WO2017215314A1 - 一种混合式直流断路器 - Google Patents

一种混合式直流断路器 Download PDF

Info

Publication number
WO2017215314A1
WO2017215314A1 PCT/CN2017/078647 CN2017078647W WO2017215314A1 WO 2017215314 A1 WO2017215314 A1 WO 2017215314A1 CN 2017078647 W CN2017078647 W CN 2017078647W WO 2017215314 A1 WO2017215314 A1 WO 2017215314A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
circuit
anode
hybrid
cathode
Prior art date
Application number
PCT/CN2017/078647
Other languages
English (en)
French (fr)
Inventor
周月宾
饶宏
许树楷
朱喆
魏伟
Original Assignee
南方电网科学研究院有限责任公司
中国南方电网有限责任公司电网技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 中国南方电网有限责任公司电网技术研究中心 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2017215314A1 publication Critical patent/WO2017215314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems

Definitions

  • the present invention relates to the field of power electronics, and in particular to a hybrid DC circuit breaker.
  • DC circuit breaker is an important equipment for clearing DC line faults in the field of DC transmission.
  • Hybrid DC circuit breaker is an important development direction of DC circuit breaker. The load current transfer circuit and fault current cut-off circuit of hybrid DC circuit breaker are mixed. The key point in the development of DC circuit breakers.
  • the load current transfer circuit and the fault current cut-off circuit are all connected in series by different numbers of insulated gate bipolar transistors. Since the switching ability of the switches of the insulated gate bipolar transistors is different, the insulated gate bipolar in series When the transistor is switched, it will cause dynamic voltage equalization.
  • the present invention provides a hybrid DC circuit breaker, which adopts the following technical solutions:
  • the hybrid DC circuit breaker includes a DC reactor and a main branch, a transfer branch, and an absorption branch connected in parallel to the DC reactor;
  • the main branch includes a high-speed mechanical switch and a load current transfer circuit connected in series, the high-speed mechanical switch is connected to the DC reactor, and the load current transfer circuit includes cascading n1 bridge sub-circuits. N1 ⁇ 1;
  • the branch branch includes cascaded n2 bridge sub-circuits, where n2 > n1.
  • the hybrid DC circuit breaker provided by the invention has the following beneficial effects:
  • a plurality of cascaded bridge sub-circuits are used to replace a plurality of series-connected insulated gate bipolar transistors in the prior art to form a load current transfer circuit and a transfer branch. Therefore, during the operation of the hybrid DC circuit breaker described above, the dynamic voltage equalization phenomenon does not occur due to the different triggering capabilities of the switches of the plurality of series insulated gate bipolar transistors, thereby effectively avoiding the hybrid DC Dynamic voltage equalization occurs during the operation of the circuit breaker.
  • FIG. 1 is a schematic structural view of a hybrid DC circuit breaker according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a first bridge sub-circuit according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a second bridge sub-circuit according to an embodiment of the present invention.
  • D1 first diode
  • S2 second switch tube
  • D2 second diode
  • D3 third diode
  • the hybrid DC circuit breaker includes: a DC reactor 1 and a main branch 2 connected to the DC reactor 1 and a branch branch 3 And an absorption branch 4; wherein the main branch 2 comprises a high-speed mechanical switch K and a load current transfer circuit 21 connected in series, the high-speed mechanical switch K is connected to the DC reactor 1, and the load current transfer circuit 21 comprises cascading n1 bridges The sub-circuit 5, n1 ⁇ 1; the branch branch 3 comprises cascading n2 bridge sub-circuits 5, where n2 > n1.
  • the current flows through the DC reactor 1 and the main branch 2.
  • the main branch 2 is first turned off. All the switching tubes (all the switching tubes of the transfer branch are closed), the current is transferred from the main branch 2 to the transfer branch 3 (ie, the fault current cut-off circuit), and then all the switching tubes in the transfer branch 3 are turned off, the current is The transfer branch 3 is transferred to the absorption branch 4, and the final current is gradually attenuated to zero in the absorption branch 4, thereby achieving the goal of DC fault clearing.
  • a plurality of cascaded bridge sub-circuits 5 are used to replace a plurality of series-connected insulated gate bipolar transistors in the prior art to form a load current transfer.
  • the circuit 21 and the branch circuit 3 therefore, during the operation of the hybrid DC circuit breaker described above, the dynamic voltage equalization phenomenon does not occur due to the different triggering capabilities of the switches of the plurality of series insulated gate bipolar transistors. The dynamic voltage equalization phenomenon during the operation of the hybrid DC circuit breaker is effectively avoided.
  • bridge sub-circuit 5 is various, and can be set by a person skilled in the art according to actual conditions, which is not limited in the embodiment of the present invention.
  • embodiment of the present invention details the following two types of bridge sub-circuits:
  • the bridge sub-circuit 5 includes: a first switch tube S1, a first diode D1, a second switch tube S2, a second diode D2, a third diode D3, and a fourth Diode D4 and DC capacitor C.
  • the first switch S1 is connected in anti-parallel with the first diode D1
  • the second switch S2 is connected in anti-parallel with the second diode D2.
  • the anti-parallel connection between the switch tube and the diode means that the cathode of the switch tube is connected to the anode of the diode, and the anode of the switch tube is connected to the cathode of the diode.
  • the anode of the first diode D1 is connected to the cathode of the third diode D3, and the connection point of the anode of the first diode D1 to the cathode of the third diode D3 is the output terminal P1 of the bridge sub-circuit 5.
  • the anode of the second diode D2 is connected to the cathode of the fourth diode D4, and the connection point of the anode of the second diode D2 to the cathode of the fourth diode D4 is the input end of the bridge sub-circuit 5. P2.
  • the cathode of the first diode D1 and the cathode of the second diode D2 are both connected to the anode of the DC capacitor C, and the anode of the third diode D3 and the anode of the fourth diode D4 are both opposite to the cathode of the DC capacitor C. Connected.
  • the bridge sub-circuit 5 includes: a first switch tube S1, a first diode D1, a second switch tube S2, a second diode D2, a third diode D3, and a fourth The diode D4 and the DC capacitor C, wherein the first switch S1 is connected in anti-parallel with the first diode D1, and the second switch S2 is connected in anti-parallel with the second diode D2.
  • the anode of the first diode D1 is connected to the cathode of the second diode D2, and the connection point of the anode of the first diode D1 to the cathode of the second diode D2 is the output terminal P1 of the bridge sub-circuit 5.
  • the anode of the third diode D3 is connected to the cathode of the fourth diode D4, and the connection point of the anode of the third diode D3 to the cathode of the fourth diode D4 is the input end of the bridge sub-circuit 5. P2.
  • the cathode of the first diode D1 and the cathode of the third diode D3 are both connected to the anode of the DC capacitor C
  • the anode of the second diode D2 and the anode of the fourth diode D4 are both opposite to the cathode of the DC capacitor C. Connected.
  • the first switch tube S1 and the second switch tube S2 of the above two bridge sub-circuits may be insulated gate bipolar transistors, integrated gate commutated thyristors or gate turn-off thyristors, those skilled in the art.
  • the selection may be made according to the actual situation, and is not limited in the embodiment of the present invention.
  • the load current transfer circuit 21 and the transfer branch 3 include multiple
  • the bridge sub-circuit 5 may be the first type of bridge sub-circuit 5, which may be the second bridge sub-circuit 5, or may be a mixture of the first bridge sub-circuit and the second bridge sub-circuit.
  • the person skilled in the art can select according to the actual situation, and the embodiment of the present invention is not limited.
  • the inventors of the present invention have found that when the load current transfer circuit 21 and the transfer branch 3 are constituted by using the above two types of bridge sub-circuits 5, as shown in Figs. 2 and 3, the switch tubes in each of the bridge sub-circuits 5 are (Insulated gate bipolar transistors, integrated gate commutated thyristors or gate turn-off thyristors) are not connected in series, avoiding the operation of hybrid DC circuit breakers caused by the use of multiple insulated gate bipolar transistors in series Dynamic equalization occurs in the middle, and only two switching tubes are required in each bridge sub-circuit 5. Compared with the full-bridge sub-circuit, the number of switching tubes used is greatly reduced, thereby reducing the hybrid DC breaking. The production cost of the device.
  • the switch tubes in each of the bridge sub-circuits 5 are (Insulated gate bipolar transistors, integrated gate commutated thyristors or gate turn-off thyristors) are not connected in series, avoiding the operation
  • the absorption branch 4 is a lightning arrester for protecting the device from high voltage when a fault occurs in the direct current transmission line.
  • lightning arresters There are many types of lightning arresters. Since the gapless zinc oxide surge arrester has superior protection performance, light weight, pollution resistance, and stable performance, in the embodiment of the present invention, a gapless zinc oxide surge arrester is preferred.

Abstract

一种混合式直流断路器,涉及电力电子技术领域,解决了现有混合式直流断路器运行过程中出现的动态均压困难的技术问题。该混合式直流断路器包括直流电抗器(1)和相互并联连接的主支路(2)、转移支路(3)以及吸收支路(4)。主支路包括串联连接的高速机械开关(K)和负载电流转移电路,高速机械开关与直流电抗器连接,负载电流转移电路包括级联的n1个桥式子电路(5)。转移支路包括级联的n2个桥式子电路,其中,n2>n1。该混合式直流断路器可应用于直流输电的直流线路故障清除。

Description

一种混合式直流断路器
本申请要求于2016年06月16日提交中国专利局、申请号为201610440001.7、发明名称为“一种混合式直流断路器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电力电子技术领域,尤其涉及一种混合式直流断路器。
背景技术
直流断路器是直流输电领域中清除直流线路故障的重要设备,混合式直流断路器是直流断路器的一个重要发展方向,其中,混合式直流断路器的负载电流转移电路和故障电流切断电路是混合式直流断路器研制中的重点。
目前,负载电流转移电路和故障电流切断电路均由不同数量的绝缘栅双极型晶体管串联而成,由于各绝缘栅双极型晶体管的开关的触发能力不同,因此,在串联的绝缘栅双极型晶体管开关时,会导致动态均压现象的出现。
发明内容
本发明的目的在于提供一种混合式直流断路器,用于避免混合式直流断路器运行过程中出现的动态均压现象。
为达到上述目的,本发明提供一种混合式直流断路器,采用如下技术方案:
该混合式直流断路器包括直流电抗器和并联连接在所述直流电抗器上的主支路、转移支路以及吸收支路;
其中,所述主支路包括串联连接的高速机械开关和负载电流转移电路,所述高速机械开关与所述直流电抗器连接,所述负载电流转移电路包括级联的n1个桥式子电路,n1≥1;
所述转移支路包括级联的n2个桥式子电路,其中,n2>n1。
与现有技术相比,本发明提供的混合式直流断路器具有以下有益效果:
在本发明提供的混合式直流断路器中,采用了多个级联的桥式子电路来替换现有技术中的多个串联的绝缘栅双极型晶体管,以构成负载电流转移电路和转移支路,因此,在上述混合式直流断路器运行过程中,不会因为多个串联的绝缘栅双极型晶体管的开关的触发能力不同,而导致动态均压现象的出现,有效避免了混合式直流断路器运行过程中出现动态均压现象。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中混合式直流断路器结构示意图;
图2为本发明实施例中第一种桥式子电路结构示意图;
图3为本发明实施例中第二种桥式子电路结构示意图。
附图标记:
1—直流电抗器,                2—主支路,
K—高速机械开关,              21—负载电流转移电路,
3—转移支路,                  4—吸收支路,
5—桥式子电路,                S1—第一开关管,
D1—第一二极管,               S2—第二开关管,
D2—第二二极管,               D3—第三二极管,
D4—第四二极管,               C—直流电容器,
P1—输出端,                   P2—输入端。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部 分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种混合式直流断路器,如图1所示,该混合式直流断路器包括:直流电抗器1和并联连接在直流电抗器1上的主支路2、转移支路3以及吸收支路4;其中,主支路2包括串联连接的高速机械开关K和负载电流转移电路21,高速机械开关K与直流电抗器1连接,负载电流转移电路21包括级联的n1个桥式子电路5,n1≥1;转移支路3包括级联的n2个桥式子电路5,其中,n2>n1。
在使用上述混合式直流断路器过程中,当直流输电线路中没有故障时,电流通过直流电抗器1和主支路2流出,当直流输电线路中出现故障时,首先关断主支路2中的所有开关管(转移支路的所有开关管闭合),电流由主支路2转移至转移支路3(即故障电流切断电路),然后关断转移支路3中的所有开关管,电流由转移支路3转移至吸收支路4,最终电流在吸收支路4逐渐衰减至0,从而达到直流故障清除的目标。
在本发明实施例提供的混合式直流断路器中,由于采用了多个级联的桥式子电路5来替换现有技术中的多个串联的绝缘栅双极型晶体管,以构成负载电流转移电路21和转移支路3,因此,在上述混合式直流断路器运行过程中,不会因为多个串联的绝缘栅双极型晶体管的开关的触发能力不同,而导致动态均压现象的出现,有效避免了混合式直流断路器运行过程中出现动态均压现象。
需要补充的是,上述桥式子电路5的具体结构有多种,本领域技术人员可根据实际情况进行设置,本发明实施例不进行限定。具体地,本发明实施例详细给出以下两种桥式子电路的结构:
一、如图2所示,桥式子电路5包括:第一开关管S1、第一二极管D1、第二开关管S2、第二二极管D2、第三二极管D3、第四二极管D4以及直流电容器C。
其中,第一开关管S1与第一二极管D1反并联连接,第二开关管S2与第二二极管D2反并联连接,需要说明的是,如无特殊说明,本发明实施例中的开关管与二极管的反并联连接均指的是,开关管的阴极与二极管的阳极连接,开关管的阳极与二极管的阴极连接。
第一二极管D1的阳极与第三二极管D3的阴极相连,第一二极管D1的阳极与第三二极管D3的阴极相连的连接点为桥式子电路5的输出端P1;第二二极管D2的阳极与第四二极管D4的阴极相连,第二二极管D2的阳极与第四二极管D4的阴极相连的连接点为桥式子电路5的输入端P2。
第一二极管D1的阴极和第二二极管D2的阴极均与直流电容器C的正极相连,第三二极管D3的阳极和第四二极管D4的阳极均与直流电容器C的负极相连。
二、如图3所示,桥式子电路5包括:第一开关管S1、第一二极管D1、第二开关管S2、第二二极管D2、第三二极管D3、第四二极管D4以及直流电容器C,其中,第一开关管S1与第一二极管D1反并联连接,第二开关管S2与第二二极管D2反并联连接。
第一二极管D1的阳极与第二二极管D2的阴极相连,第一二极管D1的阳极与第二二极管D2的阴极相连的连接点为桥式子电路5的输出端P1;第三二极管D3的阳极与第四二极管D4的阴极相连,第三二极管D3的阳极与第四二极管D4的阴极相连的连接点为桥式子电路5的输入端P2。
第一二极管D1的阴极和第三二极管D3的阴极均与直流电容器C的正极相连,第二二极管D2的阳极和第四二极管D4的阳极均与直流电容器C的负极相连。
示例性地,上述两种桥式子电路中的第一开关管S1和第二开关管S2可以为绝缘栅双极型晶体管、集成门极换流晶闸管或门极关断晶闸管,本领域技术人员可根据实际情况进行选择,本发明实施例不进行限定。
需要说明的是,负载电流转移电路21和转移支路3包括的多个 桥式子电路5,可以均为第一种桥式子电路5,可以均为第二种桥式子电路5,也可以为第一种桥式子电路与第二种桥式子电路的混合,本领域技术人员可根据实际情况选择,本发明实施例不进行限定。
本发明的发明人发现,使用上述两种桥式子电路5构成负载电流转移电路21和转移支路3时,如图2、图3所示,由于每个桥式子电路5中的开关管(绝缘栅双极型晶体管、集成门极换流晶闸管或门极关断晶闸管)并不是串联连接的,避免了使用多个串联的绝缘栅双极型晶体管所导致的混合式直流断路器运行过程中出现动态均压现象,而且,每个桥式子电路5中只需要两个开关管,与全桥式子电路相比,大大减少了使用的开关管的数量,从而降低了混合式直流断路器的生产成本。
示例性地,上述吸收支路4为避雷器,当直流输电线路中出现故障时,用来保护设备不受高电压的影响。避雷器的种类有多种,由于无间隙氧化锌避雷器保护性能优越、质量轻、耐污秽、性能稳定,因此,本发明实施例中,优选无间隙氧化锌避雷器。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种混合式直流断路器,其特征在于,包括直流电抗器和并联连接在所述直流电抗器上的主支路、转移支路以及吸收支路;
    其中,所述主支路包括串联连接的高速机械开关和负载电流转移电路,所述高速机械开关与所述直流电抗器连接,所述负载电流转移电路包括级联的n1个桥式子电路,n1≥1;
    所述转移支路包括级联的n2个桥式子电路,其中,n2>n1。
  2. 根据权利要求1所述的混合式直流断路器,其特征在于,所述桥式子电路包括:第一开关管、第一二极管、第二开关管、第二二极管、第三二极管、第四二极管以及直流电容器,其中,所述第一开关管与所述第一二极管反并联连接,所述第二开关管与所述第二二极管反并联连接;
    所述第一二极管的阳极与所述第三二极管的阴极相连,所述第一二极管的阳极与所述第三二极管的阴极相连的连接点为所述桥式子电路的输出端;
    所述第二二极管的阳极与所述第四二极管的阴极相连,所述第二二极管的阳极与所述第四二极管的阴极相连的连接点为所述桥式子电路的输入端;
    所述第一二极管的阴极和所述第二二极管的阴极均与所述直流电容器的正极相连,所述第三二极管的阳极和所述第四二极管的阳极均与所述直流电容器的负极相连。
  3. 根据权利要求1所述的混合式直流断路器,其特征在于,所述桥式子电路包括:第一开关管、第一二极管、第二开关管、第二二极管、第三二极管、第四二极管以及直流电容器,其中,所述第一开关管与所述第一二极管反并联连接,所述第二开关管与所述第二二极管反并联连接;
    所述第一二极管的阳极与所述第二二极管的阴极相连,所述第一二极管的阳极与所述第二二极管的阴极相连的连接点为所述桥式子电路的输出端;
    所述第三二极管的阳极与所述第四二极管的阴极相连,所述第三二极管的阳极与所述第四二极管的阴极相连的连接点为所述桥式子电路的输入端;
    所述第一二极管的阴极和所述第三二极管的阴极均与所述直流电容器的正极相连,所述第二二极管的阳极和所述第四二极管的阳极均与所述直流电容器的负极相连。
  4. 根据权利要求2或3所述的混合式直流断路器,其特征在于,所述第一开关管为绝缘栅双极型晶体管、集成门极换流晶闸管或门极关断晶闸管。
  5. 根据权利要求2~4任一所述的混合式直流断路器,其特征在于,所述第二开关管为绝缘栅双极型晶体管、集成门极换流晶闸管或门极关断晶闸管。
  6. 根据权利要求1~5任一项所述的混合式直流断路器,其特征在于,所述负载电流转移电路中桥式子电路的种类为一种或两种;所述转移支路中桥式子电路的种类为一种或两种。
  7. 根据权利要求1~6任一所述的混合式直流断路器,其特征在于,所述吸收支路为避雷器。
  8. 根据权利要求7所述的混合式直流断路器,其特征在于,所述避雷器为无间隙氧化锌避雷器。
PCT/CN2017/078647 2016-06-16 2017-03-29 一种混合式直流断路器 WO2017215314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610440001.7 2016-06-16
CN201610440001.7A CN105896492B (zh) 2016-06-16 2016-06-16 一种混合式直流断路器

Publications (1)

Publication Number Publication Date
WO2017215314A1 true WO2017215314A1 (zh) 2017-12-21

Family

ID=56730984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078647 WO2017215314A1 (zh) 2016-06-16 2017-03-29 一种混合式直流断路器

Country Status (2)

Country Link
CN (1) CN105896492B (zh)
WO (1) WO2017215314A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981092A (zh) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 一种全桥模块、全桥模块的混合式直流断路器及应用方法
CN112039354A (zh) * 2020-09-11 2020-12-04 华北电力大学 一种适用于柔性直流电网故障清除的并联型混合mmc拓扑
CN113852058A (zh) * 2021-09-23 2021-12-28 广东电网有限责任公司 一种双向限流直流限流器
CN114696300A (zh) * 2020-12-29 2022-07-01 清华大学 基于三绕组耦合电抗器的混合式直流断路器及控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896492B (zh) * 2016-06-16 2019-02-15 南方电网科学研究院有限责任公司 一种混合式直流断路器
CN106786349A (zh) * 2016-11-22 2017-05-31 平高集团有限公司 一种辅助换流模块及高压直流断路器
CN106533145B (zh) * 2016-11-22 2019-10-15 平高集团有限公司 一种高压直流断路器
CN107294054B (zh) * 2017-06-26 2019-04-02 东北电力大学 一种双臂架构的快速混合型直流断路器的拓扑结构
CN107785867A (zh) * 2017-12-08 2018-03-09 浙江大学 一种可降低开断电流的直流断路器及其直流故障处理策略
CN108376975A (zh) * 2018-03-16 2018-08-07 中国南方电网有限责任公司电网技术研究中心 一种具有模块化机械式直流断路器的系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920448A (en) * 1986-12-22 1990-04-24 Acec Transport S.A. Semiconductor-assisted ultra-fast contact breaker
CN103280763A (zh) * 2013-02-27 2013-09-04 国网智能电网研究院 一种直流断路器及其实现方法
CN105896492A (zh) * 2016-06-16 2016-08-24 南方电网科学研究院有限责任公司 一种混合式直流断路器
CN205693347U (zh) * 2016-06-16 2016-11-16 南方电网科学研究院有限责任公司 一种混合式直流断路器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120364A (ja) * 2012-12-18 2014-06-30 Fuji Electric Co Ltd 直流回路用の回路遮断スイッチ
CN104702256A (zh) * 2014-12-29 2015-06-10 国家电网公司 一种高压直流断路器的igbt驱动方法
CN104635151B (zh) * 2014-12-29 2018-07-20 国家电网公司 一种级联全桥直流断路器低压等效试验电路及其检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920448A (en) * 1986-12-22 1990-04-24 Acec Transport S.A. Semiconductor-assisted ultra-fast contact breaker
CN103280763A (zh) * 2013-02-27 2013-09-04 国网智能电网研究院 一种直流断路器及其实现方法
CN105896492A (zh) * 2016-06-16 2016-08-24 南方电网科学研究院有限责任公司 一种混合式直流断路器
CN205693347U (zh) * 2016-06-16 2016-11-16 南方电网科学研究院有限责任公司 一种混合式直流断路器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981092A (zh) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 一种全桥模块、全桥模块的混合式直流断路器及应用方法
CN112039354A (zh) * 2020-09-11 2020-12-04 华北电力大学 一种适用于柔性直流电网故障清除的并联型混合mmc拓扑
CN114696300A (zh) * 2020-12-29 2022-07-01 清华大学 基于三绕组耦合电抗器的混合式直流断路器及控制方法
CN113852058A (zh) * 2021-09-23 2021-12-28 广东电网有限责任公司 一种双向限流直流限流器
CN113852058B (zh) * 2021-09-23 2023-09-01 广东电网有限责任公司 一种双向限流直流限流器

Also Published As

Publication number Publication date
CN105896492B (zh) 2019-02-15
CN105896492A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2017215314A1 (zh) 一种混合式直流断路器
US10418803B2 (en) Direct current switch-off device and control method thereof
US9634476B1 (en) Apparatus for breaking line bidirectional current and control method thereof
EP3355431B1 (en) Cascaded full-bridge high-voltage dc circuit breaker
US9362734B2 (en) Apparatus for limiting current of line or breaking current, and control method thereof
US10454265B2 (en) Bridge-type circuit, and direct current breaking device and control method thereof
Liu et al. A multiport circuit breaker-based multiterminal DC system fault protection
Li et al. Frontiers of DC circuit breakers in HVDC and MVDC systems
US20160006236A1 (en) A direct current circuit breaker and its implementation
WO2017080354A1 (zh) 一种带耦合电抗器的高压直流断路器
WO2015024509A1 (zh) 一种高压大电流直流断路器及其控制方法
CN106207991A (zh) 一种双向高压直流混合式断路器
US20230107559A1 (en) High voltage battery cluster, and overcurrent protection circuit and switch box thereof
WO2015081615A1 (zh) 一种直流断路器
WO2021012453A1 (zh) 模块化多电平换流器子模块拓扑电路及其控制方法
CN106356817A (zh) 一种桥式双向无弧直流断路器
US11211790B2 (en) T-type DC circuit breaker and method for controlling the same
WO2014117608A1 (zh) 一种使线路电流分断的装置及其控制方法
CN101350613A (zh) 一种电子开关
Feng et al. Research on the breaking branch for a hybrid DC circuit breaker in<? show [AQ ID= Q1]?>±500 kV voltage‐sourced converter high‐voltage direct current grid
CN103986122A (zh) 一种附加二极管的模块化限流断路器功率模块
CN104009450A (zh) 模块组合高压直流断路器
CN205693347U (zh) 一种混合式直流断路器
CN202650895U (zh) 具有缓冲电路的高压直流混合电路断路器
WO2018032655A1 (zh) 一种混合型高压直流断路器及其功率单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.05.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17812428

Country of ref document: EP

Kind code of ref document: A1