WO2017217160A1 - Planar light-emitting device - Google Patents

Planar light-emitting device Download PDF

Info

Publication number
WO2017217160A1
WO2017217160A1 PCT/JP2017/018142 JP2017018142W WO2017217160A1 WO 2017217160 A1 WO2017217160 A1 WO 2017217160A1 JP 2017018142 W JP2017018142 W JP 2017018142W WO 2017217160 A1 WO2017217160 A1 WO 2017217160A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode
layer
surface light
substrate
Prior art date
Application number
PCT/JP2017/018142
Other languages
French (fr)
Japanese (ja)
Inventor
充良 内藤
賢嗣 平岩
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017217160A1 publication Critical patent/WO2017217160A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure

Definitions

  • the present invention relates to a surface light emitting device.
  • the present inventor has found that the above object of providing a surface light emitting device capable of realizing a large area light emitting region with good light emission is achieved by the present invention described below.
  • positioned there can be formed suitably. Therefore, of the adjacent surface light emitting elements 21, the second electrode 15 of one surface light emitting element 21 and the first electrode 13 of the other surface light emitting element 21 are respectively connected to the adjacent surface light emitting elements 21. It is suitably connected between the organic light emitting layers 14 provided. Therefore, even if the distance between the adjacent surface light emitting elements 21 is shortened, the plurality of surface light emitting elements 21 are electrically connected suitably between the adjacent surface light emitting elements 21. For these reasons, the surface light emitting device 10 can realize a large area light emitting region with good light emission.
  • the substrate 11 is not particularly limited as long as it is a substrate used for a surface light emitting element such as an organic EL element.
  • the second electrode 15, which is an electrode far from the substrate 11 is made of a light-transmitting thin film metal layer, so that light is not extracted from the substrate 11 side and is opposite to the substrate 11. Since light may be extracted from the side, it may or may not have translucency.
  • the substrate 11 is a transparent substrate, a so-called transparent substrate.
  • the transparent substrate include a glass substrate, a resin film, and a resin substrate.
  • the method for forming the gas barrier layer varies depending on the material constituting the gas barrier layer, and examples thereof include a method using a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, and a sputtering method. Can be mentioned.
  • a plurality of the surface light emitting elements 21 are arranged on the substrate 11 as described above.
  • the plurality of surface light emitting elements 21 are respectively connected to the first electrode 13 on the side close to the substrate 11, the second electrode 15 on the side far from the substrate 12, the first electrode 13, and the second electrode 15. And an organic light emitting layer 14 sandwiched therebetween.
  • the said surface light emitting element 21 will not be specifically limited if it is provided with such a structure and is a light emitting element from which planar light emission is obtained.
  • Examples of the surface light emitting element 21 include an organic EL (Electro-Luminescence) element called an organic light emitting diode (OLED).
  • the surface light emitting element 21 generally includes a sealing layer 16 so as to cover the first electrode 13, the second electrode 15, and the organic light emitting layer 14. You may have.
  • the second electrode 15 is not particularly limited as long as it can be used as an electrode of a surface light emitting element, for example, a cathode, and is made of a light-transmitting thin film metal layer.
  • the second electrode 15 include a thin film metal layer having a thickness capable of transmitting visible light.
  • the material which comprises the said 2nd electrode 15 contains the metal which can permeate
  • Specific examples of the electrode material constituting the second electrode 15 include silver (Ag), aluminum (Al), and gold (Au).
  • the thin film metal layer that is the second electrode 15 examples include a film containing Ag as a main component, an indium tin oxide (ITO) film, an indium oxide / zinc oxide (IZO) film, and the like, such as an Ag thin film. .
  • the second electrode 15 is preferably a film containing Ag as a main component from the viewpoint of high electrical conductivity.
  • the film containing Ag as a main component examples include a film made of an alloy containing Ag as a main component (an alloy containing 50 mass% or more of Ag).
  • the alloy having Ag as a main component include silver magnesium, silver copper, silver palladium, silver palladium copper, silver indium, silver aluminum, and silver gold.
  • the method for forming the second electrode 15 is not particularly limited as long as the second electrode can be formed.
  • the second electrode 15 is formed by a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method, a sputtering method, or a chemical vapor deposition (CVD) method. And a method using a dry process such as the above. More specifically, the second electrode 15 is formed by forming a thin-film metal layer so as to form a pattern having a desired shape by a method such as vapor deposition or sputtering of the electrode material.
  • the pattern is formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. And the like.
  • the organic light emitting layer 14 is a layer having a function of emitting light when a voltage is applied, and is not particularly limited as long as it is a layer used as an organic light emitting layer of a surface light emitting element.
  • the organic light emitting layer 14 may be formed by laminating not only a light emitting functional layer directly related to light emission but also other layers. Examples of the other layers include a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer. In order to describe an example of this stacked state, an anode and a cathode are also described as a configuration of the surface light emitting element.
  • the structure of the surface light emitting device is anode / light emitting functional layer / cathode, anode / hole transport layer / light emitting functional layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / Light emitting functional layer / electron transport layer / cathode, anode / hole injection layer / light emitting functional layer / electron transport layer / electron injection layer / cathode, and anode / hole injection layer / light emitting functional layer / electron injection layer / cathode etc. Can be mentioned.
  • the electron injection layer is not particularly limited as long as it has an electron injection property for injecting electrons into the light emitting functional layer.
  • Examples of the electron injection layer include a general electron injection layer used in a surface light emitting device.
  • the electron transport layer is not particularly limited as long as it has an electron transport property for transporting electrons to the light emitting functional layer.
  • Examples of the electron transport layer include a general electron injection layer used in a surface light emitting device.
  • the electron injection layer and the electron transport layer may be an electron transport injection layer having both electron injection properties and electron transport properties.
  • the method for forming the organic light emitting layer 14 is not particularly limited as long as the organic light emitting layer 14 can be formed.
  • the materials constituting the respective layers are sequentially formed by using known thin film forming methods such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, and a printing method. The method of forming etc. are mentioned.
  • the underlayer 12 is in contact with the second electrode 15 of the one surface light emitting element 21 existing between the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21, and the second electrode 15.
  • the substrate 11 are not particularly limited.
  • the base layer 12 includes not only the second electrode 15 of the one surface light emitting element 21 between the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21,
  • the organic light emitting layer 14 of the one surface light emitting element 21 and the first electrode 13 of the other surface light emitting element 21 are preferably in contact with each other.
  • the thin film metal layer which is the second electrode 15 disposed between the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21 comes into contact with the base layer 12 more reliably, and the second The electrode 15 can be formed more suitably.
  • the first electrode 13 is a thin film metal layer
  • the first electrode 13, particularly the portion close to the second electrode 15, can be suitably formed. Thereby, the electrical connection between the first electrode 13 and the second electrode 15 can be more suitably performed. Therefore, a surface light-emitting device capable of realizing a large-area light-emitting region with better light emission can be obtained.
  • the said underlayer 12 exists between two or more organic light emitting layers 14 with which each of the said adjacent surface light emitting elements 21 is provided.
  • the thin film metal layer which is the second electrode 15 disposed between the adjacent surface light emitting elements 21, comes into more reliable contact with the base layer 12, and the second electrode 15 can be more suitably formed. Therefore, a surface light-emitting device capable of realizing a large-area light-emitting region with better light emission can be obtained.
  • the underlayer 12 is preferably a layer containing any one of calcium, zinc sulfide, a nitrogen-containing compound, a metal oxide and potassium fluoride, as described above, and a combination of two or more. Even a layer containing
  • the base layer 12 has translucency.
  • the ZnS-containing layer can also function as an optical adjustment layer for improving light extraction efficiency.
  • examples of compounds other than ZnS include materials having a refractive index higher than that of the substrate 11.
  • the ZnS content is preferably 0.1 to 95% by mass with respect to the material constituting the ZnS-containing layer, and 50 to 90 The mass is more preferably 60% to 85% by mass.
  • the other compound is contained in an appropriate amount, so that the occurrence of cracks in the ZnS-containing layer can be suppressed.
  • the deposition rate of the ZnS-containing layer such as the sputtering rate, can be increased.
  • the method for forming the ZnS-containing layer is not particularly limited as long as the ZnS-containing layer can be formed.
  • a vapor deposition method for example, a vapor deposition method, a sputtering method, an ion plating method, a chemical vapor deposition (CVD) method, etc.
  • a method using a general vapor deposition method for example, a vapor deposition method, a sputtering method, an ion plating method, a chemical vapor deposition (CVD) method, etc.
  • a method using a general vapor deposition method for example, a vapor deposition method, a sputtering method, an ion plating method, a chemical vapor deposition (CVD) method, etc.
  • a method using a general vapor deposition method for example, a vapor deposition method, a sputtering method, an ion plating method, a chemical vapor deposition (CVD) method, etc.
  • the layer containing a nitrogen-containing compound (nitrogen-containing compound-containing layer) as the underlayer 12 is not particularly limited as long as it contains a nitrogen-containing compound, for example.
  • the nitrogen-containing compound is not particularly limited as long as it is a compound containing a nitrogen atom in the molecule.
  • Examples of the nitrogen-containing compound include a compound containing a nitrogen atom in the molecule, and more specifically, a compound represented by the following formula (1) and a compound represented by the following formula (2). Etc.
  • the method for forming the nitrogen-containing compound-containing layer is not particularly limited as long as the nitrogen-containing compound-containing layer can be formed.
  • Specific examples of the method for forming the nitrogen-containing compound-containing layer include a method using a wet process such as an ink-jet method, a coating method, and a dip method, a vapor deposition method such as a vacuum vapor deposition method, a sputtering method, and a chemical vapor deposition ( And a method using a dry process such as a CVD method.
  • the formation method of the said metal oxide content layer will not be specifically limited if the said metal oxide content layer can be formed, For example, a vapor deposition method, a sputtering method, an ion plating method, chemical vapor deposition (CVD) ) Method and the like, and a method using a general vapor deposition method.
  • a vapor deposition method for example, a vapor deposition method, a sputtering method, an ion plating method, chemical vapor deposition (CVD) ) Method and the like, and a method using a general vapor deposition method.
  • the sealing layer 16 has a light-transmitting property and is a sealing layer used for a surface light emitting element such as an organic EL element.
  • the sealing layer 16 may be disposed so as to cover a region where the surface light emitting element 21 emits light. However, it is not particularly limited, and may have a concave plate shape or a flat plate shape. Specific examples of the sealing layer 16 include a glass substrate, a resin film, and a resin substrate.
  • the sealing layer 16 preferably includes a gas barrier layer for the purpose of blocking oxygen, moisture, etc. in the atmosphere.
  • the material constituting the gas barrier layer include metal oxides and metal nitrides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide. These materials have not only a water vapor barrier function but also an oxygen barrier function. Among these materials, silicon nitride and silicon oxynitride are particularly preferable from the viewpoint of good barrier properties, solvent resistance, and transparency.
  • the gas barrier layer may have a multilayer structure as necessary. Moreover, the formation method of a gas barrier layer is not specifically limited.
  • the method for forming the gas barrier layer varies depending on the material constituting the gas barrier layer, and examples thereof include a method using a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, and a sputtering method. Can be mentioned.
  • a vacuum deposition method for example, a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method.
  • Atmospheric pressure plasma polymerization method plasma CVD method, laser CVD method, thermal CVD method, coating method and the like.
  • the second electrode 15 is formed at a predetermined position on the organic light emitting layer 14.
  • the position where the second electrode 15 is formed is on the organic light emitting layer 14, and the second electrode 15 of one surface light emitting element 21 is connected to the first electrode 13 of one surface light emitting element 21 and the other surface light emitting element. It is also formed between the element 21, is in contact with the base layer 12, and is in contact with the first electrode 13 of the other surface light emitting element 21. Between the first electrode 13 of one surface light emitting element 21 and the other surface light emitting element 21, the second electrode 15 of one surface light emitting element 21 is in contact with the base layer 12.
  • the second electrode which is a thin film metal layer, is not directly disposed on the substrate, but is disposed via the base layer. For this reason, the second electrode far from the substrate does not need to be formed on the substrate far from the second electrode, and is formed on the base layer. From this, even if the distance between adjacent surface emitting elements is shortened, the thin film metal layer which is the 2nd electrode arrange
  • the base layer is preferably a layer containing at least one selected from the group consisting of calcium, zinc sulfide, nitrogen-containing compounds, metal oxides, and potassium fluoride.
  • such a base layer is interposed between the substrate and the second electrode, whereby the film quality of the thin film metal layer as the second electrode is brought into direct contact with the substrate.
  • the film quality of the thin metal layer can be improved.
  • positioned between adjacent surface light emitting elements can be formed more suitably, a some surface light emitting element is electrically connected more suitably. Therefore, a large-area light emitting region can be realized with better light emission.
  • the first electrode is made of a light-transmitting thin film metal layer.
  • the first electrode of the other surface light-emitting element not only the first electrode of the other surface light-emitting element but also the second electrode of the one surface light-emitting element, the organic EL layer provided in each of the adjacent surface light-emitting elements, An underlayer is disposed so as to be in contact with the organic light emitting layer of one of the surface light emitting elements.
  • the thin film metal layer which is the second electrode disposed between the adjacent surface light emitting elements, comes into more reliable contact with the base layer, and the second electrode can be more suitably formed.
  • the first electrode is a thin film metal layer
  • the first electrode, particularly the portion close to the second electrode can be suitably formed. Thereby, the electrical connection between the first electrode and the second electrode can be more suitably performed. Therefore, a large-area light emitting region can be realized with better light emission.
  • the thin film metal layer which is the second electrode disposed between the adjacent surface light emitting elements, comes into more reliable contact with the base layer, and the second electrode is more suitably formed. it can. Therefore, a large-area light emitting region can be realized with better light emission.
  • Example 1 A surface emitting device was manufactured by a manufacturing method as shown in FIGS.
  • a first made of silver having a thickness of 150 nm is formed through a mask so as to be formed at a position as shown in FIGS. 2B and 3B.
  • the electrode 13 was formed by a vacuum evaporation method.
  • a hole transport injection layer obtained by the following manufacturing method through a mask so as to be formed on the first electrode 13 at a position as shown in FIGS. 2 (c) and 3 (c). Then, an organic light emitting layer 14 in which a light emitting functional layer, a hole blocking layer, and an electron transport injection layer were laminated was formed by a vacuum deposition method.
  • a heating board containing the compound ( ⁇ -NPD) represented by the above formula (2) is energized and heated to form a hole injecting layer and hole transport composed of ⁇ -NPD.
  • a hole transport injection layer that also serves as a layer was formed on the substrate 11 on which the first electrode 13 was formed. At this time, the deposition rate was set to 0.1 to 0.2 nm / second. The thickness of the hole transport injection layer was 20 nm.
  • a heating board containing a compound represented by the following formula (3) (host material H4)
  • a heating board containing a compound represented by the following formula (4) (phosphorescent compound Ir-4)
  • phosphorescent compound Ir-4 100: 6
  • the film thickness of the light emitting functional layer was 30 nm.
  • a heating board containing a compound (BAlq) represented by the following formula (5) is energized and heated to form a hole blocking layer made of BAlq on the light emitting functional layer. Filmed. At this time, the deposition rate was set to 0.1 to 0.2 nm / second. The thickness of the hole blocking layer was 10 nm.
  • the laminate obtained as described above was used as an organic light emitting layer.
  • the second electrode 15 made of silver having a thickness of 15 nm on the organic light emitting layer 14 through a mask so as to be formed at a position as shown in FIG. 2C and FIG. It formed by the vapor deposition method.
  • the second electrode was a light-transmitting thin film metal layer.
  • the sealing layer 16 was formed so as to cover one surface light emitting element 21 and the other surface light emitting element 21. Specifically, bonding is performed between a glass plate of 90 mm ⁇ 90 mm and a thickness of 300 ⁇ m and each surface light emitting element 21 via a thermosetting resin (TB1655 manufactured by Three Bond Co.) as an adhesive. The combined material was heated in a 110 ° C. oven for 40 minutes. By doing so, the adhesive was hardened and each surface light emitting element was sealed. By doing so, the surface emitting device 10 according to Example 1 was obtained.
  • each surface light emitting element was formed to the edge part.
  • the glass plate used for sealing is 90 mm ⁇ 90 mm, the electrode of each surface light emitting element is exposed at the end of the surface light emitting device 10.
  • Example 2 Example 1 except that instead of the calcium-containing layer, a KF-containing layer made of potassium fluoride (KF) having a thickness of 1 mm was formed by a vacuum deposition method through the same mask as that for forming the calcium-containing layer. In the same manner as described above, the surface light-emitting device 10 according to Example 2 was manufactured.
  • KF potassium fluoride
  • Example 4 A surface light-emitting device 10 according to Example 4 was manufactured in the same manner as in Example 1 except that the base layer was formed in a range of 90 mm ⁇ 90 mm.
  • Example 5 A surface light emitting device 10 according to Example 5 was manufactured in the same manner as Example 1 except that the first electrode 13 was formed of indium oxide / zinc oxide (IZO).
  • IZO indium oxide / zinc oxide
  • a surface emitting device 10 according to a comparative example was manufactured in the same manner as in Example 1 except that the base layer was not formed.
  • each surface light emitting device 10 a voltage was applied between the first electrode 13 and the second electrode 15 of one surface light emitting element 21 (only the light emitting region 1 was energized). Further, a voltage was applied between the first electrode 13 and the second electrode 15 of the other surface light emitting element 21 (only the light emitting region 2 was energized). Finally, a voltage was applied between the first electrode 13 of one surface light emitting element 21 and the second electrode 15 of the other surface light emitting element 21 (energized in series connection). The light emission state in each energization was confirmed visually. If it was emitting light, it was evaluated as “ ⁇ ”, and if it was not emitting light, it was evaluated as “x”.
  • a surface light emitting device capable of realizing a large area light emitting region with good light emission.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

One aspect of the present invention is a planar light-emitting device provided with a substrate, and a plurality of planar light-emitting elements disposed on the substrate. Each of the plurality of planar light-emitting elements is provided with a first electrode on the side close to the substrate, a second electrode on the side far from the substrate, and an organic light-emitting layer sandwiched between the first electrode and the second electrode. The second electrode comprises a thin film metal layer that is light-transmissive. Among adjacent planar light-emitting elements, the second electrode of one planar light-emitting element and the first electrode of another planar light-emitting element are connected via the organic light-emitting layer provided to each of the adjacent planar light-emitting elements. The planar light-emitting device is also provided with a base layer present between the organic light-emitting layers provided in the adjacent light-emitting elements, the base layer being interposed between the second electrode and the substrate while being in contact with the second electrode of the one planar light-emitting element.

Description

面発光装置Surface emitting device
 本発明は、面発光装置に関する。 The present invention relates to a surface light emitting device.
 有機発光ダイオード(Organic Light Emitting Diodes:OLED)等と呼ばれる有機EL(Electro-Luminescence)素子が発光素子として知られている。また、有機EL素子は、面状の発光が得られ、さらに、省電力及び軽量であること等から、ディスプレイ装置や照明装置等に用いられることが検討されている。 An organic EL (Electro-Luminescence) element called an organic light emitting diode (OLED) or the like is known as a light emitting element. In addition, the organic EL element is considered to be used for a display device, a lighting device, and the like because planar light emission is obtained, and further, it is power saving and lightweight.
 また、ディスプレイ装置や照明装置の大面積化の要求等に応えるために、有機EL素子を用いた面発光装置も、発光する領域の大面積化が求められている。しかしながら、有機EL素子は、発光領域を大面積化させると、輝度むら等が発生するという課題がある。有機EL素子は、一般的に、電圧を印加すると発光する機能を有する有機発光層と、この有機発光層を挟持する一対の電極とを備える。このような構成を有する有機EL素子は、有機発光層に印加される電圧が、有機EL素子への給電点からの距離に応じて変動するため、発光領域における位置によって、有機発光層から照射される光の強さが異なる傾向がある。そして、有機EL素子は、有機発光層で発生した光を素子外に放射するため、前記一対の電極のうち、少なくとも一方の電極を透明電極とすることが一般的である。この透明電極は、電気抵抗が高いため、有機EL素子への給電点からの距離に応じた、有機発光層に印加される電圧の変動が顕著となる。これらのことから、有機EL素子は、発光領域を大面積化させると、輝度むら等が発生することになる。よって、有機EL素子を用いた面発光装置は、単一の有機EL素子を発光素子として用いただけでは、輝度むらの発生等を抑制させ、かつ、発光領域を大面積化させることは困難であった。 Also, in order to meet the demand for increasing the area of display devices and lighting devices, surface emitting devices using organic EL elements are also required to increase the area of light emission. However, the organic EL element has a problem in that unevenness of luminance or the like occurs when the light emitting region is enlarged. An organic EL element generally includes an organic light emitting layer having a function of emitting light when a voltage is applied, and a pair of electrodes that sandwich the organic light emitting layer. In the organic EL element having such a configuration, the voltage applied to the organic light emitting layer varies depending on the distance from the feeding point to the organic EL element, and therefore, the organic light emitting layer is irradiated from the organic light emitting layer depending on the position in the light emitting region. There is a tendency for the intensity of light to be different. And since an organic EL element radiates | emits the light which generate | occur | produced in the organic light emitting layer outside the element, it is common to use at least one electrode as a transparent electrode among said pair of electrodes. Since this transparent electrode has a high electric resistance, the fluctuation of the voltage applied to the organic light emitting layer according to the distance from the feeding point to the organic EL element becomes significant. For these reasons, in the organic EL element, when the light emitting region is enlarged, luminance unevenness or the like occurs. Therefore, in a surface light emitting device using an organic EL element, it is difficult to suppress the occurrence of luminance unevenness and increase the area of the light emitting region only by using a single organic EL element as the light emitting element. It was.
 そこで、有機EL素子を用いた面発光装置として、発光領域の大面積化を実現するために、複数の発光領域によって、擬似的に大面積にする方法が知られている。この方法としては、例えば、特許文献1及び特許文献2に記載の方法等が挙げられる。 Therefore, as a surface light-emitting device using an organic EL element, a method of increasing a pseudo area by using a plurality of light-emitting regions is known in order to realize a large light-emitting region. Examples of this method include the methods described in Patent Document 1 and Patent Document 2.
 特許文献1には、複数の発光領域が設けられ、各発光領域は、それぞれ、透明電極及び他の電極に挟持された有機層を備え、物理的に隣接する発光領域の透明電極間には絶縁部が設けられ、複数の発光領域が電気的に直列に接続されている有機電界発光素子が記載されている。 In Patent Document 1, a plurality of light emitting regions are provided, and each light emitting region includes an organic layer sandwiched between a transparent electrode and another electrode, and is insulated between the transparent electrodes of physically adjacent light emitting regions. An organic electroluminescent element is described in which a plurality of light emitting regions are electrically connected in series.
 特許文献1によれば、有機層の各位置における電流密度が実質的に均一であり、不良が極めて生じにくい有機電界発光素子を提供することができる旨が開示されている。 According to Patent Document 1, it is disclosed that the current density at each position of the organic layer is substantially uniform, and it is possible to provide an organic electroluminescence device in which defects are hardly caused.
 また、特許文献2には、基板と、少なくとも1つの直列接続有機EL素子群と、少なくとも1つの色変換層とを有する有機ELデバイスであって、前記直列接続有機EL群は、前記基板側から第1電極、有機EL層、及び第2電極をこの順に有する複数の有機EL素子から構成され、第1電極及び第2電極の少なくとも一方は透明電極であり、前記直列接続有機EL素子群を構成する有機EL素子のそれぞれの第1電極は、隣接する有機EL素子の第2電極と電気的に接続されており、前記少なくとも1つの色変換層は有機EL素子間の少なくとも一部に延在している有機ELデバイスが記載されている。 Patent Document 2 discloses an organic EL device having a substrate, at least one series-connected organic EL element group, and at least one color conversion layer, and the series-connected organic EL group is formed from the substrate side. It comprises a plurality of organic EL elements having a first electrode, an organic EL layer, and a second electrode in this order, and at least one of the first electrode and the second electrode is a transparent electrode, constituting the series-connected organic EL element group Each first electrode of the organic EL element to be connected is electrically connected to a second electrode of the adjacent organic EL element, and the at least one color conversion layer extends to at least a part between the organic EL elements. An organic EL device is described.
 特許文献2によれば、発光効率に優れ、かつ低コストな光源が可能となる旨が開示されている。 According to Patent Document 2, it is disclosed that a light source having excellent luminous efficiency and low cost is possible.
特開2005-116193号公報JP 2005-116193 A 特開2009-181752号公報JP 2009-181752 A
 本発明は、大面積の発光領域を、良好な発光で実現することができる面発光装置を提供することを目的とする。 An object of the present invention is to provide a surface light emitting device capable of realizing a large area light emitting region with good light emission.
 本発明の一局面は、基板と、前記基板上に配置された複数の面発光素子とを備え、前記複数の面発光素子が、それぞれ、前記基板に近い側の第1電極と、前記基板から遠い側の第2電極と、前記第1電極と前記第2電極とに挟まれた有機発光層とを備え、前記第2電極が、透光性を有する薄膜金属層からなり、隣り合う前記面発光素子のうちの、一方の面発光素子の第2電極と、他方の面発光素子の第1電極とが、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間で接続され、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間に存在する、前記一方の面発光素子の第2電極に接触した状態で、前記第2電極と前記基板との間に配置された下地層を備える面発光装置である。 One aspect of the present invention includes a substrate and a plurality of surface light emitting elements disposed on the substrate, and each of the plurality of surface light emitting elements includes a first electrode on a side close to the substrate, and the substrate. A second electrode on the far side, and an organic light emitting layer sandwiched between the first electrode and the second electrode, wherein the second electrode is made of a light-transmitting thin film metal layer and adjacent to the surface Of the light emitting elements, the second electrode of one surface light emitting element and the first electrode of the other surface light emitting element are connected between the organic light emitting layers provided in each of the adjacent surface light emitting elements, and adjacent to each other. A surface provided with an underlayer disposed between the second electrode and the substrate in contact with the second electrode of the one surface light emitting element, which exists between the organic light emitting layers provided in each of the surface light emitting elements. A light emitting device.
 前記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
図1は、本発明の実施形態に係る面発光装置の構成を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration of a surface light emitting device according to an embodiment of the present invention. 図2は、本発明の実施形態に係る面発光装置の製造方法を説明するための概略断面図である。FIG. 2 is a schematic cross-sectional view for explaining the method for manufacturing the surface light emitting device according to the embodiment of the present invention. 図3は、本発明の実施形態に係る面発光装置の製造方法を説明するための概略上面図である。FIG. 3 is a schematic top view for explaining the method for manufacturing the surface light emitting device according to the embodiment of the present invention.
 特許文献1及び特許文献2に記載されているような面発光装置は、基板内に複数の発光素子を設け、隣り合う発光素子の一方の発光素子の第2電極と他方の発光素子の第1電極とを、発光素子間の非発光エリアで電気的に直列に接続することで、発光領域の大面積化を擬似的に実現している。 In the surface light-emitting devices described in Patent Document 1 and Patent Document 2, a plurality of light-emitting elements are provided in a substrate, and the second electrode of one light-emitting element of the adjacent light-emitting elements and the first electrode of the other light-emitting element. By electrically connecting the electrodes in series in a non-light emitting area between the light emitting elements, a large area of the light emitting region is realized in a pseudo manner.
 しかしながら、本発明者が検討したところ、このような複数の面発光素子を用いた場合、良好な発光が実現できない場合があった。このことは、このような面発光装置では、隣接する面発光素子間において確実に電気的に接続しなければならないが、隣接する面発光素子間で、電極が好適に形成されない場合があることによると考えた。基板から遠い側の電極が、透光性を有する薄膜金属層からなる透明電極である場合、すなわち、いわゆるトップエミッション構造の場合であって、隣接する面発光素子間において、それぞれの面発光素子の、基板に近い側の電極同士が離反して設けられる場合がある。このような場合、基板から遠い側の電極である透明電極を、基板に近い側の電極の間に存在する基板や有機発光層等の上に形成することによって、隣り合う面発光素子間を電気的に接続することになる。また、透明電極は、基板上に形成されにくい傾向があり、基板上の狭い箇所や複雑な形状の箇所に透明電極を形成する場合には、その傾向が顕著になることを、本発明者が見出した。このため、隣り合う面発光素子間における、基板の狭い箇所や複雑な形状の箇所での透明電極が好適に形成されず、隣接する面発光素子間において確実に電気的に接続されない場合があった。よって、基板とは反対側から、光を取り出す場合、基板から遠い側の電極である透明電極が、隣接する面発光素子間で好適に形成されず、良好な発光が得られない場合があった。 However, as a result of studies by the present inventor, when such a plurality of surface light emitting elements are used, there are cases where good light emission cannot be realized. This is because in such a surface light emitting device, electrical connection between adjacent surface light emitting elements must be ensured, but electrodes may not be suitably formed between adjacent surface light emitting elements. I thought. When the electrode far from the substrate is a transparent electrode made of a light-transmitting thin film metal layer, that is, in the case of a so-called top emission structure, between adjacent surface light emitting elements, each surface light emitting element In some cases, the electrodes closer to the substrate are provided apart from each other. In such a case, a transparent electrode, which is an electrode far from the substrate, is formed on a substrate, an organic light emitting layer, or the like existing between the electrodes near the substrate, so that the adjacent surface light emitting elements are electrically connected. Will be connected. In addition, the transparent electrode tends to be difficult to be formed on the substrate, and when the transparent electrode is formed in a narrow place or a complicated shape place on the substrate, the present inventor indicates that the tendency becomes remarkable. I found it. For this reason, the transparent electrode in the narrow part of a board | substrate and the location of a complicated shape between adjacent surface light emitting elements was not formed suitably, and there existed a case where it was not electrically connected reliably between adjacent surface light emitting elements. . Therefore, when light is extracted from the side opposite to the substrate, the transparent electrode, which is the electrode far from the substrate, is not suitably formed between adjacent surface light emitting elements, and good light emission may not be obtained. .
 また、特許文献1及び特許文献2に記載されているような面発光装置は、基板から近い側の電極が、透明電極である場合、すなわち、いわゆるボトムエミッション構造の場合、基板上等に形成される透明電極の面積が大きくなり、透明電極の形成されにくさが問題になりにくいとも考えられる。しかしながら、基板から近い側の電極が、透明電極ではなく、反射電極等であると、電極が厚く、面発光素子間の距離を広くする必要があると考えられる。面発光素子間の距離が広いと、発光しない領域が増え、面発光装置として、良好な発光が得られにくかった。 In addition, surface emitting devices such as those described in Patent Document 1 and Patent Document 2 are formed on a substrate or the like when the electrode closer to the substrate is a transparent electrode, that is, in the case of a so-called bottom emission structure. It is considered that the area of the transparent electrode becomes large and the difficulty of forming the transparent electrode is less likely to be a problem. However, if the electrode closer to the substrate is not a transparent electrode but a reflective electrode or the like, it is considered that the electrode is thick and the distance between the surface light emitting elements needs to be increased. When the distance between the surface light emitting elements is wide, the non-light emitting region increases, and it is difficult to obtain good light emission as a surface light emitting device.
 本発明者は、種々検討した結果、大面積の発光領域を、良好な発光で実現することができる面発光装置を提供するといった上記目的は、以下の本発明により達成されることを見出した。 As a result of various studies, the present inventor has found that the above object of providing a surface light emitting device capable of realizing a large area light emitting region with good light emission is achieved by the present invention described below.
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 本発明の実施形態に係る面発光装置10は、図1に示すように、基板11と、前記基板11上に配置された複数の面発光素子21とを備える。また、前記複数の面発光素子21は、それぞれ、前記基板11に近い側の第1電極13と、前記基板12から遠い側の第2電極15と、前記第1電極13と前記第2電極15とに挟まれた有機発光層14とを備える。前記有機発光層14は、電圧を印加すると発光する機能を有する層である。また、前記面発光素子21は、前記第2電極15が、透光性を有する薄膜金属層からなる。すなわち、前記第2電極15は、可視光を透過可能な厚みの薄膜金属層からなる。前記面発光素子21は、前記第1電極13と前記第2電極15との間に電圧を印加することによって、前記有機発光層14から光が照射され、基板11から遠い側の電極である第2電極15に透光性があるので、少なくとも前記第2電極15側から、面状の光が取り出される。また、前記面発光装置10は、隣り合う前記面発光素子21のうちの、一方の面発光素子21の第2電極15と、他方の面発光素子21の第1電極13とが、隣り合う前記面発光素子21のそれぞれに備えられる有機発光層14間で接続される。このような面発光装置10は、基板11上に配置された複数の面発光素子21を同時に発光させることができる。このような面発光装置10において、面状に発光される面発光素子21を、前記基板11に配置する数を増やすことによって、各面発光素子21の発光面積を大きくしなくても、面発光装置10としての発光領域の面積を広げることができ、発光面積の大面積化を実現することができる。なお、図1は、本実施形態に係る面発光装置の構成を示す概略断面図である。また、図1に示す面発光素子では、左側の面発光素子が、一方の面発光素子に相当し、右側の面発光素子が、他方の面発光素子に相当するが、これに限定されず、面発光素子の第1電極が、隣に位置する面発光素子の第2電極と、隣り合う面発光素子のそれぞれに備えられる有機発光層間で電気的に接続されていればよい。 The surface light emitting device 10 according to the embodiment of the present invention includes a substrate 11 and a plurality of surface light emitting elements 21 arranged on the substrate 11 as shown in FIG. The plurality of surface light emitting elements 21 include a first electrode 13 on the side close to the substrate 11, a second electrode 15 on the side far from the substrate 12, the first electrode 13, and the second electrode 15, respectively. And an organic light emitting layer 14 sandwiched therebetween. The organic light emitting layer 14 is a layer having a function of emitting light when a voltage is applied. Further, in the surface light emitting element 21, the second electrode 15 is formed of a thin film metal layer having translucency. That is, the second electrode 15 is made of a thin metal layer having a thickness capable of transmitting visible light. The surface light emitting element 21 is a first electrode that is irradiated with light from the organic light emitting layer 14 by applying a voltage between the first electrode 13 and the second electrode 15 and is far from the substrate 11. Since the two electrodes 15 are translucent, planar light is extracted from at least the second electrode 15 side. In the surface light emitting device 10, the second electrode 15 of one surface light emitting element 21 and the first electrode 13 of the other surface light emitting element 21 of the adjacent surface light emitting elements 21 are adjacent to each other. It connects between the organic light emitting layers 14 with which each of the surface light emitting element 21 is equipped. Such a surface light emitting device 10 can simultaneously emit light from a plurality of surface light emitting elements 21 arranged on the substrate 11. In such a surface light-emitting device 10, surface emission can be achieved without increasing the light emitting area of each surface light-emitting element 21 by increasing the number of surface light-emitting elements 21 that emit light in a planar shape on the substrate 11. The area of the light emitting region as the device 10 can be increased, and the light emitting area can be increased. FIG. 1 is a schematic cross-sectional view showing the configuration of the surface light emitting device according to this embodiment. Further, in the surface light emitting device shown in FIG. 1, the left surface light emitting device corresponds to one surface light emitting device, and the right surface light emitting device corresponds to the other surface light emitting device. The first electrode of the surface light emitting element may be electrically connected between the second electrode of the adjacent surface light emitting element and the organic light emitting layer provided in each of the adjacent surface light emitting elements.
 また、前記面発光装置10は、隣り合う前記面発光素子21のそれぞれに備えられる有機発光層14間に存在する、前記一方の面発光素子21の第2電極15に接触した状態で、前記第2電極15と前記基板11との間に配置された下地層12を備える。このような面発光装置10は、透光性を有する薄膜金属層からなる透明電極は、前記基板11上に形成されにくい傾向があっても、隣り合う面発光素子21のそれぞれに備えられる有機発光層14間において、薄膜金属層である第2電極15を、前記基板11上に直接配置されるのではなく、前記下地層12を介して配置することになる。このため、基板から遠い側の第2電極15を、第2電極15から遠い基板11上にまで形成させる必要がなく、下地層12上に形成することになる。このことから、隣り合う面発光素子21間の距離を短くしても、そこに配置される第2電極15である薄膜金属層を好適に形成できる。よって、隣り合う前記面発光素子21のうちの、一方の面発光素子21の第2電極15と、他方の面発光素子21の第1電極13とが、隣り合う前記面発光素子21のそれぞれに備えられる有機発光層14間で好適に接続される。よって、隣り合う面発光素子21間の距離を短くしても、複数の面発光素子21が、隣接する面発光素子21間において電気的に好適に接続される。これらのことから、前記面発光装置10は、大面積の発光領域を、良好な発光で実現することができる。 The surface light emitting device 10 is in contact with the second electrode 15 of the one surface light emitting element 21 existing between the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21. An underlayer 12 is provided between the two electrodes 15 and the substrate 11. In such a surface light emitting device 10, even if a transparent electrode made of a light-transmitting thin film metal layer tends to be difficult to be formed on the substrate 11, organic light emission provided in each of the adjacent surface light emitting elements 21. Between the layers 14, the second electrode 15, which is a thin film metal layer, is not disposed directly on the substrate 11, but is disposed via the base layer 12. For this reason, it is not necessary to form the second electrode 15 far from the substrate on the substrate 11 far from the second electrode 15, and it is formed on the base layer 12. From this, even if the distance between the adjacent surface emitting elements 21 is shortened, the thin film metal layer which is the 2nd electrode 15 arrange | positioned there can be formed suitably. Therefore, of the adjacent surface light emitting elements 21, the second electrode 15 of one surface light emitting element 21 and the first electrode 13 of the other surface light emitting element 21 are respectively connected to the adjacent surface light emitting elements 21. It is suitably connected between the organic light emitting layers 14 provided. Therefore, even if the distance between the adjacent surface light emitting elements 21 is shortened, the plurality of surface light emitting elements 21 are electrically connected suitably between the adjacent surface light emitting elements 21. For these reasons, the surface light emitting device 10 can realize a large area light emitting region with good light emission.
 前記基板11は、有機EL素子等の面発光素子に用いられる基板であれば、特に限定されない。また、前記面発光素子21は、基板11から遠い側の電極である第2電極15が、透光性を有する薄膜金属層からなるので、基板11側から光を取り出さず、基板11とは反対側から光を取り出せばよいので、透光性を有していても有していなくてもよい。前記面発光素子21が基板11側から光を取り出す場合には、前記基板11は、透光性を有する基板、いわゆる透明基板である。また、前記透明基板としては、具体的には、ガラス基板、樹脂フィルム、及び樹脂基板等が挙げられる。 The substrate 11 is not particularly limited as long as it is a substrate used for a surface light emitting element such as an organic EL element. Further, in the surface light emitting element 21, the second electrode 15, which is an electrode far from the substrate 11, is made of a light-transmitting thin film metal layer, so that light is not extracted from the substrate 11 side and is opposite to the substrate 11. Since light may be extracted from the side, it may or may not have translucency. When the surface light emitting element 21 extracts light from the substrate 11 side, the substrate 11 is a transparent substrate, a so-called transparent substrate. Specific examples of the transparent substrate include a glass substrate, a resin film, and a resin substrate.
 前記ガラス基板は、面発光素子に用いられるガラス基板であれば、特に限定されない。前記ガラス基板としては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、及び無アルカリガラス等からなるガラス基板が挙げられる。 The glass substrate is not particularly limited as long as it is a glass substrate used for a surface light emitting device. Examples of the glass substrate include glass substrates made of silica glass, soda lime silica glass, lead glass, borosilicate glass, alkali-free glass, and the like.
 また、樹脂フィルム及び樹脂基板は、面発光素子に用いられる樹脂フィルム及び樹脂基板であれば、特に限定されない。樹脂フィルム及び樹脂基板を構成する樹脂としては、例えば、ポリエチレンテレフタレート(PET)及びポリエチレンナフレート等のポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、及びエチレン酢酸ビニルコポリマー(EVA)等のポリオレフィン、ポリ塩化ビニル及びポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、及びトリアセチルセルロース(TAC)等が挙げられる。 The resin film and the resin substrate are not particularly limited as long as they are a resin film and a resin substrate used for the surface light emitting element. Examples of the resin constituting the resin film and the resin substrate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthate, polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and ethylene vinyl acetate copolymer (EVA). , Vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, and triacetyl A cellulose (TAC) etc. are mentioned.
 また、前記透明基板は、大気中の酸素や水分等を遮断する目的で、ガスバリア層を備えることが好ましい。前記ガスバリア層を構成する材料としては、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化アルミニウム、及び酸化アルミニウム等の、金属酸化物及び金属窒化物等が挙げられる。これらの材料は、水蒸気バリア機能だけではなく、酸素バリア機能も有する。また、これらの材料の中でも、特に、バリア性、耐溶剤性、及び透明性が良好な点から、窒化シリコン及び酸化窒化シリコンが好ましい。また、前記ガスバリア層は、必要に応じて、多層構成にしてもよい。また、ガスバリア層の形成方法は、特に限定されない。また、ガスバリア層の形成方法は、ガスバリア層を構成する材料によって異なるが、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、及びスパッタリング法等を用いる方法等が挙げられる。 The transparent substrate preferably includes a gas barrier layer for the purpose of blocking oxygen, moisture, etc. in the atmosphere. Examples of the material constituting the gas barrier layer include metal oxides and metal nitrides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide. These materials have not only a water vapor barrier function but also an oxygen barrier function. Among these materials, silicon nitride and silicon oxynitride are particularly preferable from the viewpoint of good barrier properties, solvent resistance, and transparency. The gas barrier layer may have a multilayer structure as necessary. Moreover, the formation method of a gas barrier layer is not specifically limited. In addition, the method for forming the gas barrier layer varies depending on the material constituting the gas barrier layer, and examples thereof include a method using a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, and a sputtering method. Can be mentioned.
 また、前記面発光素子21は、上述したように、前記基板11上に複数配置される。この複数の面発光素子21は、それぞれ、前記基板11に近い側の第1電極13と、前記基板12から遠い側の第2電極15と、前記第1電極13と前記第2電極15とに挟まれた有機発光層14とを備える。また、前記面発光素子21は、このような構成を備え、面状の発光が得られる発光素子であれば、特に限定されない。前記面発光素子21としては、例えば、有機発光ダイオード(Organic Light Emitting Diodes:OLED)等と呼ばれる有機EL(Electro-Luminescence)素子等が挙げられる。また、前記面発光素子21は、前記第1電極13、前記第2電極15、及び前記有機発光層14を覆うように、封止層16を備えることが一般的であり、封止層16を備えていてもよい。 Also, a plurality of the surface light emitting elements 21 are arranged on the substrate 11 as described above. The plurality of surface light emitting elements 21 are respectively connected to the first electrode 13 on the side close to the substrate 11, the second electrode 15 on the side far from the substrate 12, the first electrode 13, and the second electrode 15. And an organic light emitting layer 14 sandwiched therebetween. Moreover, the said surface light emitting element 21 will not be specifically limited if it is provided with such a structure and is a light emitting element from which planar light emission is obtained. Examples of the surface light emitting element 21 include an organic EL (Electro-Luminescence) element called an organic light emitting diode (OLED). Further, the surface light emitting element 21 generally includes a sealing layer 16 so as to cover the first electrode 13, the second electrode 15, and the organic light emitting layer 14. You may have.
 前記面発光素子21において、前記第1電極13が、陽極であり、前記第2電極15が、陰極である場合であってもよいし、前記第1電極13が、陰極であり、前記第2電極15が、陽極である場合であってもよい。以下、前記第1電極13が、陽極であり、前記第2電極15が、陰極である場合であることを前提としての記載もあるが、これに限定されない。 In the surface light emitting element 21, the first electrode 13 may be an anode, the second electrode 15 may be a cathode, the first electrode 13 may be a cathode, and the second The case where the electrode 15 is an anode may be sufficient. Hereinafter, there is a description on the assumption that the first electrode 13 is an anode and the second electrode 15 is a cathode, but the present invention is not limited thereto.
 前記第2電極15は、面発光素子の電極、例えば、陰極として用いることができ、かつ、透光性を有する薄膜金属層からなるものであれば、特に限定されない。前記第2電極15は、例えば、可視光を透過させることが可能な厚さである薄膜金属層等が挙げられる。また、前記第2電極15を構成する材料は、薄くすることで、可視光を透過させることが可能な金属、例えば、透明電極に用いられる金属、合金、及びこれらの混合物等を電極材料として含むものが挙げられる。前記第2電極15を構成する電極材料としては、具体的には、銀(Ag)、アルミニウム(Al)、及び金(Au)等が挙げられる。また、前記第2電極15である薄膜金属層としては、Ag薄膜等の、Agを主成分として含む膜、酸化インジウムスズ(ITO)膜、及び酸化インジウム・酸化亜鉛(IZO)膜等が挙げられる。また、前記第2電極15は、電気伝導率が大きい等の点から、Agを主成分として含む膜が好ましい。Agを主成分として含む膜とは、例えば、Agを主成分とする合金(Agを50質量%以上含む合金)からなる膜等が挙げられる。Agを主成分とする合金としては、例えば、銀マグネシウム、銀銅、銀パラジウム、銀パラジウム銅、銀インジウム、銀アルミニウム、及び銀金等が挙げられる。 The second electrode 15 is not particularly limited as long as it can be used as an electrode of a surface light emitting element, for example, a cathode, and is made of a light-transmitting thin film metal layer. Examples of the second electrode 15 include a thin film metal layer having a thickness capable of transmitting visible light. Moreover, the material which comprises the said 2nd electrode 15 contains the metal which can permeate | transmit visible light by making it thin, for example, the metal used for a transparent electrode, an alloy, these mixtures, etc. as an electrode material Things. Specific examples of the electrode material constituting the second electrode 15 include silver (Ag), aluminum (Al), and gold (Au). Examples of the thin film metal layer that is the second electrode 15 include a film containing Ag as a main component, an indium tin oxide (ITO) film, an indium oxide / zinc oxide (IZO) film, and the like, such as an Ag thin film. . The second electrode 15 is preferably a film containing Ag as a main component from the viewpoint of high electrical conductivity. Examples of the film containing Ag as a main component include a film made of an alloy containing Ag as a main component (an alloy containing 50 mass% or more of Ag). Examples of the alloy having Ag as a main component include silver magnesium, silver copper, silver palladium, silver palladium copper, silver indium, silver aluminum, and silver gold.
 前記第2電極15の膜厚は、可視光を透過させることが可能な厚さであれば、特に限定されない。前記第2電極15の膜厚は、具体的には、8~30nmであることが好ましく、8~20nmであることがより好ましく、8~15nmであることが好ましい。前記第2電極15が薄すぎると、電極としての導電性を充分に確保できない傾向がある。また、前記第2電極15が厚すぎると、可視光の透過性を充分に確保できない傾向がある。よって、前記第2電極15の膜厚を上記範囲内にすることによって、電極としての導電性を有し、かつ、充分な透光性を有する。 The film thickness of the second electrode 15 is not particularly limited as long as it is a thickness capable of transmitting visible light. Specifically, the film thickness of the second electrode 15 is preferably 8 to 30 nm, more preferably 8 to 20 nm, and preferably 8 to 15 nm. If the second electrode 15 is too thin, the conductivity as an electrode tends to be insufficient. Further, if the second electrode 15 is too thick, there is a tendency that sufficient transparency of visible light cannot be ensured. Therefore, by setting the film thickness of the second electrode 15 within the above range, it has conductivity as an electrode and has sufficient translucency.
 また、前記第2電極15の形成方法は、前記第2電極を形成することができれば、特に限定されない。前記第2電極15の形成方法としては、具体的には、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法、及び蒸着法、スパッタ法、化学気相成長(CVD)法等のドライプロセスを用いる方法等が挙げられる。前記第2電極15の形成方法としては、より具体的には、前記電極材料を蒸着やスパッタリング等の方法により、所望の形状のパターンとなるように、薄膜金属層を形成する。パターンを形成する方法としては、例えば、パターン精度をあまり必要としない場合、例えば、幅等が100μm以上の場合等は、前記電極材料の蒸着やスパッタリング時に、所望の形状のマスクを介して、パターンを形成する方法等が挙げられる。 The method for forming the second electrode 15 is not particularly limited as long as the second electrode can be formed. Specifically, the second electrode 15 is formed by a method using a wet process such as a coating method, an ink jet method, a coating method, a dip method, a vapor deposition method, a sputtering method, or a chemical vapor deposition (CVD) method. And a method using a dry process such as the above. More specifically, the second electrode 15 is formed by forming a thin-film metal layer so as to form a pattern having a desired shape by a method such as vapor deposition or sputtering of the electrode material. As a method for forming a pattern, for example, when pattern accuracy is not so much required, for example, when the width is 100 μm or more, the pattern is formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. And the like.
 前記第1電極13は、面発光素子の電極、例えば、陽極として用いられるものであれば、特に限定されない。また、前記第1電極13は、透光性を有していてもいなくてもよいが、透光性を有する薄膜金属層からなることが好ましい。そうすることによって、前記有機発光層14で発生した光を、前記第1電極13側からも取り出すことができる。前記第1電極13として、前記薄膜金属層を用いる場合は、前記第1電極13は、上記第2電極15と同様の電極を用いることができる。 The first electrode 13 is not particularly limited as long as it is used as an electrode of a surface light emitting element, for example, an anode. The first electrode 13 may or may not have translucency, but is preferably made of a thin film metal layer having translucency. By doing so, the light generated in the organic light emitting layer 14 can be extracted also from the first electrode 13 side. When the thin film metal layer is used as the first electrode 13, the same electrode as the second electrode 15 can be used as the first electrode 13.
 前記有機発光層14は、電圧を印加すると発光する機能を有する層であって、面発光素子の有機発光層として用いられる層であれば、特に限定されない。前記有機発光層14は、発光に直接かかわる発光機能層だけではなく、他の層を積層していてもよい。他の層としては、例えば、正孔輸送層、正孔注入層、電子輸送層、及び電子注入層等が挙げられる。この積層状態の例を説明するために、面発光素子の構成として、陽極及び陰極も合わせて記載する。面発光素子の構成としては、具体的には、陽極/発光機能層/陰極、陽極/正孔輸送層/発光機能層/電子輸送層/陰極、陽極/正孔注入層/正孔輸送層/発光機能層/電子輸送層/陰極、陽極/正孔注入層/発光機能層/電子輸送層/電子注入層/陰極、及び陽極/正孔注入層/発光機能層/電子注入層/陰極等が挙げられる。 The organic light emitting layer 14 is a layer having a function of emitting light when a voltage is applied, and is not particularly limited as long as it is a layer used as an organic light emitting layer of a surface light emitting element. The organic light emitting layer 14 may be formed by laminating not only a light emitting functional layer directly related to light emission but also other layers. Examples of the other layers include a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer. In order to describe an example of this stacked state, an anode and a cathode are also described as a configuration of the surface light emitting element. Specifically, the structure of the surface light emitting device is anode / light emitting functional layer / cathode, anode / hole transport layer / light emitting functional layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / Light emitting functional layer / electron transport layer / cathode, anode / hole injection layer / light emitting functional layer / electron transport layer / electron injection layer / cathode, and anode / hole injection layer / light emitting functional layer / electron injection layer / cathode etc. Can be mentioned.
 前記発光機能層は、陰極側から注入された電子と、陽極側から注入された正孔とが再結合して発光する層であれば、特に限定されない。前記発光機能層としては、例えば、面発光素子に用いられる一般的な発光機能層等が挙げられる。また、前記発光機能層は、発光する部分が、発光機能層の層内であっても、発光機能層における隣接する層との界面付近であってもよい。また、発光機能層は、発光材料として、燐光発光材料が含有されていてもよく、蛍光発光材料が含有されていてもよく、また、燐光発光材料及び蛍光発光材料の両方が含有されていてもよい。 The light emitting functional layer is not particularly limited as long as it emits light by recombination of electrons injected from the cathode side and holes injected from the anode side. Examples of the light emitting functional layer include a general light emitting functional layer used for a surface light emitting device. Further, in the light emitting functional layer, the light emitting portion may be in the layer of the light emitting functional layer or in the vicinity of the interface with the adjacent layer in the light emitting functional layer. In addition, the light emitting functional layer may contain a phosphorescent light emitting material as a light emitting material, may contain a fluorescent light emitting material, or may contain both a phosphorescent light emitting material and a fluorescent light emitting material. Good.
 前記正孔注入層は、前記発光機能層に正孔を注入する正孔注入性を有する層であれば、特に限定されない。前記正孔注入層としては、例えば、面発光素子に用いられる一般的な正孔注入層等が挙げられる。前記正孔輸送層は、前記発光機能層に正孔を輸送する正孔輸送性を有する層であれば、特に限定されない。前記正孔輸送層としては、例えば、面発光素子に用いられる一般的な正孔注入層等が挙げられる。前記正孔注入層及び前記正孔輸送層は、正孔注入性と正孔輸送性とを併せ持った正孔輸送注入層であってもよい。 The hole injection layer is not particularly limited as long as it has a hole injection property for injecting holes into the light emitting functional layer. Examples of the hole injection layer include a general hole injection layer used in a surface light emitting device. The hole transport layer is not particularly limited as long as it has a hole transport property for transporting holes to the light emitting functional layer. Examples of the hole transport layer include a general hole injection layer used in a surface light emitting device. The hole injection layer and the hole transport layer may be a hole transport injection layer having both a hole injection property and a hole transport property.
 前記電子注入層は、前記発光機能層に電子を注入する電子注入性を有する層であれば、特に限定されない。前記電子注入層としては、例えば、面発光素子に用いられる一般的な電子注入層等が挙げられる。前記電子輸送層は、前記発光機能層に電子を輸送する電子輸送性を有する層であれば、特に限定されない。前記電子輸送層としては、例えば、面発光素子に用いられる一般的な電子注入層等が挙げられる。前記電子注入層及び前記電子輸送層は、電子注入性と電子輸送性とを併せ持った電子輸送注入層であってもよい。 The electron injection layer is not particularly limited as long as it has an electron injection property for injecting electrons into the light emitting functional layer. Examples of the electron injection layer include a general electron injection layer used in a surface light emitting device. The electron transport layer is not particularly limited as long as it has an electron transport property for transporting electrons to the light emitting functional layer. Examples of the electron transport layer include a general electron injection layer used in a surface light emitting device. The electron injection layer and the electron transport layer may be an electron transport injection layer having both electron injection properties and electron transport properties.
 また、前記有機発光層14は、これらの層の他にも、正孔阻止層や電子阻止層等が必要に応じて必要箇所に積層されていてもよい。 In addition to these layers, the organic light-emitting layer 14 may be laminated with a hole blocking layer, an electron blocking layer, or the like as required.
 前記有機発光層14の膜厚は、電圧を印加すると発光する機能を発揮できる厚さであれば、特に限定されない。 The thickness of the organic light-emitting layer 14 is not particularly limited as long as it has a thickness that can exhibit a function of emitting light when a voltage is applied.
 前記有機発光層14の形成方法は、前記有機発光層14を形成することができれば、特に限定されない。前記有機発光層14の形成方法としては、上記各層を構成する材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、及び印刷法等の公知の薄膜形成方法により、各層を順次形成する方法等が挙げられる。 The method for forming the organic light emitting layer 14 is not particularly limited as long as the organic light emitting layer 14 can be formed. As a method for forming the organic light emitting layer 14, the materials constituting the respective layers are sequentially formed by using known thin film forming methods such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, and a printing method. The method of forming etc. are mentioned.
 前記下地層12は、隣り合う前記面発光素子21のそれぞれに備えられる有機発光層14間に存在する、前記一方の面発光素子21の第2電極15に接触した状態で、前記第2電極15と前記基板11との間に配置された層であれば、特に限定されない。 The underlayer 12 is in contact with the second electrode 15 of the one surface light emitting element 21 existing between the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21, and the second electrode 15. And the substrate 11 are not particularly limited.
 また、前記下地層12は、図1に示すように、隣り合う前記面発光素子21のそれぞれに備えられる有機発光層14間において、前記一方の面発光素子21の第2電極15だけではなく、前記一方の面発光素子21の有機発光層14、及び前記他方の面発光素子21の第1電極13とも接触することが好ましい。このため、隣り合う面発光素子21のそれぞれに備えられる有機発光層14間に配置される第2電極15である薄膜金属層が下地層12に、より確実に接触することになり、前記第2電極15が、より好適に形成できる。また、前記第1電極13が薄膜金属層である場合、前記第1電極13、特に前記第2電極15に近いところを、好適に形成することができる。このことにより、前記第1電極13と第2電極15との電気的な接続をより好適に行うことができる。よって、大面積の発光領域を、より良好な発光で実現することができる面発光装置が得られる。 In addition, as shown in FIG. 1, the base layer 12 includes not only the second electrode 15 of the one surface light emitting element 21 between the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21, The organic light emitting layer 14 of the one surface light emitting element 21 and the first electrode 13 of the other surface light emitting element 21 are preferably in contact with each other. For this reason, the thin film metal layer which is the second electrode 15 disposed between the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21 comes into contact with the base layer 12 more reliably, and the second The electrode 15 can be formed more suitably. Further, when the first electrode 13 is a thin film metal layer, the first electrode 13, particularly the portion close to the second electrode 15, can be suitably formed. Thereby, the electrical connection between the first electrode 13 and the second electrode 15 can be more suitably performed. Therefore, a surface light-emitting device capable of realizing a large-area light-emitting region with better light emission can be obtained.
 また、前記面発光装置10は、前記基板11上に前記面発光素子21が複数備えられている。すなわち、前記面発光装置10は、隣り合う前記面発光素子21のそれぞれに備えられる有機発光層14間も複数存在する。前記下地層12は、隣り合う前記面発光素子21のそれぞれに備えられる有機発光層14間の1つにおいて、前記一方の面発光素子21の第2電極15と接触して配置されていてもよいし、隣り合う前記面発光素子21のそれぞれ備えられる有機発光層14間の2つ以上において、前記一方の面発光素子21の第2電極15と接触して配置されていてもよく、また、前記基板11上全面に形成していてもよい。また、前記下地層12は、このような隣り合う前記面発光素子21のそれぞれに備えられる有機発光層14間を2つ以上にわたって存在することが好ましい。このような下地層12を備えることによって、隣り合う面発光素子21間に配置される第2電極15である薄膜金属層が下地層12に、より確実に接触することになり、前記第2電極15が、より好適に形成できる。よって、大面積の発光領域を、より良好な発光で実現することができる面発光装置が得られる。 Further, the surface light emitting device 10 includes a plurality of the surface light emitting elements 21 on the substrate 11. That is, the surface light emitting device 10 includes a plurality of organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21. The underlayer 12 may be disposed in contact with the second electrode 15 of the one surface light emitting element 21 in one of the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21. In addition, in two or more between the organic light emitting layers 14 provided in each of the adjacent surface light emitting elements 21, they may be disposed in contact with the second electrode 15 of the one surface light emitting element 21, It may be formed on the entire surface of the substrate 11. Moreover, it is preferable that the said underlayer 12 exists between two or more organic light emitting layers 14 with which each of the said adjacent surface light emitting elements 21 is provided. By providing such a base layer 12, the thin film metal layer, which is the second electrode 15 disposed between the adjacent surface light emitting elements 21, comes into more reliable contact with the base layer 12, and the second electrode 15 can be more suitably formed. Therefore, a surface light-emitting device capable of realizing a large-area light-emitting region with better light emission can be obtained.
 また、前記下地層12は、接触する前記第2電極15の膜質を向上させるための層であることが好ましい。すなわち、前記下地層12は、接触する前記薄膜金属層の膜質を、前記基板と接触させたときの薄膜金属層の膜質より向上させることができる層であることが好ましい。前記下地層12としては、カルシウム、硫化亜鉛、窒素含有化合物、及びフッ化カリウムからなる群から選ばれる少なくとも1種を含む層であることがより好ましい。このような層であれば、この下地層上に形成される第2電極である薄膜金属層をより好適に形成できる点で好ましい。よって、複数の面発光素子21がより好適に電気的に接続され、大面積の発光領域を、より良好な発光で実現することができる面発光装置が得られる。 Further, the base layer 12 is preferably a layer for improving the film quality of the second electrode 15 that is in contact. That is, the base layer 12 is preferably a layer that can improve the film quality of the thin film metal layer in contact with the film quality of the thin film metal layer in contact with the substrate. The underlayer 12 is more preferably a layer containing at least one selected from the group consisting of calcium, zinc sulfide, nitrogen-containing compounds, and potassium fluoride. Such a layer is preferable in that a thin-film metal layer, which is the second electrode formed on the underlayer, can be more suitably formed. Accordingly, a surface light emitting device is obtained in which a plurality of surface light emitting elements 21 are more preferably electrically connected and a large area light emitting region can be realized with better light emission.
 また、前記下地層12としては、上述したように、カルシウム、硫化亜鉛、窒素含有化合物、金属酸化物及びフッ化カリウムのいずれか1つを含む層であれば好ましく、また、2つ以上を組み合わせて含む層であっても好ましい。 The underlayer 12 is preferably a layer containing any one of calcium, zinc sulfide, a nitrogen-containing compound, a metal oxide and potassium fluoride, as described above, and a combination of two or more. Even a layer containing
 前記下地層12としてのカルシウムを含む層(カルシウム含有層)としては、例えば、カルシウムを含有していれば、特に限定されない。前記カルシウム含有層としては、カルシウムのみからなる層であってもよいし、カルシウム以外の化合物(他の化合物)を含む層であってもよい。前記他の化合物としては、例えば、酸化カルシウム、及び前記第2電極を構成する材料、例えば、Ag等が挙げられる。また、前記カルシウム含有層としては、カルシウムを主成分とする層(カルシウムを50質量%以上含む層)であることが好ましく、カルシウムを70質量%以上含む層であることがより好ましい。 The layer containing calcium as the base layer 12 (calcium-containing layer) is not particularly limited as long as it contains calcium, for example. The calcium-containing layer may be a layer made of only calcium or a layer containing a compound other than calcium (another compound). Examples of the other compound include calcium oxide and a material constituting the second electrode, such as Ag. Further, the calcium-containing layer is preferably a layer containing calcium as a main component (a layer containing 50 mass% or more of calcium), and more preferably a layer containing 70 mass% or more of calcium.
 前記カルシウム含有層は、カルシウム原子が1原子層以上の、島状に孤立した膜であってもよいし、複数の孔を有する膜であってもよいし、連続膜であってもよい。また、前記カルシウム含有層の膜厚としては、前記第2電極15との相互作用が得られる程度、すなわち、接触する前記第2電極15の膜質を向上させることができる程度の厚みであることが好ましい。このため、前記カルシウム含有層の膜厚としては、具体的には、0.5nm以上であることが好ましい。また、前記面発光素子21として、前記有機発光層14で発生した光を、前記第1電極13側からも取り出すことができる構成にする場合、前記下地層12は、透光性を有することが好ましい。このためには、前記カルシウム含有層の膜厚としては、具体的には、2nm以下であることが好ましい。 The calcium-containing layer may be an island-like film having one or more calcium atoms, may be a film having a plurality of holes, or may be a continuous film. Further, the thickness of the calcium-containing layer should be such that the interaction with the second electrode 15 is obtained, that is, the film quality of the second electrode 15 in contact can be improved. preferable. Therefore, specifically, the thickness of the calcium-containing layer is preferably 0.5 nm or more. In addition, when the surface light emitting element 21 is configured such that light generated in the organic light emitting layer 14 can be extracted also from the first electrode 13 side, the base layer 12 has translucency. preferable. For this purpose, the thickness of the calcium-containing layer is specifically preferably 2 nm or less.
 また、前記カルシウム含有層の形成方法は、前記カルシウム含有層を形成することができれば、特に限定されず、例えば、真空蒸着法等の蒸着法、スパッタ法、化学気相成長(CVD)法等のドライプロセスを用いる方法等が挙げられる。 Moreover, the formation method of the said calcium containing layer will not be specifically limited if the said calcium containing layer can be formed, For example, vapor deposition methods, such as a vacuum evaporation method, a sputtering method, a chemical vapor deposition (CVD) method, etc. Examples include a method using a dry process.
 前記下地層12としての硫化亜鉛(ZnS)を含む層(ZnS含有層)としては、例えば、ZnSを含有していれば、特に限定されない。前記ZnS含有層としては、ZnSのみからなる層であってもよいし、ZnS以外の化合物(他の化合物)を含む層であってもよい。前記他の化合物としては、例えば、酸化シリコン等が挙げられる。ZnSとともに酸化シリコンを含有するZnS含有層は、非晶質になりやすく、柔軟性に優れるという点で好ましい。 The layer (ZnS-containing layer) containing zinc sulfide (ZnS) as the base layer 12 is not particularly limited as long as it contains ZnS, for example. The ZnS-containing layer may be a layer made of only ZnS or a layer containing a compound other than ZnS (another compound). Examples of the other compound include silicon oxide. A ZnS-containing layer containing silicon oxide together with ZnS is preferable in that it easily becomes amorphous and has excellent flexibility.
 また、前記面発光素子21として、前記有機発光層14で発生した光を、前記第1電極13側からも取り出すことができる構成にする場合、前記下地層12は、透光性を有することが好ましい。このような場合、前記ZnS含有層は、光取り出し効率を向上させるための光学調整層としても機能しうる。このような場合、前記ZnS含有層において、ZnS以外の化合物(他の化合物)としては、前記基板11の屈折率より高い屈折率を有する材料等が挙げられる。このような材料としては、例えば、金属酸化物等が挙げられ、より具体的には、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が挙げられる。前記他の化合物としては、上記例示の化合物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In addition, when the surface light emitting element 21 is configured such that light generated in the organic light emitting layer 14 can be extracted also from the first electrode 13 side, the base layer 12 has translucency. preferable. In such a case, the ZnS-containing layer can also function as an optical adjustment layer for improving light extraction efficiency. In such a case, in the ZnS-containing layer, examples of compounds other than ZnS (other compounds) include materials having a refractive index higher than that of the substrate 11. As such a material, for example, be mentioned metal oxides and the like, more specifically, TiO 2, ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2, CeO 2, Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO) , ATO (Sb-doped SnO), ICO (Indium Cerium Oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (Amorphous oxidation consisting of gallium, indium, and oxygen) Thing) etc. are mentioned. As said other compound, the compound of the said illustration may be used independently and may be used in combination of 2 or more type.
 また、前記ZnS含有層に、前記他の化合物を含有する場合、ZnSの含有量は、ZnS含有層を構成する材料に対して、0.1~95質量%であることが好ましく、50~90質量%であることがより好ましく、60~85質量%であることがさらに好ましい。ZnSの含有量が上記範囲内であると、前記他の化合物が適量含有されているので、前記ZnS含有層の割れ等の発生を抑制できる。また、ZnSの含有量が上記範囲内であると、スパッタ速度等の、前記ZnS含有層の成膜速度を高めることができる。 In the case where the ZnS-containing layer contains the other compound, the ZnS content is preferably 0.1 to 95% by mass with respect to the material constituting the ZnS-containing layer, and 50 to 90 The mass is more preferably 60% to 85% by mass. When the content of ZnS is within the above range, the other compound is contained in an appropriate amount, so that the occurrence of cracks in the ZnS-containing layer can be suppressed. In addition, when the ZnS content is within the above range, the deposition rate of the ZnS-containing layer, such as the sputtering rate, can be increased.
 また、前記ZnS含有層の膜厚としては、前記第2電極15との相互作用が得られる程度、すなわち、接触する前記第2電極15の膜質を向上させることができる程度の厚みであることが好ましい。このため、前記ZnS含有層の膜厚としては、具体的には、15nm以上であることが好ましく、20nm以上であることがより好ましい。また、前記面発光素子21として、前記有機発光層14で発生した光を、前記第1電極13側からも取り出すことができる構成にする場合、前記下地層12は、透光性を有することが好ましい。このためには、前記ZnS含有層の膜厚としては、具体的には、150nm以下であることが好ましく、80nm以下であることがより好ましい。 Further, the film thickness of the ZnS-containing layer is such that the interaction with the second electrode 15 is obtained, that is, the film quality of the second electrode 15 in contact with the ZnS-containing layer can be improved. preferable. For this reason, specifically, the film thickness of the ZnS-containing layer is preferably 15 nm or more, and more preferably 20 nm or more. In addition, when the surface light emitting element 21 is configured such that light generated in the organic light emitting layer 14 can be extracted also from the first electrode 13 side, the base layer 12 has translucency. preferable. For this purpose, the film thickness of the ZnS-containing layer is specifically preferably 150 nm or less, and more preferably 80 nm or less.
 また、前記ZnS含有層の形成方法は、前記ZnS含有層を形成することができれば、特に限定されず、例えば、蒸着法、スパッタ法、イオンプレーティング法、化学気相成長(CVD)法等の、一般的な気相成膜法を用いる方法等が挙げられる。 The method for forming the ZnS-containing layer is not particularly limited as long as the ZnS-containing layer can be formed. For example, a vapor deposition method, a sputtering method, an ion plating method, a chemical vapor deposition (CVD) method, etc. And a method using a general vapor deposition method.
 前記下地層12としての窒素含有化合物を含む層(窒素含有化合物含有層)としては、例えば、窒素含有化合物を含有していれば、特に限定されない。また、前記窒素含有化合物は、分子内に窒素原子を含有する化合物であれば、特に限定されない。前記窒素含有化合物としては、例えば、分子内に窒素原子を含有する化合物等が挙げられ、より具体的には、下記式(1)で表される化合物及び下記式(2)で表される化合物等が挙げられる。 The layer containing a nitrogen-containing compound (nitrogen-containing compound-containing layer) as the underlayer 12 is not particularly limited as long as it contains a nitrogen-containing compound, for example. The nitrogen-containing compound is not particularly limited as long as it is a compound containing a nitrogen atom in the molecule. Examples of the nitrogen-containing compound include a compound containing a nitrogen atom in the molecule, and more specifically, a compound represented by the following formula (1) and a compound represented by the following formula (2). Etc.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、前記窒素含有化合物含有層としては、前記窒素含有化合物のみからなる層であってもよいし、前記窒素含有化合物以外の化合物を含む層であってもよい。また、前記窒素含有化合物含有層としては、前記窒素含有化合物を主成分とする層(前記窒素含有化合物を50質量%以上含む層)であることが好ましい。 Further, the nitrogen-containing compound-containing layer may be a layer made of only the nitrogen-containing compound or a layer containing a compound other than the nitrogen-containing compound. Further, the nitrogen-containing compound-containing layer is preferably a layer containing the nitrogen-containing compound as a main component (a layer containing 50% by mass or more of the nitrogen-containing compound).
 また、前記窒素含有化合物含有層の膜厚としては、前記第2電極15との相互作用が得られる程度、すなわち、接触する前記第2電極15の膜質を向上させることができる程度の厚みであることが好ましい。このため、前記窒素含有化合物含有層の膜厚としては、具体的には、10nm以上であることが好ましく、20nm以上であることがより好ましい。また、前記面発光素子21として、前記有機発光層14で発生した光を、前記第1電極13側からも取り出すことができる構成にする場合、前記下地層12は、透光性を有することが好ましい。このためには、前記窒素含有化合物含有層の膜厚としては、具体的には、150nm以下であることが好ましく、50nm以下であることがより好ましい。 Further, the film thickness of the nitrogen-containing compound-containing layer is such that the interaction with the second electrode 15 is obtained, that is, the film quality of the second electrode 15 that is in contact can be improved. It is preferable. For this reason, specifically as a film thickness of the said nitrogen-containing compound content layer, it is preferable that it is 10 nm or more, and it is more preferable that it is 20 nm or more. In addition, when the surface light emitting element 21 is configured such that light generated in the organic light emitting layer 14 can be extracted also from the first electrode 13 side, the base layer 12 has translucency. preferable. For this purpose, specifically, the film thickness of the nitrogen-containing compound-containing layer is preferably 150 nm or less, and more preferably 50 nm or less.
 また、前記窒素含有化合物含有層の形成方法は、前記窒素含有化合物含有層を形成することができれば、特に限定されない。前記窒素含有化合物含有層の形成方法としては、具体的には、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法、及び真空蒸着法等の蒸着法、スパッタ法、化学気相成長(CVD)法等のドライプロセスを用いる方法等が挙げられる。 The method for forming the nitrogen-containing compound-containing layer is not particularly limited as long as the nitrogen-containing compound-containing layer can be formed. Specific examples of the method for forming the nitrogen-containing compound-containing layer include a method using a wet process such as an ink-jet method, a coating method, and a dip method, a vapor deposition method such as a vacuum vapor deposition method, a sputtering method, and a chemical vapor deposition ( And a method using a dry process such as a CVD method.
 前記下地層12としての金属酸化物を含む層(金属酸化物含有層)としては、例えば、金属酸化物を含有していれば、特に限定されない。また、前記金属酸化物としては、金属の酸化物であれば、特に限定されず、例えば、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が挙げられる。また、前記金属酸化物としては、上記例示の金属酸化物を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The layer containing a metal oxide (metal oxide-containing layer) as the underlayer 12 is not particularly limited as long as it contains a metal oxide, for example. The metal oxide is not particularly limited as long as it is a metal oxide. For example, TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO) ), ATO (Sb-doped SnO), ICO (indium cerium oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (amorphous consisting of gallium, indium, and oxygen) Oxide). Moreover, as said metal oxide, the metal oxide of the said illustration may be used independently, and may be used in combination of 2 or more type.
 また、前記金属酸化物含有層としては、前記金属酸化物のみからなる層であってもよいし、前記金属酸化物以外の化合物を含む層であってもよい。また、前記金属酸化物含有層としては、前記金属酸化物を主成分とする層(前記金属酸化物を50質量%以上含む層)であることが好ましい。 Further, the metal oxide-containing layer may be a layer made of only the metal oxide or a layer containing a compound other than the metal oxide. The metal oxide-containing layer is preferably a layer containing the metal oxide as a main component (a layer containing 50% by mass or more of the metal oxide).
 また、前記金属酸化物含有層の膜厚としては、前記第2電極15との相互作用が得られる程度、すなわち、接触する前記第2電極15の膜質を向上させることができる程度の厚みであることが好ましい。また、前記面発光素子21として、前記有機発光層14で発生した光を、前記第1電極13側からも取り出すことができる構成にする場合、前記下地層12は、透光性を有することが好ましい。 The thickness of the metal oxide-containing layer is such that interaction with the second electrode 15 can be obtained, that is, the film quality of the second electrode 15 that is in contact can be improved. It is preferable. In addition, when the surface light emitting element 21 is configured such that light generated in the organic light emitting layer 14 can be extracted also from the first electrode 13 side, the base layer 12 has translucency. preferable.
 また、前記金属酸化物含有層の形成方法は、前記金属酸化物含有層を形成することができれば、特に限定されず、例えば、蒸着法、スパッタ法、イオンプレーティング法、化学気相成長(CVD)法等の、一般的な気相成膜法を用いる方法等が挙げられる。 Moreover, the formation method of the said metal oxide content layer will not be specifically limited if the said metal oxide content layer can be formed, For example, a vapor deposition method, a sputtering method, an ion plating method, chemical vapor deposition (CVD) ) Method and the like, and a method using a general vapor deposition method.
 前記下地層12としてのフッ化カリウム(KF)を含む層(KF含有層)としては、例えば、KFを含有していれば、特に限定されない。前記KF含有層としては、KFのみからなる層であってもよいし、KF以外の化合物を含む層であってもよい。また、前記KF含有層としては、KFを主成分とする層(KFを50質量%以上含む層)であることが好ましい。 The layer (KF-containing layer) containing potassium fluoride (KF) as the base layer 12 is not particularly limited as long as it contains KF, for example. The KF-containing layer may be a layer made of only KF or a layer containing a compound other than KF. The KF-containing layer is preferably a layer containing KF as a main component (a layer containing 50% by mass or more of KF).
 前記KF含有層は、フッ化カリウム(KF)分子が1分子層以上形成されていることが好ましく、島状に孤立した膜であってもよいし、複数の孔を有する膜であってもよいし、連続膜であってもよい。また、前記KF含有層の膜厚としては、前記第2電極15との相互作用が得られる程度、すなわち、接触する前記第2電極15の膜質を向上させることができる程度の厚みであることが好ましい。このため、前記KF含有層の膜厚としては、具体的には、0.5nm以上であることが好ましい。また、前記面発光素子21として、前記有機発光層14で発生した光を、前記第1電極13側からも取り出すことができる構成にする場合、前記下地層12は、透光性を有することが好ましい。このためには、前記KF含有層の膜厚としては、具体的には、3nm以下であることが好ましく、2nm以下であることがより好ましい。 The KF-containing layer is preferably formed with one or more molecular layers of potassium fluoride (KF) molecules, and may be an island-like film or a film having a plurality of holes. However, it may be a continuous film. Further, the film thickness of the KF-containing layer is such that the interaction with the second electrode 15 is obtained, that is, the film quality of the second electrode 15 that is in contact can be improved. preferable. Therefore, specifically, the thickness of the KF-containing layer is preferably 0.5 nm or more. In addition, when the surface light emitting element 21 is configured such that light generated in the organic light emitting layer 14 can be extracted also from the first electrode 13 side, the base layer 12 has translucency. preferable. For this purpose, the film thickness of the KF-containing layer is specifically preferably 3 nm or less, and more preferably 2 nm or less.
 また、前記KF含有層の形成方法は、前記KF含有層を形成することができれば、特に限定されず、例えば、真空蒸着法等の蒸着法等のドライプロセスを用いる方法等が挙げられる。 The method for forming the KF-containing layer is not particularly limited as long as the KF-containing layer can be formed, and examples thereof include a method using a dry process such as a vapor deposition method such as a vacuum vapor deposition method.
 また、前記下地層12としては、前記カルシウム含有層、前記ZnS含有層、前記窒素含有化合物含有層、前記金属酸化物含有層、及び前記KF含有層等の一層からなる層であってもよいし、これらの層を積層してもよい。前記下地層12としては、例えば、前記基板10上に備えた、前記窒素含有化合物含有層の上に、前記カルシウム含有層又は前記KF含有層を積層したものや、前記基板10上に備えた、前記金属酸化物含有層の上に、前記カルシウム含有層又は前記KF含有層を積層したもの等が挙げられる。 The underlayer 12 may be a layer composed of one layer such as the calcium-containing layer, the ZnS-containing layer, the nitrogen-containing compound-containing layer, the metal oxide-containing layer, and the KF-containing layer. These layers may be laminated. As the underlayer 12, for example, the calcium-containing layer or the KF-containing layer laminated on the nitrogen-containing compound-containing layer provided on the substrate 10, or provided on the substrate 10, What laminated | stacked the said calcium content layer or the said KF content layer etc. on the said metal oxide content layer is mentioned.
 前記封止層16は、透光性を有し、有機EL素子等の面発光素子に用いられる封止層であって、前記面発光素子21が発光する領域を覆うように配置されていれば、特に限定されず、凹板状を呈するものであってもよいし、平板状を呈するものであってもよい。また、前記封止層16としては、具体的には、ガラス基板、樹脂フィルム、及び樹脂基板等が挙げられる。 The sealing layer 16 has a light-transmitting property and is a sealing layer used for a surface light emitting element such as an organic EL element. The sealing layer 16 may be disposed so as to cover a region where the surface light emitting element 21 emits light. However, it is not particularly limited, and may have a concave plate shape or a flat plate shape. Specific examples of the sealing layer 16 include a glass substrate, a resin film, and a resin substrate.
 前記ガラス基板は、面発光素子の封止層に用いられるガラス基板であれば、特に限定されない。前記ガラス基板としては、例えば、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等からなるガラス基板が挙げられる。 The glass substrate is not particularly limited as long as it is a glass substrate used for a sealing layer of a surface light emitting element. Examples of the glass substrate include glass substrates made of soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz, and the like.
 また、樹脂フィルム及び樹脂基板は、面発光素子の封止層に用いられる樹脂フィルム及び樹脂基板であれば、特に限定されない。樹脂フィルム及び樹脂基板を構成する樹脂としては、例えば、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、及びポリサルフォン等が挙げられる。 The resin film and the resin substrate are not particularly limited as long as they are a resin film and a resin substrate used for the sealing layer of the surface light emitting element. Examples of the resin constituting the resin film and the resin substrate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
 また、前記封止層16は、大気中の酸素や水分等を遮断する目的で、ガスバリア層を備えることが好ましい。前記ガスバリア層を構成する材料としては、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化アルミニウム、及び酸化アルミニウム等の、金属酸化物及び金属窒化物等が挙げられる。これらの材料は、水蒸気バリア機能だけではなく、酸素バリア機能も有する。また、これらの材料の中でも、特に、バリア性、耐溶剤性、及び透明性が良好な点から、窒化シリコン及び酸化窒化シリコンが好ましい。また、前記ガスバリア層は、必要に応じて、多層構成にしてもよい。また、ガスバリア層の形成方法は、特に限定されない。また、ガスバリア層の形成方法は、ガスバリア層を構成する材料によって異なるが、例えば、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、及びスパッタリング法等を用いる方法等が挙げられる。 The sealing layer 16 preferably includes a gas barrier layer for the purpose of blocking oxygen, moisture, etc. in the atmosphere. Examples of the material constituting the gas barrier layer include metal oxides and metal nitrides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide. These materials have not only a water vapor barrier function but also an oxygen barrier function. Among these materials, silicon nitride and silicon oxynitride are particularly preferable from the viewpoint of good barrier properties, solvent resistance, and transparency. The gas barrier layer may have a multilayer structure as necessary. Moreover, the formation method of a gas barrier layer is not specifically limited. In addition, the method for forming the gas barrier layer varies depending on the material constituting the gas barrier layer, and examples thereof include a method using a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, and a sputtering method. Can be mentioned.
 また、前記封止層16は、酸素透過度が10-3g/(m・24h)以下であって、水蒸気透過度10-3g/(m・24h)以下であることが好ましく、酸素透過度が10-5g/(m・24h)以下であって、水蒸気透過度10-5g/(m・24h)以下であることがより好ましい。 The sealing layer 16 preferably has an oxygen permeability of 10 −3 g / (m 2 · 24 h) or less and a water vapor permeability of 10 −3 g / (m 2 · 24 h) or less. It is more preferable that the oxygen permeability is 10 −5 g / (m 2 · 24 h) or less and the water vapor permeability is 10 −5 g / (m 2 · 24 h) or less.
 また、前記面発光素子21は、前記第2電極15の外側に、前記基板11とも接する形で前記第2電極15に被覆する無機物を含む層(無機層)や有機物を含む層(有機層)を形成し、その層を、前記封止層16とすることも好適にできる。この場合、前記封止層16を形成する材料としては、水分や酸素など素子の劣化をもたらすものの浸入を抑制する機能を有し、透光性を有する材料であればよく、例えば、酸化珪素、二酸化珪素、及び窒化珪素等を用いることができる。さらに、前記封止層16は、その脆弱性を改良するために、前記無機層と前記有機層との積層構造であることが好ましい。これらの封止層16の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、及びコーティング法等が挙げられる。 In addition, the surface light emitting element 21 has a layer (inorganic layer) containing an inorganic material or a layer (organic layer) containing an organic material that covers the second electrode 15 in contact with the substrate 11 outside the second electrode 15. It is also possible to form the sealing layer 16 as a layer. In this case, the material for forming the sealing layer 16 may be any material that has a function of suppressing intrusion of elements that cause deterioration of the element such as moisture and oxygen and has translucency, such as silicon oxide, Silicon dioxide, silicon nitride, or the like can be used. Furthermore, the sealing layer 16 preferably has a laminated structure of the inorganic layer and the organic layer in order to improve the fragility. A method for forming these sealing layers 16 is not particularly limited. For example, a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method. , Atmospheric pressure plasma polymerization method, plasma CVD method, laser CVD method, thermal CVD method, coating method and the like.
 また、前記封止層16と、前記面発光素子21、例えば、第2電極15等との間に、間隙がある場合には、その間隙に、窒素やアルゴン等の不活性気体、及びフッ化炭化水素やシリコンオイル等の不活性液体を注入することが好ましい。また、前記間隙を真空にすることも好ましい。また、前記間隙に、吸湿性化合物を封入することも好ましい。 In addition, when there is a gap between the sealing layer 16 and the surface light emitting element 21, for example, the second electrode 15 or the like, an inert gas such as nitrogen or argon, and a fluorination in the gap. It is preferable to inject an inert liquid such as hydrocarbon or silicon oil. It is also preferable that the gap is evacuated. It is also preferable to enclose a hygroscopic compound in the gap.
 また、前記面発光素子21は、必要に応じて、製膜時に、メタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と有機発光層とをパターニングしてもよいし、面発光素子全層をパターニングしてもよい。 Further, the surface light emitting element 21 may be patterned by a metal mask, an ink jet printing method or the like at the time of film formation, if necessary. When patterning, only the electrode may be patterned, the electrode and the organic light emitting layer may be patterned, or the entire surface light emitting element may be patterned.
 前記面発光装置10の製造方法としては、前記面発光装置10を製造することができれば、特に限定されない。以下、その一例として、図2及び図3に示すような製造方法を説明するが、この方法に限定されない。また、各層の形成方法は、特に限定されず、例えば、上記記載の方法等を用いて、パターニングして、所定の位置に形成できればよい。なお、図2は、本実施形態に係る面発光装置の製造方法を説明するための概略断面図である。また、図3は、本実施形態に係る面発光装置の製造方法を説明するための概略上面図である。また、図2及び図3に示す面発光素子では、図1に示す場合と同様、左側の面発光素子が、一方の面発光素子に相当し、右側の面発光素子が、他方の面発光素子に相当するが、これに限定されず、面発光素子の第1電極が、隣に位置する面発光素子の第2電極と、隣り合う面発光素子のそれぞれに備えられる有機発光層間で電気的に接続されていればよい。 The method for manufacturing the surface light emitting device 10 is not particularly limited as long as the surface light emitting device 10 can be manufactured. Hereinafter, as an example, a manufacturing method as shown in FIGS. 2 and 3 will be described, but the present invention is not limited to this method. Moreover, the formation method of each layer is not specifically limited, For example, what is necessary is just to be able to form and pattern in the predetermined position using the above-mentioned method etc. FIG. 2 is a schematic cross-sectional view for explaining the method for manufacturing the surface light emitting device according to this embodiment. FIG. 3 is a schematic top view for explaining the method for manufacturing the surface light emitting device according to the present embodiment. In the surface light emitting device shown in FIGS. 2 and 3, as in the case shown in FIG. 1, the left surface light emitting device corresponds to one surface light emitting device, and the right surface light emitting device corresponds to the other surface light emitting device. However, the present invention is not limited thereto, and the first electrode of the surface light emitting element is electrically connected between the second electrode of the adjacent surface light emitting element and the organic light emitting layer provided in each of the adjacent surface light emitting elements. It only has to be connected.
 まず、図2(a)及び図3(a)に示すように、前記基板11上の所定の位置に、前記下地層12を形成する。前記下地層12を形成する位置は、上述したように、隣り合う面発光素子21のそれぞれに備えられる有機発光層間に存在する、一方の面発光素子21の第2電極15に接触する位置である。ここでは、前記下地層12を形成する位置としては、隣り合う面発光素子21のそれぞれに備えられる有機発光層間において、一方の面発光素子21の第2電極15だけではなく、一方の面発光素子21の第2電極15の両端に配置される一方の面発光素子21の有機発光層14や他方の面発光素子21の第1電極13にも接する位置である。 First, as shown in FIGS. 2A and 3A, the base layer 12 is formed at a predetermined position on the substrate 11. As described above, the base layer 12 is formed at a position in contact with the second electrode 15 of one of the surface light emitting elements 21 that exists between the organic light emitting layers provided in the adjacent surface light emitting elements 21. . Here, as the position where the base layer 12 is formed, not only the second electrode 15 of one of the surface light emitting elements 21 but also one of the surface light emitting elements between the organic light emitting layers provided in each of the adjacent surface light emitting elements 21. This is a position in contact with the organic light emitting layer 14 of one surface light emitting element 21 and the first electrode 13 of the other surface light emitting element 21 disposed at both ends of the second electrode 15 of 21.
 次に、図2(b)及び図3(b)に示すように、前記下地層12が形成された前記基板11上の所定の位置に、前記第1電極13を形成する。前記第1電極13を形成する位置は、一方の面発光素子21の第1電極13と他方の面発光素子21との第1電極13とを離間し、その間において、他方の面発光素子21の第1電極13の一部が、前記下地層12を覆う位置である。 Next, as shown in FIGS. 2B and 3B, the first electrode 13 is formed at a predetermined position on the substrate 11 on which the base layer 12 is formed. The first electrode 13 is formed at a position where the first electrode 13 of one surface light emitting element 21 and the first electrode 13 of the other surface light emitting element 21 are separated from each other, and the other surface light emitting element 21 is interposed therebetween. A part of the first electrode 13 is a position covering the base layer 12.
 次に、図2(c)及び図3(c)に示すように、前記第1電極13上の所定の位置に、前記有機発光層14を形成する。前記有機発光層14を形成する位置は、前記第1電極13上であって、一方の面発光素子21の有機発光層14が、一方の面発光素子21の第1電極13と他方の面発光素子21との間にも形成され、前記下地層12に接触する位置である。 Next, as shown in FIGS. 2 (c) and 3 (c), the organic light emitting layer 14 is formed at a predetermined position on the first electrode 13. The position where the organic light emitting layer 14 is formed is on the first electrode 13, and the organic light emitting layer 14 of one surface light emitting element 21 emits light from the first electrode 13 of one surface light emitting element 21 and the other surface light emitting element. It is also formed between the element 21 and a position in contact with the base layer 12.
 次に、図2(d)及び図3(d)に示すように、前記有機発光層14上の所定の位置に、前記第2電極15を形成する。前記第2電極15を形成する位置は、前記有機発光層14上であって、一方の面発光素子21の第2電極15が、一方の面発光素子21の第1電極13と他方の面発光素子21との間にも形成され、前記下地層12に接触し、他方の面発光素子21の第1電極13と接触する位置である。一方の面発光素子21の第1電極13と他方の面発光素子21との間において、一方の面発光素子21の第2電極15は、前記下地層12に接触する。 Next, as shown in FIGS. 2D and 3D, the second electrode 15 is formed at a predetermined position on the organic light emitting layer 14. The position where the second electrode 15 is formed is on the organic light emitting layer 14, and the second electrode 15 of one surface light emitting element 21 is connected to the first electrode 13 of one surface light emitting element 21 and the other surface light emitting element. It is also formed between the element 21, is in contact with the base layer 12, and is in contact with the first electrode 13 of the other surface light emitting element 21. Between the first electrode 13 of one surface light emitting element 21 and the other surface light emitting element 21, the second electrode 15 of one surface light emitting element 21 is in contact with the base layer 12.
 最後に、図2(e)及び図3(e)に示すように、一方の面発光素子21と他方の面発光素子21とを覆うように、前記封止層16を形成する。そうすることによって、本実施形態に係る面発光装置10が製造される。 Finally, as shown in FIGS. 2E and 3E, the sealing layer 16 is formed so as to cover one surface light emitting element 21 and the other surface light emitting element 21. By doing so, the surface light-emitting device 10 which concerns on this embodiment is manufactured.
 本明細書は、上述したように、様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、基板と、前記基板上に配置された複数の面発光素子とを備え、前記複数の面発光素子が、それぞれ、前記基板に近い側の第1電極と、前記基板から遠い側の第2電極と、前記第1電極と前記第2電極とに挟まれた有機発光層とを備え、前記第2電極が、透光性を有する薄膜金属層からなり、隣り合う前記面発光素子のうちの、一方の面発光素子の第2電極と、他方の面発光素子の第1電極とが、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間で接続され、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間に存在する、前記一方の面発光素子の第2電極に接触した状態で、前記第2電極と前記基板との間に配置された下地層を備える面発光装置である。 One aspect of the present invention includes a substrate and a plurality of surface light emitting elements disposed on the substrate, and each of the plurality of surface light emitting elements includes a first electrode on a side close to the substrate, and the substrate. A second electrode on the far side, and an organic light emitting layer sandwiched between the first electrode and the second electrode, wherein the second electrode is made of a light-transmitting thin film metal layer and adjacent to the surface Of the light emitting elements, the second electrode of one surface light emitting element and the first electrode of the other surface light emitting element are connected between the organic light emitting layers provided in each of the adjacent surface light emitting elements, and adjacent to each other. A surface provided with an underlayer disposed between the second electrode and the substrate in contact with the second electrode of the one surface light emitting element, which exists between the organic light emitting layers provided in each of the surface light emitting elements. It is a light emitting device.
 このような構成によれば、基板上に配置する面発光素子の数を増やすことによって、発光領域の面積を広げることができ、発光面積の大面積化を実現することができる。また、隣り合う面発光素子間において、薄膜金属層である第2電極を、基板上に直接配置されるのではなく、下地層を介して配置することになる。このため、基板から遠い側の第2電極を、第2電極から遠い基板上にまで形成させる必要がなく、下地層上に形成することになる。このことから、隣り合う面発光素子間の距離を短くしても、そこに配置される第2電極である薄膜金属層を好適に形成できる。よって、隣り合う前記面発光素子のうちの、一方の面発光素子の第2電極と、他方の面発光素子の第1電極とが、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間で好適に接続される。よって、隣り合う面発光素子間の距離を短くしても、複数の面発光素子が、隣接する面発光素子間において電気的に好適に接続される。 According to such a configuration, by increasing the number of surface light emitting elements arranged on the substrate, the area of the light emitting region can be expanded, and an increase in the light emitting area can be realized. In addition, between the adjacent surface light emitting elements, the second electrode, which is a thin film metal layer, is not directly disposed on the substrate, but is disposed via the base layer. For this reason, the second electrode far from the substrate does not need to be formed on the substrate far from the second electrode, and is formed on the base layer. From this, even if the distance between adjacent surface emitting elements is shortened, the thin film metal layer which is the 2nd electrode arrange | positioned there can be formed suitably. Therefore, of the adjacent surface light emitting elements, the second electrode of one surface light emitting element and the first electrode of the other surface light emitting element are disposed between the organic light emitting layers provided in each of the adjacent surface light emitting elements. It is preferably connected. Therefore, even if the distance between adjacent surface light emitting elements is shortened, a plurality of surface light emitting elements are electrically connected suitably between adjacent surface light emitting elements.
 以上のことから、大面積の発光領域を、良好な発光で実現することができる面発光装置を提供することができる。 From the above, it is possible to provide a surface light emitting device capable of realizing a large light emitting region with good light emission.
 また、前記面発光装置において、前記下地層が、接触する前記第2電極の膜質を向上させるための層であることが好ましい。すなわち、前記下地層が、接触する前記薄膜金属層の膜質を、前記基板と接触させたときの薄膜金属層の膜質より向上させるための層であることが好ましい。 Further, in the surface light emitting device, it is preferable that the base layer is a layer for improving the film quality of the second electrode in contact. That is, it is preferable that the base layer is a layer for improving the film quality of the thin film metal layer in contact with the film quality of the thin film metal layer in contact with the substrate.
 このような構成によれば、隣り合う面発光素子間に配置される第2電極である薄膜金属をより好適に形成できるので、複数の面発光素子がより好適に電気的に接続される。よって、大面積の発光領域を、より良好な発光で実現することができる。 According to such a configuration, since the thin film metal that is the second electrode disposed between the adjacent surface light emitting elements can be more suitably formed, the plurality of surface light emitting elements are more preferably electrically connected. Therefore, a large-area light emitting region can be realized with better light emission.
 また、前記面発光装置において、前記下地層が、カルシウム、硫化亜鉛、窒素含有化合物、金属酸化物及びフッ化カリウムからなる群から選ばれる少なくとも1種を含む層であることが好ましい。 Moreover, in the surface light emitting device, the base layer is preferably a layer containing at least one selected from the group consisting of calcium, zinc sulfide, nitrogen-containing compounds, metal oxides, and potassium fluoride.
 このような構成によれば、このような下地層が、前記基板と前記第2電極の間に介在することにより、前記第2電極である薄膜金属層の膜質を、前記基板と直接接触させたときの薄膜金属層の膜質より向上させることができる。このため、隣り合う面発光素子間に配置される第2電極である薄膜金属層をより好適に形成できるので、複数の面発光素子がより好適に電気的に接続される。よって、大面積の発光領域を、より良好な発光で実現することができる。 According to such a configuration, such a base layer is interposed between the substrate and the second electrode, whereby the film quality of the thin film metal layer as the second electrode is brought into direct contact with the substrate. The film quality of the thin metal layer can be improved. For this reason, since the thin film metal layer which is a 2nd electrode arrange | positioned between adjacent surface light emitting elements can be formed more suitably, a some surface light emitting element is electrically connected more suitably. Therefore, a large-area light emitting region can be realized with better light emission.
 また、前記面発光装置において、前記第1電極が、透光性を有する薄膜金属層からなることが好ましい。 In the surface light emitting device, it is preferable that the first electrode is made of a light-transmitting thin film metal layer.
 このような構成によれば、前記有機発光層で発生した光を、前記第1電極側からも取り出すことができる。 According to such a configuration, light generated in the organic light emitting layer can be extracted also from the first electrode side.
 また、前記面発光装置において、前記下地層が、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間において、前記一方の面発光素子の第2電極、前記一方の面発光素子の有機発光層、及び前記他方の面発光素子の第1電極と接触することが好ましい。 In the surface light-emitting device, the base layer is disposed between the organic light-emitting layers provided in each of the adjacent surface light-emitting elements, the second electrode of the one surface light-emitting element, and the organic light-emitting layer of the one surface light-emitting element. , And the first electrode of the other surface light emitting element.
 このような構成によれば、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間において、前記他方の面発光素子の第1電極だけではなく、前記一方の面発光素子の第2電極や前記一方の面発光素子の有機発光層にも接触するように、下地層を配置する。このため、隣り合う面発光素子間に配置される第2電極である薄膜金属層が下地層に、より確実に接触することになり、前記第2電極が、より好適に形成できる。また、前記第1電極が薄膜金属層である場合、前記第1電極、特に前記第2電極に近いところを、好適に形成することができる。このことにより、前記第1電極と第2電極との電気的な接続をより好適に行うことができる。よって、大面積の発光領域を、より良好な発光で実現することができる。 According to such a configuration, not only the first electrode of the other surface light-emitting element but also the second electrode of the one surface light-emitting element, the organic EL layer provided in each of the adjacent surface light-emitting elements, An underlayer is disposed so as to be in contact with the organic light emitting layer of one of the surface light emitting elements. For this reason, the thin film metal layer, which is the second electrode disposed between the adjacent surface light emitting elements, comes into more reliable contact with the base layer, and the second electrode can be more suitably formed. In addition, when the first electrode is a thin film metal layer, the first electrode, particularly the portion close to the second electrode can be suitably formed. Thereby, the electrical connection between the first electrode and the second electrode can be more suitably performed. Therefore, a large-area light emitting region can be realized with better light emission.
 また、前記面発光装置において、前記下地層が、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間を2つ以上にわたって存在することが好ましい。 Further, in the surface light emitting device, it is preferable that the base layer exists in two or more organic light emitting layers provided in each of the adjacent surface light emitting elements.
 このような構成によれば、隣り合う面発光素子間に配置される第2電極である薄膜金属層が下地層に、より確実に接触することになり、前記第2電極が、より好適に形成できる。よって、大面積の発光領域を、より良好な発光で実現することができる。 According to such a configuration, the thin film metal layer, which is the second electrode disposed between the adjacent surface light emitting elements, comes into more reliable contact with the base layer, and the second electrode is more suitably formed. it can. Therefore, a large-area light emitting region can be realized with better light emission.
 本発明によれば、大面積の発光領域を、良好な発光で実現することができる面発光装置を提供することができる。 According to the present invention, it is possible to provide a surface light emitting device capable of realizing a large area light emitting region with good light emission.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 [実施例1]
 図2及び図3に示すような製造方法によって、面発光装置を製造した。
[Example 1]
A surface emitting device was manufactured by a manufacturing method as shown in FIGS.
 まず、前記基板11として、イソプロピルアルコールで洗浄した、100mm×100mm、厚さ0.7mmのガラス基板を用いた。この基板11上に、図2(a)及び図3(a)に示すような位置に、2mm×90mmとなるようにマスクを介して、厚さ50nmの、窒素含有化合物である上記式(1)で表される化合物からなる窒素含有化合物含有層を真空蒸着法により形成した。さらに、その上に、同様のマスクを介して、厚さ1nmのカルシウムからなるカルシウム含有層を真空蒸着法により形成した。そうすることによって、前記窒素含有化合物含有層及び前記カルシウム含有層を積層した下地層12を形成した。 First, as the substrate 11, a glass substrate washed with isopropyl alcohol and having a size of 100 mm × 100 mm and a thickness of 0.7 mm was used. The above formula (1), which is a nitrogen-containing compound having a thickness of 50 nm, is placed on the substrate 11 through a mask so as to be 2 mm × 90 mm at the positions shown in FIGS. 2 (a) and 3 (a). The nitrogen-containing compound-containing layer made of the compound represented by (1) was formed by a vacuum deposition method. Furthermore, a calcium-containing layer made of calcium having a thickness of 1 nm was formed thereon by a vacuum deposition method through a similar mask. By doing so, the foundation | substrate layer 12 which laminated | stacked the said nitrogen containing compound content layer and the said calcium content layer was formed.
 次に、下地層12を形成した基板11上に、図2(b)及び図3(b)に示すような位置に形成されるようにマスクを介して、厚さ150nmの銀からなる第1電極13を真空蒸着法により形成した。 Next, on the substrate 11 on which the base layer 12 is formed, a first made of silver having a thickness of 150 nm is formed through a mask so as to be formed at a position as shown in FIGS. 2B and 3B. The electrode 13 was formed by a vacuum evaporation method.
 次に、第1電極13上に、図2(c)及び図3(c)に示すような位置に形成されるようにマスクを介して、下記製造方法により得られた、正孔輸送注入層、発光機能層、正孔阻止層、及び電子輸送注入層を積層した有機発光層14を真空蒸着法により形成した。 Next, a hole transport injection layer obtained by the following manufacturing method through a mask so as to be formed on the first electrode 13 at a position as shown in FIGS. 2 (c) and 3 (c). Then, an organic light emitting layer 14 in which a light emitting functional layer, a hole blocking layer, and an electron transport injection layer were laminated was formed by a vacuum deposition method.
 まず、正孔輸送注入材として、上記式(2)で表される化合物(α-NPD)が入った加熱ボードに通電して加熱し、α-NPDからなる、正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、第1電極13が形成された基板11上に成膜した。この際、蒸着速度0.1~0.2nm/秒とした。正孔輸送注入層の膜厚は、20nmとした。 First, as a hole transport injecting material, a heating board containing the compound (α-NPD) represented by the above formula (2) is energized and heated to form a hole injecting layer and hole transport composed of α-NPD. A hole transport injection layer that also serves as a layer was formed on the substrate 11 on which the first electrode 13 was formed. At this time, the deposition rate was set to 0.1 to 0.2 nm / second. The thickness of the hole transport injection layer was 20 nm.
 次に、下記式(3)で表される化合物(ホスト材料H4)の入った加熱ボードと、下記式(4)で表される化合物(燐光発光性化合物Ir-4)の入った加熱ボードとを、それぞれ独立に通電し、ホスト材料H4と燐光発光性化合物Ir-4とからなる発光機能層を、前記正孔輸送注入層上に成膜した。この際、蒸着速度が、ホスト材料H4:燐光発光性化合物Ir-4=100:6となるように、加熱ボードの通電を調節した。また、発光機能層の膜厚は、30nmとした。 Next, a heating board containing a compound represented by the following formula (3) (host material H4), a heating board containing a compound represented by the following formula (4) (phosphorescent compound Ir-4), Were independently energized to form a light emitting functional layer composed of the host material H4 and the phosphorescent compound Ir-4 on the hole transport injection layer. At this time, the energization of the heating board was adjusted so that the deposition rate was the host material H4: phosphorescent compound Ir-4 = 100: 6. The film thickness of the light emitting functional layer was 30 nm.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 次に、正孔阻止材料として、下記式(5)で表される化合物(BAlq)が入った加熱ボードに通電して加熱し、BAlqからなる正孔阻止層を、前記発光機能層上に成膜した。この際、蒸着速度0.1~0.2nm/秒とした。正孔阻止層の膜厚は、10nmとした。 Next, as a hole blocking material, a heating board containing a compound (BAlq) represented by the following formula (5) is energized and heated to form a hole blocking layer made of BAlq on the light emitting functional layer. Filmed. At this time, the deposition rate was set to 0.1 to 0.2 nm / second. The thickness of the hole blocking layer was 10 nm.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 次に、電子輸送注入材として、上記式(1)で表される化合物が入った加熱ボードと、フッ化カリウムの入った加熱ボードとを、それぞれ独立に通電し、上記式(1)で表される化合物とフッ化カリウムとで構成された、電子注入層と電子輸送層とを兼ねた電子輸送注入層を、前記正孔阻止層上に成膜した。この際、蒸着速度が、上記式(1)で表される化合物:フッ化カリウム=75:25となるように、加熱ボードの通電を調節した。また、電子輸送注入層の膜厚は、30nmとした。 Next, as an electron transport injection material, a heating board containing a compound represented by the above formula (1) and a heating board containing potassium fluoride were energized independently, respectively, and the above formula (1) was used. An electron transport injection layer composed of a compound to be prepared and potassium fluoride serving as both an electron injection layer and an electron transport layer was formed on the hole blocking layer. Under the present circumstances, the electricity supply of the heating board was adjusted so that a vapor deposition rate might be set to the compound represented by the said Formula (1): Potassium fluoride = 75: 25. The film thickness of the electron transport injection layer was 30 nm.
 上記のようにして得られた積層体を有機発光層とした。 The laminate obtained as described above was used as an organic light emitting layer.
 次に、有機発光層14上に、図2(c)及び図3(c)に示すような位置に形成されるようにマスクを介して、厚さ15nmの銀からなる第2電極15を真空蒸着法により形成した。この第2電極は、透光性を有する薄膜金属層であった。 Next, vacuum is applied to the second electrode 15 made of silver having a thickness of 15 nm on the organic light emitting layer 14 through a mask so as to be formed at a position as shown in FIG. 2C and FIG. It formed by the vapor deposition method. The second electrode was a light-transmitting thin film metal layer.
 最後に、図2(e)及び図3(e)に示すように、一方の面発光素子21と他方の面発光素子21とを覆うように、封止層16を形成した。具体的には、90mm×90mm、厚さ300μmのガラス板と、各面発光素子21との間に、接着剤としての熱硬化型樹脂(スリーボンド社製のTB1655)を介して、貼り合わせ、貼り合わせたものを、110℃の炉で、40分間加熱した。そうすることにより、接着剤が硬化し、各面発光素子が封止された。そうすることによって、実施例1に係る面発光装置10が得られた。 Finally, as shown in FIGS. 2 (e) and 3 (e), the sealing layer 16 was formed so as to cover one surface light emitting element 21 and the other surface light emitting element 21. Specifically, bonding is performed between a glass plate of 90 mm × 90 mm and a thickness of 300 μm and each surface light emitting element 21 via a thermosetting resin (TB1655 manufactured by Three Bond Co.) as an adhesive. The combined material was heated in a 110 ° C. oven for 40 minutes. By doing so, the adhesive was hardened and each surface light emitting element was sealed. By doing so, the surface emitting device 10 according to Example 1 was obtained.
 なお、基板11は、100mm×100mmであり、図2(e)及び図3(e)に示すように、その端部まで、各面発光素子を形成させた。これに対し、封止に用いたガラス板は、90mm×90mmであるので、面発光装置10の端部には、各面発光素子の電極が露出している。 In addition, the board | substrate 11 is 100 mm x 100 mm, and as shown to FIG.2 (e) and FIG.3 (e), each surface light emitting element was formed to the edge part. On the other hand, since the glass plate used for sealing is 90 mm × 90 mm, the electrode of each surface light emitting element is exposed at the end of the surface light emitting device 10.
 [実施例2]
 カルシウム含有層の代わりに、カルシウム含有層を形成するときと同様のマスクを介して、厚さ1mmのフッ化カリウム(KF)からなるKF含有層を真空蒸着法により形成したこと以外、実施例1と同様にして、実施例2に係る面発光装置10を製造した。
[Example 2]
Example 1 except that instead of the calcium-containing layer, a KF-containing layer made of potassium fluoride (KF) having a thickness of 1 mm was formed by a vacuum deposition method through the same mask as that for forming the calcium-containing layer. In the same manner as described above, the surface light-emitting device 10 according to Example 2 was manufactured.
 [実施例3]
 窒素含有化合物含有層の代わりに、窒素含有化合物含有層を形成するときと同様のマスクを介して、厚さ30nmの酸化ニオブ(Nb)からなる金属酸化物含有層をスパッタ法により形成したこと以外、実施例1と同様にして、実施例3に係る面発光装置10を製造した。
[Example 3]
Instead of the nitrogen-containing compound-containing layer, a metal oxide-containing layer made of niobium oxide (Nb 2 O 5 ) having a thickness of 30 nm is formed by a sputtering method through the same mask as that for forming the nitrogen-containing compound-containing layer. A surface light emitting device 10 according to Example 3 was manufactured in the same manner as Example 1 except that.
 [実施例4]
 下地層を、90mm×90mmの範囲で形成したこと以外、実施例1と同様にして、実施例4に係る面発光装置10を製造した。
[Example 4]
A surface light-emitting device 10 according to Example 4 was manufactured in the same manner as in Example 1 except that the base layer was formed in a range of 90 mm × 90 mm.
 [実施例5]
 第1電極13を、酸化インジウム・酸化亜鉛(IZO)で形成したこと以外、実施例1と同様にして、実施例5に係る面発光装置10を製造した。
[Example 5]
A surface light emitting device 10 according to Example 5 was manufactured in the same manner as Example 1 except that the first electrode 13 was formed of indium oxide / zinc oxide (IZO).
 [比較例]
 下地層を形成しないこと以外、実施例1と同様にして、比較例に係る面発光装置10を製造した。
[Comparative example]
A surface emitting device 10 according to a comparative example was manufactured in the same manner as in Example 1 except that the base layer was not formed.
 前記各面発光装置10において、一方の面発光素子21の第1電極13と第2電極15との間に電圧を印加(発光領域1のみ通電)した。また、他方の面発光素子21の第1電極13と第2電極15との間に電圧を印加(発光領域2のみ通電)した。最後に、一方の面発光素子21の第1電極13と他方の面発光素子21の第2電極15との間に電圧を印加(直列接続で通電)した。各通電における発光状態を目視で確認した。発光していれば、「○」と評価し、発光していなければ、「×」と評価した。 In each surface light emitting device 10, a voltage was applied between the first electrode 13 and the second electrode 15 of one surface light emitting element 21 (only the light emitting region 1 was energized). Further, a voltage was applied between the first electrode 13 and the second electrode 15 of the other surface light emitting element 21 (only the light emitting region 2 was energized). Finally, a voltage was applied between the first electrode 13 of one surface light emitting element 21 and the second electrode 15 of the other surface light emitting element 21 (energized in series connection). The light emission state in each energization was confirmed visually. If it was emitting light, it was evaluated as “◯”, and if it was not emitting light, it was evaluated as “x”.
 この結果を、下記表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1からわかるように、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間に存在する、前記一方の面発光素子の第2電極に接触するように下地層を設けた場合(実施例1~5)は、各発光素子単独でも、それぞれの発光素子を直列で接続した場合であっても、発光した。これに対して、下地層を設けなかった場合(比較例)は、各発光素子単独では発光するものの、それぞれの発光素子を直列で接続した場合は、発光しなかった。これは、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間に存在する第2電極が断線していることによると考えられる。 As can be seen from Table 1, when a base layer is provided so as to be in contact with the second electrode of the one surface light emitting element, which is present between the organic light emitting layers provided in each of the adjacent surface light emitting elements (Example 1). In 5) to 5), each light emitting element alone or each of the light emitting elements connected in series emitted light. On the other hand, when the base layer was not provided (Comparative Example), each light emitting element emitted light alone, but when each light emitting element was connected in series, no light was emitted. This is considered to be because the second electrode existing between the organic light emitting layers provided in each of the adjacent surface light emitting elements is disconnected.
 この出願は、2016年6月13日に出願された日本国特許出願特願2016-116843を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2016-116843 filed on June 13, 2016, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明によれば、大面積の発光領域を、良好な発光で実現することができる面発光装置が提供される。 According to the present invention, there is provided a surface light emitting device capable of realizing a large area light emitting region with good light emission.

Claims (6)

  1.  基板と、前記基板上に配置された複数の面発光素子とを備え、
     前記複数の面発光素子が、それぞれ、前記基板に近い側の第1電極と、前記基板から遠い側の第2電極と、前記第1電極と前記第2電極とに挟まれた有機発光層とを備え、
     前記第2電極が、透光性を有する薄膜金属層からなり、
     隣り合う前記面発光素子のうちの、一方の面発光素子の第2電極と、他方の面発光素子の第1電極とが、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間で接続され、
     隣り合う前記面発光素子のそれぞれに備えられる有機発光層間に存在する、前記一方の面発光素子の第2電極に接触した状態で、前記第2電極と前記基板との間に配置された下地層を備えることを特徴とする面発光装置。
    A substrate, and a plurality of surface light emitting elements disposed on the substrate,
    Each of the plurality of surface light emitting elements includes a first electrode closer to the substrate, a second electrode far from the substrate, and an organic light emitting layer sandwiched between the first electrode and the second electrode. With
    The second electrode is made of a light-transmitting thin film metal layer,
    Of the adjacent surface light emitting elements, the second electrode of one surface light emitting element and the first electrode of the other surface light emitting element are connected between the organic light emitting layers provided in each of the adjacent surface light emitting elements. ,
    An underlayer disposed between the second electrode and the substrate in contact with the second electrode of the one surface light emitting element, which is present between the organic light emitting layers provided in each of the adjacent surface light emitting elements. A surface light emitting device comprising:
  2.  前記下地層が、接触する前記第2電極の膜質を向上させるための層である請求項1に記載の面発光装置。 2. The surface emitting device according to claim 1, wherein the base layer is a layer for improving the film quality of the second electrode that is in contact.
  3.  前記下地層が、カルシウム、硫化亜鉛、窒素含有化合物、金属酸化物、及びフッ化カリウムからなる群から選ばれる少なくとも1種を含む層である請求項1又は請求項2に記載の面発光装置。 3. The surface light emitting device according to claim 1, wherein the underlayer is a layer containing at least one selected from the group consisting of calcium, zinc sulfide, nitrogen-containing compounds, metal oxides, and potassium fluoride.
  4.  前記第1電極が、透光性を有する薄膜金属層からなる請求項1~3のいずれか1項に記載の面発光装置。 The surface emitting device according to any one of claims 1 to 3, wherein the first electrode is made of a light-transmitting thin film metal layer.
  5.  前記下地層が、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間において、前記一方の面発光素子の第2電極、前記一方の面発光素子の有機発光層、及び前記他方の面発光素子の第1電極と接触する請求項1~4のいずれか1項に記載の面発光装置。 The second electrode of the one surface light emitting element, the organic light emitting layer of the one surface light emitting element, and the other surface light emitting element between the organic light emitting layers provided in each of the adjacent surface light emitting elements. The surface emitting device according to any one of claims 1 to 4, which is in contact with the first electrode.
  6.  前記下地層が、隣り合う前記面発光素子のそれぞれに備えられる有機発光層間を2つ以上にわたって存在する請求項1~5のいずれか1項に記載の面発光装置。 The surface light-emitting device according to any one of claims 1 to 5, wherein the base layer has two or more organic light-emitting layers provided in each of the adjacent surface light-emitting elements.
PCT/JP2017/018142 2016-06-13 2017-05-15 Planar light-emitting device WO2017217160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016116843A JP2019135682A (en) 2016-06-13 2016-06-13 Surface light-emitting device
JP2016-116843 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017217160A1 true WO2017217160A1 (en) 2017-12-21

Family

ID=60664414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018142 WO2017217160A1 (en) 2016-06-13 2017-05-15 Planar light-emitting device

Country Status (2)

Country Link
JP (1) JP2019135682A (en)
WO (1) WO2017217160A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029404A (en) * 1998-07-10 2000-01-28 Toppan Printing Co Ltd Organic electroluminescence indicating element and its production
JP2010527107A (en) * 2007-05-10 2010-08-05 イーストマン コダック カンパニー Electroluminescent devices with improved light output
WO2011152496A1 (en) * 2010-06-04 2011-12-08 コニカミノルタホールディングス株式会社 Illumination apparatus
JP2012151103A (en) * 2010-12-28 2012-08-09 Semiconductor Energy Lab Co Ltd Light emitting unit, light emitting device, and lighting system
JP2012195288A (en) * 2011-03-02 2012-10-11 Semiconductor Energy Lab Co Ltd Light-emitting device and illumination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000029404A (en) * 1998-07-10 2000-01-28 Toppan Printing Co Ltd Organic electroluminescence indicating element and its production
JP2010527107A (en) * 2007-05-10 2010-08-05 イーストマン コダック カンパニー Electroluminescent devices with improved light output
WO2011152496A1 (en) * 2010-06-04 2011-12-08 コニカミノルタホールディングス株式会社 Illumination apparatus
JP2012151103A (en) * 2010-12-28 2012-08-09 Semiconductor Energy Lab Co Ltd Light emitting unit, light emitting device, and lighting system
JP2012195288A (en) * 2011-03-02 2012-10-11 Semiconductor Energy Lab Co Ltd Light-emitting device and illumination device

Also Published As

Publication number Publication date
JP2019135682A (en) 2019-08-15

Similar Documents

Publication Publication Date Title
JP6336569B2 (en) ORGANIC LIGHT-EMITTING ELEMENT AND MANUFACTURING METHOD
US8102119B2 (en) Encapsulated optoelectronic device and method for making the same
JP2018133346A (en) Organic electroluminescent element
KR101084271B1 (en) Organic light emitting diode device and method for manufacturing the same
US20170213996A1 (en) Organic electroluminescent element
US9105874B2 (en) Light-emitting components and method for producing a light-emitting component
KR20120100438A (en) Front side emitting type organic light emitting display device and method for manufacturing the same
EP3018724B1 (en) Organic light-emitting device and manufacturing method therefor
KR20130123236A (en) Transparent electrode, flexible organic light emitting diode with the same and manufacturing method thereof
JP2010055926A (en) Organic electroluminescent element and its manufacturing method
US20130270536A1 (en) Electronic component and method for producing an electronic component
KR102080630B1 (en) Light-emitting component and method for producing a light-emitting component
JP2018098134A (en) Light transmission type organic electroluminescent panel and organic electroluminescence light-source device
US20130307406A1 (en) Organic electroluminescent element and illumination device
WO2017217160A1 (en) Planar light-emitting device
US20130270542A1 (en) Method for producing an optoelectronic component and optoelectronic component
WO2018193822A1 (en) Electronic device and method for producing same
CN104244487B (en) Electroluminescent sheet, electroluminescent display using the same, and production process thereof
JP6330543B2 (en) Transparent electrode and electronic device
JP6369115B2 (en) Transparent electrode and electronic device
JP2018067493A (en) Surface light-emitting device
JP2014167864A (en) Organic EL module
JP2017220409A (en) Light-emitting module
JP2013127885A (en) Lighting device
KR20150024189A (en) Method for preparing flexible substrate and method for preparing organic light emitting device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP