WO2017215480A1 - 混频发射装置 - Google Patents

混频发射装置 Download PDF

Info

Publication number
WO2017215480A1
WO2017215480A1 PCT/CN2017/087173 CN2017087173W WO2017215480A1 WO 2017215480 A1 WO2017215480 A1 WO 2017215480A1 CN 2017087173 W CN2017087173 W CN 2017087173W WO 2017215480 A1 WO2017215480 A1 WO 2017215480A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
mixing
local oscillator
signal
low noise
Prior art date
Application number
PCT/CN2017/087173
Other languages
English (en)
French (fr)
Inventor
陈家诚
姚建可
丁庆
Original Assignee
深圳市华讯方舟卫星通信有限公司
华讯方舟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华讯方舟卫星通信有限公司, 华讯方舟科技有限公司 filed Critical 深圳市华讯方舟卫星通信有限公司
Publication of WO2017215480A1 publication Critical patent/WO2017215480A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators

Definitions

  • the invention relates to the field of satellite communication technology, in particular to a mixing transmitter operating in the Ka band.
  • the market demand for multi-band communication satellites or full Ka-band communication satellites is increasing. According to statistics, more than 30 satellite operators around the world have now started or are starting more than 20 Ka satellite projects. More than 30 civilian Ka broadband satellites are in operation, under construction and planned to be built. After 2014, the total bandwidth provided by the on-orbit Ka satellites is approximately 500 GHz-600 GHz. Historically exceeds the total bandwidth of all on-orbit C and Ku-band satellites worldwide. Correspondingly, the ground terminal market has also achieved great development, and the use of satellite terminals has reached a million-level level; the pace of the global satellite industry entering the Ka era is accelerating.
  • the terminal equipment of the ground station is an indispensable part of the Ka-band satellite network.
  • the transceiver device is the communication core of the ground station. Increasing transceiver product performance and reducing product cost are key steps in the commercialization of transceiver products.
  • the mixing transmitter in the Ka-band transceiver is characterized by a discrete module, which is relatively bulky, and the Ka-band circuit needs to be manually debugged, which will bring additional cost for mass production and will result in The same product performance is different, even different.
  • a mixing transmitting device connected to a Ka-band satellite modem, comprising a PCB board and a local oscillation module, a filtering module, a mixing module, a microstrip antenna module and a power amplification module mounted on the PCB board;
  • the oscillating module, the filtering module, the mixing module, and the power amplifying module are sequentially connected;
  • the local oscillation module is configured to generate a local oscillator signal, and output the local oscillator signal to the filtering module;
  • the filtering module is configured to perform filtering processing on the local oscillator signal, and output the filtered local oscillator signal to the mixing module;
  • the mixing module is configured to receive an intermediate frequency signal from the modem, and perform mixing processing on the intermediate frequency signal and the local oscillator signal, and output a Ka band high frequency signal to the power amplification module;
  • the power amplification module modulates and amplifies the power of the Ka-band high-frequency signal
  • the microstrip antenna module is configured to transmit the Ka-band high frequency signal.
  • the local oscillator module includes a local oscillator and a first low noise amplifier; the local oscillator is coupled to a first low noise amplifier, the local oscillator is configured to generate a local oscillator signal, The first low noise amplifier amplifies the local oscillator signal.
  • the local oscillator is attached to the PCB using surface mount technology.
  • the filtering module includes a filter and a second low noise amplifier; the filter is coupled to the first low noise amplifier and the second low noise amplifier, respectively, the filter is used to filter impurities
  • the wave passes the local oscillator signal, and the second low noise amplifier amplifies the filtered local oscillator signal.
  • the filter is a band pass filter.
  • the mixing module is a second harmonic mixing chip.
  • the power amplification module includes a third low noise amplifier, an adjustable gain amplifier, and a power amplifier;
  • the mixing module transmits the Ka-band high frequency signal to the third low noise amplifier and the adjustable gain amplifier through the microstrip antenna module;
  • the adjustable gain amplifier is configured to perform gain adjustment on the Ka-band high frequency signal; the adjustable gain amplifier is connected to the power amplifier through the microstrip antenna module, the power amplifier is high on the Ka band The power of the frequency signal is amplified.
  • the PCB board is further provided with a through hole, the through hole is disposed around the filter, and the through hole is further disposed around the microstrip antenna module.
  • the PCB board is a high frequency PCB board.
  • the above-mentioned mixing transmitting device is connected to a Ka-band satellite modem, and includes a PCB board and a local oscillation module, a filtering module, a mixing module, a power amplifying module, and a microstrip antenna module mounted on the PCB.
  • the mixing module can change the intermediate frequency signal outputted from the modem to a high frequency signal, and amplify the signal power through the power amplifier module of the next stage, and finally transmit it through the microstrip antenna module.
  • the mixing transmitter adopts a modular design idea, and the functional module is attached to the PCB by a simple surface mount technology, thereby eliminating the process steps of wire bonding, low cost, and also beneficial to the high frequency band of the product. Debugging and process consistency of high-band circuits have the advantages of miniaturization and high integration of circuits.
  • 1 is a structural block diagram of a PCB layout of a mixing transmitter
  • FIG. 2 is a structural frame diagram of a mixing transmitting device
  • Figure 3a is an input reflection coefficient diagram of a parallel coupled microstrip line bandpass filter
  • Figure 3b is a forward transmission coefficient diagram of a parallel coupled microstrip line bandpass filter
  • FIG. 4 is a schematic structural view of a parallel coupled microstrip line filter
  • FIG. 5 is a schematic structural view of a patch microstrip antenna.
  • FIG. 1 is a structural block diagram of a PCB layout of a mixing transmitter, as shown in FIG. 2, which is a structural frame diagram of a mixing transmitter.
  • the mixing transmitting device is connected to a Ka-band satellite modem, including a PCB board 100, and a local oscillation module 200, a filtering module 300, a mixing module 400, a microstrip antenna module 500, and a PCB module 100.
  • Power amplification module 600 The local oscillation module 200, the filtering module 300, the mixing module 400, and the power amplification module 600 are sequentially connected.
  • the local oscillation module 200 is configured to generate a local oscillator signal, and output the local oscillator signal to the filtering module 300.
  • the filtering module 300 is configured to filter the local oscillator signal, and output the filtered local oscillator signal to the mixing module 400;
  • the frequency module 400 is configured to receive an intermediate frequency signal from the modem, mix and process the intermediate frequency signal and the local oscillator signal, and output a Ka band high frequency signal, and the output Ka band high frequency signal is transmitted to the power amplification module through the microstrip antenna module 500. 600;
  • the power amplification module 600 modulates and amplifies the power of the Ka-band high-frequency signal.
  • the mixing transmitting device is a key device for transmitting signals in the transceiver, and the local oscillation module 200, the filtering module 300, the mixing module 400, the microstrip antenna module 500 and the power amplifying module 600 are all mounted on the surface by simple surface mount technology.
  • each functional module and component combination are connected to form a microstrip line matching circuit, which eliminates the process steps of wire bonding, and has low cost; and is beneficial to the debugging of the product in the high frequency band and the process consistency of the high frequency band circuit,
  • the advantages of miniaturization and high integration of the circuit separation from the power amplifier module of the latter stage makes the subsequent debugging convenient, and the integration of the functional modules makes the repeatability high.
  • the PCB board 100 is a high frequency PCB board 100.
  • the high frequency PCB board 100 uses a ceramic substrate, and the ROGERS is selected.
  • the ROGERS4003 series, 5880 series, etc., or the high-frequency PCB board 100 of polytetrafluoroethylene (PTFE) can be selected, and the suitable high-frequency PCB board 100 can be selected according to actual needs. .
  • PTFE polytetrafluoroethylene
  • the local oscillator module 200 includes a local oscillator 210 and a first low noise amplifier 220 that is coupled to the first low noise amplifier 220.
  • the local oscillator 210 is used to generate a local oscillator signal.
  • the local oscillator 210 is of the type TFF11145HN, and the local oscillator 210 has a local oscillator signal frequency output range of 12 GHz to 17 GHz. In this embodiment, the local oscillator 210 generates the local oscillator 210.
  • the vibration signal (LO) frequency is 14.275 GHz.
  • the local oscillator 210 is mounted on the PCB board 100 by surface mount technology, and no need to adjust or modify the frequency on the production line, which is convenient for manufacturing, and the design introduction is simple and the cost is low.
  • the local oscillator 210 can be fabricated by a silicon germanium:carbon (SiGe:C) process technology, which has good noise characteristics, strong radio frequency performance, good reliability, and lower power consumption; in other embodiments, It can also be fabricated using gallium arsenide process or gallium nitride process technology.
  • SiGe:C silicon germanium:carbon
  • the first low noise amplifier 220 amplifies the local oscillation signal.
  • Low noise amplifier Low Noise Amplifier, LNA
  • LNA Low Noise Amplifier
  • the first low noise amplifier 220 is a low noise amplifier transistor, and a high electron mobility transistor of a gallium arsenide process is selected.
  • a gallium arsenide field effect transistor Field
  • FET Effect Transistor
  • the filtering module 300 includes a filter 310 and a second low noise amplifier 320; the filter 310 is coupled to the first low noise amplifier 220 and the second low noise amplifier 320, respectively.
  • the filter 310 is configured to filter out the clutter so that the local oscillator signal passes, and the second low noise amplifier 320 amplifies the filtered local oscillator signal.
  • the local oscillator signal (LO) signal output by the local oscillator 210 first enters the filter 310 via a first low noise figure amplifier (LNA).
  • Filter 310 is a bandpass filter 310 having an ideal center frequency of 14.275 GHz and filtering out the clutter to pass the local oscillator signal (LO).
  • the filter 310 is a parallel coupled microstrip line filter 310
  • FIGS. 3a, 3b are filter characteristic diagrams of the parallel coupled microstrip line bandpass filter 310.
  • the parallel coupled microstrip line filter 310 has a band The pass function, whose center frequency is 14 GHz, allows the local oscillator signal (LO) output from the first low noise amplifier 220 to pass.
  • the parallel coupled microstrip line filter 310 is formed by a metal deposition process, such as by a copper plating process, or a copper plating process on copper after copper plating.
  • PCB board 100 is Rogers The 4350 high frequency board, the PCB board 100 is further provided with a grounding through hole 301, and the through hole 301 is disposed around the filter 310 to avoid crosstalk between signals and perform signal isolation.
  • other bandpass filters 310 having a bandpass function with a center frequency of 14 GHz that allows the local oscillator signal (LO) output by the first low noise amplifier 220 to pass may also be used, and are not limited to parallel coupling micro A line pass filter 310 is provided.
  • the second low noise amplifier 320 is a low noise amplifier transistor, and a high electron mobility transistor of a gallium arsenide process is selected.
  • a gallium arsenide field effect transistor Field
  • FET Effect Transistor
  • the local oscillator signal (LO) outputted by the local oscillator signal (LO) through the filter 310 and the second low noise amplifier 320 is used as the first input signal of the mixing module 400, and the intermediate frequency signal (IF) output by the Ka-band satellite modem (Modem).
  • the intermediate frequency signal (IF) may be an L-band signal with a frequency of 950 MHz to 1450 MHz.
  • the mixing module 400 performs mixing processing on the first input signal (LO) and the second input signal (IF), that is, the output high frequency signal (RF) is a Ka band high frequency signal, and the bandwidth of the Ka band high frequency signal is 500MHz.
  • the mixing module 400 is a second harmonic mixing chip
  • the second harmonic mixing chip is of the type HMC798ALC4, and in other embodiments, the second harmonic mixing chip of the type HMC798LC4 can also be used.
  • the second harmonic mixing chip has an IF input range of 0 to 4 GHz; the local oscillator signal (LO) input signal has a frequency of 14.275 GHz, and the local oscillator signal (LO) frequency is multiplied by 2 times after the second harmonic mixing chip.
  • the intermediate frequency signal (IF) can be upconverted to a high frequency signal (RF).
  • the second harmonic mixing chip is a monolithic microwave integrated circuit (Monolithic Microwave) fabricated by a gallium arsenide (GaAs) process. Integrated Circuit, MMIC) chip.
  • the second harmonic mixing chip is also mounted on the PCB board 100 by surface mount technology (SMT), which eliminates the process steps of wire bonding and also facilitates the process consistency of the high frequency circuit.
  • SMT surface mount technology
  • the intermediate frequency signal (IF) frequency mixed by the second harmonic mixing chip is upconverted to a high frequency signal (RF) output, and is output to the next stage module through the microstrip antenna module 500.
  • the microstrip antenna module 500 includes a plurality of patch microstrip antennas (510, 520, 530), and the patch microstrip antenna and the parallel coupled microstrip line bandpass filter 310 are formed using the same process.
  • FIG. 5 it is a schematic diagram of a patch microstrip antenna structure.
  • the substrate of the patch microstrip antenna is a ceramic material (that is, a high frequency PCB board 100), and the patch microstrip antenna is a layer of copper material with a thickness of 17 ⁇ 34 ⁇ m.
  • a grounded via 501 is placed around the patch microstrip antenna.
  • the mixing device further includes a housing (not shown), and the PCB board 100 is built in the housing such that the PCB board 100 forms a waveguide cavity with the housing.
  • the Ka-band high frequency signal RF is coupled to the waveguide cavity by the patch microstrip antenna 510 and coupled from the waveguide cavity to the next patch microstrip antenna 520 for subsequent signal processing.
  • the Ka-band high-frequency signal is transmitted in the waveguide cavity to reduce transmission loss.
  • the power amplification module 600 includes a third low noise amplifier 610, an adjustable gain amplifier 620, and a power amplifier 630.
  • the mixing module 400 transmits the Ka-band high-frequency signal to the third low-noise amplifier 610 and the adjustable gain amplifier 620 through the patch microstrip antenna 520; the adjustable gain amplifier 620 is used for gain adjustment of the Ka-band high-frequency signal;
  • the gain amplifier 620 is coupled to the power amplifier 630 via a patch microstrip antenna 530, and the power amplifier 630 amplifies the power of the Ka-band high frequency signal.
  • the Ka-band high frequency signal (RF) is again coupled into the third low noise amplifier 610 through the patch microstrip antenna 520 to amplify the Ka-band high frequency signal (RF) while making the noise of the third low noise amplifier 610 itself
  • the interference to the Ka-band high frequency signal (RF) is small.
  • the third low noise amplifier 610 is a low noise amplifier transistor, which can be a high electron mobility transistor of a gallium arsenide process or a gallium arsenide field effect transistor.
  • the Ka-band high frequency signal (RF) through the third low noise amplifier 610 is supplied to the adjustable gain amplifier 620.
  • the adjustable gain amplifier 620 can change the gain of the amplifier by controlling the voltage, since the mixing transmitter needs to work effectively under different temperature and weather conditions; by adjusting the adjustable gain amplifier 620, the amplifier gain can be adjusted to make the circuit effective. jobs. For example, weather with more smog can increase the output gain accordingly, and the weather can reduce the output gain accordingly to reduce power consumption.
  • the signal outputted by the adjustable gain amplifier 620 is output to the power amplifier 630 via the patch microstrip antenna, and the power amplifier 630 amplifies the power of the Ka-band high-frequency signal (RF) to achieve the power requirement of the Ka-band high-frequency signal (RF) transmission. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microwave Amplifiers (AREA)
  • Transceivers (AREA)

Abstract

本发明涉及一种混频发射装置。该混频发射装置,连接于Ka波段卫星调制解调器,包括PCB板以及贴装在PCB板上的本地振荡模块、滤波模块、混频模块、微带天线模块和功率放大模块。混频模块能够将从调制解调器输出的中频信号上变到高频信号,并且通过下一级的功率放大模块将信号功率放大,最后通过微带天线模块发射出去。该混频发射装置采用模块化的设计思路,用工艺简单的表面贴装技术将各个功能模块贴合在PCB板上,免除引线接合的工艺步骤,成本低,同时还有利于产品在高频段的调试以及高频段电路的工艺一致性,具有电路的小型化且集成度高的优点。

Description

混频发射装置
【技术领域】
本发明涉及卫星通讯技术领域,特别是涉及工作在Ka波段的混频发射装置。
【背景技术】
近年来,基于可用带宽传输容量大的优势和市场需求,目前多波段通信卫星或全Ka波段通信卫星市场需求越来越大。据统计,全球三十余个卫星运营商,现在已经启动或者正在启动Ka卫星项目的有二十余家。投入运行、建造中和计划建造的民用Ka宽带卫星超过30颗,2014年后,在轨的Ka卫星提供的总带宽约为500GHz-600GHz, 历史性地超过全球所有在轨C和Ku波段卫星的总带宽。相应地,地面终端市场也取得较大发展,卫星终端使用量达到百万部级别;全球卫星行业进入Ka时代的步伐在加快。
地面小站的终端设备是Ka波段卫星网络中不可缺少的部分。其中收发机设备是地面小站的通信核心部分。提高收发机产品的性能并且减少产品成本是收发机产品面向商业化的关键一步。Ka波段的收发机中的混频发射装置的特点是分立模块,相对来说体积较大,而且Ka波段的电路需手工调试,对于量产来说,会带来额外的成本,并且会导致每个同样的产品性能不同,甚至差别较大。
【发明内容】
基于此,有必要针对上述问题,提供一种小型化、集成度高且成本低的混频发射装置。
一种混频发射装置,连接于Ka波段卫星调制解调器,包括PCB板以及贴装在所述PCB板上的本地振荡模块、滤波模块、混频模块、微带天线模块和功率放大模块;所述本地振荡模块、滤波模块、混频模块、功率放大模块依次连接;
所述本地振荡模块用于生成本振信号,并将所述本振信号输出给所述滤波模块;
所述滤波模块用于对所述本振信号进行滤波处理,并将滤波后的所述本振信号输出给所述混频模块;
所述混频模块用于接收来自所述调制解调器的中频信号,并对所述中频信号、本振信号混频处理,输出Ka波段高频信号至所述功率放大模块;
所述功率放大模块对所述Ka波段高频信号的功率进行调制放大输出;
所述微带天线模块用于传输所述Ka波段高频信号。
在其中一个实施例中,所述本地振荡模块包括本地振荡器和第一低噪声放大器;所述本地振荡器和第一低噪声放大器连接,所述本地振荡器用于产生本振信号,所述第一低噪声放大器对所述本振信号进行放大处理。
在其中一个实施例中,所述本地振荡器采用表面贴装技术贴合在所述PCB板上。
在其中一个实施例中,所述滤波模块包括滤波器和第二低噪声放大器;所述滤波器分别与所述第一低噪声放大器和第二低噪声放大器连接,所述滤波器用于滤除杂波使得所述本振信号通过,所述第二低噪声放大器对滤波处理后的所述本振信号进行放大处理。
在其中一个实施例中,所述滤波器为带通滤波器。
在其中一个实施例中,所述混频模块为二次谐波混频芯片。
在其中一个实施例中,所述功率放大模块包括第三低噪声放大器、可调增益放大器和功率放大器;
所述混频模块通过所述微带天线模块将所述Ka波段高频信号传输给所述第三低噪声放大器、可调增益放大器;
所述可调增益放大器用于对所述Ka波段高频信号进行增益调节;所述可调增益放大器通过所述微带天线模块与所述功率放大器连接,所述功率放大器对所述Ka波段高频信号的功率作放大处理。
在其中一个实施例中,所述PCB板上还设有通孔,所述通孔环绕所述滤波器设置,所述通孔还环绕所述微带天线模块设置。
在其中一个实施例中,所述PCB板为高频PCB板。
上述混频发射装置,连接于Ka波段卫星调制解调器,包括PCB板以及贴装在PCB板上的本地振荡模块、滤波模块、混频模块、功率放大模块和微带天线模块。混频模块能够将从调制解调器输出的中频信号上变到高频信号,并且通过下一级的功率放大模块将信号功率放大,最后通过微带天线模块发射出去。该混频发射装置采用模块化的设计思路,用工艺简单的表面贴装技术将各个功能模块贴合在PCB板上,免除引线接合的工艺步骤,成本低,同时还有利于产品在高频段的调试以及高频段电路的工艺一致性,具有电路的小型化且集成度高的优点。
【附图说明】
图1为混频发射装置的PCB板布局的结构框图;
图2为混频发射装置的结构框架图;
图3a为平行耦合微带线带通滤波器的输入反射系数图;
图3b为平行耦合微带线带通滤波器的正向传输系数图;
图4为平行耦合微带线滤波器的结构示意图;
图5为贴片微带天线结构示意图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示的为混频发射装置的PCB板布局的结构框图,如图2所示的为混频发射装置的结构框架图。参考图1和图2,混频发射装置连接于Ka波段卫星调制解调器,包括PCB板100以及设置在PCB板100上的本地振荡模块200、滤波模块300、混频模块400、微带天线模块500和功率放大模块600。本地振荡模块200、滤波模块300、混频模块400、功率放大模块600依次连接。
本地振荡模块200用于生成本振信号,并将本振信号输出给滤波模块300;滤波模块300用于对本振信号进行滤波处理,并将滤波后的本振信号输出给混频模块400;混频模块400用于接收来自调制解调器的中频信号,并对中频信号、本振信号混频处理,并输出Ka波段高频信号,输出的Ka波段高频信号通过微带天线模块500传输至功率放大模块600;功率放大模块600对Ka波段高频信号的功率进行调制放大输出。
混频发射装置是收发机中发射信号的关键装置,本地振荡模块200、滤波模块300、混频模块400、微带天线模块500和功率放大模块600均用工艺简单的表面贴装技术贴装在PCB板100上,将各个功能模块以及元器件组合连接形成微带线匹配电路,免除引线接合的工艺步骤,成本低;同时有利于产品在高频段的调试以及高频段电路的工艺一致性,具有电路的小型化且集成度高的优点;与后级的功放模块分开使得后续调试方便,功能模块集成化使得可重复性高的特点。
PCB板100为高频PCB板100,在本实施例中,高频PCB板100采用陶瓷基板,选用的为ROGERS 4350系列,在其他实施例中,还可以选用ROGERS4003系列、5880系列等,或者选用聚四氟乙烯基板(PTFE)的高频PCB板100,可根据实际需求来选定合适的高频PCB板100。
本地振荡模块200包括本地振荡器210和第一低噪声放大器220,本地振荡器210和第一低噪声放大器220连接。本地振荡器210用于产生本振信号,本地振荡器210的型号为TFF11145HN,本地振荡器210的本振信号频率的输出范围可以为12GHz~17GHz,在本实施例中,本地振荡器210产生本振信号(LO)频率为14.275GHz。本地振荡器210采用表面贴装技术贴合在PCB板100上,无需再在生产线上进行频率的调整或修改,便于制造,使得设计导入简单,成本低。在本实施例中,本地振荡器210可以通过硅锗:碳(SiGe:C)工艺技术来制作,其噪声特性好、射频性能强、可靠性好,功耗更低;在其他实施例中,还可以选用砷化镓工艺、氮化镓工艺技术来制作。
第一低噪声放大器220对本振信号进行放大处理。低噪声放大器(Low Noise Amplifier,LNA)一般用作各类无线电接收机的高频或中频前置放大器以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,减小了放大器自身的噪声对信号的干扰,以提高输出的信噪比。在本实施例中,第一低噪声放大器220为低噪声放大器晶体管,选用的为砷化镓工艺的高电子迁移率晶体管,在其他实施例中,还可以砷化镓场效应管(Field Effect Transistor,FET)。
滤波模块300包括滤波器310和第二低噪声放大器320;滤波器310分别与第一低噪声放大器220和第二低噪声放大器320连接。滤波器310用于滤除杂波使得本振信号通过,第二低噪声放大器320对滤波处理后的本振信号进行放大处理。
本地振荡器210输出的本振信号(LO)信号先经过第一低噪声系数放大器(LNA)进入滤波器310。滤波器310为带通滤波器310,理想中心频率为14.275GHz,滤除杂波使得本振信号(LO)通过。在本实施例中,滤波器310为平行耦合微带线滤波器310,图3a、3b为平行耦合微带线带通滤波器310的滤波特性图。由散射参数(S参数)可以看出,输入反射系数(S11)在频率14GHz处为谷值;正向传输系数(S21)在频率14GHz处为峰值,此平行耦合微带线滤波器310具有带通功能,其中心频率为14GHz,允许第一低噪声放大器220输出的本振信号(LO)通过。参考图4,平行耦合微带线滤波器310由金属沉积工艺形成,例如:通过镀铜工艺形成,或者镀铜之后再在铜上进行镀银工艺。PCB板100为Rogers 4350高频板,PCB板100上还设有接地的通孔301,通孔301环绕滤波器310设置,为避免信号之间的串扰以及进行信号隔离。在其他实施例中,还可以使用具有带通功能,其中心频率为14GHz,允许第一低噪声放大器220输出的本振信号(LO)通过的其他带通滤波器310,并不限于平行耦合微带线带通滤波器310。
在本实施例中,第二低噪声放大器320为低噪声放大器晶体管,选用的为砷化镓工艺的高电子迁移率晶体管,在其他实施例中,还可以砷化镓场效应管(Field Effect Transistor,FET)。
本振信号(LO)经过滤波器310和第二低噪声放大器320后输出的本振信号(LO)作为混频模块400的第一输入信号,Ka波段卫星调制解调器(Modem)输出的中频信号(IF)作为混频模块400的第二输入信号,中频信号(IF)可以为L波段的信号,频率为950MHz~1450MHz。混频模块400对第一输入信号(LO)、第二输入信号(IF)做混频处理,即输出的高频信号(RF)为Ka波段高频信号,其Ka波段高频信号的带宽为500MHz。在本实施例中,混频模块400为二次谐波混频芯片,二次谐波混频芯片的型号为HMC798ALC4,在其他实施例中还可以使用型号为HMC798LC4的二次谐波混频芯片。该二次谐波混频芯片中频输入范围为0~4GHz;本振信号(LO)输入信号频率为14.275GHz,经过二次谐波混频芯片之后,本振信号(LO)频率乘以2倍,为28.55GHz,可以将中频信号(IF)上变频为高频信号(RF)。
二次谐波混频芯片是通过砷化镓(GaAs)工艺制成的单片微波集成电路(Monolithic Microwave Integrated Circuit,MMIC)芯片。二次谐波混频芯片也是通过表面贴装技术(SMT)贴装在PCB板100上,可以免除引线接合的工艺步骤,同时还有利于高频段电路的工艺一致性。
经过二次谐波混频芯片混频的中频信号(IF)频率上变频为高频信号(RF)输出,经过微带天线模块500输出至下一级模块。微带天线模块500包括多个贴片微带天线(510、520、530),贴片微带天线和平行耦合微带线带通滤波器310的形成采用相同的工艺。如图5所示的为贴片微带天线结构示意图,贴片微带天线的衬底为陶瓷材料(也即高频PCB板100),贴片微带天线为一层铜材料,厚度为17~34μm。为避免信号之间的串扰以及进行信号隔离,在贴片微带天线周围布一圈接地的通孔501。
在另一实施例中,该混频发射装置中还包括壳体(图中未示),PCB板100内置在壳体中,使得PCB板100与壳体形成波导腔体。其Ka波段高频信号(RF)通过贴片微带天线510耦合至波导腔体,再从波导腔体耦合至下一个贴片微带天线520中,进行后续的信号处理。Ka波段高频信号在波导腔体中传输,可以降低传输损耗。
功率放大模块600包括第三低噪声放大器610、可调增益放大器620和功率放大器630。混频模块400通过贴片微带天线520将Ka波段高频信号传输给第三低噪声放大器610、可调增益放大器620;可调增益放大器620用于对Ka波段高频信号进行增益调节;可调增益放大器620通过贴片微带天线530与功率放大器630连接,功率放大器630对Ka波段高频信号的功率作放大处理。
Ka波段高频信号(RF)通过贴片微带天线520再次耦合到第三低噪声放大器610中,对Ka波段高频信号(RF)进行放大处理,同时使第三低噪声放大器610自身的噪声对Ka波段高频信号(RF)的干扰小。第三低噪声放大器610为低噪声放大器晶体管,可以选用砷化镓工艺的高电子迁移率晶体管,也可以为砷化镓场效应管。经过第三低噪声放大器610的Ka波段高频信号(RF)输送至可调增益放大器620。
可调增益放大器620能够通过控制电压来改变该放大器的增益,由于混频发射装置需要在不同温度、天气状况下有效工作;通过调节可调增益放大器620,能够实现放大器增益的调整以使电路有效工作。例如:雾霾较多的天气能够相应提高输出增益,天气晴朗可以使输出增益相应降低,以降低功耗。
经过可调增益放大器620输出的信号经过贴片微带天线输出到功率放大器630,功率放大器630将Ka波段高频信号(RF)的功率放大,达到Ka波段高频信号(RF)发射的功率需求。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种混频发射装置,连接于Ka波段卫星调制解调器,其特征在于,包括PCB板以及贴装在所述PCB板上的本地振荡模块、滤波模块、混频模块、微带天线模块和功率放大模块;所述本地振荡模块、滤波模块、混频模块、功率放大模块依次连接;
    所述本地振荡模块用于生成本振信号,并将所述本振信号输出给所述滤波模块;
    所述滤波模块用于对所述本振信号进行滤波处理,并将滤波后的所述本振信号输出给所述混频模块;
    所述混频模块用于接收来自所述调制解调器的中频信号,并对所述中频信号、本振信号混频处理,输出Ka波段高频信号至所述功率放大模块;
    所述功率放大模块对所述Ka波段高频信号的功率进行调制放大输出;
    所述微带天线模块用于传输所述Ka波段高频信号。
  2. 根据权利要求1所述的混频发射装置,其特征在于,所述本地振荡模块包括本地振荡器和第一低噪声放大器;所述本地振荡器和第一低噪声放大器连接,所述本地振荡器用于产生本振信号,所述第一低噪声放大器对所述本振信号进行放大处理。
  3. 根据权利要求2所述的混频发射装置,其特征在于,所述本地振荡器采用表面贴装技术贴合在所述PCB板上。
  4. 根据权利要求2所述的混频发射装置,其特征在于,所述滤波模块包括滤波器和第二低噪声放大器;所述滤波器分别与所述第一低噪声放大器和第二低噪声放大器连接,所述滤波器用于滤除杂波使得所述本振信号通过,所述第二低噪声放大器对滤波处理后的所述本振信号进行放大处理。
  5. 根据权利要求4所述的混频发射装置,其特征在于,所述滤波器为带通滤波器。
  6. 根据权利要求1所述的混频发射装置,其特征在于,所述混频模块为二次谐波混频芯片。
  7. 根据权利要求1所述的混频发射装置,其特征在于,所述功率放大模块包括第三低噪声放大器、可调增益放大器和功率放大器;
    所述混频模块通过所述微带天线模块将所述Ka波段高频信号传输给所述第三低噪声放大器、可调增益放大器;
    所述可调增益放大器用于对所述Ka波段高频信号进行增益调节;所述可调增益放大器通过所述微带天线模块与所述功率放大器连接,所述功率放大器对所述Ka波段高频信号的功率作放大处理。
  8. 根据权利要求4所述的混频发射装置,其特征在于,所述PCB板上还设有通孔,所述通孔环绕所述滤波器设置,所述通孔还环绕所述微带天线模块设置。
  9. 根据权利要求1或8所述的混频发射装置,其特征在于,所述PCB板为高频PCB板。
PCT/CN2017/087173 2016-06-13 2017-06-05 混频发射装置 WO2017215480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610415054.3A CN106100653B (zh) 2016-06-13 2016-06-13 混频发射装置
CN201610415054.3 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017215480A1 true WO2017215480A1 (zh) 2017-12-21

Family

ID=57846654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087173 WO2017215480A1 (zh) 2016-06-13 2017-06-05 混频发射装置

Country Status (2)

Country Link
CN (1) CN106100653B (zh)
WO (1) WO2017215480A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120302A (zh) * 2018-10-12 2019-01-01 南京屹信航天科技有限公司 一种小型化ku频段ODU模块
CN109412618A (zh) * 2018-12-24 2019-03-01 南京屹信航天科技有限公司 一种用于星载测控设备的下行通道电路
CN109672410A (zh) * 2018-12-20 2019-04-23 安徽华东光电技术研究所有限公司 一种Ka波段变频模块的制作方法
CN111555998A (zh) * 2020-04-21 2020-08-18 上海航天测控通信研究所 星载原子钟的下变频信号处理方法和变频组件

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100653B (zh) * 2016-06-13 2018-01-16 深圳市华讯方舟卫星通信有限公司 混频发射装置
CN109120286B (zh) * 2018-10-12 2024-01-23 南京屹信航天科技有限公司 一种用于小型化odu发射通道的射频电路
CN109474292B (zh) * 2018-12-24 2024-01-23 南京屹信航天科技有限公司 一种用于星载测控设备的射频通道电路
CN115133945B (zh) * 2022-05-11 2024-04-12 东莞有方物联网科技有限公司 信号处理装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048588A1 (en) * 2002-09-05 2004-03-11 Xytrans, Inc. MMIC transceiver and low cost subharmonically driven microwave receiver
CN102185662A (zh) * 2011-01-05 2011-09-14 东南大学 高频段宽带多信道上下变频模块
CN202050038U (zh) * 2011-03-14 2011-11-23 南京才华科技集团有限公司 Ka波段毫米波TR组件
CN103067080A (zh) * 2012-12-14 2013-04-24 中国科学院深圳先进技术研究院 毫米波信号的多通道传输系统
CN105245270A (zh) * 2015-09-21 2016-01-13 西安空间无线电技术研究所 一种小型化星载8mm频段发射通道
CN106100653A (zh) * 2016-06-13 2016-11-09 深圳市华讯方舟卫星通信有限公司 混频发射装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466962B2 (en) * 2005-06-14 2008-12-16 Motorola, Inc Methods and apparatus of providing a radio frequency local oscillator signal for a transceiver
CN201294588Y (zh) * 2008-10-31 2009-08-19 陕西凌华电子有限公司 数模一体化电子调谐器
CN202906880U (zh) * 2012-11-16 2013-04-24 巨力精密设备制造(东莞)有限公司 无线发射模块
CN103647575B (zh) * 2013-12-19 2015-07-22 中国航天科工集团八五一一研究所 2~12GHz宽带微波前端电路及2~12GHz微波信号接收方法
CN204615817U (zh) * 2014-12-30 2015-09-02 南昌市科陆智能电网科技有限公司 一种微功率无线模块
CN204859174U (zh) * 2015-08-25 2015-12-09 武汉虹信通信技术有限责任公司 一种38GHz ODU前端设计电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048588A1 (en) * 2002-09-05 2004-03-11 Xytrans, Inc. MMIC transceiver and low cost subharmonically driven microwave receiver
CN102185662A (zh) * 2011-01-05 2011-09-14 东南大学 高频段宽带多信道上下变频模块
CN202050038U (zh) * 2011-03-14 2011-11-23 南京才华科技集团有限公司 Ka波段毫米波TR组件
CN103067080A (zh) * 2012-12-14 2013-04-24 中国科学院深圳先进技术研究院 毫米波信号的多通道传输系统
CN105245270A (zh) * 2015-09-21 2016-01-13 西安空间无线电技术研究所 一种小型化星载8mm频段发射通道
CN106100653A (zh) * 2016-06-13 2016-11-09 深圳市华讯方舟卫星通信有限公司 混频发射装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109120302A (zh) * 2018-10-12 2019-01-01 南京屹信航天科技有限公司 一种小型化ku频段ODU模块
CN109120302B (zh) * 2018-10-12 2024-01-30 南京屹信航天科技有限公司 一种小型化ku频段ODU模块
CN109672410A (zh) * 2018-12-20 2019-04-23 安徽华东光电技术研究所有限公司 一种Ka波段变频模块的制作方法
CN109672410B (zh) * 2018-12-20 2024-04-09 安徽华东光电技术研究所有限公司 一种Ka波段变频模块的制作方法
CN109412618A (zh) * 2018-12-24 2019-03-01 南京屹信航天科技有限公司 一种用于星载测控设备的下行通道电路
CN109412618B (zh) * 2018-12-24 2024-01-23 南京屹信航天科技有限公司 一种用于星载测控设备的下行通道电路
CN111555998A (zh) * 2020-04-21 2020-08-18 上海航天测控通信研究所 星载原子钟的下变频信号处理方法和变频组件

Also Published As

Publication number Publication date
CN106100653B (zh) 2018-01-16
CN106100653A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2017215480A1 (zh) 混频发射装置
CN1977467B (zh) 高频部件和多波段通信装置
CN100372241C (zh) 以多层陶瓷形成的射频收发模块
Sharma et al. 200–280GHz CMOS RF front-end of transmitter for rotational spectroscopy
CN1331310C (zh) 基于三支线合成网络的高功率毫米波上变频功放组件
Floyd et al. Wireless interconnection in a CMOS IC with integrated antennas
WO2007106443A2 (en) Monolithic integrated transceiver
Chen et al. A 140GHz transceiver with integrated antenna, inherent-low-loss duplexing and adaptive self-interference cancellation for FMCW monostatic radar
Æjefors et al. A 220GHz subharmonic receiver front end in a SiGe HBT technology
CN110149121B (zh) 一种可调超宽带零中频收发机射频模拟前端
US6996384B2 (en) Receiver and radio communication terminal using the same
JP2003309480A (ja) 低雑音コンバータ
CN215186734U (zh) 高频电路以及通信装置
US5815805A (en) Apparatus and method for attenuating an undesired signal in a radio transceiver
Ryckaert et al. Single-package 5GHz WLAN RF module with embedded patch antenna and 20dBm power amplifier
WO2017215103A1 (zh) Ka波段卫星小站收发机
CN206922743U (zh) 一体化Ka波段天线前端
Chen et al. A Ka-band receiver front end module
Zamanifekri et al. Dual-frequency filtenna using defected ground structure for VSAT applications
JP3970735B2 (ja) 複合フィルタ、アンテナ共用器、及び通信装置
Watcharasatienpan et al. A UHF broadband low-noise amplifier for active digital TV antenna
Qiu et al. Design of a K-band down converter module
CN206099904U (zh) 下变频装置
Liu et al. A 2.4 GHz transceiver RF front-end for ISM-band digital wireless communications
US20030160662A1 (en) Impedance matching circuit for rejecting an image signal via a microstrip structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812591

Country of ref document: EP

Kind code of ref document: A1