WO2017215427A1 - 束缚装置、支架系统以及束缚装置的使用方法 - Google Patents

束缚装置、支架系统以及束缚装置的使用方法 Download PDF

Info

Publication number
WO2017215427A1
WO2017215427A1 PCT/CN2017/085862 CN2017085862W WO2017215427A1 WO 2017215427 A1 WO2017215427 A1 WO 2017215427A1 CN 2017085862 W CN2017085862 W CN 2017085862W WO 2017215427 A1 WO2017215427 A1 WO 2017215427A1
Authority
WO
WIPO (PCT)
Prior art keywords
expandable body
stent
restraining device
environment
state
Prior art date
Application number
PCT/CN2017/085862
Other languages
English (en)
French (fr)
Inventor
陈树国
孟娟
罗七一
Original Assignee
上海微创医疗器械(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610407877.1A external-priority patent/CN107488345B/zh
Priority claimed from CN201610429827.3A external-priority patent/CN107510518B/zh
Application filed by 上海微创医疗器械(集团)有限公司 filed Critical 上海微创医疗器械(集团)有限公司
Publication of WO2017215427A1 publication Critical patent/WO2017215427A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the invention belongs to the technical field of medical instruments, and in particular relates to a binding device, a stent system and a method of using the binding device.
  • stent As an important interventional device for the treatment of vascular stenosis, stent has been widely used in the field of cardiovascular disease.
  • One of the metal stents will remain in the human body for a long time after completing the treatment task. Therefore, there are defects such as MRI or CT imaging that weakens the coronary artery, interferes with surgical revascularization, hinders the formation of collateral circulation, and inhibits positive remodeling of blood vessels.
  • biodegradable stents have become a necessary technical means to solve these problems.
  • the existing biodegradable stents are usually made of a degradable polymer or metal, and can be used to support blood vessels in a short period of time after implantation in a lesion site, thereby realizing revascularization.
  • the biodegradable scaffold degrades into an organic substance that can be absorbed and metabolized by the human body in the human environment, and eventually the scaffold disappears.
  • the stent is in a compressed state before being sent to the diseased blood vessel, and the stent in the compressed state is fixed on the surface of the balloon.
  • the stent in a compressed state is delivered to the diseased vessel along with the balloon, after which the balloon is pressurized, expanded and synchronized to cause the stent to expand, thereby adhering the stent to the vessel wall.
  • PCT patent application WO2012166661A1 discloses a double-layered protective cover that is sleeved on a surface of a stent in a compressed state, wherein the outer sleeve is provided with a protective sleeve for the inner layer. The restraint is carried out to restrain the radial expansion of the stent, and the protective sleeve of the inner layer is cut away to remove the protective sleeve from the surface of the stent. While this patent limits the radial springback of the polymer scaffold during storage, it does not limit the immediate radial expansion of the polymer scaffold after removal of the compression device.
  • the polymer scaffold is sensitive to temperature, and if the storage temperature is too high or experiences high temperatures during transportation, the polymer scaffold will fail and cannot be used any more.
  • the polymer stent after failure cannot be directly distinguished from the appearance, it is easy to cause the polymer stent after failure to be used incorrectly, resulting in failure of the operation.
  • the present invention provides a restraining device for restraining a bracket, the bracket being sleeved outside a support member, the support member for fixing the bracket, and the restraining device including an expandable body
  • the expandable body is sleeved on an outer side of the bracket, and the expandable body is configured to restrict the stent from expanding in a first state and have a first size in a first state, the expandable body being in a first state In the second state, there is a second size, and the second size is larger than the first size.
  • the expandable body has a first state when in the first environment, the expandable body has a second state when in the second environment, and the temperature of the second environment is greater than the temperature of the first environment Or the humidity of the second environment is greater than the humidity of the first environment, or the light intensity of the second environment is greater than the light intensity of the first environment, or the PH value of the second environment is greater than the first
  • the expandable body is temperature sensitive and has a phase transition temperature; when the ambient temperature is less than the phase transition temperature, the expandable body has a first state, and when the ambient temperature is greater than or equal to the phase transition At a temperature, the expandable body has a second state; the phase transition temperature is less than a failure temperature of the stent.
  • the expandable body expands to the second size in the second environment at a speed greater than an expansion speed of the stent.
  • the material of the expandable body has environmental response characteristics.
  • the environmental response characteristics of the material of the expandable body include one or more of the following characteristics: temperature response characteristics, water response characteristics, photo response characteristics, current response characteristics, and pH response characteristics.
  • the material of the expandable body has temperature response characteristics
  • the material of the expandable body is one or more of the following materials: polynorbornene, polyisoprene, degradable polymer, Liquid crystal polymer, polyurethane.
  • the material of the expandable body has water responsive properties
  • the material of the expandable body is one or more of the following materials: polyurethane urea hydrogel, polyacrylamide hydrogel, polyacrylic acid - acrylonitrile hydrogel.
  • the material of the expandable body has a light response property
  • the material of the expandable body is one or more of the following materials: a triphenylmethane derivative, and a 4-azophenyl trimethyl group.
  • the expandable body has a current response characteristic
  • the material of the expandable body is a composite of a polyurethane and a metal powder.
  • the expandable body has a pH response characteristic
  • the material of the expandable body is a polymer having an ionizable acidic group on the molecular chain.
  • the expandable body comprises a chamber
  • the first state is a state in which the chamber is filled
  • the second state is a state in which the chamber is at least partially evacuated.
  • the expandable body of the restraining device is an annular body, and the annular body includes an outer surface and an inner surface, the outer surface and the inner surface covering the chamber.
  • the expandable body of the restraining device comprises a first surface and a second surface, the first surface and the second surface of the expandable body have a radial cross section, and the first surface Located on an inner side of the second surface; the first surface and the second surface enclose the chamber.
  • the expandable body of the tethering device is made of a polymer.
  • the material of the expandable body of the restraining device is one or more of the following materials: polytetrafluoroethylene, nylon, polyvinyl chloride, polyurethane, polyethylene, polypropylene, ethylene-vinyl acetate. Polymer, polyethylene terephthalate, lactide-glycolide copolymer, vinyl alcohol copolymer.
  • the chamber is filled with a gas or liquid.
  • the liquid is a heavy metal containing suspension for shielding the radiation beam.
  • the heavy metal-containing suspension comprises one or more of the following heavy metals: lead, boron, tungsten, rhenium, tin, and antimony.
  • the liquid is saline or a mixed solution of water and ethanol, ethylene glycol, and glycerin.
  • the expandable body is wholly or partially made of a high molecular polymer containing a metal developer.
  • the portion of the expandable body adjacent to the stent is made of a high molecular polymer free of metal developer.
  • the restraining device further comprises an outer member sleeved on an outer side of the restraining device, and the outer member is configured to restrict the expandable body from expanding outward.
  • the present invention also provides a stent system comprising a stent sleeved on an outer side of a support member for securing the stent, the stent system further comprising the above-described restraining device.
  • the present invention also provides a method of using a restraining device, the method comprising: when restraining a stent, sleeve a binding device on an outer side of the stent, and then placing the restraining device in a first state to limit expansion of the stent, wherein
  • the bracket is sleeved on an outer side of a support member, the restraining device has a first size in a first state; when the bracket is disengaged, the restraining device is in a second state, and the restraining device is in a second state There is a second size; wherein the second size is greater than the first size.
  • the restraining device of the present invention can effectively limit the outer dimensions of the stent and constrain the radial rebound of the stent before entering the human body.
  • the restraining device of the present invention can be placed on the bracket, so that the restraining device continues to compress the bracket, and the radial rebound occurs after the compressive force is removed after the bracket is gripped.
  • the increased volume is further reduced, thereby effectively solving the immediate radial rebound of the stent problem.
  • the restraining device of the present invention has a phase transition temperature greater than or equal to a failure temperature of the stent, whereby by observing whether the restraining device is expanded, it is determined whether the stent has experienced failure during storage.
  • the high temperature if the restraining device has expanded, indicates that the stent has failed, thereby isolating it to avoid clinical misuse and improving the safety of the operation.
  • the chamber of the restraint device of the present invention may be provided with a heavy metal-containing suspension, or the restraining device may be at least partially made of a polymer containing a metal developer, and there are many components carried by the stent system.
  • the initial contaminating bacteria therefore, requires a higher dose of radiation sterilization, but causes the stent to receive more radiation, resulting in molecular weight degradation, which in turn affects the performance of the stent, while the initial contamination of the stent segment itself is less or substantially absent.
  • High radiation sterilization dose therefore, the choice of suspension or polymer composite with radiation shielding function as a restraining device can reduce the radiation absorption dose of the stent and improve the performance of the stent.
  • the chamber of the restraint device of the present invention can be filled with a mixed solution of saline or water with ethanol, ethylene glycol, glycerin, etc., and a liquid having a cooling function can be selected, and the stent can be irradiated or stored in a radiation process.
  • the bracket is cooled to prevent the bracket from heating up and failing.
  • Figure 1 is a front elevational view of a stent of a first embodiment of the present invention compressed on a balloon;
  • Figure 2 is a perspective view of the stent loading and binding device of the first embodiment of the present invention
  • Figure 3 is a perspective view of the restraining device of the first embodiment of the present invention contracted on the bracket;
  • Fig. 4 is a perspective view showing the expansion of the restraint device of the first embodiment of the present invention, which is expanded and separated from the stent.
  • Figure 5 is a front elevational view showing the bracket after the crimping of the fifth embodiment of the present invention is loaded on the restraining device;
  • Figure 6 is an end elevational view of the clamped bracket shown in Figure 5 loaded on the restraining device
  • Figure 7 is a perspective view showing the bracket after the crimping shown in Figure 5 is loaded on the restraining device;
  • Figure 8 is a front elevational view showing the filling device of the fifth embodiment of the present invention when it is filled;
  • Figure 9 is an end elevational view of the restraining device of Figure 8 when it is full;
  • Figure 10 is a perspective view showing the binding device shown in Figure 8 when it is filled;
  • Figure 11 is a front elevational view showing the bracket after the crimping of the sixth embodiment of the present invention is loaded on the restraining device;
  • Figure 12 is an end elevational view of the stent after the crimping shown in Figure 11 loaded on the restraining device;
  • Figure 13 is a perspective view showing the bracket after the crimping shown in Figure 11 loaded on the restraining device;
  • Figure 14 is a front elevational view showing the filling device of the sixth embodiment of the present invention when it is filled;
  • Figure 15 is an end elevational view of the restraining device of Figure 14 when it is full;
  • Fig. 16 is a perspective view showing the restraining device shown in Fig. 14 when it is filled.
  • the inventors have found in prior art that once the compressive force of the compression device for crimping the polymer stent is removed, the polymer stent immediately undergoes radial rebound (radial expansion); however, the double mentioned in the background art After the layer protection sleeve is placed on the polymer support, since the polymer support has been radially expanded before the socket, the polymer support is double-layered compared to the outer diameter of the polymer holder when pressed by the compression device. The outer diameter of the protective sleeve is still larger than the outer diameter of the crimped grip.
  • the polymer support loaded with the double protective sleeve is further expanded until the fit protection The inner wall of the sleeve. Therefore, although the existing double-layer protective sleeve limits the radial expansion of the polymer stent to some extent, the outer diameter of the stent does not shrink, even when there is a gap between the protective sleeve and the stent, the polymer stent The outer diameter will also expand, and the effect of restraining the stent expansion is not ideal.
  • the present invention proposes a restraining device, a stent system, and a method of using the restraining device that can limit the radial expansion of the stent prior to entering the human body. Furthermore, the restraining device of the present invention is particularly suitable for restraining stents made of polymeric materials.
  • proximal and distal are relative orientations, relative positions, directions of elements or actions relative to each other from the perspective of a physician using the medical device, although “proximal” and “distal” It is not limiting, but “proximal” generally refers to the end of the medical device that is near the physician during normal operation, while “distal” generally refers to the end that first enters the patient.
  • inner or “inside” refers to the direction near the axis of the stent
  • outer or “outside” refers to the direction away from the axis of the stent.
  • FIG. 1 is a front view of a stent according to a first embodiment of the present invention compressed on a support member (for example, a balloon)
  • FIG. 2 is a perspective view of a stent-mounted restraint device according to a first embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention.
  • FIG. 4 is a perspective view of the restraining device of the first embodiment of the present invention, which is expanded and separated from the bracket after the environmental parameters are changed.
  • the stent 1 is pressed against a balloon 2 to allow the stent 1 to expand through the balloon 2 before the restraining device sleeve is disposed outside the stent.
  • the balloon 2 serves to serve as an external member of the fixing bracket 1.
  • the stent 1 is preferably made of a degradable polymer material.
  • the stent 1 is pressure-held on the outer surface of the balloon 2 by a compression device such as a crimping machine.
  • a compression device such as a crimping machine.
  • the stent 1 after crimping has, for example, a straight tubular shape.
  • the tethering device includes a tubular expandable body 3 made of a material having temperature responsive properties to be temperature sensitive and expandable.
  • the expandable body 3 has a phase transition temperature inherently, and in the environment where the expandable body 3 is placed above the phase transition temperature, the expandable body 3 will expand, become bulky, and be placed In an environment below the phase transition temperature, the expandable body 3 will undergo styling and the volume will no longer change.
  • the stent 1 (along with the balloon 2) is immediately loaded into the expandable body 3 in order to reduce the radial expansion of the stent 1 as much as possible.
  • the expandable body 3 is first rapidly compressed on the surface of the stent 1 by an external device to apply a radial force to restrict the radial expansion of the stent 1, and then the expandable body 3 is rapidly cooled to below the phase transition temperature.
  • the expandable body 3 is shaped, ie, in the first state (
  • the expandable body 3 has a first size to limit rebound of the stent 1 and a first dimension of the expandable body refers to a size of a space formed by the expandable body that accommodates the stent, The expandable body 3 is firmly held in a state of being in close contact with the stent 1.
  • the present embodiment continues to compress the stent 1 taken out of the crimping machine through the expandable body 3, and the volume which is increased by the immediate radial rebound occurring after the stent 1 is taken out from the compression device Further narrowing down, the technical problem of immediate radial rebound of the bracket 1 can be effectively solved.
  • the phase transition temperature of the expandable body 3 is around 35 ° C.
  • the expandable body 3 is rapidly compressed by an external device in an environment of 37 ° C.
  • the expandable body 3 is quickly cooled to below 35 °C.
  • the expandable body 3 carrying the stent 1 is placed in an environment higher than the phase transition temperature (ie, the expandable body 3 is in the second environment, and the temperature of the second environment is in the expandable body 3 Above the phase transition temperature).
  • the expandable body 3 is rapidly expanded and is in a second state (preferably the expandable body 3 is expanded to a second size, and the second size of the expandable body refers to the accommodation formed by the expandable body
  • the expandable body 3 is placed in an environment of 37 ° C, and since the phase transition temperature of 37 ° C is higher than 35 ° C, the expandable body 3 is expanded.
  • the expandable body 3 can be placed in a second environment above its phase transition temperature to expand the expandable body 3 to the second size, in which case the stent 1 can be mounted Into the expandable body 3.
  • the stent 1 carrying the expandable body 3 is stored in a first environment below the phase transition temperature of the expandable body 3 to prevent expansion of the expandable body 3 of the restraining device to drive the stent 1 expansion, the radial dimension of the stent 1 is increased, affecting the use effect.
  • the stent 1 is made of a material that is very sensitive to temperature, such as a polymer stent, its performance such as structural strength, stability, etc., is greatly reduced in an environment above a certain temperature, making it impossible to clinically use. Therefore, if the stent 1 undergoes a high temperature that causes it to fail before use (mainly before entering the human body, such as during storage), it will not be reused. However, there is currently no means for directly judging whether or not the stent 1 has failed before use, so that the stent 1 after failure is often used incorrectly.
  • the phase transition temperature of the expandable body 3 is less than or equal to the failure temperature of the stent 1.
  • the expandable body 3 is made of a material having a phase transition temperature lower than or equal to the failure temperature of the stent 1, although the material has temperature response characteristics.
  • the so-called "failure temperature” is an inherent property of the stent 1. Below the failure temperature, the performance of the stent 1 can effectively meet the clinical needs, and the stent 1 cannot be used clinically for a long time, such as poor structural strength and performance. Unstable and so on.
  • the phase transition temperature of the expandable body 3 is equal to the failure temperature of the stent 1, and then, if the expandable body 3 is found to expand before entering the human body, the stent 1 carrying the expandable body 3 is indicated.
  • the high temperature has been experienced, so the product has a risk of failure, and the stent 1 is isolated to avoid clinical misuse.
  • the phase transition temperature of the expandable body 3 is lower than the failure temperature of the stent 1. Similarly, if the expandable body 3 is found to expand before entering the human body, it is possible that the stent 1 has undergone A failed high temperature occurs, which in turn isolates it.
  • the stent Since the process of taking the stent 1 out of the expandable body 3 is very short, the stent does not fail even if it reaches or slightly exceeds the failure temperature of the stent 1 during this short period of time.
  • the failure temperature of the stent 1 is, for example, 40 ° C, and it is prone to failure when placed at a temperature above 40 ° C for a long time.
  • the phase transition temperature of the expandable body 3 is less than or equal to 40 °C.
  • the shape of the expandable body 3 prior to compression preferably matches the shape of the stent 1 after crimping, including the inner and outer contours of the expandable body 3, to evenly constrain the radial expansion of the stent 1.
  • the expandable body is preferably tubular, for example in the case of a stent 1 having a circular straight tube, the expandable body 3 being correspondingly selected as a circular straight tube.
  • the initial outer diameter of the expandable body 3 can be selected to be 2 mm, and the inner diameter is 1.5 mm, wherein the initial outer diameter of the stent 1 after crimping is 1.35 mm;
  • the inner diameter is larger than the outer diameter of the stent 1 under compression, so that the stent 1 can be smoothly loaded into the expandable body 3.
  • the initial inner diameter of the expandable body 3 is selected to be less than or equal to the initial outer diameter of the stent 1 after crimping. In this case, when the stent 1 needs to be loaded, the expandable body 3 is expanded to the second size, and the stent can also be 1 is loaded into the expandable body 3.
  • bracket 1 After the clamping force of the bracket 1 is removed, there is a certain degree of radial rebound after the compression force is removed, and the actual outer diameter is slightly larger than the initial outer diameter after the compression force is removed. In any case, as long as the bracket 1 can be ensured It can be smoothly loaded into the expandable body 3.
  • the expandable body 3 which is made of a material having temperature response characteristics, optionally including one or more of the following materials: polynorbornene, polyisoprene, degradable polymer, liquid crystal polymer, Polyurethane.
  • the material having temperature response characteristics is a shape memory polymer material.
  • the shape memory polymer material more preferably has a one-way shape memory function, that is, after the material is deformed, a shape change occurs under a single-pass response stimulus, but the response stimulus is continued to be no longer deformed to ensure the reliability of its use.
  • the shape memory velocity (i.e., the speed of expansion to the second dimension) of the expandable body 3 is greater than the radial rebound velocity of the stent 1 in the second environment. That is to say, the material used to prepare the expandable body 3 should have a sharp temperature response characteristic, so that its shape memory speed is faster than the stent 1 The rebound speed, in this way, can effectively limit the rebound of the bracket 1.
  • the expandable body 3 may also be made of a hydrogel having temperature responsive properties.
  • the hydrogel is selected to have a certain mechanical strength to effectively restrain the stent 1, but at the same time it should have a certain deformation ability to facilitate the expansion or expansion of the expandable body 3.
  • the hydrogel is preferably a thermoswellable hydrogel having the characteristics of low temperature shrinkage and high temperature swelling, such as polyurethaneurea hydrogel, polyacrylamide hydrogel (such as N, N-methylenebisacrylamide crosslinked polycondensation) Acrylamide, poly N-isoacrylamide, polyacrylic acid-acrylonitrile hydrogel, and the like.
  • hydrogels there are special forces such as hydrogen bonds in the gel network of such hydrogels, such as polyurethane urea hydrogels containing a large number of hydrogen bonds formed between urethane groups and urea-based molecules.
  • the polyurethaneurea hydrogel and the polyurethaneurea hydrogel are copolymers of polyethylene glycol and an aromatic group-containing diisocyanate.
  • the hydrogel has a high mechanical strength due to the large amount of hydrogen bonds between the urethane group and the urea group.
  • the hydrogen bonding force weakens or disappears, causing the hydrogel to swell.
  • the hydrogel also has a water-responsive property.
  • the osmotic pressure of the hydrogel external water increases rapidly as the water temperature increases, causing the hydrogel to swell, thus also The expandable body 3 can be separated from the stent 1 to take out the stent 1.
  • the condition that the expandable body 3 is expanded to the second size is that the humidity of the second environment is greater than the humidity of the first environment, and the second environment described in the above embodiment.
  • the temperature is greater than the temperature of the first environment.
  • the hydrogel also has a shape memory property that can be expanded back to a second size in an aqueous environment, and the second size is equal to the size of the expandable body 3 before being compressed by an external device.
  • the expandable body 3 is compressed on the surface of the stent 1 by external equipment while being prepared, and simultaneously freeze-dehydrated (ie, in the first environment)
  • the expandable body 3 is contracted and firmly fixed to the surface of the stent 1, that is, the expanded body is in the first state.
  • the expandable body 3 carrying the stent 1 is placed in a water environment of a certain temperature (ie, in a second environment), and the expandable body 3 is restored to the second size (ie, in the second state) ) and off the stand 1.
  • the expandable body 3 should also have good biocompatibility, and no adsorption adhesion occurs after contact with the stent 1.
  • the restraining device disengages the expandable body 3 from the stent 1 by temperature response or water response, but in the present embodiment, the expandable body 3 can also be expanded by stimulation of electric current.
  • the expandable body 3 is made of a material having a temperature response characteristic and a current response characteristic, for example, the expandable body 3 is made of a material having a conductive function and a temperature response characteristic. Specifically, the expandable body 3 also has a current response characteristic, and the heat generated by the current heats itself and expands.
  • the expandable body 3 is made of a shape memory polymer material having a temperature response property and a conductive material composite. At this time, the composite material heats the expandable body 3 by the heat generated by the current, and then expands to return to the second. Dimensions to facilitate removal of the stent 1 from the expandable body 3. For example, a polyurethane having a shape memory function and a metal powder are composited to form an expandable body 3.
  • the expandable body 3 is made of a material having temperature response characteristics, or a material having temperature response characteristics and/or water response characteristics, and the expandable body 3 described in the second embodiment has temperature response characteristics and (or) a material of a current responsive nature, the expandable body 3 stops applying a compressive force to the stent 1 when the environmental response properties of the expandable body 3 are triggered.
  • the expandable body 3 of the present embodiment is made of a material having a light response property so that the expandable body 3 is expanded in accordance with its sensitivity to light.
  • the material of the light response property may be a photo-deformable polymer material, and the shape or size of the expandable body 3 changes under the action of light of a certain wavelength.
  • the material for preparing the expandable body 3 contains a photochromic group, and upon exposure to light, the discoloration group absorbs light energy to undergo molecular heterogeneous changes, causing a change in the overall size or shape of the material.
  • the photo-deformable polymer material comprises one or more of the following materials:
  • Triphenylmethane derivative polymethacrylate containing 4-azophenyl trimethylamine iodide, polymer containing cinnamon subunit acetyl group.
  • the expandable body 3 is made of one or more of the above-mentioned photo-deformable polymer materials, and the expandable body 3 is expanded by ultraviolet light (ie, in the second environment) (for example, Expanding to the second size), at this time, the stent 1 can be loaded into the expandable body 3, and then, after the ultraviolet light is removed (in the first environment), the material is retracted to the shape before the initial expansion (for example, One size for further compressing the stent 1) and allowing the expandable body 3 to abut against the surface of the stent 1 to effectively limit the radial rebound of the stent 1. Further, in clinical use, the expandable body 3 carrying the stent 1 is irradiated with ultraviolet light, and the expandable body 3 can be immediately expanded, thereby taking out the stent 1.
  • ultraviolet light ie, in the second environment
  • the material is retracted to the shape before the initial expansion (for example, One size for further compressing the stent 1) and allowing the expandable body 3 to
  • the expandable body 3 can be made of a material having a light response property.
  • the expandable body 3 can be prepared by adding a certain amount of CAA to the butyl acrylate and acryl-terminated interpenetrating polymer network structure by using a cinnamon subunit acetyl (CAA) as a photosensitive group.
  • CAA cinnamon subunit acetyl
  • the expandable body 3 When irradiated by ultraviolet light having a wavelength greater than 260 nm, the expandable body 3 undergoes cross-linking shrinkage and is in close contact with the surface of the stent 1, at which time the radial rebound of the stent 1 can be effectively restrained; when the wavelength is less than 260 nm Under the irradiation of ultraviolet light, the expandable body 3 undergoes cross-linking expansion and is separated from the stent 1, and the stent 1 can be taken out at this time.
  • the material having photoresponsive properties also has a shape memory function to facilitate recovery of the expandable body 3 to a second dimension after expansion (this second dimension is equal to the dimension of the expandable body 3 prior to compression).
  • the expandable body 3 of the present embodiment is made of a material having a pH-responsive characteristic, preferably a polymer material having a pH-responsive characteristic.
  • a material having a pH-responsive characteristic preferably a polymer material having a pH-responsive characteristic.
  • the acidic hydroxyl group molecular formula, COOH
  • COO- hydroxy acid group
  • the crosslink density increases, and the expandable body 3 occurs.
  • the invention is illustrated by temperature response, water response, photoresponse, current response, and pH response.
  • the invention includes, but is not limited to, the scope disclosed in the above embodiments, for example, simultaneously selecting an expandable body having a temperature response and a pH response, or having a light response and a current response. 3. It is also possible to simultaneously select three or more of the above five kinds of responses to form the expandable body 3.
  • the expandable body 3 is compressed on the surface of the stent 1 by the action of an external device, and then contracted and adhered to the stent according to the sensitivity of the expandable body 3 to the environment. 1 to limit the bracket 1.
  • the external device may be a jig in which the expandable body 3 is loaded and the stent 1 is compressed under the constraints of the jig.
  • the present invention uses the outer member as a balloon 2 as an illustration to illustrate how the stent 1 is fixed to the outer member.
  • the present invention includes, but is not limited to, fixing the stent 1 by means of the balloon 2, and other embodiments can be implemented in the medical device.
  • the outer member of the fixing bracket 1 is also applicable.
  • Figure 5 is a front elevational view showing the bracket after the crimping of the fifth embodiment of the present invention is loaded on the restraining device
  • Figure 6 is an end view of the bracket after the crimping of Figure 5 mounted on the restraining device
  • Figure 7 is Figure 5
  • FIG. 8 is a front view showing the loading device after the crimping device is loaded on the restraining device
  • FIG. 8 is a front view showing the filling device of the fifth embodiment of the present invention
  • the expandable body 3 of the restraining device of the present embodiment is an annular body 6, and the annular body 6 includes an outer surface 61 and an inner surface 62, the bracket 1 and the balloon. 2 is housed in a space formed by the inner surface 62 of the annular body 6.
  • the chamber 63 of the tethering device is located between the outer surface 61 and the inner surface 62 of the annular body 6, and can be filled with gas or liquid into the chamber 63 by an external device.
  • the chamber 63 is designed to expand when the annular body 6 is filled, i.e., the radial force is applied radially to the stent 1, which in turn compresses the stent 1 to a suitable size.
  • the external device comprises a connecting tube 4 which communicates with the chamber of the annular body 6 to allow fluid to be filled into the chamber to effect charging of the annular body 6.
  • the bracket 1 removes the clamping force of the compression device, in order to limit the radial expansion of the bracket 1, the bracket 1 needs to be loaded into the annular body 6, so that the annular body 6 is circumferentially closed to cover the bracket 1, as shown in the figure. 5 to 7; after that, the fluid is filled into the chamber 63 of the annular body 6 by the external device to cause the chamber 63 to be filled, and during the filling process, the annular body 6 is restricted to the outside, that is, the back. Expanding in the direction of the stent 1 causes the annular body 6 to expand only inwardly, i.e., toward the stent 1, as shown in Figs. 8-10, thereby limiting the radial expansion of the stent 1.
  • the present embodiment controls the amount of expansion of the annular body 6 in accordance with the fluid output amount to compress the stent 1 to a suitable size.
  • the bracket 1 is first pressed to the first outer diameter by a compression device; after the pressing force is removed, the bracket 1 immediately rebounds to the second outer diameter (the second outer diameter is larger than the first outer diameter;
  • the annular body 6 of the embodiment can continue to compress the bracket 1 to the third outer diameter when filled, the third outer diameter Greater than the first outer diameter.
  • the inventor has found that the stent 1 is rebounded to the fourth position after removing the double-layer protective cover after removing the pressure-grip force, if only by the double-layer protective cover mentioned in the background art.
  • the outer diameter (the fourth outer diameter is greater than the second outer diameter).
  • the stent system of the present embodiment can control the annular body 6 to contact and further compress the stent 1 during inward expansion to compress the stent 1 to the third outer diameter.
  • the third outer diameter may be greater than the first outer diameter and smaller than the fourth outer diameter, or may be greater than the second outer diameter and smaller than the fourth outer diameter.
  • the third outer diameter is greater than the first outer diameter and less than or equal to the second outer diameter.
  • the third outer diameter is larger than the first outer diameter and smaller than the second outer diameter, and the stent 1 is taken out from the annular body 6 by releasing the pressure of the annular body 6 before use. Similarly, after the stent 1 is taken out, it will rebound to the fourth outer diameter, but due to the long-term compression constraint of the stent 1 through the annular body 6, the fourth outer diameter is obviously lower than the first outer diameter. Two outer diameters, and close to the third outer diameter.
  • bracket 1 of 3.0 mm (material thickness) as an example
  • the following table shows the bracket 1 being deformed by the crimping machine, and then passed through the restraining device of the present embodiment and the double-layer protective cover in the background art (ie, the ring is removed). After the body 6 and the double protective cover are constrained, the outer diameter size changes:
  • the fourth outer diameter of the stent 1 of the present embodiment i.e., the outer diameter after the restraining device is removed
  • the fourth outer diameter of the stent 1 in the background art of 1.42 mm is significantly smaller than the fourth outer diameter of the stent 1 in the background art of 1.42 mm, thus effectively limiting
  • the radial rebound of the bracket 1 preferably reduces the outer diameter of the bracket 1.
  • the annular body 6 is disposed in a cavity formed by an outer member for restricting the expansion of the annular body 6 toward the support 1 during the filling process.
  • the outer member is preferably a coil, and the coil may be in the form of a disk or a retrotype.
  • the coil is easy to carry.
  • the external member includes, but is not limited to, a coil as long as it can restrict the expansion of the annular body 6 in the direction away from the bracket 1.
  • the annular body 6 is made of a polymer.
  • the annular body 6 is made of one or more of the following materials: polytetrafluoroethylene, nylon, polyvinyl chloride, polyurethane, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polyparaphenylene Ethylene glycol dicarboxylate, lactide-glycolide copolymer, vinyl alcohol copolymer.
  • the polymer Since the polymer has good deformation and expansion ability at normal temperature, the use effect is good, especially when the stent 1 is made of a polymer, the annular body 6 of the polymer does not adhere to the surface of the stent 1, so Damage to the surface of the stent 1 is also facilitated, and the stent 1 is also removed from the annular body 6.
  • the length of the annular body 6 is greater than or equal to the length of the stent 1 to completely cover the stent 1.
  • the inventors have also found in the prior art that the polymer stent is sterilized by excessive radiation and/or the temperature of the polymer stent storage environment is too high, which affects the performance of the polymer stent.
  • the prior art stent protector only realizes the diameter. Rebound to the constraint and avoid damage to the outer surface of the bracket without solution Over-radiation sterilization and technical problems of excessive ambient temperature.
  • a liquid having a cooling function is introduced into the chamber 63 of the annular body 6, and the bracket 1 can be cooled when the stent 1 is irradiated and stored or stored.
  • a liquid with low freezing point and good cooling effect such as cold brine or mixed solution of water and ethanol, ethylene glycol, glycerin, etc.
  • the liquid having a cooling function is brine
  • the annular body 6 is expanded by the pressure of the saline to restrain the stent 1. Since the brine has a good cooling effect, the stent 1 has a lower temperature during sterilization and transport storage, and the stent 1 of the present embodiment undergoes sterilization and transport storage processes relative to the stent without brine cooling. Lower temperatures and better stent performance.
  • a heavy metal suspension having a radiation shielding function is introduced into the chamber 63 of the annular body 6 for shielding the radiation beam.
  • Selecting a heavy metal suspension with radiation shielding function can reduce the radiation dose of the stent 1 during radiation sterilization, slow down the radiation degradation and molecular weight drop of the stent 1, and ensure the performance of the stent.
  • an aqueous suspension of heavy metal compounds such as lead, boron, tungsten, ruthenium, tin, ruthenium, etc. having a larger atomic number may be selected, or an aqueous suspension prepared by mixing these metal compounds may be selected.
  • the polymer used to prepare the restraining device selects a polymer composite having radiation shielding.
  • a polymer composite having radiation shielding is a polymer material compounded with a heavy metal compound having a large atomic number such as lead, boron, tungsten, ruthenium, tin, or antimony to shield X-rays, ⁇ -rays, or electron beam radiation.
  • a heavy metal compound having a large atomic number such as lead, boron, tungsten, ruthenium, tin, or antimony to shield X-rays, ⁇ -rays, or electron beam radiation.
  • the polymer composite material with radiation shielding function is selected as the binding device, which can reduce the radiation absorption dose of the stent and improve the performance of the stent.
  • the expandable body 3 of the restraining device in the embodiment is a spiral body 5 spirally wound on the bracket 1 after the crimping, instead of the sleeve shown in FIGS. 5-10.
  • Figure 11 is a front elevational view showing the bracket after the crimping of the sixth embodiment of the present invention is loaded on the restraining device
  • Figure 12 is an end view of the bracket after the crimping of Figure 11 mounted on the restraining device
  • Figure 13 is Figure 11
  • FIG. 14 is a front view showing the filling device of the present invention in the case where the restraining device is filled
  • FIG. 15 is an end view showing the filling device shown in FIG. It is a schematic perspective view of the restraining device shown in Fig. 14 when it is filled.
  • the spiral body 5 is formed by curling the sheet from the inside to the outside, and such a structure can also function to restrict the expansion of the stent 1 at the time of filling.
  • the expandable body 3 of the restraining device includes a first surface 51 and a second surface 52, and the first surface 51 and the second surface 52 of the expandable body 3 have a spiral shape in a radial direction. And the first surface 51 is located inside the second surface 52; the first surface 51 and the second surface 52 cover the chamber 63.
  • the spiral body 5 shown in Figs. 11 to 16 includes a first surface 51 and a second surface 52 which are spaced apart from the second surface 52 at the outer side of the stent 1 and the balloon 2.
  • the chamber 53 of the spiral body 5 is located between the first surface 51 and the second surface 52.
  • the external device communicates with the chamber 53 of the spiral body 5 through the connecting pipe 4 to supply a gas or a fluid to the spiral body 5, thereby achieving filling of the spiral body 5.
  • the spiral body 5 can be similarly disposed in an outer member (such as a coil) having a cavity to define the expansion of the spiral body 5 in a direction away from the stent 1.
  • an outer member such as a coil
  • the second layer of the spiral 5 (i.e., the layer remote from the stent 1) is prepared from a composite of polypropylene and barium sulfate.
  • the spiral body 5 prepared by the composite material has a significant shielding effect on the radiation, and the shielding rate is more than 60%, which can effectively slow down the radiation degradation and molecular weight drop of the stent 1 (especially the polymer stent) during the radiation sterilization process, so that the stent 1 It still maintains good performance after sterilization.
  • the first layer of the spiral body 5 (ie, the layer adjacent to the bracket 1) is made of heavy metal-free
  • the polymer is prepared to avoid direct contact of the heavy metal with the stent 1 and to effectively shield the radiation from the degradation of the stent due to excessive irradiation or an increase in ambient temperature.
  • a liquid having a cooling function can be introduced into the chamber 53 of the spiral body 5, which can reduce the radiation absorption amount of the stent 1, and can also lower the stent temperature.
  • the expandable body of the restraining device of the above-described fifth and sixth embodiments includes, but is not limited to, an annular shape or a spiral shape, as long as the expansion of the stent 1 can be restricted when the restraining device is filled.

Abstract

一种束缚装置,用于约束支架(1),所述支架(1)固定在一支撑件(2)外侧,其特征在于,所述束缚装置包括设置于所述支架(1)外侧的可扩张体(3),所述可扩张体(3)在第一状态下具有一第一尺寸,用于限制所述支架(1)的扩张;所述可扩张体(3)在第二状态下具有一第二尺寸,所述第二尺寸大于所述第一尺寸。本束缚装置能有效限制支架(1)的外廓尺寸,避免支架(1)在进入人体以前在压缩装置去除后发生径向扩张。还提供了一种支架系统以及束缚装置的使用方法。

Description

束缚装置、支架系统以及束缚装置的使用方法 技术领域
本发明属于医疗器械技术领域,特别涉及一种束缚装置、支架系统以及束缚装置的使用方法。
背景技术
支架作为治疗血管狭窄的重要介入器械,已经在心血管疾病领域得到了广泛的应用。其中一种金属支架,在完成治疗任务后会永久存留于人体,因而,存在削弱冠状动脉的MRI或CT影像、干扰外科血运重建、阻碍侧枝循环的形成、抑制血管正性重塑等缺陷。为此,生物可降解支架成为了解决这些问题的必要技术手段。
现有的生物可降解支架通常由可降解的聚合物或金属制成,在植入病变位置后可以在短期内起到支撑血管的作用,实现血运重建。在治疗完成以后,生物可降解支架在人体环境内会降解成为可被人体吸收、代谢的有机物,最终该支架会消失。其中,支架在送入病变血管之前,其为压缩状态,压缩状态下的支架固定在一球囊的表面。使用时,压缩状态下的支架随同球囊输送至病变血管,之后,对球囊进行充压,使其扩张并同步促使支架扩张,从而使支架紧贴血管壁。
其中,聚合物支架压缩在球囊表面后,其会发生一定程度的径向回弹(径向扩张),即聚合物支架脱离压缩装置后,由于压缩力的去除,聚合物支架会逐渐扩张变大,而较大的外径不利于其穿过狭窄的血管病变,使其临床应用可行性降低。
为解决上述问题,普遍的做法是在聚合物支架存储过程中,对其径向回弹进行限制。例如:PCT专利申请WO2012166661A1公开了一种双层保护套,该保护套套接在压缩状态下的支架表面,其中外层的保护套对内层的保护套 进行束缚,进而束缚支架径向扩张,而内层的保护套剖开,便可将保护套从支架表面移除。该专利虽然限制了聚合物支架在存储过程中的径向回弹,但是,其无法限制聚合物支架在压缩装置去除后的即刻径向扩张。
此外,聚合物支架对温度很敏感,若存储温度过高或者在运输过程中经历高温,则聚合物支架会发生失效,无法继续使用。但是,由于失效后的聚合物支架从外观上无法直接辨别,容易导致失效后的聚合物支架经常被错误使用,致使手术失败。
发明内容
本发明的目的在于提供一种束缚装置、支架系统以及束缚装置的使用方法,以解决支架在压缩装置去除后容易发生径向扩张的技术问题。
为实现上述目的,本发明提供了一种束缚装置,用于约束支架,所述支架套设在一支撑件外侧,所述支撑件用于固定所述支架,所述束缚装置包括一可扩张体,所述可扩张体套设在所述支架的外侧,所述可扩张体用于在第一状态下限制所述支架扩张并在第一状态下具有第一尺寸,所述可扩张体在第二状态下具有第二尺寸,所述第二尺寸大于所述第一尺寸。
可选的,处于第一环境时所述可扩张体具有第一状态,处于第二环境时所述可扩张体具有第二状态;且所述第二环境的温度大于所述第一环境的温度,或者所述第二环境的湿度大于所述第一环境的湿度,或者所述第二环境的光照强度大于所述第一环境的光照强度,或者所述第二环境的PH值大于所述第一环境的PH值,或者在所述第二环境下电流流经所述可扩张体,在所述第一环境下没有电流流经所述可扩张体。
可选的,所述可扩张体是温度敏感的,且具有一相转变温度;当环境温度小于所述相转变温度,所述可扩张体具有第一状态,当环境温度大于等于所述相转变温度,所述可扩张体具有第二状态;所述相转变温度小于所述支架的一失效温度。
可选的,所述可扩张体在所述第二环境下扩张至所述第二尺寸的速度大于所述支架的扩张速度。
可选的,所述可扩张体的材料具有环境响应特性。
可选的,所述可扩张体的材料的环境响应特性包括以下特性中的一种或多种:温度响应特性、水响应特性、光响应特性、电流响应特性、PH值响应特性。
可选的,所述可扩张体的材料具有温度响应特性,所述可扩张体的材料为以下材料中的一种或多种:聚降冰片烯、聚异戊二烯、可降解高分子、液晶高分子、聚氨酯。
可选的,所述可扩张体的材料具有水响应特性,所述可扩张体的材料为以下材料中的一种或多种:聚氨酯脲水凝胶、聚丙烯酰胺类水凝胶、聚丙烯酸-丙烯腈水凝胶。
可选的,所述可扩张体的材料具有光响应特性,所述可扩张体的材料为以下材料中的一种或多种:三苯基甲烷衍生物、含4-偶氮苯基三甲基胺碘化物的聚甲基丙烯酸酯、含肉桂亚基乙酰基团的聚合物。
可选的,所述可扩张体具有电流响应特性,所述可扩张体的材料为聚氨酯和金属粉末的复合物。
可选的,所述可扩张体具有PH值响应特性,所述可扩张体的材料为分子链上有可电离的酸性基团的聚合物。
可选的,所述可扩张体包括一腔室,所述第一状态为所述腔室充盈的状态,所述第二状态为所述腔室至少部分排空的状态。
可选的,所述束缚装置的可扩张体为一环状体,所述环状体包括一外表面和一内表面,所述外表面和内表面包覆所述腔室。
可选的,所述束缚装置的可扩张体包括一第一表面和一第二表面,所述可扩张体的第一表面和第二表面的径向截面呈螺旋状,且所述第一表面位于所述第二表面的内侧;所述第一表面和第二表面包覆所述腔室。
可选的,所述束缚装置的可扩张体由聚合物制成。
可选的,所述束缚装置的可扩张体的材料为以下材料中的一种或多种:聚四氟乙烯、尼龙、聚氯乙烯、聚氨酯、聚乙烯、聚丙烯、乙烯-醋酸乙烯酯共聚合物、聚对苯二甲酸乙二醇酯、丙交酯-乙交酯共聚物、乙烯醇共聚物。
可选的,所述腔室通过一气体或液体充盈。
可选的,所述液体为含重金属的悬浮液,用于屏蔽辐射束。
可选的,所述含重金属的悬浮液包括以下重金属中的一种或多种:铅、硼、钨、钡、锡、以及镧。
可选的,所述液体为盐水或水与乙醇、乙二醇、甘油的混合溶液。
可选的,所述可扩张体全部或部分由含金属显影剂的高分子聚合物制成。
可选的,所述可扩张体靠近所述支架的部分由不含金属显影剂的高分子聚合物制成。
可选的,所述束缚装置还包括一外部构件,所述外部构件套设在所述束缚装置的外侧上,且所述外部构件用于限制所述可扩张体向外侧扩张。
本发明还提供一种支架系统,包括支架,所述支架套设在一支撑件外侧上,所述支撑件用于固定所述支架,所述支架系统还包括上述束缚装置。
本发明还提供一种束缚装置的使用方法,所述方法包括:约束支架时,将一束缚装置套设于支架的外侧,之后使束缚装置处于第一状态下,以限制所述支架扩张,其中,所述支架套设于一支撑件的外侧上,所述束缚装置在第一状态下具有第一尺寸;脱离支架时,使束缚装置处于第二状态下,所述束缚装置在第二状态下具有第二尺寸;其中,第二尺寸大于第一尺寸。
综上所述,本发明的束缚装置能有效限制支架的外廓尺寸,约束支架在进入人体以前的径向回弹。
特别地,当支架压握后去除压缩力后,可将本发明的束缚装置设置在支架上,进而使束缚装置继续压缩支架,将因支架压握后去除压缩力后发生的即刻径向回弹而增大的体积进一步缩小,从而有效解决支架的即刻径向回弹 问题。
特别地,本发明的束缚装置,其相转变温度大于或等于支架的失效温度,由此,通过观察所述束缚装置是否发生扩张,便可判断所述支架在存储过程中是否经历了使其失效的高温,若所述束缚装置已发生扩张,则表明所述支架已失效,进而将其隔离,以免被临床误用,提高了手术的安全性。
特别地,本发明的约束装置之腔室内可通入含重金属的悬浮液,或者所述约束装置至少部分由含金属显影剂的高分子聚合物制成,由于支架系统携带的部件等存在较多的初始污染菌,因此需要较高的辐射灭菌剂量,但导致支架受到较多的辐射,产生分子量降解,进而影响支架性能,而支架段本身的初始污染菌较少或基本没有,不需要较高的辐射灭菌剂量,故而,选择具有辐射屏蔽功能的悬浮液或聚合物复合材料作为约束装置,可以降低支架的辐射吸收剂量,提高支架的性能。
特别地,本发明的约束装置之腔室内可通入盐水或水与乙醇、乙二醇、甘油等的混合溶液,选择具有冷却功能的液体,可以在支架进行辐射灭菌或存储过程中,对支架进行冷却,避免支架受热升温而失效。
附图说明
图1是本发明实施例一的支架压缩在一球囊上的主视图;
图2是本发明实施例一的支架装入束缚装置的透视图;
图3是本发明实施例一的束缚装置收缩在支架上的透视图;
图4是本发明实施例一的束缚装置的环境参数改变后,产生扩张并与支架分离的透视图。
图5是本发明实施例五的压握后的支架装载于束缚装置上的主视图;
图6是图5所示的压握后的支架装载于束缚装置上的端面图;
图7是图5所示的压握后的支架装载于束缚装置上的立体示意图;
图8是本发明实施例五的束缚装置充盈时的主视图;
图9是图8所示的束缚装置充盈时的端面图;
图10是图8所示的束缚装置充盈时的立体示意图;
图11是本发明实施例六的压握后的支架装载于束缚装置上的主视图;
图12是图11所示的压握后的支架装载于束缚装置上的端面图;
图13是图11所示的压握后的支架装载于束缚装置上的立体示意图;
图14是本发明实施例六的束缚装置充盈时的主视图;
图15是图14所示的束缚装置充盈时的端面图;
图16是图14所示的束缚装置充盈时的立体示意图。
附图标记说明如下:
1-支架;2-球囊;3-可扩张体;4-连接管;5-螺旋体;51-第一表面;52-第二表面;53-腔室;6-环状体;61-外表面;62-内表面;63-腔室。
具体实施方式
发明人对现有技术研究发现:一旦用于压握聚合物支架的压缩装置的压缩力去除,聚合物支架立刻会发生径向回弹(径向扩张);然而,背景技术中提及的双层保护套设在聚合物支架上后,由于聚合物支架在套接之前已发生径向扩张,故而,相比于聚合物支架被压缩装置压握时的外径,聚合物支架在设置双层保护套后的外径仍然大于被压握时的外径,尤其当双层保护套与聚合物支架之间存在间隙时,装载有双层保护套的聚合物支架还会进一步扩张直至贴合保护套的内壁。故而,现有的双层保护套虽然在一定程度上限制了聚合物支架的径向扩张,但是支架的外径并没有缩小,甚至于当保护套与支架之间存在间隙时,聚合物支架的外径还会扩大,约束支架扩张的效果不是很理想。
本发明提出了一种束缚装置、支架系统以及束缚装置的使用方法,能够限制支架在进入人体以前发生径向扩张。此外,本发明的束缚装置尤其适用于约束由聚合物材料制成的支架。
以下结合附图1~16和具体实施例对本发明提出的束缚装置、支架系统以及束缚装置的使用方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。特别的,由于各附图所要突出的内容不同,往往采用了不同的比例。
在本文中,“近端”和“远端”是从使用该医疗器械的医生角度来看相对于彼此的元件或动作的相对方位、相对位置、方向,尽管“近端”和“远端”并非是限制性的,但是“近端”通常指该医疗设备在正常操作过程中靠近医生的一端,而“远端”通常是指首先进入患者体内的一端。
在本文中,“内”或“内侧”是指靠近支架的轴线的方向,“外”或“外侧”是指远离支架的轴线的方向。
如在本说明书和所附权利要求中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书和所附权利要求中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。
<实施例一>
图1是本发明实施例一的支架压缩在一支撑件(例如球囊)上的主视图,图2是本发明实施例一的支架装入束缚装置的透视图,图3是本发明实施例一的束缚装置收缩在支架上的透视图,图4是本发明实施例一的束缚装置的环境参数改变后,产生扩张并与支架分离的透视图。
首先,请参阅图1,在束缚装置套设置在支架外侧之前,所述支架1压握在一个球囊2上,以使支架1通过球囊2实现扩张。在此,所述球囊2用于充当固定支架1的外部构件。所述支架1优选由可降解的聚合物材料制成。
本实施例中,所述支架1通过一压缩装置(如压握机)压握在球囊2的外表面上。压握后的支架1例如呈直管状。
接着,参阅图2,所述束缚装置包括一管状的可扩张体3,所述可扩张体3由具有温度响应特性的材料制成,以使其对温度敏感并可产生扩张。
具体地说,所述可扩张体3固有一个相转变温度,在将可扩张体3置于高于相转变温度的环境中,所述可扩张体3将发生扩张,体积变大,而置于低于相转变温度的环境中,所述可扩张体3将发生定型,体积不再变化。
利用可扩张体3的温度响应特性,在去除压缩装置的压缩力后,为尽可能减少支架1径向扩张,即刻将支架1(连同球囊2)装入可扩张体3中。装载完毕后,首先通过外部设备将可扩张体3快速压缩在支架1的表面上,以施加一径向力限制支架1径向扩张,之后,将可扩张体3迅速冷却至相转变温度以下。由于在相转变温度以下(即可扩张体3处于第一环境,该第一环境的温度在可扩张体3的相转变温度以下),所述可扩张体3发生定型,即处于第一状态(定型时,优选所述可扩张体3具有第一尺寸以限制支架1的回弹,所述可扩张体的第一尺寸指所述可扩张体形成的容纳所述支架的空间的尺寸),从而使可扩张体3牢固保持在与支架1紧贴的状态下。与现有技术相比较,本实施例对从压握机中取出的支架1通过可扩张体3继续压缩,将因支架1从压缩装置中取出后发生的即刻径向回弹而增大的体积进一步缩小,因此可以有效地解决支架1的即刻径向回弹的技术问题。
举例来说,所述可扩张体3的相转变温度在35℃附近,将支架1装入束缚装置的可扩张体3中后,在37℃的环境中通过外部设备将可扩张体3快速压缩在支架1的表面上,并迅速将可扩张体3冷却至35℃以下。进一步,需要使用时,将携带支架1的可扩张体3置于高于相转变温度的环境中(即所述可扩张体3处于第二环境,该第二环境的温度在可扩张体3的相转变温度以上)。此时,所述可扩张体3快速扩张并处于第二状态(优选所述可扩张体3扩张至第二尺寸,所述可扩张体的第二尺寸指所述可扩张体形成的容纳所述支架的空间的尺寸),进而至少部分脱离支架1,以便于将支架1从可扩张体3中取出。
例如:将可扩张体3置于37℃的环境中,由于37℃高于35℃的相转变温度,故而可扩张体3会发生扩张。
当然,在装载支架1之前,可将可扩张体3置于高于其相转变温度的第二环境中,以使可扩张体3扩张至所述第二尺寸,此时,可将支架1装入可扩张体3中。
更进一步,在使用之前,携带有可扩张体3的支架1在低于可扩张体3的相转变温度以下的第一环境中进行存储,以避免束缚装置的可扩张体3发生扩张而带动支架1扩张,使支架1的径向尺寸变大,影响使用效果。
此外,若支架1由对温度非常敏感的材料制成,如聚合物支架,那么,在高于一定温度的环境下,其性能如结构强度、稳定性等会大大降低,使得其无法在临床上使用。因此,若使用之前(主要是进入人体之前,如存储过程中),所述支架1经历使其发生失效的高温,则将不可再用。但是,目前缺乏可以直接判断使用之前支架1是否发生失效的手段,使得失效后的支架1经常会被错误地使用。为了能够直观判断进入人体以前支架1是否发生失效,优选所述可扩张体3的相转变温度小于或等于支架1的失效温度。换句话说,所述可扩张体3由相转变温度低于或等于支架1的失效温度的材料制成,当然该材料具有温度响应特性。所谓“失效温度”是支架1的一个固有属性,在失效温度以下,支架1的性能可有效满足临床需要,而长时间处于失效温度以上,支架1无法在临床上使用,例如结构强度差、性能不稳定等。
在一个实施例中,所述可扩张体3的相转变温度等于支架1的失效温度,那么,在进入人体以前,若发现可扩张体3发生扩张,则表明携带有可扩张体3的支架1经历了使其发生失效的高温,因此,产品有失效的风险,进而将此支架1隔离,以避免被临床误用。
在另一实施例中,所述可扩张体3的相转变温度低于支架1的失效温度,同理,若在进入人体以前发现可扩张体3发生扩张,则有可能支架1经历了使其发生失效的高温,进而将其隔离。
由于将支架1从可扩张体3取出的过程十分短暂,因此即使在该短暂的过程中达到或者略微超过支架1的失效温度也不会使支架失效。
本实施例中,所述支架1的失效温度例如是40℃,其在40℃以上长时间放置容易发生失效。对应地,所述可扩张体3的相转变温度小于或等于40℃。
所述可扩张体3压缩前的形状,优选与支架1压握后的形状相匹配,包括可扩张体3的内轮廓和外轮廓,以便均匀束缚支架1的径向扩张。所述可扩张体优选为管状,例如以圆形直管的支架1来说,所述可扩张体3相应选择为圆形直管。
进一步的,对于圆形直管,所述可扩张体3的初始外径可选择2mm,内径为1.5mm,其中,所述支架1压握后的初始外径为1.35mm;由于可扩张体3的内径大于支架1压缩下的外径,故可以顺利将支架1装入可扩张体3中。或者,所述可扩张体3的初始内径选择小于或等于支架1压握后的初始外径,此情况下,需要装载支架1时,使可扩张体3扩张至第二尺寸,同样可将支架1装入可扩张体3中。当然,所述支架1压握后在去除压缩力后,还存在一定程度的径向回弹,其实际的外径会略大于压缩力去除后的初始外径,无论如何,只要确保支架1能够顺利装入可扩张体3中即可。
对于可扩张体3,其由具有温度响应特性的材料制成,可选包括以下材料中的一种或多种:聚降冰片烯、聚异戊二烯、可降解高分子、液晶高分子、聚氨酯。
优选,具有温度响应特性的材料为形状记忆高分子材料。形状记忆高分子材料更优选具有单程形状记忆功能,即材料变形后,在单程的响应刺激下发生形状变化,但继续进行响应刺激其不再发生变形,以确保其使用的可靠性。
较佳实施例中,在第二环境下,所述可扩张体3的形状记忆速度(即扩张至第二尺寸的速度)大于支架1的径向回弹速度。也就是说,用于制备可扩张体3的材料应具有敏锐的温度响应特性,使得其形状记忆速度快于支架1 的回弹速度,如此,可有效限制支架1的回弹。
可选地,所述可扩张体3还可以由具有温度响应特性的水凝胶制成。水凝胶选择具有一定的力学强度,以有效束缚支架1,但同时应具有一定的形变能力,以利于可扩张体3压缩或扩张。水凝胶优选为热胀型水凝胶,具有低温收缩,高温溶胀的特性,如聚氨酯脲水凝胶、聚丙烯酰胺类水凝胶(如N、N-亚甲基双丙烯酰胺交联聚丙烯酰胺、聚N-异丙烯酰胺)、聚丙烯酸-丙烯腈水凝胶等。这类水凝胶的凝胶网络内存在氢键等特殊作用力,如聚氨酯脲水凝胶中含有氨基甲酸酯基和脲基分子间形成的大量氢键。其中,聚氨酯脲水凝胶,聚氨酯脲水凝胶为聚乙二醇和含有芳香基的二异氰酸酯的共聚物。由于氨基甲酸酯基和脲基之间存在大量氢键,水凝胶具有较高的力学强度。而且,随着温度升高,氢键作用力减弱或消失,导致水凝胶发生溶胀。
在本实施例中,水凝胶还具有水响应特性,当水凝胶接触水时,水凝胶外水的渗透压会随水温的升高会迅速增大,导致水凝胶溶胀,如此也可使可扩张体3与支架1分离,从而取出支架1。此时,本领域技术人员应当知晓:所述可扩张体3扩张至第二尺寸的条件为:所述第二环境的湿度大于第一环境的湿度,与上述实施例中所述的第二环境的温度大于第一环境的温度不同。
更优选,水凝胶还具有形状记忆特性,其置于水环境中可以扩张回复至第二尺寸,且该第二尺寸等于可扩张体3在被外部设备压缩前的尺寸。
进而,以具有温度响应、水响应以及形状记忆特性的水凝胶为例,制备时,将可扩张体3在外部设备作用下压缩在支架1的表面上,同时冷冻脱水(即第一环境下),使可扩张体3收缩并牢固固定在支架1的表面上,即可扩张体处于第一状态下。将支架从束缚装置取出时,将携带支架1的可扩张体3置于一定温度的水环境中(即第二环境下),所述可扩张体3恢复至第二尺寸(即处于第二状态)而脱离支架1。
优选的,所述可扩张体3还应具有良好的生物相容性,且与支架1接触后不发生吸附粘连。
<实施例二>
实施例一中,所述束缚装置通过温度响应或水响应使可扩张体3扩张而脱离支架1,但是,在本实施例中,还可通过电流的刺激使可扩张体3发生扩张。
具体地说,所述可扩张体3由具有温度响应特性以及电流响应特性的材料制成,例如所述可扩张体3由具有导电功能以及温度响应特性的材料复合制成。具体的,所述可扩张体3还具有电流响应特性,则其通过电流产生的热量使自身升温,进而扩张。
优选地,所述可扩张体3由具有温度响应特性的形状记忆高分子材料和导电材料复合制成,此时,复合材料通过电流产生的热量使可扩张体3升温,进而扩张恢复至第二尺寸,以便于将支架1从可扩张体3中取出。例如:具有形状记忆功能的聚氨酯和金属粉末复合制成可扩张体3。
<实施例三>
实施例一中,所述可扩张体3由具有温度响应特性的材料,或具有温度响应特性和(或)水响应特性的材料,实施例二中所述可扩张体3由具有温度响应特性和(或)电流响应特性的材料制成,这些环境响应材料在可扩张体3的环境响应特性被触发时,所述可扩张体3停止向支架1施加压缩力。与实施例一和实施例二不同的是:本实施例的可扩张体3由具有光响应特性的材料制成,以使可扩张体3根据其对光的敏感产生扩张。
光响应特性的材料可以是光致变形高分子材料,在一定波长光的作用下,所述可扩张体3的外形或尺寸发生变化。具体地说,用于制备可扩张体3的材料中含有光致变色基团,受到光照后,变色基团吸收光能发生分子异构变化,引起材料整体尺寸或形状的改变。
可选的,光致变形高分子材料包括以下材料中的一种或多种:
三苯基甲烷衍生物、含4-偶氮苯基三甲基胺碘化物的聚甲基丙烯酸酯、含肉桂亚基乙酰基团的聚合物。
所述可扩张体3由上述这些光致变形高分子材料中的一种或者多种制成,所述可扩张体3若受到紫外光照射(即第二环境下),其会发生扩张(例如扩张至第二尺寸),此时,可将支架1装入可扩张体3中,然后,在去除紫外光照后(在第一环境下),材料会缩回至初始扩张之前的形状(例如第一尺寸,用于进一步压缩支架1),并使可扩张体3紧贴在支架1的表面上,以有效限制支架1的径向回弹。此外,临床使用时,对携带有支架1的可扩张体3进行紫外光照射,所述可扩张体3便可立即扩张,从而取出支架1。
优选的,可扩张体3可由光响应特性的材料制成。可以是以肉桂亚基乙酰(CAA)作为光敏基团,在丙烯酸丁酯和丙烯酰封端的互穿聚合物网络结构中加入一定含量的CAA,制成可扩张体3。当在波长大于260纳米的紫外光照射下,所述可扩张体3发生交联收缩并紧贴在支架1的表面上,此时可有效束缚支架1的径向回弹;当在波长小于260nm的紫外光照射下,所述可扩张体3发生交联扩张并与支架1分离,此时可取出支架1。
优选方案中,具有光响应特性的材料还具有形状记忆功能,以便于可扩张体3扩张后恢复至第二尺寸(该第二尺寸等于可扩张体3压缩前的尺寸)。
<实施例四>
本实施例的可扩张体3由具有PH值响应特性的材料制成,优选为具有PH值响应特性的聚合物材料。聚合物分子链上存在大量可电离的酸性基团,如聚甲基丙烯酸、聚丙烯酸与壳聚糖复配、壳聚糖和聚甲基丙烯酸互穿聚合物网络凝胶等。当可扩张体3处于中性或碱性环境中(第一环境下),酸性羟基(分子式,COOH)电离形成羟酸根(分子式,COO-),交联密度上升,所述可扩张体3发生收缩并紧贴在支架1的表面上,可有效限制支架1;当将可扩张体3置于酸性环境中(第二环境下),正负电荷间的作用减弱,交联密度下降,所述可扩张体3发生扩张并与支架1分离,便可取出支架1。
本发明以温度响应、水响应、光响应、电流响应、PH值响应作为示意, 以说明本发明的束缚装置如何具体实现,但是本发明包括但不局限于上述实施例所公开的范围,例如:同时选择具有温度响应和PH值响应,或具有光响应和电流响应的可扩张体3,也可同时选择上述五种响应中的三种或三种以上组合制成可扩张体3。
此外,无论是上述何种环境响应,优选所述可扩张体3在外部设备的作用下压缩在支架1的表面上,然后根据可扩张体3对环境的敏感,使其收缩并紧贴在支架1上,以限制支架1。所述外部设备可以是一治具,所述可扩张体3装入治具中并在治具的限制下压缩支架1。
另外,本发明以外部构件为一球囊2作为示意,说明支架1如何固定在外部构件上,当然本发明包括但不局限于采用球囊2的方式固定支架1,在医疗器械中其他可以实施固定支架1的外部构件也可适用。
<实施例五>
图5是本发明实施例五的压握后的支架装载于束缚装置上的主视图,图6是图5所示的压握后的支架装载于束缚装置上的端面图,图7是图5所示的压握后的支架装载于束缚装置上的立体示意图,图8是本发明实施例五的束缚装置充盈时的主视图,图9是图8所示的束缚装置充盈时的端面图,图10是图8所示的束缚装置充盈时的立体示意图。
如图5~10所示,本实施例的束缚装置的可扩张体3为一环状体6,所述环状体6包括一外表面61和一内表面62,所述支架1以及球囊2容纳于环状体6的内表面62所形成的空间中。所述束缚装置的腔室63位于环状体6的外表面61和内表面62之间,并可通过一外部设备将气体或液体通入所述腔室63从而充盈。所述腔室63的设计是为了让环状体6充盈时膨胀,所述环状体6即径向施力于支架1,继而压缩支架1至适合的尺寸。
所述外部设备包括一根连接管4,所述连接管4与环状体6的腔室连通,以使流体充入所述腔室中实现对环状体6的充压。
进一步,当支架1去除压缩装置的压握力后,为了限制支架1的径向扩张,需将支架1装入环状体6中,以使环状体6周向闭合包覆支架1,如图5~7所示;之后,通过所述外部设备将流体充入环状体6的腔室63,以使所述腔室63产生充盈,充盈过程中,限制环状体6向外,即背向支架1方向扩张,使得环状体6只能向内,即朝向支架1方向扩张,如图8~10所示,进而便可限制支架1的径向扩张。
优选,本实施例依据流体输出量控制环状体6的扩张量,以压缩支架1至适合的尺寸。具体地说,所述支架1首先通过压缩装置压握至第一外径;压握力去除后,所述支架1即刻回弹至第二外径(第二外径大于第一外径;如聚合物支架1:第二外径一般是第一外径的1.01~1.5倍),那么,本实施例的环状体6充盈时可继续压缩支架1至第三外径,所述第三外径大于第一外径。
发明人研究发现:所述支架1在去除压握力后,若仅仅通过背景技术中提及的双层保护套进行限制,则在去除双层保护套后,所述支架1将回弹至第四外径(第四外径大于第二外径)。但是,本实施例的支架系统可控制环状体6在向内扩张过程中,接触并进一步压缩支架1,以使支架1被压缩至所述第三外径。所述第三外径既可大于第一外径且小于第四外径,也可大于第二外径且小于第四外径。较佳地,所述第三外径大于第一外径且小于或等于第二外径。
本实施例中以第三外径大于第一外径且小于第二外径作为优选,在使用前,通过释放环状体6的压力,将支架1从环状体6中取出。同样地,所述支架1取出后,其还会回弹至所述第四外径,但由于支架1经过环状体6的长时间的压缩束缚,所述第四外径明显会低于第二外径,且接近于第三外径。
以3.0mm规格(材料厚度)的支架1为例,下表显示了支架1通过压握机压握变形后,再通过本实施例的束缚装置以及背景技术中双层保护套(即去除环状体6和双层保护套后)约束后,其外径尺寸的变化情况:
Figure PCTCN2017085862-appb-000001
其中:“-”表示背景技术的双层保护套不具有第三外径。
由上表可见,使用之前,本实施例的支架1的第四外径(即去掉束缚装置后的外径)1.2mm明显小于背景技术中支架1的第四外径1.42mm,因而,有效限制了支架1的径向回弹,较好地减小了支架1的外径。
本实施例中,所述环状体6设置于一个外部构件所形成的空腔内,该外部构件用以在充盈过程中,限制环状体6朝背向支架1方向扩张。
所述外部构件优选为一盘管,所述盘管可以呈盘状,也可以呈回字型。采用盘管便于携带。需要说明的是:所述外部构件包括但不限于盘管,只要能够起到限制环状体6朝背向支架1的方向产生扩张便可。
较佳实施例中,所述环状体6由聚合物制成。所述环状体6由以下材料中的一种或多种制成:聚四氟乙烯、尼龙、聚氯乙烯、聚氨酯、聚乙烯、聚丙烯、乙烯-醋酸乙烯酯共聚合物、聚对苯二甲酸乙二醇酯、丙交酯-乙交酯共聚物、乙烯醇共聚物。
由于聚合物在常温下具有较好的变形扩张能力,故而,使用效果好,尤其当支架1相应由聚合物制成时,聚合物的环状体6不会与支架1表面发生粘连,这样不会对支架1表面造成损坏,也便于支架1从环状体6中取出。
优选地,所述环状体6的长度大于等于支架1的长度,以完全覆盖支架1。
发明人对现有技术还研究发现:聚合物支架被过度辐射灭菌和/或聚合物支架存储环境温度过高均会影响聚合物支架的性能,现有技术中的支架保护套仅仅实现了径向回弹的约束以及避免了对支架外表面造成损伤,而没有解 决过度辐射灭菌以及存储环境温度过高的技术问题。
以束缚装置的可扩张体为环状体来说,所述环状体6的腔室63内通入具有冷却功能的液体,可以在支架1进行辐射灭菌或存储时,对支架1进行冷却,避免支架1受热升温而失效(主要是力学性能的降低)。具有冷却功能的液体,应选择冰点低,冷却效果好的液体,如选择冷盐水,或水与乙醇、乙二醇、甘油等的混合溶液等。
优选具有冷却功能的液体为盐水,通过盐水加压使环状体6扩张,对支架1进行束缚。由于盐水具有很好的冷却效果,使得支架1在灭菌和运输存储过程中具有较低的温度,而且,本实施例的支架1相对于无盐水冷却的支架,灭菌和运输存储过程经历的温度更低,支架性能更好。
或者,所述环状体6的腔室63内通入具有辐射屏蔽功能的重金属悬浮液,用以屏蔽辐射束。选择具有辐射屏蔽功能的重金属悬浮液,可以降低支架1在辐射灭菌过程中的受到辐射的剂量,减缓支架1的辐射降解和分子量下降,确保支架性能。具有辐射屏蔽功能的重金属悬浮液,可以选择原子序数较大的铅、硼、钨、钡、锡、镧等重金属化合物的水溶液悬浮液,也可以选择这些金属化合物混合制成的水溶液悬浮液。
在本实施例中,为了避免因为过度辐照所导致的支架性能下降,用于制备束缚装置的聚合物选择具有防辐射屏蔽的聚合物复合材料。例如为与含铅、硼、钨、钡、锡、镧等具有较大原子序数的重金属化合物复合的聚合物材料,以屏蔽X射线、γ射线或电子束辐射等。因为支架在辐射灭菌时,由于与支架相关的部件(如导管、盘管)等存在较多的初始污染菌,因此需要较高的辐射灭菌剂量,致使支架1,尤其是聚合物支架,会受到较多的辐射,进而使聚合物产生分子量降解,最终影响支架性能。但是,支架1本身的初始污染菌较少或基本没有,不需要较高的辐射灭菌剂量。因此,选择具有辐射屏蔽功能的聚合物复合材料作为束缚装置,可以降低支架的辐射吸收剂量,提高支架性能。
<实施例六>
本实施例与实施例五的区别在于,本实施例中的束缚装置的可扩张体3为螺旋缠绕于压握后的支架1上的螺旋体5,而非如图5~10示出的套设于压握后的支架1上的环状体3。
图11是本发明实施例六的压握后的支架装载于束缚装置上的主视图,图12是图11所示的压握后的支架装载于束缚装置上的端面图,图13是图11所示的压握后的支架装载于束缚装置上的立体示意图,图14是本发明六的束缚装置充盈时的主视图,图15是图14所示的束缚装置充盈时的端面图,图16是图14所示的束缚装置充盈时的立体示意图。
如图11~16所示,所述螺旋体5通过片材由里向外卷曲成型,这样的结构,同样可在充盈时起到限制支架1的扩张的作用。参考图8~16,束缚装置的可扩张体3包括一第一表面51和一第二表面52,所述可扩张体3的第一表面51和第二表面52的径向截面呈螺旋状,且所述第一表面51位于所述第二表面52的内侧;所述第一表面51和第二表面52包覆所述腔室63。
图11~16中示出的螺旋体5,包括一个第一表面51和一个第二表面52,所述第一表面51与第二表面52间隔排列于支架1以及球囊2的外侧。所述螺旋体5的腔室53位于所述第一表面51和第二表面52之间。同样地,所述外部设备通过连接管4连通螺旋体5的腔室53,以提供气体或流体给螺旋体5,从而实现螺旋体5的充盈。
所述螺旋体5同理可设置于具有空腔的外部构件(如盘管)中,以限定螺旋体5朝背向支架1的方向扩张。
优选的,所述螺旋体5的第二层(即远离支架1的一层)由聚丙烯和硫酸钡复合材料制备而成。复合材料制备的螺旋体5对于射线辐射有显著的屏蔽效果,屏蔽率达到60%以上,可以有效减缓支架1(尤其是聚合物支架)在辐射灭菌过程中的辐射降解和分子量下降,使支架1在灭菌后依旧保持较好的性能。所述螺旋体5的第一层(即靠近支架1的一层)采用不含重金属的 聚合物制备而成,以避免重金属直接接触支架1,又能有效屏蔽辐射,避免因为过度辐照或环境温度上升所导致的支架性能下降。
在本实施例中可以往螺旋体5的腔室53内通入具有冷却功能的液体,既可以降低支架1的辐射吸收剂量,还可以降低支架温度。
上述实施例五和实施例六中的束缚装置的可扩张体包括但不局限于环状或螺旋状的,只要所述束缚装置充盈时能够限制支架1的扩张即可。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (25)

  1. 一种束缚装置,用于约束支架,所述支架固定在一支撑件外侧,其特征在于,所述束缚装置包括设置于所述支架外侧的可扩张体,所述可扩张体在第一状态下具有一第一尺寸,用于限制所述支架的扩张;所述可扩张体在第二状态下具有一第二尺寸,所述第二尺寸大于所述第一尺寸。
  2. 如权利要求1所述的束缚装置,其特征在于,处于第一环境时所述可扩张体具有第一状态,处于第二环境时所述可扩张体具有第二状态;且所述第二环境的温度大于所述第一环境的温度,或者所述第二环境的湿度大于所述第一环境的湿度,或者所述第二环境的光照强度大于所述第一环境的光照强度,或者所述第二环境的PH值大于所述第一环境的PH值,或者在所述第二环境下电流流经所述可扩张体,在所述第一环境下没有电流流经所述可扩张体。
  3. 如权利要求1所述的束缚装置,其特征在于,所述可扩张体是温度敏感的,且具有一相转变温度;当环境温度小于所述相转变温度,所述可扩张体具有第一状态,当环境温度大于等于所述相转变温度,所述可扩张体具有第二状态;所述相转变温度小于所述支架的一失效温度。
  4. 如权利要求2所述的束缚装置,其特征在于,所述可扩张体在所述第二环境下扩张至所述第二尺寸的速度大于所述支架的扩张速度。
  5. 如权利要求1所述的束缚装置,其特征在于,所述可扩张体的材料具有环境响应特性。
  6. 如权利要求5所述的束缚装置,其特征在于,所述可扩张体的材料的环境响应特性包括以下特性中的一种或多种:温度响应特性、水响应特性、光响应特性、电流响应特性、PH值响应特性。
  7. 如权利要求6所述的束缚装置,其特征在于,所述可扩张体的材料具有温度响应特性,所述可扩张体的材料为以下材料中的一种或多种:聚降冰 片烯、聚异戊二烯、可降解高分子、液晶高分子、聚氨酯。
  8. 如权利要求6所述的束缚装置,其特征在于,所述可扩张体的材料具有水响应特性,所述可扩张体的材料为以下材料中的一种或多种:聚氨酯脲水凝胶、聚丙烯酰胺类水凝胶、聚丙烯酸-丙烯腈水凝胶。
  9. 如权利要求6所述的束缚装置,其特征在于,所述可扩张体的材料具有光响应特性,所述可扩张体的材料为以下材料中的一种或多种:三苯基甲烷衍生物、含4-偶氮苯基三甲基胺碘化物的聚甲基丙烯酸酯、含肉桂亚基乙酰基团的聚合物。
  10. 如权利要求6所述的束缚装置,其特征在于,所述可扩张体具有电流响应特性,所述可扩张体的材料为聚氨酯和金属粉末的复合物。
  11. 如权利要求6所述的束缚装置,其特征在于,所述可扩张体具有PH值响应特性,所述可扩张体的材料为分子链上有可电离的酸性基团的聚合物。
  12. 如权利要求1所述的束缚装置,其特征在于,所述可扩张体包括一腔室,所述第一状态为所述腔室充盈的状态,所述第二状态为所述腔室至少部分排空的状态。
  13. 如权利要求12所述的束缚装置,其特征在于,所述束缚装置的可扩张体为一环状体,所述环状体包括一外表面和一内表面,所述外表面和内表面包覆所述腔室。
  14. 如权利要求12所述的束缚装置,其特征在于,所述束缚装置的可扩张体包括一第一表面和一第二表面,所述可扩张体的第一表面和第二表面的径向截面呈螺旋状,且所述第一表面位于所述第二表面的内侧;所述第一表面和第二表面包覆所述腔室。
  15. 如权利要求12至14任一项所述的束缚装置,其特征在于,所述束缚装置的可扩张体由聚合物制成。
  16. 如权利要求12至14任一项所述的束缚装置,其特征在于,所述束缚装置的可扩张体的材料为以下材料中的一种或多种:聚四氟乙烯、尼龙、 聚氯乙烯、聚氨酯、聚乙烯、聚丙烯、乙烯-醋酸乙烯酯共聚合物、聚对苯二甲酸乙二醇酯、丙交酯-乙交酯共聚物、乙烯醇共聚物。
  17. 如权利要求12至14任一项所述的束缚装置,其特征在于,所述腔室通过一气体或液体充盈。
  18. 如权利要求17所述的束缚装置,其特征在于,所述液体为含重金属的悬浮液,用于屏蔽辐射束。
  19. 如权利要求18所述的束缚装置,其特征在于,所述含重金属的悬浮液包括以下重金属中的一种或多种:铅、硼、钨、钡、锡、以及镧。
  20. 如权利要求17所述的支架系统,其特征在于,所述液体为盐水或水与乙醇、乙二醇、甘油的混合溶液。
  21. 如权利要求12至14任一项所述的束缚装置,其特征在于,所述可扩张体全部或部分由含金属显影剂的高分子聚合物制成。
  22. 如权利要求12至14任一项所述的束缚装置,其特征在于,所述可扩张体靠近所述支架的部分由不含金属显影剂的高分子聚合物制成。
  23. 如权利要求12所述的束缚装置,其特征在于,所述束缚装置还包括一外部构件,所述外部构件套设在所述束缚装置的外侧上,且所述外部构件用于限制所述可扩张体向外侧扩张。
  24. 一种支架系统,包括支架,所述支架固定在一支撑件外侧,其特征在于,还包括如权利要求1至23任一项所述的束缚装置。
  25. 一种束缚装置的使用方法,其特征在于,包括:约束支架时,将一束缚装置套设于支架的外侧,之后使束缚装置处于第一状态下,以限制所述支架扩张,其中,所述束缚装置在第一状态下具有第一尺寸;脱离支架时,使束缚装置处于第二状态下,所述束缚装置在第二状态下具有第二尺寸;其中,第二尺寸大于第一尺寸。
PCT/CN2017/085862 2016-06-12 2017-05-25 束缚装置、支架系统以及束缚装置的使用方法 WO2017215427A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610407877.1 2016-06-12
CN201610407877.1A CN107488345B (zh) 2016-06-12 2016-06-12 装置、支架束缚装置以及支架束缚方法
CN201610429827.3 2016-06-16
CN201610429827.3A CN107510518B (zh) 2016-06-16 2016-06-16 支架系统以及支架的存放方法

Publications (1)

Publication Number Publication Date
WO2017215427A1 true WO2017215427A1 (zh) 2017-12-21

Family

ID=60663397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085862 WO2017215427A1 (zh) 2016-06-12 2017-05-25 束缚装置、支架系统以及束缚装置的使用方法

Country Status (1)

Country Link
WO (1) WO2017215427A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039056A2 (en) * 1997-03-05 1998-09-11 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
CN101511306A (zh) * 2005-08-31 2009-08-19 先进生物假体表面有限公司 带有近端和远端附连递送导管的包覆支架及其制备方法
CN102014792A (zh) * 2008-05-10 2011-04-13 奥巴斯尼茨医学公司 用于将支架置于输送球囊导管系统上的套管
US20120109281A1 (en) * 2010-10-29 2012-05-03 Papp John E Sheaths Used in Polymer Scaffold Delivery Systems
CN103826687A (zh) * 2011-05-27 2014-05-28 艾博特心血管系统公司 聚合物支架护套
US20140157567A1 (en) * 2012-12-07 2014-06-12 Abbott Cardiovascular Systems Inc. Sheaths Reducing Recoil and Loss of Retention for Polymer Scaffolds Crimped to Balloons
US20150088240A1 (en) * 2013-09-25 2015-03-26 Abbott Cardiovascular Systems Inc. Clip sheath for a polymer scaffold
US20150246203A1 (en) * 2014-02-28 2015-09-03 Abbott Cardiovascular Systems Inc. Protective sheaths for medical devices
CN105392453A (zh) * 2013-06-21 2016-03-09 艾博特心血管系统公司 用于聚合物骨架的可移除的鞘组件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039056A2 (en) * 1997-03-05 1998-09-11 Scimed Life Systems, Inc. Catheter with removable balloon protector and stent delivery system with removable stent protector
CN101511306A (zh) * 2005-08-31 2009-08-19 先进生物假体表面有限公司 带有近端和远端附连递送导管的包覆支架及其制备方法
CN102014792A (zh) * 2008-05-10 2011-04-13 奥巴斯尼茨医学公司 用于将支架置于输送球囊导管系统上的套管
US20120109281A1 (en) * 2010-10-29 2012-05-03 Papp John E Sheaths Used in Polymer Scaffold Delivery Systems
CN103826687A (zh) * 2011-05-27 2014-05-28 艾博特心血管系统公司 聚合物支架护套
US20140157567A1 (en) * 2012-12-07 2014-06-12 Abbott Cardiovascular Systems Inc. Sheaths Reducing Recoil and Loss of Retention for Polymer Scaffolds Crimped to Balloons
CN105392453A (zh) * 2013-06-21 2016-03-09 艾博特心血管系统公司 用于聚合物骨架的可移除的鞘组件
US20150088240A1 (en) * 2013-09-25 2015-03-26 Abbott Cardiovascular Systems Inc. Clip sheath for a polymer scaffold
US20150246203A1 (en) * 2014-02-28 2015-09-03 Abbott Cardiovascular Systems Inc. Protective sheaths for medical devices

Similar Documents

Publication Publication Date Title
EP2916772B1 (en) Stent seals and methods for sealing an expandable stent
US8721819B2 (en) Methods for an expandable covered stent with wide range of wrinkle-free deployed diameters
US20140350668A1 (en) Prosthesis Seals and Methods for Sealing an Expandable Prosthesis
CN105919700B (zh) 聚合物支架护套
US10842918B2 (en) Length extensible implantable device and methods for making such devices
US10226369B2 (en) Catheter with retractable cover and pressurized fluid
ES2701073T3 (es) Dispositivos de recuperación de dispositivo endoluminal y sistemas relacionados
CN107874879A (zh) 具有双功能凸耳的自膨胀装置递送设备
US20150173770A1 (en) Vascular Occlusion
CN102488577B (zh) 血管内导丝定位装置及其制备方法
CN101965163A (zh) 支架和支架移植物
JP2007532241A (ja) 接着剤を用いるステント保持方法及びシステム
JP6321775B2 (ja) 原繊維性微細構造及び破砕性コーティングを有する多孔質材料
JP2012501803A5 (zh)
JP2010500108A (ja) 非短縮巻き付けバルーン
KR20150129748A (ko) 팽창성 벌룬 및 커버
EA020637B1 (ru) Устройство и способ подготовки стента для имплантации
JP4057238B2 (ja) 封入された管腔内ステント−移植片の製造法
KR20190005893A (ko) 자체 확장식 스텐트 형상 장치를 저장하고 적재하기 위한 장치
US20090018635A1 (en) Stent protector
WO2017215427A1 (zh) 束缚装置、支架系统以及束缚装置的使用方法
WO2022253364A1 (zh) 一种输送导丝以及血流导向装置
CN107488345B (zh) 装置、支架束缚装置以及支架束缚方法
CN107510518A (zh) 支架系统以及支架的存放方法
CN202365969U (zh) 血管内导丝定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812538

Country of ref document: EP

Kind code of ref document: A1