WO2017212980A1 - 位相差基板、液晶素子及び液晶モジュール - Google Patents

位相差基板、液晶素子及び液晶モジュール Download PDF

Info

Publication number
WO2017212980A1
WO2017212980A1 PCT/JP2017/020069 JP2017020069W WO2017212980A1 WO 2017212980 A1 WO2017212980 A1 WO 2017212980A1 JP 2017020069 W JP2017020069 W JP 2017020069W WO 2017212980 A1 WO2017212980 A1 WO 2017212980A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
retardation
layer
substrate
alignment
Prior art date
Application number
PCT/JP2017/020069
Other languages
English (en)
French (fr)
Inventor
浩二 村田
坂井 彰
雄一 川平
中村 浩三
雅浩 長谷川
貴子 小出
箕浦 潔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/307,445 priority Critical patent/US20190346607A1/en
Publication of WO2017212980A1 publication Critical patent/WO2017212980A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3008Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a retardation substrate, a liquid crystal element, and a liquid crystal module. More specifically, the present invention relates to a phase difference substrate subjected to a liquid crystal alignment process, and a liquid crystal element and a liquid crystal module including the phase difference substrate.
  • a liquid crystal display device is a display device that uses a liquid crystal composition for display, and a typical display method is that light is emitted from a backlight to a liquid crystal display panel in which the liquid crystal composition is sealed between a pair of substrates. The amount of light transmitted through the liquid crystal display panel is controlled by irradiating and applying a voltage to the liquid crystal composition to change the orientation of the liquid crystal molecules.
  • Such a liquid crystal display device has features such as thinness, light weight, and low power consumption, and thus is used in electronic devices such as a television, a smartphone, a tablet PC, and a car navigation system.
  • Patent Document 1 in a liquid crystal panel used by irradiating light from the back side with a backlight unit, a first polarizing plate and a liquid crystal arranged on the front side of the liquid crystal panel A first retardation plate is provided between the liquid crystal panel and at least one retardation plate is provided between the second polarizing plate disposed on the back side of the liquid crystal panel and the liquid crystal layer, and the first retardation is provided.
  • Non-Patent Document 1 discloses that the visibility in the outdoors can be improved by a transflective IPS mode liquid crystal display using a patterned in-cell retardation plate.
  • the present invention has been made in view of the above-described situation, a retardation substrate in which dissolution of a retardation layer is suppressed, depolarization is good, and has a high voltage holding ratio when used in a liquid crystal element, and
  • An object of the present invention is to provide a liquid crystal element and a liquid crystal module provided with the retardation substrate.
  • the inventors When the retardation layer is disposed on the liquid crystal layer side of the base material, the inventors have suppressed the retardation layer from being dissolved, have good depolarization, and have a high voltage holding ratio when used in a liquid crystal element. As a result of various investigations on a retardation substrate having a retardation, it has been found that dissolution of the retardation layer can be suppressed by providing a dielectric layer on the surface of the retardation layer opposite to the substrate. As a result, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • one embodiment of the present invention includes a base material, a retardation layer provided on one surface of the base material, and a dielectric layer provided on a surface of the retardation layer on the side opposite to the base material.
  • a retardation substrate may be provided that includes an alignment film provided on a surface of the dielectric layer opposite to the retardation layer and subjected to a liquid crystal alignment treatment.
  • Another embodiment of the present invention is a substrate, a retardation layer provided on one surface of the substrate, a liquid crystal alignment provided on the surface of the retardation layer opposite to the substrate.
  • a retardation substrate including a dielectric layer that has been processed may be used.
  • the retardation layer may be composed of a photoalignment material having a photofunctional group.
  • the retardation layer may contain a liquid crystalline polymer.
  • the retardation layer may have a retardation of ⁇ / 4.
  • the dielectric layer may be an inorganic film.
  • the inorganic film may contain at least one of SiO 2 and SiN.
  • the liquid crystal alignment treatment may be a rubbing alignment treatment.
  • a liquid crystal device comprising: the retardation substrate; a further base material; a liquid crystal layer provided between the retardation substrate and the further base material; and an electric field generating unit that generates an electric field in the liquid crystal layer.
  • the electric field generating unit includes a pair of electrodes, and the pair of electrodes is provided on the further base material, and a voltage is applied between the pair of electrodes to generate a lateral electric field in the liquid crystal layer. May be.
  • the liquid crystal layer may include liquid crystal molecules having positive dielectric anisotropy.
  • a color filter layer may be provided.
  • a pair of polarizing plates arranged in a crossed Nicol arrangement may be provided.
  • a liquid crystal module including the liquid crystal element and a light source for irradiating the liquid crystal element with light may be used.
  • retardation of the retardation layer is suppressed, depolarization is good, and a retardation substrate having a high voltage holding ratio when used in a liquid crystal element, and a liquid crystal element including the retardation substrate.
  • a liquid crystal module can be provided.
  • FIG. 3 is a schematic cross-sectional view illustrating the retardation substrate of the first embodiment.
  • 6 is a schematic cross-sectional view illustrating a retardation substrate of Embodiment 2.
  • FIG. It is the schematic diagram regarding the liquid crystal element of Embodiment 3, (a) is the cross-sectional schematic diagram which showed the liquid crystal element, (b) is the cross-sectional schematic diagram which showed the structural example of the 2nd board
  • substrate. 6 is a schematic cross-sectional view showing a liquid crystal module of Embodiment 4.
  • Example 1 It is a figure in each process which produces the 1st board
  • FIG. 3 is a schematic cross-sectional view illustrating a manner in which the liquid crystal element in Example 1 is manufactured.
  • polarizing plate without “straight line” refers to a linear polarizing plate and is distinguished from a circularly polarizing plate.
  • a ⁇ / 4 plate refers to a retardation plate that gives an in-plane retardation of a quarter wavelength (strictly, 137.5 nm) to light having a wavelength of at least 550 nm. What is necessary is just to give the following in-plane phase differences.
  • light having a wavelength of 550 nm is light having the highest human visibility.
  • nx and ny indicate the main refractive index in the in-plane direction of the retardation plate (including the ⁇ / 4 plate), and nz indicates the main refractive index in the thickness direction of the retardation plate.
  • the main refractive index indicates a value for light having a wavelength of 550 nm unless otherwise specified.
  • the in-plane slow axis indicates the axis in the direction corresponding to ns
  • the in-plane fast axis indicates the axis in the direction corresponding to nf. Point to.
  • two axes (directions) are orthogonal means that an angle (absolute value) between the two axes is in a range of 90 ⁇ 3 °, preferably in a range of 90 ⁇ 1 °, More preferably, it is within the range of 90 ⁇ 0.5 °, and particularly preferably 90 ° (fully orthogonal).
  • the two axes (directions) being parallel means that the angle (absolute value) between the two axes is in the range of 0 ⁇ 3 °, preferably in the range of 0 ⁇ 1 °, more preferably It is in the range of 0 ⁇ 0.5 °, particularly preferably 0 ° (completely parallel).
  • the two axes (directions) form an angle of 45 ° means that the angle between them (absolute value) is within the range of 45 ⁇ 3 °, preferably within the range of 45 ⁇ 1 °. More preferably, it is within the range of 45 ⁇ 0.5 °, and particularly preferably 45 ° (completely 45 °).
  • FIG. 1 is a schematic cross-sectional view showing the retardation substrate of the first embodiment.
  • the retardation substrate 10 according to the first embodiment includes a base material 111, a retardation layer 112 provided on one surface of the base material 111, and the opposite of the base material 111 of the retardation layer 112.
  • a dielectric layer 113 provided on the side surface, and an alignment film 114 provided on the surface of the dielectric layer 113 opposite to the phase difference layer 112 and subjected to a liquid crystal alignment process.
  • a solvent (solvent) used for coating the alignment film a mixed solvent containing ⁇ -butyrolactone, N-methylpyrrolidone (NMP), butyl cellosolve, or the like is used for the purpose of adjusting viscosity or improving wettability. Therefore, in the configuration of the conventional retardation substrate in which the dielectric layer is not disposed, these mixed solvents often dissolve the retardation layer when the alignment film is applied on the retardation layer. Film formation was difficult. However, in this embodiment, since the dielectric layer 113 exists between the retardation layer 112 and the alignment film 114, the solvent used when forming the alignment film 114 is prevented from dissolving the retardation layer 112. be able to.
  • the substrate 111 is preferably a transparent substrate having transparency, and examples thereof include a glass substrate and a plastic substrate.
  • the retardation layer 112 is a layer that changes the state of incident polarized light by giving a phase difference to two orthogonal polarization components using a birefringent material, and is made of, for example, a photo-alignment material having a photofunctional group.
  • the photo-alignment material having a photofunctional group refers to a material in which the orientation of the photofunctional group is enhanced by the following method.
  • a photo-alignment material having a photofunctional group is applied onto a substrate to form a photo-alignment material film.
  • temporary baking is performed with respect to the film
  • photoirradiation for example, polarized ultraviolet ray irradiation
  • photochemical functional group chemical reactions photodimerization, photoisomerization, and photofleece transition). At least one chemical reaction selected from the group).
  • main baking at a temperature higher than that of the temporary baking, the orientation of the photofunctional group is enhanced by the chemical reaction generated by the light irradiation.
  • a photo-alignment material having a photofunctional group can exhibit a phase difference corresponding to ⁇ / 4 if it has a sufficient film thickness and birefringence.
  • the retardation layer 112 having a liquid crystal alignment property can be produced with a single layer. Therefore, the liquid crystal display device provided with the retardation layer 112 of this embodiment has a parallax. Expected to improve color mixing.
  • Examples of the photofunctional group capable of photodimerization and photoisomerization include a cinnamate group, a chalcone group, a coumarin group, and a stilbene group.
  • Examples of the photofunctional group capable of photoisomerization include an azobenzene group.
  • photofunctional groups capable of photo-fleece transition include phenol ester groups.
  • Examples of the main skeleton of the photo-alignment material include structures such as polyamic acid, polyimide, acrylic, methacryl, maleimide, and polysiloxane.
  • the retardation layer 112 may contain a liquid crystal polymer.
  • a liquid crystal polymer for example, a uniaxial liquid crystal (for example, nematic liquid crystal) that can easily fix the alignment state is preferably used.
  • the liquid crystalline polymer is formed by polymerizing (polymerizing) a liquid crystalline monomer having a photofunctional group (including a polymerization initiator) by irradiation with polarized ultraviolet rays, etc., and has a sufficient film thickness and birefringence. If present, a phase difference equivalent to ⁇ / 4 can be expressed.
  • the retardation layer 112 having a liquid crystal alignment property can be produced as a single layer. Therefore, the liquid crystal display device provided with the retardation layer 112 of this embodiment has a parallax. Expected to improve color mixing.
  • the retardation layer 112 is a ⁇ / 4 plate, reflection of external light in the liquid crystal display device using the retardation substrate 10 can be further suppressed.
  • the thickness of the retardation layer 112 is preferably 1.0 ⁇ m to 3.0 ⁇ m, and more preferably 1.2 ⁇ m to 2.0 ⁇ m.
  • the dielectric layer 113 is a layer containing a dielectric, and preferably has transparency.
  • the dielectric layer 113 is provided, it is possible to suppress the solvent used when forming the alignment film 114 from dissolving the retardation layer 112 and to align the alignment film 114. Can be easily formed.
  • the dielectric layer 113 is provided, it is possible to prevent the retardation layer 112 from being deteriorated due to dissolution, so that the depolarization property of the retardation substrate 10 can be maintained high. Note that depolarization is the degree to which polarized light is broken, and high depolarization means that polarized light is not easily broken.
  • a high voltage holding ratio can be realized when the retardation substrate 10 is used for a liquid crystal element. Become.
  • the dielectric layer 113 either an inorganic film or an organic film can be used.
  • a material such as silicon oxide (SiO 2 ) or silicon nitride (SiNx) can be used.
  • a material such as a photosensitive acrylic resin can be used.
  • the dielectric layer 113 is preferably an inorganic film because it can be easily formed by a dry process. Among inorganic films, SiO 2 and SiNx are preferable because of high transparency and high density.
  • the relative dielectric constant ⁇ of the dielectric layer 113 is preferably 1.0 ⁇ ⁇ 9.0, and more preferably 3.0 ⁇ ⁇ 7.5.
  • the relative dielectric constant of air is 1.00059
  • the relative dielectric constant of SiO 2 is 3.5
  • the relative dielectric constant of SiN is 7.0
  • the relative dielectric constant of ITO is 9.0.
  • the dielectric layer 113 can be formed by a sputtering method, a vapor deposition method, a plasma chemical vapor deposition (CVD) method, or the like.
  • the thickness of the dielectric layer 113 is preferably 50 nm to 1000 nm, more preferably 80 nm to 500 nm, and still more preferably 100 nm to 300 nm.
  • the alignment film 114 has a function of controlling the alignment of liquid crystal molecules in a liquid crystal layer, which will be described later.
  • the alignment film 114 is a layer that has been subjected to an alignment process for controlling the alignment of liquid crystal molecules. Examples of the alignment process include a rubbing alignment process in which an alignment process is performed by rubbing the surface of the layer with a roller or the like. Examples include photo-alignment processing that performs alignment processing by irradiation.
  • the alignment film 114 is preferably subjected to a rubbing alignment process. This is because, in addition to a relatively high regulation force for aligning liquid crystal molecules, it has been used as a proven alignment film for a long time.
  • the thickness of the alignment film 114 is preferably 50 nm to 200 nm, and more preferably 80 nm to 120 nm.
  • the retardation substrate of Embodiment 2 has the same configuration as that of the retardation substrate 10 of Embodiment 1 except that no alignment film is used. Therefore, in the present embodiment, features unique to the present embodiment will be mainly described, and the description overlapping with the first embodiment will be omitted as appropriate.
  • FIG. 2 is a schematic cross-sectional view showing the retardation substrate of the second embodiment.
  • the retardation substrate 20 includes a base material 211, a retardation layer 212 provided on one surface of the base material 211, and a surface opposite to the base material 211 of the retardation layer 212.
  • a dielectric layer 213 that has been subjected to a liquid crystal alignment treatment.
  • the retardation substrate 20 of Embodiment 2 does not have an alignment film, and the dielectric layer 213 is subjected to an alignment process such as a rubbing process in order to align liquid crystal molecules. That is, a rubbing process is performed directly on the dielectric layer 213 without forming an alignment film on the dielectric layer 213. Thereby, since the liquid crystal molecules can be aligned with respect to the rubbing direction, the liquid crystal element using the retardation substrate 20 of the second embodiment operates similarly to the liquid crystal element using the retardation substrate 10 of the first embodiment. It can be performed.
  • the alignment treatment is directly performed on the dielectric layer 213, it is not necessary to use the alignment film.
  • the solvent used when forming the alignment film dissolves the retardation layer 212. The problem of end up disappears. Thereby, it is possible to provide a retardation substrate having good depolarization and having a high voltage holding ratio when used in a liquid crystal element. Further, since the manufacturing process for forming the alignment film can be omitted, the manufacturing process can be simplified and the cost can be reduced.
  • the liquid crystal element of the third embodiment is a liquid crystal element in which various members such as a color filter and an electrode are arranged on the retardation substrate 10 of the first embodiment. Therefore, in the present embodiment, features unique to the present embodiment will be mainly described, and the description overlapping with the first embodiment will be omitted as appropriate.
  • the phase difference substrate 10 of the first embodiment is used.
  • the phase difference substrate 20 of the second embodiment can be used instead of the phase difference substrate 10 of the first embodiment.
