WO2017215169A1 - 高功率电磁波发生器的工质接触式冷却系统及其工作方法 - Google Patents

高功率电磁波发生器的工质接触式冷却系统及其工作方法 Download PDF

Info

Publication number
WO2017215169A1
WO2017215169A1 PCT/CN2016/102652 CN2016102652W WO2017215169A1 WO 2017215169 A1 WO2017215169 A1 WO 2017215169A1 CN 2016102652 W CN2016102652 W CN 2016102652W WO 2017215169 A1 WO2017215169 A1 WO 2017215169A1
Authority
WO
WIPO (PCT)
Prior art keywords
working
working medium
electromagnetic wave
wave generator
power electromagnetic
Prior art date
Application number
PCT/CN2016/102652
Other languages
English (en)
French (fr)
Inventor
王伟
Original Assignee
广东合一新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东合一新材料研究院有限公司 filed Critical 广东合一新材料研究院有限公司
Publication of WO2017215169A1 publication Critical patent/WO2017215169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20345Sprayers; Atomizers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to the technical field of cooling of a high-power electromagnetic wave generator, in particular to a working-contact cooling system of a high-power electromagnetic wave generator and a working method thereof.
  • Electromagnetic waves are electromagnetic fields that propagate in the form of waves.
  • High-frequency electromagnetic waves can be used for signal enhancement or interference, as well as efficient heating. They can be widely used in radar and microwave transmitters.
  • high-power microwave technology refers to technologies such as the generation, transmission, measurement, and application of microwave signals with an average power of more than kilowatts or peak powers of several hundred kilowatts or more. The traction of commercial and military demand has prompted microwave devices to operate in the high microwave band up to the millimeter wave band.
  • the present invention provides a working-contact cooling system of a high-power electromagnetic wave generator, which has a reasonable heat dissipation structure and high heat dissipation efficiency.
  • the invention also provides a working method of a working fluid contact cooling system of a high power electromagnetic wave generator.
  • High-power electromagnetic wave generator working fluid contact cooling system including high-power electromagnetic wave generator, Insulating liquid heat transfer working fluid, nozzle, spray branch pipe, spray main pipe, working fluid pump, filter and working tank,
  • the working medium tank is filled with an insulating liquid heat-conducting working medium
  • the working medium pump is suspended in the insulating liquid heat-conductive working medium
  • the filter is installed at the inlet of the working medium pump
  • the working medium pump is connected to the spray main pipe
  • the plurality of spray branch pipes are connected in parallel a shower main pipe
  • each spray branch pipe is provided with a plurality of nozzles, and the nozzle faces the high-power electromagnetic wave generator
  • the nozzle is sprayed against the front and back sides of the high-power electromagnetic wave generator to form a relatively open spray structure
  • the insulating liquid thermal conductive working substance is a non-polar substance, and the insulating liquid thermal conductive working medium has no phase change during the spraying process.
  • the spray branch and the high-power electromagnetic wave generator are arranged in parallel in a longitudinal direction.
  • the working tank can be set up with the following four cooling cycle structures:
  • the working tank is provided with a natural convection cooling structure of the air: a heat dissipating fin is arranged outside the working box.
  • the working medium box is provided with an air forced convection cooling structure: the outer side of the working medium box is provided with heat dissipating fins, and a plurality of fans are arranged to blast the heat dissipating fins.
  • the working tank is provided with a water circulation cooling device: the evaporation working end of the water circulation cooling device is immersed in the working medium tank, and the water circulation cooling device has a water pump in the pipeline, and the heat dissipation end of the water circulation cooling device is blown by the fan.
  • the working tank is provided with a compression refrigeration cycle cooling device: the evaporator of the compression refrigeration cycle cooling device is immersed in the working medium box, and the heat is dissipated through the outer condenser.
  • the working medium pump is started, the insulating liquid thermal conductive working medium passes through the filter and enters the working medium pump, and the working medium pump transports the insulating liquid thermal conductive working medium to the spraying.
  • the shower main pipe and the spray main pipe distribute the insulating liquid heat conductive working substance to each spray branch pipe, and the insulating liquid heat conductive working medium sprayed from the nozzle directly sprays to the front and back sides of the high-power electromagnetic wave generator, and the heat of the high-power electromagnetic wave generator passes
  • the insulating liquid heat transfer medium is taken away, and the insulating liquid heat transfer working medium is returned to the working medium box under gravity and cooled, so that the insulating liquid heat conduction working medium continuously takes away the heat of the high power electromagnetic wave generator.
  • the nozzle sprays on the front and back of the high-power electromagnetic wave generator to form a relatively open spray structure.
  • the insulating liquid heat-conducting medium directly contacts the heat-generating surface of the high-power electromagnetic wave generator that needs to dissipate heat, and reduces the contact heat. Resistance, without any intermediate medium and heat transfer conversion, improve heat transfer efficiency.
  • the spray branch pipe and the high-power electromagnetic wave generator are arranged in parallel in the longitudinal direction, the spray area is large, and the heat exchange efficiency is high.
  • the insulating liquid thermal conductive working substance is a non-polar substance.
  • the insulating liquid thermal conductive working medium has no phase change, and the sprayed insulating liquid thermal conductive working medium forms an atomized liquid film on the surface of the high-power electromagnetic wave generator, and the atomizing liquid Membrane heat conduction has a combination of excellent heat transfer and flow such as small flow rate, large temperature difference, high heat transfer coefficient, and high heat flux density.
  • the temperature difference of direct contact cooling can be controlled.
  • the surface temperature of the high-power electromagnetic wave generator can be further reduced, which helps to improve the high-power electromagnetic wave generator. Electromagnetic wave generation efficiency, and the working life and reliability of related power devices.
  • the effective contact area (heat exchange area) of the insulating liquid heat-conducting working medium and the high-power electromagnetic wave generator heating surface will increase, so the theoretical heat transfer efficiency will increase (the heat exchange amount is proportional to the area), and the insulation
  • the liquid heat transfer working fluid has higher effective utilization rate.
  • Insulating liquid heat transfer working substance is non-polar substance, which will not affect the electronics, electrical equipment and circuit, and will not damage the hardware.
  • the spray pipe has simple structure and low power consumption; the nozzle part manufacturing technology is mature, the reliability is high, and the heat transfer process and structure are simpler, and the reliability and controllability are higher.
  • FIG. 1 is a schematic view showing the structure of a working-contact cooling system of a high-power electromagnetic wave generator of Embodiment 1.
  • Fig. 2 is a front elevational view showing the high-power electromagnetic wave generator of the first embodiment.
  • 3 is a heat dissipation structure of the working tank of the second embodiment.
  • Fig. 5 is a heat dissipation structure of the working tank of the fourth embodiment.
  • the working fluid contact cooling system of the high-power electromagnetic wave generator shown in FIG. 1 includes a high-power electromagnetic wave generator 1, an insulating liquid heat transfer working medium 2, a nozzle 3, a spray branch pipe 4, a spray main pipe 5, a working fluid pump 6. Filter 7 and working tank 8,
  • the working medium box 8 is filled with an insulating liquid heat-conducting working medium 2, the working medium pump 6 is suspended in the insulating liquid heat-conducting working medium 2, the filter 7 is installed at the inlet of the working medium pump 6, and the working medium pump 6 is connected to the spraying main pipe 5, a plurality of The spray branch pipe 4 is connected in parallel to the spray main pipe 5, each spray pipe branch 4 is provided with a plurality of nozzles 3, the nozzle 3 is opposite to the high-power electromagnetic wave generator 1;
  • the nozzle 3 is sprayed against the front and back sides of the high-power electromagnetic wave generator 1 to form a relatively open spray structure;
  • the insulating liquid heat transfer medium 2 is a non-polar substance, and the insulating liquid heat transfer medium 2 has no phase change during the spraying process.
  • the spray branch pipe 4 and the high-power electromagnetic wave generator 1 are arranged in parallel in the longitudinal direction,
  • the working box 8 is provided with an air natural convection cooling structure: the outer side of the working medium box 8 is provided with a heat dissipating fin 9.
  • the natural convection of the ambient air alone relies on the insulating liquid heat transfer medium 2 carrying the heat of the battery to cool down in the working tank 8 through the heat dissipating fins 9 and the environment.
  • This cooling method has the outstanding advantage that the cooling part does not use any power consuming appliances or mechanical parts; it can be used as long as the environmental conditions satisfy the basic heat dissipation temperature difference and natural convection conditions.
  • the insulating liquid heat transfer medium 2 in the working tank 8 is continuously cooled to ensure the effective heat exchange temperature difference between the insulating liquid heat conductive medium 2 and the high power electromagnetic wave generator 1 to effectively cool the high power electromagnetic wave generator 1.
  • the filter 7 ensures the purity of the insulating liquid heat-conducting medium 2, prevents the damage of the impurity to the working fluid pump 6 and the clogging of the nozzle 3, ensures the circulation capability, and improves the adaptability and reliability.
  • Insulating liquid heat transfer medium 2 must use insulating liquid with good thermal conductivity, such as various types of natural mineral oil, silicone oil, vegetable oil, transformer oil, heat transfer oil, etc., to ensure the insulation of the working medium and avoid high-power electromagnetic waves.
  • the device 1 is in contact with the conductor, causing the generator to be damaged and the system to be scrapped.
  • the insulating liquid thermal conductive medium 2 generally has a high thermal conductivity, and can be directly contacted with the heat-generating high-power electromagnetic wave generator 1 by spraying, thereby enabling efficient heat dissipation to the high-power electromagnetic wave generator 1.
  • the nozzle 3 needs to use materials with excellent insulation and engineering strength.
  • the working medium pump 6 is started, the insulating liquid thermal conductive working medium 2 enters the working medium pump 6 through the filter 7, and the working fluid pump 6 applies the insulating liquid thermal conductive working substance.
  • the heat dissipating fins 9 ensure an effective heat exchange temperature difference (usually 5-10 ° C) between the insulating liquid heat transfer medium 2 and the high power electromagnetic wave generator 1 for effective cooling thereof.
  • the working tank 8 is provided with an air forced convection cooling structure: a heat dissipating fin 9 is disposed outside the working medium box 8, and a plurality of fans 10 are provided to blast the heat dissipating fins 9.
  • the air is strong The convection occurs under the influence of the system, and the fresh air with lower temperature continuously circulates into the heat transfer medium 2 with the insulating liquid to realize the heat conduction of the insulating liquid.
  • the working tank 8 is provided with a water circulation cooling device: the evaporation working end 11 of the water circulation cooling device is immersed in the working tank 8, and the water circulation cooling device is provided with a water pump 13 in the pipeline, and the heat dissipation end 12 of the water circulation cooling device passes
  • the fan 10 performs blasting to achieve cooling of the high-temperature insulating liquid heat transfer medium 2 in the working fluid tank 8 by heat exchange, and the water of the evaporation working end 11 carries the heat of the insulating liquid heat-conductive working medium 2 to the heat-dissipating end 12 After the heat is dissipated, the heat transfer of the insulating liquid heat transfer medium 2 is continued by the water pump 13 circulation.
  • the working tank 8 is provided with a compression type refrigeration cycle cooling device: the evaporator 14 of the compression type refrigeration cycle cooling device is immersed in the working tank 8, and is radiated by the outer condenser 15.
  • the evaporator 14 is heat-exchanged with the high-temperature insulating liquid heat transfer medium 2, and then cooled and recirculated in the outer condenser 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明公开了一种高功率电磁波发生器的工质接触式冷却系统,包括高功率电磁波发生器、绝缘液体导热工质、喷嘴、喷淋支管、喷淋总管、工质泵、过滤器和工质箱,工质箱内装绝缘液体导热工质,工质泵沉于绝缘液体导热工质中,过滤器安装在工质泵的入口,工质泵连接喷淋总管,多个喷淋支管并联连接喷淋总管,每个喷淋支管设有多个喷嘴,喷嘴对着高功率电磁波发生器;喷嘴对着高功率电磁波发生器的正面和背面喷淋,形成相对开放式的喷淋结构;绝缘液体导热工质为非极性物质,喷淋过程中绝缘液体导热工质无相变。本发明还提供了一种高功率电磁波发生器的工质接触式冷却系统的工作方法。本发明散热结构合理,散热效率高。

Description

高功率电磁波发生器的工质接触式冷却系统及其工作方法 技术领域
本发明涉及高功率电磁波发生器的冷却技术领域,具体涉及一种高功率电磁波发生器的工质接触式冷却系统及其工作方法。
背景技术
电磁波是以波动的形式传播的电磁场,高频率的电磁波可用于信号加强或干扰,以及高效加热,可普遍用于雷达、微波发射器中。例如,高功率微波技术指平均功率在千瓦以上或峰值功率在几百千瓦以上的微波信号的产生、传输、测量和应用等技术。商业和军事上的需求的牵引促使微波器件工作在高的微波频段,直至毫米波频段。为了保持一定的功率增益,要求减小功率晶体管的特征尺寸,进而带来了很大的散热压力,若不进行有效的散热设计,其工作寿命将严重减小。随着电磁波频率提高,发生器的功率也不断提高,现多通过在波导或同轴线内,用玻璃或其他介质材料做成能减小负荷的反射的楔形外壳,内充水、油或其他液体作为吸收微波能量的介质,通过外循环系统散热。高功率微波可以显著提高雷达的性能,增加雷达的作用距离和抗干扰能力。但随着电子元器件的小型化、微小型化,热流密度不断提高,这对微波发生器、雷达T/R功率组件、机载大功率发射机、星载T/R功率组件等均提出迫切的散热需求。
发明内容
为了解决上述的技术问题,本发明提供了一种高功率电磁波发生器的工质接触式冷却系统,散热结构合理,散热效率高。
本发明还提供了一种高功率电磁波发生器的工质接触式冷却系统的工作方法。
本发明解决上述技术问题的方案如下:
高功率电磁波发生器的工质接触式冷却系统,包括高功率电磁波发生器、 绝缘液体导热工质、喷嘴、喷淋支管、喷淋总管、工质泵、过滤器和工质箱,
所述工质箱内装绝缘液体导热工质,工质泵沉于绝缘液体导热工质中,过滤器安装在工质泵的入口,工质泵连接喷淋总管,多个喷淋支管并联连接喷淋总管,每个喷淋支管设有多个喷嘴,喷嘴对着高功率电磁波发生器;
所述喷嘴对着高功率电磁波发生器的正面和背面喷淋,形成相对开放式的喷淋结构;
所述绝缘液体导热工质为非极性物质,喷淋过程中绝缘液体导热工质无相变。
所述喷淋支管和高功率电磁波发生器纵向平行间隔排布。
工质箱可以设置如下4种冷却循环结构:
1、所述工质箱设有空气自然对流冷却结构:工质箱外侧设置安装散热翅片。
2、所述工质箱设有空气强制对流冷却结构:工质箱外侧设置安装散热翅片,并设有若干风扇对散热翅片进行鼓风。
3、所述工质箱设有水循环冷却装置:水循环冷却装置的蒸发工作端浸入工质箱中,水循环冷却装置的管路设有水泵,水循环冷却装置的散热端通过风扇进行鼓风。
4、所述工质箱设有压缩式制冷循环冷却装置:压缩式制冷循环冷却装置的蒸发器浸于工质箱中,通过外侧的冷凝器进行散热。
上述的高功率电磁波发生器的工质接触式冷却系统的工作方法,所述工质泵启动,绝缘液体导热工质通过过滤器进入工质泵,工质泵把绝缘液体导热工质输送到喷淋总管,喷淋总管把绝缘液体导热工质分配到各个喷淋支管,喷嘴喷出的绝缘液体导热工质直接喷淋到高功率电磁波发生器的正面及背面,高功率电磁波发生器的热量通过绝缘液体导热工质带走,绝缘液体导热工质在重力作用下回流到工质箱并被冷却,如此循环,绝缘液体导热工质不断将高功率电磁波发生器的热量带走。
本发明相对于现有技术具有如下的优点:
1、喷嘴对着高功率电磁波发生器的正面和背面喷淋,形成相对开放式的喷淋结构,绝缘液体导热工质直接与需要散热的高功率电磁波发生器发热表面接触传导热量,降低接触热阻,没有任何中间介质和传热转换环节,提高热传导效率。
2、喷淋支管和高功率电磁波发生器纵向平行间隔排布,喷淋面积大,换热效率高。
3、绝缘液体导热工质为非极性物质,喷淋过程中绝缘液体导热工质无相变,喷淋的绝缘液体导热工质在高功率电磁波发生器表面形成雾化液膜,雾化液膜热传导具有小流量、大温差、高传热系数、高热流密度等优良传热及流动的综合特性。
4、在同等的环境温度下,直接接触式冷却散热温差可控,与非直接接触式传热方式相比,可进一步降低高功率电磁波发生器表面温度,有助于提高高功率电磁波发生器的电磁波发生效率,及相关电力器件的工作寿命和可靠性。
5、采用喷淋式散热,绝缘液体导热工质与高功率电磁波发生器发热面有效接触面积(换热面积)会增加,从而理论热传导效率会提高(换热量与面积成正比关系),绝缘液体导热工质有效利用率更高。
6、喷淋过程中绝缘液体导热工质无相变,因此系统循环不需要气相工质回收设备,只需设置常见过滤器用于过滤工质在相对开放式循环过程中产生的杂质,系统自适应性及可靠性更高。
7、绝缘液体导热工质为非极性物质,不会对电子、电器设备及回路产生影响,对硬件不会有损坏。
8、喷淋管路结构简单、动力消耗小;喷嘴部件制造技术成熟、可靠性高,传热过程和结构越简单其可靠性和可控性越高。
9、绝缘液体导热工质作为液体换热方式,其热传导性能普遍优于使用空 气强制对流,并且相对于传统强制对流风冷系统需要新风单元以及一些复杂的架构设计,液体冷却技术架构的设计要求本身比较少,直接接触喷淋的结构可以更加简单,从而节约成本和延长器件使用寿命。
附图说明
图1是实施例1的高功率电磁波发生器的工质接触式冷却系统的结构示意图。
图2是实施例1的高功率电磁波发生器的正面图。
图3是实施例2的工质箱的散热结构。
图4是实施例3的工质箱的散热结构。
图5是实施例4的工质箱的散热结构。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例1:
如图1所示的高功率电磁波发生器的工质接触式冷却系统,包括高功率电磁波发生器1、绝缘液体导热工质2、喷嘴3、喷淋支管4、喷淋总管5、工质泵6、过滤器7和工质箱8,
工质箱8内装绝缘液体导热工质2,工质泵6沉于绝缘液体导热工质2中,过滤器7安装在工质泵6的入口,工质泵6连接喷淋总管5,多个喷淋支管4并联连接喷淋总管5,每个喷淋支管4设有多个喷嘴3,喷嘴3对着高功率电磁波发生器1;
喷嘴3对着高功率电磁波发生器1的正面和背面喷淋,形成相对开放式的喷淋结构;
绝缘液体导热工质2为非极性物质,喷淋过程中绝缘液体导热工质2无相变。
喷淋支管4和高功率电磁波发生器1纵向平行间隔排布,
工质箱8设有空气自然对流冷却结构:工质箱8外侧设置安装散热翅片9。 仅依靠环境空气的自然对流使携带电池热量的绝缘液体导热工质2在工质箱8内通过散热翅片9及环境冷却降温。此冷却方式突出优点为:冷却部分不使用任何耗功电器或机械部件;只要环境条件满足基本散热温差和自然对流条件,即可使用。工质箱8中的绝缘液体导热工质2不断进行冷却,以保证绝缘液体导热工质2与高功率电磁波发生器1的有效换热温差,以对高功率电磁波发生器1进行有效的冷却。
过滤器7保证绝缘液体导热工质2纯净度,防止杂质对工质泵6的损伤以及对喷嘴3的堵塞,保证循环能力,提高自适应性及可靠性。
绝缘液体导热工质2必须使用绝缘性好的导热液体工质,例如多种型号的天然矿物油、硅油、植物油、变压油、导热油等,保证工质绝缘性,避免与高功率电磁波发生器1接触导电,造成发生器损毁和系统报废。绝缘液体导热工质2普遍具有较高的导热系数,且通过喷淋可与发热的高功率电磁波发生器1直接接触散热,从而能够高效的实现对高功率电磁波发生器1散热。
喷嘴3需选用绝缘优良且工程强度符合要求的材料。
上述的高功率电磁波发生器的工质接触式冷却系统的工作方法,工质泵6启动,绝缘液体导热工质2通过过滤器7进入工质泵6,工质泵6把绝缘液体导热工质2输送到喷淋总管5,喷淋总管5把绝缘液体导热工质2分配到各个喷淋支管4,喷嘴3喷出的绝缘液体导热工质2直接喷淋到高功率电磁波发生器1的正面及背面,高功率电磁波发生器1的热量通过绝缘液体导热工质2带走,绝缘液体导热工质2在重力作用下回流到工质箱8并被冷却,如此循环,绝缘液体导热工质2不断将高功率电磁波发生器1的热量带走。散热翅片9保证绝缘液体导热工质2与高功率电磁波发生器1之间保持有效换热温差(通常为5-10℃),以对其进行有效的冷却。
实施例2:
如图3所示,工质箱8设有空气强制对流冷却结构:工质箱8外侧设置安装散热翅片9,并设有若干风扇10对散热翅片9进行鼓风。空气在外力强 制影响下发生对流,温度较低的新风不断鼓入与绝缘液体导热工质2进行换热实现绝缘液体导热工质2冷却。
实施例3:
如图4所示,工质箱8设有水循环冷却装置:水循环冷却装置的蒸发工作端11浸入工质箱8中,水循环冷却装置的管路设有水泵13,水循环冷却装置的散热端12通过风扇10进行鼓风,实现对工质箱8中换热回流的高温的绝缘液体导热工质2的冷却,蒸发工作端11的水将绝缘液体导热工质2的热量带出到散热端12进行散热后,通过水泵13循环继续对绝缘液体导热工质2换热。
实施例4:
如图5所示,工质箱8设有压缩式制冷循环冷却装置:压缩式制冷循环冷却装置的蒸发器14浸于工质箱8中,通过外侧的冷凝器15进行散热。蒸发器14与高温的绝缘液体导热工质2进行热交换后,在外侧的冷凝器15中进行冷却再循环。
上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

  1. 高功率电磁波发生器的工质接触式冷却系统,其特征在于:包括高功率电磁波发生器、绝缘液体导热工质、喷嘴、喷淋支管、喷淋总管、工质泵、过滤器和工质箱,
    所述工质箱内装绝缘液体导热工质,工质泵沉于绝缘液体导热工质中,过滤器安装在工质泵的入口,工质泵连接喷淋总管,多个喷淋支管并联连接喷淋总管,每个喷淋支管设有多个喷嘴,喷嘴对着高功率电磁波发生器;
    所述喷嘴对着高功率电磁波发生器的正面和背面喷淋,形成相对开放式的喷淋结构;
    所述绝缘液体导热工质为非极性物质,喷淋过程中绝缘液体导热工质无相变。
  2. 根据权利要求1所述的高功率电磁波发生器的工质接触式冷却系统,其特征在于:所述喷淋支管和高功率电磁波发生器纵向平行间隔排布。
  3. 根据权利要求1所述的高功率电磁波发生器的工质接触式冷却系统,其特征在于:所述工质箱设有空气自然对流冷却结构:工质箱外侧设置安装散热翅片。
  4. 根据权利要求1所述的高功率电磁波发生器的工质接触式冷却系统,其特征在于:所述工质箱设有空气强制对流冷却结构:工质箱外侧设置安装散热翅片,并设有若干风扇对散热翅片进行鼓风。
  5. 根据权利要求1所述的高功率电磁波发生器的工质接触式冷却系统,其特征在于:所述工质箱设有水循环冷却装置:水循环冷却装置的蒸发工作端浸入工质箱中,水循环冷却装置的管路设有水泵,水循环冷却装置的散热端通过风扇进行鼓风。
  6. 根据权利要求1所述的高功率电磁波发生器的工质接触式冷却系统,其特征在于:所述工质箱设有压缩式制冷循环冷却装置:压缩式制冷循环冷却装置的蒸发器浸于工质箱中,通过外侧的冷凝器进行散热。
  7. 根据权利要求1所述的高功率电磁波发生器的工质接触式冷却系统的 工作方法,其特征在于:所述工质泵启动,绝缘液体导热工质通过过滤器进入工质泵,工质泵把绝缘液体导热工质输送到喷淋总管,喷淋总管把绝缘液体导热工质分配到各个喷淋支管,喷嘴喷出的绝缘液体导热工质直接喷淋到高功率电磁波发生器的正面及背面,高功率电磁波发生器的热量通过绝缘液体导热工质带走,绝缘液体导热工质在重力作用下回流到工质箱并被冷却,如此循环,绝缘液体导热工质不断将高功率电磁波发生器的热量带走。
PCT/CN2016/102652 2016-06-16 2016-10-20 高功率电磁波发生器的工质接触式冷却系统及其工作方法 WO2017215169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610439358.3 2016-06-16
CN201610439358.3A CN105934138B (zh) 2016-06-16 2016-06-16 高功率电磁波发生器的工质接触式冷却系统及其工作方法

Publications (1)

Publication Number Publication Date
WO2017215169A1 true WO2017215169A1 (zh) 2017-12-21

Family

ID=56830602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102652 WO2017215169A1 (zh) 2016-06-16 2016-10-20 高功率电磁波发生器的工质接触式冷却系统及其工作方法

Country Status (2)

Country Link
CN (1) CN105934138B (zh)
WO (1) WO2017215169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348735A (zh) * 2018-10-31 2021-09-03 王光财 用于提供液体膜冷却的壳体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017215160A1 (zh) * 2016-06-16 2017-12-21 广东合一新材料研究院有限公司 一种可间断式工质接触式冷却系统
CN105934139B (zh) 2016-06-16 2018-05-22 广东合一新材料研究院有限公司 大功率器件的工质接触式冷却系统及其工作方法
CN105934138B (zh) * 2016-06-16 2018-05-22 广东合一新材料研究院有限公司 高功率电磁波发生器的工质接触式冷却系统及其工作方法
WO2017215162A1 (zh) * 2016-06-16 2017-12-21 广东合一新材料研究院有限公司 一种大功率电力器件的工质接触式冷却系统
CN106332531B (zh) * 2016-10-31 2018-08-31 广东合一新材料研究院有限公司 一种服务器的工质接触式冷却系统
CN106533459B (zh) * 2017-01-10 2019-06-25 广东合一新材料研究院有限公司 一种发射机功放单元冷却系统及方法
CN113347750B (zh) * 2020-02-18 2023-06-16 青岛海尔电冰箱有限公司 用于加热单元的控制方法及加热单元和冷藏冷冻装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436819A (zh) * 2007-07-30 2009-05-20 通用汽车环球科技运作公司 具有集成栅极驱动电路的功率电子装置
CN101846872A (zh) * 2009-03-25 2010-09-29 精工爱普生株式会社 投影机
CN102342191A (zh) * 2009-06-25 2012-02-01 国际商业机器公司 具有泵加强电介质流体浸入冷却的电子模块
CN105208837A (zh) * 2015-10-29 2015-12-30 中国电子科技集团公司第二十研究所 基于封闭微喷射流的错列微细通道热沉装置
CN105658037A (zh) * 2016-03-18 2016-06-08 苏州大景能源科技有限公司 一种整体式液冷散热机箱
CN105934138A (zh) * 2016-06-16 2016-09-07 广东合新材料研究院有限公司 高功率电磁波发生器的工质接触式冷却系统及其工作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907473A (en) * 1997-04-04 1999-05-25 Raytheon Company Environmentally isolated enclosure for electronic components
US6313992B1 (en) * 1998-12-22 2001-11-06 James J. Hildebrandt Method and apparatus for increasing the power density of integrated circuit boards and their components
CN101193526A (zh) * 2006-11-20 2008-06-04 沈国忠 大功率电子器件散热方法和使用该方法的散热装置
CN102573385A (zh) * 2010-12-08 2012-07-11 中国科学院电工研究所 发热装置喷淋式蒸发冷却循环系统
CN203618277U (zh) * 2013-12-14 2014-05-28 中国航空工业集团公司第六三一研究所 一种机载电子设备射流冷却系统
CN203848721U (zh) * 2014-04-10 2014-09-24 河南心连心化肥有限公司 蒸发式冷却器
CN204392069U (zh) * 2014-12-04 2015-06-10 重庆科川电气有限公司 水冷式变频器
CN204388646U (zh) * 2014-12-16 2015-06-10 无锡海洋冷却设备仪征有限公司 一种新型中频电源水冷却系统
CN205266105U (zh) * 2015-12-04 2016-05-25 西安工程大学 基于喷泉/深井水的数据中心用冷却系统
CN205847817U (zh) * 2016-06-16 2016-12-28 广东合一新材料研究院有限公司 高功率电磁波发生器的工质接触式冷却系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436819A (zh) * 2007-07-30 2009-05-20 通用汽车环球科技运作公司 具有集成栅极驱动电路的功率电子装置
CN101846872A (zh) * 2009-03-25 2010-09-29 精工爱普生株式会社 投影机
CN102342191A (zh) * 2009-06-25 2012-02-01 国际商业机器公司 具有泵加强电介质流体浸入冷却的电子模块
CN105208837A (zh) * 2015-10-29 2015-12-30 中国电子科技集团公司第二十研究所 基于封闭微喷射流的错列微细通道热沉装置
CN105658037A (zh) * 2016-03-18 2016-06-08 苏州大景能源科技有限公司 一种整体式液冷散热机箱
CN105934138A (zh) * 2016-06-16 2016-09-07 广东合新材料研究院有限公司 高功率电磁波发生器的工质接触式冷却系统及其工作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348735A (zh) * 2018-10-31 2021-09-03 王光财 用于提供液体膜冷却的壳体

Also Published As

Publication number Publication date
CN105934138A (zh) 2016-09-07
CN105934138B (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2017215169A1 (zh) 高功率电磁波发生器的工质接触式冷却系统及其工作方法
WO2017215168A1 (zh) 大功率器件的工质接触式冷却系统及其工作方法
WO2017215159A1 (zh) 功率电池的工质接触式冷却系统及其工作方法
CN106413338B (zh) 一种用于计算机及数据中心散热的工质接触式冷却系统
CN108471693B (zh) 一种蒸发式散热系统
CN105960148B (zh) 一种可间断式工质接触式冷却系统
CN105702647B (zh) 一种实现高负荷cpu强化散热功能的纳米喷雾装置及其方法
US20190132997A1 (en) Working substance contacted cooling system for computer and data center
CN108697036A (zh) 一种适用于充电桩模块的隔离式散热结构及其散热方法
CN106958962A (zh) 半导体化霜加热器和制冷设备
WO2017215162A1 (zh) 一种大功率电力器件的工质接触式冷却系统
CN205847817U (zh) 高功率电磁波发生器的工质接触式冷却系统
CN206135455U (zh) 充电装置
CN205847818U (zh) 大功率器件的工质接触式冷却系统
WO2017215160A1 (zh) 一种可间断式工质接触式冷却系统
CN212695296U (zh) 五管鳍片天线散热器
CN210351965U (zh) 一种集成式冷却装置
CN101752330B (zh) 散热冷板与冷冻系统
CN216650334U (zh) 一种电力逆变器的高防护散热装置
CN218632406U (zh) 一种用于通信天线设备的散热结构
CN216852940U (zh) 防凝露电控箱
CN211237855U (zh) 一种电阻箱散热器
CN216872468U (zh) 一种基于微尺度换热的激光器冷却系统
CN219042408U (zh) 一种带有散热装置的机柜
CN220828919U (zh) 一种方便安装的冷风扇制冷模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905281

Country of ref document: EP

Kind code of ref document: A1