WO2017216126A1 - Transducteur electrodynamique large bande pour casque audio et casque audio associe - Google Patents

Transducteur electrodynamique large bande pour casque audio et casque audio associe Download PDF

Info

Publication number
WO2017216126A1
WO2017216126A1 PCT/EP2017/064332 EP2017064332W WO2017216126A1 WO 2017216126 A1 WO2017216126 A1 WO 2017216126A1 EP 2017064332 W EP2017064332 W EP 2017064332W WO 2017216126 A1 WO2017216126 A1 WO 2017216126A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
coil
electrodynamic transducer
transducer
electrodynamic
Prior art date
Application number
PCT/EP2017/064332
Other languages
English (en)
Inventor
Ludovic UHRING-CADART
Clément AUZOU
Arnaud Cazes-Bouchet
Original Assignee
Focal Jmlab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focal Jmlab filed Critical Focal Jmlab
Priority to US16/307,575 priority Critical patent/US10932026B2/en
Priority to CN201780035866.8A priority patent/CN109314823B/zh
Priority to EP17729135.8A priority patent/EP3469812B1/fr
Publication of WO2017216126A1 publication Critical patent/WO2017216126A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/027Diaphragms comprising metallic materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • H04R7/20Securing diaphragm or cone resiliently to support by flexible material, springs, cords, or strands

Definitions

  • the invention relates to the field of broadband electrodynamic transducers for headphones.
  • a broadband transducer corresponds to a transducer configured to ensure, alone, the reproduction of sounds for the human ear, unlike architectures integrating several transducers, for example with a first speaker configured to generate the low frequencies and a second loudspeaker. speaker configured to generate the high frequencies.
  • the invention more particularly relates to the field of high-performance sound reproduction, that is to say by limiting the degradation of the signal.
  • the invention relates, more generally, to an audio headset incorporating an electrodynamic transducer.
  • An electrodynamic transducer is a device converting an electrical signal into an acoustic wave.
  • an electrodynamic transducer generally consists of a magnetic motor, a coil, a membrane and a suspension.
  • the motor has a groove, called gap, into which penetrates the coil configured to capture the magnetic field so as to move in translation under the effect of Laplace force.
  • the coil is fixed with the membrane having a shape of revolution adapted to transform the translational movement of the coil acoustic wave.
  • the moving part of an electrodynamic transducer is thus composed of the coil and the membrane. This moving part is guided in displacement by a suspension arranged around the membrane.
  • the moving part is characterized by at least three mechanical parameters that affect the performance of the electrodynamic transducer.
  • a first parameter relates to the rigidity of the membrane.
  • the more a membrane is rigid the less it is deformable, and therefore the more it ensures a role of piston for generating movements of the surrounding air masses with a kinematic faithful to the control signal.
  • the more rigid a membrane is the more it allows piston operation, limiting or even eliminating the distortion phenomena.
  • a moving part is its mass. Indeed, the more mobile part is light, the more it can be moved at high frequency with a satisfactory amplitude, at a constant activation energy level. In other words, the more mobile a part is light, the more it allows a significant acceleration, allowing it to faithfully reproduce the high frequencies, without generating dragging phenomenon.
  • a third critical parameter of a broadband electrodynamic transducer is its resonant frequency which must be as low as possible in order to reproduce the low frequencies without attenuation.
  • an electrodynamic transducer has a resonant frequency corresponding to a local maximum of impedance as a function of frequency.
  • the electrodynamic transducer operates at a frequency below this resonant frequency, the transducer displacements become limited and can be saturated regardless of the frequency used.
  • the electrodynamic transducer operates at a frequency above this resonance frequency, the transducer displacements decrease as the frequency increases. It is therefore sought an electrodynamic transducer whose resonant frequency is as low as possible to avoid displacement saturation of the electrodynamic transducer.
  • the ideal moving part is one that has both a very high rigidity, while being extremely light and with a low resonant frequency.
  • other critical parameters are also to be taken into account, such as the emitting surface, the decompression volumes and the volume of the vents.
  • a headphone is subject to strong design constraints, and it is sought to use a wider membrane possible to improve the volume of air displaced by the membrane.
  • the movement of air at the membrane causes a depression or compression of air under the membrane.
  • the air decompression volumes of the membrane must therefore be sufficient not to slow the movement of the membrane.
  • a conventional solution consists in making the diaphragm and the suspension in the same layer of polyester, for example of Mylar ®.
  • the realization of the suspension and the membrane in one piece makes it possible to increase the emitting surface by using part of the suspension to generate the acoustic waves.
  • the displacement of the membrane is provided by a self-supporting mounted coil or on a support fixed on the lower face of the membrane.
  • the material constituting the membrane is light, the weight of the moving part is negatively impacted by the weight of the coil and the coil support, thus limiting the dynamics of the electrodynamic transducer.
  • a polyester membrane also has the disadvantage of being deformed in high frequencies, that is to say above 4kHz. As a result, unwanted harmonics appear in the acoustic wave due to uncontrolled deformations of the membrane or suspension.
  • a suspension polyester membrane also creates amplitude modulation during large excursions, thereby generating distortion.
  • another solution proposes to use an aluminum or cellulose membrane in order to improve the rigidity of the membrane. This solution makes it possible to generate high frequency acoustic waves by limiting the distortions.
  • the weight of the membrane negatively impacts the weight of the moving part and limits the dynamics of the electrodynamic transducer.
  • an electrodynamic transducer for audio headphones generally has a first resonance of its impedance between 2 and 4.5 kHz. This first resonance is defined by the characteristics of the moving part and the set of decompression volumes. Without action on the architecture of the headphones, the frequencies generated by the electrodynamic transducer below this first resonance are attenuated. To remedy this problem and generate a clear signal over the entire audible frequency band, between 20 Hz and 20 kHz, it is customary to provide vents in the transducer and in the structure of the headphones. These vents form a frequency resonance lower than that of the first resonance so as to compensate the attenuation of frequencies lower than the frequency of the first resonance.
  • vents are provided with paper or acoustically resistive fabrics so as to tune the phenomenon of resonance of the vents. It follows that an audio headset typically has a second resonance of its impedance, located between 50 Hz and 150 Hz, and defined by the characteristics of the moving part and those of the largest and least damped vent.
  • vents to generate low frequencies by resonance causes latency in the generation of low frequencies.
  • tissue or sheets of paper limits the volume of air decompression of the membrane.
  • the technical problem of the invention is to provide an electrodynamic transducer having a low intrinsic resonance frequency so as to limit or eliminate the use of vents to form the low frequencies, while ensuring a good compromise between the other parameters of the transducer electrodynamics.
  • the invention proposes to solve this technical problem by coupling a rigid membrane, preferably aluminum or beryllium, with a self-supporting coil on the membrane so as to remove the coil support and limit the weight of the moving part.
  • the invention relates to a broadband electrodynamic transducer for a headphone, said transducer comprising:
  • a magnetic motor configured to generate a magnetic field
  • a membrane connected to said coil so as to convert the translational movement of said coil into an acoustic wave.
  • the invention is characterized in that said transducer comprises a self-supporting coil fixed by bonding to said membrane, said membrane having a Young's modulus greater than 40 GPa and in that said suspension has a thickness of between 50 and ⁇ .
  • a membrane composed of a material whose Young's modulus is greater than 40 GPa corresponds to a rigid membrane made, for example, of aluminum or beryllium.
  • the invention proposes to couple the advantages of this rigid membrane with a self-supported coil by the membrane, that is to say without using a coil support.
  • the mechanical strength of the coil is ensured by the single gluing of the turns together.
  • the weight of the moving part is greatly diminished by the removal of the coil support.
  • the invention makes it possible to obtain a low weight and a great flexibility of the suspension.
  • the inventors have found that the combination of a rigid membrane with a self-supporting coil makes it possible to obtain a light mobile part capable of reproducing the high frequencies without distortion.
  • the combination of this light moving part with a very flexible suspension makes it possible to obtain an electrodynamic transducer having a single very low resonance frequency, close to 40 Hz.
  • a Beryllium membrane operates as a piston over the entire audible frequency band, between 20Hz and 20kHz.
  • said membrane is made of a material selected from the group consisting of beryllium, magnesium and aluminum. Unlike other metallic materials with Young's modulus greater than 40 GPa, these materials offer a good compromise between rigidity and lightness so as not to degrade the acceleration factor of the electrodynamic transducer.
  • said coil comprises a single conductive wire wound on itself according to the height of said electrodynamic transducer.
  • This embodiment makes it possible to limit the weight of the coil, and therefore of the moving mass.
  • said coil has a diameter of between 20 and 30mm. Unlike conventional coils, whose diameter is close to 10 mm, the use of a self-winding single winding coil, and therefore very light, increases the diameter of the coil and optimize its location on the membrane. Thus, the guidance of the membrane is improved, and the forces are applied to an optimal location of the membrane to shift the nodal modes to the highest frequency. In addition, this embodiment makes it possible to release a very large volume of air decompression inside the coil. According to one embodiment, said coil has a height of between 4 and 5mm.
  • said electrodynamic transducer has an opening area greater than 35%.
  • This opening surface corresponds to the ratio between the emitting surface of the membrane and the surface of the rear openings.
  • this embodiment improves the dynamics of the electrodynamic transducer because the variations of air volume generated by the movement of the membrane are removed without constraints through the central recess and the recess at the periphery.
  • said electrodynamic transducer also comprises a suspension connecting an outer edge of said membrane with a fixed support, said suspension being made of rubber.
  • this embodiment allows to separate these two elements. It is therefore possible to use a suspension and a membrane more effective compared to those implemented in the prior art thus allowing the electrodynamic transducer to reach low and high frequencies with very little distortion.
  • said electrodynamic transducer has a compliance greater than 40 mm / N.
  • the invention relates to an open or semi-open audio headset comprising an electrodynamic transducer according to the first aspect of the invention.
  • FIG. 1 is a rear perspective view of an electrodynamic transducer according to one embodiment of the invention
  • FIG. 2 is a front perspective view of the transducer of FIG. 1;
  • FIG. 3 is a partial sectional view of the transducer of FIG.
  • FIGS. 1 to 3 are described with reference to an electrodynamic transducer 10 whose front face has a membrane 14 and whose rear face has a motor 11.
  • the orientation of the front and rear faces can vary without changing the invention. .
  • the engine 11 is a conventional engine and can take all known forms.
  • the motor 11 has a shape of revolution extending around a central axis x of the electrodynamic transducer 10. As illustrated in FIG. 1, the motor 11 can be fixed on a fixed support 18 by means of three screw.
  • the motor 11 comprises a central recess 15 so as to create an air expansion column extending from the membrane 14 to the rear of the electrodynamic transducer 10.
  • this expansion column of air has a zero or almost zero acoustic impedance so as to limit the maximum braking of the membrane 14.
  • a zero or almost zero acoustic impedance indicates that the acoustic transducer 10 has no papers disposed behind the membrane 14, in the axis of the motor 11.
  • the motor 11 has an air gap 13 for receiving a coil 12.
  • the coil 12 is fixed directly by gluing under the membrane 14 without using a coil support 12 so as to limit the weight of the moving part of the electrodynamic transducer 10
  • the coil 12 is preferably made with a single conductive wire wound on itself according to the height of the electrodynamic transducer 10.
  • the conductive wire may be of circular or square section.
  • the conductive wire may be made of copper or type "CAW", that is to say that it is composed of an aluminum core covered with a copper coating and a protective layer.
  • the heating of the conductive wire makes it possible to secure the windings of the wire together by bonding the protective layers together, thus ensuring the structure of the coil 12.
  • the coil 12 is therefore particularly light.
  • this embodiment makes it possible to obtain a coil with a very large diameter and height in the field of audio headsets.
  • this embodiment has made it possible to obtain a coil 12 whose diameter d is between 20 and 30 mm for a height h of between 4 and 5 mm.
  • the inductance of the coil 12 is between 150 and 250 ⁇ unlike the state of the art in which the inductance of the coil is generally between 400 and 500 ⁇ .
  • the coil 12 may have several series of windings without changing the invention.
  • the performance of the electrodynamic transducer 10 is also improved by the use of a membrane 14 having a Young's modulus greater than 40 GPa.
  • the membrane 14 is made of aluminum with a Young's modulus substantially equal to 69 GPa, or in beryllium with a Young's modulus substantially equal to 240 GPa.
  • the thickness of the membrane 14 is preferably between 20 and 30 ⁇ for a diameter of between 30 and 32 mm.
  • the membrane 14 is particularly rigid while having a certain lightness compared to titanium or steel.
  • the membrane 14 has a slightly domed front face forming a dome at the edges of which the coil 12 is fixed.
  • the membrane 14 also extends radially, after the dome, by a substantially straight end portion 17 extending towards the fixed support 18.
  • the moving part of the electrodynamic transducer 10 is completed by a dedicated suspension 16, preferably made of rubber.
  • the suspension 16 extends in the form of a simple arc between the end portion 17 of the membrane 14 and a radial edge of the fixed support 18.
  • the suspension 16 has a thickness of between 50 and 100 ⁇ .
  • the suspension 16 is fixed by gluing on the end portion 17 of the membrane 14 and on the radial edge of the fixed support 18. With the aid of this suspension 16, the compliance of the electrodynamic transducer 10 is particularly improved. Indeed, the compliance of the electrodynamic transducer 10 has been measured greater than 40 nm / N.
  • a rear portion of the electrodynamic transducer 10 is also open on a portion of the suspension 16 so as to limit the braking of the membrane 14. It follows that the electrodynamic transducer 10 has an opening area greater than 35%. This opening surface corresponds to the ratio between the emitting surface of the membrane 14 and the surface of the rear openings.
  • the electrodynamic transducer 10 thus obtained, has spectacular performance. For example, for a membrane 14 made of aluminum, the total weight of the moving part (including the membrane, the suspension, the coil and the glue) does not exceed 160 mg. Similarly, for a membrane 14 made of beryllium, the total weight of the moving part (including the membrane, the suspension, the coil and the glue) does not exceed 125 mg. Mass measurements are performed with a scale accurate to 1/10 milligrams. Finally, two electrodynamic transducers 10 can be used to form a headset, for example an open or semi-open headphone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Abstract

L'invention concerne un transducteur électrodynamique(10) large bande pour casque audio, ledit transducteur (10) comportant : -un moteur magnétique (11) configuré pour générer un champ magnétique; -une bobine (12) disposée dans un entrefer (13) duditmoteur magnétique(11) et mobile en translation sousl'effet dudit champ magnétique; et -une membrane (14) reliée à ladite bobine (12) de sorte à convertir le mouvement de translation de ladite bobine (12) en une onde acoustique; -ledit transducteur (10) comportantune bobine(12)autoporteuse fixée par collage sur ladite membrane(14), ladite membrane(14)présentant un module d'Young supérieur à 40GPa.

Description

TRANSDUCTEUR ELECTRODYNAMIQUE LARGE BANDE POUR CASQUE AUDIO ET CASQUE AUDIO ASSOCIE
DOMAINE TECHNIQUE
L'invention concerne le domaine des transducteurs électrodynamiques large bande pour casque audio. Un transducteur large bande correspond à un transducteur configuré pour assurer, seul, la restitution de sons pour l'oreille humaine, contrairement aux architectures intégrant plusieurs transducteurs, par exemple avec un premier haut-parleur configuré pour générer les basses fréquences et un second haut-parleur configuré pour générer les hautes fréquences.
L'invention vise plus particulièrement le domaine de la restitution de sons à hautes performances, c'est-à-dire en limitant la dégradation du signal.
L'invention concerne, plus généralement, un casque audio intégrant un transducteur électrodynamique.
TECHNIQUES ANTERIEURES
Un transducteur électrodynamique est un dispositif convertissant un signal électrique en onde acoustique. Pour ce faire, un transducteur électrodynamique est généralement constitué d'un moteur magnétique, d'une bobine, d'une membrane et d'une suspension. Le moteur présente une gorge, appelée entrefer, dans laquelle pénètre la bobine configurée pour capter le champ magnétique de sorte à se déplacer en translation sous l'effet de la force de Laplace. La bobine est fixée avec la membrane présentant une forme de révolution adaptée à transformer le mouvement de translation de la bobine en onde acoustique. La partie mobile d'un transducteur électrodynamique est donc composée de la bobine et de la membrane. Cette partie mobile est guidée en déplacement par une suspension disposée autour de la membrane. La partie mobile se caractérise au moins par trois paramètres mécaniques qui ont des incidences sur les performances du transducteur électrodynamique. Ainsi, un premier paramètre concerne la rigidité de la membrane. En effet, plus une membrane est rigide, moins elle est déformable, et donc plus elle assure un rôle de piston permettant de générer des mouvements des masses d'air avoisinantes avec une cinématique fidèle au signal de commande. En d'autres termes, plus une membrane est rigide, plus elle permet un fonctionnement en piston, limitant, voir éliminant les phénomènes de distorsion.
Par ailleurs, un autre paramètre critique d'une partie mobile concerne sa masse. En effet, plus une partie mobile est légère, plus elle peut être déplacée à haute fréquence avec une amplitude satisfaisante, à un niveau d'énergie d'activation constante. En d'autres termes, plus une partie mobile est légère, plus elle autorise une accélération importante, lui permettant de reproduire fidèlement les fréquences élevées, et ce sans générer de phénomène de traînage.
Enfin, un troisième paramètre critique d'un transducteur électrodynamique large bande est sa fréquence de résonance qui doit être la plus basse possible afin de reproduire les basses fréquences sans atténuation. En effet, un transducteur électrodynamique présente une fréquence de résonance correspondant à un maxima local d'impédance en fonction de la fréquence. Lorsque le transducteur électrodynamique fonctionne à une fréquence située en-dessous de cette fréquence de résonance, les déplacements du transducteur deviennent limités et peuvent être saturés quelle que soit la fréquence utilisée. Au contraire, lorsque le transducteur électrodynamique fonctionne à une fréquence située au-dessus de cette fréquence de résonance, les déplacements du transducteur diminuent lorsque la fréquence augmente. Il est donc recherché un transducteur électrodynamique dont la fréquence de résonance est la plus faible possible pour éviter la saturation en déplacement du transducteur électrodynamique. Bien évidemment, la partie mobile idéale est celle qui possède à la fois une très forte rigidité, tout en étant extrêmement légère et avec une fréquence de résonance basse. Dans le domaine des casques audio, d'autres paramètres critiques sont également à prendre en compte, tels que la surface émissive, les volumes de décompression et le volume des évents. En effet, un casque audio est sujet à de fortes contraintes de dimensionnement, et il est recherché d'utiliser une membrane la plus large possible afin d'améliorer le volume d'air déplacé par la membrane. En outre, le déplacement de l'air au niveau de la membrane entraine une dépression ou une compression d'air sous la membrane. Les volumes de décompression d'air de la membrane doivent donc être suffisants pour ne pas freiner les déplacements de la membrane. Une solution classique consiste à réaliser la membrane et la suspension dans une même couche de polyester, par exemple de type Mylar®. La réalisation de la suspension et de la membrane en une seule pièce permet d'augmenter la surface émissive en utilisant une partie de la suspension pour générer les ondes acoustiques. Le déplacement de la membrane est assuré par une bobine montée autoporteur ou sur un support fixé sur la face inférieure de la membrane.
Bien que le matériau constitutif de la membrane soit léger, le poids de la partie mobile est impacté négativement par le poids de la bobine et du support de bobine, limitant ainsi la dynamique du transducteur électrodynamique.
Pour finir, une membrane en polyester présente également l'inconvénient de se déformer dans les fréquences hautes, c'est-à-dire supérieures à 4kHz. Il s'ensuit que des harmoniques indésirables apparaissent dans l'onde acoustique en raison des déformations non contrôlées de la membrane ou de la suspension. Une membrane polyester faisant d'office de suspension créée également de la modulation d'amplitude lors de grandes excursions, générant ainsi de la distorsion. Pour remédier à ces problèmes, une autre solution propose d'utiliser une membrane en aluminium ou en cellulose afin d'améliorer la rigidité de la membrane. Cette solution permet effectivement de générer des ondes acoustiques hautes fréquences en limitant les distorsions. Cependant, le poids de la membrane impacte négativement le poids de la partie mobile et limite la dynamique du transducteur électrodynamique.
En outre, un transducteur électrodynamique pour casque audio présente généralement une première résonance de son impédance située entre 2 et 4.5 kHz. Cette première résonance est définie par les caractéristiques de la partie mobile et de l'ensemble des volumes de décompression. Sans action sur l'architecture du casque audio, les fréquences générées par le transducteur électrodynamique en- dessous de cette première résonance sont atténuées. Pour remédier à ce problème et générer un signal clair sur toute la bande de fréquence audible, entre 20 Hz et 20 kHz, il est d'usage de ménager des évents dans le transducteur et dans la structure du casque audio. Ces évents forment une résonance des fréquences inférieures à celle de la première résonance de sorte à compenser l'atténuation des fréquences inférieures à la fréquence de la première résonance.
Ces évents sont pourvus de papier ou de tissus acoustiquement résistifs de sorte à accorder le phénomène de résonance des évents. Il s'ensuit qu'un casque audio présente classiquement une seconde résonance de son impédance, située entre 50 Hz et 150 Hz, et définie par les caractéristiques de la partie mobile et celles de l'évent le plus massif et le moins amorti.
Cependant, l'utilisation d'évents pour générer des basses-fréquences par résonance entraine une latence dans la génération des fréquences basses. En outre, la présence de tissus ou des feuilles de papier limite le volume de décompression d'air de la membrane. Le problème technique de l'invention est de proposer un transducteur électrodynamique possédant une fréquence de résonance intrinsèque basse de sorte à limiter ou éliminer l'utilisation d'évents pour former les fréquences basses, tout en garantissant un bon compromis entre les autres paramètres du transducteur électrodynamique.
EXPOSE DE L'INVENTION
L'invention propose de résoudre ce problème technique en couplant une membrane rigide, de préférence en aluminium ou en béryllium, avec une bobine autoportée sur la membrane de sorte à supprimer le support de bobine et limiter le poids de la partie mobile.
Selon un premier aspect, l'invention concerne un transducteur électrodynamique large bande pour casque audio, ledit transducteur comportant :
- un moteur magnétique configuré pour générer un champ magnétique ;
- une bobine disposée dans un entrefer dudit moteur magnétique et mobile en translation sous l'effet dudit champ magnétique ; et
- une membrane reliée à ladite bobine de sorte à convertir le mouvement de translation de ladite bobine en une onde acoustique.
L'invention se caractérise en ce que ledit transducteur comporte une bobine autoporteuse fixée par collage sur ladite membrane, ladite membrane présentant un module d'Young supérieur à 40 GPa et en ce que ladite suspension présente une épaisseur comprise entre 50 et ΙΟΟμηι.
Une membrane composée d'un matériau dont le module d'Young est supérieur à 40 GPa correspond à une membrane rigide réalisée, par exemple, en aluminium ou en béryllium. L'invention propose de coupler les avantages de cette membrane rigide avec une bobine autoportée par la membrane, c'est-à-dire sans utiliser de support de bobine. La tenue mécanique de la bobine est assurée par le seul collage des spires entre elles. Il s'ensuit que le poids de la partie mobile est largement diminué par la suppression du support de bobine. En outre, l'invention permet d'obtenir un poids faible et une grande flexibilité de la suspension.
Contre toute attente, les inventeurs ont constaté que l'association d'une membrane rigide avec une bobine autoportée permet d'obtenir une partie mobile légère et apte à reproduire les fréquences hautes sans distorsion. En outre, l'association de cette partie mobile légère avec une suspension très souple permet d'obtenir un transducteur électrodynamique possédant une unique fréquence de résonance très basse, proche de 40Hz.
L'invention permet ainsi de supprimer ou de limiter l'utilisation d'évents et de reproduire tout de même les fréquences basses. Par exemple, une membrane en Béryllium fonctionne en piston sur toute la bande de fréquences audibles, entre 20Hz et 20kHz.
La suppression de tout ou partie des évents, des tissus ou des feuilles de papier a permis d'améliorer la dynamique du transducteur électrodynamique en augmentant le volume de décompression d'air.
Selon un mode de réalisation, ladite membrane est réalisée en un matériau choisi dans le groupe comprenant le béryllium, le magnésium et l'aluminium. Contrairement aux autres matériaux métalliques dont le module d'Young est supérieur à 40 GPa, ces matériaux offrent un bon compromis entre la rigidité et la légèreté de sorte à ne pas dégrader le facteur d'accélération du transducteur électrodynamique.
Selon un mode de réalisation, ladite bobine comporte un fil conducteur unique enroulé sur lui-même selon la hauteur dudit transducteur électrodynamique. Ce mode de réalisation permet de limiter le poids de la bobine, et donc de la masse mobile. Selon un mode de réalisation, ladite bobine présente un diamètre compris entre 20 et 30mm. Contrairement aux bobines classiques, dont le diamètre est proche de 10 mm, l'utilisation d'une bobine autoportée simple enroulement, et donc très légère, permet d'augmenter le diamètre de la bobine et d'optimiser son emplacement sur la membrane. Ainsi, le guidage de la membrane est amélioré, et les forces sont appliquées à un endroit optimal de la membrane afin de décaler les modes nodaux vers la fréquence la plus haute. En outre, ce mode de réalisation permet de dégager un volume de décompression d'air très importante à l'intérieur de la bobine. Selon un mode de réalisation, ladite bobine présente une hauteur comprise entre 4 et 5mm. Contrairement aux bobines classiques, dont la hauteur est inférieure à 3 mm, l'utilisation d'une bobine autoportée simple enroulement, et donc très légère, permet d'augmenter sa hauteur. Pour les basses-fréquences, dans lesquelles les déplacements de la bobine sont les plus importants, il est classique dans les dispositifs de l'état de la technique que la bobine sorte de l'entrefer du moteur. Ce mode de réalisation propose d'utiliser une bobine particulièrement haute de sorte à pénétrer plus largement dans l'entrefer et limiter la sortie de la bobine de l'entrefer. Il s'ensuit que le guidage de la membrane est amélioré et les distorsions sont réduites.
Selon un mode de réalisation, ledit transducteur électrodynamique présente une surface d'ouverture supérieure à 35%. Cette surface d'ouverture correspond au rapport entre la surface émissive de la membrane et la surface des ouvertures arrière. Contrairement aux transducteurs de l'état de la technique qui nécessitent le positionnement d'évents et de papier ou de tissus pour créer des modes de résonance afin de générer les basses fréquences, ce mode de réalisation permet d'améliorer la dynamique du transducteur électrodynamique car les variations de volume d'air générées par le mouvement de la membrane sont évacuées sans contraintes au travers de l'évidement central et de l'évidement en périphérie.
Selon un mode de réalisation, ledit transducteur électrodynamique comporte également une suspension reliant un bord externe de ladite membrane avec un support fixe, ladite suspension étant réalisée en caoutchouc.
Contrairement aux transducteurs de l'art antérieur qui utilisent la même matière pour former la suspension et la membrane, ce mode de réalisation permet de dissocier ces deux éléments. Il est donc possible d'utiliser une suspension et une membrane plus efficaces comparativement à celles mise en œuvre dans l'art antérieur permettant ainsi au transducteur électrodynamique d'atteindre des fréquences basses et hautes avec très peu de distorsion.
Selon un mode de réalisation, ledit transducteur électrodynamique présente une compliance supérieure à 40mm/N.
Selon un deuxième aspect, l'invention concerne un casque audio ouvert ou semi-ouvert comportant un transducteur électrodynamique selon le premier aspect de l'invention.
DESCRIPTION SOMMAIRE DES FIGURES
La manière de réaliser l'invention, ainsi que les avantages qui en découlent ressortiront bien de la description du mode de réalisation qui suit, à l'appui des figures annexées dans lesquelles :
- la figure 1 est une vue en perspective arrière d'un transducteur électrodynamique selon un mode de réalisation de l'invention ; - la figure 2 est une vue en perspective avant du transducteur de la figure 1 ; et
- la figure 3 est une vue en coupe partielle du transducteur de la figure 1.
MANIERES DE REALISER L'INVENTION
Les figures 1 à 3 sont décrites en référence à un transducteur électrodynamique 10 dont la face avant présente une membrane 14 et dont la face arrière présente un moteur 11. Bien entendu, l'orientation des faces avant et arrière peut varier sans changer l'invention.
Le moteur 11 est un moteur classique et peut prendre toutes les formes connues. De préférence, le moteur 11 présente une forme de révolution s'étendant autour d'un axe x central du transducteur électrodynamique 10. Tel qu'illustré sur la figure 1 , le moteur 11 peut être fixé sur un support fixe 18 au moyen de trois vis.
De préférence, le moteur 11 comporte un évidement central 15 de sorte à créer une colonne d'expansion d'air s'étendant depuis la membrane 14 jusqu'à l'arrière du transducteur électrodynamique 10. Préférentiellement, cette colonne d'expansion d'air présente une impédance acoustique nulle ou presque nulle de sorte à limiter au maximum le freinage de la membrane 14. Ainsi, contrairement aux dispositifs de l'état de la technique qui nécessitent l'utilisation d'évents et de papiers pour former les basses fréquences, une impédance acoustique nulle ou presque nulle indique que le transducteur acoustique 10 ne comporte pas de papiers disposés derrière la membrane 14, dans l'axe du moteur 11.
En outre, le moteur 11 possède un entrefer 13 destiné à recevoir une bobine 12. La bobine 12 est fixée directement par collage sous la membrane 14 sans utiliser de support de bobine 12 de sorte à limiter le poids de la partie mobile du transducteur électrodynamique 10. Pour ce faire, la bobine 12 est préférentiellement réalisée avec un fil conducteur unique enroulé sur lui-même selon la hauteur du transducteur électrodynamique 10. Le fil conducteur peut être de section circulaire ou carré. Le fil conducteur peut être réalisé en cuivre ou du type « CAW », c'est-à-dire qu'il est composé d'un cœur en aluminium recouvert d'un enrobage en cuivre et d'une couche de protection.
Le chauffage du fil conducteur permet de solidariser les enroulements du fil entre eux par collage des couches de protection entre elles, assurant ainsi la structure de la bobine 12. La bobine 12 est donc particulièrement légère.
En outre, ce mode de réalisation permet d'obtenir une bobine avec un diamètre et une hauteur très importants dans le domaine des casques audio.
Par exemple, ce mode de réalisation a permis d'obtenir une bobine 12 dont le diamètre d est compris entre 20 et 30 mm pour une hauteur h comprise entre 4 et 5 mm. L'inductance de la bobine 12 est comprise entre 150 et 250 μΗ contrairement à l'état de la technique dans lequel l'inductance de la bobine est généralement comprise entre 400 et 500 μΗ. En variante, la bobine 12 peut présenter plusieurs séries d'enroulements sans changer l'invention. Les performances du transducteur électrodynamique 10 sont également améliorées par l'utilisation d'une membrane 14 présentant un module d'Young supérieure à 40 GPa. De préférence, la membrane 14 est réalisée en aluminium avec un module d'Young sensiblement égal à 69 GPa, ou en béryllium avec un module d'Young sensiblement égal à 240 GPa. L'épaisseur de la membrane 14 est préférentiellement comprise entre 20 et 30 μηι pour un diamètre compris entre 30 et 32 mm. Ainsi, la membrane 14 est particulièrement rigide tout en présentant une certaine légèreté comparativement au titane ou à l'acier. La membrane 14 présente une face avant légèrement bombée formant un dôme aux bords duquel la bobine 12 est fixée. La membrane 14 s'étend également radialement, après le dôme, par une partie terminale 17 sensiblement droite s 'étendant en direction du support fixe 18. La partie mobile du transducteur électrodynamique 10 est complétée par une suspension 16 dédiée, de préférence réalisée en caoutchouc. La suspension 16 s'étend sous la forme d'un arc simple entre la partie terminale 17 de la membrane 14 et un bord radial du support fixe 18.
De préférence, la suspension 16 présente une épaisseur comprise entre 50 et 100 μηι. Préférentiellement, la suspension 16 est fixée par collage sur la partie terminale 17 de la membrane 14 et sur le bord radial du support fixe 18. A l'aide de cette suspension 16, la compliance du transducteur électrodynamique 10 est particulièrement amélioré. En effet, la compliance du transducteur électrodynamique 10 a été mesurée supérieure à 40 mrn/N.
Une méthode classique de mesure de la compliance est décrite dans le mémoire de mesure de la société Klippel GmbH daté du 13 août 2012 : « Linear Parameter Measurement (LPM) S2 ».
Une partie arrière du transducteur électrodynamique 10 est également ouverte sur une partie de la suspension 16 de sorte à limiter le freinage de la membrane 14. II s'ensuit que le transducteur électrodynamique 10 présente une surface d'ouverture supérieure à 35%. Cette surface d'ouverture correspond au rapport entre la surface émissive de la membrane 14 et la surface des ouvertures arrière.
Le transducteur électrodynamique 10, ainsi obtenu, présente des performances spectaculaires. Par exemple, pour une membrane 14 réalisée en aluminium, le poids total de la partie mobile (incluant la membrane, la suspension, la bobine et la colle) ne dépasse pas 160 mg. De même, pour une membrane 14 réalisée en béryllium, le poids total de la partie mobile (incluant la membrane, la suspension, la bobine et la colle) ne dépasse pas 125 mg. Les mesures de masse sont réalisées avec une balance précise au 1/10 de milligrammes. Pour finir, deux transducteurs électrodynamique 10 peuvent être utilisés pour former un casque audio, par exemple un casque audio ouvert ou semi-ouvert.

Claims

REVENDICATIONS
1. Transducteur électrodynamique (10) large bande pour casque audio, ledit transducteur (10) comportant :
- un moteur magnétique (1 1) configuré pour générer un champ magnétique ;
- une bobine (12) disposée dans un entrefer (13) dudit moteur magnétique (1 1) et mobile en translation sous l'effet dudit champ magnétique ; et
- une membrane (14) reliée à ladite bobine (12) de sorte à convertir le mouvement de translation de ladite bobine (12) en une onde acoustique ;
caractérisé en ce que ledit transducteur (10) comporte une bobine (12) autoporteuse fixée par collage sur ladite membrane (14), ladite membrane (14) présentant un module d'Young supérieur à 40 GPa et en ce que ladite suspension (16) présente une épaisseur comprise entre 50 et ΙΟΟμηι.
2. Transducteur électrodynamique selon la revendication 1, dans lequel ladite membrane (14) est réalisée en un matériau choisi dans le groupe comprenant le béryllium, le magnésium et l'aluminium.
3. Transducteur électrodynamique selon la revendication 1 ou 2, dans lequel ladite bobine (12) comporte un fil conducteur unique enroulé sur lui-même selon la hauteur dudit transducteur électrodynamique (10).
4. Transducteur électrodynamique selon l'une des revendications 1 à 3, dans lequel ladite bobine (12) présente un diamètre (d) compris entre 20 et 30mm.
5. Transducteur électrodynamique selon l'une des revendications 1 à 4, dans lequel ladite bobine (12) présente une hauteur (h) comprise entre 4 et 5mm.
6. Transducteur électrodynamique selon l'une des revendications 1 à 5, dans lequel ledit transducteur électrodynamique (10) présente une surface d'ouverture supérieure à 35%.
7. Transducteur électrodynamique selon l'une des revendications 1 à 6, dans lequel ledit transducteur électrodynamique (10) comporte également une suspension (16) reliant un bord externe (17) de ladite membrane (14) avec un support fixe (18), ladite suspension (16) étant réalisée en caoutchouc.
8. Transducteur électrodynamique selon l'une des revendications 1 à 7, dans lequel ledit transducteur électrodynamique (10) présente une compliance supérieure à 40mm/N.
9. Casque audio comportant un transducteur électrodynamique (10) selon l'une des revendications 1 à 8.
PCT/EP2017/064332 2016-06-13 2017-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe WO2017216126A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/307,575 US10932026B2 (en) 2016-06-13 2017-06-13 Broadband electrodynamic transducer for headphones, and associated headphones
CN201780035866.8A CN109314823B (zh) 2016-06-13 2017-06-13 用于耳机的宽带电动换能器及相关联的耳机
EP17729135.8A EP3469812B1 (fr) 2016-06-13 2017-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1655416A FR3052624B1 (fr) 2016-06-13 2016-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe
FR1655416 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017216126A1 true WO2017216126A1 (fr) 2017-12-21

Family

ID=56896724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/064332 WO2017216126A1 (fr) 2016-06-13 2017-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe

Country Status (5)

Country Link
US (1) US10932026B2 (fr)
EP (1) EP3469812B1 (fr)
CN (1) CN109314823B (fr)
FR (1) FR3052624B1 (fr)
WO (1) WO2017216126A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190464A1 (fr) * 2019-03-21 2020-09-24 Facebook Technologies, Llc Micro-haut-parleurs à haute compliance pour atténuation des vibrations dans un dispositif audio pouvant être porté

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093903A1 (fr) * 2006-02-16 2007-08-23 Bang & Olufsen Icepower A/S Micro-transducteur avec une qualité de son perçu améliorée
US20140072163A1 (en) * 2011-04-08 2014-03-13 Azuma Chemical Co., Ltd. Microspeaker diaphragm edge member, microspeaker diaphragm, microspeaker, and electronic device
US20160150311A1 (en) * 2014-11-21 2016-05-26 Peak Audio Llc Methods and systems for processing sound waves

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205285A (ja) * 1995-01-31 1996-08-09 Matsushita Electric Ind Co Ltd スピーカ
CN202713592U (zh) * 2012-08-14 2013-01-30 东莞正阳电子有限公司 一种大动态的扬声器振动板
US9668058B2 (en) * 2014-07-09 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Speaker diaphragm, speaker, device, and method for manufacturing speaker diaphragm
EP3041263B1 (fr) * 2014-12-30 2022-01-05 Sonion Nederland B.V. Module récepteur hybride
US9883290B2 (en) * 2014-12-31 2018-01-30 Skullcandy, Inc. Audio driver assembly, headphone including such an audio driver assembly, and related methods
US10178469B2 (en) * 2016-06-07 2019-01-08 Google Llc Damping spring
US9998829B2 (en) * 2016-06-27 2018-06-12 Google Llc Bone conduction transducer with increased low frequency performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093903A1 (fr) * 2006-02-16 2007-08-23 Bang & Olufsen Icepower A/S Micro-transducteur avec une qualité de son perçu améliorée
US20140072163A1 (en) * 2011-04-08 2014-03-13 Azuma Chemical Co., Ltd. Microspeaker diaphragm edge member, microspeaker diaphragm, microspeaker, and electronic device
US20160150311A1 (en) * 2014-11-21 2016-05-26 Peak Audio Llc Methods and systems for processing sound waves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Les haut-parleurs", 2 November 2000, DUNOD, Paris, ISBN: 978-2-10-005268-4, article JEAN HIRAGA: "Support de la bobine mobile", pages: 146 - 146, XP055345862 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190464A1 (fr) * 2019-03-21 2020-09-24 Facebook Technologies, Llc Micro-haut-parleurs à haute compliance pour atténuation des vibrations dans un dispositif audio pouvant être porté
US10812896B2 (en) 2019-03-21 2020-10-20 Facebook Technologies, Llc High compliance microspeakers for vibration mitigation in a personal audio device

Also Published As

Publication number Publication date
FR3052624A1 (fr) 2017-12-15
EP3469812B1 (fr) 2020-08-19
US10932026B2 (en) 2021-02-23
FR3052624B1 (fr) 2019-11-08
US20190306605A1 (en) 2019-10-03
CN109314823A (zh) 2019-02-05
CN109314823B (zh) 2021-05-28
EP3469812A1 (fr) 2019-04-17

Similar Documents

Publication Publication Date Title
EP2577992B1 (fr) Haut-parleur acoustique
WO2011086300A1 (fr) Système de haut-parleur coaxial à chambre de compression à pavillon
EP0749265A1 (fr) Haut-parleur pour fréquences élevées
WO1980001128A1 (fr) Transducteur electro-acoustique
FR3052624B1 (fr) Transducteur electrodynamique large bande pour casque audio et casque audio associe
FR2747004A1 (fr) Convertisseur electrostatique
FR2955731A1 (fr) Enceinte acoustique comprenant au moins une membrane d'attenuation acoustique
EP2524521B1 (fr) Transducteur électrodynamique à dôme et suspension flottante
EP3391664B1 (fr) Membrane acoustique pour haut-parleur et haut-parleur correspondant
FR2519502A1 (fr) Mo
FR2858164A1 (fr) Transducteur de restitution de son
EP3278330B1 (fr) Dispositif d'adaptation d'impédance acoustique et haut-parleur équipé d'un tel dispositif
FR2853803A1 (fr) Membrane pour haut-parleur d'enceinte acoustique haute fidelite, multicouches, multimateriaux
EP2392151B1 (fr) Équipage mobile et transducteur électrodynamique pourvu d'un tel équipage mobile
WO2018229242A1 (fr) Haut-parleur
EP0335892B1 (fr) Procede de correction de la reponse amplitude/frequence d'un systeme de transduction electro-acoustique et ensemble transducteur correspondant
EP4047954A1 (fr) Haut-parleur mems et procédé de fabrication d'un tel haut-parleur
FR2668016A1 (fr) Haut-parleur electrodynamique et equipage mobile correspondant.
WO2021111010A1 (fr) Haut-parleur à grande excursion, faible distorsion et faible profondeur
WO2021214313A1 (fr) Enceinte acoustique directionnelle pour la communication confidentielle et attenuateur ultrasonore
FR3049148A1 (fr) Procede de fabrication de membranes coxiales pour un haut-parleur
FR3024630A1 (fr) Haut-parleur compact incluant une membrane comprenant des plis radiaux
FR3049149A1 (fr) Haut-parleur et procede de fabrication de haut-parleur
FR2522912A1 (fr) Suspension peripherique en elastomere de la membrane d'un transducteur electro-acoustique
BE621159A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17729135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017729135

Country of ref document: EP

Effective date: 20190114