WO2017215618A1 - 步态识别方法及装置 - Google Patents

步态识别方法及装置 Download PDF

Info

Publication number
WO2017215618A1
WO2017215618A1 PCT/CN2017/088343 CN2017088343W WO2017215618A1 WO 2017215618 A1 WO2017215618 A1 WO 2017215618A1 CN 2017088343 W CN2017088343 W CN 2017088343W WO 2017215618 A1 WO2017215618 A1 WO 2017215618A1
Authority
WO
WIPO (PCT)
Prior art keywords
gait
model data
information
specified object
acceleration
Prior art date
Application number
PCT/CN2017/088343
Other languages
English (en)
French (fr)
Inventor
谢思远
韦薇
李伟华
范贤友
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017215618A1 publication Critical patent/WO2017215618A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/23Recognition of whole body movements, e.g. for sport training
    • G06V40/25Recognition of walking or running movements, e.g. gait recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a gait recognition method and apparatus.
  • gait recognition is based on people's walking posture to identify and authenticate people. Compared with face recognition and fingerprint recognition, it has long-distance, non-contact, difficult to disguise and difficult to hide. .
  • the related art gait recognition is to collect a sequence of walking video images and extract the feature step (the main extracted feature is the motion of each joint of the human body) human body three-dimensional biokinetic model, however, due to the large amount of data of the sequence image Therefore, the computational complexity of gait recognition is relatively high, and it is difficult to handle. There is no mature commercial application system.
  • the embodiment of the invention provides a gait recognition method and device, so as to at least solve the problem that the gait recognition in the related art is too complicated.
  • a gait recognition method includes: acquiring gait data when a specified object moves under a plurality of predetermined scenarios, wherein the gait data includes: step frequency information, step size Information, and acceleration information; calculating the specified pair according to the step frequency information, the step information, and the acceleration information of the specified object in the plurality of predetermined scenarios The gait model data of the image; determining whether the gait model data matches the pre-stored model data in the database.
  • the step of collecting gait data when the specified object moves under a plurality of predetermined scenarios comprises: averaging the collected acceleration signals by using two adjacent and equal time windows; calculating two rising switching points Comparing the energy difference between the long window waveform and the short window waveform, and comparing the energy difference with a preset energy threshold; and recording the two rises when the energy difference is greater than the preset energy threshold.
  • the step of acquiring gait data when the specified object moves under a plurality of predetermined scenarios comprises: collecting a video image when the specified object moves under a predetermined scene; performing background subtraction processing on the video image, respectively Obtaining a first image and a second image of the specified object at the first time and the second time; calculating contour centroid positions of the first image and the second image, respectively, and The distance of the contour centroid position in the horizontal direction is recorded as the step information.
  • the step of acquiring gait data when the specified object moves under a plurality of predetermined scenarios comprises: acquiring, by the wearable device of the specified object, the first acceleration in the first time and the second time interval And calculating, according to the step information and the time interval, a second acceleration of the specified object in the first time and the second time interval, wherein the initial speed is 0; according to the first acceleration And the second acceleration obtains the acceleration information.
  • the step frequency information, the step information, and the acceleration calculation in the plurality of predetermined scenarios are calculated according to the specified object.
  • the step of specifying the gait model data of the object includes: calculating the gait model data of the specified object by the following formula:
  • SL is the step size information
  • Freq is the step frequency information
  • Var is the acceleration information
  • A, B, and C are the gait model data of the specified object.
  • the step of determining whether the gait model data and the pre-stored model data in the database match comprises: calculating a similarity W(SL 1 , SL 2 ) of the gait model data and the pre-stored model data by using the following formula:
  • a 1 , B 1 , and C 1 are the gait model data
  • a 2 , B 2 , and C 2 are the pre-stored model data; and when the similarity is greater than or equal to a preset threshold, determining the step.
  • the state model data matches the pre-stored model data in the database.
  • the predetermined scene includes at least one of the following: a fast motion scene, a slow motion scene, and a normal speed motion scene.
  • the acceleration information includes acceleration variance information.
  • a gait recognition apparatus includes: an acquisition module configured to collect gait data when a specified object moves under a plurality of predetermined scenarios, wherein the gait data includes: Step frequency information, step information, and acceleration information; a calculation module configured to calculate, according to the step frequency information, the step information, and the acceleration information of the specified object in the plurality of predetermined scenarios The gait model data of the specified object; the determining module is configured to determine whether the gait model data and the pre-stored model data in the database match.
  • the calculating module includes: a first calculating unit configured to calculate the gait model data of the specified object by using the following formula:
  • SL is the step size information
  • Freq is the step frequency information
  • Var is the acceleration information
  • A, B, and C are the gait model data of the specified object.
  • the determining module further includes: a second calculating unit configured to calculate a similarity W(SL 1 , SL 2 ) of the gait model data and the pre-stored model data using the following formula:
  • a 1 , B 1 , and C 1 are the gait model data
  • a 2 , B 2 , and C 2 are the pre-stored model data
  • the determining unit is configured to be when the similarity is greater than or equal to a preset threshold. And determining that the gait model data matches the pre-stored model data in the database.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the gait data includes: step frequency information, step information, and acceleration information
  • gait data when the specified object moves under a plurality of predetermined scenarios is first acquired, wherein the gait data includes: step frequency information, step information, and acceleration And calculating, according to the step frequency information, the step information, and the acceleration information of the specified object in the plurality of predetermined scenarios, the gait model data of the specified object, and finally determining the Whether the gait model data matches the pre-stored model data in the database.
  • the data in the gait data includes: step frequency information, step information, and acceleration information
  • the combination of acceleration data, step frequency data, and step size data during motion can represent unique features compared to related technologies.
  • the three-dimensional biokinetic model, the gait recognition method based on gait data is more efficient and more accurate, and therefore can solve the problem of too complicated in the gait recognition in the related art.
  • FIG. 1 is a flow chart of a gait recognition method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a step frequency calculation according to the present embodiment, in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic diagram of step calculation in accordance with the present embodiment, in accordance with an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a gait recognition apparatus according to an embodiment of the present invention.
  • FIG. 5 is a block diagram 1 of an optional structure of a gait recognition apparatus according to an embodiment of the present invention.
  • FIG. 6 is a block diagram 2 of an optional structure of a gait recognition apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of gait recognition of an acceleration sensor and a video according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of a gait recognition method according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a database collection device according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing the structure of an identity recognition apparatus according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a gait recognition method according to an embodiment of the present invention. As shown in FIG. 1, the flow includes the following steps:
  • Step S102 Acquire gait data when the specified object moves under a plurality of predetermined scenarios, where the gait data includes: step frequency information, step information, and acceleration information;
  • Step S104 calculating gait model data of the specified object according to the step frequency information, the step information, and the acceleration information of the specified object in the plurality of predetermined scenarios;
  • step S106 it is determined whether the gait model data and the pre-stored model data in the database match.
  • the gait data of the specified object when moving under various predetermined scenarios is first collected, wherein the gait data includes: step frequency information, step information, and acceleration information, and then according to the designation.
  • the object calculates the gait model data of the specified object according to the step frequency information, the step information, and the acceleration information in a plurality of predetermined scenarios, and finally determines whether the gait model data and the pre-stored model data in the database match. Since the data in the gait data includes: step frequency information, step information, and acceleration information, acceleration data, step frequency data, and step size data during motion
  • the combination can represent unique features.
  • the gait recognition method based on gait data is more efficient and more accurate. Therefore, it can solve the complication in the related art when the gait recognition is too complicated. problem.
  • the acceleration information in this embodiment may be, but is not limited to, acceleration, acceleration variance, acceleration average, etc., in order to improve the accuracy of the calculation result, the acceleration variance is taken as an example in the embodiment.
  • the execution body of the foregoing steps may be an identification device, an identification system, or the like, and may be used in a venue or a scene such as monitoring, security, identification, etc., but is not limited thereto.
  • the gait data when the specified object is moved under a plurality of predetermined scenarios includes:
  • the first time and the second time represent a gait of the user, and simultaneously record the original acceleration signal variance information corresponding to the first time and the second time;
  • Gait data includes:
  • the contour centroid positions of the first image and the second image are respectively calculated, and the distances of the two contour centroid positions in the horizontal direction are recorded as step information.
  • acquiring gait data when the specified object is moving under a plurality of predetermined scenarios includes:
  • the acceleration information is obtained based on the first acceleration and the second acceleration.
  • the acceleration sequence data and the step frequency information when the specified object moves in the first time and the second time interval are calculated according to the step information and the time interval, wherein the initial acceleration is 0; wherein the sequence data can be from FIG. 2
  • the original acceleration signal curve is obtained, and the step frequency information can be obtained from the short window average value and the long window average value curve in the figure, and the acceleration information is calculated according to the acceleration sequence data and the step frequency information.
  • the gait model data of the specified object is calculated according to the step frequency information, the step information, and the acceleration of the specified object in the plurality of predetermined scenarios, including:
  • the gait model data for the specified object is calculated by the following formula:
  • SL is the step size information
  • Freq is the step frequency information
  • Var is the acceleration information
  • A, B, and C are the gait model data of the specified object.
  • a unique A, B, and C can be calculated, and the combination of (A, B, C) is the obtained gait model data.
  • the predetermined scene may be: a fast motion scene, a slow motion scene, and a normal speed motion scene.
  • the implementation may also be two or more than three scenarios, if Only the gait data in two scenes can be collected, and the fast motion scene and the slow motion scene (or other combinations) can be selected.
  • Gait data such as SL and Freq
  • SL and Freq can be designed to calculate the gait model data C, D.
  • data of more than three scenarios can be used to calculate the gait model data and the above method class. Like, they are all estimated using the least squares method.
  • determining whether the gait model data and the pre-stored model data in the database match comprises:
  • the similarity W(SL 1 ,SL 2 ) of the gait model data and the pre-stored model data is calculated using the following formula:
  • a 1 , B 1 , and C 1 are gait model data, and A 2 , B 2 , and C 2 are pre-stored model data;
  • the gait model data is determined to match the pre-stored model data in the database.
  • the preset threshold may be 99.5%.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases the former is A more preferred embodiment.
  • the technical solution of the present invention in essence or the contribution to the related art can be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the methods of various embodiments of the present invention.
  • Embodiments of the present invention further provide a computer readable storage medium storing computer executable instructions that are implemented when the computer executable instructions are executed.
  • a gait recognition device is also provided, which is used to implement the above-mentioned embodiments and optional embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 4 is a structural block diagram of a gait recognition apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes:
  • the acquisition module 40 is configured to collect gait data when the specified object moves under a plurality of predetermined scenarios, wherein the gait data includes: step frequency information, step information, and acceleration information;
  • the calculation module 42 is configured to set the step frequency information and the step size according to the specified object in a plurality of predetermined scenarios.
  • the information and the acceleration information are calculated to obtain gait model data of the specified object;
  • the determining module 44 is configured to determine whether the gait model data and the pre-stored model data in the database match.
  • FIG. 5 is a block diagram of an optional structure of a gait recognition apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes, in addition to all the modules shown in FIG.
  • the first calculating unit 50 is configured to calculate the gait model data of the specified object by the following formula:
  • SL is the step size information
  • Freq is the step frequency information
  • Var is the acceleration information
  • A, B, and C are the gait model data of the specified object.
  • FIG. 6 is a block diagram 2 of an optional structure of a gait recognition apparatus according to an embodiment of the present invention. As shown in FIG. 6 , the apparatus further includes:
  • the second calculating unit 60 is configured to calculate the similarity W(SL 1 , SL 2 ) of the gait model data and the pre-stored model data using the following formula:
  • a 1 , B 1 , and C 1 are gait model data, and A 2 , B 2 , and C 2 are pre-stored model data;
  • the determining unit 62 is configured to determine that the gait model data matches the pre-stored model data in the database when the similarity is greater than or equal to the preset threshold.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, and is used to describe the present application in detail:
  • the gait recognition method based on acceleration and step size is more efficient and accurate.
  • the embodiment provides a method and a device for detecting gait based on an acceleration sensor and a video, and obtains an acceleration variance and a step frequency by acquiring an inertial sensor worn on a human body in an offline phase, and obtains a human body step information through image data of the camera.
  • the gait data is collected in three steps of fast, slow and normal speed respectively.
  • the user's binary one-step model is obtained through training.
  • the gait feature data of the human body is collected in the same way, and a new step size model is obtained.
  • the step size model of the user is compared with the gait fingerprint in the fingerprint database. If the model has high similarity and meets specificity Conditions can be considered the same person.
  • FIG. 7 is a schematic diagram of gait recognition of an acceleration sensor and a video according to an embodiment of the present invention
  • FIG. 8 is a flowchart of a gait recognition method according to an embodiment of the present invention, as shown in FIG. The steps of the embodiment include:
  • Step 1 Arrange a camera on a long and narrow straight channel (about 20-50 meters), and the user wears a smart terminal (smartphone, smart bracelet) with a micro inertial sensor and performs straight walking;
  • Step 2 The system collects the step frequency data according to the intelligent terminal of the user and issues a voice prompt to request the user to keep walking at three speeds of fast, slow speed and normal, and collect the gait data (acceleration variance and step frequency) of the user during walking.
  • the step data of the user is synchronously collected by the camera;
  • Step 3 When the user completes 3 different step frequency actions, the voice system prompts the gait data acquisition to end, and the system obtains the user's step size model by using the three acquired acceleration and step size data to train the step size model;
  • Step 4 In the identification phase, the user repeats steps one, two, and three.
  • the system calculates the most similar identity through the similarity model. If the similarity is higher than the set threshold, it is considered to be the same person, lower than the set. If the threshold is set, it can be considered that it is not the same person.
  • the specific step frequency calculation method is as shown in FIG. 2, using two different The time sliding average window performs mean filtering on the collected acceleration signals, and according to the periodic variation of the human walking acceleration, the long window waveform and the short window waveform in one cycle There will be two intersection points, by calculating the energy difference between the long window waveform and the short window waveform between the two rising switching points, and comparing with the preset energy threshold, the greater than the threshold is counted as one gait, and two exchanges are recorded simultaneously.
  • the time and time interval of the point T2-T1 the reciprocal of the time interval of the two exchange points is the step frequency f.
  • user step data is calculated: a camera is arranged in a direction parallel to the user's walking path, the camera is perpendicular to the user's walking direction, and video acquisition and acceleration data collection are synchronized in time, and the user's walking video is continuously acquired.
  • the video image is subjected to the background subtraction method, and the moving target binary image of the two switching point time points (T1 and T2) in the above steps is obtained, and the contour centroid position is calculated, and the horizontal distance of the two centroids is the step in the current gait. Long, take multiple gait data to get the average step size.
  • the voice prompt module sends a voice prompt according to the user's step frequency data, and requires the user to change three different step frequencies, which are divided into fast, medium and slow speeds, when the user completes the walking of three steps.
  • the identity recognition module estimates the user's step size model by using the least squares method to collect the three step frequencies, the acceleration variance and the corresponding step size data.
  • the step size estimation model is:
  • SL is the step size data
  • Freq is the step frequency data
  • Var is the acceleration variance
  • A, B, and C are the final calculated gait model data.
  • SL 1 , A 1 , B 1 , C 1 are the gait model data to be identified
  • SL 2 , A 2 , B 2 , C 2 are a gait fingerprint in the fingerprint database
  • W(SL 1 , SL 2 ) is Similarity
  • the gait fingerprint database collected in advance in the above steps may be specifically implemented by the above method, the format of the fingerprint is (ID, A, B, C), the ID represents the user identifier, and A, B, and C are the step size models in the above steps. parameter.
  • FIG. 9 is a structural block diagram of a database collection device according to an embodiment of the present invention. As shown in FIG. 9, the system includes: a database collection module 305, a step calculation module 301, an acceleration variance information collection module 302, a voice prompt module 303, and a step size model calculation. Module 304.
  • FIG. 10 is a structural block diagram of an identity recognition apparatus according to an embodiment of the present invention. As shown in FIG. 10, the method includes: a step size calculation module 301, an acceleration variance information collection module 302, a voice prompt module 303, a step size model calculation module 304, and an identity recognition. Module 306.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • gait data of the specified object when moving in a plurality of predetermined scenarios, wherein the gait data includes: step frequency information, step information, and acceleration information;
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs, according to the stored program code in the storage medium, the gait data when the specified object is moved in a plurality of predetermined scenarios, where the gait data includes: step frequency information, step Long information, and acceleration information;
  • the processor performs, according to the stored program code in the storage medium, the gait of the specified object according to the step frequency information, the step information, and the acceleration information of the specified object in the plurality of predetermined scenarios.
  • Model data
  • the processor performs, according to the stored program code in the storage medium, whether the gait model data and the pre-stored model data in the database match.
  • modules or steps of the present invention may be Implemented in a general-purpose computing device, which may be centralized on a single computing device or distributed across a network of computing devices, optionally, they may be implemented by program code executable by the computing device, such that They may be stored in a storage device by a computing device, and in some cases, the steps shown or described may be performed in an order different than that herein, or separately fabricated into individual integrated circuit modules. Alternatively, multiple modules or steps of them can be implemented as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • gait data when the specified object moves under a plurality of predetermined scenarios is first acquired, wherein the gait data includes: step frequency information, step information, and acceleration And calculating, according to the step frequency information, the step information, and the acceleration information of the specified object in the plurality of predetermined scenarios, the gait model data of the specified object, and finally determining the Whether the gait model data matches the pre-stored model data in the database.
  • the combination of acceleration data, stride data, and step size data during exercise can represent a unique feature.
  • the gait recognition method based on gait data is more efficient and more efficient. Accurate, therefore, can solve the problem of too complicated in the gait recognition in the related art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Social Psychology (AREA)
  • Psychiatry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种步态识别方法及装置,所述方法包括:采集指定对象在多种预定场景下运动时的步态数据,其中,所述步态数据包括:步频信息、步长信息、和加速度信息(S102);根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度信息计算得到所述指定对象的步态模型数据(S104);判断所述步态模型数据和数据库中的预存模型数据是否匹配(S106)。

Description

步态识别方法及装置 技术领域
本申请涉及但不限于通信领域,具体而言,涉及一种步态识别方法及装置。
背景技术
在身份识别领域,相关技术的众多的技术,如人脸识别、虹膜识别、声音识别等,均存在被伪造的可能,在某些安全性较高的场所如银行、核电站、军事基地、重要安检口等,传统的技术已不能完全满足需求
步态识别作为一种新兴的生物特征识别技术,是根据人走路的姿势进行人的身份识别和认证,较之人脸识别、指纹识别等具有远距离、非接触、难伪装、难隐藏的特点。
相关技术的步态识别是通过采集一段行走的视频图像序列,并提取特征步(主要提取的特征是人体每个关节的运动)人体三维生物运动学模型,但是,由于序列图像的数据量较大,因此步态识别的计算复杂性比较高,处理起来也比较困难,未有成熟的商业应用系统。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种步态识别方法及装置,以至少解决相关技术中进行步态识别时过于复杂问题。
根据本发明的一个实施例,提供了一种步态识别方法,包括:采集指定对象在多种预定场景下运动时的步态数据,其中,所述步态数据包括:步频信息、步长信息、和加速度信息;根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度信息计算得到所述指定对 象的步态模型数据;判断所述步态模型数据和数据库中的预存模型数据是否匹配。
可选地,采集指定对象在多种预定场景下运动时的步态数据的步骤包括:采用两个相邻且等长的时间窗对采集到的加速度信号进行均值滤波;计算两个上升交换点之间长窗波形与短窗波形的能量差值,并将所述能量差值与预设能量阈值进行比较;在所述能量差值大于所述预设能量阈值时,记录两个所述上升交换点对应的第一时间和第二时间,以及所述第一时间和所述第二时间的时间间隔,将所述时间间隔的倒数记录为所述步频信息。
可选地,采集指定对象在多种预定场景下运动时的步态数据的步骤包括:采集所述指定对象在预定场景下运动时的视频图像;对所述视频图像进行背景相减法处理,分别获取所述指定对象在所述第一时间和所述第二时间的第一图像和第二图像;分别计算所述第一图像和所述第二图像的轮廓质心位置,并将两个所述轮廓质心位置在水平方向的距离记录为所述步长信息。
可选地,采集指定对象在多种预定场景下运动时的步态数据的步骤包括:通过所述指定对象的可穿戴设备获取所述第一时间和所述第二时间间隔内的第一加速度,以及根据所述步长信息和所述时间间隔计算所述指定对象在所述第一时间和所述第二时间间隔内的第二加速度,其中,初始速度为0;根据所述第一加速度和所述第二加速度得到所述加速度信息。
可选地,在所述预定场景包括至少三种的情况下,根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度计算得到所述指定对象的步态模型数据的步骤包括:通过以下公式计算所述指定对象的步态模型数据:
SL1=A+B*Freq1+C*Var1
SL2=A+B*Freq2+C*Var2
SL3=A+B*Freq3+C*Var3
其中,SL为步长信息,Freq为步频信息,Var为加速度信息,A、B、和C为所述指定对象的步态模型数据。
可选地,判断所述步态模型数据和数据库中的预存模型数据是否匹配的 步骤包括:使用以下公式计算所述步态模型数据和预存模型数据的相似度W(SL1,SL2):
Figure PCTCN2017088343-appb-000001
其中,A1,B1,C1为所述步态模型数据,A2,B2,C2为所述预存模型数据;在所述相似度大于或等于预设阈值时,确定所述步态模型数据和数据库中的所述预存模型数据匹配。
可选地,所述预定场景包括以下至少之一:快速运动场景、慢速运动场景、正常速度运动场景。
可选地,所述加速度信息包括加速度方差信息。
根据本发明的另一个实施例,提供了一种步态识别装置,包括:采集模块,设置成采集指定对象在多种预定场景下运动时的步态数据,其中,所述步态数据包括:步频信息、步长信息、和加速度信息;计算模块,设置成根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度信息计算得到所述指定对象的步态模型数据;判断模块,设置成判断所述步态模型数据和数据库中的预存模型数据是否匹配。
可选地,在所述预定场景包括至少三种的情况下,所述计算模块包括:第一计算单元,设置成通过以下公式拟合计算所述指定对象的步态模型数据:
SL1=A+B*Freq1+C*Var1
SL2=A+B*Freq2+C*Var2
SL3=A+B*Freq3+C*Var3
其中,SL为步长信息,Freq为步频信息,Var为加速度信息,A、B、和C为所述指定对象的步态模型数据。
可选地,所述判断模块还包括:第二计算单元,设置成使用以下公式计算所述步态模型数据和预存模型数据的相似度W(SL1,SL2):
Figure PCTCN2017088343-appb-000002
其中,A1,B1,C1为所述步态模型数据,A2,B2,C2为所述预存模型数 据;确定单元,设置成在所述相似度大于或等于预设阈值时,确定所述步态模型数据和数据库中的所述预存模型数据匹配。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
采集指定对象在多种预定场景下运动时的步态数据,其中,所述步态数据包括:步频信息、步长信息、和加速度信息;
根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度信息计算得到所述指定对象的步态模型数据;
判断所述步态模型数据和数据库中的预存模型数据是否匹配。
通过本发明的实施例,在进行步态识别时,首先采集指定对象在多种预定场景下运动时的步态数据,其中,所述步态数据包括:步频信息、步长信息、和加速度信息,再根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度信息计算得到所述指定对象的步态模型数据,最后判断所述步态模型数据和数据库中的预存模型数据是否匹配。由于步态数据中数据包括:步频信息、步长信息、和加速度信息,而运动时的加速度数据、步频数据、以及步长数据的结合,可代表独一无二的特征,相比相关技术中的三维生物运动学模型,基于步态数据的步态识别方法效率更高也更准确,因此,可以解决相关技术中进行步态识别时过于复杂问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的步态识别方法的流程图;
图2是根据本发明实施例的在根据本实施例的步频计算示意图;
图3是根据本发明实施例的在根据本实施例的步长计算示意图;
图4是根据本发明实施例的步态识别装置的结构框图;
图5是根据本发明实施例的步态识别装置的可选结构框图一;
图6是根据本发明实施例的步态识别装置的可选结构框图二;
图7为本发明实施例提出的一种加速度传感器和视频的步态识别示意图;
图8是根据本发明实施例的步态识别方法流程图;
图9是根据本发明实施例的数据库采集装置结构框图;
图10是根据本发明实施例的身份识别装置结构框图。
本发明的实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种步态识别方法,图1是根据本发明实施例的步态识别方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,采集指定对象在多种预定场景下运动时的步态数据,其中,步态数据包括:步频信息、步长信息、和加速度信息;
步骤S104,根据指定对象在多种预定场景下的步频信息、步长信息、以及加速度信息计算得到指定对象的步态模型数据;
步骤S106,判断步态模型数据和数据库中的预存模型数据是否匹配。
通过上述步骤,在进行步态识别时,首先采集指定对象在多种预定场景下运动时的步态数据,其中,步态数据包括:步频信息、步长信息、和加速度信息,再根据指定对象在多种预定场景下的步频信息、步长信息、以及加速度信息计算得到指定对象的步态模型数据,最后判断步态模型数据和数据库中的预存模型数据是否匹配。由于步态数据中数据包括:步频信息、步长信息、和加速度信息,而运动时的加速度数据、步频数据、以及步长数据的 结合,可代表独一无二的特征,相比相关技术中的三维生物运动学模型,基于步态数据的步态识别方法效率更高也更准确,因此,可以解决相关技术中进行步态识别时过于复杂问题。
可选的,本实施例中的加速度信息可以但不限于为:加速度、加速度方差、加速度平均值等,为了提高计算结果的精确性,本实施例中以加速度方差为例进行说明。
可选地,上述步骤的执行主体可以为识别装置或识别系统等,可用在监控,安检,识别等场地或场景,但不限于此。
图2是根据本发明实施例的在根据本实施例的步频计算示意图,原始的加速度信号,短窗平均值波形,长窗平均值波形,交换点代表短窗波形值大于长窗波形值所对应的时刻,如图2所示,可选实施例中,采集指定对象在多种预定场景下运动时的步态数据包括:
采用两种不同的时间窗长度对采集到的加速度信号进行均值滤波,一个长窗(1秒),一个短窗(0.2秒);
计算连续两个上升交换点之间长窗波形与短窗波形的能量差值,并将能量差值与预设能量阈值进行比较;
在能量差值大于预设能量阈值时,记录两个上升交换点对应的第一时间和第二时间,以及第一时间和第二时间的时间间隔,将时间间隔的倒数记录为步频信息,第一时间和第二时间即代表用户的一个步态,同时记录第一时间和第二时间对应的原始加速度信号方差信息;
图3是根据本发明实施例的在根据本实施例的步长计算示意图,如图3所示,在根据本实施例的可选实施例中,采集指定对象在多种预定场景下运动时的步态数据包括:
采集指定对象在预定场景下运动时的视频图像;
对视频图像进行背景相减法处理,分别获取指定对象在第一时间和第二时间的第一图像和第二图像;
分别计算第一图像和第二图像的轮廓质心位置,并将两个轮廓质心位置在水平方向的距离记录为步长信息。
在根据本实施例的可选实施例中,采集指定对象在多种预定场景下运动时的步态数据包括:
通过指定对象的可穿戴设备获取第一时间和第二时间间隔内的第一加速度,以及根据步长信息和时间间隔计算指定对象在第一时间和第二时间间隔内的第二加速度,其中,初始速度为0;
根据第一加速度和第二加速度得到加速度信息。
可选的,根据步长信息和时间间隔计算指定对象在第一时间和第二时间间隔内运动时的加速度序列数据、步频信息,其中,初始加速度为0;其中,序列数据可以从图2中的原始加速度信号曲线得到,步频信息可以从图中的短窗平均值和长窗平均值的曲线得到,根据加速度序列数据和步频信息计算得到加速度信息。
可选的,在预定场景包括三种的情况下,根据指定对象在多种预定场景下的步频信息、步长信息、以及加速度计算得到指定对象的步态模型数据包括:
通过以下公式计算指定对象的步态模型数据:
SL1=A+B*Freq1+C*Var1
SL2=A+B*Freq2+C*Var2
SL3=A+B*Freq3+C*Var3
其中,SL为步长信息,Freq为步频信息,Var为加速度信息,A、B、和C为指定对象的步态模型数据。根据上述三元函数,可以计算出唯一的A、B、和C,(A、B、C)的组合即是得到的步态模型数据。此处是以三种场景进行说明,可选的,预定场景可以是:快速运动场景、慢速运动场景、正常速度运动场景,但是,本实施也可以是两种或超过三种场景,如果是只采集两种场景下的步态数据,可以选择快速运动场景和慢速运动场景(或其他组合),在计算步态模型数据时,由于只有两组参数,因此可以只采集或者只选择两组步态数据,如选择SL和Freq,这样可以设计两元函数,计算出步态模型数据C、D。在一种特殊的情况下,为了提高步态模型数据的精确度,可以采用超过三种场景的数据,计算步态模型数据的方式与上述方法类 似,都是采用最小二乘法进行估算。
可选的,判断步态模型数据和数据库中的预存模型数据是否匹配包括:
使用以下公式计算步态模型数据和预存模型数据的相似度W(SL1,SL2):
Figure PCTCN2017088343-appb-000003
其中,A1,B1,C1为步态模型数据,A2,B2,C2为预存模型数据;
在相似度大于或等于预设阈值时,确定步态模型数据和数据库中的预存模型数据匹配,可选的,预设阈值可以是99.5%。
通过以上的实施例的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施例。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
本发明实施例另外提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述方法。
实施例2
在本实施例中还提供了一种步态识别装置,该装置用于实现上述实施例及可选实施例,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本发明实施例的步态识别装置的结构框图,如图4所示,该装置包括:
采集模块40,设置成采集指定对象在多种预定场景下运动时的步态数据,其中,步态数据包括:步频信息、步长信息、和加速度信息;
计算模块42,设置成根据指定对象在多种预定场景下的步频信息、步长 信息、以及加速度信息计算得到指定对象的步态模型数据;
判断模块44,设置成判断步态模型数据和数据库中的预存模型数据是否匹配。
图5是根据本发明实施例的步态识别装置的可选结构框图一,如图5所示,该装置除包括图4所示的所有模块外,计算模块包括:
第一计算单元50,设置成通过以下公式计算指定对象的步态模型数据:
SL1=A+B*Freq1+C*Var1
SL2=A+B*Freq2+C*Var2
SL3=A+B*Freq3+C*Var3
其中,SL为步长信息,Freq为步频信息,Var为加速度信息,A、B、和C为指定对象的步态模型数据。
图6是根据本发明实施例的步态识别装置的可选结构框图二,如图6所示,该装置除包括图4所示的所有模块外,判断模块还包括:
第二计算单元60,设置成使用以下公式计算步态模型数据和预存模型数据的相似度W(SL1,SL2):
Figure PCTCN2017088343-appb-000004
其中,A1,B1,C1为步态模型数据,A2,B2,C2为预存模型数据;
确定单元62,设置成在相似度大于或等于预设阈值时,确定步态模型数据和数据库中的预存模型数据匹配。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本发明的可选实施例,用于对本申请进行详细具体的说明:
由于人体行走的加速度数据并结合步长数据,可代表用户独一无二的特 征,相比传统的三维生物运动学模型,基于加速度与步长的步态识别方法效率更高也更准确。
本实施例提供了一种基于加速度传感器和视频的步态识方法及装置,在离线阶段通过获取佩戴在人体身上的惯性传感器获取加速度方差、步频,并通过摄像头的图像数据得到人体步长信息,在语音模块提示下,分别完成快速、慢速、正常速度三种步频下步态数据的采集,最后通过训练学习得到用户的二元一次步长模型。在身份识别阶段时以同样的方式采集人体的步态特征数据,得到新的步长模型,将用户的步长模型与指纹数据库中的步态指纹进行比较,若模型相似度较高且满足特定条件,则可认为是同一个人。
图7为本发明实施例提出的一种加速度传感器和视频的步态识别示意图;如图7所示,图8是根据本发明实施例的步态识别方法流程图,如图8所示,本实施例的方步骤包括:
步骤一:在狭长的直线通道(20-50米左右)上布置1台摄像头,用户佩戴具备微惯性传感器的智能终端(智能手机、智能手环)并进行直线行走;
步骤二:系统根据用户身上的智能终端采集步频数据并发出语音提示要求用户保持快速、慢速、正常三种速度行走,并采集行走过程中用户的步态数据(加速度方差与步频),同时通过摄像头同步采集用户的步长数据;
步骤三:当用户完成3种不同的步频动作,语音系统提示步态数据采集结束,系统通过三种采集的加速度和步长数据,对步长模型训练得到用户的步长模型;
步骤四:在身份识别阶段,用户重复步骤一、二、三,当完成采集后系统通过相似度模型计算最相似的身份,若相似度高于设定阈值,则认为是同一个人,低于设定阈值,则可认为不是同一个人。
下面具体介绍各个参数和模型数据的计算方式,包括:
参照图2,行人行走时佩戴具有加速度传感器的智能终端,获取用户的加速度数据及加速度方差数据,计算用户的步频f:具体的步频计算方法为:如图2所示,采用两个不同的时间滑动平均窗对采集到的加速度信号进行均值滤波,根据人步行加速度的周期性变化,一个周期内长窗波形与短窗波形 会有两个交点,通过计算两个上升交换点之间长窗波形与短窗波形的能量差值,并与预设能量阈值进行比较,大于阈值则计为一个步态,同时记录两个交换点的时间及时间间隔T2-T1,两次交换点时间间隔的倒数即为步频f。
参照图3,计算用户步长数据:在用户行走通道平行的方向布置一个摄像头,摄像头与用户行走方向保持垂直,视频采集和加速度数据采集在时间上保持同步,通过连续获取用户行走的视频,对视频图像进行背景相减法,获取以上步骤中两个交换点时间点(T1及T2)的运动目标二值图像,并计算轮廓质心位置,两个质心的水平方向距离即为当前步态下的步长,取多个步态数据即可得到平均步长。
计算步态模型数据:语音提示模块根据用户的步频数据,发出语音提示,要求用户更换三种不同的步频,分为为快、中、慢的速度,当用户完成三种步频的行走,语音模块提示步态数据采集完毕,身份识别模块对采集到三种步频、加速度方差及对应的步长数据采用最小二乘法估算用户的步长模型,步长估算模型为:
SL=A+B*Freq+C*Var
其中,SL为步长数据,Freq为步频数据,Var为加速度方差,A,B,C为最终计算得到的步态模型数据。
数据库匹配判断:将上述获取的步态模型数据与预先采集的步态指纹数据库中的指纹进行对比,寻找相似度最高的某条指纹,若该条步态指纹相似度大于设定的阈值99.5%,则认为该用户通过该次的步态识别检测,具体的,相似度计算公式如下:
SL1、A1,B1,C1为待识别的步态模型数据,SL2、A2,B2,C2为指纹数据库中某条步态指纹,W(SL1,SL2)为相似度,则
Figure PCTCN2017088343-appb-000005
上述步骤中预先建立采集的步态指纹数据库具体可通过上述方法实现,指纹的格式为(ID,A,B,C),ID代表用户标识,A,B,C为上述步骤中的步长模型参数。
图9是根据本发明实施例的数据库采集装置结构框图,如图9所示,包括:数据库采集模块305、步长计算模块301、加速度方差信息采集模块302、语音提示模块303、步长模型计算模块304。
图10是根据本发明实施例的身份识别装置结构框图,如图10所示,包括:步长计算模块301、加速度方差信息采集模块302、语音提示模块303、步长模型计算模块304、身份识别模块306。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
采集指定对象在多种预定场景下运动时的步态数据,其中,步态数据包括:步频信息、步长信息、和加速度信息;
根据指定对象在多种预定场景下的步频信息、步长信息、以及加速度信息计算得到指定对象的步态模型数据;
判断步态模型数据和数据库中的预存模型数据是否匹配。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行采集指定对象在多种预定场景下运动时的步态数据,其中,步态数据包括:步频信息、步长信息、和加速度信息;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行根据指定对象在多种预定场景下的步频信息、步长信息、以及加速度信息计算得到指定对象的步态模型数据;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行判断步态模型数据和数据库中的预存模型数据是否匹配。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施例中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可 以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理单元的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或者所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明的实施例,在进行步态识别时,首先采集指定对象在多种预定场景下运动时的步态数据,其中,所述步态数据包括:步频信息、步长信息、和加速度信息,再根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度信息计算得到所述指定对象的步态模型数据,最后判断所述步态模型数据和数据库中的预存模型数据是否匹配。由于运动时的加速度数据、步频数据、以及步长数据的结合,可代表独一无二的特征,相比相关技术中的三维生物运动学模型,基于步态数据的步态识别方法效率更高也更准确,因此,可以解决相关技术中进行步态识别时过于复杂问题。

Claims (12)

  1. 一种步态识别方法,包括:
    采集指定对象在多种预定场景下运动时的步态数据,其中,所述步态数据包括:步频信息、步长信息、和加速度信息;
    根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度信息计算得到所述指定对象的步态模型数据;
    判断所述步态模型数据和数据库中的预存模型数据是否匹配。
  2. 根据权利要求1所述的方法,其中,采集指定对象在多种预定场景下运动时的步态数据的步骤包括:
    采用两种不同长度的时间窗对采集到的加速度信号进行均值滤波;
    计算两个连续上升交换点之间长窗波形与短窗波形的能量差值,并将所述能量差值与预设能量阈值进行比较;
    在所述能量差值大于所述预设能量阈值时,记录两个所述上升交换点对应的第一时间和第二时间,以及所述第一时间和所述第二时间的时间间隔,将所述时间间隔的倒数记录为所述步频信息。
  3. 根据权利要求2所述的方法,其中,采集指定对象在多种预定场景下运动时的步态数据的步骤包括:
    采集所述指定对象在预定场景下运动时的视频图像;
    对所述视频图像进行背景相减法处理,分别获取所述指定对象在所述第一时间和所述第二时间的第一图像和第二图像;
    分别计算所述第一图像和所述第二图像的轮廓质心位置,并将两个所述轮廓质心位置在水平方向的距离记录为所述步长信息。
  4. 根据权利要求3所述的方法,其中,采集指定对象在多种预定场景下运动时的步态数据的步骤包括:
    通过所述指定对象的可穿戴设备获取所述第一时间和所述第二时间间隔内的第一加速度,以及根据所述步长信息和所述时间间隔计算所述指定对象在所述第一时间和所述第二时间间隔内的第二加速度,其中,初始速度为0;
    根据所述第一加速度和所述第二加速度得到所述加速度信息。
  5. 根据权利要求1所述的方法,其中,在所述预定场景包括至少三种的情况下,根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度计算得到所述指定对象的步态模型数据的步骤包括:
    通过以下公式计算所述指定对象的步态模型数据:
    SL1=A+B*Freq1+C*Var1
    SL2=A+B*Freq2+C*Var2
    SL3=A+B*Freq3+C*Var3
    其中,SL为步长信息,Freq为步频信息,Var为加速度信息,A、B、和C为所述指定对象的步态模型数据。
  6. 根据权利要求1所述的方法,其中,判断所述步态模型数据和数据库中的预存模型数据是否匹配的步骤包括:
    使用以下公式计算所述步态模型数据和预存模型数据的相似度W(SL1,SL2):
    Figure PCTCN2017088343-appb-100001
    其中,A1,B1,C1为所述步态模型数据,A2,B2,C2为所述预存模型数据;
    在所述相似度大于或等于预设阈值时,确定所述步态模型数据和数据库中的所述预存模型数据匹配。
  7. 根据权利要求1所述的方法,其中,所述预定场景包括以下至少之一:快速运动场景、慢速运动场景、正常速度运动场景。
  8. 根据权利要求1至7任一项所述的方法,其中,所述加速度信息包括加速度方差信息。
  9. 一种步态识别装置,包括:
    采集模块,设置成采集指定对象在多种预定场景下运动时的步态数据,其中,所述步态数据包括:步频信息、步长信息、和加速度信息;
    计算模块,设置成根据所述指定对象在所述多种预定场景下的所述步频信息、所述步长信息、以及所述加速度信息计算得到所述指定对象的步态模型数据;
    判断模块,设置成判断所述步态模型数据和数据库中的预存模型数据是否匹配。
  10. 根据权利要求9所述的装置,其中,在所述预定场景包括至少三种的情况下,所述计算模块包括:
    第一计算单元,设置成通过以下公式拟合计算所述指定对象的步态模型数据:
    SL1=A+B*Freq1+C*Var1
    SL2=A+B*Freq2+C*Var2
    SL3=A+B*Freq3+C*Var3
    其中,SL为步长信息,Freq为步频信息,Var为加速度信息,A、B、和C为所述指定对象的步态模型数据。
  11. 根据权利要求9所述的装置,其中,所述判断模块还包括:
    第二计算单元,设置成使用以下公式计算所述步态模型数据和预存模型数据的相似度W(SL1,SL2):
    Figure PCTCN2017088343-appb-100002
    其中,A1,B1,C1为所述步态模型数据,A2,B2,C2为所述预存模型数据;
    确定单元,设置成在所述相似度大于或等于预设阈值时,确定所述步态模型数据和数据库中的所述预存模型数据匹配。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述方法。
PCT/CN2017/088343 2016-06-14 2017-06-14 步态识别方法及装置 WO2017215618A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610416842.4A CN107506684B (zh) 2016-06-14 2016-06-14 步态识别方法及装置
CN201610416842.4 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017215618A1 true WO2017215618A1 (zh) 2017-12-21

Family

ID=60664210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088343 WO2017215618A1 (zh) 2016-06-14 2017-06-14 步态识别方法及装置

Country Status (2)

Country Link
CN (1) CN107506684B (zh)
WO (1) WO2017215618A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109634981A (zh) * 2018-12-11 2019-04-16 银河水滴科技(北京)有限公司 一种数据库扩充方法及装置
CN110147712A (zh) * 2019-03-27 2019-08-20 苏州书客贝塔软件科技有限公司 一种行人分析智能云平台
CN111274432A (zh) * 2020-02-06 2020-06-12 浙江大华技术股份有限公司 一种布控处理方法及装置
CN111476198A (zh) * 2020-04-24 2020-07-31 广西安良科技有限公司 基于人工智能的步态识别方法、装置、系统、存储介质和服务器
CN111950418A (zh) * 2020-08-03 2020-11-17 启航汽车有限公司 基于腿部特征的步态识别方法、装置及系统、可读存储介质
CN112766057A (zh) * 2020-12-30 2021-05-07 浙江大学 一种面向复杂场景细粒度属性驱动的步态数据集合成方法
CN113591552A (zh) * 2021-06-18 2021-11-02 新绎健康科技有限公司 一种基于步态加速度数据进行身份识别的方法及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108960072B (zh) * 2018-06-06 2022-05-10 华为技术有限公司 一种步态识别的方法及设备
CN109171749A (zh) * 2018-09-17 2019-01-11 南京脑科医院 一种营养筛查步速测量仪
CN109447199A (zh) * 2018-10-16 2019-03-08 山东大学 一种基于脚步信息的多模态罪犯识别方法及系统
CN111199178A (zh) * 2018-11-20 2020-05-26 宝沃汽车(中国)有限公司 车门的控制方法、装置和车辆
CN109522856A (zh) * 2018-11-23 2019-03-26 银河水滴科技(北京)有限公司 一种基于步态特征的认证方法及装置
CN110246561A (zh) * 2019-04-30 2019-09-17 华为技术有限公司 一种移动距离计算方法、装置以及系统
CN110503013B (zh) * 2019-08-07 2022-03-08 瑞声科技(新加坡)有限公司 振感相似度评价方法、装置及存储介质
CN110639192B (zh) * 2019-08-20 2021-08-06 苏宁智能终端有限公司 一种运动设备步数计算方法、步数核算方法及装置
CN110778039A (zh) * 2019-09-18 2020-02-11 深圳智锐通科技有限公司 一种智能楼梯装置及该装置的转角场景设计方法
CN111461031B (zh) * 2020-04-03 2023-10-24 银河水滴科技(宁波)有限公司 一种对象识别系统和方法
CN115280101A (zh) * 2020-05-29 2022-11-01 北京嘀嘀无限科技发展有限公司 室内导航
CN113790722B (zh) * 2021-08-20 2023-09-12 北京自动化控制设备研究所 一种基于惯性数据时频域特征提取的行人步长建模方法
CN115381408A (zh) * 2022-10-28 2022-11-25 深圳市心流科技有限公司 一种基于运动状态的穿戴式检测装置的调控方法
CN115969314B (zh) * 2022-11-17 2023-11-17 深圳市心流科技有限公司 一种自动调节穿戴式检测装置的伸缩量的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080175443A1 (en) * 2007-01-23 2008-07-24 Fullpower, Inc. System control via characteristic gait signature
CN101609507A (zh) * 2009-07-28 2009-12-23 中国科学技术大学 步态识别方法
CN103473539A (zh) * 2013-09-23 2013-12-25 智慧城市系统服务(中国)有限公司 步态识别方法和装置
CN103886341A (zh) * 2014-03-19 2014-06-25 国家电网公司 基于特征组合的步态行为识别方法
US20150112603A1 (en) * 2013-10-22 2015-04-23 Bae Systems Information And Electronic Systems Integration Inc. Mobile device based gait biometrics

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226597B (zh) * 2007-01-18 2010-04-14 中国科学院自动化研究所 一种基于热红外步态的夜间行人识别方法及系统
JP4929506B2 (ja) * 2007-03-29 2012-05-09 本田技研工業株式会社 脚式移動ロボット
CN101251894A (zh) * 2008-01-28 2008-08-27 天津大学 基于红外热成像的步态特征提取方法和步态识别方法
CN103377366A (zh) * 2012-04-26 2013-10-30 哈尔滨工业大学深圳研究生院 一种步态识别方法和系统
CN103505219B (zh) * 2012-06-20 2015-08-26 中国科学院电子学研究所 一种人体步态评测系统及方法
CN103983273B (zh) * 2014-04-29 2017-06-06 华南理工大学 一种基于加速度传感器的实时步长估计方法
CN104605859B (zh) * 2014-12-29 2017-02-22 北京工业大学 一种基于移动终端传感器的室内导航步态检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080175443A1 (en) * 2007-01-23 2008-07-24 Fullpower, Inc. System control via characteristic gait signature
CN101609507A (zh) * 2009-07-28 2009-12-23 中国科学技术大学 步态识别方法
CN103473539A (zh) * 2013-09-23 2013-12-25 智慧城市系统服务(中国)有限公司 步态识别方法和装置
US20150112603A1 (en) * 2013-10-22 2015-04-23 Bae Systems Information And Electronic Systems Integration Inc. Mobile device based gait biometrics
CN103886341A (zh) * 2014-03-19 2014-06-25 国家电网公司 基于特征组合的步态行为识别方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109634981A (zh) * 2018-12-11 2019-04-16 银河水滴科技(北京)有限公司 一种数据库扩充方法及装置
CN110147712A (zh) * 2019-03-27 2019-08-20 苏州书客贝塔软件科技有限公司 一种行人分析智能云平台
CN111274432A (zh) * 2020-02-06 2020-06-12 浙江大华技术股份有限公司 一种布控处理方法及装置
CN111274432B (zh) * 2020-02-06 2023-05-09 浙江大华技术股份有限公司 一种布控处理方法及装置
CN111476198A (zh) * 2020-04-24 2020-07-31 广西安良科技有限公司 基于人工智能的步态识别方法、装置、系统、存储介质和服务器
CN111476198B (zh) * 2020-04-24 2023-09-26 广西安良科技有限公司 基于人工智能的步态识别方法、装置、系统、存储介质和服务器
CN111950418A (zh) * 2020-08-03 2020-11-17 启航汽车有限公司 基于腿部特征的步态识别方法、装置及系统、可读存储介质
CN112766057A (zh) * 2020-12-30 2021-05-07 浙江大学 一种面向复杂场景细粒度属性驱动的步态数据集合成方法
CN112766057B (zh) * 2020-12-30 2022-05-13 浙江大学 一种面向复杂场景细粒度属性驱动的步态数据集合成方法
CN113591552A (zh) * 2021-06-18 2021-11-02 新绎健康科技有限公司 一种基于步态加速度数据进行身份识别的方法及系统

Also Published As

Publication number Publication date
CN107506684A (zh) 2017-12-22
CN107506684B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2017215618A1 (zh) 步态识别方法及装置
CN109034013B (zh) 一种人脸图像识别方法、装置及存储介质
JP6448223B2 (ja) 画像認識システム、画像認識装置、画像認識方法、およびコンピュータプログラム
Ni et al. Multilevel depth and image fusion for human activity detection
US11205276B2 (en) Object tracking method, object tracking device, electronic device and storage medium
CN105938622A (zh) 检测运动图像中的物体的方法和装置
CN109325964A (zh) 一种人脸追踪方法、装置及终端
JP6868061B2 (ja) 人物追跡方法、装置、機器及び記憶媒体
CN109297489B (zh) 一种基于用户特征的室内导航方法、电子设备及存储介质
CN105138980A (zh) 基于身份证件信息和人脸识别的身份验证方法及系统
JP2009157767A (ja) 顔画像認識装置、顔画像認識方法、顔画像認識プログラムおよびそのプログラムを記録した記録媒体
US11132531B2 (en) Method for determining pose and for identifying a three-dimensional view of a face
EP4256467A1 (en) Identity recognition method and apparatus, computer apparatus, readable non-transitory storage medium
CN110345924A (zh) 一种距离获取的方法和装置
CN108875506A (zh) 人脸形状点跟踪方法、装置和系统及存储介质
WO2020007156A1 (zh) 人体识别方法、装置及存储介质
JP6546057B2 (ja) 複数のカメラ間での人物の追跡装置、追跡方法及びプログラム
CN114359646A (zh) 一种视频分析方法、装置、系统、电子设备和介质
CN113936321A (zh) 基于面部生物特征识别的门禁认证方法、装置及设备
CN114694204A (zh) 社交距离检测方法、装置、电子设备及存储介质
Tagore et al. SMSNet: A Novel Multi-scale Siamese Model for Person Re-Identification.
CN112329527B (zh) 一种姿态估计方法、装置、电子设备及存储介质
CN110188616B (zh) 基于2d和3d影像的空间建模方法及装置
Usabiaga et al. Recognizing simple human actions using 3D head movement
CN109993024A (zh) 身份验证装置、身份验证方法、及电脑可读储存介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812729

Country of ref document: EP

Kind code of ref document: A1