  • the 1st base material and the 2nd base material in the following embodiment and an Example are respectively corresponded to the base material in the said each aspect of this invention, and the further base material, and a 1st phase difference layer is
  • the first alignment film corresponds to the alignment layer in the above aspect of the present invention
  • the first substrate corresponds to the retardation substrate in the above aspect of the present invention.
  • FIG. 3A and 3B are schematic diagrams relating to the liquid crystal element of Embodiment 3
  • FIG. 3A is a schematic cross-sectional view showing the liquid crystal element
  • FIG. 3B is a schematic cross-sectional view showing a configuration example of the second substrate.
  • the liquid crystal element 30 includes a first polarizer 315, a second retardation layer 316, a first substrate 301, a liquid crystal layer 318, and a second substrate 302 in order from the observation surface side. And a second polarizer 322.
  • the first substrate 301 includes a first base 311, a color filter layer 317, a first retardation layer 312, a dielectric layer 313, and a first alignment film 314 in order from the observation surface side. That is, the first substrate 301 is a substrate in which a color filter layer is provided between the base material 111 and the retardation layer 112 in the retardation substrate 10 of the first embodiment.
  • the second substrate 302 includes a second alignment film 319, an electrode 320, and a second base material 321 in this order from the observation surface side to the back surface side.
  • the second substrate 302 includes a pair of electrodes that generate a horizontal electric field in the liquid crystal layer 318 when a voltage is applied thereto as the electrodes 320.
  • the liquid crystal element 30 of Embodiment 3 since the first substrate 301 having the dielectric layer 313 is disposed adjacent to the liquid crystal layer 318, ionic impurities in the first substrate 301 ooze out into the liquid crystal layer 318. Can be suppressed by the dielectric layer 313. As a result, the liquid crystal element 30 can achieve a high VHR (Voltage Holding Ratio).
  • VHR Voltage Holding Ratio
  • the drive voltage threshold can be lowered and the transmittance reduction width can be reduced. It becomes.
  • first polarizer 315 and the second polarizer 322 for example, polarized light obtained by dyeing and adsorbing an anisotropic material such as an iodine complex (or dye) on a polyvinyl alcohol (PVA) film and then stretching and orienting the material.
  • a polarizer (absorptive polarizer) or the like can be used.
  • Each of the polarizers 315 and 322 may be called a polarizing plate.
  • the transmission axis of the first polarizer 315 and the transmission axis of the second polarizer 322 are preferably orthogonal to each other. According to such a configuration, since the first polarizer 315 and the second polarizer 322 are arranged in crossed Nicols, a black display state can be preferably realized when no voltage is applied.
  • the second retardation layer 316 is a layer that changes the state of incident polarized light by adding a phase difference between two orthogonally polarized components using a birefringent material or the like.
  • a liquid crystal polymer or a photofunctional group is used. It is a layer comprised from the photo-alignment material which has.
  • the second retardation layer 316 preferably contains a liquid crystalline polymer.
  • the photo-alignment material having a liquid crystalline polymer and a photofunctional group the same materials as those described in the retardation layer 112 of Embodiment 1 can be used.
  • the film thickness of the second retardation layer 316 is preferably 1.0 ⁇ m to 3.0 ⁇ m, and more preferably 1.2 ⁇ m to 2.0 ⁇ m.
  • any pigment-based or dye-based color material can be used, and the color combination is not particularly limited. For example, a combination of red, green, and blue, red , Green, blue, and yellow. It is preferable to use a pigment-based color resist for the color filter layer 317.
  • the liquid crystal layer 318 includes a liquid crystal composition, and by applying a voltage to the liquid crystal layer 318 and changing the alignment state of the liquid crystal molecules in the liquid crystal composition according to the applied voltage, the amount of transmitted light Is to control.
  • the liquid crystal molecules may have a negative dielectric anisotropy ( ⁇ ) defined by the following formula or may have a positive value. Note that liquid crystal molecules having positive dielectric anisotropy are also referred to as positive liquid crystals, and liquid crystal molecules having negative dielectric anisotropy are also referred to as negative liquid crystals.
  • (dielectric constant in the major axis direction)-(dielectric constant in the minor axis direction)
  • Liquid crystal molecules having positive dielectric anisotropy are preferably used because the response speed can be further increased.
  • liquid crystal molecules having negative dielectric anisotropy are liquid crystal molecules having a positive dielectric anisotropy because the alignment state of the liquid crystal molecules is not easily disturbed even when the electric field is disturbed. Since light scattering is less likely to occur than molecules (because transmission is improved), it is preferably used.
  • the second alignment film 319 has a function of controlling the alignment of liquid crystal molecules in the liquid crystal layer 318.
  • the first alignment film is mainly used.
  • the alignment of the liquid crystal molecules in the liquid crystal layer 318 is controlled by the action of the film 314 and the second alignment film 319.
  • the second alignment film 319 is a layer subjected to an alignment process for controlling the alignment of liquid crystal molecules, and examples of the alignment process include a rubbing alignment process and a photo-alignment process.
  • the second alignment film 319 is preferably subjected to a rubbing alignment process.
  • the thickness of the second alignment film 319 is preferably 50 nm to 200 nm, and more preferably 80 nm to 120 nm.
  • the second substrate 302 is an FFS mode thin film transistor array substrate, and is arranged on the surface of the second base 321 and the liquid crystal layer 318 side of the second base 321.
  • the other of the pair of electrodes) 320a and a second alignment film 319 (not shown).
  • the second substrate 321 is preferably a transparent substrate having transparency, and examples thereof include a glass substrate and a plastic substrate.
  • the electrode 320 includes a pixel electrode 320c and a common electrode 320a.
  • Examples of the material of the pixel electrode 320c and the common electrode 320a include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • Examples of the material of the insulating film 320b include an organic insulating film and a nitride film.
  • the first substrate 301 is a color filter substrate and the second substrate 302 is a thin film transistor array substrate.
  • the first substrate 301 may be a thin film transistor array substrate and the second substrate 302 may be used as a color filter substrate. .
  • the in-plane slow axis of the second retardation layer 316 and the transmission axis of the first polarizer 315 may form an angle of 45 °. preferable.
  • a configuration in which the circularly polarizing plate in which the first polarizer 315 and the second retardation layer 316 that is a ⁇ / 4 plate are stacked is arranged on the observation surface side of the liquid crystal element 30. Is realized. Therefore, incident light from the observation surface side (first polarizer 315 side) of the liquid crystal element 30 is converted into circularly polarized light when reaching the first substrate 301 when passing through the circularly polarizing plate.
  • the in-plane retardation of the first retardation layer 312 is assumed when the transmission axis of the second polarizer 322 is 0 °. It is preferable that the phase axis is ⁇ 45 °, the in-plane slow axis of the second retardation layer 316 is 45 °, and the transmission axis of the first polarizer 315 is 90 °. At this time, the in-plane slow axis of the first retardation layer 312 that is a ⁇ / 4 plate is orthogonal to the in-plane slow axis of the second retardation layer 316 that is a ⁇ / 4 plate.
  • the phase difference between the first retardation layer 312 and the second retardation layer 316 can be canceled with respect to light incident from at least the normal direction of the liquid crystal element 30.
  • a state in which both are substantially absent is realized.
  • a configuration that is optically equivalent to a conventional horizontal electric field mode liquid crystal display panel with respect to light incident on the liquid crystal element 30 (light incident on the liquid crystal element 30 at least from the normal direction) is realized. Therefore, it is possible to realize display in a transverse electric field mode using a circularly polarizing plate.
  • the first retardation layer 312 and the second retardation layer 316 are preferably made of the same material. Thereby, the first retardation layer 312 and the second retardation layer 316 can cancel the phase difference including the chromatic dispersion.
  • Embodiment 4 The liquid crystal module of Embodiment 4 was manufactured by arranging a backlight on the liquid crystal element of Embodiment 3 described above. Therefore, in the present embodiment, features unique to the present embodiment will be mainly described, and the description overlapping with the third embodiment will be omitted as appropriate.
  • the phase difference substrate 10 of the first embodiment is used, but the phase difference substrate 20 of the second embodiment can be used instead of the phase difference substrate 10 of the first embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the liquid crystal module of the fourth embodiment.
  • the liquid crystal module 40 includes a first polarizer 415, a second retardation layer 416, a first substrate 401, a liquid crystal layer 418, a second substrate 402, and a second substrate in order from the observation surface side.
  • the polarizer 422 and the backlight 423 are provided.
  • the first substrate 401 includes a first base material 411, a color filter layer 417, a first retardation layer 412, a dielectric layer 413, and a first alignment film 414 in this order from the observation surface side. That is, the first substrate 401 is a substrate in which a color filter layer is provided between the base material 111 and the retardation layer 112 in the retardation substrate 10 of the first embodiment.
  • the polarizers 415 and 422 may be called polarizing plates.
  • the second substrate 402 includes a second alignment film 419, an electrode 420, and a second base material 421 in this order from the observation surface side.
  • the liquid crystal module 40 of the fourth embodiment has a configuration in which the backlight 423 is provided on the back side of the liquid crystal element 30 of the third embodiment.
  • the method of the backlight 423 is not particularly limited, and examples thereof include an edge light method and a direct type.
  • the type of the light source of the backlight 423 is not particularly limited, and examples thereof include a light emitting diode (LED) and a cold cathode tube (CCFL).
  • LED light emitting diode
  • CCFL cold cathode tube
  • the in-plane retardation of the first retardation layer 412 is obtained.
  • the phase axis is ⁇ 45 °
  • the in-plane slow axis of the second retardation layer 416 is 45 °
  • the transmission axis of the first polarizer 415 is preferably 90 °.
  • the in-plane slow axis of the first retardation layer 412 that is a ⁇ / 4 plate is orthogonal to the in-plane slow axis of the second retardation layer 416 that is a ⁇ / 4 plate. According to such a configuration, light from the backlight 423 can be emitted as linearly polarized light.
  • FIG. 5 is a diagram in each step of producing the first substrate in Example 1, (a) is a schematic cross-sectional view showing a state in which a color filter layer is provided on a base material, and (b) is a color filter. It is the cross-sectional schematic diagram which showed a mode that the 1st phase difference layer was provided in the layer, (c) is a cross-sectional schematic diagram which showed the mode that the dielectric material layer was provided in the 1st phase difference layer, (d ) Is a schematic cross-sectional view showing a state in which the first alignment film is provided on the dielectric layer.
  • a color filter layer 417 was provided on a first base material 411 (thickness 0.7 mm), which was a transparent base material, and ultrasonic and pure water cleaning was performed to produce a laminate shown in FIG.
  • a photo-alignment material having a photofunctional group derived from an acrylic monomer was applied onto the color filter layer 417 at 500 rpm / 12 seconds by a spin coating method to form a first retardation layer 412.
  • preliminary baking is performed at 60 ° C. for 5 minutes, and the in-plane slow axis 412a of the first retardation layer 412 is ⁇ 45 ° (clockwise) with respect to the transmission axis 422a of the second polarizer 422 described later. 45 m) was irradiated with 100 mJ polarized ultraviolet light.
  • main baking was performed at 140 ° C. for 20 minutes on a hot plate to produce a laminate shown in FIG.
  • As the first retardation layer 412 a ⁇ / 4 plate having a retardation of 137.5 nm at a wavelength of 550 nm was used.
  • SiO 2 was formed at a thickness of 100 nm using a sputtering method, and a dielectric layer 413 was provided to produce a laminate shown in FIG.
  • a rubbing alignment film was applied on the dielectric layer 413 by a spin coating method at 2800 rpm / 12 seconds to provide a first alignment film 414. Then, temporary baking was performed at 60 ° C. for 90 seconds, and further, main baking was performed on a hot plate at 230 ° C. for 40 minutes. Subsequently, the rubbing direction 414a of the first alignment film 414 is parallel to the transmission axis 422a of the second polarizer 422, that is, the rubbing direction 414a of the first alignment film 414 and the first retardation layer 412.
  • the first alignment film 414 is rubbed with an indentation amount of 0.4 mm so that the in-plane slow axis 412a forms an angle of 45 °, and a first color filter layer having a color filter layer shown in FIG. One substrate 401 was obtained.
  • FIG. 6 is a diagram in each step of manufacturing the second substrate in Example 1, (a) is a schematic cross-sectional view showing a state in which an electrode is provided on a base material, and (b) is a second diagram showing an electrode on a second substrate. It is the cross-sectional schematic diagram which showed a mode that the alignment film of this was provided.
  • 7A and 7B are views showing the state of the electrode on the second substrate, where FIG. 7A is a schematic cross-sectional view of the electrode, and FIG. 7B is a schematic plan view of the electrode.
  • the pixel electrode 420c which is a solid ITO electrode, is formed from SiN.
  • An insulating film 420b and a common electrode 420a which is a comb-like ITO electrode were provided in this order, and ultrasonic and pure water cleaning was performed, and an FFS mode electrode 420 was disposed on the second substrate 421.
  • the film thicknesses of the common electrode 420a, the insulating film 420b, and the pixel electrode 420c are each 100 nm
  • the width of the comb teeth of the comb-shaped common electrode 420a is 3.5 ⁇ m
  • the interval between the comb teeth is 4.5 ⁇ m. It was.
  • a rubbing alignment film was applied onto the electrode 420 at 2800 rpm / 12 seconds by a spin coating method to provide a second alignment film 419.
  • temporary baking was performed at 60 ° C. for 90 seconds, and further, main baking was performed on a hot plate at 230 ° C. for 40 minutes.
  • the second alignment film 419 is rubbed with an indentation amount of 0.4 mm so that the rubbing direction 419a of the second alignment film 419 is parallel to the transmission axis 422a of the second polarizer 422, A second substrate 402 having a thin film transistor was obtained.
  • the rubbing direction 419a of the second alignment film 419 is arranged in a direction intersecting with the longitudinal direction of the comb-tooth portion of the common electrode 420a as shown in FIG. 7B.
  • FIG. 8 is a schematic cross-sectional view showing how the liquid crystal element in Example 1 is manufactured.
  • An empty cell was created by spraying 3.5 ⁇ m spacers 418 a on the first alignment film 414 side of the first substrate 401 produced above and bonding the spacers 418 a to the second substrate 402.
  • the first substrate 401 and the second substrate 402 are arranged such that the rubbing direction 414a of the first alignment film 414 is parallel to and opposite to the rubbing direction 419a of the second alignment film layer 419. Pasted together.
  • the second retardation layer 416 was bonded to the surface of the first substrate 401 opposite to the color filter layer 417 of the first base material 411 using an adhesive layer (not shown).
  • a ⁇ / 4 plate having a retardation of 137.5 nm at a wavelength of 550 nm was used for the second retardation layer 416.
  • the second retardation layer 416 is made to be the first base material so that the in-plane slow axis 412a of the first retardation layer 412 is orthogonal to the in-plane slow axis 416a of the second retardation layer 416. Glued to 411.
  • the first polarizer 415 and the second polarizer 422 were bonded to each other so as to have a crossed Nicols arrangement, so that a liquid crystal element 30a was manufactured.
  • the rubbing direction 419a of the second alignment film 419 is parallel to the transmission axis 422a of the second polarizer 422, and the rubbing direction 414a of the first alignment film 414 is parallel to the transmission axis 422a.
  • the in-plane slow axis 412a of the first retardation layer 412 forms an angle of ⁇ 45 ° with respect to the transmission axis 422a.
  • the angle of ⁇ 45 ° with respect to the transmission axis 422a represents an angle obtained by rotating the transmission axis 422a by 45 ° clockwise, and the angle of 45 ° with respect to the transmission axis 422a is opposite to the transmission axis 422a. It represents the angle rotated 45 ° clockwise.
  • FIG. 9 is a diagram showing the alignment state of the negative liquid crystal molecules of Example 1, (a) is a schematic plan view showing the state of the liquid crystal molecules in a state in which no voltage is applied, and (b) is a diagram in which voltage is applied. It is the plane schematic diagram which showed the mode of the liquid crystal molecule of a state.
