WO2017212896A1 - Component feeding device - Google Patents

Component feeding device Download PDF

Info

Publication number
WO2017212896A1
WO2017212896A1 PCT/JP2017/018798 JP2017018798W WO2017212896A1 WO 2017212896 A1 WO2017212896 A1 WO 2017212896A1 JP 2017018798 W JP2017018798 W JP 2017018798W WO 2017212896 A1 WO2017212896 A1 WO 2017212896A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
unit
components
plate
discharge
Prior art date
Application number
PCT/JP2017/018798
Other languages
French (fr)
Japanese (ja)
Inventor
喜教 矢持
大江 慎一
恒史 岩政
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2017212896A1 publication Critical patent/WO2017212896A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • B65G47/1407Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl
    • B65G47/1442Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl by means of movement of the bottom or a part of the wall of the container
    • B65G47/1471Movement in one direction, substantially outwards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0093Programme-controlled manipulators co-operating with conveyor means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • B65G47/1407Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl
    • B65G47/1414Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl by means of movement of at least the whole wall of the container
    • B65G47/1428Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding the articles being fed from a container, e.g. a bowl by means of movement of at least the whole wall of the container rotating movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • G05B19/4182Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell manipulators and conveyor only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • B65G2203/0225Orientation of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • B65G2203/0233Position of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/041Camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials

Definitions

  • the present invention relates to a component supply device that automatically takes out and supplies components.
  • Patent Document 1 discloses a method in which the position of a component is adjusted by a rotating brush while the component is conveyed by a conveying unit including a linear conveyor, the position is measured by a vision sensor, the component is taken out by a robot, and the removed component is stored in a storage unit.
  • positioned to is disclosed.
  • Patent Document 2 discloses a configuration in which components are fed into a supply chute in a pre-aligned state, and components are supplied from a supply chute to a jig arranged on a disk-shaped table as needed. .
  • the component supply unit performs an arc following operation with respect to the jig rotating on the table.
  • Patent Document 1 it is possible to cope with a change in the type of parts to be supplied.
  • the amount of parts supplied to the transport unit is increased, parts that cannot be taken out by the robot are generated.
  • it is necessary to temporarily stop the transport unit and there is a problem that the amount of supply to the storage unit per hour is reduced.
  • a continuous mechanism for circulating the parts that cannot be taken out again is necessary in order for the transport unit to continuously operate. .
  • Patent Document 2 a mechanism for exchanging pallets and magazines is required to cope with a change in the type of parts to be supplied, so there is a problem that the number of components increases and the entire apparatus becomes large.
  • the present invention has been made in view of the circumstances as described above, and even when the type of component to be supplied or the supply amount to the transport unit is changed, the component can be automated without increasing the size of the entire apparatus.
  • a component supply device capable of stably supplying is obtained.
  • a component supply device includes a component supply unit that supplies a plurality of components, a conveyance plate that is arranged and rotated with a plurality of components, and a plurality of components that are circulated by rotation of the conveyance plate, in a predesignated posture. And a vision sensor that images the rear of the separation plate with respect to the rotation direction of the conveyance plate. Using the captured image, search for a recognition target component that is a component of the target posture among a plurality of components, and based on the rotation angle information and the position information of the conveyance plate, and the position information of the recognition target component, A take-out unit for taking out the recognition target part.
  • the automatic supply of components can be stably performed without increasing the size of the entire device. It can be carried out.
  • FIG. 3 is a perspective view showing an example of a component in Embodiment 1.
  • FIG. FIG. 6 is an explanatory diagram showing a component takeout position in the first embodiment.
  • 3 is a top view of a supply unit in Embodiment 1.
  • FIG. 3 is a cross-sectional view taken along A1-A2 of the supply unit in the first embodiment.
  • FIG. 6 is an explanatory diagram illustrating an operation of a cutout unit in the first embodiment.
  • 3 is a side view of a circulation conveyance unit in Embodiment 1.
  • FIG. FIG. 3 is a side view of a bulkhead portion in the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating an operation of a target part of a brush part and a rotating brush in the first embodiment.
  • FIG. 3 is an explanatory diagram illustrating a measurement unit in the first embodiment. 3 is a top view showing a recognition range of a vision sensor of a measurement unit in Embodiment 1.
  • FIG. 3 is an explanatory diagram illustrating a position calculation diagram of a vision sensor of a measurement unit according to Embodiment 1.
  • FIG. FIG. 4 is a side view and a top view of a takeout part in the first embodiment.
  • FIG. 6 is a top view for explaining the component conveying method in the first embodiment. It is the upper side figure and side view for demonstrating the attitude
  • FIG. 4 is a top view and a side view for explaining a component discharge portion in the first embodiment.
  • FIG. 10 is a side view of a rotary brush of a brush part in the second embodiment.
  • FIG. 10 is a top view and a side view for explaining a component discharge portion in the third embodiment.
  • FIG. 6 is a top view and a cross-sectional view showing a structure of a component supply device in a fourth embodiment.
  • FIG. 6 is a top view showing an example of a part dropping path 115 on the disc 21.
  • FIG. 1 shows an outline of a component supply apparatus according to the first embodiment.
  • the component supply device includes a component supply unit 1 that stores and supplies the components to the circulation conveyance unit 2, a circulation conveyance unit 2 that circulates and conveys the components, a ballast unit 3 that reduces overlapping of components or unifies the posture of the components, A measuring unit 4 for measuring the position and the rotation angle, a taking-out unit 5 for taking out the component at the position measured by the measuring unit 4, a posture changing unit 6 for changing the posture of the circulating component, a storage unit 7 for storing the taken-out component, A component discharge unit 8 that discharges components and a control unit (not shown) that controls the configuration of the component supply apparatus described above are included.
  • FIG. 2 is a perspective view showing an example of the component 100 in the first embodiment.
  • FIG. 2A is a perspective view of the component 100.
  • 2 (b) to 2 (d) show the component 100 when arranged in the postures 101, 102, and 103, and the heights in the arrangements shown in the respective drawings are 101a, 102a, and 103a, respectively.
  • 101a, 102a, and 103a are assumed to be height, width, and depth, respectively.
  • the width 102a is the maximum
  • the height 101a is the minimum
  • the depth 103a is a value between 101a and 102a, but it goes without saying that the height, width, and depth may be set in any way.
  • the component 100 is a rectangular parallelepiped shape, arbitrary solid shapes may be sufficient as it.
  • the ballast unit 3 aligns the parts 100 so as to have a posture such as a posture 101, for example.
  • the posture 101 may be referred to as a target posture.
  • the component 100 is taken out by the take-out unit 5 as will be described in detail later.
  • a part whose height changes when the posture of the part is changed will be described as an example.
  • a part whose height does not change even when the posture is changed may be used.
  • the shape of the component is not limited to the rectangular parallelepiped shown in FIG.
  • FIG. 3 is an explanatory diagram showing a part picking position in the first embodiment.
  • FIG. 3A is a view showing the posture 101 of the component 100.
  • FIG. 3B is an example of an extraction position in the front view of FIG.
  • the take-out unit 5 introduces a negative pressure between the pad 100 of the robot hand, which will be described later, and the part 100, for example, due to a pressure difference from the surroundings.
  • Lift 100 For example, taking out the position of the component 100 having a height (short side) of 2B and a width (long side) of 4A will be described as an example.
  • the take-out position is, for example, the black point shown in FIG.
  • the component 100 can be stably gripped by sucking and gripping the component 100 at such two take-out positions. Needless to say, removal by a gripping method other than adsorption may be performed.
  • FIG. 4 is a top view of the component supply apparatus for explaining the component supply unit 1 according to the first embodiment.
  • FIG. 5 is a cross-sectional view taken along the A1-A2 cross section shown in FIG. The detailed structure of the component supply part 1 is demonstrated using FIG. 4 and FIG.
  • the component supply unit 1 includes a hopper unit 11 that stores the component 100 and a cutout unit 12 that supplies the component 100 to the circulation conveyance unit 2.
  • the hopper portion 11 is a box shape surrounded by a back surface 13a, a side surface 13b, a bottom surface 13c, and a front surface 13d.
  • the bottom surface 13c of the hopper portion 11 is higher on the back surface 13a side than on the front surface 13d side.
  • the parts 100 supplied by the height gradient of the bottom surface 13c are collected on the front surface 13d side.
  • the hopper unit 11 further includes a component shortage detection sensor 18 that detects a shortage of the component 100 in the hopper unit 11.
  • the component shortage detection sensor 18 sends a component shortage signal to the control unit when the amount of the component 100 falls below a preset amount.
  • the control unit instructs the component supply unit 1 to supply the component 100 to the hopper unit 11.
  • the cutout part 12 has a cutout plate 15, a cylinder 16 that moves the cutout plate 15 up and down, and a guide 17 that moves the cutout plate 15 up and down.
  • An inclined portion 15 a is formed at the tip of the cutout plate 15.
  • the inclined portion 15a is formed to increase in height from the front surface 13d to the back surface 13a. Thereby, it has the shape which supplies the components 100 to the circulation conveyance part 2.
  • FIG. 6 is an explanatory diagram showing an example of the operation of the cutout unit 12 in the first embodiment.
  • 6A shows the cutout portion 12 when the cylinder 16 is contracted
  • FIG. 6B shows the cutout portion 12 when the cylinder 16 is extended.
  • the control unit instructs the cutting unit 12 to expand and contract the cylinder 16.
  • the cutout unit 12 is controlled by the control unit, and expands and contracts the cylinder 16.
  • the cutout plate 15 moves up and down along the front surface 13d by the guide 17. Specifically, first, as shown in FIG. 6A, when the cylinder 16 is contracted, the upper end of the cutout plate 15 is lowered to the same height as the bottom surface 13c.
  • the component 100 is disposed between the inclined portion 15a of the cutout plate 15 and the front surface 13d.
  • the inclined portion 15a of the cutout plate 15 moves to a position higher than the upper end of the front surface 13d.
  • the component 100 between the inclined portion 15a and the front surface 13d is supplied to the circulation conveyance portion 2 beyond the upper end of the front surface 13d.
  • the quantity of the components 100 which the hopper part 11 supplies to the circulation conveyance part 2 at once changes by changing the height of the front surface 13d, for example.
  • FIG. 7 shows an example of the configuration of the circulating conveyance unit 2 in the first embodiment.
  • the circulation conveyance unit 2 includes a component conveyance disk (conveyance plate) 21, an encoder (rotation angle measurement unit) 22 that measures the rotation angle of the disk 21, a non-slip rubber 23 disposed on the surface of the disk 21, A disk guide 24, a motor 25 that rotates the disk 21, a gear head 26 of the motor 25, a shaft body 27 that transmits the power of the motor 25 to the disk 21, and rotates the disk 21, a mounting plate 28 of the motor 25, and mounting A base 29 for supporting the plate 28 is provided.
  • the shaft body 27 includes a coupling, a set collar, and a shaft.
  • the circulating transport unit 2 rotates the motor 25 so that the disk 21 rotates clockwise.
  • the disc 21 conveys the component 100 while circulating it.
  • a rotation center is provided on the disk 21, and the disk 21 rotates, that is, rotates around the rotation center.
  • the rotation direction of the disc 21 is clockwise when viewed from above in the present embodiment, but may be counterclockwise in the arrangement of the device.
  • the conveyance board of the circulation conveyance part 2 may not be the disc 21, and may be a square plate.
  • the component supply apparatus according to the present embodiment is configured to rotate the component 100 on the transport plate about the rotation center by rotating the integrally formed transport plate around the rotation center. Thereby, a component supply apparatus can be reduced in size.
  • FIG. 8 is a side view of the bulk unit 3 in the first embodiment.
  • the ballast unit 3 includes a rotating brush 31 for reducing the overlap of parts 100 and unifying the posture, a shaft 32 of the rotating brush 31, a motor 33 for driving the rotating brush, a gear head 34, and a shaft coupling between the shaft of the motor 33 and the shaft 32.
  • a set collar (not shown) that controls the operation of the shaft 32 by changing the tightening amount of the shaft 32 is provided inside the coupling 35.
  • FIG. 9 is an explanatory diagram showing the operation of the rotating brush 31 of the ballast portion 3 in the first embodiment.
  • FIG. 9B is a cross-sectional view taken along the B1-B2 cross section shown in FIG.
  • the height position of the rotary brush 31 is set to be higher than the height 101a of the posture 101, and the value and height of the depth 103a. Is set to be smaller than one of the smaller values of the double value of 101a. That is, the height position of the rotating brush 31 is not less than the smallest one of the width, the depth, and the height, and is less than the smaller one of the second largest and the smallest twice. Good.
  • the components 100 supplied from the component supply unit 1 overlap each other and are supplied to the ballast unit 3 in various postures (101, 102, 103, etc.) shown in FIG.
  • the rotary brush 31 rotates in the M direction, which is the clockwise direction in the cross-sectional view of FIG. In the drawing, the N direction is a direction in which the disc 21 conveys the component 100.
  • the rotating brush 31 rotates so that the tangential direction at the portion 31a closest to the disc 21 is directed in the opposite direction to the N direction, that is, the U direction. Due to the rotation of the rotating brush 31, the superposed part is pushed back in the U direction, and the superposed state of the part 100 is reduced.
  • the rotary brush 31 changes the posture to the posture 101 when the component 100 conveyed in the posture 102 or 103 is pushed back in the U direction by the rotary brush 31. As a result, the posture of the component 100 is unified with the target posture 101. Note that the material of the rotating brush 31 may be changed depending on the material of the target component 100. Thereby, the time required to eliminate the polymerization state can be reduced.
  • FIG. 10 is an explanatory diagram showing the measurement unit 4 in the first embodiment.
  • FIG. 10B is a cross-sectional view taken along the C1-C2 cross section in FIG.
  • the measuring unit 4 acquires the rotation angle by the encoder 22 attached to the disk 21.
  • the measurement unit 4 captures the image on the disk 21 and acquires the position information of the component 100 that has passed through the ballast unit 3, the illumination 42 when the vision sensor 41 captures images, the vision sensor 41, and the illumination 42. And a jig 43 for attaching the.
  • the position of the disk 21 taken by the vision sensor 41 is, for example, between the ballast portion 3 and the take-out portion 5. Thereby, the position information can be acquired in a short time with respect to the component 100 whose posture is adjusted by the ballast unit 3, and can be taken out by the take-out unit 5 using the position information.
  • the vision sensor 41 performs imaging after turning on the illumination 42. When the imaging is completed, the illumination 42 is turned off.
  • the vision sensor 41 searches the position of the component 100 that is the target posture 101 using the captured image, and acquires the position information of the searched component 100. At this time, the vision sensor 41 is adjusted to recognize the component 100 even if the component 100 in the target posture 101 rotates on the disk 21.
  • the detailed operation of the vision sensor 41 will be described in the following description of the operation.
  • FIG. 11 is a top view showing the recognition range of the vision sensor 41 of the measurement unit 4 in the first embodiment.
  • a direction toward the rotation center O of the disc 21 is set as an X direction
  • a direction orthogonal to the X direction in a plane parallel to the disc 21 is set as a Y direction.
  • a region surrounded by a dotted line in FIG. 11 is a measurement range 44, and the vision sensor 41 can recognize the component 100 in this range.
  • the center position of the measurement range 44 is used as the imaging reference 41 a of the vision sensor 41.
  • the origin of the imaging reference 41a is a vision sensor coordinate.
  • the reference component 140 is placed in the imaging reference 41a.
  • FIG. 12 is an explanatory diagram illustrating a position calculation diagram of the vision sensor 41 of the measurement unit 4 according to the first embodiment.
  • the vision sensor 41 calculates the positional relationship between the imaging reference 41a and the recognition target component 141 using the vision sensor coordinates. Specifically, the vision sensor 41 calculates the X coordinate difference of the component position in the vision sensor coordinates as Xa and the Y coordinate difference as Ya with respect to the imaging reference 41a and the component position 141a of the recognition target component 141. Further, the angle difference Ca is calculated.
  • the angle difference Ca is a rotation angle of the recognition target component 141 with respect to the reference component 140 placed on the imaging reference 41 a of the vision sensor 41.
  • the measurement unit 4 stores a set of Xa, Ya, and the angle difference Ca as position information in a storage unit (not shown).
  • the storage unit calculates position information for each of the plurality of recognition target parts and stores the calculation result. Thereby, even when there are a plurality of recognition target parts, the measurement unit 4 can predict the positions of the plurality of recognition target parts, so that the take-out part 5 can take out the recognition target parts in a short time.
  • FIG. 13 is a side view and a top view of the take-out unit 5 in the first embodiment.
  • the take-out unit 5 includes a robot drive unit 51 and a robot hand 52.
  • FIG. 14 is a top view for explaining a method of conveying component 100 in the first embodiment.
  • a method of gripping the component 100 by the take-out unit 5 will be described by taking as an example a case where the reference component 140 is moved from the component position 140a to the component position 140b.
  • the reference component 140 moves, for example, at a rotation angle ⁇ with the movement of the disc 21 when a certain time elapses.
  • a calculation unit (not shown) of the robot drive unit 51 uses a positional information of the reference component 140 measured by the vision sensor 41 and a rotation speed of the disk 21 of the circulation transport unit 2 for the component to be gripped. 100 gripping scheduled positions are predicted.
  • the calculation unit of the robot drive unit 51 further acquires the planned grip position in the vision sensor coordinates calculated by the measurement unit 4 after the measurement unit 4 recognizes the reference component 140.
  • the grasping position in the vision sensor coordinates is converted into robot coordinates.
  • the robot drive unit 51 operates the robot hand 52 based on the planned holding position in the robot coordinates. Further, based on the rotation angle information from the encoder 22, the robot hand 52 performs a follow-up operation in accordance with the rotation of the disk 21. The robot hand 52 sucks and holds the reference component 140 while performing the following operation. Thereafter, the take-out unit 5 conveys the reference component 140 to the storage unit 7.
  • the robot hand 52 takes out the recognition target part 141 other than the reference part 140 using the difference between the current position and the relative position of the reference part 140 and the recognition target part 141. The operation may be performed again.
  • the taken-out parts are put in alignment on the pallet of the storage unit 7.
  • the storage part 7 can supply the taken-out component 100 directly to another apparatus by connecting with another apparatus. Note that the case where there is one recognition target component has been described as an example, but the measurement unit 4 may be configured to recognize a plurality of recognition target components.
  • FIG. 15 is a top view and a side view of the component supply device for explaining the posture changing unit 6 in the first embodiment.
  • the posture changing unit 6 includes a posture changing block 61 and a block fixing plate 62 for changing the posture of the circulating component 100.
  • the posture changing unit 6 is for changing the posture of the component 100 that could not be picked up by the picking-up unit 5. Specifically, the posture changing unit 6 changes the posture by placing the conveyed component 100 against the posture changing block 61 on the lower part of the component 100.
  • the posture change block 61 has a convex portion whose cross-sectional shape is a triangle.
  • the height of the convex portion of the posture changing block 61 may be less than or equal to half of the second largest value of the width, height, and depth of the component 100, and is smaller than half of the depth 103a in the example of FIG. Set.
  • the parts 100 in the postures 102 and 103 are subjected to a force on the lower portion thereof, and the posture of the part 100 is changed when the part 100 falls down.
  • the cross-sectional shape of the posture changing block 61 may be a square or a circle instead of a triangle.
  • FIG. 16 is a top view and a side view of the component supply apparatus for explaining the component discharge unit 8 according to the first embodiment.
  • the component discharge unit 8 according to the first embodiment includes a discharge plate 81 that blocks the conveyance path of the disk 21, a discharge cylinder 82, a cylinder mount 83, a discharge guide 84, a discharge duct 85, and a component discharge box 86.
  • the discharge plate 81 discharges the component 100 installed on the circular plate 21 of the circulation conveyance unit 2 from the circulation conveyance unit 2.
  • the discharge cylinder 82 moves the discharge plate 81 up and down.
  • the discharge guide 84 discharges the component 100 by performing an opening operation.
  • the discharge duct 85 communicates the component discharge box 86 and the discharge guide 84.
  • the component discharge unit 8 discharges the component 100 from the disc 21 when changing the type of component to be used. In the normal conveyance state, that is, when the component 100 is supplied, the component discharge unit 8 closes the discharge guide 84 and arranges the discharge plate 81 at a height position 81 a that does not collide with the component 100.
  • the discharge guide 84 is first opened.
  • the discharge plate 81 is lowered to the height position 81b.
  • the discharge plate 81 is placed on the disc 21.
  • the discharge plate 81 blocks the transfer path on the disc 21 so that the component 100 is not transferred beyond the discharge plate 81.
  • the component 100 stays in the vicinity of the discharge plate 81.
  • the component 100 on the disc 21 is conveyed along the discharge plate 81 from the discharge guide 84 toward the discharge duct 85. Further, the component 100 conveyed to the discharge duct 85 falls into the component discharge box 86. Thereby, the component 100 can be discharged from the circulation conveyance unit 2.
  • the discharge guide 84 When the discharge guide 84 remains open for a predetermined time or longer, the discharge plate 81 is raised and the discharge guide 84 is closed. As a result, the component supply device returns to the normal conveyance state.
  • the discharge guide 84 and the discharge plate 81 are operated, and at the same time, the unnecessary brush mechanism is stopped by raising the rotary brush 31 of the brush unit 3. Since the component discharge unit 8 is provided, the component supply apparatus can realize the component discharge operation by full automation. Furthermore, immediately after the discharge of the component 100 of the component supply unit 1 is completed, another type of component can be introduced, and the switching time to another type of component can be shortened.
  • Embodiment 1 of the present invention even when the type or amount of components to be supplied is changed, automatic supply of components can be stably performed without increasing the size of the entire apparatus. Moreover, since it is the structure which takes out, circulating the components 100 on the disc 21, the whole apparatus can be reduced in size.
  • FIG. FIG. 17 is a side view of the ballast portion in the second embodiment.
  • the height position of the ballast portion 3 according to the first embodiment is set to a predetermined height.
  • the ballast portion according to the second embodiment is different in that it has a vertical adjustment mechanism 37 and can change the height position of the ballast portion.
  • the present embodiment only the configuration different from that in Embodiment 1 will be described, and the description of the same or corresponding configuration will not be repeated.
  • the vertical adjustment mechanism 37 of the rotating brush 31 includes a direct operation unit 371 that operates in the vertical direction, a guide 372 for performing the direct operation, and a stand 373 that supports the direct operation unit 371.
  • the vertical adjustment mechanism 37 automatically changes the distance between the lower surface of the rotating brush 31 and the upper surface of the disk 21, that is, the height position 374 by, for example, servo drive.
  • the height position of the rotating brush 31 can be changed without changing the constituent members of the ballast portion 3. Work time when the type of parts to be supplied is changed can be shortened.
  • the vertical adjustment mechanism 37 can be driven by a motor that can specify an operation amount, such as a stepping motor.
  • the height position 374 is set to a value equal to or higher than the height 101a of the posture 101 as described above, and is the smallest value among the value of the height 102a, the value of the height 103a, and the value twice the height 101a. Must be set to:
  • a vertical adjustment mechanism 37 for adjusting the height of the rotating brush 31 is provided.
  • FIG. 18 is a top view and a side view of a component supply apparatus for explaining a component discharge unit 8A in the third embodiment.
  • FIG. 18A is a side view of the component supply apparatus according to the present embodiment
  • FIG. 18B is a top view of the component supply apparatus according to the present embodiment.
  • the component discharge unit 8A according to the third embodiment is different from the first embodiment in that a component detection sensor 87 and a component discharge box full sensor 88 are further provided. In the present embodiment, only the configuration different from that of the first embodiment will be described, and the description of the same or corresponding configuration will not be repeated.
  • the control unit assumes that all the components on the disk 21 have been discharged and raises the discharge plate 81. At the same time, the discharge guide 84 is closed. As a result, the component supply device returns to the normal conveyance state. If the component detection sensor 87 does not detect the component 100 for a preset time, the component detection sensor 87 determines that the component discharge of the component discharge unit 8A has been completed. By providing the component detection sensor 87, it is possible to accurately detect the time when the discharge is completed, and it is possible to reduce the time required for the discharge.
  • the component detection sensor 87 may be replaced with the vision sensor 41.
  • the component discharge box full sensor 88 detects that the discharge duct 85 or the component discharge box 86 of the component 100 is full for a preset time or longer, the rotation of the circular plate 21 of the circulation transport unit 2 is stopped. Let As a result, it is possible to suppress clogging due to the entry of more than the allowable amount of components 100 in the component discharge duct 85 and the component discharge box 86.
  • the component discharge box full sensor 88 the component 100 in the component supply unit 1 can be more reliably supplied to the circulation conveyance unit 2 when all the components in the apparatus are discharged.
  • a component detection sensor 87 is provided in the component discharge portion 8A.
  • FIG. 19 is a top view and a cross-sectional view showing the structure of the component supply apparatus in the fourth embodiment.
  • 19 (a), 19 (b), and 19 (c) are top views showing the supply port position changing unit 9 interlocked with the rotational movement of the disc 21.
  • FIG. FIG. 19D is a cross-sectional view taken along the D1-D2 cross section shown in FIG.
  • FIGS. 19 (e) and 19 (f) are cross-sectional views taken along lines D1-D2 shown in FIGS. 19 (b) and 19 (c), respectively.
  • the present embodiment only the configuration different from that in Embodiment 1 will be described, and the description of the same or corresponding configuration will not be repeated.
  • the component 100 is directly supplied to the disc 21 from the component supply unit 1 (the front surface 13d in the hopper unit 11).
  • a supply port position changing unit 9 is further provided, and the component 100 is supplied from the component supply unit 1 to the disc 21 via the supply port position changing unit 9.
  • the supply port position changing unit 9 includes a component distribution mechanism 91 and a slider link mechanism 92 that moves the component distribution mechanism 91.
  • the component distribution mechanism 91 is provided with a component drop space 93 therein.
  • An intake port 93a is provided in the upper part of the component drop space 93, and a supply port 93b is provided in the lower part of the component drop space 93 (shown in FIGS. 19D to 19F).
  • the component distribution mechanism 91 has a function of taking in the component 100 from the component supply unit 1 through the intake port 93a and a function of supplying the component 100 taken in from the intake port 93a to the disc 21 from the supply port 93b. Is provided.
  • the component supply range 21a on the disc 21 is set according to the position of the supply port 93b.
  • the dimensions of the component drop space 93 are adjusted so that the component 100 can be taken in by the intake port 93a and the component 100 can be supplied to the disc 21 by the supply port 93b.
  • the slider link mechanism 92 has a function of moving the supply port 93b in the component distribution mechanism 91 in the radial direction (corresponding to + M direction or -M direction in the drawing).
  • the component distribution mechanism 91 disposed on the front side of the front surface 13d of the hopper 11 fixes the pair of first plates 911 and the pair of first plates 911 at both ends, and is attached to the slider link mechanism 92.
  • a second plate 912 is fixed.
  • the pair of first plates 911 are provided on the front side of the front surface 13d of the hopper unit 11.
  • the second plate 912 is disposed on the opposite side to the front surface 13d of the hopper portion 11 with respect to the pair of first plates 911.
  • a virtual component drop space 93 is formed between the pair of first plate 911, second plate 912, and members on the front side of the hopper portion 11 including the front surface 13 d of the hopper portion 11.
  • virtual means that the component drop space 93 is not a space that is completely surrounded by the above-described configuration, but the component drop space is formed inside a communication pipe that connects the intake port and the supply port. It may be configured.
  • the intake opening 93 a of the component drop space 93 is provided between the pair of first plates 911.
  • the component distribution mechanism 91 in this Embodiment is comprised with a pair of 1st board 911 and the 2nd board 912, you may comprise these members as an integral member, As long as the supply port 93b through which the component 100 can be dropped is provided, the same effect as the present embodiment can be obtained regardless of the structure and material.
  • the shape of the supply port 93 b is rectangular, but any shape may be used as long as the component 100 can be dropped.
  • the slider link mechanism 92 includes a first shaft 921, a driven link 922, and a second shaft 923.
  • the slider link mechanism 92 further includes a guide portion (not shown) for allowing the component distribution mechanism 91 to move only in the radial direction (+ M direction or ⁇ M direction) of the disc 21.
  • the driven link 922 has a first shaft 921 and a second shaft 923 fixed at both ends. One end of the first shaft 921 is fixed to the driven link 922 and the other end is rotatably fixed to the second plate 912 of the component distribution mechanism 91.
  • the second shaft 923 has one end fixed to the driven link 922 and the other end fixed on the disc 21.
  • the component distribution mechanism 91 takes in the component 100 from the component supply part 1 through the supply port 93b. Furthermore, after the component distribution mechanism 91 drops the captured component 100 toward the supply port 93b in the component drop space 93, the component distribution mechanism 91 discharges the component 100 to the disc 21 through the supply port 93b. Thereby, the component 100 taken in from the component supply part 1 is supplied to the disc 21.
  • FIG. 19 shows an example in which the component distribution mechanism 91 reciprocates once while the disk 21 rotates once.
  • the supply port 93b component supply range 21a
  • FIGS. 19 (a) to 19 (c) the supply port 93b moves from the outside to the inside of the disk 21 in FIGS. 19 (a) to 19 (c), and FIGS. 19 (d) to 19 (f). In, move toward the left side in the figure.
  • the component distribution mechanism 91 moves in the (+ M direction) until the disc 21 exceeds 0.5 rotation.
  • one end side of the follower link 922 fixed to the second shaft 923 moves in the circumferential direction of the disk 21 by moving the second shaft 923 in conjunction with the rotational movement of the disk 21.
  • stress in the (+ M direction) is applied to the driven link 922 and the first shaft 921, and is also applied to the component distribution mechanism 91 (second plate 912) via the first shaft 921.
  • the component distribution mechanism 91 is arranged so as to be movable only in the radial direction via the guide portion as described above, the component distribution mechanism 91 moves in the (+ M direction) due to the stress applied to the driven link 922. .
  • the supply port 93b and the component supply range 21a move in the (+ M direction).
  • the supply port position changing unit 9 moves the supply port 93b to change the component supply range 21a with time, so that the arrangement of the components 100 on the disk 21 can be made more uniform, thereby changing the overlapping state of the components 100. It is possible to further reduce the time required for solving the problem.
  • FIG. 19 illustrates the case where the slider link mechanism 92 makes one reciprocation while the disk 21 makes one revolution.
  • the relationship between the number of reciprocations of the component distribution mechanism 91 and the number of revolutions of the disk 21 is arbitrarily determined. It may be changed.
  • the supply port position changing unit 9 and the disk 21 may be connected via a speed reduction mechanism such as a gear.
  • FIG. 19 shows an example in which the relationship between the number of reciprocations of the component distribution mechanism 91 and the rotational speed of the disc 21 is changed from FIG.
  • FIG. 20 is a top view showing an example of the dropping path 115 of the component 100 on the disc 21.
  • FIG. FIG. 20A shows a case where the disk 21 rotates three times while the supply port position changing unit 9 reciprocates 0.5 times.
  • A is the start point and B is the end point.
  • FIG. 20B shows a case where the disk 21 rotates once while the supply port position changing unit 9 reciprocates four times.
  • the configuration other than the disc 21 in the circulation transport unit 2 is omitted.
  • the dropping path 115 of the component 100 onto the disc 21 is changed.
  • the drop path 115 is a path through which the representative point passes when the representative point (for example, the center of gravity, etc.) of the component supply range 21a is set. Since the falling path 115 of the component 100 onto the disc 21 can be changed according to the shape of the target component 100 or the amount of the component 100 supplied from the component supply unit 1, the component 100 is made into a circle. It can be uniformly arranged on the plate 21. Thereby, the time required for eliminating the polymerization state of the component 100 can be further shortened.
  • the present embodiment has the following effects in addition to the effects of the first embodiment. That is, the supply port position changing unit 9 moves the supply port 93b to change the component supply range 21a with time, thereby making it possible to make the arrangement of the components 100 on the disk 21 more uniform and to change the overlapping state of the components 100. There is an effect that the time required for the elimination can be further shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Specific Conveyance Elements (AREA)

Abstract

[Problem] To obtain a component feeding device that can stably perform automatic feeding of components without causing the overall size of the device to be increased even in the case where the type or number of components to be fed is changed. [Solution] This component feeding device comprises: a component feeding unit (1) that feeds a plurality of components; a rotating conveyance plate on which a plurality of components are disposed; a brush unit (3) that adjusts the plurality of components circulated by rotation of the conveyance plate to a target orientation that is stipulated in advance; a measurement unit (4) that has a vision sensor which captures an image of the conveyance plate, that detects a recognition target component that is a component having the target orientation among the plurality of components by using the image captured by the vision sensor, and that obtains position information of the recognition target component; and a taking-out unit (5) that takes out the recognition target component on the basis of rotation angle information of the conveyance plate and the position information.

Description

部品供給装置Parts supply device
 本発明は、部品を自動的に取出し供給する部品供給装置に関する。 The present invention relates to a component supply device that automatically takes out and supplies components.
 近年、市場のニーズの多様化に合わせて、生産する機械の種類、生産量が変動する変種変量生産に対応できる自動機が求められており、部品供給装置も同様に変種変量生産に対応するため、多品種の部品に対応可能な部品供給装置が開発されている。その一つとして直線コンベア上に非整列状態で対象部品を供給した後、ビジョンセンサで位置を計測してロボットで取出すシステムがある。 In recent years, as the needs of the market have diversified, there is a need for automated machines that can handle variable-variable production in which the types of machines to be produced and the production volume fluctuate. Component supply devices that can handle a wide variety of components have been developed. As one of such systems, there is a system in which a target part is supplied in a non-aligned state on a linear conveyor, and then a position is measured by a vision sensor and taken out by a robot.
 例えば、特許文献1は、直線コンベアからなる搬送部で部品搬送を行いつつ回転ブラシにより部品の姿勢を調整した後、ビジョンセンサで位置を測定してロボットにより部品を取出し、取出した部品を収納部に配置する構成を開示する。また特許文献2は、予め整列された状態で供給シュート内に部品を送り込むとともに、供給シュートから必要に応じて円板状のテーブルに配置された治具に対して部品を供給する構成を開示する。また、部品供給部は、部品を治具に供給するに際し、テーブル上を回転する治具に対して円弧追従動作を行う。 For example, Patent Document 1 discloses a method in which the position of a component is adjusted by a rotating brush while the component is conveyed by a conveying unit including a linear conveyor, the position is measured by a vision sensor, the component is taken out by a robot, and the removed component is stored in a storage unit. The structure arrange | positioned to is disclosed. Patent Document 2 discloses a configuration in which components are fed into a supply chute in a pre-aligned state, and components are supplied from a supply chute to a jig arranged on a disk-shaped table as needed. . In addition, when supplying the component to the jig, the component supply unit performs an arc following operation with respect to the jig rotating on the table.
特開平6-329235号公報JP-A-6-329235 特開昭58-47722号公報JP 58-47722 A
 特許文献1では、供給する部品の種類変更にも対応可能であるが、搬送部への部品の供給量を増加させた場合には、ロボットにより取出しができない部品が発生する。このような部品を搬送部から取り除くため、搬送部を一旦停止する必要があり、時間あたりの収納部への供給量が減少するという問題があった。一方で、取出しができない部品が発生しても搬送部が連続運転するためには、取出しができない部品を再度循環させるための循環機構が必要となり、部品供給装置が大型化するという問題があった。 In Patent Document 1, it is possible to cope with a change in the type of parts to be supplied. However, when the amount of parts supplied to the transport unit is increased, parts that cannot be taken out by the robot are generated. In order to remove such components from the transport unit, it is necessary to temporarily stop the transport unit, and there is a problem that the amount of supply to the storage unit per hour is reduced. On the other hand, even if parts that cannot be taken out are generated, a continuous mechanism for circulating the parts that cannot be taken out again is necessary in order for the transport unit to continuously operate. .
 また、特許文献2では、供給する部品の種類変更に対応させるためには、パレットおよびマガジンを交換する機構が必要となるため、構成要素が多くなり装置全体が大型化するという問題があった。 Further, in Patent Document 2, a mechanism for exchanging pallets and magazines is required to cope with a change in the type of parts to be supplied, so there is a problem that the number of components increases and the entire apparatus becomes large.
 本発明は、上述のような事情を鑑みてなされたもので、供給する部品の種類あるいは搬送部への供給量を変化させた場合であっても、装置全体を大型化させずに部品の自動供給を安定して行える部品供給装置を得る。 The present invention has been made in view of the circumstances as described above, and even when the type of component to be supplied or the supply amount to the transport unit is changed, the component can be automated without increasing the size of the entire apparatus. A component supply device capable of stably supplying is obtained.
 本発明に係る部品供給装置は、複数の部品を供給する部品供給部と、複数の部品が配置されて回転する搬送板と、搬送板の回転により循環する複数の部品を、予め指定された姿勢である対象姿勢に調整するバラシ部と、搬送板の回転角情報を測定する回転角測定部と、搬送板の回転方向に対してバラシ部の後方を撮像するビジョンセンサを有し、ビジョンセンサにより撮像した画像を用いて、複数の部品のうち対象姿勢の部品である認識対象部品を検索し、認識対象部品の位置情報を取得する測定部と、搬送板の回転角情報および位置情報に基づき、認識対象部品を取出す取出し部とを備える。 A component supply device according to the present invention includes a component supply unit that supplies a plurality of components, a conveyance plate that is arranged and rotated with a plurality of components, and a plurality of components that are circulated by rotation of the conveyance plate, in a predesignated posture. And a vision sensor that images the rear of the separation plate with respect to the rotation direction of the conveyance plate. Using the captured image, search for a recognition target component that is a component of the target posture among a plurality of components, and based on the rotation angle information and the position information of the conveyance plate, and the position information of the recognition target component, A take-out unit for taking out the recognition target part.
 本発明に係る部品供給装置にあっては、供給する部品の種類あるいは搬送部への供給量を変化させた場合であっても、装置全体を大型化させずに部品の自動供給を安定して行うことができる。 In the component supply device according to the present invention, even when the type of component to be supplied or the supply amount to the transport unit is changed, the automatic supply of components can be stably performed without increasing the size of the entire device. It can be carried out.
本発明実施の形態1における部品供給装置を示す全体構成図である。It is a whole lineblock diagram showing the parts supply device in Embodiment 1 of the present invention. 実施の形態1における部品の一例を示す斜視図である。3 is a perspective view showing an example of a component in Embodiment 1. FIG. 実施の形態1における部品取出し位置を示す説明図である。FIG. 6 is an explanatory diagram showing a component takeout position in the first embodiment. 実施の形態1における供給部の上面図である。3 is a top view of a supply unit in Embodiment 1. FIG. 実施の形態1における供給部のA1-A2における断面図である。FIG. 3 is a cross-sectional view taken along A1-A2 of the supply unit in the first embodiment. 実施の形態1における切出し部の動作を示す説明図である。FIG. 6 is an explanatory diagram illustrating an operation of a cutout unit in the first embodiment. 実施の形態1における循環搬送部の側面図である。3 is a side view of a circulation conveyance unit in Embodiment 1. FIG. 実施の形態1におけるバラシ部の側面図である。FIG. 3 is a side view of a bulkhead portion in the first embodiment. 実施の形態1におけるバラシ部の対象部品と回転ブラシの動作を示す説明図である。FIG. 5 is an explanatory diagram illustrating an operation of a target part of a brush part and a rotating brush in the first embodiment. 実施の形態1における測定部を示す説明図である。FIG. 3 is an explanatory diagram illustrating a measurement unit in the first embodiment. 実施の形態1における測定部のビジョンセンサの認識範囲を示す上面図である。3 is a top view showing a recognition range of a vision sensor of a measurement unit in Embodiment 1. FIG. 実施の形態1における測定部のビジョンセンサの位置計算図を示す説明図である。3 is an explanatory diagram illustrating a position calculation diagram of a vision sensor of a measurement unit according to Embodiment 1. FIG. 実施の形態1における取出し部の側面図および上面図である。FIG. 4 is a side view and a top view of a takeout part in the first embodiment. 実施の形態1における部品の搬送方法を説明するための上面図である。FIG. 6 is a top view for explaining the component conveying method in the first embodiment. 実施の形態1における姿勢変更部を説明するための上面図および側面図である。It is the upper side figure and side view for demonstrating the attitude | position change part in Embodiment 1. FIG. 実施の形態1における部品排出部を説明するための上面図および側面図である。FIG. 4 is a top view and a side view for explaining a component discharge portion in the first embodiment. 実施の形態2におけるバラシ部の回転ブラシの側面図である。FIG. 10 is a side view of a rotary brush of a brush part in the second embodiment. 実施の形態3における部品排出部を説明するための上面図および側面図である。FIG. 10 is a top view and a side view for explaining a component discharge portion in the third embodiment. 実施の形態4における部品供給装置の構造を示す上面図および断面図である。FIG. 6 is a top view and a cross-sectional view showing a structure of a component supply device in a fourth embodiment. 円板21上における部品の落下経路115の一例を示す上面図である。FIG. 6 is a top view showing an example of a part dropping path 115 on the disc 21.
実施の形態1.
 図1は、本実施の形態1における部品供給装置の概要を示す。部品供給装置は、部品を貯留して循環搬送部2へ供給する部品供給部1、部品を循環搬送する循環搬送部2、部品の重なりを軽減あるいは部品の姿勢を統一させるバラシ部3、部品の位置および回転角度を測定する測定部4、測定部4にて測定した位置の部品を取出す取出し部5、循環する部品の姿勢を変更する姿勢変更部6、取出した部品を収納する収納部7、部品を排出する部品排出部8、および上述した部品供給装置の構成を制御する制御部(図示省略)を有する。
Embodiment 1 FIG.
FIG. 1 shows an outline of a component supply apparatus according to the first embodiment. The component supply device includes a component supply unit 1 that stores and supplies the components to the circulation conveyance unit 2, a circulation conveyance unit 2 that circulates and conveys the components, a ballast unit 3 that reduces overlapping of components or unifies the posture of the components, A measuring unit 4 for measuring the position and the rotation angle, a taking-out unit 5 for taking out the component at the position measured by the measuring unit 4, a posture changing unit 6 for changing the posture of the circulating component, a storage unit 7 for storing the taken-out component, A component discharge unit 8 that discharges components and a control unit (not shown) that controls the configuration of the component supply apparatus described above are included.
 図2は、実施の形態1における部品100の一例を示す斜視図である。図2(a)は部品100の斜視図である。図2(b)~(d)は、姿勢101、102、および103により配置した場合の部品100を示し、それぞれの図に示す配置における高さがそれぞれ101a、102a、および103aとなる。以下では、図2(b)では一例として、101a、102a、および103aがそれぞれ高さ、幅、および奥行きとする。幅102aが最大であり、高さ101aが最小であり、奥行き103aが101aと102aの間の値であるとするが、高さ、幅、および奥行きをどのように設定してもよいことは言うまでもない。また、部品100は、直方体形状であるが、任意の立体形状であってもよい。 FIG. 2 is a perspective view showing an example of the component 100 in the first embodiment. FIG. 2A is a perspective view of the component 100. 2 (b) to 2 (d) show the component 100 when arranged in the postures 101, 102, and 103, and the heights in the arrangements shown in the respective drawings are 101a, 102a, and 103a, respectively. Hereinafter, as an example in FIG. 2B, 101a, 102a, and 103a are assumed to be height, width, and depth, respectively. The width 102a is the maximum, the height 101a is the minimum, and the depth 103a is a value between 101a and 102a, but it goes without saying that the height, width, and depth may be set in any way. Yes. Moreover, although the component 100 is a rectangular parallelepiped shape, arbitrary solid shapes may be sufficient as it.
 バラシ部3は、例えば姿勢101のような姿勢となるように部品100を整列する。なお以下、姿勢101を対象姿勢と呼ぶ場合がある。部品100は、詳細は後述するが取出し部5により取り出される。なお以下では、部品の姿勢を変更した場合に高さが変わる部品を例に挙げて説明を行うが、姿勢を変更した場合でも高さが変わらない部品であってもよい。また、部品の形状は、図2に示した直方体に限らないことは言うまでもない。 The ballast unit 3 aligns the parts 100 so as to have a posture such as a posture 101, for example. Hereinafter, the posture 101 may be referred to as a target posture. The component 100 is taken out by the take-out unit 5 as will be described in detail later. In the following description, a part whose height changes when the posture of the part is changed will be described as an example. However, a part whose height does not change even when the posture is changed may be used. Needless to say, the shape of the component is not limited to the rectangular parallelepiped shown in FIG.
 図3は、実施の形態1における部品取出し位置を示す説明図である。図3(a)は、部品100の姿勢101を示す図である。図3(b)は、図3(a)の正面図における取出し位置の一例である。図3(a)に示す通り部品100を配置した後、取出し部5は、例えば、後述するロボットハンドのパッドと部品100との間に負圧を導入することで周囲との圧力差により、部品100を持ち上げる。例えば高さ(短辺)が2Bであり幅(長辺)が4Aである部品100の場合を例にあげて取出し位置を説明する。取出し位置は、例えば、図3(b)に示した黒点であり、図中左下の頂点からの高さがBであり、幅がAおよび3Aである位置である。このような2箇所の取出し位置にて部品100を吸着把持することで部品100を安定して把持することができる。吸着以外の把持方法による取出しを行ってもよいことは言うまでもない。 FIG. 3 is an explanatory diagram showing a part picking position in the first embodiment. FIG. 3A is a view showing the posture 101 of the component 100. FIG. 3B is an example of an extraction position in the front view of FIG. After arranging the part 100 as shown in FIG. 3A, the take-out unit 5 introduces a negative pressure between the pad 100 of the robot hand, which will be described later, and the part 100, for example, due to a pressure difference from the surroundings. Lift 100. For example, taking out the position of the component 100 having a height (short side) of 2B and a width (long side) of 4A will be described as an example. The take-out position is, for example, the black point shown in FIG. 3B, where the height from the lower left vertex in the figure is B, and the width is A and 3A. The component 100 can be stably gripped by sucking and gripping the component 100 at such two take-out positions. Needless to say, removal by a gripping method other than adsorption may be performed.
 図4は、実施の形態1における部品供給部1を説明するための部品供給装置の上面図である。図5は、図4に示すA1-A2断面における断面図である。図4および図5を用いて部品供給部1の詳細な構造を説明する。部品供給部1は、部品100を貯留するホッパ部11と部品100を循環搬送部2へ供給する切出し部12とを有する。 FIG. 4 is a top view of the component supply apparatus for explaining the component supply unit 1 according to the first embodiment. FIG. 5 is a cross-sectional view taken along the A1-A2 cross section shown in FIG. The detailed structure of the component supply part 1 is demonstrated using FIG. 4 and FIG. The component supply unit 1 includes a hopper unit 11 that stores the component 100 and a cutout unit 12 that supplies the component 100 to the circulation conveyance unit 2.
 まずホッパ部11は、背面13a、側面13b、底面13c、および正面13dに囲まれた箱型である。ホッパ部11の底面13cは、その背面13a側における高さが正面13d側よりも高い。この底面13cの高さ勾配により供給した部品100が正面13d側に集積する。ホッパ部11は、ホッパ部11における部品100の不足を検知する部品不足検知センサ18をさらに有する。部品不足検知センサ18は、部品100の量が予め設定された量よりも低下した場合に、部品不足信号を制御部に送る。制御部は、部品不足検知センサ18より部品不足信号が送られた場合、ホッパ部11に部品100を供給するように部品供給部1に指示する。 First, the hopper portion 11 is a box shape surrounded by a back surface 13a, a side surface 13b, a bottom surface 13c, and a front surface 13d. The bottom surface 13c of the hopper portion 11 is higher on the back surface 13a side than on the front surface 13d side. The parts 100 supplied by the height gradient of the bottom surface 13c are collected on the front surface 13d side. The hopper unit 11 further includes a component shortage detection sensor 18 that detects a shortage of the component 100 in the hopper unit 11. The component shortage detection sensor 18 sends a component shortage signal to the control unit when the amount of the component 100 falls below a preset amount. When a component shortage signal is sent from the component shortage detection sensor 18, the control unit instructs the component supply unit 1 to supply the component 100 to the hopper unit 11.
 次に切出し部12は、切出し板15と、切出し板15を上下動作させるシリンダー16と、切出し板15を上下に動作させるときのガイド17とを有する。切出し板15の先端には傾斜部15aが形成されている。この傾斜部15aは、正面13dから背面13aに向かい高さが高くなるように形成される。これにより、循環搬送部2へ部品100を供給する形状となっている。 Next, the cutout part 12 has a cutout plate 15, a cylinder 16 that moves the cutout plate 15 up and down, and a guide 17 that moves the cutout plate 15 up and down. An inclined portion 15 a is formed at the tip of the cutout plate 15. The inclined portion 15a is formed to increase in height from the front surface 13d to the back surface 13a. Thereby, it has the shape which supplies the components 100 to the circulation conveyance part 2. FIG.
 図6は、実施の形態1における切出し部12の動作の一例を示す説明図である。図6(a)は、シリンダー16が縮んだ場合の切出し部12を示し、図6(b)は、シリンダー16が伸びた場合の切出し部12を示している。循環搬送部2に部品100の供給が必要な場合は、制御部は、シリンダー16を伸縮させるように切出し部12に指示する。切出し部12は、制御部に制御され、シリンダー16を伸縮させる。これにより、切出し板15がガイド17により正面13dに沿って上下に動作する。具体的には、先ず、図6(a)に示す通り、シリンダー16が縮む場合、切出し板15の上端は底面13cと同じ高さまで下がる。ここで、切出し板15の傾斜部15aと正面13dとの間に部品100が配置される。次に、図6(b)に示す通り、シリンダー16が伸びる場合、切出し板15の傾斜部15aが正面13dの上端より高い位置に移動する。これにより、傾斜部15aと正面13dとの間の部品100は、正面13dの上端を越えて循環搬送部2に供給される。なお、ホッパ部11が循環搬送部2に一度に供給する部品100の数量は、例えば正面13dの高さを変えることで変化する。 FIG. 6 is an explanatory diagram showing an example of the operation of the cutout unit 12 in the first embodiment. 6A shows the cutout portion 12 when the cylinder 16 is contracted, and FIG. 6B shows the cutout portion 12 when the cylinder 16 is extended. When it is necessary to supply the component 100 to the circulation conveyance unit 2, the control unit instructs the cutting unit 12 to expand and contract the cylinder 16. The cutout unit 12 is controlled by the control unit, and expands and contracts the cylinder 16. Thereby, the cutout plate 15 moves up and down along the front surface 13d by the guide 17. Specifically, first, as shown in FIG. 6A, when the cylinder 16 is contracted, the upper end of the cutout plate 15 is lowered to the same height as the bottom surface 13c. Here, the component 100 is disposed between the inclined portion 15a of the cutout plate 15 and the front surface 13d. Next, as shown in FIG. 6B, when the cylinder 16 extends, the inclined portion 15a of the cutout plate 15 moves to a position higher than the upper end of the front surface 13d. As a result, the component 100 between the inclined portion 15a and the front surface 13d is supplied to the circulation conveyance portion 2 beyond the upper end of the front surface 13d. In addition, the quantity of the components 100 which the hopper part 11 supplies to the circulation conveyance part 2 at once changes by changing the height of the front surface 13d, for example.
 図7は実施の形態1における循環搬送部2の構成の一例を示す。循環搬送部2は、部品搬送用の円板(搬送板)21、円板21の回転角を測定するエンコーダ(回転角測定部)22、円板21の表面に配置された滑り止めゴム23、円板ガイド24、円板21を回転させるモーター25、モーター25のギアヘッド26、モーター25の動力を円板21に伝えて円板21を回転させるシャフト体27、モーター25の取付け板28、および取付け板28を支持する架台29を有する。なお、シャフト体27は、カップリング、セットカラー、およびシャフトから構成される。 FIG. 7 shows an example of the configuration of the circulating conveyance unit 2 in the first embodiment. The circulation conveyance unit 2 includes a component conveyance disk (conveyance plate) 21, an encoder (rotation angle measurement unit) 22 that measures the rotation angle of the disk 21, a non-slip rubber 23 disposed on the surface of the disk 21, A disk guide 24, a motor 25 that rotates the disk 21, a gear head 26 of the motor 25, a shaft body 27 that transmits the power of the motor 25 to the disk 21, and rotates the disk 21, a mounting plate 28 of the motor 25, and mounting A base 29 for supporting the plate 28 is provided. The shaft body 27 includes a coupling, a set collar, and a shaft.
 循環搬送部2は、モーター25を回転させることで、円板21は右回りに回転する。円板21は、部品100を循環させながら搬送する。円板21上には回転中心が設けられており、円板21はこの回転中心の周りを回転すなわち回転運動する。円板21の回転方向は、本実施の形態では上から見た場合に右回りであるが、装置の配置に左回りであってもよい。なお、循環搬送部2の搬送板は円板21でなくてもよく、角板であってもよい。本実施の形態に係る部品供給装置は、一体に形成された搬送板を回転中心の周りに回転させることで、この回転中心を中心に搬送板上の部品100を回転運動させる構成である。これにより、部品供給装置を小型化することができる。 The circulating transport unit 2 rotates the motor 25 so that the disk 21 rotates clockwise. The disc 21 conveys the component 100 while circulating it. A rotation center is provided on the disk 21, and the disk 21 rotates, that is, rotates around the rotation center. The rotation direction of the disc 21 is clockwise when viewed from above in the present embodiment, but may be counterclockwise in the arrangement of the device. In addition, the conveyance board of the circulation conveyance part 2 may not be the disc 21, and may be a square plate. The component supply apparatus according to the present embodiment is configured to rotate the component 100 on the transport plate about the rotation center by rotating the integrally formed transport plate around the rotation center. Thereby, a component supply apparatus can be reduced in size.
 部品搬送を円板21で行うため、取出しができない部品100のリターン機構が不要となり、装置全体の小型化が可能となる。また、円板21上に部品供給するため、部品供給および部品排出位置が自由に設定できるので、装置全体としての小型化を図ることができる。 Since the parts are transported by the disk 21, a return mechanism for the parts 100 that cannot be taken out becomes unnecessary, and the entire apparatus can be downsized. Further, since the components are supplied onto the disc 21, the component supply and component discharge positions can be set freely, so that the size of the entire apparatus can be reduced.
 図8は実施の形態1におけるバラシ部3の側面図である。バラシ部3は、部品100の重なり軽減および姿勢を統一するための回転ブラシ31、回転ブラシ31のシャフト32、回転ブラシを駆動させるモーター33、ギアヘッド34、モーター33の軸とシャフト32との軸継手であるカップリング35、およびモーター取付け板36を有する。カップリング35の内部には、シャフト32の締め付け量を変化させることでシャフト32の動作を制御するセットカラー(図示省略)が設けられる。 FIG. 8 is a side view of the bulk unit 3 in the first embodiment. The ballast unit 3 includes a rotating brush 31 for reducing the overlap of parts 100 and unifying the posture, a shaft 32 of the rotating brush 31, a motor 33 for driving the rotating brush, a gear head 34, and a shaft coupling between the shaft of the motor 33 and the shaft 32. A coupling 35 and a motor mounting plate 36. A set collar (not shown) that controls the operation of the shaft 32 by changing the tightening amount of the shaft 32 is provided inside the coupling 35.
 図9は実施の形態1におけるバラシ部3の回転ブラシ31の動作を示す説明図である。
図9(b)は、図9(a)に示すB1-B2断面における断面図である。バラシ部3の動作について説明するにあたり、回転ブラシ31のブラシ下面と円板21の上面との距離すなわち高さ位置の一例について説明する。図2に示す対象姿勢101の部品100のみがバラシ部3を通過するようにするため、回転ブラシ31の高さ位置は、姿勢101の高さ101a以上に設定するとともに、奥行き103aの値および高さ101aの2倍の値のいずれか一方の小さい値以下に設定する。すなわち、回転ブラシ31の高さ位置は、幅、奥行き、および高さのうち、最小のもの以上であるとともに、2番目に大きなものおよび最小のものの2倍のうちいずれか小さい方以下であればよい。
FIG. 9 is an explanatory diagram showing the operation of the rotating brush 31 of the ballast portion 3 in the first embodiment.
FIG. 9B is a cross-sectional view taken along the B1-B2 cross section shown in FIG. In describing the operation of the ballast unit 3, an example of the distance between the lower surface of the rotating brush 31 and the upper surface of the disk 21, that is, the height position will be described. In order to allow only the component 100 of the target posture 101 shown in FIG. 2 to pass through the ballast portion 3, the height position of the rotary brush 31 is set to be higher than the height 101a of the posture 101, and the value and height of the depth 103a. Is set to be smaller than one of the smaller values of the double value of 101a. That is, the height position of the rotating brush 31 is not less than the smallest one of the width, the depth, and the height, and is less than the smaller one of the second largest and the smallest twice. Good.
 バラシ部3の動作の一例を以下に示す。部品供給部1から供給された部品100は、部品同士が重なり、図2に示す様々な姿勢(101,102,103など)にてバラシ部3に供給される。回転ブラシ31は、図9(b)の断面図において、時計周りの方向となるM方向に回転する。図中、N方向は、円板21が部品100を搬送する方向である。回転ブラシ31は、円板21に対して最も近づく部分31aにおける接線方向が、N方向に対して反対方向すなわちU方向を向くように回転する。回転ブラシ31の回転により、重合状態の部品がU方向に押し戻され、部品100の重合状態が軽減される。さらに、回転ブラシ31は、姿勢102または103で搬送されてきた部品100を、回転ブラシ31で部品100の上部をU方向に押し戻す際に、姿勢を姿勢101に変更する。これによって、部品100の姿勢が対象姿勢101に統一される。なお、回転ブラシ31の材質は、対象となる部品100の材質により変更してもよい。これにより、重合状態をなくすために必要な時間を減少させることができる。 An example of the operation of the bulk unit 3 is shown below. The components 100 supplied from the component supply unit 1 overlap each other and are supplied to the ballast unit 3 in various postures (101, 102, 103, etc.) shown in FIG. The rotary brush 31 rotates in the M direction, which is the clockwise direction in the cross-sectional view of FIG. In the drawing, the N direction is a direction in which the disc 21 conveys the component 100. The rotating brush 31 rotates so that the tangential direction at the portion 31a closest to the disc 21 is directed in the opposite direction to the N direction, that is, the U direction. Due to the rotation of the rotating brush 31, the superposed part is pushed back in the U direction, and the superposed state of the part 100 is reduced. Further, the rotary brush 31 changes the posture to the posture 101 when the component 100 conveyed in the posture 102 or 103 is pushed back in the U direction by the rotary brush 31. As a result, the posture of the component 100 is unified with the target posture 101. Note that the material of the rotating brush 31 may be changed depending on the material of the target component 100. Thereby, the time required to eliminate the polymerization state can be reduced.
 図10は、実施の形態1における測定部4を示す説明図である。図10(b)は、図10(a)におけるC1-C2断面における断面図である。測定部4は、円板21に取付けられたエンコーダ22により回転角度を取得する。測定部4は、円板21上を撮像してバラシ部3を通過した部品100の位置情報を取得するビジョンセンサ41と、ビジョンセンサ41が撮像する際の照明42と、ビジョンセンサ41および照明42を取付けるための治具43とを有する。ビジョンセンサ41が撮影する円板21の位置は、例えばバラシ部3と取出し部5との間である。これにより、バラシ部3で姿勢を調整された部品100について、短時間で位置情報を取得し、その位置情報を用いて、取出し部5で取出すことができる。 FIG. 10 is an explanatory diagram showing the measurement unit 4 in the first embodiment. FIG. 10B is a cross-sectional view taken along the C1-C2 cross section in FIG. The measuring unit 4 acquires the rotation angle by the encoder 22 attached to the disk 21. The measurement unit 4 captures the image on the disk 21 and acquires the position information of the component 100 that has passed through the ballast unit 3, the illumination 42 when the vision sensor 41 captures images, the vision sensor 41, and the illumination 42. And a jig 43 for attaching the. The position of the disk 21 taken by the vision sensor 41 is, for example, between the ballast portion 3 and the take-out portion 5. Thereby, the position information can be acquired in a short time with respect to the component 100 whose posture is adjusted by the ballast unit 3, and can be taken out by the take-out unit 5 using the position information.
 ビジョンセンサ41は、照明42を点灯させてから撮像を行う。撮像が完了すると照明42を消灯させる。ビジョンセンサ41は、撮像した画像を用いて、対象姿勢101である部品100の位置を検索し、検索された部品100の位置情報を取得する。このとき、対象姿勢101である部品100が円板21上で回転していても、ビジョンセンサ41は部品100を認識するように調整されている。なお、詳細なビジョンセンサ41の動作は以下の動作の説明にて行う。 The vision sensor 41 performs imaging after turning on the illumination 42. When the imaging is completed, the illumination 42 is turned off. The vision sensor 41 searches the position of the component 100 that is the target posture 101 using the captured image, and acquires the position information of the searched component 100. At this time, the vision sensor 41 is adjusted to recognize the component 100 even if the component 100 in the target posture 101 rotates on the disk 21. The detailed operation of the vision sensor 41 will be described in the following description of the operation.
 図11は、実施の形態1における測定部4のビジョンセンサ41の認識範囲を示す上面図である。ビジョンセンサ41におけるXY座標の設定方法としては、円板21の回転中心Oに向かう方向をX方向とし、円板21と平行な平面においてこのX方向と直交する方向をY方向とする。図11の点線部で囲まれた領域は測定範囲44であり、この範囲において、ビジョンセンサ41は部品100を認識することが可能である。図中、測定範囲44の中心位置を、ビジョンセンサ41の撮像基準41aとしている。以下では、上述したXY座標系において、撮像基準41aを原点としたものをビジョンセンサ座標として説明を行う。なお、以下の位置情報に関する説明の都合上、撮像基準41aには、基準部品140が置かれているものとしている。 FIG. 11 is a top view showing the recognition range of the vision sensor 41 of the measurement unit 4 in the first embodiment. As a method for setting the XY coordinates in the vision sensor 41, a direction toward the rotation center O of the disc 21 is set as an X direction, and a direction orthogonal to the X direction in a plane parallel to the disc 21 is set as a Y direction. A region surrounded by a dotted line in FIG. 11 is a measurement range 44, and the vision sensor 41 can recognize the component 100 in this range. In the figure, the center position of the measurement range 44 is used as the imaging reference 41 a of the vision sensor 41. Hereinafter, in the XY coordinate system described above, a description will be given assuming that the origin of the imaging reference 41a is a vision sensor coordinate. For the convenience of explanation regarding the following positional information, it is assumed that the reference component 140 is placed in the imaging reference 41a.
 図12は、実施の形態1における測定部4のビジョンセンサ41の位置計算図を示す説明図である。ビジョンセンサ41は、撮像基準41aと認識対象部品141との位置関係を、ビジョンセンサ座標にて計算を行う。具体的には、ビジョンセンサ41は、撮像基準41aと認識対象部品141の部品位置141aについて、ビジョンセンサ座標における部品位置のX座標の差をXaとし、Y座標の差をYaとして算出する。さらに、角度差Caを計算する。ここで、角度差Caは、ビジョンセンサ41の撮像基準41aに置かれた基準部品140に対する、認識対象部品141の回転角である。さらに、測定部4は、図示を省略した記憶部にXa、Ya、および角度差Caの組を位置情報として記憶させる。
記憶部は、このとき認識対象部品が複数ある場合は、複数の認識対象部品の各々について、位置情報をそれぞれ算出して、算出結果を記憶する。これにより、認識対象部品が複数存在する場合でも、測定部4が複数の認識対象部品の位置を予測できるので、取出し部5が短時間で認識対象部品の取出しを行うことができる。
FIG. 12 is an explanatory diagram illustrating a position calculation diagram of the vision sensor 41 of the measurement unit 4 according to the first embodiment. The vision sensor 41 calculates the positional relationship between the imaging reference 41a and the recognition target component 141 using the vision sensor coordinates. Specifically, the vision sensor 41 calculates the X coordinate difference of the component position in the vision sensor coordinates as Xa and the Y coordinate difference as Ya with respect to the imaging reference 41a and the component position 141a of the recognition target component 141. Further, the angle difference Ca is calculated. Here, the angle difference Ca is a rotation angle of the recognition target component 141 with respect to the reference component 140 placed on the imaging reference 41 a of the vision sensor 41. Further, the measurement unit 4 stores a set of Xa, Ya, and the angle difference Ca as position information in a storage unit (not shown).
When there are a plurality of recognition target parts at this time, the storage unit calculates position information for each of the plurality of recognition target parts and stores the calculation result. Thereby, even when there are a plurality of recognition target parts, the measurement unit 4 can predict the positions of the plurality of recognition target parts, so that the take-out part 5 can take out the recognition target parts in a short time.
 図13は、実施の形態1における取出し部5の側面図および上面図である。取出し部5はロボット駆動部51とロボットハンド52から構成される。図14は、実施の形態1における部品100の搬送方法を説明するための上面図である。 FIG. 13 is a side view and a top view of the take-out unit 5 in the first embodiment. The take-out unit 5 includes a robot drive unit 51 and a robot hand 52. FIG. 14 is a top view for explaining a method of conveying component 100 in the first embodiment.
 部品位置140aから部品位置140bに基準部品140が移動した場合を例に挙げて、取出し部5による部品100の把持方法を説明する。基準部品140は、ある時間が経過すると円板21の移動とともに例えば回転角θで移動する。ロボット駆動部51の演算部(図示省略)は、把持しようとする部品に関し、ビジョンセンサ41で計測した基準部品140の位置情報と循環搬送部2の円板21の回転速度とを用いて、部品100の把持予定位置を予測する。ロボット駆動部51の演算部は、さらに、測定部4で基準部品140を認識した後、測定部4により計算されたビジョンセンサ座標における把持予定位置を取得する。さらに、ビジョンセンサ座標における把持予定位置をロボット座標に変換する。ロボット駆動部51は、ロボット座標における把持予定位置に基づきロボットハンド52を動作させる。さらに、エンコーダ22からの回転角情報に基づき、ロボットハンド52は円板21の回転に合わせて追従動作を行う。ロボットハンド52は、追従動作を行いながら基準部品140を吸着把持する。その後、取出し部5は、基準部品140を収納部7に搬送する。 A method of gripping the component 100 by the take-out unit 5 will be described by taking as an example a case where the reference component 140 is moved from the component position 140a to the component position 140b. The reference component 140 moves, for example, at a rotation angle θ with the movement of the disc 21 when a certain time elapses. A calculation unit (not shown) of the robot drive unit 51 uses a positional information of the reference component 140 measured by the vision sensor 41 and a rotation speed of the disk 21 of the circulation transport unit 2 for the component to be gripped. 100 gripping scheduled positions are predicted. The calculation unit of the robot drive unit 51 further acquires the planned grip position in the vision sensor coordinates calculated by the measurement unit 4 after the measurement unit 4 recognizes the reference component 140. Furthermore, the grasping position in the vision sensor coordinates is converted into robot coordinates. The robot drive unit 51 operates the robot hand 52 based on the planned holding position in the robot coordinates. Further, based on the rotation angle information from the encoder 22, the robot hand 52 performs a follow-up operation in accordance with the rotation of the disk 21. The robot hand 52 sucks and holds the reference component 140 while performing the following operation. Thereafter, the take-out unit 5 conveys the reference component 140 to the storage unit 7.
 なお、説明を簡単にするために、基準部品140を用いて説明を行ったが、認識対象部品141aにも適用可能であることは言うまでもない。基準部品140を収納部7に搬送した後、ロボットハンド52が、現在の位置と基準部品140と認識対象部品141との相対位置の違いを用いて、基準部品140以外の認識対象部品141の取出し動作を再度行ってもよい。なお、取出された部品は収納部7のパレットに整列して投入される。なお、収納部7をパレットチェンジャーまたは治具などで構成してもよい。この場合、収納部7は、別の装置と接続することで、取り出された部品100を直接別の装置に供給することができる。なお、認識対象部品が1個の場合を例にあげて説明を行ったが、測定部4が認識対象部品を複数認識する構成としてもよい。 In addition, in order to simplify description, although demonstrated using the reference | standard component 140, it cannot be overemphasized that it is applicable also to the recognition target component 141a. After transporting the reference part 140 to the storage unit 7, the robot hand 52 takes out the recognition target part 141 other than the reference part 140 using the difference between the current position and the relative position of the reference part 140 and the recognition target part 141. The operation may be performed again. The taken-out parts are put in alignment on the pallet of the storage unit 7. In addition, you may comprise the accommodating part 7 with a pallet changer or a jig | tool. In this case, the storage part 7 can supply the taken-out component 100 directly to another apparatus by connecting with another apparatus. Note that the case where there is one recognition target component has been described as an example, but the measurement unit 4 may be configured to recognize a plurality of recognition target components.
 図15は、実施の形態1における姿勢変更部6を説明するための部品供給装置の上面図および側面図である。姿勢変更部6は、循環する部品100の姿勢を変更するための姿勢変更ブロック61とブロック固定板62とを有する。姿勢変更部6は、取出し部5にて取出しができなかった部品100の姿勢を変更するためのものである。具体的には姿勢変更部6は、搬送された部品100を、姿勢変更ブロック61に部品100の下部に当てることで、姿勢を変化させる。姿勢変更ブロック61は、その断面形状が三角形である凸部を有する。
姿勢変更ブロック61の凸部の高さは、部品100の幅、高さ、および奥行きのうち2番目に大きな値について、その半分以下であればよく、図2の例では奥行き103aの半分より小さく設定する。これにより、姿勢102および103の部品100は、その下部に力が加わり、部品100が倒れることで、部品100の姿勢が変更される。なお、図中、姿勢変更ブロック61の断面形状が三角形である代わりに、四角形あるいは円形でもよい。
FIG. 15 is a top view and a side view of the component supply device for explaining the posture changing unit 6 in the first embodiment. The posture changing unit 6 includes a posture changing block 61 and a block fixing plate 62 for changing the posture of the circulating component 100. The posture changing unit 6 is for changing the posture of the component 100 that could not be picked up by the picking-up unit 5. Specifically, the posture changing unit 6 changes the posture by placing the conveyed component 100 against the posture changing block 61 on the lower part of the component 100. The posture change block 61 has a convex portion whose cross-sectional shape is a triangle.
The height of the convex portion of the posture changing block 61 may be less than or equal to half of the second largest value of the width, height, and depth of the component 100, and is smaller than half of the depth 103a in the example of FIG. Set. As a result, the parts 100 in the postures 102 and 103 are subjected to a force on the lower portion thereof, and the posture of the part 100 is changed when the part 100 falls down. In the drawing, the cross-sectional shape of the posture changing block 61 may be a square or a circle instead of a triangle.
 図16は実施の形態1における部品排出部8を説明するための部品供給装置の上面図および側面図である。実施の形態1における部品排出部8は、円板21の搬送路を塞ぐ排出板81、排出用シリンダー82、シリンダー用架台83、排出ガイド84、排出ダクト85、および部品排出箱86を有する。排出板81は、循環搬送部2の円板21の上に設置された部品100を循環搬送部2から排出する。排出用シリンダー82は排出板81を上下させる。排出ガイド84は、開動作を行うことで部品100を排出する。排出ダクト85は部品排出箱86と排出ガイド84とを連通する。部品排出部8は、使用する部品の種類変更を行うに際し、円板21から部品100を排出する。通常搬送状態すなわち部品100を供給する場合は、部品排出部8は、排出ガイド84を閉じるとともに、部品100に衝突しない高さ位置81aに排出板81を配置する。 FIG. 16 is a top view and a side view of the component supply apparatus for explaining the component discharge unit 8 according to the first embodiment. The component discharge unit 8 according to the first embodiment includes a discharge plate 81 that blocks the conveyance path of the disk 21, a discharge cylinder 82, a cylinder mount 83, a discharge guide 84, a discharge duct 85, and a component discharge box 86. The discharge plate 81 discharges the component 100 installed on the circular plate 21 of the circulation conveyance unit 2 from the circulation conveyance unit 2. The discharge cylinder 82 moves the discharge plate 81 up and down. The discharge guide 84 discharges the component 100 by performing an opening operation. The discharge duct 85 communicates the component discharge box 86 and the discharge guide 84. The component discharge unit 8 discharges the component 100 from the disc 21 when changing the type of component to be used. In the normal conveyance state, that is, when the component 100 is supplied, the component discharge unit 8 closes the discharge guide 84 and arranges the discharge plate 81 at a height position 81 a that does not collide with the component 100.
 部品排出部8の動作の一例を以下に説明する。部品100を排出する場合にまず排出ガイド84を開ける。次に、排出板81を高さ位置81bに下降させる。排出板81は円板21上に載置される。ここで、排出板81は、円板21上の搬送路を塞ぐことで、部品100が排出板81を越えて搬送されないようにする。これにより、排出板81の付近で部品100が滞留する。円板21上の部品100は、排出板81に沿って排出ガイド84から排出ダクト85に向かい搬送される。さらに、排出ダクト85に搬送された部品100は部品排出箱86内に落下する。これにより、循環搬送部2から部品100を排出することができる。排出ガイド84が予め定められた時間以上、開状態を維持した場合には、排出板81を上昇させるとともに、排出ガイド84を閉じる。これにより、部品供給装置は通常搬送状態に戻る。なお、部品100を排出させる場合は排出ガイド84および排出板81を動作させると同時に、バラシ部3の回転ブラシ31を上昇させて不要なバラシ機構を停止させる。部品排出部8が設けられているため、部品供給装置は全自動により部品の排出作業が実現できる。さらに、部品供給部1の部品100の排出が完了した直後に、別の種類の部品を投入することが可能になり、別の種類の部品への切替時間を短縮することができる。 An example of the operation of the component discharge unit 8 will be described below. When discharging the component 100, the discharge guide 84 is first opened. Next, the discharge plate 81 is lowered to the height position 81b. The discharge plate 81 is placed on the disc 21. Here, the discharge plate 81 blocks the transfer path on the disc 21 so that the component 100 is not transferred beyond the discharge plate 81. As a result, the component 100 stays in the vicinity of the discharge plate 81. The component 100 on the disc 21 is conveyed along the discharge plate 81 from the discharge guide 84 toward the discharge duct 85. Further, the component 100 conveyed to the discharge duct 85 falls into the component discharge box 86. Thereby, the component 100 can be discharged from the circulation conveyance unit 2. When the discharge guide 84 remains open for a predetermined time or longer, the discharge plate 81 is raised and the discharge guide 84 is closed. As a result, the component supply device returns to the normal conveyance state. When the component 100 is discharged, the discharge guide 84 and the discharge plate 81 are operated, and at the same time, the unnecessary brush mechanism is stopped by raising the rotary brush 31 of the brush unit 3. Since the component discharge unit 8 is provided, the component supply apparatus can realize the component discharge operation by full automation. Furthermore, immediately after the discharge of the component 100 of the component supply unit 1 is completed, another type of component can be introduced, and the switching time to another type of component can be shortened.
 本発明の実施の形態1では、供給する部品の種類あるいは供給量を変化させた場合であっても、装置全体を大型化させずに部品の自動供給を安定して行うことができる。また、円板21上で部品100を循環させながら取出しを行う構成であるので、装置全体として小型化を図ることができる。 In Embodiment 1 of the present invention, even when the type or amount of components to be supplied is changed, automatic supply of components can be stably performed without increasing the size of the entire apparatus. Moreover, since it is the structure which takes out, circulating the components 100 on the disc 21, the whole apparatus can be reduced in size.
実施の形態2.
 図17は実施の形態2におけるバラシ部の側面図である。実施の形態1に係るバラシ部3の高さ位置は、予め決められた高さに設定されていた。一方で、実施の形態2に係るバラシ部は、上下調節機構37を有しバラシ部の高さ位置を変更することが可能な点が異なる。なお、本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じまたは対応する構成については説明を繰り返さない。
Embodiment 2. FIG.
FIG. 17 is a side view of the ballast portion in the second embodiment. The height position of the ballast portion 3 according to the first embodiment is set to a predetermined height. On the other hand, the ballast portion according to the second embodiment is different in that it has a vertical adjustment mechanism 37 and can change the height position of the ballast portion. In the present embodiment, only the configuration different from that in Embodiment 1 will be described, and the description of the same or corresponding configuration will not be repeated.
 回転ブラシ31の上下調節機構37は、上下方向に動作する直行動作ユニット371と、直行動作をするためのガイド372と、直行動作ユニット371を支持する架台373とで構成される。上下調節機構37は、回転ブラシ31の下面と円板21の上面の距離すなわち高さ位置374を、例えばサーボ駆動により自動で変化させる。これにより、部品の種類を変更する場合でも、高さ位置を変更するだけで多種類の部品に対応が可能となる。さらに、部品の種類が変わった場合でも、バラシ部3の構成部材を変更することなく回転ブラシ31の高さ位置の変更が可能となる。供給する部品の種類を変更した場合における作業時間が短縮できる。上下調節機構37における上下動作の駆動はサーボ駆動のほかに、ステッピングモーターなどの動作量を指定可能なモーターで代用することも可能である。高さ位置374は、上述の通り姿勢101の高さ101aの値以上に設定するとともに、高さ102aの値、高さ103aの値、および高さ101aの2倍の値のうち、最も小さい値以下に設定する必要がある。 The vertical adjustment mechanism 37 of the rotating brush 31 includes a direct operation unit 371 that operates in the vertical direction, a guide 372 for performing the direct operation, and a stand 373 that supports the direct operation unit 371. The vertical adjustment mechanism 37 automatically changes the distance between the lower surface of the rotating brush 31 and the upper surface of the disk 21, that is, the height position 374 by, for example, servo drive. As a result, even when the type of component is changed, it is possible to deal with various types of components only by changing the height position. Furthermore, even when the type of the parts changes, the height position of the rotating brush 31 can be changed without changing the constituent members of the ballast portion 3. Work time when the type of parts to be supplied is changed can be shortened. In addition to the servo drive, the vertical adjustment mechanism 37 can be driven by a motor that can specify an operation amount, such as a stepping motor. The height position 374 is set to a value equal to or higher than the height 101a of the posture 101 as described above, and is the smallest value among the value of the height 102a, the value of the height 103a, and the value twice the height 101a. Must be set to:
 本実施の形態では、回転ブラシ31の高さを調節するための上下調節機構37が設けられている。これにより、供給する部品の種類を変えるに際し、部品供給装置の構成部材を変更する必要がないため、実施の形態1の効果に加えて作業時間が短縮できる効果を有する。 In the present embodiment, a vertical adjustment mechanism 37 for adjusting the height of the rotating brush 31 is provided. Thereby, when changing the kind of components to be supplied, it is not necessary to change the constituent members of the component supply device, so that in addition to the effects of the first embodiment, the working time can be shortened.
実施の形態3.
 図18は実施の形態3における部品排出部8Aを説明するための部品供給装置の上面図および側面図である。図18(a)は本実施の形態に係る部品供給装置の側面図であり、図18(b)は本実施の形態に係る部品供給装置の上面図である。実施の形態3における部品排出部8Aは、部品検知用センサ87および部品排出箱満杯センサ88をさらに備える点が実施の形態1と異なる。本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じまたは対応する構成については説明を繰り返さない。
Embodiment 3 FIG.
FIG. 18 is a top view and a side view of a component supply apparatus for explaining a component discharge unit 8A in the third embodiment. FIG. 18A is a side view of the component supply apparatus according to the present embodiment, and FIG. 18B is a top view of the component supply apparatus according to the present embodiment. The component discharge unit 8A according to the third embodiment is different from the first embodiment in that a component detection sensor 87 and a component discharge box full sensor 88 are further provided. In the present embodiment, only the configuration different from that of the first embodiment will be described, and the description of the same or corresponding configuration will not be repeated.
 円板21が例えば1回転する間に、部品100の存在が部品検知用センサ87により検知されない場合には、制御部は円板21上の部品が全て排出されたとみなし、排出板81を上昇させるとともに排出ガイド84を閉じる。これにより、部品供給装置は通常搬送状態に戻る。部品検知用センサ87は、予め設定された時間の間、部品100を検知しない場合に、部品排出部8Aでの部品100の排出が完了したと判断する。部品検知用センサ87を設けることで、排出を完了した時間を正確に検知することができ、排出に要する時間を減らすことができる。なお、部品検知用センサ87はビジョンセンサ41で代用してもよい。 If the presence of the component 100 is not detected by the component detection sensor 87 while the disk 21 rotates, for example, once, the control unit assumes that all the components on the disk 21 have been discharged and raises the discharge plate 81. At the same time, the discharge guide 84 is closed. As a result, the component supply device returns to the normal conveyance state. If the component detection sensor 87 does not detect the component 100 for a preset time, the component detection sensor 87 determines that the component discharge of the component discharge unit 8A has been completed. By providing the component detection sensor 87, it is possible to accurately detect the time when the discharge is completed, and it is possible to reduce the time required for the discharge. The component detection sensor 87 may be replaced with the vision sensor 41.
 また、部品排出箱満杯センサ88は予め設定された時間以上、部品100の排出ダクト85または部品排出箱86が満杯であることを検知した場合は、循環搬送部2の円板21の回転を停止させる。これにより、部品の排出ダクト85および部品排出箱86において、許容量以上の部品100が入りこむことによる詰りを抑制することが可能である。部品排出箱満杯センサ88を用いることで、装置内の部品の全てを排出する場合に、部品供給部1内の部品100をより確実に循環搬送部2へ供給することができる。 Further, when the component discharge box full sensor 88 detects that the discharge duct 85 or the component discharge box 86 of the component 100 is full for a preset time or longer, the rotation of the circular plate 21 of the circulation transport unit 2 is stopped. Let As a result, it is possible to suppress clogging due to the entry of more than the allowable amount of components 100 in the component discharge duct 85 and the component discharge box 86. By using the component discharge box full sensor 88, the component 100 in the component supply unit 1 can be more reliably supplied to the circulation conveyance unit 2 when all the components in the apparatus are discharged.
 本実施の形態では、部品排出部8Aに部品検知用センサ87が設けられる。これにより、部品の種類を入れ替えるに際して循環搬送部2における部品の排出完了を確実に検知でき、実施の形態1の効果に加え部品の種類の切り替え時間を短縮できる効果を有する。 In the present embodiment, a component detection sensor 87 is provided in the component discharge portion 8A. Thereby, when the types of components are switched, it is possible to reliably detect the completion of discharging of the components in the circulation conveyance unit 2, and in addition to the effects of the first embodiment, there is an effect that the switching time of the types of components can be shortened.
実施の形態4.
 図19は実施の形態4における部品供給装置の構造を示す上面図および断面図である。図19(a)、図19(b)、および図19(c)は円板21の回転運動に連動する供給口位置変更部9を示す上面図である。図19(d)は、図19(a)に示すD1-D2断面における断面図である。同様に、図19(e)、図19(f)はそれぞれ図19(b)、図19(c)に示すD1-D2断面における断面図である。なお、本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じまたは対応する構成については説明を繰り返さない。
Embodiment 4 FIG.
FIG. 19 is a top view and a cross-sectional view showing the structure of the component supply apparatus in the fourth embodiment. 19 (a), 19 (b), and 19 (c) are top views showing the supply port position changing unit 9 interlocked with the rotational movement of the disc 21. FIG. FIG. 19D is a cross-sectional view taken along the D1-D2 cross section shown in FIG. Similarly, FIGS. 19 (e) and 19 (f) are cross-sectional views taken along lines D1-D2 shown in FIGS. 19 (b) and 19 (c), respectively. In the present embodiment, only the configuration different from that in Embodiment 1 will be described, and the description of the same or corresponding configuration will not be repeated.
 上述の実施の形態では、部品供給部1(ホッパ部11における正面13d)から部品100が円板21に直接供給される構成であった。本実施の形態では供給口位置変更部9をさらに備え、この供給口位置変更部9を経由して部品供給部1から円板21に部品100が供給される点が異なる。 In the above-described embodiment, the component 100 is directly supplied to the disc 21 from the component supply unit 1 (the front surface 13d in the hopper unit 11). In the present embodiment, a supply port position changing unit 9 is further provided, and the component 100 is supplied from the component supply unit 1 to the disc 21 via the supply port position changing unit 9.
 供給口位置変更部9は、部品配給機構91、および部品配給機構91を移動させるスライダリンク機構92を備える。 The supply port position changing unit 9 includes a component distribution mechanism 91 and a slider link mechanism 92 that moves the component distribution mechanism 91.
部品配給機構91には、部品落下空間93が内部に設けられる。この部品落下空間93の上部には取込口93aが設けられ、部品落下空間93の下部には供給口93bが設けられる(図19(d)~19(f)に図示)。部品配給機構91は、部品供給部1からの部品100を取込口93aにより取込む機能、および、この取込口93aから取込まれた部品100を供給口93bから円板21へ供給する機能を備える。 The component distribution mechanism 91 is provided with a component drop space 93 therein. An intake port 93a is provided in the upper part of the component drop space 93, and a supply port 93b is provided in the lower part of the component drop space 93 (shown in FIGS. 19D to 19F). The component distribution mechanism 91 has a function of taking in the component 100 from the component supply unit 1 through the intake port 93a and a function of supplying the component 100 taken in from the intake port 93a to the disc 21 from the supply port 93b. Is provided.
なお、供給口93bの位置に応じて、円板21上における部品供給範囲21aが設定される。部品落下空間93は、取込口93aにより部品100を取込むと共に、供給口93bにより円板21に部品100を供給できるように、寸法が調整されている。 Note that the component supply range 21a on the disc 21 is set according to the position of the supply port 93b. The dimensions of the component drop space 93 are adjusted so that the component 100 can be taken in by the intake port 93a and the component 100 can be supplied to the disc 21 by the supply port 93b.
スライダリンク機構92は部品配給機構91における供給口93bを径方向(図中、+M方向又は-M方向に対応。)に移動させる機能を備える。 The slider link mechanism 92 has a function of moving the supply port 93b in the component distribution mechanism 91 in the radial direction (corresponding to + M direction or -M direction in the drawing).
 ここで、部品配給機構91をより詳細に説明する。ホッパ部11の正面13dの前面側に配置された部品配給機構91は、一対の第1の板911、および、この一対の第1の板911のそれぞれを両端に固定するとともにスライダリンク機構92に固定された第2の板912を有する。 Here, the parts distribution mechanism 91 will be described in more detail. The component distribution mechanism 91 disposed on the front side of the front surface 13d of the hopper 11 fixes the pair of first plates 911 and the pair of first plates 911 at both ends, and is attached to the slider link mechanism 92. A second plate 912 is fixed.
 一対の第1の板911は、ホッパ部11の正面13dの前面側に設けられる。第2の板912は、一対の第1の板911に対して、ホッパ部11の正面13dとは反対側に配置される。一対の第1の板911、第2の板912、およびホッパ部11の正面13dを含むホッパ部11の前面側の部材の間には、仮想的な部品落下空間93が形成される。ここで仮想的とは、部品落下空間93が上述の構成によって周囲が完全に囲まれた空間でないことを意味するが、部品落下空間は取込口と供給口を連通する連通管の内部に形成される構成であってもよい。部品落下空間93の取込口93aは、一対の第1の板911間に設けられる。 The pair of first plates 911 are provided on the front side of the front surface 13d of the hopper unit 11. The second plate 912 is disposed on the opposite side to the front surface 13d of the hopper portion 11 with respect to the pair of first plates 911. A virtual component drop space 93 is formed between the pair of first plate 911, second plate 912, and members on the front side of the hopper portion 11 including the front surface 13 d of the hopper portion 11. Here, virtual means that the component drop space 93 is not a space that is completely surrounded by the above-described configuration, but the component drop space is formed inside a communication pipe that connects the intake port and the supply port. It may be configured. The intake opening 93 a of the component drop space 93 is provided between the pair of first plates 911.
 なお、本実施の形態における部品配給機構91は、一対の第1の板911および第2の板912により構成されているが、これらの部材を一体部材として構成してもよく、これら一体部材に部品100が落下可能な供給口93bが設けられていれば、どのような構造および材質で構成されていても、本実施の形態と同様な効果が得られる。また、図19では供給口93bの形状が矩形であるとしているが、部品100が落下可能な形状であれば任意の図形であってもよい。 In addition, although the component distribution mechanism 91 in this Embodiment is comprised with a pair of 1st board 911 and the 2nd board 912, you may comprise these members as an integral member, As long as the supply port 93b through which the component 100 can be dropped is provided, the same effect as the present embodiment can be obtained regardless of the structure and material. In FIG. 19, the shape of the supply port 93 b is rectangular, but any shape may be used as long as the component 100 can be dropped.
 続いて、スライダリンク機構92をより詳細に説明する。スライダリンク機構92は、第1のシャフト921と、従動リンク922と、第2のシャフト923とを有する。スライダリンク機構92は、さらに部品配給機構91を円板21の径方向(+M方向又は-M方向)にのみ移動可能とするためのガイド部分(図示省略)を有する。 Subsequently, the slider link mechanism 92 will be described in more detail. The slider link mechanism 92 includes a first shaft 921, a driven link 922, and a second shaft 923. The slider link mechanism 92 further includes a guide portion (not shown) for allowing the component distribution mechanism 91 to move only in the radial direction (+ M direction or −M direction) of the disc 21.
 従動リンク922は、第1のシャフト921および第2のシャフト923が両端に固定されている。第1のシャフト921は、一端が従動リンク922に固定されると共に、他端が部品配給機構91の第2の板912に回転可能に固定される。第2のシャフト923は、一端が従動リンク922に固定されるとともに、他端が円板21上に固定される。 The driven link 922 has a first shaft 921 and a second shaft 923 fixed at both ends. One end of the first shaft 921 is fixed to the driven link 922 and the other end is rotatably fixed to the second plate 912 of the component distribution mechanism 91. The second shaft 923 has one end fixed to the driven link 922 and the other end fixed on the disc 21.
 ここで、部品配給機構91の動作を説明する。部品配給機構91は、供給口93bにより部品供給部1からの部品100を取込む。部品配給機構91は、さらにまた、取込まれた部品100を供給口93bに向けて部品落下空間93内にて落下させた後、供給口93bにより円板21へ部品100を排出する。これにより、部品供給部1から取込んだ部品100が円板21へ供給される。 Here, the operation of the component distribution mechanism 91 will be described. The component distribution mechanism 91 takes in the component 100 from the component supply part 1 through the supply port 93b. Furthermore, after the component distribution mechanism 91 drops the captured component 100 toward the supply port 93b in the component drop space 93, the component distribution mechanism 91 discharges the component 100 to the disc 21 through the supply port 93b. Thereby, the component 100 taken in from the component supply part 1 is supplied to the disc 21.
 次に、スライダリンク機構92の動作を説明する。図19では、円板21が1回転する間に部品配給機構91が1往復する例を示している。具体的には、供給口93b(部品供給範囲21a)は、図19(a)~(c)においては図中円板21の外側から内側に向かい移動し、図19(d)~(f)においては図中左側に向かい移動する。図19(a)~(c)を示すとおり、円板21が0.5回転を超えるまでは、部品配給機構91は、(+M方向)に移動する。 Next, the operation of the slider link mechanism 92 will be described. FIG. 19 shows an example in which the component distribution mechanism 91 reciprocates once while the disk 21 rotates once. Specifically, the supply port 93b (component supply range 21a) moves from the outside to the inside of the disk 21 in FIGS. 19 (a) to 19 (c), and FIGS. 19 (d) to 19 (f). In, move toward the left side in the figure. As shown in FIGS. 19A to 19C, the component distribution mechanism 91 moves in the (+ M direction) until the disc 21 exceeds 0.5 rotation.
 より詳細には、円板21の回転運動に連動して第2のシャフト923が移動することで、第2のシャフト923に固定された従動リンク922の一端側が、円板21の周方向に移動する。この周方向の移動により(+M方向)の応力が従動リンク922および第1のシャフト921に負荷されると共に、第1のシャフト921を介して部品配給機構91(第2の板912)に負荷される。ここで、部品配給機構91が上述したとおりガイド部分を介して径方向のみに移動可能に配置されているため、部品配給機構91は従動リンク922に負荷された応力によって(+M方向)に移動する。この部品配給機構91の(+M方向)への移動により、供給口93bおよび部品供給範囲21aが、(+M方向)に移動する。 More specifically, one end side of the follower link 922 fixed to the second shaft 923 moves in the circumferential direction of the disk 21 by moving the second shaft 923 in conjunction with the rotational movement of the disk 21. To do. Due to the movement in the circumferential direction, stress in the (+ M direction) is applied to the driven link 922 and the first shaft 921, and is also applied to the component distribution mechanism 91 (second plate 912) via the first shaft 921. The Here, since the component distribution mechanism 91 is arranged so as to be movable only in the radial direction via the guide portion as described above, the component distribution mechanism 91 moves in the (+ M direction) due to the stress applied to the driven link 922. . As the component distribution mechanism 91 moves in the (+ M direction), the supply port 93b and the component supply range 21a move in the (+ M direction).
なお、図示は省略しているが、円板21が0.5回転を超えると、部品配給機構91は(-M方向)に移動を始め、円板21が1回転を超えるまでは、(-M方向)に移動を続ける。この場合のスライダリンク機構92の動作は、上述の動作の説明において(+M方向)を(-M方向)に変更すればよいだけであるため、その説明を省略する。 Although illustration is omitted, when the disc 21 exceeds 0.5 rotation, the component distribution mechanism 91 starts to move in the (−M direction), and until the disc 21 exceeds one rotation (− Continue moving in the M direction). The operation of the slider link mechanism 92 in this case is only necessary to change (+ M direction) to (−M direction) in the description of the above-described operation, and thus the description thereof is omitted.
 供給口位置変更部9は供給口93bを移動させて部品供給範囲21aを経時的に変化させることで、円板21上における部品100の配置をより均一化でき、これにより部品100の重合状態を解消するために要する時間をより短縮することができる。 The supply port position changing unit 9 moves the supply port 93b to change the component supply range 21a with time, so that the arrangement of the components 100 on the disk 21 can be made more uniform, thereby changing the overlapping state of the components 100. It is possible to further reduce the time required for solving the problem.
 なお、図19では、円板21が1回転する間に、スライダリンク機構92が1往復する場合を例示したが、部品配給機構91の往復回数と円板21の回転数との関係を任意に変更してもよい。この場合、供給口位置変更部9と円板21とを、歯車等の減速機構を介して接続する構成とすればよい。 FIG. 19 illustrates the case where the slider link mechanism 92 makes one reciprocation while the disk 21 makes one revolution. However, the relationship between the number of reciprocations of the component distribution mechanism 91 and the number of revolutions of the disk 21 is arbitrarily determined. It may be changed. In this case, the supply port position changing unit 9 and the disk 21 may be connected via a speed reduction mechanism such as a gear.
 部品配給機構91の往復回数と円板21の回転数との関係を図19から変更した例を示す。図20は、円板21上における部品100の落下経路115の一例を示す上面図である。図20(a)は供給口位置変更部9が0.5回往復する間に円板21が3回転した場合を示す。なお、図20(a)では、Aが開始点でありBが終了点である。また、図20(b)は供給口位置変更部9が4回往復する間に円板21が1回転した場合を示している。図中、図の簡単化のため、循環搬送部2における円板21以外の構成を省略して図示している。 19 shows an example in which the relationship between the number of reciprocations of the component distribution mechanism 91 and the rotational speed of the disc 21 is changed from FIG. FIG. 20 is a top view showing an example of the dropping path 115 of the component 100 on the disc 21. FIG. FIG. 20A shows a case where the disk 21 rotates three times while the supply port position changing unit 9 reciprocates 0.5 times. In FIG. 20A, A is the start point and B is the end point. FIG. 20B shows a case where the disk 21 rotates once while the supply port position changing unit 9 reciprocates four times. In the drawing, for simplification of the drawing, the configuration other than the disc 21 in the circulation transport unit 2 is omitted.
 図20(a)および(b)に示すとおり、部品配給機構91の往復回数と円板21の回転数との関係を変化させることにより、円板21上への部品100の落下経路115を変化させることができる。ここで、落下経路115は、部品供給範囲21aの代表点(例えば重心等)を設定した場合に、この代表点が通過する経路である。対象となる部品100の形状、又は、部品供給部1から供給される部品100の量に応じて、円板21上への部品100の落下経路115を変化させることができるため、部品100を円板21上に均一に配置できる。これにより、部品100の重合状態を解消するために要する時間をより短縮することができる。 As shown in FIGS. 20A and 20B, by changing the relationship between the number of reciprocations of the component delivery mechanism 91 and the rotational speed of the disc 21, the dropping path 115 of the component 100 onto the disc 21 is changed. Can be made. Here, the drop path 115 is a path through which the representative point passes when the representative point (for example, the center of gravity, etc.) of the component supply range 21a is set. Since the falling path 115 of the component 100 onto the disc 21 can be changed according to the shape of the target component 100 or the amount of the component 100 supplied from the component supply unit 1, the component 100 is made into a circle. It can be uniformly arranged on the plate 21. Thereby, the time required for eliminating the polymerization state of the component 100 can be further shortened.
 上述の構成により、本実施の形態では、実施の形態1の効果に加えて、以下の示す効果を有する。すなわち、供給口位置変更部9は供給口93bを移動させて部品供給範囲21aを経時的に変化させることで、円板21上における部品100の配置をより均一化でき、部品100の重合状態を解消するために要する時間をより短縮することができる、という効果を有する。 With the above-described configuration, the present embodiment has the following effects in addition to the effects of the first embodiment. That is, the supply port position changing unit 9 moves the supply port 93b to change the component supply range 21a with time, thereby making it possible to make the arrangement of the components 100 on the disk 21 more uniform and to change the overlapping state of the components 100. There is an effect that the time required for the elimination can be further shortened.
 本出願は、2016年06月09日に日本国に本出願人により出願された特願2016-114938号に基づくものであり、その全内容は参照により本出願に組み込まれる。 This application is based on Japanese Patent Application No. 2016-114938 filed by the applicant in Japan on June 09, 2016, the entire contents of which are incorporated into this application by reference.
1 部品供給部
12 切出し部
15 切出し板
16 シリンダー
17 ガイド
18 部品不足検知センサ
2 循環搬送部
21 円板(搬送板)
22 エンコーダ(回転角測定部)
23 滑り止めゴム
24 円板ガイド
25 モーター
3 バラシ部
31 回転ブラシ
37 上下調節機構
4 測定部
5 取出し部
6 姿勢変更部
61 姿勢変更ブロック
62 ブロック固定板
8 部品排出部
81 排出板
82 排出用シリンダー
83 シリンダー用架台
84 排出ガイド
87 部品検知用センサ
9 供給口位置変更部
91 部品配給機構
92 スライダリンク機構
93a 取込口
93b 供給口
100 部品
DESCRIPTION OF SYMBOLS 1 Parts supply part 12 Cutout part 15 Cutout board 16 Cylinder 17 Guide 18 Parts shortage detection sensor 2 Circulation conveyance part 21 Disk (conveyance board)
22 Encoder (Rotation angle measurement unit)
23 Non-slip rubber 24 Disk guide 25 Motor 3 Balancing part 31 Rotating brush 37 Vertical adjustment mechanism 4 Measuring part 5 Extracting part 6 Posture changing part 61 Posture changing block 62 Block fixing plate 8 Parts discharge part 81 Discharge plate 82 Discharge cylinder 83 Cylinder base 84 Discharge guide 87 Parts detection sensor 9 Supply port position changing unit 91 Parts distribution mechanism 92 Slider link mechanism 93a Intake port 93b Supply port 100 Parts

Claims (7)

  1.  複数の部品を供給する部品供給部と、
     前記複数の部品が配置されて回転する搬送板と、
     前記搬送板の回転により循環する前記複数の部品を、予め指定された姿勢である対象姿勢に調整するバラシ部と、
     前記搬送板を撮像するビジョンセンサを有し、前記ビジョンセンサにより撮像した画像を用いて、前記複数の部品のうち前記対象姿勢の部品である認識対象部品を検索し、前記認識対象部品の位置情報を取得する測定部と、
     前記搬送板の回転角情報および前記位置情報に基づき、前記認識対象部品を取出す取出し部と
     を備えた部品供給装置。
    A component supply unit for supplying a plurality of components;
    A conveying plate in which the plurality of components are arranged and rotated;
    A balance unit that adjusts the plurality of parts that circulate by rotation of the transport plate to a target posture that is a pre-designated posture;
    A vision sensor that captures the transport plate, and using the image captured by the vision sensor, searches for a recognition target component that is a component of the target posture among the plurality of components, and position information of the recognition target component Measuring unit to obtain
    A component supply apparatus comprising: a take-out unit that takes out the recognition target component based on rotation angle information and position information of the transport plate.
  2.  前記搬送板の前記回転角情報を取得するエンコーダをさらに備え、
     前記取出し部は、前記認識対象部品の回転動作に追従しながら前記認識対象部品を把持する
     ことを特徴とする請求項1に記載の部品供給装置。
    An encoder that acquires the rotation angle information of the transport plate;
    The component supply apparatus according to claim 1, wherein the take-out unit grips the recognition target component while following a rotation operation of the recognition target component.
  3.  前記バラシ部は、前記複数の部品を前記対象姿勢に調整する回転ブラシを有し、
     前記回転ブラシは、前記複数の部品の高さに応じて前記搬送板の上面との間の高さ位置を調整する上下調節機構を有する
     ことを特徴とする請求項1または請求項2に記載の部品供給装置。
    The ballast portion has a rotating brush that adjusts the plurality of components to the target posture,
    The said rotary brush has an up-down adjustment mechanism which adjusts the height position between the upper surfaces of the said conveyance board according to the height of these components. The Claim 1 or Claim 2 characterized by the above-mentioned. Parts supply device.
  4.  前記搬送板上で搬送される前記複数の部品を排出する部品排出部を備え、
     前記部品排出部は、
     前記部品供給部が供給する前記複数の部品が別の種類の部品に変更される場合に、前記搬送板の搬送路を塞ぐ排出板と、
     前記排出板により前記搬送路が塞がれた場合に、前記搬送板の外に前記複数の部品を導く排出ガイドと
     を有する
     ことを特徴とする請求項1から請求項3のいずれか1項に記載の部品供給装置。
    A component discharge section for discharging the plurality of components transferred on the transfer plate;
    The component discharge unit is
    When the plurality of components supplied by the component supply unit are changed to different types of components, a discharge plate that blocks the conveyance path of the conveyance plate;
    4. The discharge guide according to claim 1, further comprising: a discharge guide that guides the plurality of parts to the outside of the transfer plate when the transfer path is blocked by the discharge plate. 5. The component supply apparatus described.
  5.  前記部品供給部の部品供給を制御する制御部を備え、
     前記部品排出部は、前記搬送板における部品を検知する部品検知用センサを有し、
     前記制御部は、前記部品検知用センサが予め設定された時間以上前記部品を検知しない場合に、前記部品供給部が前記別の種類の部品の供給を開始するように制御する
     ことを特徴とする請求項4に記載の部品供給装置。
    A control unit for controlling component supply of the component supply unit;
    The component discharge unit has a component detection sensor for detecting a component in the transport plate,
    The control unit controls the component supply unit to start supplying another type of component when the component detection sensor does not detect the component for a preset time. The component supply apparatus according to claim 4.
  6.  前記搬送板にて前記バラシ部を通過した部品の姿勢を変更する姿勢変更ブロックを有することを特徴とする請求項1から請求項5のいずれか1項に記載の部品供給装置。 The component supply device according to any one of claims 1 to 5, further comprising a posture change block that changes a posture of a component that has passed the ballast portion on the transport plate.
  7.  前記部品供給部から前記複数の部品を取込む取込口、及び、前記取込口から取込まれた前記複数の部品を前記搬送板に供給する供給口を有する部品配給機構と、
     前記搬送板の回転運動に応じて前記部品配給機構を移動させて、前記搬送板の径方向における前記供給口の位置を変更するスライダリンク機構と
     を備える請求項1から請求項6のいずれか一項に記載の部品供給装置。
    An inlet for taking in the plurality of parts from the part supply unit, and a part distribution mechanism having a supply port for supplying the plurality of parts taken in from the inlet to the transport plate;
    The slider link mechanism which moves the said part distribution mechanism according to the rotational motion of the said conveyance board, and changes the position of the said supply port in the radial direction of the said conveyance board. Item supply device according to item.
PCT/JP2017/018798 2016-06-09 2017-05-19 Component feeding device WO2017212896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016114938A JP2019135179A (en) 2016-06-09 2016-06-09 Parts supply device
JP2016-114938 2016-06-09

Publications (1)

Publication Number Publication Date
WO2017212896A1 true WO2017212896A1 (en) 2017-12-14

Family

ID=60577863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018798 WO2017212896A1 (en) 2016-06-09 2017-05-19 Component feeding device

Country Status (2)

Country Link
JP (1) JP2019135179A (en)
WO (1) WO2017212896A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234241A1 (en) * 2020-05-19 2021-11-25 Etablissements Andre Zalkin Et Cie Automated method for distributing closure elements

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410863U (en) * 1990-05-15 1992-01-29
JPH0426922U (en) * 1990-06-27 1992-03-03
US6311825B1 (en) * 1998-04-23 2001-11-06 Hoppmann Corporation Recirculation system for a robotic pickup
JP2002192486A (en) * 2000-12-25 2002-07-10 Seiko Epson Corp Robot control method and robot controller applying the method
WO2014168241A1 (en) * 2013-04-12 2014-10-16 株式会社オーテックメカニカル Component supply device, and component supply control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410863U (en) * 1990-05-15 1992-01-29
JPH0426922U (en) * 1990-06-27 1992-03-03
US6311825B1 (en) * 1998-04-23 2001-11-06 Hoppmann Corporation Recirculation system for a robotic pickup
JP2002192486A (en) * 2000-12-25 2002-07-10 Seiko Epson Corp Robot control method and robot controller applying the method
WO2014168241A1 (en) * 2013-04-12 2014-10-16 株式会社オーテックメカニカル Component supply device, and component supply control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234241A1 (en) * 2020-05-19 2021-11-25 Etablissements Andre Zalkin Et Cie Automated method for distributing closure elements
FR3110559A1 (en) * 2020-05-19 2021-11-26 Etablissements Andre Zalkin Et Cie Automated shutter dispensing process

Also Published As

Publication number Publication date
JP2019135179A (en) 2019-08-15

Similar Documents

Publication Publication Date Title
CN109969781B (en) Taking-out device, transfer device, taking-out method, and control device
EP3173194B1 (en) Manipulator system, image capturing system, transfer method of object, and carrier medium
CA2807595C (en) Visually controlled end effector
JP5717216B2 (en) Method and apparatus for transferring cutouts for packaging boxes
US10919709B2 (en) Apparatus for the automated removal of workpieces arranged in a bin
US10507989B2 (en) Apparatus for the automated removal of workpieces arranged in a bin
JP6592043B2 (en) Conveying device provided with supply device for circulating work
US11175236B2 (en) Image acquisition system and image acquisition method
CN108495126B (en) Full-automatic duplex position AA equipment
KR20180046549A (en) Lens Unit Sorting Apparatus And Lens Unit Sorting System Having The Same
WO1999025168A1 (en) Part mounting apparatus and part supply apparatus
JP2017036113A (en) Workpiece transfer device
US11548058B2 (en) Rivet element supply unit
WO2021053750A1 (en) Work robot and work system
CN112295946A (en) Automatic chip sorting system
JP2010105081A (en) Bin picking apparatus
WO2017212896A1 (en) Component feeding device
JP5172766B2 (en) Work alignment system and work movement method
KR101372503B1 (en) Chip transfer apparatus and method for controlling the apparatus
JP6154130B2 (en) Electronic component mounting apparatus and electronic component mounting method
WO2016181437A1 (en) Component mounting machine, and component supply method for component mounting machine
US20200282571A1 (en) Gripping device, separating device and method for gripping bodies, and use of a gripping device
CN112265700A (en) Sheet metal part blanking and boxing system and control method thereof
JP6600026B2 (en) Extraction device and method
JP2019218216A (en) Extracting device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP