FR3052624B1 - Transducteur electrodynamique large bande pour casque audio et casque audio associe - Google Patents

Transducteur electrodynamique large bande pour casque audio et casque audio associe Download PDF

Info

Publication number
FR3052624B1
FR3052624B1 FR1655416A FR1655416A FR3052624B1 FR 3052624 B1 FR3052624 B1 FR 3052624B1 FR 1655416 A FR1655416 A FR 1655416A FR 1655416 A FR1655416 A FR 1655416A FR 3052624 B1 FR3052624 B1 FR 3052624B1
Authority
FR
France
Prior art keywords
coil
membrane
electrodynamic transducer
transducer
electrodynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
FR1655416A
Other languages
English (en)
Other versions
FR3052624A1 (fr
Inventor
Ludovic Uhring-Cadart
Clement Auzou
Arnaud Cazes-Bouchet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Focal JMLab SAS
Original Assignee
Focal JMLab SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focal JMLab SAS filed Critical Focal JMLab SAS
Priority to FR1655416A priority Critical patent/FR3052624B1/fr
Priority to US16/307,575 priority patent/US10932026B2/en
Priority to CN201780035866.8A priority patent/CN109314823B/zh
Priority to EP17729135.8A priority patent/EP3469812B1/fr
Priority to PCT/EP2017/064332 priority patent/WO2017216126A1/fr
Publication of FR3052624A1 publication Critical patent/FR3052624A1/fr
Application granted granted Critical
Publication of FR3052624B1 publication Critical patent/FR3052624B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/027Diaphragms comprising metallic materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • H04R7/20Securing diaphragm or cone resiliently to support by flexible material, springs, cords, or strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Abstract

L'invention concerne un transducteur électrodynamique (10) large bande pour casque audio, ledit transducteur (10) comportant : - un moteur magnétique (11) configuré pour générer un champ magnétique ; - une bobine (12) disposée dans un entrefer (13) dudit moteur magnétique (11) et mobile en translation sous l'effet dudit champ magnétique ; et - une membrane (14) reliée à ladite bobine (12) de sorte à convertir le mouvement de translation de ladite bobine (12) en une onde acoustique ; - ledit transducteur (10) comportant une bobine (12) autoporteuse fixée par collage sur ladite membrane (14), ladite membrane (14) présentant un module d'Young supérieur à 40 GPa.

Description

TRANSDUCTEUR ELECTRODYNAMIOUE LARGE BANDE POUR CASQUE AUDIO ET CASQUE AUDIO ASSOCIE
DOMAINE TECHNIQUE L'invention concerne le domaine des transducteurs électrodynamiques large bande pour casque audio. Un transducteur large bande correspond à un transducteur configuré pour assurer, seul, la restitution de sons pour l'oreille humaine, contrairement aux architectures intégrant plusieurs transducteurs, par exemple avec un premier haut-parleur configuré pour générer les basses fréquences et un second haut-parleur configuré pour générer les hautes fréquences. L'invention vise plus particulièrement le domaine de la restitution de sons à hautes performances, c’est-à-dire en limitant la dégradation du signal. L'invention concerne, plus généralement, un casque audio intégrant un transducteur électrodynamique.
TECHNIQUES ANTERIEURES
Un transducteur électrodynamique est un dispositif convertissant un signal électrique en onde acoustique. Pour ce faire, un transducteur électrodynamique est généralement constitué d'un moteur magnétique, d’une bobine, d’une membrane et d’une suspension. Le moteur présente une gorge, appelée entrefer, dans laquelle pénètre la bobine configurée pour capter le champ magnétique de sorte à se déplacer en translation sous l'effet de la force de Laplace. La bobine est fixée avec la membrane présentant une forme de révolution adaptée à transformer le mouvement de translation de la bobine en onde acoustique.
La partie mobile d’un transducteur électrodynamique est donc composée de la bobine et de la membrane. Cette partie mobile est guidée en déplacement par une suspension disposée autour de la membrane.
La partie mobile se caractérise au moins par trois paramètres mécaniques qui ont des incidences sur les performances du transducteur électrodynamique.
Ainsi, un premier paramètre concerne la rigidité de la membrane. En effet, plus une membrane est rigide, moins elle est déformable, et donc plus elle assure un rôle de piston permettant de générer des mouvements des masses d’air avoisinantes avec une cinématique fidèle au signal de commande. En d’autres termes, plus une membrane est rigide, plus elle permet un fonctionnement en piston, limitant, voir éliminant les phénomènes de distorsion.
Par ailleurs, un autre paramètre critique d’une partie mobile concerne sa masse. En effet, plus une partie mobile est légère, plus elle peut être déplacée à haute fréquence avec une amplitude satisfaisante, à un niveau d’énergie d’activation constante. En d’autres termes, plus une partie mobile est légère, plus elle autorise une accélération importante, lui permettant de reproduire fidèlement les fréquences élevées, et ce sans générer de phénomène de traînage.
Enfin, un troisième paramètre critique d’un transducteur électrodynamique large bande est sa fréquence de résonance qui doit être la plus basse possible afin de reproduire les basses fréquences sans atténuation. En effet, un transducteur électrodynamique présente une fréquence de résonance correspondant à un maxima local d’impédance en fonction de la fréquence. Lorsque le transducteur électrodynamique fonctionne à une fréquence située en-dessous de cette fréquence de résonance, les déplacements du transducteur deviennent limités et peuvent être saturés quelle que soit la fréquence utilisée. Au contraire, lorsque le transducteur électrodynamique fonctionne à une fréquence située au-dessus de cette fréquence de résonance, les déplacements du transducteur diminuent lorsque la fréquence augmente. Il est donc recherché un transducteur électrodynamique dont la fréquence de résonance est la plus faible possible pour éviter la saturation en déplacement du transducteur électrodynamique.
Bien évidemment, la partie mobile idéale est celle qui possède à la fois une très forte rigidité, tout en étant extrêmement légère et avec une fréquence de résonance basse.
Dans le domaine des casques audio, d’autres paramètres critiques sont également à prendre en compte, tels que la surface émissive, les volumes de décompression et le volume des évents. En effet, un casque audio est sujet à de fortes contraintes de dimensionnement, et il est recherché d’utiliser une membrane la plus large possible afin d’améliorer le volume d’air déplacé par la membrane. En outre, le déplacement de l’air au niveau de la membrane entraîne une dépression ou une compression d’air sous la membrane. Les volumes de décompression d’air de la membrane doivent donc être suffisants pour ne pas freiner les déplacements de la membrane.
Une solution classique consiste à réaliser la membrane et la suspension dans une même couche de polyester, par exemple de type Mylar®. La réalisation de la suspension et de la membrane en une seule pièce permet d’augmenter la surface émissive en utilisant une partie de la suspension pour générer les ondes acoustiques. Le déplacement de la membrane est assuré par une bobine montée autoporteur ou sur un support fixé sur la face inférieure de la membrane.
Bien que le matériau constitutif de la membrane soit léger, le poids de la partie mobile est impacté négativement par le poids de la bobine et du support de bobine, limitant ainsi la dynamique du transducteur électrodynamique.
Pour finir, une membrane en polyester présente également l’inconvénient de se déformer dans les fréquences hautes, c’est-à-dire supérieures à 4kHz. Il s’ensuit que des harmoniques indésirables apparaissent dans l’onde acoustique en raison des déformations non contrôlées de la membrane ou de la suspension. Une membrane polyester faisant d’office de suspension créée également de la modulation d’amplitude lors de grandes excursions, générant ainsi de la distorsion.
Pour remédier à ces problèmes, une autre solution propose d’utiliser une membrane en aluminium ou en cellulose afin d’améliorer la rigidité de la membrane. Cette solution permet effectivement de générer des ondes acoustiques hautes fréquences en limitant les distorsions. Cependant, le poids de la membrane impacte négativement le poids de la partie mobile et limite la dynamique du transducteur électrodynamique.
En outre, un transducteur électrodynamique pour casque audio présente généralement une première résonance de son impédance située entre 2 et 4.5 kHz. Cette première résonance est définie par les caractéristiques de la partie mobile et de l’ensemble des volumes de décompression. Sans action sur l’architecture du casque audio, les fréquences générées par le transducteur électrodynamique en-dessous de cette première résonance sont atténuées.
Pour remédier à ce problème et générer un signal clair sur toute la bande de fréquence audible, entre 20 Hz et 20 kHz, il est d’usage de ménager des évents dans le transducteur et dans la structure du casque audio. Ces évents forment une résonance des fréquences inférieures à celle de la première résonance de sorte à compenser l’atténuation des fréquences inférieures à la fréquence de la première résonance.
Ces évents sont pourvus de papier ou de tissus acoustiquement résistifs de sorte à accorder le phénomène de résonance des évents. Il s’ensuit qu’un casque audio présente classiquement une seconde résonance de son impédance, située entre 50 Hz et 150 Hz, et définie par les caractéristiques de la partie mobile et celles de l’évent le plus massif et le moins amorti.
Cependant, l’utilisation d’évents pour générer des basses-fréquences par résonance entraîne une latence dans la génération des fréquences basses. En outre, la présence de tissus ou des feuilles de papier limite le volume de décompression d’air de la membrane.
Le problème technique de l’invention est de proposer un transducteur électrodynamique possédant une fréquence de résonance intrinsèque basse de sorte à limiter ou éliminer l’utilisation d’évents pour former les fréquences basses, tout en garantissant un bon compromis entre les autres paramètres du transducteur électrodynamique.
EXPOSE DE L’INVENTION L’invention propose de résoudre ce problème technique en couplant une membrane rigide, de préférence en aluminium ou en béryllium, avec une bobine autoportée sur la membrane de sorte à supprimer le support de bobine et limiter le poids de la partie mobile.
Selon un premier aspect, l’invention concerne un transducteur électrodynamique large bande pour casque audio, ledit transducteur comportant : - un moteur magnétique configuré pour générer un champ magnétique ; - une bobine disposée dans un entrefer dudit moteur magnétique et mobile en translation sous l'effet dudit champ magnétique ; et - une membrane reliée à ladite bobine de sorte à convertir le mouvement de translation de ladite bobine en une onde acoustique. L’invention se caractérise en ce que ledit transducteur comporte une bobine autoporteuse fixée par collage sur ladite membrane, ladite membrane présentant un module d'Young supérieur à 40 GPa.
Une membrane composée d’un matériau dont le module d’Young est supérieur à 40 GPa correspond à une membrane rigide réalisée, par exemple, en aluminium ou en béryllium. L’invention propose de coupler les avantages de cette membrane rigide avec une bobine autoportée par la membrane, c’est-à-dire sans utiliser de support de bobine. La tenue mécanique de la bobine est assurée par le seul collage des spires entre elles. Il s’ensuit que le poids de la partie mobile est largement diminué par la suppression du support de bobine.
Contre toute attente, les inventeurs ont constaté que l’association d’une membrane rigide avec une bobine autoportée permet d’obtenir une partie mobile légère et apte à reproduire les fréquences hautes sans distorsion. En outre, l’association de cette partie mobile légère avec une suspension très souple permet d’obtenir un transducteur électrodynamique possédant une unique fréquence de résonance très basse, proche de 40Hz. L’invention permet ainsi de supprimer ou de limiter l’utilisation d’évents et de reproduire tout de même les fréquences basses. Par exemple, une membrane en Béryllium fonctionne en piston sur toute la bande de fréquences audibles, entre 20Hz et 20kHz.
La suppression de tout ou partie des évents, des tissus ou des feuilles de papier a permis d’améliorer la dynamique du transducteur électrodynamique en augmentant le volume de décompression d’air.
Selon un mode de réalisation, ladite membrane est réalisée en un matériau choisi dans le groupe comprenant le béryllium, le magnésium et raluminium. Contrairement aux autres matériaux métalliques dont le module d'Young est supérieur à 40 GPa, ces matériaux offrent un bon compromis entre la rigidité et la légèreté de sorte à ne pas dégrader le facteur d'accélération du transducteur électrodynamique.
Selon un mode de réalisation, ladite bobine comporte un fil conducteur unique enroulé sur lui-même selon la hauteur dudit transducteur électrodynamique. Ce mode de réalisation permet de limiter le poids de la bobine, et donc de la masse mobile.
Selon un mode de réalisation, ladite bobine présente un diamètre compris entre 20 et 30mm.
Contrairement aux bobines classiques, dont le diamètre est proche de 10 mm, l’utilisation d’une bobine autoportée simple enroulement, et donc très légère, permet d’augmenter le diamètre de la bobine et d’optimiser son emplacement sur la membrane.
Ainsi, le guidage de la membrane est amélioré, et les forces sont appliquées à un endroit optimal de la membrane afin de décaler les modes nodaux vers la fréquence la plus haute. En outre, ce mode de réalisation permet de dégager un volume de décompression d’air très importante à l'intérieur de la bobine.
Selon un mode de réalisation, ladite bobine présente une hauteur comprise entre 4 et 5mm. Contrairement aux bobines classiques, dont la hauteur est inférieure à 3 mm, l’utilisation d’une bobine autoportée simple enroulement, et donc très légère, permet d’augmenter sa hauteur. Pour les basses-fréquences, dans lesquelles les déplacements de la bobine sont les plus importants, il est classique dans les dispositifs de l’état de la technique que la bobine sorte de l’entrefer du moteur. Ce mode de réalisation propose d’utiliser une bobine particulièrement haute de sorte à pénétrer plus largement dans l’entrefer et limiter la sortie de la bobine de l’entrefer. Il s’ensuit que le guidage de la membrane est amélioré et les distorsions sont réduites.
Selon un mode de réalisation, ledit transducteur électrodynamique présente une surface d’ouverture supérieure à 35%. Cette surface d’ouverture correspond au rapport entre la surface émissive de la membrane et la surface des ouvertures arrière.
Contrairement aux transducteurs de l’état de la technique qui nécessitent le positionnement d’évents et de papier ou de tissus pour créer des modes de résonance afin de générer les basses fréquences, ce mode de réalisation permet d'améliorer la dynamique du transducteur électrodynamique car les variations de volume d'air générées par le mouvement de la membrane sont évacuées sans contraintes au travers de l’évidement central et de l’évidement en périphérie.
Selon un mode de réalisation, ledit transducteur électrodynamique comporte également une suspension reliant un bord externe de ladite membrane avec un support fixe, ladite suspension étant réalisée en caoutchouc.
Contrairement aux transducteurs de l'art antérieur qui utilisent la même matière pour former la suspension et la membrane, ce mode de réalisation permet de dissocier ces deux éléments. Il est donc possible d'utiliser une suspension et une membrane plus efficaces comparativement à celles mise en œuvre dans l'art antérieur permettant ainsi au transducteur électrodynamique d'atteindre des fréquences basses et hautes avec très peu de distorsion.
Selon un mode de réalisation, ladite suspension présente une épaisseur comprise entre 50 et lOOpm. Ce mode de réalisation permet d'obtenir un poids faible et une grande flexibilité de la suspension.
Selon un mode de réalisation, ledit transducteur électrodynamique présente une compliance supérieure à 40mm/N.
Selon un deuxième aspect, l’invention concerne un casque audio ouvert ou semi-ouvert comportant un transducteur électrodynamique selon le premier aspect de l’invention.
DESCRIPTION SOMMAIRE DES FIGURES
La manière de réaliser l’invention, ainsi que les avantages qui en découlent ressortiront bien de la description du mode de réalisation qui suit, à l’appui des figures annexées dans lesquelles : - la figure 1 est une vue en perspective arrière d’un transducteur électrodynamique selon un mode de réalisation de l’invention ; - la figure 2 est une vue en perspective avant du transducteur de la figure 1 ; et - la figure 3 est une vue en coupe partielle du transducteur de la figure 1.
MANIERES DE REALISER L’INVENTION
Les figures 1 à 3 sont décrites en référence à un transducteur électrodynamique 10 dont la face avant présente une membrane 14 et dont la face arrière présente un moteur 11. Bien entendu, l’orientation des faces avant et arrière peut varier sans changer l’invention.
Le moteur 11 est un moteur classique et peut prendre toutes les formes connues. De préférence, le moteur 11 présente une forme de révolution s’étendant autour d’un axe x central du transducteur électrodynamique 10. Tel qu’illustré sur la figure 1, le moteur 11 peut être fixé sur un support fixe 18 au moyen de trois vis.
De préférence, le moteur 11 comporte un évidement central 15 de sorte à créer une colonne d’expansion d’air s’étendant depuis la membrane 14 jusqu’à l’arrière du transducteur électrodynamique 10. Préférentiellement, cette colonne d’expansion d’air présente une impédance acoustique nulle ou presque nulle de sorte à limiter au maximum le freinage de la membrane 14. Ainsi, contrairement aux dispositifs de l’état de la technique qui nécessitent l’utilisation d’évents et de papiers pour former les basses fréquences, une impédance acoustique nulle ou presque nulle indique que le transducteur acoustique 10 ne comporte pas de papiers disposés derrière la membrane 14, dans l’axe du moteur 11.
En outre, le moteur 11 possède un entrefer 13 destiné à recevoir une bobine 12. La bobine 12 est fixée directement par collage sous la membrane 14 sans utiliser de support de bobine 12 de sorte à limiter le poids de la partie mobile du transducteur électrodynamique 10. Pour ce faire, la bobine 12 est préférentiellement réalisée avec un fil conducteur unique enroulé sur lui-même selon la hauteur du transducteur électrodynamique 10. Le fil conducteur peut être de section circulaire ou carré. Le fil conducteur peut être réalisé en cuivre ou du type « CAW », c’est-à-dire qu’il est composé d’un cœur en aluminium recouvert d’un enrobage en cuivre et d’une couche de protection.
Le chauffage du fil conducteur permet de solidariser les enroulements du fil entre eux par collage des couches de protection entre elles, assurant ainsi la structure de la bobine 12. La bobine 12 est donc particulièrement légère.
En outre, ce mode de réalisation permet d’obtenir une bobine avec un diamètre et une hauteur très importants dans le domaine des casques audio.
Par exemple, ce mode de réalisation a permis d’obtenir une bobine 12 dont le diamètre d est compris entre 20 et 30 mm pour une hauteur h comprise entre 4 et 5 mm. L’inductance de la bobine 12 est comprise entre 150 et 250 μΗ contrairement à l’état de la technique dans lequel l’inductance de la bobine est généralement comprise entre 400 et 500 μΗ. En variante, la bobine 12 peut présenter plusieurs séries d’enroulements sans changer l’invention.
Les performances du transducteur électrodynamique 10 sont également améliorées par l’utilisation d’une membrane 14 présentant un module d’Young supérieure à 40 GPa. De préférence, la membrane 14 est réalisée en aluminium avec un module d’Young sensiblement égal à 69 GPa, ou en béryllium avec un module d’Young sensiblement égal à 240 GPa. L’épaisseur de la membrane 14 est préférentiellement comprise entre 20 et 30 pm pour un diamètre compris entre 30 et 32 mm. Ainsi, la membrane 14 est particulièrement rigide tout en présentant une certaine légèreté comparativement au titane ou à l’acier. La membrane 14 présente une face avant légèrement bombée formant un dôme aux bords duquel la bobine 12 est fixée. La membrane 14 s’étend également radialement, après le dôme, par une partie terminale 17 sensiblement droite s’étendant en direction du support fixe 18.
La partie mobile du transducteur électrodynamique 10 est complétée par une suspension 16 dédiée, de préférence réalisée en caoutchouc. La suspension 16 s’étend sous la forme d’un arc simple entre la partie terminale 17 de la membrane 14 et un bord radial du support fixe 18.
De préférence, la suspension 16 présente une épaisseur comprise entre 50 et 100 pm. Préférentiellement, la suspension 16 est fixée par collage sur la partie terminale 17 de la membrane 14 et sur le bord radial du support fixe 18. A l’aide de cette suspension 16, la compliance du transducteur électrodynamique 10 est particulièrement amélioré. En effet, la compliance du transducteur électrodynamique 10 a été mesurée supérieure à 40 mm/N
Une méthode classique de mesure de la compliance est décrite dans le mémoire de mesure de la société Klippel GmbH daté du 13 août 2012 : « Linear Parameter Measurement (LPM) S2 ».
Une partie arrière du transducteur électrodynamique 10 est également ouverte sur une partie de la suspension 16 de sorte à limiter le freinage de la membrane 14. Il s’ensuit que le transducteur électrodynamique 10 présente une surface d’ouverture supérieure à 35%. Cette surface d’ouverture correspond au rapport entre la surface émissive de la membrane 14 et la surface des ouvertures arrière.
Le transducteur électrodynamique 10, ainsi obtenu, présente des performances spectaculaires. Par exemple, pour une membrane 14 réalisée en aluminium, le poids total de la partie mobile (incluant la membrane, la suspension, la bobine et la colle) ne dépasse pas 160 mg. De même, pour une membrane 14 réalisée en béryllium, le poids total de la partie mobile (incluant la membrane, la suspension, la bobine et la colle) ne dépasse pas 125 mg. Les mesures de masse sont réalisées avec une balance précise au 1/10 de milligrammes.
Pour finir, deux transducteurs électrodynamique 10 peuvent être utilisés pour former un casque audio, par exemple un casque audio ouvert ou semi-ouvert.

Claims (9)

  1. REVENDICATIONS
    1. Transducteur électrodynamique (10) large bande pour casque audio, ledit transducteur (10) comportant : - un moteur magnétique (11) configuré pour générer un champ magnétique ; - une bobine (12) disposée dans un entrefer (13) dudit moteur magnétique (11) et mobile en translation sous l'effet dudit champ magnétique ; et - une membrane (14) reliée à ladite bobine (12) de sorte à convertir le mouvement de translation de ladite bobine (12) en une onde acoustique ; caractérisé en ce que ledit transducteur (10) comporte une bobine (12) autoporteuse fixée par collage sur ladite membrane (14), ladite membrane (14) présentant un module d'Young supérieur à 40 GPa, et en ce que ladite suspension (16) présente une épaisseur comprise entre 50 et lOOpm.
  2. 2. Transducteur électrodynamique selon la revendication 1, dans lequel ladite membrane (14) est réalisée en un matériau choisi dans le groupe comprenant le béryllium, le magnésium et l'aluminium.
  3. 3. Transducteur électrodynamique selon la revendication 1 ou 2, dans lequel ladite bobine (12) comporte un fil conducteur unique enroulé sur lui-même selon la hauteur dudit transducteur électrodynamique (10).
  4. 4. Transducteur électrodynamique selon l'une des revendications 1 à 3, dans lequel ladite bobine (12) présente un diamètre (d) compris entre 20 et 30mm.
  5. 5. Transducteur électrodynamique selon l'une des revendications 1 à 4, dans lequel ladite bobine (12) présente une hauteur (h) comprise entre 4 et 5mm.
  6. 6. Transducteur électrodynamique selon l'une des revendications 1 à 5, dans lequel ledit transducteur électrodynamique (10) présente une surface d’ouverture supérieure à 35%.
  7. 7. Transducteur électrodynamique selon l'une des revendications 1 à 6, dans lequel ledit transducteur électrodynamique (10) comporte également une suspension (16) reliant un bord externe (17) de ladite membrane (14) avec un support fixe (18), ladite suspension (16) étant réalisée en caoutchouc.
  8. 8. Transducteur électrodynamique selon l'une des revendications 1 à 7, dans lequel ledit transducteur électrodynamique (10) présente une compliance supérieure à 40mm/N.
  9. 9. Casque audio comportant un transducteur électrodynamique (10) selon l'une des revendications 1 à 8.
FR1655416A 2016-06-13 2016-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe Active FR3052624B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR1655416A FR3052624B1 (fr) 2016-06-13 2016-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe
US16/307,575 US10932026B2 (en) 2016-06-13 2017-06-13 Broadband electrodynamic transducer for headphones, and associated headphones
CN201780035866.8A CN109314823B (zh) 2016-06-13 2017-06-13 用于耳机的宽带电动换能器及相关联的耳机
EP17729135.8A EP3469812B1 (fr) 2016-06-13 2017-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe
PCT/EP2017/064332 WO2017216126A1 (fr) 2016-06-13 2017-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1655416A FR3052624B1 (fr) 2016-06-13 2016-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe
FR1655416 2016-06-13

Publications (2)

Publication Number Publication Date
FR3052624A1 FR3052624A1 (fr) 2017-12-15
FR3052624B1 true FR3052624B1 (fr) 2019-11-08

Family

ID=56896724

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1655416A Active FR3052624B1 (fr) 2016-06-13 2016-06-13 Transducteur electrodynamique large bande pour casque audio et casque audio associe

Country Status (5)

Country Link
US (1) US10932026B2 (fr)
EP (1) EP3469812B1 (fr)
CN (1) CN109314823B (fr)
FR (1) FR3052624B1 (fr)
WO (1) WO2017216126A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10812896B2 (en) * 2019-03-21 2020-10-20 Facebook Technologies, Llc High compliance microspeakers for vibration mitigation in a personal audio device
JP1740348S (ja) * 2021-07-15 2023-03-29 ヘッドホン

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205285A (ja) * 1995-01-31 1996-08-09 Matsushita Electric Ind Co Ltd スピーカ
WO2007093903A1 (fr) * 2006-02-16 2007-08-23 Bang & Olufsen Icepower A/S Micro-transducteur avec une qualité de son perçu améliorée
CN102823274A (zh) * 2011-04-08 2012-12-12 吾妻化成株式会社 微型扬声器用振动膜边缘材料、微型扬声器用振动膜、微型扬声器及电子设备
CN202713592U (zh) * 2012-08-14 2013-01-30 东莞正阳电子有限公司 一种大动态的扬声器振动板
US9668058B2 (en) * 2014-07-09 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Speaker diaphragm, speaker, device, and method for manufacturing speaker diaphragm
US20160150311A1 (en) * 2014-11-21 2016-05-26 Peak Audio Llc Methods and systems for processing sound waves
DK3041263T3 (en) * 2014-12-30 2022-04-11 Sonion Nederland Bv Hybrid receiver module
US9883290B2 (en) * 2014-12-31 2018-01-30 Skullcandy, Inc. Audio driver assembly, headphone including such an audio driver assembly, and related methods
US10178469B2 (en) * 2016-06-07 2019-01-08 Google Llc Damping spring
US9998829B2 (en) * 2016-06-27 2018-06-12 Google Llc Bone conduction transducer with increased low frequency performance

Also Published As

Publication number Publication date
EP3469812A1 (fr) 2019-04-17
FR3052624A1 (fr) 2017-12-15
US10932026B2 (en) 2021-02-23
EP3469812B1 (fr) 2020-08-19
CN109314823B (zh) 2021-05-28
WO2017216126A1 (fr) 2017-12-21
CN109314823A (zh) 2019-02-05
US20190306605A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
CA2787167C (fr) Systeme de haut-parleur coaxial a chambre de compression
EP2577992B1 (fr) Haut-parleur acoustique
EP0749265B1 (fr) Haut-parleur pour fréquences élevées
FR3052624B1 (fr) Transducteur electrodynamique large bande pour casque audio et casque audio associe
WO1980001128A1 (fr) Transducteur electro-acoustique
FR2854021A1 (fr) Transducteur acoustiques en beryllium pur a radiation directe, a membrane de forme concave, pour applications audio notamment pour enceintes acoustiques
EP2524521B1 (fr) Transducteur électrodynamique à dôme et suspension flottante
FR2747004A1 (fr) Convertisseur electrostatique
FR2955731A1 (fr) Enceinte acoustique comprenant au moins une membrane d'attenuation acoustique
EP3391664B1 (fr) Membrane acoustique pour haut-parleur et haut-parleur correspondant
FR2623337A1 (fr)
FR2519502A1 (fr) Mo
FR2858164A1 (fr) Transducteur de restitution de son
EP2392151B1 (fr) Équipage mobile et transducteur électrodynamique pourvu d'un tel équipage mobile
WO2018229242A1 (fr) Haut-parleur
FR3143172A1 (fr) Dispositif acoustique à fréquence de résonance variable
FR3049148A1 (fr) Procede de fabrication de membranes coxiales pour un haut-parleur
EP4386741A1 (fr) Dispositif électromécanique à fréquence de résonance variable et dispositif acoustique associé
WO2021111010A1 (fr) Haut-parleur à grande excursion, faible distorsion et faible profondeur
FR3024630A1 (fr) Haut-parleur compact incluant une membrane comprenant des plis radiaux
EP0335892A1 (fr) Procede de correction de la reponse amplitude/frequence d'un systeme de transduction electro-acoustique et ensemble transducteur correspondant.
FR3049149A1 (fr) Haut-parleur et procede de fabrication de haut-parleur
FR2522912A1 (fr) Suspension peripherique en elastomere de la membrane d'un transducteur electro-acoustique
BE621159A (fr)
BE406138A (fr)

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20171215

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9