  • FIG. 9A shows a voltage non-application state where voltage is not applied between the common electrode 420a and the pixel electrode 420c (between a pair of electrodes) of the liquid crystal element 30a (hereinafter also simply referred to as no voltage application state).
  • the liquid crystal molecules 418b are aligned in parallel with the rubbing direction 419a of the second alignment film.
  • a voltage application state in which a voltage is applied between the common electrode 420a and the pixel electrode 420c of the liquid crystal element 30a (hereinafter also simply referred to as a voltage application state), as shown in FIG.
  • a certain liquid crystal molecule 418b is aligned in parallel to the longitudinal direction of the comb-tooth portion of the common electrode 420a.
  • FIG. 10 is a schematic cross-sectional view and a polarization state of the liquid crystal module of Example 1.
  • a white light source was arranged as the backlight 423 on the second polarizer 422 side in the liquid crystal element 30a produced above, and a liquid crystal module 40a was produced.
  • the liquid crystal module 40a of the first embodiment using the first retardation layer 412 has a low reflection function, and switches between color display and black display. Works without problems. Details will be described below.
  • the state of light in color display (voltage application state) will be described.
  • the non-polarized light emitted from the backlight 423 passes through the second polarizer 422, becomes linearly polarized light parallel to the transmission axis 422 a of the second polarizer, and passes through the second substrate 402.
  • the linearly polarized light that has passed through the second substrate 402 passes through the liquid crystal layer 418 and becomes linearly polarized light having a polarization state that differs by 90 degrees.
  • the linearly polarized light that has passed through the liquid crystal layer 418 becomes circularly polarized light by passing through the first retardation layer 412, and further passes through the second retardation layer 416, whereby the transmission axis 422 a of the second polarizer and The linearly polarized light forms an angle of 90 degrees. Since the first polarizer 415 and the second polarizer 422 are arranged in crossed Nicols, the linearly polarized light that has passed through the second retardation layer 416 is parallel to the transmission axis 415a of the first polarizer. Yes, it passes through the first polarizer 415 and is visible on the observation surface side.
  • the non-polarized light emitted from the backlight 423 passes through the second polarizer 422 to become linearly polarized light parallel to the transmission axis 422 a of the second polarizer, and the second substrate 402 and the liquid crystal layer 418. Pass through.
  • the linearly polarized light that has passed through the liquid crystal layer 418 passes through the first retardation layer 412, becomes circularly polarized light that is reverse to that during color display, and further passes through the second retardation layer 416. It becomes linearly polarized light parallel to the transmission axis 422a of the second polarizer.
  • the linearly polarized light that has passed through the second retardation layer 416 is absorbed by the first polarizer 415 and displayed black. It becomes.
  • the in-plane slow axis 416a of the second retardation layer, which is a ⁇ / 4 plate, and the transmission axis 415a of the first polarizer form an angle of 45 °.
  • stacked is arrange
  • the dielectric layer 413 is provided between the first retardation layer 412 and the first alignment film 414, so that the first alignment is formed on the first retardation layer 412. Even when the film 414 is arranged, the solvent used when forming the first alignment film 414 does not dissolve the first retardation layer 412, and the first alignment film 414 is manufactured. The membrane could be easily performed.
  • the dielectric layer 413 it is possible to prevent the retardation layer 412 from being deteriorated by dissolution, so that the liquid crystal module 40a can maintain high depolarization. Furthermore, since the dielectric layer 413 functions as a block layer that suppresses the ionic impurities and the like in the retardation layer 412 and the color filter layer 417 from being dissolved in the liquid crystal layer 418, a high voltage holding ratio can be realized. Is possible.
  • the first retardation layer 412 is made of a photo-alignment material having a photofunctional group, it is not necessary to use an adhesive layer, and a thin film ( ⁇ about 2 ⁇ m) can be formed. it can.
  • FIG. 11 is a schematic cross-sectional view of a liquid crystal element when a conductor layer is used instead of a dielectric layer in the liquid crystal module of the first embodiment.
  • FIG. 12 is a graph showing the relationship between the drive voltage and the transmittance, the broken line is a graph related to the liquid crystal module using the conductor layer, and the solid line is related to the liquid crystal module of Example 1 that does not use the conductor layer. It is a graph.
  • FIGS. 11 and 12 when the conductor layer 424 is used, it is difficult to lower the threshold of the driving voltage. However, in the liquid crystal module 40a of the first embodiment using the dielectric layer 413, driving is performed. The threshold voltage can be lowered, and the transmittance reduction width can be reduced.
  • Example 2 ⁇ Liquid crystal element in which the surface of the dielectric layer is directly rubbed>
  • the liquid crystal module of Example 2 has the same configuration as the liquid crystal module 40a of Example 1 except that the first alignment film is not used and the dielectric layer is directly rubbed.
  • FIG. 13 is a schematic cross-sectional view showing how the liquid crystal module of Example 2 is manufactured.
  • a rubbing alignment film is provided as the first alignment film 414 on the dielectric layer 413.
  • the rubbing alignment film is formed on the dielectric layer 513. Without being provided, the dielectric layer 513 was directly rubbed.
  • the liquid crystal molecules are aligned in the rubbing direction 513a of the dielectric layer 513 subjected to the rubbing process, so that the same operation as the liquid crystal module 40a of the first embodiment can be performed. It becomes.
  • the liquid crystal module 40b of Embodiment 2 includes, in order from the observation surface side, a first polarizer (not shown), a second retardation layer 516, a first substrate 501, a liquid crystal layer 518, a second substrate 502, and a second substrate.
  • a polarizer and a backlight are provided.
  • the first substrate 501 includes a first base material 511, a color filter layer 517, a first retardation layer 512, and a dielectric layer 513 in this order from the observation surface side.
  • the dielectric layer 513 is subjected to rubbing alignment treatment. It has been subjected. That is, the first substrate 501 is a substrate in which a color filter layer is provided between the base material 211 and the retardation layer 212 in the retardation substrate 20 of the second embodiment.
  • the second substrate 502 includes a second alignment film 519, an electrode 520, and a second base material 521 in this order from the observation surface side.
  • An empty cell was created by spraying 3.5 ⁇ m spacers 518 a on the dielectric layer 513 side of the first substrate 501 and bonding it to the second substrate 502. At this time, the first substrate 501 and the second substrate 502 are bonded so that the rubbing direction 513a of the dielectric layer 513 is parallel to and opposite to the rubbing direction 519a of the second alignment film layer 519. It was.
  • the second retardation layer 516 was bonded to the surface of the first substrate 501 opposite to the color filter layer 517 of the first base material 511 using an adhesive layer (not shown).
  • a ⁇ / 4 plate having a retardation of 137.5 nm at a wavelength of 550 nm was used for the second retardation layer 516.
  • the second retardation layer 516 is placed on the first substrate so that the in-plane slow axis 512a of the first retardation layer 512 is orthogonal to the in-plane slow axis 516a of the second retardation layer 516. Glued to 511.
  • the first polarizer (not shown) and the second polarizer (not shown) were bonded together in a crossed Nicol arrangement to produce a liquid crystal element.
  • the rubbing direction 519a of the second alignment film 519 is parallel to the transmission axis 522a of the second polarizer
  • the rubbing direction 513a of the dielectric layer 513 is parallel to the transmission axis 522a.
  • the in-plane slow axis 516a of the second retardation layer 516 is 45 with respect to the transmission axis 522a so that the in-plane slow axis 512a of the retardation layer 512 forms an angle of ⁇ 45 ° with respect to the transmission axis 522a.
  • the transmission axis of the first polarizer was arranged to form an angle of 90 ° with respect to the transmission axis 522a of the second polarizer so as to form an angle of °.
  • the angle of ⁇ 45 ° with respect to the transmission axis 522a represents an angle obtained by rotating the transmission axis 522a clockwise by 45 °, and the angle of 45 ° with respect to the transmission axis 522a is opposite to the transmission axis 522a. It represents the angle rotated 45 ° clockwise.
  • the liquid crystal module 40b of Example 2 it is not necessary to form an alignment film on the dielectric layer 513 provided on the first retardation layer 512, and the solvent used for forming the alignment film is the first solvent.
  • the problem of dissolving one retardation layer 512 does not occur.
  • the liquid crystal module 40b according to the second embodiment can maintain high depolarization as well as the liquid crystal module 40a according to the first embodiment, and can also realize a high voltage holding ratio.
  • the dielectric layer 513 is subjected to a rubbing process to have a function as an alignment film, whereby the manufacturing process can be simplified and the cost can be reduced.
  • Example 3 ⁇ Liquid crystal element using positive liquid crystal>
  • the liquid crystal module of Example 3 has the same configuration as the liquid crystal module 40a produced in Example 1 except that the liquid crystal molecules used in the liquid crystal layer are replaced with positive liquid crystal.
  • FIG. 14 is a diagram showing the alignment state of the positive type liquid crystal molecules of Example 3, (a) is a schematic plan view showing the state of the liquid crystal molecules in a state in which no voltage is applied, and (b) is a diagram in which voltage is applied. It is the plane schematic diagram which showed the mode of the liquid crystal molecule of a state.
  • the liquid crystal molecules 618b which are positive type liquid crystals, are aligned in parallel with the rubbing direction 619a of the second alignment film as shown in FIG.
  • the liquid crystal molecules 618b are aligned perpendicular to the longitudinal direction of the comb-tooth portion of the common electrode 620a as shown in FIG.
  • FIG. 15 is a diagram showing the state of liquid crystal molecules in a voltage applied state, (a) is a schematic sectional view when a conductor layer is used, and (b) is a schematic sectional view when a dielectric layer is used.
  • FIG. 15A when a conductive layer 624 made of ITO is used instead of the dielectric layer in the liquid crystal module of the third embodiment, the common electrode 620a and the common electrode 620a stacked via the insulating film 620b and Since the electric field is disturbed between the pixel electrodes 620c (a pair of electrodes) and the alignment state is disturbed in the positive liquid crystal molecules, the positive liquid crystal molecules are used when the conductor layer 624 is used. I could't.
  • Example 3 since the dielectric layer 613 made of SiO 2 is used instead of the conductor layer 624, there is no disturbance in the manner in which the electric field is applied between the common electrode 620a and the pixel electrode 620c. The alignment state of the positive type liquid crystal molecules is not disturbed. As a result, in Example 3 using the dielectric layer 613, it is possible to use positive liquid crystal molecules.
  • FIG. 16 is a graph showing the relationship between time and transmittance.
  • the broken line is a graph regarding negative liquid crystal molecules
  • the solid line is a graph regarding positive liquid crystal molecules.
  • the response speed is slower than that of positive liquid crystal molecules as shown in FIG. Therefore, if positive type liquid crystal molecules can be used instead of negative type liquid crystal molecules, the response speed can be improved.
  • the liquid crystal module of Example 3 even when positive type liquid crystal molecules are used, the alignment state of the liquid crystal molecules is not disturbed when a voltage is applied, so that the liquid crystal module can function as a liquid crystal module.
  • the dielectric layer 613 is arranged to suppress the solvent used when forming the first alignment film from dissolving the first retardation layer.
  • the first alignment film can be easily formed.
  • the dielectric layer 613 it is possible to suppress the phase difference layer from being deteriorated by dissolution, and thus it is possible to maintain high depolarization. Furthermore, since the components of the retardation layer and the color filter layer can be prevented from being dissolved in the liquid crystal layer, a high voltage holding ratio can be realized.
  • One embodiment of the present invention includes a substrate 111, 311, 411, a retardation layer 112, 312, 412 provided on one surface of the substrate 111, 311, 411, and a retardation layer 112, 312, 412. Dielectric layers 113, 313, 413, 613 provided on the surface opposite to the base material 111, 311, 411, and the phase difference layers 112, 312, 412 of the dielectric layers 113, 313, 413, 613 on the opposite side And retardation films 10, 301, and 401 including alignment films 114, 314, and 414 that are provided on the surface and subjected to liquid crystal alignment treatment.
  • the dielectric layers 113, 313, 413, and 613 exist between the retardation layers 112, 312, and 412 and the alignment films 114, 314, and 414. Therefore, the alignment films 114, 314, Retardation substrates 10, 301 having a high voltage holding ratio when used in a liquid crystal element, in which dissolution of retardation layers 112, 312, 412 due to a solvent used for forming 414 is suppressed, depolarization is good. , 401 can be provided.
  • Another embodiment of the present invention includes base materials 211 and 511, retardation layers 212 and 512 provided on one surface of the base materials 211 and 511, and base materials 211 and 511 of the retardation layers 212 and 512.
  • the retardation substrates 20 and 501 may be provided including dielectric layers 213 and 513 provided on the opposite surface and subjected to liquid crystal alignment treatment.
  • the alignment layers are directly applied to the dielectric layers 213 and 513. Therefore, the alignment film need not be used, and a solvent used when forming the alignment film. However, the problem that the retardation layers 212 and 512 are dissolved is eliminated. Thereby, it is possible to provide a retardation substrate having good depolarization and having a high voltage holding ratio when used in a liquid crystal element. Further, since the manufacturing process for forming the alignment film can be omitted, the manufacturing process can be simplified and the cost can be reduced.
  • the retardation layers 112, 212, 312, 412, 512 may be made of a photo-alignment material having a photofunctional group. By adopting such an embodiment, the retardation layers 112, 212, 312, 412, 512 having a liquid crystal orientation in a single layer can be manufactured. Therefore, the retardation layers 112, 212, 312, 412, The liquid crystal display device provided with 512 can be expected to improve parallax color mixing.
  • the retardation layers 112, 212, 312, 412, and 512 may include a liquid crystalline polymer.
  • the retardation layers 112, 212, 312, 412, 512 having a liquid crystal orientation in a single layer can be manufactured. Therefore, the retardation layers 112, 212, 312, 412, The liquid crystal display device provided with 512 can be expected to improve parallax color mixing.
  • phase difference layers 112, 212, 312, 412, 512 may have a phase difference of ⁇ / 4. By setting it as such an aspect, reflection of the external light in the liquid crystal display device using the phase difference substrate 10, 20, 301, 401, 501 can be further suppressed.
  • the dielectric layers 113, 213, 313, 413, 513, and 613 may be inorganic films. By adopting such an embodiment, the dielectric layers 113, 213, 313, 413, 513, and 613 can be easily formed by a dry process.
  • the inorganic film may include at least one of SiO 2 and SiN.
  • the liquid crystal alignment treatment may be a rubbing alignment treatment. By setting it as such an aspect, the regulatory force which orients a liquid crystal molecule can be raised.
  • Another aspect of the present invention is a retardation substrate 10, 20, 301, 401, 501; a further base material 321, 421, 521; a retardation substrate 10, 20, 301, 401, 501; Liquid crystal elements 30, 30a including liquid crystal layers 318, 418, 518 provided between the materials 321, 421, 521 and an electric field generating unit for generating an electric field in the liquid crystal layers 318, 418, 518 may be used. .
  • the electric field generator includes a pair of electrodes (common electrodes 320a, 420a, 620a and pixel electrodes 320c, 420c, 620c), and the pair of electrodes are provided on further base materials 321, 421, 521.
  • a lateral electric field may be generated in the liquid crystal layers 318, 418, and 518 by applying a voltage between the pair of electrodes.
  • the liquid crystal layers 318, 418, and 518 may include liquid crystal molecules having positive dielectric anisotropy. By setting it as such an aspect, a response speed can be raised more.
  • the liquid crystal elements 30 and 30a may further include color filter layers 317, 417, and 517.
  • the liquid crystal elements 30 and 30a may further include a pair of polarizing plates (first polarizers 315 and 415, and second polarizers 322 and 422) arranged in a crossed Nicol arrangement.
  • Another embodiment of the present invention may be a liquid crystal module 40, 40a, or 40b that includes the liquid crystal elements 30 and 30a and a light source that irradiates the liquid crystal elements 30 and 30a with light.

Abstract

本発明は、位相差層の溶解が抑えられ、消偏性が良く、かつ、液晶素子に用いた場合に高い電圧保持率を有する位相差基板、並びに、上記位相差基板を備える液晶素子及び液晶モジュールを提供する。 本発明の位相差基板は、基材と、上記基材の一方の面に設けられた位相差層と、上記位相差層の上記基材と反対側の面に設けられた誘電体層と、上記誘電体層の上記位相差層と反対側の面に設けられ、かつ、液晶配向処理が施された配向膜とを備える。

Description

位相差基板、液晶素子及び液晶モジュール
本発明は、位相差基板、液晶素子及び液晶モジュールに関する。より詳しくは、液晶配向処理が施された位相差基板、並びに、上記位相差基板を備える液晶素子及び液晶モジュールに関するものである。
液晶表示装置は、表示のために液晶組成物を利用する表示装置であり、その代表的な表示方式は、一対の基板間に液晶組成物を封入した液晶表示パネルに対してバックライトから光を照射し、液晶組成物に電圧を印加して液晶分子の配向を変化させることにより、液晶表示パネルを透過する光の量を制御するものである。このような液晶表示装置は、薄型、軽量及び低消費電力といった特長を有することから、テレビジョン、スマートフォン、タブレットPC、カーナビゲーション等の電子機器に利用されている。
従来の液晶表示装置を屋外で用いる場合、液晶表示装置の内部及び表面において外光の反射が大きくなるため、視認性が低下することがあった(コントラストが低下し、白茶けて見えることがあった)。屋外における視認性を改善する技術として、例えば、特許文献1では、バックライトユニットによって裏側から光を照射して利用する液晶パネルにおいて、上記液晶パネルの表側に配置される第1の偏光板と液晶層との間に第1の位相差板を設け、上記液晶パネルの裏側に配置される第2の偏光板と液晶層との間に少なくとも1つの位相差板を設け、上記第1の位相差板と上記少なくとも1つの位相差板とが特定の条件を満たすことにより、屋外で利用された場合でも良好な画質を得ることのできるIPS(In-Plane Switching)方式の液晶パネルが開示されている。また、非特許文献1では、パターニングされたインセル位相差板を用いた、半透過型のIPSモードの液晶ディスプレイにより、屋外での視認性を向上させることができると開示されている。
特開2012-173672号公報
イマヤマ等、「インセル位相差板を用いた半透過型IPS-LCDの新規画素設計(Novel Pixel Design for a Transflective IPS-LCD with an In-Cell Retarder)」、SID07 DIGEST、2007、pp.1651-1654
しかしながら、上記特許文献1及び上記非特許文献1に記載の発明において、基板と液晶層との間に位相差板を配置する場合、位相差板の上に配向膜を製膜するプロセスにおいて、配向膜形成用の溶剤が位相差板を溶解してしまう場合が多く、配向膜を形成することが困難であった。また、位相差板は配向膜形成用の溶剤に溶解されて変質し、位相差板の消偏性が悪化し易くなり、液晶表示装置の性能が不安定になる場合もあった。更に、配向膜形成用の溶剤が位相差板を溶解することにより、位相差板やカラーフィルタ層の成分が液晶層に溶け込み、VHR〔Voltage Holding Ratio:電圧保持率〕が低下する場合もあった。
本発明は、上記現状に鑑みてなされたものであり、位相差層の溶解が抑えられ、消偏性が良く、かつ、液晶素子に用いた場合に高い電圧保持率を有する位相差基板、並びに、上記位相差基板を備える液晶素子及び液晶モジュールを提供することを目的とするものである。
本発明者らは、位相差層を基材の液晶層側に配置する場合に、位相差層の溶解が抑えられ、消偏性が良く、かつ、液晶素子に用いた場合に高い電圧保持率を有する位相差基板について種々検討したところ、位相差層の基材と反対側の面に誘電体層を設けることにより、位相差層の溶解を抑制できることを見出した。これにより、上記課題をみごとに解決することができることに想到し、本発明に到達した。
すなわち、本発明の一態様は、基材と、上記基材の一方の面に設けられた位相差層と、上記位相差層の上記基材と反対側の面に設けられた誘電体層と、上記誘電体層の上記位相差層と反対側の面に設けられ、かつ、液晶配向処理が施された配向膜とを備える位相差基板であってもよい。
本発明の別の一態様は、基材と、上記基材の一方の面に設けられた位相差層と、上記位相差層の上記基材と反対側の面に設けられ、かつ、液晶配向処理が施された誘電体層とを備える位相差基板であってもよい。
上記位相差層は、光官能基を有する光配向材料から構成されてもよい。
上記位相差層は、液晶性ポリマーを含んでいてもよい。
上記位相差層は、λ/4の位相差を有していてもよい。
上記誘電体層は、無機膜であってもよい。
上記無機膜は、SiO及びSiNの少なくとも一方を含んでいてもよい。
上記液晶配向処理は、ラビング配向処理であってもよい。
上記位相差基板と、更なる基材と、上記位相差基板と上記更なる基材との間に設けられた液晶層と、上記液晶層に電界を発生させる電界発生部とを備える液晶素子であってもよい。
上記電界発生部は、一対の電極を含み、上記一対の電極は、上記更なる基材上に設けられ、上記一対の電極間に電圧が印加されることによって、上記液晶層に横電界が発生してもよい。
上記液晶層は、正の誘電率異方性を有する液晶分子を含んでいてもよい。
更に、カラーフィルタ層を備えていてもよい。
更に、クロスニコル配置の一対の偏光板を備えていてもよい。
上記液晶素子と、上記液晶素子に光を照射する光源とを備える液晶モジュールであってもよい。
本発明によれば、位相差層の溶解が抑えられ、消偏性が良く、かつ、液晶素子に用いた場合に高い電圧保持率を有する位相差基板、並びに、上記位相差基板を備える液晶素子及び液晶モジュールを提供することができる。
実施形態1の位相差基板を示した断面模式図である。 実施形態2の位相差基板を示した断面模式図である。 実施形態3の液晶素子に関する模式図であり、(a)は液晶素子を示した断面模式図であり、(b)は第二基板の構成例を示した断面模式図である。 実施形態4の液晶モジュールを示した断面模式図である。 実施例1における第一基板を作製する各工程における図であり、(a)は基材にカラーフィルタ層を設けた様子を示した断面模式図であり、(b)はカラーフィルタ層に第一の位相差層を設けた様子を示した断面模式図であり、(c)は第一の位相差層に誘電体層を設けた様子を示した断面模式図であり、(d)は誘電体層に第一の配向膜を設けた様子を示した断面模式図である。 実施例1における第二基板を作製する各工程における図であり、(a)は基材に電極を設けた様子を示した断面模式図であり、(b)は電極に第二の配向膜を設けた様子を示した断面模式図である。 第二基板における電極の様子を示した図であり、(a)は電極の断面模式図であり、(b)は電極の平面模式図である。 実施例1における液晶素子を作製する様子を示した断面模式図である。 実施例1のネガ型液晶分子の配向状態を示した図であり、(a)は電圧無印加状態の液晶分子の様子を示した平面模式図であり、(b)は電圧印加状態の液晶分子の様子を示した平面模式図である。 実施例1の液晶モジュールの断面模式図及び偏光状態を示した図である。 実施例1の液晶モジュールにおいて、誘電体層ではなく導電体層を用いた場合の液晶素子の断面模式図である。 駆動電圧と透過率との関係を示したグラフであり、破線は導電体層を用いた液晶モジュールに関するグラフであり、実線は導電体層を用いなかった実施例1の液晶モジュールに関するグラフである。 実施例2の液晶モジュールを作製する様子を示した断面模式図である。 実施例3のポジ型液晶分子の配向状態を示した図であり、(a)は電圧無印加状態の液晶分子の様子を示した平面模式図であり、(b)は電圧印加状態の液晶分子の様子を示した平面模式図である。 電圧印加状態の液晶分子の様子を示した図であり、(a)は導電体層を用いた場合の断面模式図であり、(b)誘電体層を用いた場合の断面模式図である。 時間と透過率との関係を示したグラフであり、破線はネガ型液晶分子に関するグラフであり、実線はポジ型液晶分子に関するグラフである。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。また、各実施形態の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
本明細書中、「直線」が付されない「偏光板」は直線偏光板を指し、円偏光板とは区別される。
本明細書中、λ/4板は、少なくとも波長550nmの光に対して1/4波長(厳密には、137.5nm)の面内位相差を付与する位相差板を指し、100nm以上、176nm以下の面内位相差を付与するものであればよい。ちなみに、波長550nmの光は、人間の視感度が最も高い波長の光である。
本明細書中、nx及びnyは位相差板(λ/4板を含む)の面内方向の主屈折率を指し、nzは位相差板の厚み方向の主屈折率を指す。主屈折率は、特に断りのない限り、波長550nmの光に対する値を指す。nx及びnyのうちの大きい方をns、小さい方をnfと定義するとき、面内遅相軸はnsに対応する方向の軸を指し、面内進相軸はnfに対応する方向の軸を指す。
本明細書中、2つの軸(方向)が直交するとは、両者のなす角度(絶対値)が90±3°の範囲内であることを指し、好ましくは90±1°の範囲内であり、より好ましくは90±0.5°の範囲内であり、特に好ましくは90°(完全に直交)である。2つの軸(方向)が平行であるとは、両者のなす角度(絶対値)が0±3°の範囲内であることを指し、好ましくは0±1°の範囲内であり、より好ましくは0±0.5°の範囲内であり、特に好ましくは0°(完全に平行)である。2つの軸(方向)が45°の角度をなすとは、両者のなす角度(絶対値)が45±3°の範囲内であることを指し、好ましくは45±1°の範囲内であり、より好ましくは45±0.5°の範囲内であり、特に好ましくは45°(完全に45°)である。
[実施形態1]
図1は、実施形態1の位相差基板を示した断面模式図である。図1に示したように、実施形態1の位相差基板10は、基材111と、基材111の一方の面に設けられた位相差層112と、位相差層112の基材111と反対側の面に設けられた誘電体層113と、誘電体層113の位相差層112と反対側の面に設けられ、かつ、液晶配向処理が施された配向膜114とを備える。なお、各層の間には、例えばカラーフィルタ層等の他の層を有していても良い。
通常、配向膜を塗布する際に用いる溶剤(溶媒)には、粘度調整や濡れ性向上の目的で、γ-ブチロラクトン、N-メチルピロリドン(NMP)、ブチルセロソルブ等を含む混合溶媒が用いられる。したがって、誘電体層が配置されていない、従来の位相差基板の構成では、配向膜を位相差層上に塗布する際にこれらの混合溶媒が位相差層を溶解してしまう場合が多く、配向膜の製膜が困難であった。しかしながら、本実施形態では、位相差層112と配向膜114との間に誘電体層113が存在するため、配向膜114を形成する際に用いる溶剤が位相差層112を溶解するのを抑制することができる。
基材111は透明性を有する透明基材であることが好ましく、例えば、ガラス基材やプラスチック基材が挙げられる。
位相差層112は、複屈折材料などを利用して直交する2つの偏光成分に位相差をつけて、入射偏光の状態を変える層であり、例えば、光官能基を有する光配向材料から構成される。
光官能基を有する光配向材料は、下記の方法によって光官能基の配向性が高まるような材料を指す。まず、光官能基を有する光配向材料を基材上に塗布し、光配向材料の膜を形成する。そして、この光配向材料の膜に対して仮焼成を行う。次に、仮焼成後の光配向材料の膜に対して光照射(例えば、偏光紫外線照射)を行うことで、光官能基の化学反応(光二量化、光異性化、及び、光フリース転移からなる群より選択される少なくとも1つの化学反応)を生じさせる。最後に、光照射後の光配向材料の膜に対して、仮焼成よりも高い温度で本焼成を行うことで、光照射によって生じた化学反応をきっかけとして、光官能基の配向性が高まる。
光官能基を有する光配向材料は、十分な膜厚・複屈折があれば、λ/4相当の位相差を発現することができる。このような光配向材料を用いることにより、単層にて液晶配向性をもった位相差層112を作製することができるため、本実施形態の位相差層112を設けた液晶表示装置は、視差混色の改善が期待できる。
光二量化及び光異性化が可能な光官能基としては、例えば、シンナメート基、カルコン基、クマリン基、スチルベン基等が挙げられる。
光異性化が可能な光官能基としては、例えば、アゾベンゼン基等が挙げられる。
光フリース転移が可能な光官能基としては、例えば、フェノールエステル基等が挙げられる。
光配向材料(固形分)の主骨格としては、例えば、ポリアミック酸、ポリイミド、アクリル、メタクリル、マレイミド、ポリシロキサン等の構造が挙げられる。
また、位相差層112は、液晶性ポリマーを含んでいてもよい。液晶性ポリマーは、例えば、一軸性の液晶(例えばネマティック液晶)であって、その配向状態を容易に固定できるものが好ましく用いられる。上記液晶性ポリマーは、光官能基を持った液晶性モノマー(重合開始剤を含む)を、偏光紫外線照射等により重合(ポリマー化)させることで形成しており、十分な膜厚・複屈折があれば、λ/4相当の位相差を発現することができるものである。このような液晶性ポリマーを用いることにより、単層にて液晶配向性をもった位相差層112を作製することができるため、本実施形態の位相差層112を設けた液晶表示装置は、視差混色の改善が期待できる。
位相差層112は、λ/4板であることが好ましく、主屈折率がnx>ny=nzの関係を満たすλ/4板(ポジティブAプレート)であることがより好ましい。位相差層112をλ/4板とすることにより、位相差基板10を用いた液晶表示装置における外光の反射を更に抑制することができる。
位相差層112の膜厚は、1.0μm~3.0μmであることが好ましく、1.2μm~2.0μmであることがより好ましい。
誘電体層113は、誘電体を含む層であり、透明性を有することが好ましい。位相差層112と配向膜114との間に誘電体層113を設けることにより、配向膜114を製膜する際に用いる溶剤が位相差層112を溶解してしまうのを抑制し、配向膜114を容易に形成することができる。また、誘電体層113を設けることで、位相差層112が溶解により変質することを抑制できるため、位相差基板10の消偏性を高いまま維持することが可能となる。なお、消偏性とは、偏光が崩される度合いであり、消偏性が高いとは、偏光が崩され難いことを意味する。更に、位相差層112やカラーフィルタ層の成分が液晶層に溶け込むことを抑制することができるため、位相差基板10を液晶素子に用いた場合に、高い電圧保持率を実現することが可能となる。
誘電体層113としては、無機膜及び有機膜のいずれも用いることができ、無機膜としては、例えば、酸化珪素(SiO)、窒化珪素(SiNx)等の材料を用いることができ、有機膜としては、例えば、感光性アクリル樹脂等の材料を用いることができる。誘電体層113は、ドライプロセスにて製膜することが容易なことから、無機膜であることが好ましい。無機膜の中でも、透明度が高く、かつ緻密性が高いことから、SiO、SiNxが好ましい。
誘電体層113の比誘電率εは、1.0<ε<9.0であることが好ましく、3.0<ε<7.5であることがより好ましい。なお、空気の比誘電率は1.00059、SiOの比誘電率は3.5、SiNの比誘電率は7.0、ITOの比誘電率は9.0である。
誘電体層113は、スパッタリング法、蒸着法、プラズマ化学気相堆積(Chemical Vapor Deposition:CVD)法等を用いて製膜することができる。
誘電体層113の膜厚は、50nm~1000nmであることが好ましく、80nm~500nmであることがより好ましく、100nm~300nmであることが更に好ましい。
配向膜114は、後述の液晶層における液晶分子の配向を制御する機能を有し、液晶層への印加電圧が閾値電圧未満(電圧無印加を含む)のときには、主に配向膜114及び後述の第二の配向膜の働きによって液晶層中の液晶分子の配向が制御される。配向膜114は液晶分子の配向を制御するための配向処理がなされた層であり、配向処理としては、例えば、層の表面をローラー等で擦ることにより配向処理を行うラビング配向処理や、光を照射することによって配向処理を行う光配向処理が挙げられる。配向膜114には、ラビング配向処理が施されることが好ましい。その理由として、液晶分子を配向する規制力が比較的高いことに加え、古くから実績のある配向膜として用いられているからである。
配向膜114の膜厚は、50nm~200nmであることが好ましく、80nm~120nmであることがより好ましい。
[実施形態2]
実施形態2の位相差基板は、配向膜を用いなかったこと以外は、上記実施形態1の位相差基板10と同様の構成を有する。そこで、本実施形態では、本実施形態に特有の特徴について主に説明し、実施形態1と重複する内容については適宜説明を省略する。
図2は、実施形態2の位相差基板を示した断面模式図である。図2に示したように、位相差基板20は、基材211と、基材211の一方の面に設けられた位相差層212と、位相差層212の基材211と反対側の面に設けられ、かつ、液晶配向処理が施された誘電体層213とを備える。なお、各層の間には、例えばカラーフィルタ層等の他の層を有していても良い。
実施形態2の位相差基板20は、配向膜を有さず、誘電体層213には液晶分子を配向させるためにラビング処理等の配向処理が施されている。すなわち、誘電体層213の上に配向膜を製膜せず、誘電体層213に直接ラビング処理を施す。これにより、ラビング方向に対して液晶分子を配向させることができるため、実施形態2の位相差基板20を用いた液晶素子は、実施形態1の位相差基板10を用いた液晶素子と同様の動作を行うことができる。
実施形態2の位相差基板20では、誘電体層213に直接配向処理を行うため、配向膜を用いなくてもよく、配向膜を製膜する際に使用する溶剤が位相差層212を溶解してしまうという問題がなくなる。これにより、消偏性が良く、かつ、液晶素子に用いた場合に高い電圧保持率を有する位相差基板を提供することが可能となる。また、配向膜を形成する製造プロセスを省略することができるため、製造プロセスの簡易化や低コスト化にもつながる。
[実施形態3]
実施形態3の液晶素子は、上記実施形態1の位相差基板10にカラーフィルタや電極等の各種部材を配置した液晶素子である。そこで、本実施形態では、本実施形態に特有の特徴について主に説明し、実施形態1と重複する内容については適宜説明を省略する。なお、本実施形態では実施形態1の位相差基板10を用いたが、実施形態1の位相差基板10に替えて、実施形態2の位相差基板20を用いることも可能である。また、以下の実施形態及び実施例における第一の基材及び第二の基材は、それぞれ、本発明の上記各態様における基材及び更なる基材に相当し、第一の位相差層は、本発明の上記態様における位相差層に相当し、第一の配向膜は、本発明の上記態様における配向膜に相当し、第一基板は、本発明の上記態様における位相差基板に相当する。
図3は、実施形態3の液晶素子に関する模式図であり、(a)は液晶素子を示した断面模式図であり、(b)は第二基板の構成例を示した断面模式図である。
図3(a)に示したように、液晶素子30は、観察面側から順に、第一の偏光子315、第二の位相差層316、第一基板301、液晶層318、第二基板302及び第二の偏光子322を備えている。
第一基板301は、観察面側から順に、第一の基材311、カラーフィルタ層317、第一の位相差層312、誘電体層313及び第一の配向膜314を有する。すなわち、第一基板301は、実施形態1の位相差基板10における基材111及び位相差層112の間にカラーフィルタ層を設けた基板である。
第二基板302は、観察面側から背面側に向かって順に、第二の配向膜319、電極320及び第二の基材321を有している。第二基板302は、電極320として、電圧が印加されることによって液晶層318に横電界を発生させる一対の電極を有している。
実施形態3の液晶素子30では、誘電体層313を有する第一基板301が液晶層318と隣接して配置されているため、第一基板301におけるイオン性不純物が液晶層318へ浸み出すのを誘電体層313により抑制することが可能となる。これにより、液晶素子30は高いVHR〔Voltage Holding Ratio:電圧保持率〕を実現することが可能となる。
また、実施形態3の液晶素子30では、導電体層ではなく誘電体層313が用いられているため、駆動電圧の閾値を低くすることができ、かつ、透過率低減幅も小さくすることが可能となる。
第一の偏光子315及び第二の偏光子322としては、例えば、ポリビニルアルコール(PVA)フィルムにヨウ素錯体(又は染料)等の異方性材料を、染色及び吸着させてから延伸配向させた偏光子(吸収型偏光子)等を用いることができる。なお、各偏光子315、322は、偏光板と呼ばれるものであってもよい。
第一の偏光子315の透過軸と第二の偏光子322の透過軸とは、直交することが好ましい。このような構成によれば、第一の偏光子315と第二の偏光子322とがクロスニコルに配置されるため、電圧無印加時に、黒表示状態を好ましく実現することができる。
第二の位相差層316は、複屈折材料などを利用して直交する2つの偏光成分に位相差をつけて、入射偏光の状態を変える層であり、例えば、液晶ポリマーや、光官能基を有する光配向性材料から構成される層である。第二の位相差層316は液晶性ポリマーを含むことが好ましい。液晶性ポリマー及び光官能基を有する光配向性材料としては、上記実施形態1の位相差層112において記載したものと同様のものを用いることができる。
第二の位相差層316は、λ/4板であることが好ましく、主屈折率がnx<ny=nzの関係を満たすλ/4板(ネガティブAプレート)であることがより好ましい。
第二の位相差層316の膜厚は、1.0μm~3.0μmであることが好ましく、1.2μm~2.0μmであることがより好ましい。
第一基板301におけるカラーフィルタ層317としては、顔料系又は染料系のいずれの色材も用いることができ、色の組み合わせは特に限定されず、例えば、赤色、緑色、及び、青色の組み合わせ、赤色、緑色、青色、及び、黄色の組み合わせ等が挙げられる。カラーフィルタ層317に顔料系カラーレジストを用いることが好ましい。
液晶層318は、液晶組成物を含んでおり、液晶層318に対して電圧を印加し、印加した電圧に応じて液晶組成物中の液晶分子の配向状態を変化させることにより、光の透過量を制御するものである。
液晶分子は、下記式で定義される誘電率異方性(Δε)が負の値を有するものであってもよく、正の値を有するものであってもよい。なお、正の誘電率異方性を有する液晶分子はポジ型液晶ともいい、負の誘電率異方性を有する液晶分子はネガ型液晶ともいう。
Δε=(長軸方向の誘電率)-(短軸方向の誘電率)
正の誘電率異方性を有する液晶分子は、応答速度をより高めることができるため、好ましく用いられる。また、負の誘電率異方性を有する液晶分子は、電界のかかり方に乱れが生じた場合であっても液晶分子の配向状態が乱れにくいことや、正の誘電率異方性を有する液晶分子と比べ光散乱が起こりにくいため(透過率が向上するため)、好ましく用いられる。
第二の配向膜319は液晶層318における液晶分子の配向を制御する機能を有し、液晶層318への印加電圧が閾値電圧未満(電圧無印加を含む)のときには、主に第一の配向膜314及び第二の配向膜319の働きによって液晶層318中の液晶分子の配向が制御される。第二の配向膜319は液晶分子の配向を制御するための配向処理がなされた層であり、配向処理としては、例えば、ラビング配向処理や光配向処理が挙げられる。第二の配向膜319にはラビング配向処理が施されることが好ましい。
第二の配向膜319の膜厚は、50nm~200nmであることが好ましく、80nm~120nmであることがより好ましい。
ここで、第二基板302の構成について詳細に説明する。図3(b)に示したように、第二基板302は、FFSモードの薄膜トランジスタアレイ基板であり、第二の基材321と、第二の基材321の液晶層318側の表面上に配置される画素電極(面状電極、一対の電極の一方)320cと、画素電極320cを覆う絶縁膜320bと、絶縁膜320bの液晶層318側の表面上に配置される共通電極(櫛歯電極、一対の電極の他方)320aと、第二の配向膜319(図示省略)を有している。このような構成によれば、画素電極320c及び共通電極320aに電圧を印加する(電圧印加時)ことによって液晶層318に横電界(フリンジ電界)が発生し、液晶層318中の液晶分子の配向を制御することができる。
第二の基材321は透明性を有する透明基材であることが好ましく、例えば、ガラス基材やプラスチック基材が挙げられる。
電極320は、画素電極320c及び共通電極320aを含み、画素電極320c及び共通電極320aの材料としては、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)等が挙げられる。
絶縁膜320bの材料としては、例えば、有機絶縁膜、窒化膜等が挙げられる。
本実施形態では、第一基板301をカラーフィルタ基板とし、第二基板302を薄膜トランジスタアレイ基板としたが、第一基板301を薄膜トランジスタアレイ基板とし、第二基板302をカラーフィルタ基板として用いてもよい。
次に、第一の位相差層312及び第二の位相差層316の面内遅相軸と、第一の偏光子315及び第二の偏光子322の透過軸との関係について以下に説明する。
第二の位相差層316がλ/4板である場合、第二の位相差層316の面内遅相軸と第一の偏光子315の透過軸とは、45°の角度をなすことが好ましい。このような構成によれば、第一の偏光子315とλ/4板である第二の位相差層316とが積層された円偏光板が、液晶素子30の観察面側に配置される構成が実現される。よって、液晶素子30の観察面側(第一の偏光子315側)からの入射光は、円偏光板を透過する際に円偏光に変換されて第一基板301に到達するため、円偏光板の反射防止効果によって、第一基板301からの反射が抑制される。第一の偏光子315とλ/4板である第二の位相差層316とを積層させて円偏光板を形成する際は、製造効率を高める観点から、ロール・ツー・ロール方式を用いることが好ましい。
第一の位相差層312及び第二の位相差層316がλ/4板である場合、第二の偏光子322の透過軸を0°とすると、第一の位相差層312の面内遅相軸は-45°であり、第二の位相差層316の面内遅相軸は45°であり、第一の偏光子315の透過軸は90°であることが好ましい。このとき、λ/4板である第一の位相差層312の面内遅相軸と、λ/4板である第二の位相差層316の面内遅相軸とは直交する。このような構成によれば、液晶素子30の少なくとも法線方向から入射する光に対して、第一の位相差層312と第二の位相差層316の位相差を互いにキャンセルすることができ、光学的には、両者が実質的に存在しない状態が実現される。すなわち、液晶素子30に入射する光(液晶素子30に少なくとも法線方向から入射する光)に対して、従来の横電界モードの液晶表示パネルと光学的に等価である構成が実現される。よって、円偏光板を用いた横電界モードによる表示を実現することができる。ここで、第一の位相差層312及び第二の位相差層316は、同じ材料から構成されることが好ましい。これにより、第一の位相差層312及び第二の位相差層316は、波長分散も含めて互いに位相差をキャンセルすることができる。
[実施形態4]
実施形態4の液晶モジュールは、上記実施形態3の液晶素子にバックライトを配置して作製した。そこで、本実施形態では、本実施形態に特有の特徴について主に説明し、実施形態3と重複する内容については適宜説明を省略する。なお、本実施形態では実施形態1の位相差基板10を用いたが、実施形態1の位相差基板10に替えて、実施形態2の位相差基板20を用いることも可能である。
図4は、実施形態4の液晶モジュールを示した断面模式図である。図4に示したように、液晶モジュール40は、観察面側から順に、第一の偏光子415、第二の位相差層416、第一基板401、液晶層418、第二基板402及び第二の偏光子422及びバックライト423を備えている。第一基板401は、観察面側から順に、第一の基材411、カラーフィルタ層417、第一の位相差層412、誘電体層413及び第一の配向膜414を有する。すなわち、第一基板401は、実施形態1の位相差基板10における基材111及び位相差層112の間にカラーフィルタ層を設けた基板である。なお、各偏光子415、422は、偏光板と呼ばれるものであってもよい。
第二基板402は、観察面側から順に、第二の配向膜419、電極420及び第二の基材421を有する。
このように、実施形態4の液晶モジュール40は、実施形態3の液晶素子30の背面側にバックライト423を備えた構成を有している。
バックライト423の方式は特に限定されず、例えば、エッジライト方式、直下型方式等が挙げられる。バックライト423の光源の種類は特に限定されず、例えば、発光ダイオード(LED)、冷陰極管(CCFL)等が挙げられる。
第一の位相差層412及び第二の位相差層416がλ/4板である場合、第二の偏光子422の透過軸を0°とすると、第一の位相差層412の面内遅相軸は-45°であり、第二の位相差層416の面内遅相軸は45°であり、第一の偏光子415の透過軸は90°であることが好ましい。このとき、λ/4板である第一の位相差層412の面内遅相軸と、λ/4板である第二の位相差層416の面内遅相軸とは直交する。このような構成によれば、バックライト423からの光を直線偏光として出射することが可能となる。
以下に、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの例によって限定されるものではない。
[実施例1]
<カラーフィルタ層が設けられた第一基板の作製>
図5は、実施例1における第一基板を作製する各工程における図であり、(a)は基材にカラーフィルタ層を設けた様子を示した断面模式図であり、(b)はカラーフィルタ層に第一の位相差層を設けた様子を示した断面模式図であり、(c)は第一の位相差層に誘電体層を設けた様子を示した断面模式図であり、(d)は誘電体層に第一の配向膜を設けた様子を示した断面模式図である。
透明基材である第一の基材411(厚み0.7mm)上にカラーフィルタ層417を設け、超音波・純水洗浄を行い、図5(a)に示す積層体を作製した。
続いて、アクリル系モノマーに由来する、光官能基を有する光配向材料を、スピンコート法により500rpm/12秒でカラーフィルタ層417上に塗布し、第一の位相差層412を形成した。その後、60℃、5分の仮焼成を行い、第一の位相差層412の面内遅相軸412aが後述する第二の偏光子422の透過軸422aに対して-45°(時計回りに45°)となるよう100mJの偏光紫外光を照射した。更に、ホットプレート上で140℃、20分の本焼成を行い、図5(b)に示す積層体を作製した。第一の位相差層412には、波長550nmにおいて、位相差が137.5nmであるλ/4板を用いた。
次に、第一の位相差層412上に、スパッタリング法を用いてSiOを100nmで製膜し、誘電体層413を設けて図5(c)に示す積層体を作製した。
更に、ラビング配向膜を、スピンコート法により2800rpm/12秒で誘電体層413上に塗布し、第一の配向膜414を設けた。その後、60℃、90秒の仮焼成を行い、更に、ホットプレート上で230℃、40分の本焼成を行った。続いて、第一の配向膜414のラビング方向414aが第二の偏光子422の透過軸422aと平行となるよう、すなわち、第一の配向膜414のラビング方向414aと第一の位相差層412の面内遅相軸412aとが45°の角度をなすよう、0.4mmの押込量で、第一の配向膜414にラビング処理を行い、図5(d)に示すカラーフィルタ層を有する第一基板401を得た。
<FFSモードの薄膜トランジスタを有する第二基板の作製>
図6は、実施例1における第二基板を作製する各工程における図であり、(a)は基材に電極を設けた様子を示した断面模式図であり、(b)は電極に第二の配向膜を設けた様子を示した断面模式図である。図7は、第二基板における電極の様子を示した図であり、(a)は電極の断面模式図であり、(b)は電極の平面模式図である。
図6(a)及び図7(a)に示したように、第二の基材421(厚さ0.7mmの透明基材)上に、ベタ状のITO電極である画素電極420c、SiNからなる絶縁膜420b、及び、櫛歯状のITO電極である共通電極420aをこの順で設け、超音波・純水洗浄を行い、第二の基材421上にFFSモードの電極420を配置した。ここで、共通電極420a、絶縁膜420b及び画素電極420cの膜厚はそれぞれ100nmとし、櫛歯状の共通電極420aの櫛歯部の幅は3.5μm、櫛歯部間の間隔は4.5μmとした。
続いて、図6(b)に示したように、ラビング配向膜を、スピンコート法により2800rpm/12秒で電極420上に塗布し、第二の配向膜419を設けた。その後、60℃、90秒の仮焼成を行い、更に、ホットプレート上で230℃、40分の本焼成を行った。続いて、第二の配向膜419のラビング方向419aが第二の偏光子422の透過軸422aと平行となるよう、0.4mmの押込量で、第二の配向膜419にラビング処理を行い、薄膜トランジスタを有する第二基板402を得た。なお、第二の配向膜419のラビング方向419aは、図7(b)に示したように、共通電極420aの櫛歯部の長手方向と交差する方向に配置した。
<液晶素子の作製>
図8は、実施例1における液晶素子を作製する様子を示した断面模式図である。上記で作製した第一基板401における第一の配向膜414側に、3.5μmのスペーサ418aを散布し、第二基板402と貼り合わせることにより、空セルを作成した。このとき、第一の配向膜414のラビング方向414aは、第二の配向膜層419のラビング方向419aと互いに平行であり、かつ逆向きとなるように、第一基板401及び第二基板402を貼り合わせた。
続いて、上記の空セルに差圧注入によりネガ型液晶を注入した。
更に、第一基板401における第一の基材411のカラーフィルタ層417とは反対側の面に、第二の位相差層416を、粘着剤層(図示せず)を用いて接着した。ここで、第二の位相差層416には、波長550nmにおいて、位相差が137.5nmであるλ/4板を用いた。また、第一の位相差層412の面内遅相軸412aが第二の位相差層416の面内遅相軸416aと直交するように、第二の位相差層416を第一の基材411に接着した。
次に、第一の偏光子415及び第二の偏光子422をクロスニコルの配置となるようにして、貼り合わせ、液晶素子30aを作製した。ここで、液晶素子30aでは、第二の配向膜419のラビング方向419aは第二の偏光子422の透過軸422aに対して平行に、第一の配向膜414のラビング方向414aは透過軸422aに対して平行に、第一の位相差層412の面内遅相軸412aは透過軸422aに対して-45°の角度をなすように、第二の位相差層416の面内遅相軸416aは透過軸422aに対して45°の角度をなすように、第一の偏光子415の透過軸415aは透過軸422aに対して90°の角度をなすように配置した。なお、透過軸422aに対して-45°の角度とは、透過軸422aを時計回りに45°回転させた角度を表し、透過軸422aに対して45°の角度とは、透過軸422aを反時計回りに45°回転させた角度を表す。
液晶層418における液晶分子の配向状態について説明する。図9は、実施例1のネガ型液晶分子の配向状態を示した図であり、(a)は電圧無印加状態の液晶分子の様子を示した平面模式図であり、(b)は電圧印加状態の液晶分子の様子を示した平面模式図である。液晶素子30aの共通電極420aと画素電極420cと間(一対の電極間)に電圧が印加されない電圧無印加状態(以下、単に電圧無印加状態とも言う。)では、図9(a)に示したように、液晶分子418bは第二の配向膜のラビング方向419aと平行に配向する。液晶素子30aの共通電極420aと画素電極420cと間に電圧が印加された電圧印加状態(以下、単に電圧印加状態とも言う。)では、図9(b)に示したように、ネガ型液晶である液晶分子418bは共通電極420aの櫛歯部の長手方向に対して平行に配向する。
<液晶モジュール>
図10は、実施例1の液晶モジュールの断面模式図及び偏光状態を示した図である。上記で作製した液晶素子30aにおける第二の偏光子422側に、バックライト423として白色光源を配置し、液晶モジュール40aを作製した。図10の偏光状態の図において示したように、第一の位相差層412を用いた実施例1の液晶モジュール40aは、低反射機能を有しており、また、色表示と黒表示の切り替えが問題なく動作する。以下に詳細を説明する。
色表示(電圧印加状態)における光の状態について説明する。バックライト423から出射される無偏光状態の光は、第二の偏光子422を通過することで、第二の偏光子の透過軸422aと平行な直線偏光となり、第二基板402を通過する。第二基板402を通過した直線偏光は、液晶層418を通過することで、偏光状態が90度異なる直線偏光となる。液晶層418を通過した直線偏光は第一の位相差層412を通過することで円偏光となり、更に、第二の位相差層416を通過することで、第二の偏光子の透過軸422aと90度の角度をなす直線偏光となる。第一の偏光子415と第二の偏光子422とはクロスニコルに配置されているため、第二の位相差層416を通過した直線偏光は、第一の偏光子の透過軸415aと平行であり、第一の偏光子415を透過し、観察面側で視認可能となる。
次に、黒表示(電圧無印加状態)における光の状態について説明する。バックライト423から出射される無偏光状態の光は、第二の偏光子422を通過することで、第二の偏光子の透過軸422aと平行な直線偏光となり、第二基板402及び液晶層418を通過する。液晶層418を通過した直線偏光は、第一の位相差層412を通過することで、色表示時とは逆回りの円偏光となり、更に、第二の位相差層416を通過することで、第二の偏光子の透過軸422aと平行な直線偏光となる。第一の偏光子415と第二の偏光子422とはクロスニコルに配置されているため、第二の位相差層416を通過した直線偏光は、第一の偏光子415で吸収され、黒表示となる。
また、λ/4板である第二の位相差層の面内遅相軸416aと第一の偏光子の透過軸415aとは、45°の角度をなしている。このような構成によれば、第一の偏光子415と第二の位相差層416とが積層された円偏光板が、観察面側に配置される構成が実現される。よって、観察面側(第一の偏光子415側)からの入射光は、円偏光板を透過する際に円偏光に変換されて第一基板401に到達するため、円偏光板の反射防止効果によって、第一基板401からの反射が抑制される。
実施例1の液晶モジュール40aでは、第一の位相差層412と第一の配向膜414との間に誘電体層413を設けることにより、第一の位相差層412の上層に第一の配向膜414を配置する場合であっても、第一の配向膜414を製膜する際に用いる溶剤が第一の位相差層412を溶解してしまうことがなく、第一の配向膜414の製膜を容易に行うことができた。
また、誘電体層413を設けることで、位相差層412が溶解により変質することを抑制できるため、液晶モジュール40aでは消偏性を高いまま維持することが可能となる。更に、誘電体層413は、位相差層412やカラーフィルタ層417内のイオン性不純物等が液晶層418に溶け込むことを抑制するブロック層としても機能するため、高い電圧保持率を実現することが可能である。
実施例1の液晶モジュール40aでは、第一の位相差層412が光官能基を有する光配向材料から構成されるため、粘着層を用いる必要がなく、薄く(~約2μm)製膜することができる。
図11は、実施例1の液晶モジュールにおいて、誘電体層ではなく導電体層を用いた場合の液晶素子の断面模式図である。図12は、駆動電圧と透過率との関係を示したグラフであり、破線は導電体層を用いた液晶モジュールに関するグラフであり、実線は導電体層を用いなかった実施例1の液晶モジュールに関するグラフである。図11及び図12に示したように、導電体層424を用いた場合、駆動電圧の閾値を低くすることが困難であるが、誘電体層413を用いた実施例1の液晶モジュール40aでは駆動電圧の閾値を低くすることができ、かつ、透過率低減幅も小さくすることができる。
[実施例2]
<誘電体層表面に直接ラビング処理を行った液晶素子>
実施例2の液晶モジュールは、第一の配向膜を用いず、誘電体層に直接ラビング処理を施した以外は、実施例1の液晶モジュール40aと同様の構成を有する。
図13は、実施例2の液晶モジュールを作製する様子を示した断面模式図である。実施例1の液晶モジュール40aでは、誘電体層413上に、第一の配向膜414としてラビング配向膜を設けたが、実施例2の液晶モジュール40bでは、誘電体層513上にラビング配向膜を設けず、誘電体層513に直接ラビング処理を施した。実施例2の液晶モジュール40bにおいても、ラビング処理を施した誘電体層513のラビング方向513aに対して、液晶分子が並ぶことにより、実施例1の液晶モジュール40aと同様の動作を行うことが可能となる。
実施形態2の液晶モジュール40bは、観察面側から順に、第一の偏光子(図示省略)、第二の位相差層516、第一基板501、液晶層518、第二基板502及び第二の偏光子及びバックライト(図示省略)を備えている。第一基板501は、観察面側から順に、第一の基材511、カラーフィルタ層517、第一の位相差層512及び誘電体層513を有し、誘電体層513にはラビング配向処理が施されている。すなわち、第一基板501は、実施形態2の位相差基板20における基材211及び位相差層212の間にカラーフィルタ層を設けた基板である。
第二基板502は、観察面側から順に、第二の配向膜519、電極520及び第二の基材521を有する。
第一基板501の誘電体層513側に、3.5μmのスペーサ518aを散布し、第二基板502と貼り合わせることにより、空セルを作成した。このとき、誘電体層513のラビング方向513aは、第二の配向膜層519のラビング方向519aと互いに平行であり、かつ逆向きとなるように、第一基板501及び第二基板502を貼り合わせた。
続いて、上記の空セルに差圧注入によりネガ型液晶を注入した。
更に、第一基板501における第一の基材511のカラーフィルタ層517とは反対側の面に、第二の位相差層516を、粘着剤層(図示せず)を用いて接着した。ここで、第二の位相差層516には、波長550nmにおいて、位相差が137.5nmであるλ/4板を用いた。また、第一の位相差層512の面内遅相軸512aが第二の位相差層516の面内遅相軸516aと直交するように、第二の位相差層516を第一の基材511に接着した。
次に、第一の偏光子(図示省略)及び第二の偏光子(図示省略)をクロスニコルの配置となるようにして、貼り合わせ、液晶素子を作製した。ここで、第二の配向膜519のラビング方向519aは第二の偏光子の透過軸522aに対して平行に、誘電体層513のラビング方向513aは透過軸522aに対して平行に、第一の位相差層512の面内遅相軸512aは透過軸522aに対して-45°の角度をなすように、第二の位相差層516の面内遅相軸516aが透過軸522aに対して45°の角度をなすように、第一の偏光子の透過軸は第二偏光子の透過軸522aに対して90°の角度をなすように配置した。なお、透過軸522aに対して-45°の角度とは、透過軸522aを時計回りに45°回転させた角度を表し、透過軸522aに対して45°の角度とは、透過軸522aを反時計回りに45°回転させた角度を表す。
実施例2の液晶モジュール40bでは、第一の位相差層512上に設けた誘電体層513の上に、配向膜を形成する必要がなく、配向膜を製膜する際に用いる溶剤が、第一の位相差層512を溶解するという問題が発生しなくなる。このため、実施例2の液晶モジュール40bは、実施例1の液晶モジュール40aと同様に、消偏性を高いまま維持することが可能となるのに加え、高い電圧保持率も実現することができる。また、誘電体層513にラビング処理を施し、配向膜としての機能を持たせることにより、製造プロセスの簡易化及び低コスト化を実現することが可能となる。
[実施例3]
<ポジ型液晶を用いた液晶素子>
実施例3の液晶モジュールは、液晶層に用いる液晶分子をポジ型液晶に替えたこと以外は、実施例1で作製した液晶モジュール40aと同様の構成を有する。
実施例3の液晶層における液晶分子の配向状態について説明する。図14は、実施例3のポジ型液晶分子の配向状態を示した図であり、(a)は電圧無印加状態の液晶分子の様子を示した平面模式図であり、(b)は電圧印加状態の液晶分子の様子を示した平面模式図である。電圧無印加状態において、ポジ型液晶である液晶分子618bは、図14(a)に示したように第二の配向膜のラビング方向619aと平行に配向する。また、電圧印加状態において、液晶分子618bは、図14(b)に示したように共通電極620aの櫛歯部の長手方向に対して垂直に配向する。
図15は、電圧印加状態の液晶分子の様子を示した図であり、(a)は導電体層を用いた場合の断面模式図であり、(b)誘電体層を用いた場合の断面模式図である。図15(a)に示したように、実施例3の液晶モジュールにおける誘電体層の代わりに、ITOからなる導電体層624を用いた場合、絶縁膜620bを介して積層された共通電極620a及び画素電極620c(一対の電極)の間で電界のかかり方に乱れが生じ、ポジ型の液晶分子では配向状態が乱れてしまうため、導電体層624を用いた場合はポジ型の液晶分子を用いることができなかった。
しかしながら、実施例3の液晶モジュールでは、導電体層624ではなく、SiOからなる誘電体層613を用いているため、共通電極620a及び画素電極620cの間で電界のかかり方に乱れがなく、ポジ型の液晶分子の配向状態が乱れることがない。その結果、誘電体層613を用いた実施例3では、ポジ型の液晶分子を用いることが可能となる。
図16は、時間と透過率との関係を示したグラフであり、破線はネガ型液晶分子に関するグラフであり、実線はポジ型液晶分子に関するグラフである。一般的に、ネガ型の液晶分子は、低粘度の液晶材料の合成が困難であるため、図16に示したように、ポジ型液晶分子と比べて応答速度が遅い。したがって、ネガ型液晶分子に替えてポジ型液晶分子を利用することができれば、応答速度を向上させることが可能となる。実施例3の液晶モジュールでは、ポジ型の液晶分子を用いても、電圧印加時において液晶分子の配向状態が乱れないため、液晶モジュールとして機能させることができる。更に、実施例3の液晶モジュールでは、誘電体層613が配置されていることにより、第一の配向膜を形成する際に用いられる溶剤が第一の位相差層を溶解してしまうことを抑制し、第一の配向膜を容易に形成することができる。また、誘電体層613を設けることで、位相差層が溶解により変質することを抑制できるため、消偏性を高いまま維持することが可能となる。更に、位相差層やカラーフィルタ層の成分が液晶層に溶け込むことを抑制することができるため、高い電圧保持率を実現することが可能となる。
[付記]
本発明の一態様は、基材111、311、411と、基材111、311、411の一方の面に設けられた位相差層112、312、412と、位相差層112、312、412の基材111、311、411と反対側の面に設けられた誘電体層113、313、413、613と、誘電体層113、313、413、613の位相差層112、312、412と反対側の面に設けられ、かつ、液晶配向処理が施された配向膜114、314、414とを備える位相差基板10、301、401であってもよい。
このような態様とすることにより、位相差層112、312、412と配向膜114、314、414との間に誘電体層113、313、413、613が存在するため、配向膜114、314、414を形成する際に用いる溶剤による位相差層112、312、412の溶解が抑えられ、消偏性が良く、かつ、液晶素子に用いた場合に高い電圧保持率を有する位相差基板10、301、401を提供することが可能となる。
本発明の他の一態様は、基材211、511と、基材211、511の一方の面に設けられた位相差層212、512と、位相差層212、512の基材211、511と反対側の面に設けられ、かつ、液晶配向処理が施された誘電体層213、513とを備える位相差基板20、501であってもよい。
本発明の他の一態様における位相差基板20、501では、誘電体層213、513に直接配向処理を行うため、配向膜を用いなくてもよく、配向膜を製膜する際に使用する溶剤が位相差層212、512を溶解してしまうという問題がなくなる。これにより、消偏性が良く、かつ、液晶素子に用いた場合に高い電圧保持率を有する位相差基板を提供することが可能となる。また、配向膜を形成する製造プロセスを省略することができるため、製造プロセスの簡易化や低コスト化にもつながる。
位相差層112、212、312、412、512は、光官能基を有する光配向材料から構成されてもよい。このような態様とすることにより、単層にて液晶配向性をもった位相差層112、212、312、412、512を作製することができるため、位相差層112、212、312、412、512を設けた液晶表示装置は、視差混色の改善が期待できる。
位相差層112、212、312、412、512は、液晶性ポリマーを含んでもよい。このような態様とすることにより、単層にて液晶配向性をもった位相差層112、212、312、412、512を作製することができるため、位相差層112、212、312、412、512を設けた液晶表示装置は、視差混色の改善が期待できる。
位相差層112、212、312、412、512は、λ/4の位相差を有してもよい。このような態様とすることにより、位相差基板10、20、301、401、501を用いた液晶表示装置における外光の反射を更に抑制することができる。
誘電体層113、213、313、413、513、613は、無機膜であってもよい。このような態様とすることにより、ドライプロセスにて容易に誘電体層113、213、313、413、513、613を製膜することができる。
上記無機膜は、SiO及びSiNの少なくとも一方を含んでもよい。
上記液晶配向処理は、ラビング配向処理であってもよい。このような態様とすることにより、液晶分子を配向する規制力を高めることができる。
本発明の他の一態様は、位相差基板10、20、301、401、501と、更なる基材321、421、521と、位相差基板10、20、301、401、501と更なる基材321、421、521との間に設けられた液晶層318、418、518と、液晶層318、418、518に電界を発生させる電界発生部とを備える液晶素子30、30aであってもよい。
上記電界発生部は、一対の電極(共通電極320a、420a、620a、及び、画素電極320c、420c、620c)を含み、上記一対の電極は、更なる基材321、421、521上に設けられ、上記一対の電極間に電圧が印加されることによって、液晶層318、418、518に横電界が発生してもよい。
液晶層318、418、518は、正の誘電率異方性を有する液晶分子を含んでもよい。このような態様とすることにより、応答速度をより高めることができる。
液晶素子30、30aは、更に、カラーフィルタ層317、417、517を備えてもよい。
液晶素子30、30aは、更に、クロスニコル配置の一対の偏光板(第一の偏光子315、415、及び、第二の偏光子322、422)を備えてもよい。
本発明の他の一態様は、液晶素子30、30aと、液晶素子30、30aに光を照射する光源とを備える液晶モジュール40、40a、40bであってもよい。
10、20:位相差基板
30、30a:液晶素子
40、40a、40b:液晶モジュール
111、211:基材
112、212:位相差層
113、213、313、413、513、613:誘電体層
114:配向膜
301、401、501:第一基板(位相差基板)
302、402、502:第二基板
311、411、511:第一の基材(基材)
312、412、512:第一の位相差層(位相差層)
314、414:第一の配向膜(配向膜)
315、415:第一の偏光子
316、416、516:第二の位相差層
317、417、517:カラーフィルタ層
318、418、518:液晶層
319、419、519:第二の配向膜
320、420、520:電極
320a、420a、620a:共通電極
320b、420b、620b:絶縁膜
320c、420c、620c:画素電極
321、421、521:第二の基材(更なる基材)
322、422:第二の偏光子
412a、512a:第一の位相差層の面内遅相軸
414a:第一の配向膜のラビング方向
415a:第一の偏光子の透過軸
416a、516a:第二の位相差層の面内遅相軸
418a、518a:スペーサ
418b、618b:液晶分子
419a、519a、619a:第二の配向膜のラビング方向
422a、522a:第二の偏光子の透過軸
423:バックライト
424、624:導電体層
513a:誘電体層のラビング方向

Claims (14)

  1. 基材と、
    前記基材の一方の面に設けられた位相差層と、
    前記位相差層の前記基材と反対側の面に設けられた誘電体層と、
    前記誘電体層の前記位相差層と反対側の面に設けられ、かつ、液晶配向処理が施された配向膜とを備えることを特徴とする位相差基板。
  2. 基材と、
    前記基材の一方の面に設けられた位相差層と、
    前記位相差層の前記基材と反対側の面に設けられ、かつ、液晶配向処理が施された誘電体層とを備えることを特徴とする位相差基板。
  3. 前記位相差層は、光官能基を有する光配向材料から構成されることを特徴とする請求項1又は2に記載の位相差基板。
  4. 前記位相差層は、液晶性ポリマーを含むことを特徴とする請求項1又は2に記載の位相差基板。
  5. 前記位相差層は、λ/4の位相差を有することを特徴とする請求項1~4のいずれかに記載の位相差基板。
  6. 前記誘電体層は、無機膜であることを特徴とする請求項1~5のいずれかに記載の位相差基板。
  7. 前記無機膜は、SiO及びSiNの少なくとも一方を含むことを特徴とする請求項6に記載の位相差基板。
  8. 前記液晶配向処理は、ラビング配向処理であることを特徴する請求項1~7のいずれかに記載の位相差基板。
  9. 請求項1~8のいずれかに記載の位相差基板と、
    更なる基材と、
    前記位相差基板と前記更なる基材との間に設けられた液晶層と、
    前記液晶層に電界を発生させる電界発生部とを備えることを特徴とする液晶素子。
  10. 前記電界発生部は、一対の電極を含み、
    前記一対の電極は、前記更なる基材上に設けられ、
    前記一対の電極間に電圧が印加されることによって、前記液晶層に横電界が発生することを特徴とする請求項9に記載の液晶素子。
  11. 前記液晶層は、正の誘電率異方性を有する液晶分子を含むことを特徴とする請求項9又は10に記載の液晶素子。
  12. 更に、カラーフィルタ層を備えることを特徴とする請求項9~11のいずれかに記載の液晶素子。
  13. 更に、クロスニコル配置の一対の偏光板を備えることを特徴とする請求項9~12のいずれかに記載の液晶素子。
  14. 請求項9~13のいずれかに記載の液晶素子と、前記液晶素子に光を照射する光源とを備えることを特徴とする液晶モジュール。
PCT/JP2017/020069 2016-06-06 2017-05-30 位相差基板、液晶素子及び液晶モジュール WO2017212980A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/307,445 US20190346607A1 (en) 2016-06-06 2017-05-30 Retardation substrate, liquid crystal element and liquid crystal module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016112635 2016-06-06
JP2016-112635 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017212980A1 true WO2017212980A1 (ja) 2017-12-14

Family

ID=60578520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020069 WO2017212980A1 (ja) 2016-06-06 2017-05-30 位相差基板、液晶素子及び液晶モジュール

Country Status (2)

Country Link
US (1) US20190346607A1 (ja)
WO (1) WO2017212980A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066531A (ja) * 2017-09-28 2019-04-25 シャープ株式会社 液晶モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933956A (ja) * 1995-07-19 1997-02-07 Sony Corp 反射型ゲストホスト液晶表示装置
JP2009168885A (ja) * 2008-01-11 2009-07-30 Seiko Epson Corp 液晶装置および電子機器、液晶装置の製造方法
JP2009258194A (ja) * 2008-04-14 2009-11-05 Mitsubishi Electric Corp 液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933956A (ja) * 1995-07-19 1997-02-07 Sony Corp 反射型ゲストホスト液晶表示装置
JP2009168885A (ja) * 2008-01-11 2009-07-30 Seiko Epson Corp 液晶装置および電子機器、液晶装置の製造方法
JP2009258194A (ja) * 2008-04-14 2009-11-05 Mitsubishi Electric Corp 液晶表示装置

Also Published As

Publication number Publication date
US20190346607A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US9529227B2 (en) Coatable polarizer and liquid crystal display device having the same
JP4695101B2 (ja) 偏光子及びそれを用いた液晶表示装置
TWI240128B (en) In-planes switching liquid crystal display comprising compensation film for angular field of view using +A-plate and +C-plate
JP4272596B2 (ja) 補償フィルム、補償フィルムの製造方法およびこれを用いた液晶表示装置
WO2017199953A1 (ja) 液晶表示パネル、及び、液晶表示装置
TWI404980B (zh) Liquid crystal panel and liquid crystal display device
TWI386715B (zh) Liquid crystal panel and liquid crystal display device
JP2004240102A (ja) 位相差制御機能を有する液晶ディスプレイ用基板及びそれを用いた液晶ディスプレイ
US8054433B2 (en) Viewing angle control device and display provided with the same
US20110051061A1 (en) Liquid crystal display device
TW201227010A (en) Antireflective polarizing plate and image display apparatus comprising the same
JP2007304498A (ja) 液晶表示装置
WO2016017536A1 (ja) 液晶表示装置
JP2008020771A (ja) 液晶表示装置
WO2017212980A1 (ja) 位相差基板、液晶素子及び液晶モジュール
US8743318B2 (en) Display device and method of manufacturing the same
JP5203557B2 (ja) 液晶表示装置
JP2017062362A (ja) 調光フィルム
WO2018021521A1 (ja) 液晶表示パネル及び液晶表示装置
KR101790489B1 (ko) 액정표시장치의 제조방법
JP2005275322A (ja) カラーフィルタ基板、液晶ディスプレイ用基材、及び液晶表示装置
WO2019009222A1 (ja) 液晶組成物、液晶表示装置、及び、液晶表示装置の製造方法
JP4625575B2 (ja) 偏光反射素子、これを備えた液晶表示素子、および偏光反射素子の製造方法
KR20120072197A (ko) 일축성 염료막을 포함하는 게스트-호스트 모드 액정표시장치
US20190302520A1 (en) Color filter substrate and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP