, wherein the power applied to the first physical channel and the second physical channel is the same as that in the first OFDM symbol.
  • the power of the first physical channel and the power of the second physical channel in the second OFDM symbol are the same, and the power of the first physical channel in the third OFDM symbol and the fourth OFDM
  • the power of the second physical channel in the symbol is the same, the first OFDM symbol and the second OFDM symbol include CRS, and the third OFDM symbol and the fourth OFDM symbol are Does not include the CRS.
  • the predetermined condition includes a condition in which a subframe in which the first physical channel and the second physical channel are transmitted is the same. .
  • One aspect of the present invention is the base station apparatus, wherein the predetermined condition is transmitted on the number of transport blocks transmitted on the first physical channel and the second physical channel. Includes the condition that the number of transport blocks is the same.
  • the base station apparatus wherein the first physical channel in the first sTTI is scheduled by a first downlink grant included in the first sTTI, The second physical channel in the second sTTI is scheduled by the second downlink grant included in the second sTTI, and the antenna port corresponding to the first physical channel is the first downlink grant. And the antenna port corresponding to the second physical channel is notified by the second downlink grant.
  • One aspect of the present invention is a communication method used for a terminal apparatus, the step of receiving a first physical channel and a second physical channel, and the first physical channel as a first reference signal. And when the predetermined condition is satisfied, it is assumed that the precoder applied to the first physical channel and the second physical channel is the same, and the predetermined condition is The condition that the antenna port corresponding to the first physical channel and the antenna port corresponding to the second physical channel are the same is included.
  • One aspect of the present invention is a communication method used for a terminal device, the step of receiving a first physical channel and a second physical channel, and the first physical channel as a first reference signal.
  • the predetermined condition includes a condition that an antenna port corresponding to the first physical channel and an antenna port corresponding to the second physical channel are the same.
  • One aspect of the present invention is a communication method used in a base station apparatus, the step of modulating a first physical channel and a second physical channel, the first physical channel, and the second physical channel Transmitting a physical channel, and when a predetermined condition is satisfied, a precoder applied to the first physical channel and the second physical channel is the same, and the predetermined condition is This includes a condition that the antenna port corresponding to the first physical channel and the antenna port corresponding to the second physical channel are the same.
  • One aspect of the present invention is a communication method used in a base station apparatus, the step of modulating a first physical channel and a second physical channel, the first physical channel, and the second physical channel Transmitting a physical channel, and when a predetermined condition is satisfied, power (transmission power or reception power) applied to the first physical channel and the second physical channel is the same,
  • the predetermined condition includes a condition that an antenna port corresponding to the first physical channel and an antenna port corresponding to the second physical channel are the same.
  • the terminal device can efficiently receive the downlink signal.
  • the base station apparatus can transmit a downlink signal efficiently.
  • the base station apparatus 3 related to one aspect of the present invention and the program operating in the terminal apparatus 1 control a CPU (Central Processing Unit) and the like so as to realize the functions of the above-described embodiments related to one aspect of the present invention. It may be a program (a program that causes a computer to function). Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • RAM Random Access Memory
  • ROMs Read Only Memory
  • HDD Hard Disk Drive
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the terminal device 1 or the base station device 3 and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the base station device 3 in the above-described embodiment can be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include at least one of each function or each functional block of the base station device 3 according to the above-described embodiment.
  • the device group only needs to have one function or each function block of the base station device 3.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station apparatus 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network).
  • the base station device 3 in the above-described embodiment may have at least one of the functions of an upper node for the eNodeB.
  • a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or may be realized as a chip set.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the terminal device is described as an example of the communication device.
  • the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors or outdoors,
  • the present invention can also be applied to terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • One embodiment of the present invention can be used in a communication system, a communication device (for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (for example, a communication chip), a program, or the like. it can.
  • a communication device for example, a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit for example, a communication chip
  • a program or the like. it can.
  • Terminal apparatus 3 Base station apparatus 101 Upper layer processing section 103 Control section 105 Reception section 107 Transmission section 109 Transmission / reception antenna 1011 Radio resource control section 1013 Scheduling section 1051 Decoding section 1053 Demodulation section 1055 Demultiplexing section 1057 Radio reception unit 1059 Channel measurement unit 1071 Encoding unit 1073 PUSCH generation unit 1075 PUCCH generation unit 1077 Multiplexing unit 1079 Radio transmission unit 10711 Uplink reference signal generation unit 301 Upper layer processing unit 303 Control unit 305 Reception unit 307 Transmission unit 309 Transmission / reception Antenna 3011 Radio resource control unit 3013 Scheduling unit 3051 Data demodulation / decoding unit 3053 Control information demodulation / decoding unit 3055 Demultiplexing unit 3057 Radio reception unit 3059 Channel measurement unit 3071 Encoding unit 30 3 Modulation unit 3075 Multiplexing unit 3077 Wireless transmission unit 3079 Downlink reference signal generation unit 8000 Transmission process 8001 Encoding processing unit 8002 Scramble processing unit 8003 Modulation map processing unit 800

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末装置は、第1の物理チャネルと第2の物理チャネルを受信する受信部と、前記第1の物理チャネルを第1の参照信号に基づき復調する復調部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。

Description

端末装置、基地局装置、通信方法、および、集積回路
 本発明は、端末装置、基地局装置、通信方法、および、集積回路に関する。
 本願は、2016年6月13日に日本に出願された特願2016-116908号について優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE)」、または、「Evolved Universal Terrestrial Radio Access : EUTRA」と称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。LTEでは、基地局装置をeNodeB(evolved NodeB)、端末装置をUE(User Equipment)とも称する。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
 LTEリリース13において、PDSCHの送信方式として、MIMO空間多重が仕様化されている(非特許文献1、2、3、4)。非特許文献5において、TTI(Transmission Time Interval)の短縮、および、処理時間の削減について検討されている。
"3GPP TS 36.211 V13.1.0 (2016-03)", 29th March, 2016. "3GPP TS 36.212 V13.1.0 (2016-03)", 29th March, 2016. "3GPP TS 36.213 V13.1.1 (2016-03)", 31th March, 2016. "3GPP TS 36.300 V13.2.0 (2015-12)", 13th January, 2015. "New SI proposal: Study on Latency reduction techniques for LTE", RP-150465, Ericsson, Huawei, 3GPP TSG RAN Meeting#67, Shanghai, China, 9th- 12th March 2015.
 本発明の一態様は、効率的に下りリンク信号を受信することができる端末装置、該端末装置に用いられる通信方法、該端末装置に実装される集積回路、効率的に下りリンク信号を送信することができる基地局装置、を提供する。ここで、当該下りリンク信号は、PDSCH、および、sPDSCHを含んでもよい。
 (1)本発明の態様は、以下のような手段を講じた。すなわち、本発明の一態様は、端末装置であって、第1の物理チャネルと第2の物理チャネルを受信する受信部と、前記第1の物理チャネルを第1の参照信号に基づき復調する復調部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (2)本発明の一態様は、端末装置であって、第1の物理チャネルと第2の物理チャネルを受信する受信部と、前記第1の物理チャネルを第1の参照信号に基づき復調する復調部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (3)本発明の一態様は、基地局装置であって、第1の物理チャネルと第2の物理チャネルを変調する変調部と、前記第1の物理チャネルと前記第2の物理チャネルを送信する送信部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであり、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (4)本発明の一態様は、基地局装置であって、第1の物理チャネルと第2の物理チャネルを変調する変調部と、前記第1の物理チャネルと前記第2の物理チャネルを送信する送信部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであり、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (5)本発明の一態様は、端末装置に用いられる通信方法であって、第1の物理チャネルと第2の物理チャネルを受信するステップと、前記第1の物理チャネルを第1の参照信号に基づき復調するステップと、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (6)本発明の一態様は、端末装置に用いられる通信方法であって、第1の物理チャネルと第2の物理チャネルを受信するステップと、前記第1の物理チャネルを第1の参照信号に基づき復調するステップと、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (7)本発明の一態様は、基地局装置に用いられる通信方法であって、第1の物理チャネルと第2の物理チャネルを変調するステップと、前記第1の物理チャネルと前記第2の物理チャネルを送信するステップと、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであり、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (8)本発明の一態様は、基地局装置に用いられる通信方法であって、第1の物理チャネルと第2の物理チャネルを変調するステップと、前記第1の物理チャネルと前記第2の物理チャネルを送信するステップと、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであり、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 この発明の一態様によれば、端末装置は効率的に下りリンク信号を受信することができる。また、基地局装置は効率的に下りリンク信号を送信することができる。
本実施形態の無線通信システムの概念図である。 本実施形態の無線フレームの概略構成を示す図である。 本実施形態における下りリンクスロットの概略構成を示す図である。 本実施形態におけるTTIおよびsTTIの一例を示す図である。 本実施形態の下りリンクにおける物理チャネルの割り当ての一例を示す図である。 本実施形態における端末装置1の構成を示す概略ブロック図である。 本実施形態における基地局装置3の構成を示す概略ブロック図である。 本実施形態における物理層の送信プロセス8000の構成の一例を示した図である。 本実施形態における第1の物理チャネルおよび第2の物理チャネルを受信する端末装置1の動作の一例を示すフローチャートである。 本実施形態における端末装置1の動作分類の一例を示した表である。 本実施形態におけるsPDSCHに適用可能なパラメータのセットの一例を示す図である。
 以下、本発明の実施形態について説明する。
 図1は、本実施形態の無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3を具備する。以下、端末装置1A~1Cを端末装置1とも呼称する。
 以下、キャリアアグリゲーションについて説明する。
 本実施形態では、端末装置1は、複数のサービングセルが設定される。端末装置1が複数のサービングセルを介して通信する技術をセルアグリゲーション、またはキャリアアグリゲーションと称する。端末装置1に対して設定される複数のサービングセルのそれぞれにおいて、本発明の一態様が適用されてもよい。また、設定された複数のサービングセルの一部において、本発明の一態様が適用されてもよい。また、設定された複数のサービングセルのグループのそれぞれにおいて、本発明の一態様が適用されてもよい。また、設定された複数のサービングセルのグループの一部において、本発明の一態様が適用されてもよい。
 複数のサービングセルは、少なくとも1つのプライマリセルを含む。複数のサービングセルは、1つ、または、複数のセカンダリセルを含んでもよい。プライマリセルは、初期コネクション確立(initial connection establishment)手順が行なわれたサービングセル、コネクション再確立(connection re-establishment)手順を開始したサービングセル、または、ハンドオーバ手順においてプライマリセルと指示されたセルである。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、セカンダリセルが設定されてもよい。
 下りリンクにおいて、サービングセルに対応するキャリアを下りリンクコンポーネントキャリアと称する。上りリンクにおいて、サービングセルに対応するキャリアを上りリンクコンポーネントキャリアと称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリアと称する。
 端末装置1は、複数のサービングセル(コンポーネントキャリア)において同時に複数の物理チャネルでの送信、および/または受信を行うことができる。1つの物理チャネルは、複数のサービングセル(コンポーネントキャリア)のうち1つのサービングセル(コンポーネントキャリア)において送信される。
 本実施形態の物理チャネルおよび物理信号について説明する。なお、以下では、本発明の一態様においてshortenedが付される用語は、Nms(例えば、Nは1ms)よりも小さい期間(1OS(OFDM symbol)、2OS、3OS、4OS、7OS等)を単位として、下りリンクデータ(ペイロード、トランスポートブロック、MAC PDU等)の通信を行う通信方式に関連することを示してもよい。また、本発明の一態様においてshortenedが付される用語において、shortenedは、short、shorter、shortening、shorten等に読み替えられてもよい。
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PDCCH(Physical Downlink Control Channel)
・EPDCCH(Enhanced Physical Downlink Control Channel)
・sPDCCH(shortened Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
・sPDSCH(shortened Physical Downlink Shared Channel)
 PDCCH、EPDCCH、および、sPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報を、DCIフォーマットとも称する。下りリンク制御情報は、下りリンクグラント(downlink grant)を含むことができる。下りリンクグラントは、下りリンクアサインメント(downlink assignment)または下りリンク割り当て(downlink allocation)とも称する。
 PDCCHおよびEPDCCHに含まれるDCIはPDSCHのための割当情報を含み、sPDCCHに含まれるDCIはsPDSCHのための下りリンクグラントを含んでもよい。ここで、sPDSCHのための下りリンクグラントを含むDCIは、sDCI(shortened DCI)と呼称されてもよい。また、sPDSCHがサブフレーム内の先頭のsTTI(時間領域の観点から、サブフレーム内において前半に位置するsTTI)に配置される場合、PDCCHはsDCIを含んでもよい。また、EPDCCHは、sDCIを含んでもよい。
 つまり、1つの下りリンクグラントは、1つのセル内の1つのPDSCHのスケジューリングに用いられてもよい。下りリンクグラントは、該下りリンクグラントが送信されたサブフレームと同じサブフレーム内のPDSCHのスケジューリングに用いられてもよい。1つの下りリンクグラントは、1つのセル内の1つのsPDSCHのスケジューリングに用いられてもよい。下りリンクグラントは、該下りリンクグラントが送信されたsTTI(shortened Transmission Time Interval)と同じsTTI内のsPDSCHのスケジューリングに用いられてもよい。
 ここで、下りリンクグラントは、1または複数の端末装置1のための下りリンク割り当てに関連する情報を備えてもよい。つまり、下りリンクグラントは、1または複数の端末装置1のための周波数割り当て情報(Resource allocation)、MCS(Modulation and Coding)、送信アンテナポート数、スクランブルアイデンティティ(SCID: Scramble Identity)、レイヤ数、新データ指標(New Data Indicator)、RV(Redundancy Version)、トランスポートブロック数、プレコーダ情報、送信スキームに関する情報の少なくとも一つを含んでもよい。
 なお、TTIを構成するサブキャリアスペーシング(Subcarrier spacing)および/またはシンボル長(Symbol length)と、sTTIを構成するサブキャリアスペーシングおよび/またはシンボル長は、異なってもよい。
 PDSCH、および、sPDSCHは、下りリンクデータ(Downlink Shared Channel:DL-SCH)を送信するために用いられてもよい。
 DL-SCHは、トランスポートチャネルである。媒体アクセス制御(Medium Access Control: MAC)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(transport block: TB)またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に変調処理、および、符号化処理が行なわれる。1つのコードワードは、1つ、または、複数のレイヤにマップされる。
  図8は、物理層の送信プロセス8000の構成の一例を示した図である。送信プロセス8000(Transmission process)は、符号化処理部8001(coding)、スクランブル処理部8002(Scrambling)、変調マップ処理部8003(Modulation mapper)、レイヤマップ処理部8004(Layer mapper)、送信プレコード処理部8005(Transform precoder)、プレコード処理部8006(Precoder)、リソースエレメントマップ処理部8007(Resource element mapper)、ベースバンド信号生成処理部8008(OFDM baseband signal generation)を含んだ構成である。
  符号化処理部8001は、誤り訂正符号化処理により、上位層より渡されるトランスポートブロックを符号化ビット(coded bit)に変換する機能を備える。例えば、誤り訂正符号化には、ターボ符号、LDPC(Low Density Parity Check)符号、Polar符号、畳み込み符号(convolutional codeまたはTail biting convolutional code等)、ブロック符号、RM(Reed Muller)符号、繰り返し符号が含まれる。符号化処理部8001は、符号化ビットをスクランブル処理部8002に渡す機能を備える。なお、本発明の一態様において、TTIに対応するトランスポートブロックのために用いられる符号化処理と、sTTIに対応するトランスポートブロックのために用いられる符号化処理は異なってもよい。
  スクランブル処理部8002は、スクランブル処理により、符号化ビットをスクランブルビット(scramble bit)に変換する機能を備える。スクランブルビットは、符号化ビットとスクランブル系列に関して2を法とする和をとることにより得られる。スクランブル系列は、例えば端末装置1に固有な系列(例えばC-RNTI)に基づき、擬似ランダム関数により生成される系列であってもよい。
  変調マップ部8003は、変調マップ処理によりスクランブルビットを変調ビットに変換する機能を備える。変調ビットは、スクランブルビットに対して、QPSK(Quaderature Phase Shift Keying)、16QAM(Quaderature Amplitude Modulation)、64QAM等の変調処理が施されることにより得られる。
  レイヤマップ処理部8004は、変調ビットを各レイヤにマッピングする機能を備える。レイヤ(layer)とは、空間領域における物理層信号の多重度に関する指標である。つまり、例えば、レイヤ数が1の場合、空間多重が行われないことを意味しており、レイヤ数が2の場合、2種類の物理層信号が空間多重されることを意味している。
  送信プレコード処理部8005は、各レイヤにマッピングされた変調ビットに送信プレコード処理を施すことにより送信ビットを生成する機能を備える。送信プレコード処理は、例えば、DFT拡散(DFT spread, DFT spreading)等による処理を含む。下りリンクの無線通信では、変調ビットに対して送信プレコード処理が施されなくてもよい。または、下りリンクの無線通信では、送信プレコード処理として、変調ビットに対して単位行列に基づく処理が施されてもよい。上りリンクの無線通信では、変調ビットに対して送信プレコード処理が施されなくてもよい。または、上りリンクの無線通信では、送信プレコード処理として、変調ビットに対して単位行列に基づく処理が施されてもよい。
 プレコード処理部8006は、送信ビットに対して、プレコーダを乗算することにより、送信アンテナポートごとの送信ビットを生成する機能を備える。
 リソースエレメントマップ処理部8007は、送信アンテナポートごとの送信ビットをリソースエレメントにマッピングする処理を行う機能を備える。
 ベースバンド信号生成処理部8008は、リソースエレメントにマップされた送信ビットを、ベースバンド信号に変換する機能を備える。送信ビットをベースバンド信号に変換する処理は、例えば、逆フーリエ変換処理(IFFT: Inverse Fast Fourier Transform)や、Windowing(ウィンドウ処理)、Digital Filtering(フィルタリング処理)等が含まれてもよい。
 以下では、物理信号の説明を行う。
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal: SS)
・下りリンク参照信号(Downlink Reference Signal: DL RS)
 同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。
 下りリンク参照信号は、端末装置1が下りリンク物理チャネルの伝搬路補正を行なうために用いられる。下りリンク参照信号は、端末装置1が下りリンクのチャネル状態情報を算出するために用いられる。
 本実施形態において、以下の5つのタイプの下りリンク参照信号が用いられる。
・CRS(Cell-specific Reference Signal)
・PDSCHに関連するURS(UE-specific Reference Signal)(タイプ1URS)
・sPDSCHに関連するURS(UE-specific Reference Signal)(タイプ2URS)
・EPDCCHに関連するDMRS(Demodulation Reference Signal)(タイプ1DMRS)
・sPDCCHに関連するDMRS(Demodulation Reference Signal)(タイプ2DMRS)
 PDSCHに関連するURSをタイプ1URSとも称する。sPDSCHに関連するURSをタイプ2URSとも称する。EPDCCHに関連するDMRSをタイプ1DMRSとも称する。sPDCCHに関連するDMRSをタイプ2DMRSとも称する。物理チャネルは、該物理チャネルと関連する参照信号に基づき、復調されてもよい。物理チャネルが参照信号と関連しているとは、該物理チャネルと該参照信号が同一のアンテナポートから送信されていることであってもよい。
 以下、本実施形態における物理チャネル、物理信号、および、送信アンテナポートの対応について説明する。
 CRSは、送信アンテナポート{0、1、2、3}の1つ、または、複数で送信されてもよい。URSは、送信アンテナポート{7、8、9、10、11、12、13、14}の1つ、または、複数で送信されてもよい。EPDCCHに関連するタイプ1DMRSは、送信アンテナポート{107、108、109、110}の1つ、または、複数で送信されてもよい。タイプ1DMRSは、送信アンテナポート{107、108、109、110}の1つ、または、複数で送信されてもよい。送信アンテナポート{7、8、9、10、11、12、13、14、107、108、109、110}の少なくとも1つでURSが送信される場合、URSの信号系列は、スクランブル識別子(NSCID)に基づいて生成されてもよい。端末装置1は、基地局装置3からPDCCHまたはsPDCCHにより送信されるスクランブル識別子に関する情報に基づき、スクランブル識別子(NSCID)、および、URSの信号系列を決定してもよい。
 sPDCCHに関連するDMRSは、送信アンテナポート{7、8、9、10、11、12、13、14}の1つ、または、複数で送信されてもよい。sPDCCHに関連するDMRSは、送信アンテナポート{107、108、109、110}の1つ、または、複数で送信されてもよい。
 PDCCHは、CRSと同じ送信アンテナポートで送信されてもよい。EPDCCHは、EPDCCHに関連するタイプ1DMRSと同じ送信アンテナポートで送信されてもよい。
 PDSCHは、CRSと同じ送信アンテナポート、または、URSと同じ送信アンテナポートで送信されてもよい。sPDSCHは、CRSと同じ送信アンテナポート、または、URSと同じ送信アンテナポートで送信されてもよい。sPDCCHは、CRSと同じ送信アンテナポート、または、sPDCCHに関連するタイプ2DMRSと同じ送信アンテナポートで送信されてもよい。
 PDSCH送信のために用いられる送信アンテナポートは、上位層のパラメータ、および/または、下りリンクグラントに少なくとも基づいて与えられてもよい。sPDSCH送信のために用いられる送信アンテナポートは、上位層のパラメータ、および/または、下りリンクグラントに少なくとも基づいて与えられてもよい。
 EPDSCH送信のために用いられる送信アンテナポートは、上位層のパラメータに少なくとも基づいて与えられてもよい。sPDSCH送信のために用いられる送信アンテナポートは、上位層のパラメータに少なくとも基づいて与えられてもよい。
 sPDSCH送信のために用いられるアンテナポートは、サブフレームの設定に基づいて与えられてもよい。例えば、あるサブフレームにおいてsPDSCH送信のために用いられるアンテナポートは、当該サブフレームがMBSFN(Multicast-broadcast single-frequency network)サブフレームに設定される場合にタイプ2URSのアンテナポートと同じであってもよい。例えば、あるサブフレームにおいてsPDSCH送信のために用いられるアンテナポートは、当該サブフレームがMBSFNサブフレームに設定されない場合にCRSのアンテナポートと同じであってもよい。
 sPDCCH送信のために用いられるアンテナポートは、サブフレームの設定に基づいて与えられてもよい。例えば、あるサブフレームにおいてsPDCCH送信のために用いられるアンテナポートは、当該サブフレームがMBSFN(Multicast-broadcast single-frequency network)サブフレームに設定される場合にタイプ2DMRSのアンテナポートと同じであってもよい。例えば、あるサブフレームにおいてsPDCCH送信のために用いられるアンテナポートは、当該サブフレームがMBSFNサブフレームに設定されない場合にCRSのアンテナポートと同じであってもよい。
 なお、送信アンテナポートは、仮想的なアンテナ構成であってもよい。一つの送信アンテナポートは、単一のアンテナにより構成されてもよいし、複数のアンテナにより構成されてもよい。例えば、第3の送信アンテナポートと第4の送信アンテナポートが同一であるとは、第3の送信アンテナポートが第4の送信アンテナポートに基づき復調されることであってもよい。つまり、第3の送信アンテナポートと第4の送信アンテナポートが異なることは、第3の送信アンテナポートが第4の送信アンテナポートに基づき復調されないことであってもよい。第3の送信アンテナポートが第4の送信アンテナポートに基づき復調されるとは、第4の送信アンテナポートにより推定されるチャネルに基づき、第4の送信アンテナポートが復調されることであってもよい。また、送信アンテナポートが同一であるとは、アンテナポート番号が同じ番号であることと同義であってもよい。また、送信アンテナポートが同一であるとは、アンテナポート番号に対応するインデックスの値が同じであることと同義であってもよい。
 以下、本実施形態の無線フレーム(radio frame)の構成の一例について説明する。図2は、本実施形態の無線フレームの概略構成を示す図である。無線フレームのそれぞれは、10ms長である。図2において、横軸は時間軸である。また、無線フレームのそれぞれは10のサブフレームから構成される。サブフレームのそれぞれは、1ms長であり、2つの連続するスロットによって定義される。スロットのそれぞれは、0.5ms長である。つまり、10ms間隔のそれぞれにおいて、10個のサブフレームが利用できる。サブフレームをTTI(Transmission Time Intervalとも称する。)
 以下、本実施形態のスロットの構成の一例について説明する。図3は、本実施形態における下りリンクスロットの概略構成を示す図である。図3において、1つのセルにおける下りリンクスロットの構成を示す。図3において、横軸は時間軸であり、縦軸は周波数軸である。図3において、lはOFDMシンボル番号/インデックスであり、kはサブキャリア番号/インデックスである。
 スロットのそれぞれにおいて送信される物理シグナルまたは物理チャネルは、リソースグリッドによって表現される。下りリンクにおいて、リソースグリッドは複数のサブキャリアと複数のOFDMシンボルによって定義される。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリア番号/インデックスk、および、OFDMシンボル番号/インデックスlによって表される。
 下りリンクスロットは、時間領域において、複数のOFDMシンボルl(l=0,1,…,NDL symb)を含む。NDL symbは、1つの下りリンクスロットに含まれるOFDMシンボルの数を示す。上りリンクにおけるノーマルCP(normal Cyclic Prefix)に対して、NDL symbは7である。下りリンクにおける拡張CP(extended CP)に対して、NDL symbは6である。
 下りリンクスロットは、周波数領域において、複数のサブキャリアk(k=0,1,…,NDL RB×NRB sc)を含む。NDL RBは、NRB scの倍数によって表現される、サービングセルに対する下りリンク帯域幅設定である。NRB scは、サブキャリアの数によって表現される、周波数領域における(物理)リソースブロックサイズである。サブキャリア間隔Dfは15kHzであり、NRB scは12であってもよい。すなわち、NRB scは、180kHzであってもよい。サブキャリア間隔Dfはチャネル毎、および/または、TTI/sTTI毎に異なってもよい。
 リソースブロックは、物理チャネルのリソースエレメントへのマッピングを表すために用いられる。リソースブロックは、仮想リソースブロックと物理リソースブロックが定義される。物理チャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。1つの物理リソースブロックは、時間領域においてNDL symbの連続するOFDMシンボルと周波数領域においてNRB scの連続するサブキャリアとから定義される。ゆえに、1つの物理リソースブロックは(NDL symb×NRB sc)のリソースエレメントから構成される。1つの物理リソースブロックは、時間領域において1つのスロットに対応する。物理リソースブロックは周波数領域において、周波数の低いほうから順に番号(0,1,…, NDL RB-1)が付けられる。
 図4は、本実施形態におけるTTIおよびsTTIの一例を示す図である。TTIは、2×NDL symbのOFDMシンボルから構成されてもよい。sTTIを構成するOFDMシンボルの数は、{2、3、4、7}の何れかである。XのOFDMシンボルから構成されるTTI/sTTIをXシンボルTTIとも称する。
 図5は、本実施形態の下りリンクにおける物理チャネルの割り当ての一例を示す図である。PDCCH500は、サブフレームの先頭から1または複数のOFDMシンボルを含み(PDCCHの長さ513)、且つ、セルの帯域幅に等しい帯域幅を用いて送信される。EPDCCH501は、サブフレーム全体からPDCCH500を除いたOFDMシンボルを含み(EPDCCHの長さ526)、且つ、セルの帯域幅の一部(EPDCCH帯域幅511)を用いて送信される。PDSCH502は、サブフレーム全体からPDCCH500を除いたOFDMシンボルを含み、且つ、セルの帯域幅の一部(セルの帯域幅から、EPDCCH帯域幅511およびsTTI帯域幅512を除いた帯域)を用いて送信される。sPDCCH503、505、507および509は、サブフレーム全体からPDCCH500を除いたOFDMシンボルの一部(sPDCCHの長さ514、516、518および520)を含み、且つ、sTTI帯域幅512を用いて送信されてもよい。sPDSCH504、506、508および510は、サブフレーム全体からPDCCH500を除いたOFDMシンボルの一部(sPDSCHの長さ515、517、519および521)を含み、且つ、sTTI帯域幅512を用いて送信されてもよい。
 ここで、sPDCCH503、505、507および509、および/または、sPDSCH504、506、508および510は、セルの帯域幅の少なくとも一つ(一部)を用いて送信されてもよい。
 sTTIの長さ522は、sPDCCHの長さ514およびsPDSCHの長さ515を含む。sTTIの長さ523は、sPDCCHの長さ516およびsPDSCHの長さ517を含む。sTTIの長さ524は、sPDCCHの長さ518およびsPDSCHの長さ519を含む。sTTIの長さ525は、sPDCCHの長さ520およびsPDSCHの長さ521を含む。sTTIの長さ522~525は、サブフレーム内で共通の値でもよい。sTTIの長さ522~525は、サブフレーム内で異なってもよい。
 なお、sPDCCH503、505、507および509の一部は、sPDSCHであってもよい。
 以下では、sDCIの種類を説明する。
 第1のsDCI(First DCI, Slow DCI, First sDCI, Slow sDCI、第1のDCI等)は、sTTIの設定情報を含んでもよい(例えば、sTTI帯域幅512に関する情報、sTTIの長さ522、523、524、525に関する情報)。つまり、第1のsDCIは、端末装置1へのsPDSCHの割り当て情報を含まなくてもよく、且つ、1つまたは複数の端末装置1のためにsPDSCHが割り当てられることが期待されるsTTI帯域幅512に関する情報を含んでもよい。第1のsDCIは、PDCCH500、sPDCCH503、505、507、509のうちの何れを用いて送信されてもよい。第1のsDCIに付加されるCRC(Cyclic Redundancy Check)パリティビットは、端末装置1に関して個別のRNTI(Radio Network Temporary Identifier)に基づきスクランブルされてもよい(例えばC-RNTI)。第1のsDCIに付加されるCRCパリティビットは、複数の端末装置1に関して共通のRNTIに基づきスクランブルされてもよい(例えばG-RNTI(Group-RNTI), TPC-RNTI等)。
 端末装置1は、第1のsDCIを検出した場合、第1のsDCIに含まれるsTTIの設定情報に基づき、sTTIの帯域幅を決定してもよい。端末装置1は、第1のsDCIを検出した場合、第1のsDCIに含まれるsTTIの設定情報に基づき、第2のsDCIを含むsPDCCH、および、第2のsDCIを含むPDCCHをモニタしてもよい。
 第2のsDCI(Second DCI, Fast DCI, Second sDCI, Fast sDCI、第2のDCI等)は、端末装置1に割り当てられるsPDSCHの設定情報を含んでもよい(例えば、MCS、RV、NDI等)。第2のsDCIは、端末装置1のsPDSCHの割り当て情報を含んでもよい。第2のsDCIは、PDCCH500、sPDCCH503、505、507、509のうちの何れを用いて送信されてもよい。第2のsDCIに付加されるCRCパリティビットは、端末装置1に関して個別のRNTI(Radio Network Temporary Identifier)に基づきスクランブルされてもよい。
 端末装置1は、第2のsDCIを検出した場合、第1のsDCIに含まれるsTTIの設定情報、および/または、第2のsDCIに含まれるsPDSCHの割り当て情報に基づき、当該端末装置1に割り当てられるsPDSCHの領域を決定してもよい、且つ、sPDSCHの受信処理を行ってもよい。
 第3のsDCI(Third DCI, Third sDCI, 第3のDCI等)は、端末装置1に割り当てられるsPDSCHの設定情報を含んでもよい。また、第3のsDCIは、端末装置1のsPDSCHの割り当て情報を含んでもよい。第3のsDCIは、PDCCH500、sPDCCH503、505、507、509のうちの何れを用いて送信されてもよい。第3のsDCIに付加されるCRCパリティビットは、端末装置1に関して個別のRNTI(Radio Network Temporary Identifier)に基づきスクランブルされてもよい。
 端末装置1は、第3のsDCIを検出した場合、第3のsDCIに含まれるsTTIの設定情報、および/または、第3のsDCIに含まれるsPDSCHの割り当て情報に基づき、当該端末装置1に割り当てられるsPDSCHの領域を決定してもよい、且つ、sPDSCHの受信処理を行ってもよい。
 以下では、第1の物理チャネルおよび第2の物理チャネルを受信する端末装置1の動作例を説明する。ここで、第1の物理チャネルは第1の参照信号、および/または、第2の参照信号に基づき復調されてもよい。また、第2の物理チャネルは第1の参照信号、および/または、第2の参照信号に基づき復調されてもよい。
 図9は、第1の物理チャネルおよび第2の物理チャネルを受信する端末装置1の動作の一例を示すフローチャートである。端末装置1は条件Yに基づき、動作1、または、動作2を実施する。端末装置1は条件Yが満たされる場合に動作1を実施し、条件Yが満たされない場合に動作2を実施する。
 ここで、条件Yは、第1の物理チャネルと第2の物理チャネル間で少なくとも1つ(一部)の要素が同じであることである。当該要素は、以下の要素Yから要素Yの一部、または、全部を含んでもよい。
・要素Y:物理チャネルが対応する送信アンテナポート
・要素Y:物理チャネルのレイヤ数
・要素Y:物理チャネルで送信されるトランスポートブロック数
・要素Y:物理チャネルが対応するsTTIの長さ
・要素Y:物理チャネルが含まれるサブフレーム
・要素Y:物理チャネルの物理パラメータ(numerology)
 要素Yは、コードワード数でもよい。また、要素Yは、sTTIの長さ522、523、524および525でもよいし、sPDCCHの長さ514、516、518および520でもよいし、sPDSCHの長さ515、517、519および521でもよい。
 要素Yにおいて、物理パラメータは、例えば、物理チャネルの信号波形に関するパラメータであってもよい。信号波形に関するパラメータは、物理チャネルに適用されるシンボル数、信号波形(waveform)、サブキャリア間隔、CP長、サンプル周期等であってもよい。
 動作1は、第1の物理チャネルと第2の物理チャネル間で物理的特徴が同一である(と想定される)ことであり、動作2は、第1の物理チャネルと第2の物理チャネル間で物理的特徴が異なる(と想定される)ことである。物理的特徴とは、例えば、プレコーダ、受信電力(受信電力値、受信電力密度、受信強度等)、送信電力(送信電力値、送信電力密度、送信強度等)、タイミングアドバンス(TA: Timing advance)、到来角度(AoA: Angle of Arival)、ドップラシフト、遅延スプレッド(または、最大遅延時間等)、遅延広がり(遅延拡がり、瞬時遅延広がり、瞬時遅延拡がり等)、QCL(Quasi Co-location)の少なくとも一つであってもよい。なお、物理チャネルの間の物理的特徴が同一であると想定することは、必ずしも、厳密に物理的特徴の値が同一であることが想定されることでなくてもよい。つまり、物理チャネルの間の物理的特徴が同一であると想定することは、物理チャネルの間の物理的特徴の平均値(例えば、時間、周波数等の領域で平均化された値等でもよい)が同一であることが想定されることであってもよい。送信電力は、EPRE(Energy Per Resource Element)によって定義されてもよい。1つの下りリンク物理チャネルに対して、CRSが含まれるOFDMシンボルにおける下りリンク物理チャネルのEPRE、および、CRSが含まれないOFDMシンボルにおける下りリンク物理チャネルのEPREは異なってもよい。第1の物理チャネルと第2の物理チャネル間で送信電力が同じであることは、(i)CRSが含まれるOFDMシンボルにおける第1の物理チャネルのEPRE、および、CRSが含まれるOFDMシンボルにおける第2の物理チャネルのEPREが同じであり、且つ、(ii)CRSが含まれないOFDMシンボルにおける第1の物理チャネルのEPRE、および、CRSが含まれないOFDMシンボルにおける第2の物理チャネルのEPREが同じであることを意味する。
 以下に、物理的特徴の想定方法の一例を示す。
 例えば、第1の物理チャネルと第2の物理チャネルが対応する送信アンテナポートが同一である場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が同一である(と想定されてもよい)。
 例えば、第1の物理チャネルと第2の物理チャネルが対応する送信アンテナポートが異なる場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が異なる(と想定されてもよい)。
 例えば、第1の物理チャネルが対応する送信アンテナポートが、第2の物理チャネルが対応する送信アンテナポートと異なったとしても、第1の物理チャネルが対応する送信アンテナポートと第2の物理チャネルが対応する送信アンテナポートが特定の組み合わせである場合に、第1の物理チャネルと第2の物理チャネルの物理的特徴が同一である(と想定されてもよい)。
 例えば、第1の物理チャネルと第2の物理チャネルのレイヤ数が同一の場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が同一である(と想定されてもよい)。ここで、第1の物理チャネルで送信されるトランスポートブロック数は、第2の物理チャネルで送信されるトランスポートブロック数とは異なってもよい。
 例えば、第1の物理チャネルと第2の物理チャネルのレイヤ数が異なる場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が異なる(と想定されてもよい)。
 例えば、第1の物理チャネルと第2の物理チャネルで送信されるトランスポートブロック数が同一の場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が同一である(と想定されてもよい)。ここで、第1の物理チャネルで送信されるトランスポートブロックは、第2の物理チャネルで送信されるトランスポートブロックとは異なってもよい。また、第1の物理チャネルのレイヤ数は、第2の物理チャネルのレイヤ数とは異なってもよい。
 例えば、第1の物理チャネルと第2の物理チャネルに含まれるトランスポートブロック数が異なる場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が異なる(と想定されてもよい)。
 例えば、第1の物理チャネルと第2の物理チャネルが対応するsTTIの長さが同一の場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が同一である(と想定されてもよい)。
 例えば、第1の物理チャネルと第2の物理チャネルが対応するsTTIの長さが異なる場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が同一である(と想定されてもよい)。
 例えば、第1の物理チャネルが含まれるサブフレームと第2の物理チャネルが含まれるサブフレームが同一である場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が同一である(と想定されてもよい)。
 例えば、第1の物理チャネルが含まれるサブフレームと第2の物理チャネルが含まれるサブフレームが異なる場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が異なる(と想定されてもよい)。
 例えば、第1の物理チャネルと第2の物理チャネルの物理パラメータの少なくとも一つが同一の場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が異なる(と想定されてもよい)。
 例えば、第1の物理チャネルと第2の物理チャネルの物理パラメータの少なくとも一つが異なる場合、第1の物理チャネルと第2の物理チャネルの物理的特徴が同一である(と想定されてもよい)。
 第1の物理チャネルと第2の物理チャネルは、sPDCCHであってもよい。第1の物理チャネルと第2の物理チャネルは、sPDSCHであってもよい。第1の物理チャネルと第2の物理チャネルの一方はsPDCCHであり、且つ、他方はsPDSCHであってもよい。
 以下では、端末装置1の具体的な動作例を説明する。
 図10は、端末装置1の動作分類の一例を示した表である。分類1は、sPDSCHを復調するために用いられる参照信号のタイプを示す。分類2は、sPDSCHのレイヤ数、sPDSCHが対応する送信アンテナポート、および、URSが対応するスクランブル識別子の少なくとも1つ(一部)のための通知方法を示す。分類3は、sPDSCHに適用されるプレコーダを示す。分類4は、sPDCCHを復調するために用いられる参照信号のタイプを示す。分類5は、sPDCCHに適用されるプレコーダを示す。分類6は、sPDSCH間の物理的特徴の関係を示す。分類7は、sPDSCHとsPDCCHの間の物理的特徴の関係を示す。追記1は、sPDSCHに含まれるTB数の候補(例えば、1または2)に関連するパラメータのセット(またはテーブル)が第1のsDCIに含まれることを示す。
 例1は、(分類1)sPDSCHを復調するために用いられる参照信号がタイプ2URSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも一つが第2のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダに関する情報が通知されず、(分類4)sPDCCHを復調するために用いられる参照信号がタイプ2DMRSであり、(分類5)sPDCCHに適用されるプレコーダに関する情報が通知されない場合の動作例である。例1の分類6において、sPDSCHの間の要素Yと要素Yの少なくとも一方の要素が同一である場合、sPDSCHの間の物理的特徴が同一であると想定されてもよい(想定1-1)。また、例1の分類6において、sPDSCHの間の要素Yと要素Yの少なくとも一方の要素が異なる場合、sPDSCHの間の物理的特徴が異なると想定されてもよい(想定1-2)。また、例1の分類7において、sPDCCHとsPDSCHの間の要素Yと要素Yの少なくとも一方が同一である場合、かつ、sPDCCHがUSS(UE-specific Search Space)において検出される場合、sPDCCHとsPDSCHの間の物理的特徴が同一であると想定されてもよい(想定4-1)。また、例1の分類7において、sPDCCHとsPDSCHの間の要素Yと要素Yの少なくとも一方の要素が異なる場合、かつ、sPDCCHがUSS(UE-specific Search Space)において検出される場合、sPDCCHとsPDSCHの間の物理的特徴が異なると想定されてもよい(想定4-2)。ここで、想定1-1と想定1-2は、まとめて想定1とも呼称される。また、想定4-1と想定4-2は、まとめて想定4とも呼称される。
 例2は、(分類1)sPDSCHの復調に用いられる参照信号がタイプ2URSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第2のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダに関する情報が通知されず、(分類4)sPDCCHの復調に用いられる参照信号がCRSであり、(分類5)sPDCCHに適用されるプレコーダに関する情報が第1のsDCIで通知される、または、通知されない場合の動作例である。例2の分類6において、sPDSCHの間の物理的特徴に対して、想定1が適用されてもよい。また、例2の分類7において、いかなる場合も、sPDSCHとsPDCCHの間の物理的特徴が異なると想定されてもよい(想定5)。
 例3は、(分類1)sPDSCHの復調に用いられる参照信号がタイプ2URSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第1のsDCI、および/または、第2のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダに関する情報が通知されず、(分類4)sPDCCHの復調に用いられる参照信号がタイプ2DMRSであり、(分類5)sPDCCHに適用されるプレコーダに関する情報が通知されない場合の動作例である。ここで、sPDSCHに含まれるTB数の候補(例えば、1または2)に関連するパラメータのセット(またはテーブル)が第1のsDCIに含まれてもよい。つまり、第1のsDCIは、第1のsDCIにより通知されるsTTIの設定情報が適用される範囲(例えば、1サブフレーム)において、送信されるsPDSCHに適用可能なパラメータのセットに関連する情報を含んでもよい。図11は、sPDSCHに適用可能なパラメータのセットの一例を示す図である。sPDSCHに適用可能なパラメータのセットは、端末装置1にあらかじめ設定されてもよいし、上位層の信号により基地局装置3から通知されてもよい。端末装置1は、第2のsDCIにより通知される、物理チャネルに含まれるトランスポートブロック数、物理チャネルのレイヤ数に関する情報に基づき、物理チャネルに含まれるトランスポートブロック数、物理チャネルが対応する送信アンテナポート、URSが対応するスクランブル識別子、物理チャネルのレイヤ数の情報のうちの少なくとも1つ(一部)を取得してもよい。例3の分類6において、sPDSCHの間の要素Y、要素Y、要素Yの少なくとも1つ(一部)が同一である場合、sPDSCHの間の物理的特徴が同一であると想定されてもよい(想定2-1)。また、例3の分類6において、sPDSCHとsPDCCHの間の要素Y、要素Y、要素Yの少なくとも1つ(一部)が異なる場合、sPDSCHの間の物理的特徴が異なると想定されてもよい(想定2-2)。また、例3の分類7において、sPDSCHとsPDCCHの間の物理的特徴に対して、想定4が適用されてもよい。また、sPDSCHに適用可能なパラメータのセットは、プレコーダに関する情報を含んでもよい。ここで、想定2-1と想定2-2は、まとめて想定2とも呼称される。
 例4は、(分類1)sPDSCHの復調に用いられる参照信号がタイプ2URSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第1のsDCI(sPDSCHに適用可能なパラメータのセット)、および/または、第2のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダに関する情報が通知されず、(分類4)sPDCCHの復調に用いられる参照信号がCRSであり、(分類5)sPDCCHに適用されるプレコーダに関する情報が第1のsDCIで通知される、または、通知されない場合の動作例である。例3の分類6において、sPDSCHの間の物理的特徴に対して、想定2が適用されてもよい。また、例3の分類7において、sPDSCHとsPDCCHの間の物理的特徴に対して、想定5が適用されてもよい。
 例5は、(分類1)sPDSCHの復調に用いられる参照信号がCRSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第2のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダに関する情報が第2のsDCIにより通知され、(分類4)sPDCCHの復調に用いられる参照信号がタイプ2DMRSであり、(分類5)sPDCCHに適用されるプレコーダに関する情報が通知されない場合の動作例である。例5の分類6において、第1のサブフレームタイプの場合、sPDSCHのプレコーダに関する情報は、それぞれ第2のsDCIで通知されてもよい(想定3-1)。また、例5の分類6において、あるsPDSCHに対してのみプレコーダに関する情報が通知され、sPDSCHの間の要素Yが同一である場合、sPDSCH間の物理的特徴が同一であると想定されてもよい(想定3-2)。また、例5の分類6において、あるsPDSCHに対してのみプレコーダに関する情報が通知され、sPDSCHの間の要素Yが異なる場合に、sPDSCHの間の物理的特徴が異なると想定されてもよい(想定3-3)。例5の分類7において、第2のサブフレームタイプの場合、sPDSCHとsPDCCHの間の物理的特徴に対して、想定1が適用されてもよい。ここで、想定3-1と想定3-2と想定3-3は、まとめて想定3とも呼称される。ここで、第1のサブフレームタイプにおいて、想定3が適用され、第2のサブフレームタイプにおいて、想定1が適用されることを含む端末装置1の想定を、想定7とも呼称する。第2のサブフレームタイプにおいて、想定4が適用されることを含む端末装置1の想定を、想定9とも呼称する。
 第1のサブフレームタイプは、MBSFNサブフレームではないサブフレームであってもよい。第2のサブフレームタイプは、MBSFNサブフレームであってもよい。基地局装置3は、MBSFNサブフレームを示す情報を報知してもよい。端末装置1は、MBSFNサブフレームを示す情報を、基地局装置3から受信してもよい。 
 なお、本発明の一態様に係るsPDSCHおよび/またはsPDCCH用の参照信号がCRSに設定されることは、第1のサブフレームタイプにおいて、sPDSCH、および/または、sPDCCHの復調に用いられる参照信号がCRSに設定されることを意味してもよい。つまり、本発明の一態様に係るsPDSCH、および/または、sPDCCHの復調に用いられる参照信号がCRSに設定されることは、第1のサブフレームタイプ以外を含む第2のサブフレームタイプにおいて、sPDSCH、および/または、sPDCCHの復調に用いられる参照信号がCRSに設定されないことを意味してもよい。つまり、例5から例8において、第1のサブフレームタイプの場合、sPDSCHの復調に用いられる参照信号はタイプ2URSであり、sPDCCHの復調に用いられる参照信号はタイプ2DMRSであってもよい。 
 例6は、(分類1)sPDSCHの復調に用いられる参照信号がCRSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第2のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダに関する情報が第2のsDCIにより通知され、(分類4)sPDCCHの復調に用いられる参照信号がCRSであり、(分類5)sPDCCHに適用されるプレコーダに関する情報が第1のsDCIにより通知される、または、通知されない場合の動作例である。例6の分類6において、sPDSCHの間の物理的特徴に対して、想定7が適用されてもよい。また、例6の分類7において、第1のサブフレームタイプの場合、sPDCCHに適用されるプレコーダに関する情報は、第1のsDCI、および/または、第2のsDCIで通知されてもよい(想定6)。また、例6の分類7において、sPDCCHに適用されるプレコーダに関する情報が通知されない場合、sPDSCHとsPDCCHの間の物理的特徴に対して想定4が適用されてもよい。ここで、第1のサブフレームタイプにおいて、想定6が適用され、第2のサブフレームタイプにおいて想定4が適用されることを含む端末装置1の想定を、想定10とも呼称する。
 例7は、(分類1)sPDSCHの復調に用いられる参照信号がCRSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第1のsDCI(sPDSCHに適用可能なパラメータのセット)、および/または、第2のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダに関する情報が第1のsDCI(sPDSCHに適用可能な情報のセット)、および/または、第2のsDCIにより通知され、(分類4)sPDCCHの復調に用いられる参照信号がタイプ2DMRSであり、(分類5)sPDCCHに適用されるプレコーダに関する情報が通知されない場合の動作例である。例7の分類6において、第1のサブフレームタイプの場合、sPDSCHの間の物理的特徴に対して、想定3が適用されてもよい。また、例7の分類6において、第2のサブフレームタイプの場合、sPDSCHの間の物理的特徴に対して、想定2が適用されてもよい。また、例7の分類7において、sPDSCHおよびsPDCCH間の物理的特徴に対して、想定9が適用されてもよい。ここで、第1のサブフレームタイプに対して想定3が適用され、第2のサブフレームタイプに対して、想定2が適用されることを含む端末装置1の想定を、想定8とも呼称する。
 例8は、(分類1)sPDSCHの復調に用いられる参照信号がCRSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第1のsDCI(sPDSCHに適用可能なパラメータのセット)、および/または、第2のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダに関する情報が第1のsDCI(sPDSCHに適用可能なパラメータのセット)、および/または、第2のsDCIにより通知され、(分類4)sPDCCHの復調に用いられる参照信号がCRSであり、(分類5)sPDCCHに適用されるプレコーダに関する情報が第1のsDCIで通知される、または、通知されない場合の動作例である。例8の分類6において、sPDSCHの間の物理的特徴に対して、想定8が適用されてもよい。また、例8の分類7において、sPDSCHとsPDCCHの間の物理的特徴に対して、想定10が適用されてもよい。
 (分類1)sPDSCHの復調に用いられる参照信号がタイプ2URSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第3のsDCIにより通知され、(分類4)sPDCCHの復調に用いられる参照信号がタイプ2DMRSである場合、端末装置1の動作は例1に基づいてもよい。
 (分類1)sPDSCHの復調に用いられる参照信号がタイプ2URSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第3のsDCIにより通知され、(分類4)sPDCCHの復調に用いられる参照信号がCRSである場合、端末装置1の動作は例2に基づいてもよい。
 (分類1)sPDSCHの復調に用いられる参照信号がCRSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子の少なくとも1つ(一部)が第3のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダが第3のsDCIにより通知され、(分類4)sPDCCHの復調に用いられる参照信号がタイプ2DMRSである場合、端末装置1の動作は例5に基づいてもよい。
 (分類1)sPDSCHの復調に用いられる参照信号がCRSであり、(分類2)sPDSCHのレイヤ数またはsPDSCHが対応する送信アンテナポートまたはURSが対応するスクランブル識別子が第3のsDCIにより通知され、(分類3)sPDSCHに適用されるプレコーダが第3のsDCIにより通知され、(分類4)sPDCCHの復調に用いられる参照信号がCRSである場合、端末装置1の動作は例6に基づいてもよい。
 なお、第1のsDCI、第2のsDCI、および、第3のsDCIは、物理パラメータの少なくとも一つを含んでもよい。端末装置1は、第1のsDCI、第2のsDCI、および、第3のsDCIの少なくとも一つに基づき取得した物理パラメータに基づき、第1の物理チャネルと第2の物理チャネルの間の物理的特徴の関係を想定してもよい。
 本実施形態は、基地局装置3に適用されてもよい。上記第1の例から第8の例は、基地局装置3に適用されてもよい。例えば、端末装置1が物理チャネルの間の物理的特徴が同一であると想定する場合、基地局装置3は物理的特徴が同一である物理チャネルを送信しなければならない。例えば、端末装置1が物理チャネルの間の物理的特徴が異なると想定する場合、基地局装置3は物理的特徴が異なる物理チャネルを送信してもよいし、物理的特徴が同一である物理チャネルを送信してもよい。
 以下、本発明の端末装置1の装置構成について説明する。
 図6は、本実施形態における端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、上位層処理部101、制御部103、受信部105、送信部107および、送受信アンテナ109を含んで構成される。上位層処理部101は、無線リソース制御部1011、スケジューリング部1013を含んで構成される。受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057とチャネル測定部1059を含んで構成される。送信部107は、符号化部1071、PUSCH生成部1073、PUCCH生成部1075、多重部1077、無線送信部1079と上りリンク参照信号生成部10711を含んで構成される。
 上位層処理部101は、ユーザの操作等により生成された上りリンクデータを、送信部107に出力する。また、上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101はPDCCHで受信された下りリンク制御情報などに基づき、受信部105、および送信部107の制御を行なうために制御情報を生成し、制御部103に出力する。
 上位層処理部101が備える無線リソース制御部1011は、自装置の各種設定情報の管理を行なう。例えば、無線リソース制御部1011は、設定されたサービングセルの管理を行なう。また、無線リソース制御部1011は、上りリンクの各チャネルに配置される情報を生成し、送信部107に出力する。無線リソース制御部1011は、受信した下りリンクデータの復号に成功した場合には、ACKを生成し送信部107にACKを出力し、受信した下りリンクデータの復号に失敗した場合には、NACKを生成し、送信部107にNACKを出力する。
 上位層処理部101が備えるスケジューリング部1013は、受信部105を介して受信した下りリンク制御情報を記憶する。スケジューリング部1013は、上りリンクグラントを受信したサブフレームから4つ後のサブフレームにおいて、受信された上りリンクグラントに従ってPUSCHを送信するよう、制御部103を介して送信部107を制御する。スケジューリング部1013は、下りリンクグラントを受信したサブフレームにおいて、受信された下りリンクグラントに従ってPDSCHを受信するよう、制御部103を介して受信部105を制御する。
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105、および送信部107の制御を行なう制御信号を生成する。制御部103は、生成した制御信号を受信部105、および送信部107に出力して受信部105、および送信部107の制御を行なう。
 受信部105は、制御部103から入力された制御信号に従って、送受信アンテナ109を介して基地局装置3から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部101に出力する。
 無線受信部1057は、送受信アンテナ109を介して受信した下りリンクの信号を直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、ディジタル信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 多重分離部1055は、抽出した信号をPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。多重分離部1055は、分離した下りリンク参照信号をチャネル測定部1059に出力する。
 復調部1053は、PDCCH、および、PDSCHに対して、QPSK、16QAM(Quadrature Amplitude Modulation)、64QAM等の変調方式に対する復調を行ない、復号化部1051へ出力する。
 復号化部1051は、下りリンクデータの復号を行い、復号した下りリンクデータを上位層処理部101へ出力する。チャネル測定部1059は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部1055へ出力する。チャネル測定部1059は、チャネル状態情報を算出し、尚且つ、チャネル状態情報を上位層処理部101へ出力する。
 チャネル測定部1059は、条件Yに基づき、第1の物理チャネルと第2の物理チャネルの間の物理的特徴が同一であると想定してもよい。また、チャネル測定部1059は、条件Yに基づき、第1の物理チャネルと第2の物理チャネルの間の物理的特徴が異なると想定してもよい。
 例えば、第1の物理チャネルと第2の物理チャネルの間の到来角度が同一であると想定される場合、端末装置1は、第1の物理チャネルと第2の物理チャネルに基づき、角度推定を行ってもよい。例えば、端末装置1は、第1の物理チャネルと第2の物理チャネルの角度推定値を平均化してもよい。また、例えば、第1の物理チャネルと第2の物理チャネルの間の到来角度が異なると想定される場合、端末装置1は、第1の物理チャネルに基づき第1の角度推定を行い、第2のチャネルに基づき第2の角度推定を行ってもよい。
 例えば、第1の物理チャネルと第2の物理チャネルの間のドップラシフト(または、ドップラ偏移、ドップラ拡がり、ドップラ広がり等)が同一であると想定される場合、端末装置1は、第1の物理チャネルと第2の物理チャネルに基づき、ドップラシフトを推定してもよい。例えば、端末装置1は、第1の物理チャネルと第2の物理チャネルのドップラシフト推定値を平均化してもよい。ドップラシフト推定値は、チャネル推定(例えば、2次元MMSE(Minimum Mean Square Error)等)に用いられてもよく、チャネル推定値を向上させることができる。また、第1の物理チャネルと第2の物理チャネルの間のドップラシフトが異なると想定される場合、端末装置1は、第1の物理チャネルに基づき第1のドップラシフトを推定し、第2の物理チャネルに基づき第2のドップラシフトを推定してもよい。
 例えば、第1の物理チャネルと第2の物理チャネルの間の遅延スプレッドが同一であると想定される場合、端末装置1は、第1の物理チャネルと第2の物理チャネルに基づき、遅延スプレッドを推定してもよい。例えば、端末装置1は、第1の物理チャネルと第2の物理チャネルのドップラシフト推定値を平均化してもよい。ドップラシフト推定値は、チャネル推定等に用いられてもよく、チャネル推定値を向上させることができる。また、第1の物理チャネルと第2の物理チャネルの間の遅延スプレッドが異なると想定される場合、端末装置1は、第1の物理チャネルに基づき第1の遅延スプレッドを推定し、第2の物理チャネルに基づき第2の遅延スプレッドを推定してもよい。
 例えば、第1の物理チャネルと第2の物理チャネルの間の遅延拡がりが同一であると想定される場合、端末装置1は、第1の物理チャネルと第2の物理チャネルに基づき、遅延拡がりを推定してもよい。例えば、端末装置1は、第1の物理チャネルと第2の物理チャネルの遅延拡がり推定値を平均化してもよい。遅延拡がり推定値は、端末装置1と基地局装置3の間の通信路のフェージングを推定するために用いられてもよい。つまり、第1の物理チャネルと第2の物理チャネルの間の遅延拡がりが同一であると想定される場合、端末装置1は、例えば、第1の物理チャネルと第2の物理チャネルの周波数選択性フェージング推定量を平均化することができる。また、第1の物理チャネルと第2の物理チャネルの間の遅延拡がりが異なると想定される場合、端末装置1は、第1の物理チャネルに基づき第1の遅延拡がりを推定し、第2の物理チャネルに基づき第2の遅延拡がりを推定してもよい。
 例えば、第1の物理チャネルと第2の物理チャネルの間の受信電力が同一であると想定される場合、端末装置1は、第1の物理チャネルと第2の物理チャネルに基づき、受信電力を推定してもよい。例えば、端末装置1は、第1の物理チャネルと第2の物理チャネルの遅延拡がり推定値を平均化してもよい。端末装置1において推定される受信電力推定値は、チャネル推定、受信信号の電力調整に用いられるパワーアンプの設定、基地局装置3へのレポート等に用いられてもよい。また、第1の物理チャネルと第2の物理チャネルの間の受信電力が異なると想定される場合、端末装置1は、第1の物理チャネルに基づき第1の受信電力を推定し、第2の物理チャネルに基づき第2の受信電力を推定してもよい。
 例えば、第1の物理チャネルと第2の物理チャネルの間のプレコーダが同一であると想定される場合、端末装置1は、第1の物理チャネルと第2の物理チャネルに基づき、チャネル推定を実施してもよい。例えば、端末装置1は、第1の物理チャネルと第2の物理チャネルのチャネル推定値を平均化してもよい。また、第1の物理チャネルと第2の物理チャネルの間のプレコーダが異なると想定される場合、端末装置1は、第1の物理チャネルに基づき第1のチャネルを推定し、第2の物理チャネルに基づき第2のチャネルを推定してもよい。
 例えば、第1の物理チャネルのための第1の送信アンテナポートと第2の物理チャネルのための第2の送信アンテナポートがQCLであると想定される場合、端末装置1は、第1のアンテナのセットから、第1の物理チャネルと第2の物理チャネルが送信されていると想定してもよい。また、例えば、第1の物理チャネルのための第1の送信アンテナポートと第2の物理チャネルのための第2の送信アンテナポートがQCLであると想定されない場合、端末装置1は、第1のアンテナのセットから、第1の物理チャネルが送信され、第2のアンテナのセットから、第2の物理チャネルが送信されていると想定してもよい。ここで、第1の送信アンテナポートと第2の送信アンテナポートがQCLであると想定されるとは、第1の送信アンテナポートから送信される第1の物理チャネルと第2の送信アンテナポートから送信される第2の物理チャネルが地理的に(または物理的に)同一のアンテナのセットから送信されることが想定されることであってもよい。ここで、アンテナのセットとは、複数のアンテナから構成されてもよいし、単一のアンテナから構成されてもよい。
 第1の物理チャネルと第2の物理チャネルが受信される時間が異なる場合、端末装置1は、第1の物理チャネルの物理的特徴に関する推定値と第2の物理チャネルの物理的特徴に関する推定値を用いて時間補間(例えば、線形補間、スプライン補間、MMSE補間等)を行ってもよい。第1の物理チャネルと第2の物理チャネルが受信される周波数が異なる場合、端末装置1は、第1の物理チャネルと第2の物理チャネルの間の物理的特徴の想定は、条件Yに基づかなくてもよい。すなわち、端末装置1は、第1の物理チャネルと第2の物理チャネルが受信される周波数が異なる場合、条件Yに関わらず、第1の物理チャネルと第2の物理チャネルの物理的特徴が異なると想定してもよい。例えば、第1の物理チャネルと第2の物理チャネルが受信される周波数が異なる場合、端末装置1は、条件Zに基づき、第1の物理チャネルと第2の物理チャネルの間の物理的特徴を想定してもよい。ここで、条件Zとは、いかなる場合も、第1の物理チャネルと第2の物理チャネルの物理的特徴が異なると想定されることであってもよい。
 条件Zは、第1の物理的特徴に対して適用され、第2の物理的特徴に対して適用されなくてもよい。例えば、第1の物理的特徴は、プレコーダであり、第2の物理的特徴は、プレコーダ以外の物理的特徴の少なくとも1つ(一部)であってもよい。
 送信部107は、制御部103から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部101から入力された上りリンクデータや上りリンク制御情報を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ109を介して基地局装置3に送信する。
 符号化部1071は、上位層処理部101から入力された上りリンク制御情報と上りリンクデータを符号化し、符号化ビットをPUSCH生成部および/またはPUCCH生成部に出力する。
 PUSCH生成部1073は、符号化部1071から入力された符号化ビットを変調して変調シンボルを生成し、変調シンボルをDFTすることによってPUSCH/sPUSCHの信号を生成し、尚且つ、DFTされたPUSCH/sPUSCHの信号を多重部1077へ出力する。
 PUCCH生成部1075は、符号化部1071から入力された符号化ビット、および/または、SRに基づいて、PUCCH/sPUCCHの信号を生成し、生成したPUCCH/sPUCCHの信号を多重部1077へ出力する。
 上りリンク参照信号生成部10711は上りリンク参照信号を生成し、生成した上りリンク参照信号を多重部1077へ出力する。
 多重部1075は、制御部103から入力された制御信号に従って、PUSCH生成部1073から入力された信号および/またはPUCCH生成部か1075ら入力された信号、および/または、上りリンク参照信号生成部10711から入力された上りリンク参照信号を、送信アンテナポート毎に上りリンクのリソースエレメントに多重する。
 無線送信部1077は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier 
Transform: IFFT)して、SC-FDMA方式の変調を行い、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、電力増幅し、送受信アンテナ109に出力して送信する。
 以下、本発明の基地局装置3の装置構成について説明する。
 図7は、本実施形態における基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部301、制御部303、受信部305、送信部307、および、送受信アンテナ309、を含んで構成される。また、上位層処理部301は、無線リソース制御部3011とスケジューリング部3013を含んで構成される。また、受信部305は、データ復調/復号部3051、制御情報復調/復号部3053、多重分離部3055、無線受信部3057とチャネル測定部3059を含んで構成される。また、送信部307は、符号化部3071、変調部3073、多重部3075、無線送信部3077と下りリンク参照信号生成部3079を含んで構成される。
 上位層処理部301は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部301は、受信部305、および送信部307の制御を行なうために制御情報を生成し、制御部303に出力する。
 上位層処理部301が備える無線リソース制御部3011は、下りリンクのPDSCHに配置される下りリンクデータ、RRCシグナル、MAC CE(Control Element)を生成し、又は上位ノードから取得し、HARQ制御部3013に出力する。また、無線リソース制御部3011は、端末装置1各々の各種設定情報の管理をする。例えば、無線リソース制御部3011は、端末装置1に設定したサービングセルの管理などを行なう。
 上位層処理部301が備えるスケジューリング部3013は、端末装置1に割り当てるPUSCHやPUCCHの無線リソースの管理をしている。スケジューリング部3013は、端末装置1にPUSCHの無線リソースを割り当てた場合には、PUSCHの無線リソースの割り当てを示す上りリンクグラントを生成し、生成した上りリンクグラントを送信部307へ出力する。
 制御部303は、上位層処理部301からの制御情報に基づいて、受信部305、および送信部307の制御を行なう制御信号を生成する。制御部303は、生成した制御信号を受信部305、および送信部307に出力して受信部305、および送信部307の制御を行なう。
 受信部305は、制御部303から入力された制御信号に従って、送受信アンテナ309を介して端末装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部301に出力する。
 無線受信部3057は、送受信アンテナ309を介して受信された上りリンクの信号を直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部3057は、ディジタル信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出し多重分離部3055に出力する。
 多重分離部1055は、無線受信部3057から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。尚、この分離は、予め基地局装置3が無線リソース制御部3011で決定し、各端末装置1に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。多重分離部3055は、チャネル測定部3059から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部3055は、分離した上りリンク参照信号をチャネル測定部3059に出力する。
 多重分離部3055は、分離したPUCCHとPUSCHの信号から、上りリンクデータの変調シンボルと上りリンク制御情報(HARQ-ACK)の変調シンボルを取得する。多重分離部3055は、PUSCHの信号から取得した上りリンクデータの変調シンボルをデータ復調/復号部3051へ出力する。多重分離部3055は、PUCCHの信号またはPUSCHの信号から取得した上りリンク制御情報(HARQ-ACK)の変調シンボルを制御情報復調/復号部3053へ出力する。
 チャネル測定部3059は、多重分離部3055から入力された上りリンク参照信号から伝搬路の推定値、チャネルの品質などを測定し、多重分離部3055および上位層処理部301に出力する。
 データ復調/復号部3051は、多重分離部3055から入力された上りリンクデータの変調シンボルから上りリンクデータを復号する。データ復調/復号部3051は、復号された上りリンクデータを上位層処理部301へ出力する。
 制御情報復調/復号部3053は、多重分離部3055から入力されたHARQ-ACKの変調シンボルからHARQ-ACKを復号する。制御情報復調/復号部3053は、復号したHARQ-ACKを上位層処理部301へ出力する。
 送信部307は、制御部303から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部301から入力された下りリンク制御情報、下りリンクデータを符号化、および変調し、PDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ309を介して端末装置1に信号を送信する。
 符号化部3071は、上位層処理部301から入力された下りリンク制御情報、および、下りリンクデータの符号化を行なう。変調部3073は、符号化部3071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の変調方式で変調する。変調部3073は、変調シンボルにプリコーディングを適用してもよい。なお、プレコーディングとは、プレコーダが乗算される(適用される)ことであってもよい。第1の変調シンボルが送信される第1の物理チャネルに適用される第1のプレコーダと、第2の変調シンボルが送信される第2の物理チャネルに適用される第2のプレコーダが同一であることが端末装置1によって想定される場合、変調部3073は、第1の変調シンボルと第2の変調シンボルに対して同一のプレコーダを適用しなければならない。第1の変調シンボルが送信される第1の物理チャネルに適用される第1のプレコーダと、第2の変調シンボルが送信される第2の物理チャネルに適用される第2のプレコーダが異なることが端末装置1によって想定される場合、変調部3073は、第1の変調シンボルと第2の変調シンボルに対して同一のプレコーダを適用してもよいし、第1の変調シンボルと第2の変調シンボルに対して異なるプレコーダを適用してもよい。
 下りリンク参照信号生成部3079は下りリンク参照信号を生成する。多重部3075は、各チャネルの変調シンボルと下りリンク参照信号を多重し、送信シンボルを生成する。
 多重部3075は、送信シンボルにプレコーディングを適用してもよい。多重部3075が送信シンボルに適用するプレコーディングは、下りリンク参照信号、および/または、変調シンボルに対して適用されてもよい。また、下りリンク参照信号に適用されるプレコーディングと、変調シンボルに対して適用されるプレコーディングは、同一であってもよいし、異なってもよい。第1の送信シンボルが送信される第1の物理チャネルに適用される第1のプレコーダと、第2の送信シンボルが送信される第2の物理チャネルに適用される第2のプレコーダが同一であることが端末装置1によって想定される場合、多重部3075は、第1の送信シンボルと第2の送信シンボルに対して同一のプレコーダを適用しなければならない。第1の送信シンボルが送信される第1の物理チャネルに適用される第1のプレコーダと、第2の送信シンボルが送信される第2の物理チャネルに適用される第2のプレコーダが異なることが端末装置1によって想定される場合、多重部3075は、第1の送信シンボルと第2の送信シンボルに対して同一のプレコーダを適用してもよいし、第1の送信シンボルと第2の送信シンボルに対して異なるプレコーダを適用してもよい。
 無線送信部3077は、多重された送信シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、時間シンボルを生成する。無線送信部3077は、時間シンボルに対してOFDM方式の変調を行い、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、アナログ信号から中間周波数の同相成分および直交成分を生成し、中間周波数帯域に対する余分な周波数成分を除去し、中間周波数の信号を高周波数の信号に変換(アップコンバート: up convert)し、余分な周波数成分を除去し、搬送波信号(Carrier signal, Carrier, RF signal等)を生成する。無線送信部3077は、搬送波信号に対して、電力増幅し、送受信アンテナ309に出力して送信する。第1の時間シンボルに適用されるIFFTのための第1の物理パラメータと第2の時間シンボルに適用されるIFFTのための第2の物理パラメータが同一であることが端末装置1によって想定される場合、無線送信部3077は、第1の物理パラメータと第2の物理パラメータを同一にしなければならない。第1の時間シンボルに適用されるIFFTのための第1の物理パラメータと第2の時間シンボルに適用されるIFFTのための第2の物理パラメータが異なることが端末装置1によって想定される場合、無線送信部3077は、第1の物理パラメータと第2の物理パラメータを同一にしてもよいし、異なってもよい。第1の搬送波信号が送信される第1の物理チャネルの第1の受信電力と第2の搬送波信号が送信される第2の物理チャネルの第2の受信電力が同一であることが端末装置1によって想定される場合、無線送信部3077は、第1の電力増幅値と第2の電力増幅値を同一にしなければならない。第1の搬送波信号が送信される第1の物理チャネルの第1の受信電力と第2の搬送波信号が送信される第2の物理チャネルの第2の受信電力が異なることが端末装置1によって想定される場合、無線送信部3077は、第1の電力増幅値と第2の電力増幅値を同一にしてもよいし、異なってもよい。
 端末装置1、および、基地局装置3に含まれる部のそれぞれは、回路として構成されてもよい。
 以下、本実施形態における、端末装置1および基地局装置3の種々の態様について説明する。
 (1)本実施形態の第1の態様は、端末装置1であって、第1の物理チャネル、前記第1の物理チャネルに関連する第1の参照信号、第2の物理チャネル、および、前記第2の物理チャネルに関連する第2の参照信号を受信する受信部と、前記第1の参照信号、および/または、前記第2の参照信号に基づいて前記第1の物理チャネルを復調し、前記第1の参照信号、および/または、前記第2の参照信号に基づいて前記第2の物理チャネルを復調する復調部と、を備え、前記復調部は、前記第1の物理チャネル、前記第2の物理チャネル、前記第1の参照信号、および、前記第2の参照信号の物理的特徴が同一であると想定するかどうかを、以下の第1の条件から第3の条件の一部、または、全部に基づいて判断する。
・第1の条件:前記第1の物理チャネル、および、前記第1の参照信号の送信のために用いられる送信アンテナポートのセットが、前記第2の物理チャネル、および、前記第2の参照信号の送信のために用いられる送信アンテナポートのセットと同じであるかどうか
・第2の条件:前記第1の物理チャネルのレイヤの数が、前記第2の物理チャネルのレイヤの数と同じであるかどうか
・第3の条件:前記第1の物理チャネルで送信されるトランスポートブロックの数が、前記第2の物理チャネルで送信されるトランスポートブロックの数と同じであるかどうか
 (2)本実施形態の第1の態様において、前記物理的特徴は、送信電力を含む。
 (3)本実施形態の第1の態様において、前記物理的特徴は、プレコーダを含む。
 (4)本実施形態の第1の態様において、前記第1の物理チャネル、および、前記第1の参照信号は、OFDMシンボルの第1のセットにおける第1の帯域にマップされ、前記第2の物理チャネル、および、前記第2の参照信号は、OFDMシンボルの第2のセットにおける第2の帯域にマップされ、前記復調部は、前記第1の帯域、および、前記第2の帯域において同じプレコーダが適用されると想定しない。
 (5)本実施形態の第2の態様は、基地局装置3であって、第1の物理チャネル、および、第2の物理チャネルを生成する変調部と、前記第1の物理チャネルに関連する第1の参照信号、および、前記第2の物理チャネルに関連する第2の参照信号を生成する下りリンク参照信号生成部と、前記第1の物理チャネル、前記第1の参照信号、第2の物理チャネル、および、前記第2の参照信号を送信する無線送信部と、を備え、前記第1の物理チャネル、および、前記第2の物理チャネルに同一の送信電力を適用するか否かを、以下の第1の条件から第3の条件の一部、または、全部に基づいて判断する。
・第1の条件:前記第1の物理チャネル、および、前記第1の参照信号の送信のために用いられる送信アンテナポートのセットが、前記第2の物理チャネル、および、前記第2の参照信号の送信のために用いられる送信アンテナポートのセットと同じであるかどうか
・第2の条件:前記第1の物理チャネルのレイヤの数が、前記第2の物理チャネルのレイヤの数と同じであるかどうか
・第3の条件:前記第1の物理チャネルで送信されるトランスポートブロックの数が、前記第2の物理チャネルで送信されるトランスポートブロックの数と同じであるかどうか
 (6)本実施形態の第2の態様において、前記第1の物理チャネル、および、前記第2の物理チャネルに同一のプレコーダを適用するか否かを、前記第1の条件から前記第3の条件の、一部、または、全部に基づいて判断する
 (7)本実施形態の第3の態様は、端末装置1の通信方法であって、第1の物理チャネル、前記第1の物理チャネルに関連する第1の参照信号、第2の物理チャネル、および、前記第2の物理チャネルに関連する第2の参照信号を受信し、前記第1の参照信号、および/または、前記第2の参照信号に基づいて前記第1の物理チャネルを復調し、前記第1の参照信号、および/または、前記第2の参照信号に基づいて前記第2の物理チャネルを復調し、前記第1の物理チャネル、前記第2の物理チャネル、前記第1の参照信号、および、前記第2の参照信号の物理的特徴が同一であると想定するかどうかを、以下の第1の条件から第3の条件の一部、または、全部に基づいて判断する。
・第1の条件:前記第1の物理チャネル、および、前記第1の参照信号の送信のために用いられる送信アンテナポートのセットが、前記第2の物理チャネル、および、前記第2の参照信号の送信のために用いられる送信アンテナポートのセットと同じであるかどうか
・第2の条件:前記第1の物理チャネルのレイヤの数が、前記第2の物理チャネルのレイヤの数と同じであるかどうか
・第3の条件:前記第1の物理チャネルで送信されるトランスポートブロックの数が、前記第2の物理チャネルで送信されるトランスポートブロックの数と同じであるかどうか
 (8)本実施形態の第3の態様において、前記物理的特徴は、送信電力を含む。
 (9)本実施形態の第3の態様において、前記物理的特徴は、プレコーダを含む。
 (10)本実施形態の第3の態様において、前記第1の物理チャネル、および、前記第1の参照信号は、OFDMシンボルの第1のセットにおける第1の帯域にマップされ、
 前記第2の物理チャネル、および、前記第2の参照信号は、OFDMシンボルの第2のセットにおける第2の帯域にマップされ、
 前記第1の帯域、および、前記第2の帯域において同じプレコーダが適用されると想定しない。
 (11)本実施形態の第4の態様は、端末装置1に実装される集積回路であって、第1の物理チャネル、前記第1の物理チャネルに関連する第1の参照信号、第2の物理チャネル、および、前記第2の物理チャネルに関連する第2の参照信号を受信する受信回路と、前記第1の参照信号、および/または、前記第2の参照信号に基づいて前記第1の物理チャネルを復調し、前記第1の参照信号、および/または、前記第2の参照信号に基づいて前記第2の物理チャネルを復調する復調回路と、を備え、前記復調回路は、前記第1の物理チャネル、前記第2の物理チャネル、前記第1の参照信号、および、前記第2の参照信号の物理的特徴が同一であると想定するかどうかを、以下の第1の条件から第3の条件の一部、または、全部に基づいて判断する。
・第1の条件:前記第1の物理チャネル、および、前記第1の参照信号の送信のために用いられる送信アンテナポートのセットが、前記第2の物理チャネル、および、前記第2の参照信号の送信のために用いられる送信アンテナポートのセットと同じであるかどうか
・第2の条件:前記第1の物理チャネルのレイヤの数が、前記第2の物理チャネルのレイヤの数と同じであるかどうか
・第3の条件:前記第1の物理チャネルで送信されるトランスポートブロックの数が、前記第2の物理チャネルで送信されるトランスポートブロックの数と同じであるかどうか
 (12)本実施形態の第4の態様において、前記物理的特徴は、送信電力を含む。
 (13)本実施形態の第4の態様において、前記物理的特徴は、プレコーダを含む。
 (14)本実施形態の第4の態様において、前記第1の物理チャネル、および、前記第1の参照信号は、OFDMシンボルの第1のセットにおける第1の帯域にマップされ、前記第2の物理チャネル、および、前記第2の参照信号は、OFDMシンボルの第2のセットにおける第2の帯域にマップされ、前記復調回路は、前記第1の帯域、および、前記第2の帯域において同じプレコーダが適用されると想定しない。
 (1A)本発明の一態様は、端末装置であって、第1の物理チャネルと第2の物理チャネルを受信する受信部と、前記第1の物理チャネルを第1の参照信号に基づき復調する復調部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (2A)本発明の一態様は、前記端末装置であって、前記所定の条件が満たされない場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定されない。
 (3A)本発明の一態様は、前記端末装置であって、前記所定の条件は、さらに、前記第1の物理チャネルと前記第2の物理チャネルが送信されるサブフレームが同一である条件を含む。
 (4A)本発明の一態様は、前記端末装置であって、前記所定の条件は、さらに、前記第1の物理チャネルで送信される第1のトランスポートブロックの数と前記第2の物理チャネルで送信される第2のトランスポートブロックの数が同一である条件を含む。
 (5A)本発明の一態様は、前記端末装置であって、第1のsTTIにおける前記第1の物理チャネルは、前記第1のsTTIに含まれる第1の下りリンクグラントによってスケジュールされ、第2のsTTIにおける前記第2の物理チャネルは、前記第2のsTTIに含まれる第2の下りリンクグラントによってスケジュールされ、前記第1の物理チャネルに対応するアンテナポートは、前記第1の下りリンクグラントによって通知され、前記第2の物理チャネルに対応するアンテナポートは、前記第2の下りリンクグラントによって通知される。
 (6A)本発明の一態様は、端末装置であって、第1の物理チャネルと第2の物理チャネルを受信する受信部と、前記第1の物理チャネルを第1の参照信号に基づき復調する復調部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (7A)本発明の一態様は、前記端末装置であって、前記所定の条件が満たされない場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであると想定されない。
 (8A)本発明の一態様は、前記端末装置であって、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力が同じであることは、第1のOFDMシンボルにおける前記第1の物理チャネルの電力、および、第2のOFDMシンボルにおける前記第2の物理チャネルの電力が同じであり、第3のOFDMシンボルにおける前記第1の物理チャネルの電力、および、第4のOFDMシンボルにおける前記第2の物理チャネルの電力が同じであることを示し、前記第1のOFDMシンボルと前記第2のOFDMシンボルはCRSを含み、前記第3のOFDMシンボルと前記第4のOFDMシンボルは前記CRSを含まない。
 (9A)本発明の一態様は、前記端末装置であって、前記所定の条件は、前記第1の物理チャネルと前記第2の物理チャネルが送信されるサブフレームが同一である条件を含む。
 (10A)本発明の一態様は、前記端末装置であって、前記所定の条件は、前記第1の物理チャネルで送信されるトランスポートブロックの数と前記第2の物理チャネルで送信されるトランスポートブロックの数が同一である条件を含む。
 (11A)本発明の一態様は、前記端末装置であって、第1のsTTIにおける前記第1の物理チャネルは、前記第1のsTTIに含まれる第1の下りリンクグラントによってスケジュールされ、第2のsTTIにおける前記第2の物理チャネルは、前記第2のsTTIに含まれる第2の下りリンクグラントによってスケジュールされ、前記第1の物理チャネルに対応するアンテナポートは、前記第1の下りリンクグラントによって通知され、前記第2の物理チャネルに対応するアンテナポートは、前記第2の下りリンクグラントによって通知される。
 (12A)本発明の一態様は、基地局装置であって、第1の物理チャネルと第2の物理チャネルを変調する変調部と、前記第1の物理チャネルと前記第2の物理チャネルを送信する送信部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであり、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (13A)本発明の一態様は、前記基地局装置であって、前記所定の条件が満たされない場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが異なる。
 (14A)本発明の一態様は、前記基地局装置であって、前記所定の条件は、さらに、前記第1の物理チャネルと前記第2の物理チャネルが送信されるサブフレームが同一である条件を含む。
 (15A)本発明の一態様は、前記基地局装置であって、前記所定の条件は、さらに、前記第1の物理チャネルで送信される第1のトランスポートブロックの数と前記第2の物理チャネルで送信される第2のトランスポートブロックの数が同一である条件を含む。
 (16A)本発明の一態様は、前記基地局装置であって、第1のsTTIにおける前記第1の物理チャネルは、前記第1のsTTIに含まれる第1の下りリンクグラントによってスケジュールされ、第2のsTTIにおける前記第2の物理チャネルは、前記第2のsTTIに含まれる第2の下りリンクグラントによってスケジュールされ、前記第1の物理チャネルに対応するアンテナポートは、前記第1の下りリンクグラントによって通知され、前記第2の物理チャネルに対応するアンテナポートは、前記第2の下りリンクグラントによって通知される。
 (17A)本発明の一態様は、基地局装置であって、第1の物理チャネルと第2の物理チャネルを変調する変調部と、前記第1の物理チャネルと前記第2の物理チャネルを送信する送信部と、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであり、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (18A)本発明の一態様は、前記基地局装置であって、前記所定の条件が満たされない場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が異なる。
 (19A)本発明の一態様は、前記基地局装置であって、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力が同じであることは、第1のOFDMシンボルにおける前記第1の物理チャネルの電力、および、第2のOFDMシンボルにおける前記第2の物理チャネルの電力が同じであり、第3のOFDMシンボルにおける前記第1の物理チャネルの電力、および、第4のOFDMシンボルにおける前記第2の物理チャネルの電力が同じであることを示し、前記第1のOFDMシンボルと前記第2のOFDMシンボルはCRSを含み、前記第3のOFDMシンボルと前記第4のOFDMシンボルは前記CRSを含まない。
 (20A)本発明の一態様は、前記基地局装置であって、前記所定の条件は、前記第1の物理チャネルと前記第2の物理チャネルが送信されるサブフレームが同一である条件を含む。
 (21A)本発明の一態様は、前記基地局装置であって、前記所定の条件は、前記第1の物理チャネルで送信されるトランスポートブロックの数と前記第2の物理チャネルで送信されるトランスポートブロックの数が同一である条件を含む。
 (22A)本発明の一態様は、前記基地局装置であって、第1のsTTIにおける前記第1の物理チャネルは、前記第1のsTTIに含まれる第1の下りリンクグラントによってスケジュールされ、第2のsTTIにおける前記第2の物理チャネルは、前記第2のsTTIに含まれる第2の下りリンクグラントによってスケジュールされ、前記第1の物理チャネルに対応するアンテナポートは、前記第1の下りリンクグラントによって通知され、前記第2の物理チャネルに対応するアンテナポートは、前記第2の下りリンクグラントによって通知される。
 (23A)本発明の一態様は、端末装置に用いられる通信方法であって、第1の物理チャネルと第2の物理チャネルを受信するステップと、前記第1の物理チャネルを第1の参照信号に基づき復調するステップと、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (24A)本発明の一態様は、端末装置に用いられる通信方法であって、第1の物理チャネルと第2の物理チャネルを受信するステップと、前記第1の物理チャネルを第1の参照信号に基づき復調するステップと、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであると想定され、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (25A)本発明の一態様は、基地局装置に用いられる通信方法であって、第1の物理チャネルと第2の物理チャネルを変調するステップと、前記第1の物理チャネルと前記第2の物理チャネルを送信するステップと、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであり、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 (26A)本発明の一態様は、基地局装置に用いられる通信方法であって、第1の物理チャネルと第2の物理チャネルを変調するステップと、前記第1の物理チャネルと前記第2の物理チャネルを送信するステップと、を備え、所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであり、前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む。
 これにより、端末装置は効率的に下りリンク信号を受信することができる。また、基地局装置は効率的に下りリンク信号を送信することができる。
 本発明の一態様に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明の一態様に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの少なくとも一つを備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBに対する上位ノードの機能の少なくとも一つを有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明の一態様は、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
1(1A、1B、1C) 端末装置
3 基地局装置
101 上位層処理部
103 制御部
105 受信部
107 送信部
109 送受信アンテナ
1011 無線リソース制御部
1013 スケジューリング部
1051 復号化部
1053 復調部
1055 多重分離部
1057 無線受信部
1059 チャネル測定部
1071 符号化部
1073 PUSCH生成部
1075 PUCCH生成部
1077 多重部
1079 無線送信部
10711 上りリンク参照信号生成部
301 上位層処理部
303 制御部
305 受信部
307 送信部
309 送受信アンテナ
3011 無線リソース制御部
3013 スケジューリング部
3051 データ復調/復号部
3053 制御情報復調/復号部
3055 多重分離部
3057 無線受信部
3059 チャネル測定部
3071 符号化部
3073 変調部
3075 多重部
3077 無線送信部
3079 下りリンク参照信号生成部
8000 送信プロセス
8001 符号化処理部
8002 スクランブル処理部
8003 変調マップ処理部
8004 レイヤマップ処理部
8005 送信プレコード処理部
8006 プレコード処理部
8007 リソースエレメントマップ処理部
8008 ベースバンド信号生成処理部
500 PDCCH
501 EPDCCH
502 PDSCH
503、505、507、509 sPDCCH
504、506、508、510 sPDSCH
511 EPDCCH帯域幅
512 sTTI帯域幅
513 PDCCHの長さ(シンボル数)
514、516、518、520 sPDCCHの長さ(シンボル数)
515、517、519、521 sPDSCHの長さ(シンボル数)
522、523、524、525 sTTIの長さ(シンボル数)
526 EPDCCHの長さ(シンボル数)

Claims (26)

  1.  第1の物理チャネルと第2の物理チャネルを受信する受信部と、
     前記第1の物理チャネルを第1の参照信号に基づき復調する復調部と、を備え、
     所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定され、
     前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む
     端末装置。
  2.  前記所定の条件が満たされない場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定されない
     請求項1に記載の端末装置。
  3.  前記所定の条件は、さらに、前記第1の物理チャネルと前記第2の物理チャネルが送信されるサブフレームが同一である条件を含む
     請求項1記載の端末装置。
  4.  前記所定の条件は、さらに、前記第1の物理チャネルで送信される第1のトランスポートブロックの数と前記第2の物理チャネルで送信される第2のトランスポートブロックの数が同一である条件を含む
     請求項1に記載の端末装置。
  5.  第1のsTTIにおける前記第1の物理チャネルは、前記第1のsTTIに含まれる第1の下りリンクグラントによってスケジュールされ、
     第2のsTTIにおける前記第2の物理チャネルは、前記第2のsTTIに含まれる第2の下りリンクグラントによってスケジュールされ、
     前記第1の物理チャネルに対応するアンテナポートは、前記第1の下りリンクグラントによって通知され、
     前記第2の物理チャネルに対応するアンテナポートは、前記第2の下りリンクグラントによって通知される
     請求項1に記載の端末装置。
  6.  第1の物理チャネルと第2の物理チャネルを受信する受信部と、
     前記第1の物理チャネルを第1の参照信号に基づき復調する復調部と、を備え、
     所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであると想定され、
     前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む
     端末装置。
  7.  前記所定の条件が満たされない場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであると想定されない
     請求項6に記載の端末装置。
  8.  前記第1の物理チャネルと前記第2の物理チャネルに適用される電力が同じであることは、第1のOFDMシンボルにおける前記第1の物理チャネルの電力、および、第2のOFDMシンボルにおける前記第2の物理チャネルの電力が同じであり、第3のOFDMシンボルにおける前記第1の物理チャネルの電力、および、第4のOFDMシンボルにおける前記第2の物理チャネルの電力が同じであることを示し、
     前記第1のOFDMシンボルと前記第2のOFDMシンボルはCRSを含み、
     前記第3のOFDMシンボルと前記第4のOFDMシンボルは前記CRSを含まない
     請求項6に記載の端末装置。
  9.  前記所定の条件は、前記第1の物理チャネルと前記第2の物理チャネルが送信されるサブフレームが同一である条件を含む
     請求項6に記載の端末装置。
  10.  前記所定の条件は、前記第1の物理チャネルで送信されるトランスポートブロックの数と前記第2の物理チャネルで送信されるトランスポートブロックの数が同一である条件を含む
     請求項6に記載の端末装置。
  11.  第1のsTTIにおける前記第1の物理チャネルは、前記第1のsTTIに含まれる第1の下りリンクグラントによってスケジュールされ、
     第2のsTTIにおける前記第2の物理チャネルは、前記第2のsTTIに含まれる第2の下りリンクグラントによってスケジュールされ、
     前記第1の物理チャネルに対応するアンテナポートは、前記第1の下りリンクグラントによって通知され、
     前記第2の物理チャネルに対応するアンテナポートは、前記第2の下りリンクグラントによって通知される
     請求項6に記載の端末装置。
  12.  第1の物理チャネルと第2の物理チャネルを変調する変調部と、
     前記第1の物理チャネルと前記第2の物理チャネルを送信する送信部と、を備え、
     所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであり、
     前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む
     基地局装置。
  13.  前記所定の条件が満たされない場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが異なる
     請求項12に記載の基地局装置。
  14.  前記所定の条件は、さらに、前記第1の物理チャネルと前記第2の物理チャネルが送信されるサブフレームが同一である条件を含む
     請求項12記載の基地局装置。
  15.  前記所定の条件は、さらに、前記第1の物理チャネルで送信される第1のトランスポートブロックの数と前記第2の物理チャネルで送信される第2のトランスポートブロックの数が同一である条件を含む
     請求項12に記載の基地局装置。
  16.  第1のsTTIにおける前記第1の物理チャネルは、前記第1のsTTIに含まれる第1の下りリンクグラントによってスケジュールされ、
     第2のsTTIにおける前記第2の物理チャネルは、前記第2のsTTIに含まれる第2の下りリンクグラントによってスケジュールされ、
     前記第1の物理チャネルに対応するアンテナポートは、前記第1の下りリンクグラントによって通知され、
     前記第2の物理チャネルに対応するアンテナポートは、前記第2の下りリンクグラントによって通知される
     請求項12に記載の基地局装置。
  17.  第1の物理チャネルと第2の物理チャネルを変調する変調部と、
     前記第1の物理チャネルと前記第2の物理チャネルを送信する送信部と、を備え、
     所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであり、
     前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む
     基地局装置。
  18.  前記所定の条件が満たされない場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が異なる
     請求項17に記載の基地局装置。
  19.  前記第1の物理チャネルと前記第2の物理チャネルに適用される電力が同じであることは、第1のOFDMシンボルにおける前記第1の物理チャネルの電力、および、第2のOFDMシンボルにおける前記第2の物理チャネルの電力が同じであり、第3のOFDMシンボルにおける前記第1の物理チャネルの電力、および、第4のOFDMシンボルにおける前記第2の物理チャネルの電力が同じであることを示し、
     前記第1のOFDMシンボルと前記第2のOFDMシンボルはCRSを含み、
     前記第3のOFDMシンボルと前記第4のOFDMシンボルは前記CRSを含まない
     請求項17に記載の基地局装置。
  20.  前記所定の条件は、前記第1の物理チャネルと前記第2の物理チャネルが送信されるサブフレームが同一である条件を含む
     請求項17に記載の基地局装置。
  21.  前記所定の条件は、前記第1の物理チャネルで送信されるトランスポートブロックの数と前記第2の物理チャネルで送信されるトランスポートブロックの数が同一である条件を含む
     請求項17に記載の基地局装置。
  22.  第1のsTTIにおける前記第1の物理チャネルは、前記第1のsTTIに含まれる第1の下りリンクグラントによってスケジュールされ、
     第2のsTTIにおける前記第2の物理チャネルは、前記第2のsTTIに含まれる第2の下りリンクグラントによってスケジュールされ、
     前記第1の物理チャネルに対応するアンテナポートは、前記第1の下りリンクグラントによって通知され、
     前記第2の物理チャネルに対応するアンテナポートは、前記第2の下りリンクグラントによって通知される
     請求項17に記載の基地局装置。
  23.  端末装置に用いられる通信方法であって、
     第1の物理チャネルと第2の物理チャネルを受信するステップと、
     前記第1の物理チャネルを第1の参照信号に基づき復調するステップと、を備え、
     所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであると想定され、
     前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む
     通信方法。
  24.  端末装置に用いられる通信方法であって、
     第1の物理チャネルと第2の物理チャネルを受信するステップと、
     前記第1の物理チャネルを第1の参照信号に基づき復調するステップと、を備え、
     所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであると想定され、
     前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む
     通信方法。
  25.  基地局装置に用いられる通信方法であって、
     第1の物理チャネルと第2の物理チャネルを変調するステップと、
     前記第1の物理チャネルと前記第2の物理チャネルを送信するステップと、を備え、
     所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用されるプレコーダが同じであり、
     前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む
     通信方法。
  26.  基地局装置に用いられる通信方法であって、
     第1の物理チャネルと第2の物理チャネルを変調するステップと、
     前記第1の物理チャネルと前記第2の物理チャネルを送信するステップと、を備え、
     所定の条件が満たされる場合に、前記第1の物理チャネルと前記第2の物理チャネルに適用される電力(送信電力または受信電力)が同じであり、
     前記所定の条件は、前記第1の物理チャネルに対応するアンテナポートと前記第2の物理チャネルに対応するアンテナポートが同一である条件を含む
     通信方法。
PCT/JP2017/021765 2016-06-13 2017-06-13 端末装置、基地局装置、通信方法、および、集積回路 WO2017217391A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-116908 2016-06-13
JP2016116908A JP2019135800A (ja) 2016-06-13 2016-06-13 端末装置、基地局装置、通信方法、および、集積回路

Publications (1)

Publication Number Publication Date
WO2017217391A1 true WO2017217391A1 (ja) 2017-12-21

Family

ID=60664613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021765 WO2017217391A1 (ja) 2016-06-13 2017-06-13 端末装置、基地局装置、通信方法、および、集積回路

Country Status (2)

Country Link
JP (1) JP2019135800A (ja)
WO (1) WO2017217391A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273288A (zh) * 2018-11-08 2021-08-17 株式会社Ntt都科摩 用户终端以及无线通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089188A (ja) * 2007-10-01 2009-04-23 Ntt Docomo Inc 移動通信システムにおけるユーザ装置、基地局装置及び方法
JP2013511168A (ja) * 2009-09-30 2013-03-28 インターデイジタル パテント ホールディングス インコーポレイテッド アップリンクのマルチアンテナ送信のための方法および装置
JP2014030135A (ja) * 2012-07-31 2014-02-13 Ntt Docomo Inc 基地局装置、ユーザ端末、通信システム及び通信制御方法
JP2016503611A (ja) * 2012-11-13 2016-02-04 エルジー エレクトロニクス インコーポレイティド データ送信方法及び装置、並びにデータ送信方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089188A (ja) * 2007-10-01 2009-04-23 Ntt Docomo Inc 移動通信システムにおけるユーザ装置、基地局装置及び方法
JP2013511168A (ja) * 2009-09-30 2013-03-28 インターデイジタル パテント ホールディングス インコーポレイテッド アップリンクのマルチアンテナ送信のための方法および装置
JP2014030135A (ja) * 2012-07-31 2014-02-13 Ntt Docomo Inc 基地局装置、ユーザ端末、通信システム及び通信制御方法
JP2016503611A (ja) * 2012-11-13 2016-02-04 エルジー エレクトロニクス インコーポレイティド データ送信方法及び装置、並びにデータ送信方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273288A (zh) * 2018-11-08 2021-08-17 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
JP2019135800A (ja) 2019-08-15

Similar Documents

Publication Publication Date Title
JP7262544B2 (ja) 端末装置、基地局装置、および、通信方法
JP6723388B2 (ja) 基地局装置、端末装置およびその通信方法
CN110720189B (zh) 终端装置、基站装置以及通信方法
WO2018030494A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2020057825A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2019045115A1 (ja) 端末装置、基地局装置、および、通信方法
CN112005607B (zh) 终端装置、基站装置以及通信方法
JP2020057827A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2017002794A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
CN111316729B (zh) 终端装置以及基站装置
WO2018230605A1 (ja) 端末装置、基地局装置、および、通信方法
CN111345002B (zh) 终端装置、基站装置以及通信方法
JP2013098834A (ja) 基地局装置、移動局装置、無線通信方法、無線通信システムおよび集積回路
CN109952798B (zh) 终端装置、基站装置、通信方法以及集成电路
WO2018016619A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2018051707A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2015129797A1 (ja) 端末装置、集積回路、および、無線通信方法
WO2019088254A1 (ja) 端末装置、基地局装置、および、通信方法
WO2018061576A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JPWO2018124178A1 (ja) 端末装置、基地局装置、および、通信方法
WO2019049559A1 (ja) 端末装置、基地局装置、および、通信方法
JP2020123758A (ja) 端末装置、基地局装置、および、通信方法
WO2017002804A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017217391A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2017002801A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP