WO2017215493A1 - 制冷机组 - Google Patents

制冷机组 Download PDF

Info

Publication number
WO2017215493A1
WO2017215493A1 PCT/CN2017/087348 CN2017087348W WO2017215493A1 WO 2017215493 A1 WO2017215493 A1 WO 2017215493A1 CN 2017087348 W CN2017087348 W CN 2017087348W WO 2017215493 A1 WO2017215493 A1 WO 2017215493A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pump body
pipe
flow path
condenser
Prior art date
Application number
PCT/CN2017/087348
Other languages
English (en)
French (fr)
Inventor
吴昕
李镇杉
王永
辜永刚
Original Assignee
重庆美的通用制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆美的通用制冷设备有限公司, 美的集团股份有限公司 filed Critical 重庆美的通用制冷设备有限公司
Publication of WO2017215493A1 publication Critical patent/WO2017215493A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention relates to the field of refrigeration technology, and in particular to a refrigeration unit.
  • centrifugal refrigeration unit is divided into two types of oil- and oil-free centrifugal refrigeration units because the bearings of the compressor use lubricating oil to lubricate and cool the bearings.
  • the compressor in the oil centrifugal refrigeration unit uses a dynamic pressure oil film sliding bearing or an oil lubrication rolling bearing to support the shaft, and the transmission gear is designed in the compressor to drive the impeller to rotate by the gear transmission, and the noise is large.
  • the transmission gear is designed in the compressor to drive the impeller to rotate by the gear transmission, and the noise is large.
  • the viscosity of the lubricating oil is relatively high, the mechanical loss is large when the rotor shaft rotates at high speed in the bearing, and on the other hand, there is lubricating oil in the refrigeration cycle system of the refrigeration unit, which affects the change.
  • the heat exchange efficiency of the heat exchanger requires the separate design of the lubricating oil supply system, the cooling system and the recovery system in the refrigeration unit, and the piping system is complicated.
  • the compressor in the oil-free centrifugal refrigeration unit of the related art adopts a magnetic suspension bearing, the motor is directly connected with the impeller and has no gear transmission, and the rotor shaft is suspended in the bearing by electromagnetic force, and the bearing and the rotor shaft are not directly rubbed.
  • a compressor has a high cost, and the control system of the refrigeration unit is complicated; in the case of an emergency power failure of the refrigeration unit, in order to prevent damage caused by direct friction between the rotor shaft and the magnetic suspension bearing due to the disappearance of the magnetic force, an additional backup bearing is required. .
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the present invention proposes a refrigeration unit that not only functions to lubricate the bearing to improve the service life of the bearing, but also has a simple structure, simplifies the control system of the refrigeration unit, and reduces the cost.
  • a refrigeration unit includes oil-free centrifugal compression that constitutes a refrigerant circulation flow path a machine, an evaporator and a condenser, the oil-free centrifugal compressor comprising an electric motor, a plurality of sets of bearings and an impeller, the plurality of sets of bearings respectively being mounted on a rotor shaft of the electric machine, the impeller being disposed on the rotor shaft Rotating by the rotor shaft; the refrigeration unit further comprising: a refrigerant pump body for conveying refrigerant, the outlet of the refrigerant pump body corresponding to each of the bearings to provide lubrication to each of the bearings a liquid refrigerant, an inlet of the refrigerant pump body is connected to at least one of the evaporator and the condenser; and a control device, the control device and the refrigerant pump body and the oil-free centrifugal compressor, respectively Connected.
  • the refrigerant pump body is provided to connect the inlet of the refrigerant pump body with at least one of the evaporator and the condenser, and at the same time, the outlet of the refrigerant pump is corresponding to each bearing to each bearing
  • a refrigerant as a lubricating fluid which not only functions as a lubrication for the bearing to improve the service life of the bearing, but also has a simple structure, simplifies the control system of the refrigeration unit, thereby reducing the failure rate of the control system and oil-free centrifugal compression.
  • the cost of the machine avoids the redundant backup bearing configuration in the related art, and avoids the bearing mechanical loss caused by the lubricating oil lubricated bearing in the related art, the lubricating oil in the refrigeration cycle system, and the heat exchange efficiency of the heat exchanger Low, the need to design additional lubrication oil supply system, cooling system and recovery system, etc., to a large extent simplify the piping system of the refrigeration unit.
  • the evaporator is connected to an inlet of the refrigerant pump body through a first refrigerant flow path
  • the condenser is connected to an inlet of the refrigerant pump body through a second refrigerant flow path
  • a control valve having an opening and closing function is connected in series to the first refrigerant flow path and the second refrigerant flow path, and the two control valves are respectively connected to the control device.
  • the refrigeration unit includes: a common pipe, a first end of the common pipe is connected to an inlet of the refrigerant pump body; and a first pipe, two ends of the first pipe are respectively associated with the evaporator and the common a second end of the pipe is connected, the first pipe and the common pipe constitute the first refrigerant flow path; and the second pipe has two ends of the second pipe respectively corresponding to the condenser and the shared pipe The second end is connected, the second duct and the common duct form the second refrigerant flow path, and the first pipe and the second pipe are respectively connected with the control valve in series, the first pipe The series has a single direction toward the shared pipe Guided check valve.
  • the condenser and/or the bottom of the evaporator is provided with a liquid collector, the inlet of which is connected to the liquid collector.
  • the condenser and the bottom of the evaporator are respectively provided with the liquid collector, and the control valves are respectively connected in series between the two liquid collectors and the refrigerant pump body, and each of the The liquid level sensor is provided with a liquid level sensor connected to the control device, and the control device controls opening and closing of the two control valves according to the detection result of the liquid level sensor.
  • the refrigerant pump body is coupled to an uninterruptible power supply.
  • the refrigeration unit further includes a first refrigerant filter upstream of the bearing.
  • first refrigerant filters are two and are respectively connected in series at the outlet and the inlet of the refrigerant pump body.
  • the refrigeration unit further includes a cooling flow path for cooling the electric motor, an inlet end of the cooling flow path is in communication with the condenser, an outlet end of the cooling flow path and the evaporation Connected.
  • a second refrigerant filter is connected in series between the inlet end of the cooling flow path and the condenser.
  • FIG. 1 is a schematic view of a refrigeration unit in accordance with an embodiment of the present invention.
  • Oil-free centrifugal compressor 1 motor 11; rotor shaft 111; bearing 12; impeller 13;
  • Condenser 3 second refrigerant flow path 31; second pipe 311;
  • Refrigerant pump body 4 outlet 41; inlet 42; common conduit 421;
  • Control valve 5 liquid collector 6; first refrigerant filter 7;
  • Cooling flow path 8 inlet end 81; outlet end 82;
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature Square, or simply indicates that the first feature level is less than the second feature.
  • a refrigeration unit 100 in accordance with an embodiment of the present invention will be described with reference to FIG. 1, which can be used to regulate the indoor ambient temperature to cool the indoor environment.
  • a refrigeration unit 100 may include at least one oil-free centrifugal compressor 1, an evaporator 2, a condenser 3, and a refrigerant pump body for conveying a refrigerant, which constitute a refrigerant circulation flow path. 4 and control device (not shown).
  • the evaporator 2 may be a falling film evaporator 2 or a flooded liquid evaporator 2.
  • the oil-free centrifugal compressor 1 has an exhaust port (not shown) and a return port (not shown), the exhaust port may be connected to the condenser 3, and the return port may be connected to the evaporator 2,
  • a throttle element (not shown) is connected in series between the evaporator 2 and the condenser 3 to throttle reduce the pressure of the refrigerant flowing therethrough.
  • the compressed refrigerant of the oil-free centrifugal compressor 1 can be discharged from the exhaust port and flow to the condenser 3 to exchange heat with the outdoor environment, and then the refrigerant flows to the throttle element, and the throttle element is throttled and depressurized.
  • the flow to the evaporator 2 is to cool the indoor environment, and finally the refrigerant is discharged from the evaporator 2 and returned to the compressor through the return port.
  • the refrigeration principle of the refrigeration unit 100 is well known to those skilled in the art and will not be described in detail herein.
  • the oil-free centrifugal compressor 1 includes a motor 11, a plurality of sets of bearings 12 and an impeller 13, and a plurality of sets of bearings 12 are respectively jacketed on the rotor shaft 111 of the motor 11 to function as a support for the rotor shaft 111, wherein a group of bearings
  • the axial thrust can be provided to function as a limit rotor shaft 111 which is provided on the rotor shaft 111 to be driven to rotate by the rotor shaft 111.
  • the oil-free centrifugal compressor 1 includes a motor 11, two sets of bearings 12, and two impellers 13, which are respectively fixed at both ends of the rotor shaft 111 and driven to rotate by the rotor shaft 111.
  • Two sets of bearings 12 are respectively jacketed on the rotor shaft 111 to respectively support both ends of the rotor shaft 111.
  • One of the bearings 12 can provide axial thrust to function as a limit rotor shaft 111, which can be driven when the rotor shaft 111 rotates.
  • the two impellers 13 are rotated at a high speed to compress the refrigerant entering the cylinder of the oil-free centrifugal compressor 1 to form a high-temperature and high-pressure gaseous refrigerant.
  • the rotor shaft 111 directly drives the impeller 13 to rotate, which not only has a simple structure, but also helps to reduce the noise of the oil-free centrifugal compressor 1 while avoiding the rotor in the related art. Problems such as gear wear caused by gear transmission between the shaft 111 and the impeller 13.
  • the bearing 12 is an oil-free rolling bearing such as an oil-free ceramic bearing, whereby the bearing 12 has high rigidity and a strong bearing capacity, and reliable support of the bearing 12 to the rotor shaft 111 can be achieved.
  • the control device is respectively connected to the refrigerant pump body 4 and the oil-free centrifugal compressor 1, the inlet 42 of the refrigerant pump body 4 is connected to at least one of the evaporator 2 and the condenser 3, the outlet 41 of the refrigerant pump body 4 and each bearing 12 corresponds to supplying each of the bearings 12 with a refrigerant as a lubricating fluid, whereby the refrigerant pump body 4 can pump the refrigerant in the evaporator 2 and/or the condenser 3 to each bearing under the control of the control device.
  • the refrigerant pump body 4 can also increase the pressure of the refrigerant while pumping the refrigerant to each of the bearings 12 to prevent adverse effects on the lubrication of the bearing 12 due to the vaporization of the refrigerant.
  • the refrigerant as the lubricating fluid can be supplied from the evaporator 2 to each of the bearings 12; when the inlet 42 of the refrigerant pump body 4 is separately connected to the condenser 3 A refrigerant as a lubricating fluid may be supplied to each of the bearings 12 by the condenser 3; when the inlet 42 of the refrigerant pump body 4 is simultaneously connected to the condenser 3 and the evaporator 2, each of the condensers 3 and/or the evaporators 2 may be used.
  • the bearing 12 provides a refrigerant as a lubricating fluid.
  • each bearing 12 is provided with a lubrication flow path (not shown), and the outlet 41 of the refrigerant pump body 4 is connected to the flow inlet of the lubrication flow path, and the flow outlet and evaporation of the lubrication flow path of each bearing 12
  • the heaters 2 are directly connected, thereby facilitating the refrigerant pumped by the refrigerant pump body 4 to enter the lubrication flow path to facilitate lubrication of each of the bearings 12, and then the refrigerant in the lubrication flow path can be separately evaporated through the corresponding outlets.
  • Device 2 is directly connected, thereby facilitating the refrigerant pumped by the refrigerant pump body 4 to enter the lubrication flow path to facilitate lubrication of each of the bearings 12, and then the refrigerant in the lubrication flow path can be separately evaporated through the corresponding outlets.
  • Device 2
  • the present invention is not limited thereto, and in other embodiments, the refrigerant flowing out from the outlet 41 of the refrigerant pump body 4 may be directly sprayed to each of the bearings 12 to lubricate the bearing 12, and then the refrigerant may be supplied from each axis.
  • the carrier 12 flows into a refrigerant storage portion such as a motor casing, and a refrigerant storage portion such as a motor casing can communicate with the evaporator 2 to facilitate the flow of the refrigerant to the evaporator 2.
  • the refrigerant pump body 4 is provided to connect the inlet 42 of the refrigerant pump body 4 with at least one of the evaporator 2 and the condenser 3 while allowing the refrigerant to be pumped into the outlet 41 and each
  • the bearing 12 corresponds to provide a refrigerant as a lubricating fluid to each of the bearings 12, which not only functions to lubricate the bearing 12 to improve the service life of the bearing 12, but also has a simple structure, which simplifies the control system of the refrigeration unit 100, thereby reducing
  • the failure rate of the control system and the cost of the oil-free centrifugal compressor 1 are avoided, and the redundant backup bearing arrangement in the related art is avoided, and the mechanical loss of the bearing caused by the lubricating oil lubricated bearing in the related art is avoided, and the refrigeration is avoided.
  • the lubricating oil in the circulation system and the heat exchange efficiency of the heat exchanger are low, and the oil supply system, the cooling system and the recovery system are
  • the oil-free centrifugal compressor 1 includes a plurality of, and the plurality of oil-free centrifugal compressors 1 are disposed in parallel with each other. Further, the outlet 41 of the refrigerant pump body 4 can simultaneously correspond to each bearing 12 of each oil-free centrifugal compressor 1 in order to supply each bearing 12 with a refrigerant as a lubricating fluid.
  • the refrigerant pump body 4 includes a plurality of refrigerant pump bodies 4 corresponding to the plurality of oil-free centrifugal compressors 1, and the inlet of each refrigerant pump body 4 is provided.
  • each refrigerant pump body 4 is connected to at least one of the evaporator 2 and the condenser 3, and the outlet 41 of each refrigerant pump body 4 corresponds to each bearing 12 of the corresponding oil-free centrifugal compressor 1 to supply the bearing 12 with a refrigerant as a lubricating fluid.
  • the evaporator 2 is connected to the inlet 42 of the refrigerant pump body 4 through the first refrigerant flow path 21, and the condenser 3 passes through the second refrigerant flow path 31 and the refrigerant pump body 4.
  • the inlets 42 are connected, and the first refrigerant flow path 21 and the second refrigerant flow path 31 are respectively connected in series with a control valve 5 having an opening and closing function, and the two control valves 5 are respectively connected to the control device, whereby the control device can respectively control two Opening and closing of the control valve 5 to respectively control the opening and closing of the first refrigerant flow path 21 and the second refrigerant flow path 31 such that the refrigerant of the evaporator 2 and/or the condenser 3 flows to each under the action of the refrigerant pump body 4.
  • Bearing 12
  • the refrigeration unit 100 includes: a common pipe 421 and a first pipe 211 . And a second conduit 311.
  • the first end of the common pipe 421 is connected to the inlet 42 of the refrigerant pump body 4.
  • the two ends of the first pipe 211 are respectively connected to the second end of the evaporator 2 and the common pipe 421, and the first pipe 211 and the common pipe 421 constitute the first.
  • the refrigerant flow path 21, the two ends of the second pipe 311 are respectively connected to the condenser 3 and the second end of the common pipe 421, and the second pipe 311 and the common pipe 421 constitute the second refrigerant flow path 31, thereby not only the structure is simple, but also Conducive to simplify the piping system.
  • a control valve 5 is connected in series to the first pipe 211 and the second pipe 311, and a check valve 2111 that is unidirectionally directed toward the common pipe 421 is connected in series to the first pipe 211.
  • the control device can control the control valve 5 on the first conduit 211 to open, and the control valve 5 on the second conduit 311 is closed, at which time the refrigerant pump body 4 can pump the refrigerant in the evaporator 2 to each of the bearings 12 so that For lubricating the bearing 12; the control device can control the control valve 5 on the first pipe 211 to be closed, the control valve 5 on the second pipe 311 is opened, and the refrigerant pump body 4 can pump the refrigerant in the condenser 3 to each The bearing 12 lubricates the bearing 12.
  • control device may also control the simultaneous opening of the control valve 5 on the first conduit 211 and the second conduit 311 such that the condenser 3 and the evaporator 2 simultaneously supply the bearing 12 with refrigerant as a lubricating fluid.
  • the check valve 2111 on the first pipe 211 is disposed such that the control valve 5 on the first pipe 211 is closed and the control valve on the second pipe 311 is closed. 5, when the control valve 5 on the first pipe 211 is opened, the control valve 5 on the second pipe 311 is closed, and the control valve 5 on the first pipe 211 and the second pipe 311 are simultaneously opened, the refrigerant can only be ensured.
  • the evaporator 2 flows from the evaporator 2 to the refrigerant pump body 4 to prevent the refrigerant from flowing from the condenser 3 to the evaporator 2.
  • the present invention is not limited thereto.
  • the first refrigerant flow path 21 and the second refrigerant flow path 31 are mutually independent refrigerant flow paths, that is, there is no common line between the two, which is simple and reliable. Thereby, when the control device controls the control valve 5 on the first refrigerant flow path 21 to be opened, and the control valve 5 on the second refrigerant flow path 31 is closed, the refrigerant pump body 4 can pump the refrigerant in the evaporator 2 to the bearing.
  • the refrigerant pump body 4 can discharge the condenser The refrigerant in 3 is pumped to the bearing 12 to facilitate lubrication of each bearing 12 by the refrigerant. Understandably, when the control device is simultaneously controlled When the control valve 5 on the first refrigerant flow path 21 and the second refrigerant flow path 31 is opened, the refrigerant pump body 4 can pump the refrigerant in the evaporator 2 and the condenser 3 to the bearing 12 to facilitate the refrigerant to each bearing. 12 for lubrication
  • control valve 5 can be a solenoid valve, which is not only simple in construction but also responsive.
  • the bottom of the condenser 3 and/or the evaporator 2 is provided with a liquid collector 6, and the inlet 42 of the refrigerant pump body 4 is connected to the liquid collector 6.
  • the liquid collector 6 at the bottom of the condenser 3 and/or the evaporator 2, it is ensured that the refrigerant pumped to the bearing 12 by the refrigerant pump body 4 is a pure liquid refrigerant or a liquid refrigerant containing only a small amount of gaseous refrigerant, thereby It is beneficial to ensure the lubrication effect on the bearing 12.
  • the bottoms of the condenser 3 and the evaporator 2 are respectively provided with a liquid collector 6, and the two liquid collectors 6 are respectively connected with a refrigerant control valve 4 with a control valve 5, and each liquid collecting liquid
  • the liquid level sensor connected to the control device is disposed on the device 6, and the control device controls the opening and closing of the two control valves 5 according to the detection result of the liquid level sensor.
  • the control device can control the control valve 5 corresponding to the condenser 3 to open.
  • the control device can control the control valve 5 corresponding to the evaporator 2 to be opened so that the refrigerant pump body 4 pumps the liquid refrigerant in the liquid collector 6 corresponding to the evaporator 2.
  • the control device can control one of the two control valves 5 Open and the other close.
  • the control device can simultaneously control the two controls.
  • the valve 5 is opened to facilitate the pump body 4 to simultaneously pump the liquid refrigerant in the accumulator 6 corresponding to the evaporator 2 and the condenser 3 to each of the bearings 12.
  • the refrigerant pump body 4 is connected to the uninterruptible power supply 10. Therefore, when the refrigeration unit 100 is suddenly powered off, the refrigerant pump body 4 can be temporarily supplied with power through the uninterruptible power supply 10, when there is no oil.
  • the refrigerant pump body 4 can pump the refrigerant to the bearing 12 to ensure that the lubricating fluid can continue to lubricate and cool the bearing 12, thereby ensuring the safe use of the bearing 12. .
  • the refrigeration unit 100 further includes a first refrigerant filter 7 located upstream of the bearing 12.
  • a first refrigerant filter 7 located upstream of the bearing 12.
  • the first refrigerant filters 7 are two and are connected in series at the outlet 41 and the inlet 42 of the refrigerant pump body 4, respectively. Further, the first refrigerant filter 7 connected in series at the outlet 41 of the refrigerant pump body 4 is a high-precision refrigerant filter, whereby the refrigerant may be initially filtered through the first refrigerant filter 7 before flowing to the refrigerant pump body 4.
  • the refrigerant pump body 4 is introduced, and after the refrigerant flows out of the refrigerant pump body 4, it can be further finely filtered by the high-precision refrigerant filter and flow to the bearing 12, thereby ensuring that the refrigerant flowing to the bearing 12 is a pure and impurity-free refrigerant.
  • the refrigeration unit 100 further includes a cooling flow path 8 for cooling the electric machine 11, the inlet end 81 of the cooling flow path 8 being in communication with the condenser 3, and the outlet end 82 of the cooling flow path 8
  • the evaporator 2 is connected.
  • the pressure difference between the condenser 3 and the evaporator 2 can be utilized to cause the refrigerant in the condenser 3 to flow to the cooling flow path 8 to cool the motor 11, and the refrigerant can flow to the evaporator 2 after cooling the motor 11.
  • the cooling flow path 8 includes a motor casing, and the refrigerant in the condenser 3 can flow into the motor casing to cool the rotor of the motor 11 and the rotor shaft 111, and the cooled refrigerant flows from the motor casing to the evaporator 2. Therefore, not only the structure is simple, but also the heat dissipation effect of the motor 11 is improved, and the service life of the motor 11 is prolonged.
  • a second refrigerant filter 9 is connected in series between the inlet end 81 of the cooling flow path 8 and the condenser 3, and the second refrigerant filter 9 filters the refrigerant flowing into the motor 11, thereby improving The cleanliness of the refrigerant flowing into the motor 11 prevents damage to the motor 11 during cooling and lubrication of the motor 11 due to impurities contained in the refrigerant.
  • the refrigeration unit 100 of the present embodiment includes an oil-free centrifugal compressor 1, an evaporator 2, a condenser 3, a refrigerant pump body 4 for conveying a refrigerant, a control device, and cooling, which constitute a refrigerant circulation flow path.
  • the bottoms of the condenser 3 and the evaporator 2 are respectively provided with liquid collectors 6, and each of the liquid collectors 6 is provided with a liquid level sensor connected to the control device.
  • the oil-free centrifugal compressor 1 includes a motor 11, two sets of bearings 12, and two impellers 13, and the two sets of bearings 12 are respectively jacketed on the rotor shaft 111 of the motor 11 to function as a support for the rotor shaft 111, one of which The set of bearings 12 can provide axial thrust to function as a limit rotor shaft 111 that is disposed on the rotor shaft 111 for rotation by the rotor shaft 111.
  • the control device is connected to the refrigerant pump body 4 and the oil-free centrifugal compressor 1, respectively, and the inlet 42 of the refrigerant pump body 4 passes through the first refrigerant flow path 21 and the second refrigerant flow path 31, respectively, and the set of the evaporator 2 and the condenser 3.
  • the liquid containers 6 are connected, and the first refrigerant flow path 21 and the second refrigerant flow path 31 are respectively connected in series with a control valve 5 having an opening and closing function, and the two control valves 5 are respectively connected to the control device, and the control device is detected according to the liquid level sensor. As a result, the opening and closing of the two control valves 5 is controlled.
  • the outlet 41 of the refrigerant pump body 4 corresponds to each of the bearings 12 to supply a refrigerant as a lubricating fluid to each of the bearings 12.
  • the refrigeration unit 100 includes a common pipe 421, a first pipe 211, and a second pipe 311.
  • the first end of the common pipe 421 is connected to the inlet 42 of the refrigerant pump body 4.
  • the two ends of the first pipe 211 are respectively connected to the second end of the evaporator 2 and the common pipe 421, and the first pipe 211 and the common pipe 421 constitute the first.
  • the refrigerant flow path 21, the two ends of the second pipe 311 are respectively connected to the second end of the condenser 3 and the common pipe 421, and the second pipe 311 and the common pipe 421 constitute a second refrigerant flow path 31, and the two control valves 5 respectively
  • the first pipe 211 and the second pipe 311 are connected in series, and the first pipe 211 is connected in series with a one-way valve 2111 that is unidirectionally directed toward the common pipe 421.
  • the cooling flow path 8 is used to cool the motor 11, the inlet end 81 of the cooling flow path 8 and the condenser 3
  • the liquid collector 6 is in communication, and the outlet end 82 of the cooling flow path 8 is in communication with the evaporator 2.
  • the control device can control the control valve 5 on the second pipe 311 to open.
  • the control valve 5 on the first pipe 211 is controlled to be closed.
  • the control device can control the first pipe.
  • the control valve 5 on the 211 is opened, and the control valve 5 on the second pipe 311 is closed.
  • the control device can control the control valve 5 on one of the first pipe 211 and the second pipe 311 to open, and control the control valve 5 on the other of the first pipe 211 and the second pipe 311 to be closed to facilitate the refrigerant pump body 4
  • the refrigerant pump is supplied to each of the bearings 12, and the refrigerant flowing out from the outlet 41 of the refrigerant pump body 4 can be directly sprayed to each of the bearings 12 to lubricate the bearings 12, and then the refrigerant can flow from each of the bearings 12 to the motor casing.
  • the pressure difference between the condenser 3 and the evaporator 2 can be used to cause the refrigerant in the condenser 3 to flow to the cooling flow path 8 to flow into the motor casing to cool the rotor and the rotor shaft 111 of the motor 11, after cooling.
  • the refrigerant can flow from the motor casing to the evaporator 2 together with the refrigerant of the lubricating bearing 12.
  • a second refrigerant filter 9 is connected in series between the inlet end 81 of the cooling flow path 8 and the condenser 3, and the second refrigerant filter 9 can filter the refrigerant flowing into the motor 11, thereby improving The cleanliness of the refrigerant flowing into the motor 11 prevents damage to the motor 11 during cooling and lubrication of the motor 11 due to impurities contained in the refrigerant.
  • two first refrigerant filters 7 are connected in series at the outlet 41 and the inlet 42 of the refrigerant pump body 4 to filter the refrigerant flowing to the bearing 12.
  • the refrigerant pump body 4 is connected to the uninterruptible power supply 10. Therefore, when the refrigeration unit 100 is suddenly powered off, the refrigerant pump body 4 can be temporarily supplied with power through the uninterruptible power supply 10. When the rotor shaft 111 of the oil-free centrifugal compressor 1 is rotated by inertia, the refrigerant pump body can be made 4 The refrigerant is pumped to the bearing 12 to ensure that the lubricating fluid is continuously lubricated and cooled to the bearing 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种制冷机组(100),包括无油离心式压缩机(1)、蒸发器(2)和冷凝器(3),无油离心式压缩机(1)包括电机(11)、轴承(12)和叶轮(13),轴承(12)外套在电机(11)的转子轴(111)上,叶轮(13)设在转子轴(111)上以由转子轴(111)驱动转动;制冷机组(100)还包括:冷媒泵体(4),冷媒泵体(4)的出口(41)与每个轴承(12)对应,冷媒泵体(4)的入口(42)与蒸发器(2)和冷凝器(3)中的至少一个相连;控制装置,控制装置分别与冷媒泵体(4)和无油离心式压缩机(1)相连。该制冷机组提高了轴承的使用寿命,而且结构简单,简化了控制系统,从而降低了控制系统的故障率和无油离心式压缩机的成本。

Description

制冷机组 技术领域
本发明涉及制冷技术领域,尤其是涉及一种制冷机组。
背景技术
一般地,离心式制冷机组因压缩机的轴承是否使用润滑油对轴承进行润滑冷却的不同,分为有油和无油离心式制冷机组两种。
相关技术中的有油离心式制冷机组中的压缩机采用动压油膜滑动轴承或油润滑滚动轴承对轴进行支撑,同时压缩机中设计有传动齿轮以通过齿轮传动的方式带动叶轮转动,噪音大。在利用润滑油对轴承润滑的过程中,一方面因润滑油粘度相对较高,转子轴在轴承中高速旋转时机械损耗较大,另一方面制冷机组的制冷循环系统中存在润滑油,影响换热器的换热效率,这需要在制冷机组中单独设计润滑油供油系统、冷却系统和回收系统,管路系统复杂。
相关技术中的无油离心式制冷机组中的压缩机采用磁悬浮轴承,电机与叶轮直连且无齿轮传动,利用电磁力将转子轴悬浮在轴承中,轴承与转子轴无直接摩擦。但是这种压缩机成本较高,且制冷机组的控制系统复杂;在制冷机组紧急断电的情况下为了防止因磁力消失而导致的转子轴与磁悬浮轴承直接摩擦造成的损坏,需要另外配置备用轴承。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明提出一种制冷机组,不但可以起到对轴承润滑的作用以提高轴承的使用寿命,而且结构简单,简化了制冷机组的控制系统,降低了成本。
根据本发明实施例的制冷机组,包括组成冷媒循环流路的无油离心式压缩 机、蒸发器和冷凝器,所述无油离心式压缩机包括电机、多组轴承和叶轮,所述多组轴承分别外套在所述电机的转子轴上,所述叶轮设在所述转子轴上以由所述转子轴驱动转动;所述制冷机组还包括:用于输送冷媒的冷媒泵体,所述冷媒泵体的出口与每个所述轴承对应以向每个所述轴承提供作为润滑液的冷媒,所述冷媒泵体的入口与所述蒸发器和所述冷凝器中的至少一个相连;控制装置,所述控制装置分别与所述冷媒泵体和所述无油离心式压缩机相连。
根据本发明实施例的制冷机组,通过设置冷媒泵体以使冷媒泵体的入口与蒸发器和冷凝器中的至少一个相连,同时使得冷媒泵入的出口与每个轴承对应以向每个轴承提供作为润滑液的冷媒,这不但可以起到对轴承润滑的作用以提高轴承的使用寿命,而且结构简单,简化了制冷机组的控制系统,从而降低了控制系统的故障率和无油离心式压缩机的成本,且避免了相关技术中多余的备用轴承的配置,同时避免了相关技术中采用润滑油润滑轴承带来的轴承机械损耗大、制冷循环系统中存在润滑油、换热器换热效率低、需要另外设计润滑油供油系统、冷却系统和回收系统等问题,在较大程度上简化了制冷机组的管路系统。
根据本发明的一些实施例,所述蒸发器通过第一冷媒流路与所述冷媒泵体的入口相连,所述冷凝器通过第二冷媒流路与所述冷媒泵体的入口相连,所述第一冷媒流路和所述第二冷媒流路上分别串联有具有开闭功能的控制阀,两个所述控制阀分别与所述控制装置相连。
具体地,制冷机组包括:共用管道,所述共用管道的第一端与所述冷媒泵体的入口相连;第一管道,所述第一管道的两端分别与所述蒸发器和所述共用管道的第二端相连,所述第一管道和所述共用管道组成所述第一冷媒流路;第二管道,所述第二管道的两端分别与所述冷凝器和所述共用管道的第二端相连,所述第二管道和所述共用管道组成所述第二冷媒流路,所述第一管道和所述第二管道上分别串联有所述控制阀,所述第一管道上串联有朝向所述共用管道单 向导通的单向阀。
根据本发明的一些实施例,所述冷凝器和/或所述蒸发器的底部设有集液器,所述冷媒泵体的入口与所述集液器相连。
具体地,所述冷凝器和所述蒸发器的底部分别设有所述集液器,两个所述集液器分别与所述冷媒泵体之间串联有所述控制阀,每个所述集液器上设有与所述控制装置相连的液位传感器,所述控制装置根据所述液位传感器的检测结果控制两个所述控制阀的开闭。
根据本发明的一些实施例,所述冷媒泵体与不间断电源相连。
根据本发明的一些实施例,制冷机组还包括位于所述轴承上游的第一冷媒过滤器。
进一步地,所述第一冷媒过滤器为两个且分别串联在所述冷媒泵体的出口和入口处。
根据本发明的一些实施例,制冷机组还包括用于对电机进行冷却的冷却流路,所述冷却流路的进口端与所述冷凝器连通,所述冷却流路的出口端与所述蒸发器连通。
具体地,所述冷却流路的进口端和所述冷凝器之间串联有第二冷媒过滤器。
附图说明
图1是根据本发明实施例的制冷机组的示意图。
附图标记:
制冷机组100;
无油离心式压缩机1;电机11;转子轴111;轴承12;叶轮13;
蒸发器2;第一冷媒流路21;第一管道211;单向阀2111;
冷凝器3;第二冷媒流路31;第二管道311;
冷媒泵体4;出口41;入口42;共用管道421;
控制阀5;集液器6;第一冷媒过滤器7;
冷却流路8;进口端81;出口端82;
第二冷媒过滤器9;不间断电源10。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“底”、“外”、“轴向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下 方,或仅仅表示第一特征水平高度小于第二特征。
下面参考图1描述根据本发明实施例的制冷机组100,制冷机组100可用于调节室内环境温度,给室内环境制冷。
如图1所示,根据本发明实施例的制冷机组100,可以包括组成冷媒循环流路的至少一个无油离心式压缩机1、蒸发器2、冷凝器3、用于输送冷媒的冷媒泵体4和控制装置(图未示出)。可选地,蒸发器2可以为降膜蒸发器2或满液蒸发器2。
具体地,无油离心式压缩机1具有排气口(图未示出)和回气口(图未示出),排气口可与冷凝器3相连,回气口可与蒸发器2相连,在蒸发器2和冷凝器3之间串连有节流元件(图未示出)以对流经其的冷媒进行节流降压。由此,无油离心式压缩机1压缩后的冷媒可从排气口排出,并流向冷凝器3以与室外环境进行换热,随后冷媒流向节流元件,经节流元件节流降压后流向蒸发器2以给室内环境制冷,最后冷媒从蒸发器2排出,并经过回气口返回到压缩机。其中,需要说明的是,制冷机组100的制冷原理已被本领域技术人员所熟知,此处不再详细描述。
具体地,无油离心式压缩机1包括电机11、多组轴承12和叶轮13,多组轴承12分别外套在电机11的转子轴111上以起到支撑转子轴111的作用,其中一组轴承12可提供轴向推力以起到限位转子轴111的作用,叶轮13设在转子轴111上以由转子轴111驱动转动。例如,如图1所示,无油离心式压缩机1包括电机11、两组轴承12和两个叶轮13,两个叶轮13分别固定在转子轴111的两端且由转子轴111驱动转动,两组轴承12分别外套在转子轴111上以分别支撑转子轴111的两端,其中一个轴承12可提供轴向推力以起到限位转子轴111的作用,当转子轴111转动时,可驱动两个叶轮13高速旋转,从而对进入到无油离心式压缩机1的气缸内的冷媒进行压缩,以便于形成高温高压的气态冷媒。
由此,通过将叶轮13设在转子轴111上以实现转子轴111直接驱动叶轮13转动,不但结构简单,而且有利于降低无油离心式压缩机1的噪音,同时避免了相关技术中因转子轴111和叶轮13之间采用齿轮传动而产生的的齿轮磨损等问题。
具体地,轴承12为无油滚动轴承例如无油陶瓷轴承,由此,轴承12的刚度高,承载能力强,可实现轴承12对转子轴111的可靠支撑。
控制装置分别与冷媒泵体4和无油离心式压缩机1相连,冷媒泵体4的入口42与蒸发器2和冷凝器3中的至少一个相连,冷媒泵体4的出口41与每个轴承12对应以向每个轴承12提供作为润滑液的冷媒,由此,在控制装置的控制下,可使得冷媒泵体4将蒸发器2和/或冷凝器3中的冷媒泵送至每个轴承12以使得在轴承12的工作过程中,冷媒可以作为润滑液以起到润滑轴承12的作用,同时冷媒还可以起到对轴承12冷却的作用。可以理解的是,冷媒泵体4在将冷媒泵送至每个轴承12的同时,还可以提高冷媒的压力以防止因冷媒气化对轴承12润滑造成的不利影响。
具体地,当冷媒泵体4的入口42与蒸发器2单独相连时,可由蒸发器2向每个轴承12提供作为润滑液的冷媒;当冷媒泵体4的入口42与冷凝器3单独相连时,可由冷凝器3向每个轴承12提供作为润滑液的冷媒;当冷媒泵体4的入口42同时与冷凝器3和蒸发器2相连时,可由冷凝器3和/或蒸发器2向每个轴承12提供作为润滑液的冷媒。
可选地,每个轴承12内设有润滑流路(图未示出),冷媒泵体4的出口41与润滑流路的流入口相连,每个轴承12的润滑流路的流出口与蒸发器2直接相连,由此,可便于冷媒泵体4泵送的冷媒进入到润滑流路中以便于对每个轴承12进行润滑,随后润滑流路中的冷媒可分别经过对应的流出口流向蒸发器2。当然,本发明不限于此,在另一些实施例中,从冷媒泵体4的出口41流出的冷媒可直接喷洒至每个轴承12以使其对轴承12进行润滑,随后冷媒可从每个轴 承12流向冷媒储存部例如电机壳内,冷媒储存部例如电机壳可与蒸发器2连通以便于冷媒流向蒸发器2。
根据本发明实施例的制冷机组100,通过设置冷媒泵体4以使冷媒泵体4的入口42与蒸发器2和冷凝器3中的至少一个相连,同时使得冷媒泵入的出口41与每个轴承12对应以向每个轴承12提供作为润滑液的冷媒,这不但可以起到对轴承12润滑的作用以提高轴承12的使用寿命,而且结构简单,简化了制冷机组100的控制系统,从而降低了控制系统的故障率和无油离心式压缩机1的成本,且避免了相关技术中多余的备用轴承的配置,同时避免了相关技术中采用润滑油润滑轴承带来的轴承机械损耗大、制冷循环系统中存在润滑油、换热器换热效率低、需要另外设计润滑油供油系统、冷却系统和回收系统等问题,在较大程度上简化了制冷机组100的管路系统。
在本发明的一些实施例,无油离心式压缩机1包括多个,多个无油离心式压缩机1彼此并联设置。进一步地,冷媒泵体4的出口41可同时与每个无油离心式压缩机1的每个轴承12对应以便于向每个轴承12提供作为润滑液的冷媒。当然,本发明不限于此,在另一些实施例中,冷媒泵体4包括多个,多个冷媒泵体4与多个无油离心式压缩机1对应设置,每个冷媒泵体4的入口42与蒸发器2和冷凝器3中的至少一个相连,每个冷媒泵体4的出口41与对应的无油离心式压缩机1的每个轴承12对应以向轴承12提供作为润滑液的冷媒。
根据本发明的一些实施例,如图1所示,蒸发器2通过第一冷媒流路21与冷媒泵体4的入口42相连,冷凝器3通过第二冷媒流路31与冷媒泵体4的入口42相连,第一冷媒流路21和第二冷媒流路31上分别串联有具有开闭功能的控制阀5,两个控制阀5分别与控制装置相连,由此,控制装置可分别控制两个控制阀5的开闭以分别控制第一冷媒流路21和第二冷媒流路31的通断以使得蒸发器2和/或冷凝器3的冷媒在冷媒泵体4的作用下流向每个轴承12。
具体地,如图1所示,制冷机组100包括:共用管道421、第一管道211 和第二管道311。共用管道421的第一端与冷媒泵体4的入口42相连,第一管道211的两端分别与蒸发器2和共用管道421的第二端相连,第一管道211和共用管道421组成第一冷媒流路21,第二管道311的两端分别与冷凝器3和共用管道421的第二端相连,第二管道311和共用管道421组成第二冷媒流路31,由此不但结构简单,而且有利于简化管路系统。
第一管道211和第二管道311上分别串联有控制阀5,第一管道211上串联有朝向共用管道421单向导通的单向阀2111。例如,控制装置可控制第一管道211上的控制阀5打开,第二管道311上的控制阀5关闭,此时冷媒泵体4可将蒸发器2内的冷媒泵送至每个轴承12以便于对轴承12的润滑;控制装置可控制第一管道211上的控制阀5关闭,第二管道311上的控制阀5打开,冷媒泵体4可将冷凝器3内的冷媒泵送至每个轴承12以对轴承12进行润滑。可以理解的是,控制装置还可以控制第一管道211和第二管道311上的控制阀5同时打开,以使得冷凝器3和蒸发器2同时向轴承12提供作为润滑液的冷媒。
由于冷凝器3内的冷媒压力高于蒸发器2内的冷媒压力,第一管道211上单向阀2111的设置可在第一管道211上的控制阀5关闭、第二管道311上的控制阀5打开或第一管道211上的控制阀5打开、第二管道311上的控制阀5关闭的瞬间以及在第一管道211和第二管道311上的控制阀5同时打开时,保证冷媒只能从蒸发器2流向冷媒泵体4,以避免冷媒从冷凝器3流向蒸发器2。
当然,本发明不限于此,在另一些实施例中,第一冷媒流路21和第二冷媒流路31为相互独立的冷媒流路即二者之间不存在共用管路,简单可靠。由此,当控制装置控制第一冷媒流路21上的控制阀5打开,第二冷媒流路31上的控制阀5关闭时,冷媒泵体4可将蒸发器2内的冷媒泵送至轴承12以便于对每个轴承12进行润滑;当控制装置控制第一冷媒流路21上的控制阀5关闭,第二冷媒流路31上的控制阀5打开时,冷媒泵体4可将冷凝器3内的冷媒泵送至轴承12以便于冷媒对每个轴承12进行润滑。可以理解的是,当控制装置同时控 制第一冷媒流路21和第二冷媒流路31上的控制阀5打开时,冷媒泵体4可将蒸发器2和冷凝器3内的冷媒泵送至轴承12以便于冷媒对每个轴承12进行润滑
可选地,控制阀5可以为电磁阀,由此不但结构简单,而且反应灵敏。
在本发明的一些实施例中,冷凝器3和/或蒸发器2的底部设有集液器6,冷媒泵体4的入口42与集液器6相连。由此,通过在冷凝器3和/或蒸发器2的底部设置集液器6,可保证冷媒泵体4泵送至轴承12的冷媒为纯液态冷媒或仅含有少量气态冷媒的液态冷媒,从而有利于保证对轴承12的润滑效果。
具体地,如图1所示,冷凝器3和蒸发器2的底部分别设有集液器6,两个集液器6分别与冷媒泵体4之间串联有控制阀5,每个集液器6上设有与控制装置相连的液位传感器,控制装置根据液位传感器的检测结果控制两个控制阀5的开闭。具体而言,当与冷凝器3对应的集液器6内的液位传感器检测到集液器6内的液位达到设定值时,控制装置可控制与冷凝器3对应的控制阀5打开以便于冷媒泵体4将与冷凝器3对应的集液器6内的液态冷媒泵送至每个轴承12,当与蒸发器2对应的集液器6内的液位传感器检测到对应的集液器6内的液位达到设定值时,控制装置可控制与蒸发器2对应的控制阀5打开以便于冷媒泵体4将与蒸发器2对应的集液器6内的液态冷媒泵送至每个轴承12。
可选地,当与两个集液器6分别对应的液位传感器分别检测到两个集液器6内的液位均达到设定值时,控制装置可控制两个控制阀5中的一个打开,另一个关闭。或者,在其他实施例中,当与两个集液器6分别对应的液位传感器分别检测到两个集液器6内的液位均达到设定值时,控制装置可同时控制两个控制阀5打开以便于冷媒泵体4同时将与蒸发器2和冷凝器3分别对应的集液器6内的液态冷媒泵送至每个轴承12。
根据本发明的一些实施例,冷媒泵体4与不间断电源10相连。由此,当制冷机组100紧急断电时,可通过不间断电源10向冷媒泵体4临时供电,当无油 离心式压缩机1的转子轴111在惯性作用下转动时,可使得冷媒泵体4将冷媒泵送至轴承12以保证能持续有润滑液对轴承12进行润滑冷却,从而确保轴承12的安全使用。
在本发明的一些实施例中,制冷机组100还包括位于轴承12上游的第一冷媒过滤器7。由此,可便于对流向轴承12的冷媒进行过滤,保证冷媒的干净度,避免因冷媒中存在杂质而使得冷媒在对轴承12润滑时造成的轴承12的损伤。
具体地,第一冷媒过滤器7为两个且分别串联在冷媒泵体4的出口41和入口42处。进一步地,串连在冷媒泵体4出口41处的第一冷媒过滤器7为高精度冷媒过滤器,由此,冷媒在流向冷媒泵体4之前可先经过第一冷媒过滤器7初步过滤,随后进入到冷媒泵体4,冷媒从冷媒泵体4流出后,可经过高精度冷媒过滤器的进一步精细过滤并流向轴承12,从而保证流向轴承12的冷媒为纯净无杂质的冷媒。
在本发明的一些实施例中,制冷机组100还包括用于对电机11进行冷却的冷却流路8,冷却流路8的进口端81与冷凝器3连通,冷却流路8的出口端82与蒸发器2连通。具体而言,可利用冷凝器3和蒸发器2之间的压力差使得冷凝器3内的冷媒流向冷却流路8以对电机11进行冷却,冷媒在对电机11冷却后可流向蒸发器2。例如,冷却流路8包括电机壳,冷凝器3内的冷媒可流向电机壳内以对电机11的转子和转子轴111进行冷却,冷却后的冷媒从电机壳流向蒸发器2。由此,不但结构简单,而且有利于提高电机11的散热效果,延长电机11的使用寿命。
进一步地,如图1所示,冷却流路8的进口端81和冷凝器3之间串联有第二冷媒过滤器9,第二冷媒过滤器9可对流入电机11的冷媒进行过滤,从而提高流入电机11的冷媒的干净度,避免因冷媒中含有杂质而在对电机11冷却润滑的过程中造成电机11的损伤。
下面参考图1对本发明一个具体实施例的制冷机组100的结构进行详细说 明。
如图1所示,本实施例的制冷机组100包括组成冷媒循环流路的无油离心式压缩机1、蒸发器2、冷凝器3、用于输送冷媒的冷媒泵体4、控制装置和冷却流路8。
具体地,如图1所示,冷凝器3和蒸发器2的底部分别设有集液器6,每个集液器6上设有与控制装置相连的液位传感器。
具体地,无油离心式压缩机1包括电机11、两组轴承12和两个叶轮13,两组轴承12分别外套在电机11的转子轴111上以起到支撑转子轴111的作用,其中一组轴承12可提供轴向推力以起到限位转子轴111的作用,两个叶轮13设在转子轴111上以由转子轴111驱动转动。
控制装置分别与冷媒泵体4和无油离心式压缩机1相连,冷媒泵体4的入口42通过第一冷媒流路21和第二冷媒流路31分别与蒸发器2和冷凝器3的集液器6相连,第一冷媒流路21和第二冷媒流路31上分别串联有具有开闭功能的控制阀5,两个控制阀5分别与控制装置相连,控制装置根据液位传感器的检测结果控制两个控制阀5的开闭。
冷媒泵体4的出口41与每个轴承12对应以向每个轴承12提供作为润滑液的冷媒。
具体地,如图1所示,制冷机组100包括:共用管道421、第一管道211和第二管道311。共用管道421的第一端与冷媒泵体4的入口42相连,第一管道211的两端分别与蒸发器2和共用管道421的第二端相连,第一管道211和共用管道421组成第一冷媒流路21,第二管道311的两端分别与冷凝器3和共用管道421的第二端相连,第二管道311和共用管道421组成第二冷媒流路31,上述两个控制阀5分别串连在第一管道211和第二管道311上,同时第一管道211上串联有朝向共用管道421单向导通的单向阀2111。
冷却流路8用于对电机11进行冷却,冷却流路8的进口端81与冷凝器3 的集液器6连通,冷却流路8的出口端82与蒸发器2连通。
具体而言,当冷凝器3的集液器6内的液位传感器检测到该集液器6内的液位达到设定值时,控制装置可控制第二管道311上的控制阀5打开,控制第一管道211上的控制阀5关闭,当蒸发器2的集液器6内的液位传感器检测到该集液器6内的液位达到设定值时,控制装置可控制第一管道211上的控制阀5打开,第二管道311上的控制阀5关闭,当两个集液器6内的液位传感器分别检测到两个集液器6内的液位均达到设定值时,控制装置可控制第一管道211和第二管道311的其中一个上的控制阀5打开,控制第一管道211和第二管道311的另一个上的控制阀5关闭,以便于冷媒泵体4将冷媒泵向每个轴承12,从冷媒泵体4的出口41流出的冷媒可直接喷洒至每个轴承12以使其对轴承12进行润滑,随后冷媒可从每个轴承12流向电机壳。同时,利用冷凝器3和蒸发器2之间的压力差可使得冷凝器3内的冷媒流向冷却流路8以流向电机壳内以对电机11的转子和转子轴111进行冷却,冷却后的冷媒可与润滑轴承12的冷媒一起从电机壳流向蒸发器2。
具体地,如图1所示,冷却流路8的进口端81和冷凝器3之间串联有第二冷媒过滤器9,第二冷媒过滤器9可对流入电机11的冷媒进行过滤,从而提高流入电机11的冷媒的干净度,避免因冷媒中含有杂质而在对电机11冷却润滑的过程中造成电机11的损伤。
具体地,如图1所示,两个第一冷媒过滤器7分别串联在冷媒泵体4的出口41和入口42处以对流向轴承12的冷媒进行过滤。
冷媒泵体4与不间断电源10相连。由此,当制冷机组100紧急断电时,可通过不间断电源10向冷媒泵体4临时供电,当无油离心式压缩机1的转子轴111在惯性作用下转动时,可使得冷媒泵体4将冷媒泵送至轴承12以保证能持续有润滑液对轴承12进行润滑冷却。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、 “具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种制冷机组,其特征在于,包括组成冷媒循环流路的无油离心式压缩机、蒸发器和冷凝器,所述无油离心式压缩机包括电机、多组轴承和叶轮,所述多组轴承分别外套在所述电机的转子轴上,所述叶轮设在所述转子轴上以由所述转子轴驱动转动;所述制冷机组还包括:
    用于输送冷媒的冷媒泵体,所述冷媒泵体的出口与每个所述轴承对应以向每个所述轴承提供作为润滑液的冷媒,所述冷媒泵体的入口与所述蒸发器和所述冷凝器中的至少一个相连;
    控制装置,所述控制装置分别与所述冷媒泵体和所述无油离心式压缩机相连。
  2. 根据权利要求1所述的制冷机组,其特征在于,所述蒸发器通过第一冷媒流路与所述冷媒泵体的入口相连,所述冷凝器通过第二冷媒流路与所述冷媒泵体的入口相连,所述第一冷媒流路和所述第二冷媒流路上分别串联有具有开闭功能的控制阀,两个所述控制阀分别与所述控制装置相连。
  3. 根据权利要求2所述的制冷机组,其特征在于,包括:
    共用管道,所述共用管道的第一端与所述冷媒泵体的入口相连;
    第一管道,所述第一管道的两端分别与所述蒸发器和所述共用管道的第二端相连,所述第一管道和所述共用管道组成所述第一冷媒流路;
    第二管道,所述第二管道的两端分别与所述冷凝器和所述共用管道的第二端相连,所述第二管道和所述共用管道组成所述第二冷媒流路,所述第一管道和所述第二管道上分别串联有所述控制阀,所述第一管道上串联有朝向所述共用管道单向导通的单向阀。
  4. 根据权利要求1-3中任一项所述的制冷机组,其特征在于,所述冷凝器和/或所述蒸发器的底部设有集液器,所述冷媒泵体的入口与所述集液器相连。
  5. 根据权利要求4所述的制冷机组,其特征在于,所述冷凝器和所述蒸发 器的底部分别设有所述集液器,两个所述集液器分别与所述冷媒泵体之间串联有所述控制阀,
    每个所述集液器上设有与所述控制装置相连的液位传感器,所述控制装置根据所述液位传感器的检测结果控制两个所述控制阀的开闭。
  6. 根据权利要求1-5中任一项所述的制冷机组,其特征在于,所述冷媒泵体与不间断电源相连。
  7. 根据权利要求1-6中任一项所述的制冷机组,其特征在于,还包括位于所述轴承上游的第一冷媒过滤器。
  8. 根据权利要求7所述的制冷机组,其特征在于,所述第一冷媒过滤器为两个且分别串联在所述冷媒泵体的出口和入口处。
  9. 根据权利要求1-8中任一项所述的制冷机组,其特征在于,还包括用于对电机进行冷却的冷却流路,所述冷却流路的进口端与所述冷凝器连通,所述冷却流路的出口端与所述蒸发器连通。
  10. 根据权利要求9所述的制冷机组,其特征在于,所述冷却流路的进口端和所述冷凝器之间串联有第二冷媒过滤器。
PCT/CN2017/087348 2016-06-12 2017-06-06 制冷机组 WO2017215493A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610406908.1 2016-06-12
CN201610406908.1A CN106091188A (zh) 2016-06-12 2016-06-12 制冷机组

Publications (1)

Publication Number Publication Date
WO2017215493A1 true WO2017215493A1 (zh) 2017-12-21

Family

ID=57227821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087348 WO2017215493A1 (zh) 2016-06-12 2017-06-06 制冷机组

Country Status (2)

Country Link
CN (1) CN106091188A (zh)
WO (1) WO2017215493A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113137773A (zh) * 2021-03-04 2021-07-20 青岛海尔空调电子有限公司 双动力热泵制冷机组
CN114198920A (zh) * 2021-11-22 2022-03-18 青岛海尔空调电子有限公司 用于控制冷媒循环系统的方法、装置和冷媒循环系统
US11435122B2 (en) 2019-05-29 2022-09-06 Carrier Corporation Refrigeration apparatus
CN115235132A (zh) * 2022-09-21 2022-10-25 山东天瑞重工有限公司 一种磁悬浮冷水机组

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091188A (zh) * 2016-06-12 2016-11-09 重庆美的通用制冷设备有限公司 制冷机组
WO2019023618A1 (en) * 2017-07-28 2019-01-31 Carrier Corporation LUBRICATION SUPPLY SYSTEM
CN111365910B (zh) * 2018-12-26 2024-06-28 珠海格力电器股份有限公司 取液位置可切换的冷媒循环系统和制冷设备
CN110411045B (zh) * 2019-07-31 2020-07-28 珠海格力电器股份有限公司 离心机组和空调系统
CN111102695B (zh) * 2019-12-18 2021-01-22 珠海格力电器股份有限公司 冷媒泵控制方法、装置及空调机组
CN113847345B (zh) * 2021-09-08 2024-02-23 青岛海尔空调电子有限公司 用于悬浮轴承的供气系统及制冷系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422635A (en) * 1967-03-21 1969-01-21 Bbc Brown Boveri & Cie Lubricating and cooling system for electric motors
CN1128061A (zh) * 1993-06-15 1996-07-31 多堆垛国际有限公司 压缩机
JPH11230628A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd 冷凍装置
CN1322289A (zh) * 1998-10-09 2001-11-14 美国标准公司 无油液体制冷机
CN201014825Y (zh) * 2007-03-30 2008-01-30 珠海格力电器股份有限公司 一种离心式制冷机组冷却系统
CN103261701A (zh) * 2010-12-22 2013-08-21 丹佛斯特波科尔压缩机有限公司 具有可变几何形状的扩散器的变速无油致冷剂离心压缩机
CN104105931A (zh) * 2011-12-06 2014-10-15 特灵国际有限公司 无油液体冷却器的滚动轴承
CN106091188A (zh) * 2016-06-12 2016-11-09 重庆美的通用制冷设备有限公司 制冷机组

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155429B (zh) * 2010-02-12 2013-07-24 财团法人工业技术研究院 无油润滑离心式冷媒压缩机及其润滑方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422635A (en) * 1967-03-21 1969-01-21 Bbc Brown Boveri & Cie Lubricating and cooling system for electric motors
CN1128061A (zh) * 1993-06-15 1996-07-31 多堆垛国际有限公司 压缩机
JPH11230628A (ja) * 1998-02-13 1999-08-27 Matsushita Electric Ind Co Ltd 冷凍装置
CN1322289A (zh) * 1998-10-09 2001-11-14 美国标准公司 无油液体制冷机
CN201014825Y (zh) * 2007-03-30 2008-01-30 珠海格力电器股份有限公司 一种离心式制冷机组冷却系统
CN103261701A (zh) * 2010-12-22 2013-08-21 丹佛斯特波科尔压缩机有限公司 具有可变几何形状的扩散器的变速无油致冷剂离心压缩机
CN104105931A (zh) * 2011-12-06 2014-10-15 特灵国际有限公司 无油液体冷却器的滚动轴承
CN106091188A (zh) * 2016-06-12 2016-11-09 重庆美的通用制冷设备有限公司 制冷机组

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435122B2 (en) 2019-05-29 2022-09-06 Carrier Corporation Refrigeration apparatus
CN113137773A (zh) * 2021-03-04 2021-07-20 青岛海尔空调电子有限公司 双动力热泵制冷机组
CN114198920A (zh) * 2021-11-22 2022-03-18 青岛海尔空调电子有限公司 用于控制冷媒循环系统的方法、装置和冷媒循环系统
CN114198920B (zh) * 2021-11-22 2023-11-24 青岛海尔空调电子有限公司 用于控制冷媒循环系统的方法、装置和冷媒循环系统
CN115235132A (zh) * 2022-09-21 2022-10-25 山东天瑞重工有限公司 一种磁悬浮冷水机组

Also Published As

Publication number Publication date
CN106091188A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2017215493A1 (zh) 制冷机组
US10480831B2 (en) Compressor bearing cooling
EP1119731B1 (en) Oil-free liquid chiller
US9611849B2 (en) System including high-side and low-side compressors
CN1232747C (zh) 自动调节阀和具有这种自动调节阀的压缩式制冷机
CN107035773A (zh) 无油液体冷却器的滚动轴承
CN101326413A (zh) 用于磁力轴承压缩机的急停轴承的润滑系统
WO2011114714A1 (ja) 冷凍機
CN106321499A (zh) 涡轮机和制冷循环装置
CN111076453B (zh) 压缩机用气体轴承的供气系统、操作方法及制冷系统
CN207647779U (zh) 压缩机及具有其的空调系统
CN101963161A (zh) 涡轮压缩机及冷冻机
CN112728794A (zh) 一种制冷剂液体润滑轴承的离心压缩机和制冷系统
CN114198828B (zh) 气悬浮机组系统和控制方法
KR20170013345A (ko) 스핀들 콤프레서를 갖는 압축 냉동기
WO2018090894A1 (zh) 压缩机组件及其控制方法和制冷/制热系统
CN106196674B (zh) 油冷式二级压缩机以及热泵
CN116222023A (zh) 一种压缩机回油系统及其控制方法
CN216407218U (zh) 磁悬浮式离心压缩机、具有其的制冷系统和制冷设备
CN206146028U (zh) 压缩式制冷机
CN219199534U (zh) 无油复叠制冷系统
CN113566464B (zh) 一种自力式介质分离及冷却装置
CN215951812U (zh) 一种自力式介质分离及冷却装置
CN218672408U (zh) 一种无油轴承供液空调系统
CN219160655U (zh) 一种多水源并联储能热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812604

Country of ref document: EP

Kind code of ref document: A1