WO2017212890A1 - 有機デバイスの製造方法 - Google Patents

有機デバイスの製造方法 Download PDF

Info

Publication number
WO2017212890A1
WO2017212890A1 PCT/JP2017/018689 JP2017018689W WO2017212890A1 WO 2017212890 A1 WO2017212890 A1 WO 2017212890A1 JP 2017018689 W JP2017018689 W JP 2017018689W WO 2017212890 A1 WO2017212890 A1 WO 2017212890A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
organic
laser
forming step
Prior art date
Application number
PCT/JP2017/018689
Other languages
English (en)
French (fr)
Inventor
英司 岸川
進一 森島
匡哉 下河原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to DE112017002835.3T priority Critical patent/DE112017002835T5/de
Priority to JP2018522397A priority patent/JPWO2017212890A1/ja
Priority to KR1020187037988A priority patent/KR20190012219A/ko
Publication of WO2017212890A1 publication Critical patent/WO2017212890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to a method for manufacturing an organic device.
  • a pulse laser is generally used for patterning the second electrode layer.
  • a first electrode layer, an organic functional layer, and a second electrode layer are formed on a support substrate, and a laser is applied to the second electrode layer from above the second electrode layer. Irradiation is performed to pattern the second electrode layer.
  • the second electrode layer When patterning the second electrode layer using a pulse laser, the second electrode layer is continuously removed by irradiating the laser with a part of the laser irradiation overlapped. At this time, since the laser is irradiated to the portion where the second electrode layer is removed in the overlap portion, the first electrode layer formed below the second electrode layer may be irradiated with the laser. In this case, the first electrode layer may be damaged by the laser. When the first electrode layer is damaged, the first electrode layer may lose its function as an electrode. As a result, an abnormality occurs in light emission in the organic device, and as a result, the yield may be reduced.
  • An object of one aspect of the present invention is to provide an organic device manufacturing method capable of suppressing a decrease in yield when an electrode layer is patterned using a laser.
  • the organic device manufacturing method includes a first electrode layer forming step of forming a first electrode layer on a support substrate, and an organic layer forming an organic functional layer on at least a part of the first electrode layer.
  • a first electrode layer comprising: a functional layer forming step; a second electrode layer forming step of forming a second electrode layer on at least a part of the organic functional layer; and a patterning step of patterning the second electrode layer with a laser.
  • the first electrode layer is formed of a material having a lower light absorption rate at a predetermined wavelength of the laser emission light than the second electrode layer.
  • the patterning step the first electrode layer, the organic functional layer, and the second electrode are formed.
  • the second electrode layer is removed by irradiating the second electrode layer with laser from the second electrode layer side.
  • the first electrode layer is formed of a material having a lower light absorption rate at a predetermined wavelength of the laser than the second electrode layer.
  • the second electrode layer is removed by irradiating the second electrode layer with laser.
  • the first electrode layer is formed of a material having a low light absorption rate at a predetermined wavelength of the laser. Damage to the first electrode layer is unlikely to occur. Therefore, the second electrode layer can be patterned, the first electrode layer can be prevented from losing its function as an electrode, and the occurrence of abnormality in light emission in the organic device can be suppressed.
  • the manufacturing method of an organic device when the electrode layer is patterned using a laser, it is possible to suppress a decrease in yield.
  • a film containing a metal or metal alloy or a conductive layer containing a metal or metal alloy and having a network structure may be formed as the first electrode layer.
  • the first electrode layer is a film containing a metal or metal alloy, or a conductive layer containing a metal or metal alloy and having a network structure
  • the first electrode layer is easily damaged when irradiated with a laser. Therefore, in the above manufacturing method of forming the first electrode layer with a material having a low light absorption rate at a predetermined wavelength of the laser, the first electrode layer includes a metal or metal alloy-containing film, or a metal or metal alloy, and a network. This is particularly effective when the conductive layer has a structure.
  • a second electrode layer having a light absorption rate twice or more that of the first electrode layer may be formed.
  • a first electrode layer having a light absorption rate that is 1/2 that of the second electrode layer may be formed.
  • a first electrode layer having a region showing a reflectance of 90% or more with respect to the laser may be formed. Thereby, the light absorption of the laser can be further suppressed in the first electrode layer, and the damage in the first electrode layer can be further reduced.
  • a first electrode layer containing silver may be formed in the first electrode layer forming step.
  • a second electrode layer containing aluminum may be formed in the second electrode layer forming step.
  • the electrode layer when the electrode layer is patterned using a laser, a decrease in yield can be suppressed.
  • FIG. 1 is a plan view of an organic EL element manufactured by an organic device manufacturing method according to an embodiment.
  • FIG. 2 is a cross-sectional view of the organic EL element shown in FIG.
  • FIG. 3 is a diagram schematically showing a method for manufacturing an organic EL element by a roll-to-roll method.
  • FIG. 4 is a diagram showing the configuration of the anode layer.
  • FIG. 5 is a diagram showing a method for manufacturing an organic EL element.
  • FIG. 6 is a diagram showing a method for manufacturing an organic EL element.
  • the organic EL element 1 manufactured by the organic device manufacturing method of the present embodiment includes a support substrate 3, an anode layer (first electrode layer) 5, and an organic functional layer 7. And a cathode layer (second electrode layer) 9.
  • a sealing member that seals the organic EL portion composed of the anode layer 5, the organic functional layer 7, and the cathode layer 9 may be provided.
  • the support substrate 3 is made of a resin that is transparent to visible light (light having a wavelength of 400 nm to 800 nm).
  • the support substrate 3 is a film-like substrate (flexible substrate, flexible substrate).
  • the thickness of the support substrate 3 is, for example, 30 ⁇ m or more and 700 ⁇ m or less.
  • the support substrate 3 is a resin, it is preferably 45 ⁇ m or more from the viewpoint of substrate twist, wrinkle, and elongation when the roll-to-roll system is continuous, and 125 ⁇ m or less from the viewpoint of flexibility.
  • the support substrate 3 is, for example, a plastic film.
  • the material of the support substrate 3 is, for example, polyethersulfone (PES); polyester resin such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP), or cyclic polyolefin; Polyamide resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Saponified ethylene-vinyl acetate copolymer; Polyacrylonitrile resin; Acetal resin; Polyimide resin;
  • the material of the support substrate 3 is preferably a polyester resin or a polyolefin resin because of its high heat resistance, low coefficient of linear expansion, and low manufacturing cost, and polyethylene terephthalate or polyethylene naphthalate is further preferred. preferable.
  • these resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a gas barrier layer or a moisture barrier layer may be disposed on one main surface 3 a of the support substrate 3.
  • the other main surface 3b of the support substrate 3 is a light emitting surface.
  • the support substrate 3 may be a thin film glass.
  • the thickness is preferably 30 ⁇ m or more from the viewpoint of strength and 100 ⁇ m or less from the viewpoint of flexibility.
  • the anode layer 5 is disposed on one main surface 3 a of the support substrate 3.
  • an electrode layer showing optical transparency is used.
  • a film containing a metal or metal alloy having high electrical conductivity can be used, and a thin film having high light transmittance is preferably used.
  • a thin film containing gold, platinum, silver, copper, or the like can be given.
  • a conductive layer containing a metal or metal alloy and having a network structure may be used as the anode layer 5.
  • the conductive layer including a metal or metal alloy and having a network structure is, for example, a conductive layer obtained by patterning the above-described metal or metal alloy in a mesh shape (lattice shape), or a nanowire including silver is a network shape. It is the conductive layer formed in this.
  • the thickness of the anode layer 5 can be determined in consideration of light transmittance, electrical conductivity, and the like.
  • the thickness of the anode layer 5 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 200 nm.
  • Examples of the method for forming the anode layer 5 include a vacuum deposition method, a sputtering method, an ion plating method, and a coating method.
  • the organic functional layer 7 is disposed on the main surface of the anode layer 5 (opposite the surface in contact with the support substrate 3) and one main surface 3 a of the support substrate 3.
  • the organic functional layer 7 includes a light emitting layer.
  • the organic functional layer 7 usually contains a light emitting material that mainly emits fluorescence and / or phosphorescence, or a light emitting layer dopant material that assists the light emitting material.
  • the dopant material for the light emitting layer is added, for example, in order to improve the light emission efficiency or change the light emission wavelength.
  • the light-emitting material that emits fluorescence and / or phosphorescence may be a low-molecular compound or a high-molecular compound.
  • organic substances constituting the organic functional layer 7 include the following light emitting materials that emit fluorescence and / or phosphorescence, such as the following dye materials, metal complex materials, and polymer materials, and the following dopant materials for light emitting layers. Can do.
  • dye material examples include cyclopentamine and derivatives thereof, tetraphenylbutadiene and derivatives thereof, triphenylamine and derivatives thereof, oxadiazole and derivatives thereof, pyrazoloquinoline and derivatives thereof, distyrylbenzene and derivatives thereof, and distyryl.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Pt, Ir, and the like as a central metal, and an oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline structure. And a metal complex having a ligand as a ligand.
  • metal complexes include metal complexes having light emission from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, A porphyrin zinc complex, a phenanthroline europium complex, etc. can be mentioned.
  • Polymer material examples include polyparaphenylene vinylene and derivatives thereof, polythiophene and derivatives thereof, polyparaphenylene and derivatives thereof, polysilane and derivatives thereof, polyacetylene and derivatives thereof, polyfluorene and derivatives thereof, polyvinylcarbazole and derivatives thereof, Examples thereof include materials obtained by polymerizing a dye material or a metal complex material.
  • Dopant material for light emitting layer examples include perylene and derivatives thereof, coumarin and derivatives thereof, rubrene and derivatives thereof, quinacridone and derivatives thereof, squalium and derivatives thereof, porphyrin and derivatives thereof, styryl dyes, tetracene and derivatives thereof, pyrazolone and derivatives thereof. Derivatives, decacyclene and its derivatives, phenoxazone and its derivatives, and the like.
  • the thickness of the organic functional layer 7 is usually about 2 nm to 200 nm.
  • the organic functional layer 7 is formed by, for example, a coating method using a coating liquid (for example, ink) containing the light emitting material as described above.
  • the solvent of the coating solution containing the light emitting material is not limited as long as it dissolves the light emitting material.
  • the light emitting material as described above may be formed by vacuum deposition.
  • the cathode layer 9 is disposed on the main surface of the organic functional layer 7 (on the side opposite to the surface in contact with the anode layer 5 or the support substrate 3) and one main surface 3 a of the support substrate 3.
  • a material of the cathode layer 9 for example, alkali metal, alkaline earth metal, transition metal, periodic table group 13 metal, or the like can be used.
  • the material for the cathode layer 9 include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, Metals such as europium, terbium, ytterbium, alloys of two or more of the metals, one or more of the metals, gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin An alloy with one or more of them, graphite, a graphite intercalation compound, or the like is used.
  • alloys include magnesium-silver alloys, magnesium-indium alloys, magnesium-aluminum alloys, indium-silver alloys, lithium-aluminum alloys, lithium-magnesium alloys, lithium-indium alloys, calcium-aluminum alloys, and the like. it can.
  • the cathode layer 9 for example, a transparent conductive electrode made of a conductive metal oxide, a conductive organic substance, or the like can be used.
  • conductive metal oxides include indium oxide, zinc oxide, tin oxide, ITO, and IZO.
  • conductive organic substances include polyaniline and derivatives thereof, polythiophene and derivatives thereof, and the like. Can do.
  • the cathode layer 9 may be comprised by the laminated body which laminated
  • the thickness of the cathode layer 9 is set in consideration of electric conductivity and durability.
  • the thickness of the cathode layer 9 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the method for forming the cathode layer 9 include a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression bonded, and a coating method.
  • a roll-to-roll method can be adopted as conceptually shown in FIG.
  • the organic EL element 1 is manufactured by the roll-to-roll method
  • the long flexible support substrate 3 stretched between the unwinding roll 30A and the winding roll 30B is continuously transported by the transport roll 31.
  • each layer is formed in order from the support substrate 3 side.
  • the support substrate 3 is heated and dried (substrate drying step S01). Thereafter, the anode layer 5 is formed on the dried support substrate 3 (anode layer forming step (first electrode layer forming step) S02).
  • the anode layer 5 having a network structure is formed.
  • the anode layer 5 has a metal wiring 5a and a transparent resin filler 5b.
  • the metal wiring 5a is a conductor and constitutes a network structure.
  • the metal wiring 5a is formed of a material having a lower optical absorptance than the cathode layer 9 at a predetermined wavelength of emitted light of a laser L described later. More specifically, the metal wiring 5a (anode layer 5) is formed of a material having a reflectance of 90% or more with respect to a predetermined wavelength of the emitted light of the laser L. In the present embodiment, the metal wiring 5a is formed of a material containing silver, for example.
  • the metal wiring 5 a is formed in a lattice pattern (predetermined pattern) having a plurality of openings 6.
  • the plurality of openings 6 correspond to a mesh.
  • the mesh shape includes, for example, a rectangle such as a rectangle or a square, a triangle, and a hexagon.
  • the form of the predetermined pattern is not limited as long as the metal wiring 5a has a network structure.
  • Each of the plurality of openings 6 may be filled with a transparent resin filler 5b.
  • the thickness of the transparent resin filler 5b is substantially the same as the thickness of the metal wiring 5a.
  • a polymerizable resin compound described in JP-A-2008-65319 can be suitably used as the material for the transparent resin filler 5b.
  • the organic functional layer 7 is formed on the anode layer 5 (organic functional layer forming step S03).
  • the organic functional layer 7 can be formed by the formation method exemplified in the description of the organic functional layer 7.
  • a cathode layer 9 is formed on the anode layer 5 and the organic functional layer 7 (cathode layer forming step (second electrode layer forming step) S04).
  • the cathode layer 9 can be formed by the formation method exemplified in the description of the cathode layer 9.
  • the cathode layer 9 is formed so as to expose a part of the anode layer 5 and cover the organic functional layer 7.
  • the cathode layer 9 is formed of a material having a higher optical absorptance than the anode layer 5 at a predetermined wavelength of emitted light of a laser L described later.
  • the cathode layer 9 has a light absorptivity twice or more that of the anode layer 5.
  • the cathode layer 9 is formed of a material containing aluminum, for example.
  • the cathode layer 9 is patterned (patterning step S05). As shown in FIGS. 5 and 6, the patterning is performed by irradiating the cathode layer 9 with the laser L along the patterning line A. Specifically, the laser L is irradiated from the cathode layer 9 side to the cathode layer 9 in the stacking direction of the anode layer 5, the organic functional layer 7, and the cathode layer 9 (vertical direction in FIG. 5).
  • the laser L is a pulse laser.
  • the wavelength of the laser L is, for example, 532 nm or 1064 nm.
  • the patterning step S05 a part of the irradiation position of the laser L is overlapped and irradiated with the laser L, and the cathode layer 9 is continuously removed.
  • the organic functional layer 7 and the cathode layer 9 are removed.
  • the anode layer 5 and the cathode layer 9 are electrically insulated.
  • the organic EL element 1 is manufactured.
  • the anode layer 5 is formed of a material having a lower light absorption rate at a predetermined wavelength of the laser L than the cathode layer 9.
  • the cathode layer 9 is irradiated with the laser L to pattern the cathode layer 9.
  • the anode layer 5 is formed of a material having a low light absorption rate at a predetermined wavelength of the laser L. It is possible to suppress damage to the layer 5.
  • the cathode layer 9 can be patterned and the anode layer 5 can be prevented from losing its function as an electrode. Therefore, it is possible to suppress the occurrence of abnormality in the light emission in the organic EL element 1. As a result, in the manufacturing method of the organic EL element 1, when the electrode layer is patterned using the laser L, it is possible to suppress a decrease in yield.
  • a protective layer made of a material having a melting point lower than that of the cathode layer is formed between the cathode layer and the anode layer to suppress damage to other layers by the laser.
  • the conventional manufacturing method requires a step of forming a protective layer, which increases the manufacturing cost and decreases the yield.
  • a process for forming a protective layer is not required, so that an increase in manufacturing cost can be suppressed and a decrease in yield can be suppressed.
  • the anode layer 5 having a network structure is formed in the anode layer forming step S02.
  • the anode layer 5 is easily damaged when the laser L is irradiated. Therefore, the method for manufacturing the organic EL element 1 according to this embodiment in which the anode layer 5 is formed of a material having a low light absorption rate at a predetermined wavelength of the laser L is particularly effective when the anode layer 5 has a network structure. .
  • the cathode layer 9 having a light absorption rate twice or more that of the anode layer 5 is formed in the cathode layer forming step S04.
  • the damage in the anode layer 5 can be further reduced by adopting the laser L capable of removing the cathode layer 9.
  • the anode layer 5 having a reflectance of 90% or more with respect to the laser L is formed in the anode layer forming step S02. Thereby, the light absorption of the laser L in the anode layer 5 can be further suppressed, and damage in the anode layer 5 can be further reduced.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • positioned between the anode layer 5 and the cathode layer 9 was illustrated.
  • the structure of the organic functional layer 7 is not limited to this.
  • the organic functional layer 7 may have the following configuration.
  • A (Anode layer) / Light emitting layer / (Cathode layer)
  • B (Anode layer) / Hole injection layer / Light emitting layer / (Cathode layer)
  • C (anode layer) / hole injection layer / light emitting layer / electron injection layer / (cathode layer)
  • D (anode layer) / hole injection layer / light emitting layer / electron transport layer / electron injection layer / (cathode layer)
  • E (Anode layer) / Hole injection layer / Hole transport layer / Light emitting layer / (Cathode layer)
  • F (anode layer) / hole injection layer / hole transport layer / light emitting layer / electron injection layer / (cathode layer)
  • G (anode layer) / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / (cathode layer) (H) (anode
  • the hole injection layer As the materials for the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer, known materials can be used.
  • Each of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer can be formed by, for example, a coating method in the same manner as the organic functional layer 7.
  • the electron injection layer may contain an alkali metal or alkaline earth metal, or an oxide or fluoride of an alkali metal or alkaline earth metal.
  • the method for forming the electron injection layer include a coating method and a vacuum deposition method.
  • the thickness of the electron injection layer is preferably 0.5 nm to 20 nm.
  • the electron injection layer is preferably a thin film from the viewpoint of suppressing an increase in driving voltage of the organic EL element 1 when the insulating property is particularly strong, and the thickness thereof is, for example, 0.5 nm to 10 nm.
  • it is preferably 2 nm to 7 nm.
  • the electron injection layer may be formed between the extraction electrode 9a and the cathode layer 9, for example.
  • the organic EL element 1 may have a single organic functional layer 7 or may have two or more organic functional layers 7.
  • the layer configuration shown to the following (j) can be mentioned, for example.
  • the two (structural unit A) layer configurations may be the same or different.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • Examples of the charge generation layer include a thin film made of vanadium oxide, ITO, molybdenum oxide, or the like.
  • (structural unit A) / charge generation layer is “structural unit B”
  • the configuration of an organic EL element having three or more organic functional layers 7 is, for example, the layer configuration shown in the following (k) Can be mentioned.
  • (Structural unit B) x represents a stacked body in which (Structural unit B) is stacked in x stages.
  • a plurality of (structural units B) may have the same or different layer structure.
  • the organic EL element may be configured by directly laminating a plurality of organic functional layers 7 without providing a charge generation layer.
  • an example in which the anode layer 5 is formed as the first electrode layer and the cathode layer 9 is formed as the second electrode layer has been described as an example.
  • a cathode layer may be formed as the first electrode layer
  • an anode layer may be formed as the second electrode layer.
  • the organic functional layer 7 and the cathode layer 9 are completely removed by the laser L has been described as an example.
  • the patterning step at least the cathode layer 9 may be removed (the anode layer 5 and the cathode layer 9 may be electrically insulated).
  • the anode layer 5 having a network structure is formed in the method for manufacturing the organic EL element 1 .
  • the anode layer 5 may be a film containing a metal or an alloy.
  • the configuration in which the patterning line A to be irradiated with the laser L in the patterning step S05 is linear has been described as an example.
  • the patterning line that is, the shape to be removed by the laser L is not limited to a straight line.
  • the form whose wavelength of the laser L is 532 nm or 1064 nm was demonstrated to an example.
  • the wavelength of the laser L is not particularly limited, and may be, for example, 532 nm to 1064 nm.
  • the embodiment for performing the substrate drying step S01 has been described as an example, but the substrate drying step S01 may not be performed.
  • the organic functional layer 7 is at least one of the anode layer 5. What is necessary is just to be formed on the part. That is, the organic functional layer 7 may be formed so as to cover a part or all of the anode layer 5.
  • an extraction electrode that is electrically connected to the anode layer 5 may be formed.
  • the cathode layer 9 is formed so as to cover the entire organic functional layer 7 as an example.
  • the cathode layer 9 is formed on at least a part of the organic functional layer 7. What is necessary is just to be formed. That is, the cathode layer 9 only needs to be formed so as to cover part or all of the organic functional layer 7.
  • the cathode layer 9 may include a light reflecting layer. Thereby, light can be favorably emitted from the other main surface 3 b of the support substrate 3.
  • the organic EL element is described as an example of the organic device.
  • the organic device may be an organic thin film transistor, an organic photodetector, an organic thin film solar cell, or the like.
  • SYMBOLS 1 Organic EL element (organic device), 3 ... Support substrate, 5 ... Anode layer (1st electrode layer), 7 ... Organic functional layer, 9 ... Cathode layer (2nd electrode layer), L ... Laser, S02 ... Anode Layer forming step (first electrode layer forming step), S03 ... organic functional layer forming step, S04 ... cathode layer forming step (second electrode layer forming step), S05 ... patterning step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

有機デバイスの製造方法は、支持基板3上に第1電極層5を形成する第1電極層形成工程と、第1電極層5の少なくとも一部上に有機機能層7を形成する有機機能層形成工程と、有機機能層7の少なくとも一部上に第2電極層9を形成する第2電極層形成工程と、第2電極層8をレーザーLによりパターニングするパターニング工程と、を含み、第1電極層形成工程では、第2電極層9よりもレーザーLの出射光の所定の波長において光吸収率が低い材料で第1電極層5を形成し、パターニング工程では、第1電極層5、有機機能層7及び第2電極層9の積層方向において、第2電極層9側から第2電極層9にレーザーを照射して、第2電極層9を除去する。

Description

有機デバイスの製造方法
 本発明は、有機デバイスの製造方法に関する。
 従来の有機デバイスの製造方法として、第2電極層のパターニングには、一般的に、パルスレーザーが用いられる。例えば、特許文献1に記載の有機デバイスの製造方法では、支持基板上に第1電極層、有機機能層及び第2電極層を形成し、第2電極層の上方からレーザーを第2電極層に照射して、第2電極層をパターニングしている。
特開平9-320760号公報
 パルスレーザーを用いて第2電極層パターニングする場合、レーザーの照射位置の一部をオーバーラップさせてレーザーを照射し、第2電極層を連続的に除去する。このとき、オーバーラップ部分では第2電極層が除去された箇所にレーザーが照射されるため、第2電極層の下方に形成された第1電極層にレーザーが照射されることがある。この場合、レーザーによって第1電極層にダメージが与えられるおそれがある。第1電極層にダメージが与えられると、第1電極層が電極としての機能を失うことがある。これにより、有機デバイスにおける発光に異常が発生し、その結果、歩留まりが低下するおそれがある。
 本発明の一側面は、レーザーを用いて電極層をパターニングする場合において、歩留まりの低下を抑制できる有機デバイスの製造方法を提供することを目的とする。
 本発明の一側面に係る有機バイスの製造方法は、支持基板上に第1電極層を形成する第1電極層形成工程と、第1電極層の少なくとも一部上に有機機能層を形成する有機機能層形成工程と、有機機能層の少なくとも一部上に第2電極層を形成する第2電極層形成工程と、第2電極層をレーザーによりパターニングするパターニング工程と、を含み、第1電極層形成工程では、第2電極層よりもレーザーの出射光の所定の波長において光吸収率が低い材料で第1電極層を形成し、パターニング工程では、第1電極層、有機機能層及び第2電極層の積層方向において、第2電極層側から第2電極層にレーザーを照射して、第2電極層を除去する。
 本発明の一側面に係る有機デバイスの製造方法では、第2電極層よりもレーザーの所定の波長において光吸収率が低い材料で第1電極層を形成する。パターニング工程では、第2電極層にレーザーを照射して、第2電極層を除去する。これにより、第2電極層をアブレーションするレーザーが第1電極層に照射された場合であっても、第1電極層がレーザーの所定の波長において光吸収率が低い材料で形成されているため、第1電極層にダメージが生じ難い。したがって、第2電極層をパターニングすることができると共に、第1電極層が電極としての機能を失うことを抑制でき、有機デバイスにおける発光に異常が発生することを抑制できる。その結果、有機デバイスの製造方法では、レーザーを用いて電極層をパターニングする場合において、歩留まりの低下を抑制できる。
 一実施形態においては、第1電極層形成工程では、第1電極層として、金属又は金属合金を含む膜、又は、金属又は金属合金を含み、ネットワーク構造を有する導電層を形成してもよい。第1電極層が金属又は金属合金を含む膜、又は、金属又は金属合金を含み、ネットワーク構造を有する導電層である場合、レーザーが照射されたときに、第1電極層がダメージを受け易い。そのため、レーザーの所定の波長において光吸収率が低い材料で第1電極層を形成する上記製造方法は、第1電極層が金属又は金属合金を含む膜、又は、金属又は金属合金を含み、ネットワーク構造を有する導電層である場合に特に有効である。
 一実施形態においては、第2電極層形成工程では、第1電極層の2倍以上の光吸収率を有する第2電極層を形成してもよい。言い換えれば、第1電極層形成工程では、第2電極層の1/2の光吸収率を有する第1電極層を形成してもよい。これにより、第2電極層を除去し得るレーザーを採用することにより、第1電極層におけるダメージをより一層軽減できる。
 一実施形態においては、第1電極層形成工程では、レーザーに対して90%以上の反射率を示す領域を有する第1電極層を形成してもよい。これにより、第1電極層においてレーザーの光吸収をより一層抑制でき、第1電極層におけるダメージをより一層軽減できる。
 一実施形態においては、第1電極層形成工程では、銀を含む第1電極層を形成してもよい。
 一実施形態においては、第2電極層形成工程では、アルミニウムを含む第2電極層を形成してもよい。
 本発明の一側面によれば、レーザーを用いて電極層をパターニングする場合において、歩留まりの低下を抑制できる。
図1は、一実施形態に係る有機デバイスの製造方法により製造された有機EL素子の平面図である。 図2は、図1に示す有機EL素子の断面図である。 図3は、ロールツーロール方式による有機EL素子の製造方法を模式的に示す図である。 図4は、陽極層の構成を示す図である。 図5は、有機EL素子の製造方法を示す図である。 図6は、有機EL素子の製造方法を示す図である。
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。
 図1及び図2に示されるように、本実施形態の有機デバイスの製造方法によって製造される有機EL素子1は、支持基板3と、陽極層(第1電極層)5と、有機機能層7と、陰極層(第2電極層)9とを備えている。なお、図1及び図2には示されていないが、陽極層5、有機機能層7及び陰極層9により構成される有機EL部を封止する封止部材を備えていてもよい。
[支持基板]
 支持基板3は、可視光(波長400nm~800nmの光)に対して透光性を有する樹脂から構成されている。支持基板3は、フィルム状の基板(フレキシブル基板、可撓性を有する基板)である。支持基板3の厚さは、例えば、30μm以上700μm以下である。支持基板3が樹脂の場合は、ロールツーロール方式の連続時の基板ヨレ、シワ、伸びの観点からは45μm以上、可撓性の観点からは125μm以下が好ましい。
 支持基板3は、例えば、プラスチックフィルムである。支持基板3の材料は、例えば、ポリエーテルスルホン(PES);ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;エポキシ樹脂等を含む。
 支持基板3の材料は、上記樹脂の中でも、耐熱性が高く、線膨張率が低く、かつ、製造コストが低いことから、ポリエステル樹脂、又はポリオレフィン樹脂が好ましく、ポリエチレンテレフタレート、又はポリエチレンナフタレートが更に好ましい。また、これらの樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 支持基板3の一方の主面3a上には、ガスバリア層、或いは、水分バリア層(バリア層)が配置されていてもよい。支持基板3の他方の主面3bは、発光面である。なお、支持基板3は、薄膜ガラスであってもよい。支持基板3が薄膜ガラスの場合、その厚さは、強度の観点からは30μm以上、可撓性の観点からは100μm以下が好ましい。
[陽極層]
 陽極層5は、支持基板3の一方の主面3a上に配置されている。陽極層5には、光透過性を示す電極層が用いられる。本実施形態に用いられる光透過性を示す電極としては、電気伝導度の高い金属又は金属合金等を含む膜を用いることができ、光透過率の高い薄膜が好適に用いられる。例えば、金、白金、銀、又は銅等を含む薄膜等が挙げられる。
 陽極層5として、金属又は金属合金を含み、ネットワーク構造を有する導電層を用いてもよい。金属又は金属合金を含み、ネットワーク構造を有する導電層は、例えば、上記で挙げられた金属又は金属合金等をメッシュ状(格子状)にパターニングした導電層、或いは、銀を含むナノワイヤーがネットワーク状に形成されている導電層である。
 陽極層5の厚さは、光の透過性、電気伝導度等を考慮して決定することができる。陽極層5の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~200nmである。
 陽極層5の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、塗布法等を挙げることができる。
[有機機能層]
 有機機能層7は、陽極層5の主面(支持基板3に接する面の反対側)及び支持基板3の一方の主面3a上に配置されている。有機機能層7は、発光層を含んでいる。有機機能層7は、通常、主として蛍光及び/又はりん光を発光する発光材料、或いは該発光材料とこれを補助する発光層用ドーパント材料を含む。発光層用ドーパント材料は、例えば発光効率を向上させたり、発光波長を変化させたりするために加えられる。なお、蛍光及び/又はりん光を発光する発光材料は、低分子化合物であってもよいし、高分子化合物であってもよい。有機機能層7を構成する有機物としては、例えば下記の色素材料、金属錯体材料、高分子材料等の蛍光及び/又はりん光を発光する発光材料や、下記の発光層用ドーパント材料等を挙げることができる。
(色素材料)
 色素材料としては、例えばシクロペンダミン及びその誘導体、テトラフェニルブタジエン及びその誘導体、トリフェニルアミン及びその誘導体、オキサジアゾール及びその誘導体、ピラゾロキノリン及びその誘導体、ジスチリルベンゼン及びその誘導体、ジスチリルアリーレン及びその誘導体、ピロール及びその誘導体、チオフェン化合物、ピリジン化合物、ペリノン及びその誘導体、ペリレン及びその誘導体、オリゴチオフェン及びその誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン及びその誘導体、クマリン及びその誘導体等を挙げることができる。
(金属錯体材料)
 金属錯体材料としては、例えばTb、Eu、Dy等の希土類金属、又はAl、Zn、Be、Pt、Ir等を中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を配位子に有する金属錯体等を挙げることができる。金属錯体としては、例えばイリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体等を挙げることができる。
(高分子材料)
 高分子材料としては、例えばポリパラフェニレンビニレン及びその誘導体、ポリチオフェン及びその誘導体、ポリパラフェニレン及びその誘導体、ポリシラン及びその誘導体、ポリアセチレン及びその誘導体、ポリフルオレン及びその誘導体、ポリビニルカルバゾール及びその誘導体、上記色素材料、又は金属錯体材料を高分子化した材料等を挙げることができる。
(発光層用ドーパント材料)
 発光層用ドーパント材料としては、例えばペリレン及びその誘導体、クマリン及びその誘導体、ルブレン及びその誘導体、キナクリドン及びその誘導体、スクアリウム及びその誘導体、ポルフィリン及びその誘導体、スチリル色素、テトラセン及びその誘導体、ピラゾロン及びその誘導体、デカシクレン及びその誘導体、フェノキサゾン及びその誘導体等を挙げることができる。
 有機機能層7の厚さは、通常約2nm~200nmである。有機機能層7は、例えば、上記のような発光材料を含む塗布液(例えばインク)を用いる塗布法により形成される。発光材料を含む塗布液の溶媒としては、発光材料を溶解するものであれば、限定されない。また、上記のような発光材料は、真空蒸着によって形成されてもよい。
[陰極層]
 陰極層9は、有機機能層7の主面(陽極層5又は支持基板3に接する面の反対側)及び支持基板3の一方の主面3a上に配置されている。陰極層9の材料としては、例えばアルカリ金属、アルカリ土類金属、遷移金属及び周期表第13族金属等を用いることができる。陰極層9の材料としては、具体的には、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム等の金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、又はグラファイト若しくはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金等を挙げることができる。
 また、陰極層9としては、例えば、導電性金属酸化物及び導電性有機物等からなる透明導電性電極を用いることができる。導電性金属酸化物としては、具体的には、酸化インジウム、酸化亜鉛、酸化スズ、ITO、及びIZO等を挙げることができ、導電性有機物としてポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等を挙げることができる。なお、陰極層9は、2層以上を積層した積層体で構成されていてもよい。なお、後述の電子注入層が陰極層9として用いられる場合もある。
 陰極層9の厚さは、電気伝導度、耐久性を考慮して設定される。陰極層9の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陰極層9の形成方法としては、例えば真空蒸着法、スパッタリング法、金属薄膜を熱圧着するラミネート法及び塗布法等を挙げることができる。
[有機EL素子の製造方法]
 続いて、上記構成を有する有機EL素子1の製造方法について説明する。
 支持基板3が可撓性を有し、長手方向に延在する基板である形態では、図3に概念的に示されるように、ロールツーロール方式が採用され得る。ロールツーロール方式で有機EL素子1を製造する場合、巻出しロール30Aと巻取りロール30Bとの間に張り渡された長尺の可撓性の支持基板3を連続的に搬送ロール31で搬送しながら、各層を支持基板3側から順に形成する。
 有機EL素子1を製造する場合、最初に、支持基板3を加熱し、乾燥させる(基板乾燥工程S01)。その後、乾燥された支持基板3上に、陽極層5を形成する(陽極層形成工程(第1電極層形成工程)S02)。本実施形態では、図4に示されるように、ネットワーク構造を有する陽極層5を形成する。陽極層5は、金属配線5aと、透明樹脂充填材5bと、を有している。
 金属配線5aは、導電体であり、ネットワーク構造を構成している。金属配線5aは、陰極層9よりも後述のレーザーLの出射光の所定の波長において光吸収率が低い材料で形成する。より具体的には、金属配線5a(陽極層5)は、レーザーLの出射光の所定の波長に対して90%以上の反射率を有する材料で形成する。本実施形態では、金属配線5aは、例えば、銀を含む材料で形成する。
 金属配線5aは、複数の開口部6を有する格子状のパターン(所定のパターン)で形成されている。格子状のパターンの場合、複数の開口部6は、網目に対応する。網目の形状は、例えば、長方形又は正方形のような四角形、三角形、及び、六角形を含む。所定パターンは、金属配線5aがネットワーク構造を有すればその形態は限定されない。
 複数の開口部6のそれぞれには、透明樹脂充填材5bが充填されていてもよい。透明樹脂充填材5bの厚さは、金属配線5aの厚さとほぼ同じである。透明樹脂充填材5bの材料は、例えば、特開2008-65319号公報に記載の重合性樹脂化合物を好適に用いることができる。
 次に、陽極層5上に有機機能層7を形成する(有機機能層形成工程S03)。有機機能層7は、有機機能層7の説明の際に例示した形成方法で形成し得る。
 続いて、図5に示されるように、陽極層5及び有機機能層7上に陰極層9を形成する(陰極層形成工程(第2電極層形成工程)S04)。陰極層9は、陰極層9の説明の際に例示した形成方法で形成し得る。陰極層9は、陽極層5の一部を露出させ、且つ、有機機能層7を覆うように形成する。陰極層9は、陽極層5よりも後述のレーザーLの出射光の所定の波長において光吸収率が高い材料で形成する。陰極層9は、陽極層5よりも2倍以上の光吸収率を有する。本実施形態では、陰極層9は、例えば、アルミニウムを含む材料で形成する。
 続いて、陰極層9をパターニングする(パターニング工程S05)。図5及び図6に示されるように、パターニングは、パターニング予定線Aに沿って、レーザーLを陰極層9に照射する。詳細には、陽極層5、有機機能層7及び陰極層9の積層方向(図5の上下方向)において、陰極層9側から陰極層9にレーザーLを照射する。レーザーLは、パルスレーザーである。レーザーLの波長は、例えば、532nm、又は1064nmである。パターニング工程S05では、レーザーLの照射位置の一部をオーバーラップさせてレーザーLを照射し、陰極層9を連続的に除去する。図1に示す例では、有機機能層7及び陰極層9が除去されている。これにより、陽極層5及び陰極層9が電気的に絶縁される。以上により、有機EL素子1が製造される。
 以上説明したように、本実施形態に係る有機EL素子1の製造方法では、陰極層9よりもレーザーLの所定の波長において光吸収率が低い材料で陽極層5を形成する。パターニング工程S05では、陰極層9にレーザーLを照射して、陰極層9をパターニングする。これにより、陰極層9をアブレーションするレーザーLが陽極層5に照射された場合であっても、陽極層5がレーザーLの所定の波長において光吸収率が低い材料で形成されているため、陽極層5にダメージが生じることを抑制できる。したがって、陰極層9をパターニングすることができると共に、陽極層5が電極としての機能を失うことを抑制できる。したがって、有機EL素子1における発光に異常が発生することを抑制できる。その結果、有機EL素子1の製造方法では、レーザーLを用いて電極層をパターニングする場合において、歩留まりの低下を抑制できる。
 従来の有機EL素子の製造方法では、陰極層と陽極層との間に、陰極層よりも融点の低い材料からなる保護層を形成し、レーザーによる他の層へのダメージを抑制している。しかしながら、従来の製造方法では、保護層を形成する工程が必要となるため、製造コストが増大すると共に、歩留りが低下する。これに対して、本実施形態に係る有機EL素子1の製造方法では、保護層を形成する工程を必要としないため、製造コストの増大を抑制できると共に、歩留りの低下を抑制できる。
 本実施形態に係る有機EL素子1の製造方法では、陽極層形成工程S02において、ネットワーク構造を有する陽極層5を形成する。陽極層5がネットワーク構造を有する場合、レーザーLが照射されたときに、陽極層5がダメージを受け易い。そのため、レーザーLの所定の波長において光吸収率が低い材料で陽極層5を形成する本実施形態に係る有機EL素子1の製造方法は、陽極層5がネットワーク構造を有する場合に特に有効である。
 本実施形態に係る有機EL素子1の製造方法では、陰極層形成工程S04では、陽極層5よりも2倍以上の光吸収率を有する陰極層9を形成する。これにより、陰極層9を除去し得るレーザーLを採用することにより、陽極層5におけるダメージをより一層軽減できる。
 本実施形態に係る有機EL素子1の製造方法では、陽極層形成工程S02では、レーザーLに対して90%以上の反射率を有する陽極層5を形成する。これにより、陽極層5においてレーザーLの光吸収をより一層抑制でき、陽極層5におけるダメージをより一層軽減できる。
 なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、上記実施形態では、陽極層5と陰極層9との間に発光層を含む有機機能層7が配置された有機EL素子1を例示した。しかし、有機機能層7の構成はこれに限定されない。有機機能層7は、以下の構成を有していてもよい。
(a)(陽極層)/発光層/(陰極層)
(b)(陽極層)/正孔注入層/発光層/(陰極層)
(c)(陽極層)/正孔注入層/発光層/電子注入層/(陰極層)
(d)(陽極層)/正孔注入層/発光層/電子輸送層/電子注入層/(陰極層)
(e)(陽極層)/正孔注入層/正孔輸送層/発光層/(陰極層)
(f)(陽極層)/正孔注入層/正孔輸送層/発光層/電子注入層/(陰極層)
(g)(陽極層)/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/(陰極層)
(h)(陽極層)/発光層/電子注入層/(陰極層)
(i)(陽極層)/発光層/電子輸送層/電子注入層/(陰極層)
 ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。上記(a)に示す構成は、上記実施形態における有機EL素子1の構成を示している。
 正孔注入層、正孔輸送層、電子輸送層及び電子注入層のそれぞれの材料は、公知の材料を用いることができる。正孔注入層、正孔輸送層、電子輸送層及び電子注入層のそれぞれは、例えば、有機機能層7と同様に塗布法により形成できる。
 ここで、電子注入層は、アルカリ金属若しくはアルカリ土類金属、又は、アルカリ金属若しくはアルカリ土類金属の酸化物、フッ化物を含有していてもよい。電子注入層の成膜法としては、塗布法、真空蒸着法等を挙げることができる。酸化物及びフッ化物の場合は、電子注入層の厚さは0.5nm~20nmが好ましい。電子注入層は、特に絶縁性が強い場合は、有機EL素子1の駆動電圧上昇を抑制する観点からは、薄膜であることが好ましく、その厚さは、例えば、0.5nm~10nmであることが好ましく、また、電子注入性の観点からは、2nm~7nmであることが好ましい。また、電子注入層は、例えば、引出電極9aと陰極層9の間に形成されていてもよい。
 有機EL素子1は、単層の有機機能層7を有していてもよいし、2層以上の有機機能層7を有していてもよい。上記(a)~(i)の層構成のうちのいずれか1つにおいて、陽極層5と陰極層9との間に配置された積層構造を「構造単位A」とすると、2層の有機機能層7を有する有機EL素子の構成として、例えば、下記(j)に示す層構成を挙げることができる。2個ある(構造単位A)の層構成は、互いに同じであっても、異なっていてもよい。
(j)陽極層/(構造単位A)/電荷発生層/(構造単位A)/陰極層
 ここで電荷発生層とは、電界を印加することにより、正孔と電子とを発生する層である。電荷発生層としては、例えば酸化バナジウム、ITO、酸化モリブデン等からなる薄膜を挙げることができる。
 また、「(構造単位A)/電荷発生層」を「構造単位B」とすると、3層以上の有機機能層7を有する有機EL素子の構成として、例えば、以下の(k)に示す層構成を挙げることができる。
(k)陽極層/(構造単位B)x/(構造単位A)/陰極層
 記号「x」は、2以上の整数を表し、「(構造単位B)x」は、(構造単位B)がx段積層された積層体を表す。また複数ある(構造単位B)の層構成は同じでも、異なっていてもよい。
 電荷発生層を設けずに、複数の有機機能層7を直接的に積層させて有機EL素子を構成してもよい。
 上記実施形態では、第1電極層として陽極層5、第2電極層として陰極層9を形成する形態を一例に説明した。しかし、第1電極層として陰極層、第2電極層として陽極層を形成してもよい。
 上記実施形態では、図1に示されるように、レーザーLにより有機機能層7及び陰極層9が完全に除去された形態を一例に説明した。しかし、パターニング工程では、少なくとも陰極層9が除去されればよい(陽極層5と陰極層9とが電気的に絶縁されればよい)。
 上記実施形態では、有機EL素子1の製造方法において、ネットワーク構造を有する陽極層5を形成する形態を一例に説明した。しかし、陽極層5は、金属又は合金を含む膜であってもよい。
 上記実施形態では、有機EL素子1の製造方法において、パターニング工程S05においてレーザーLを照射するパターニング予定線Aが直線状である形態を一例に説明した。しかし、パターニング予定線、すなわちレーザーLにより除去する形状は、直線状に限定されない。また、上記実施形態では、レーザーLの波長が532nm又は1064nmである形態を一例に説明した。しかし、レーザーLの波長は、特に限定されず、例えば、532nm~1064nmであってもよい。
 上記実施形態では、有機EL素子1の製造方法において、ロールツーロール方式を用いる形態を一例に説明した。しかし、有機EL素子1の製造方法は、他の方式を採用してもよい。
 上記実施形態では、基板乾燥工程S01を実施する形態を一例に説明したが、基板乾燥工程S01は実施されなくてもよい。
 上記実施形態では、図1に示されるように、陽極層5の一部が露出するように有機機能層7を形成する形態を一例に説明したが、有機機能層7は陽極層5の少なくとも一部上に形成されていればよい。すなわち、有機機能層7は、陽極層5の一部又は全部を覆うように形成されていればよい。有機機能層7が陽極層5の全部を覆うように形成されている場合、陽極層5と電気的に接続される引出電極が形成されていればよい。
 上記実施形態では、図1に示されるように、有機機能層7の全部を覆うように陰極層9を形成する形態を一例に説明したが、陰極層9は有機機能層7の少なくとも一部上に形成されていればよい。すなわち、陰極層9は、有機機能層7の一部又は全部を覆うように形成されていればよい。
 上記実施形態に加えて、陰極層9は、光反射層を含んでいてもよい。これにより、支持基板3の他の主面3bから光を良好に発光できる。
 上記実施形態では、有機デバイスとして、有機EL素子を一例に説明した。有機デバイスは、有機薄膜トランジスタ、有機フォトディテクタ、有機薄膜太陽電池等であってもよい。
 1…有機EL素子(有機デバイス)、3…支持基板、5…陽極層(第1電極層)、7…有機機能層、9…陰極層(第2電極層)、L…レーザー、S02…陽極層形成工程(第1電極層形成工程)、S03…有機機能層形成工程、S04…陰極層形成工程(第2電極層形成工程)、S05…パターニング工程。

Claims (6)

  1.  支持基板上に第1電極層を形成する第1電極層形成工程と、
     前記第1電極層の少なくとも一部上に有機機能層を形成する有機機能層形成工程と、
     前記有機機能層の少なくとも一部上に第2電極層を形成する第2電極層形成工程と、
     前記第2電極層をレーザーによりパターニングするパターニング工程と、を含み、
     前記第1電極層形成工程では、前記第2電極層よりも前記レーザーの出射光の所定の波長において光吸収率が低い材料で前記第1電極層を形成し、
     前記パターニング工程では、前記第1電極層、前記有機機能層及び前記第2電極層の積層方向において、前記第2電極層側から前記第2電極層に前記レーザーを照射して、前記第2電極層を除去する、有機デバイスの製造方法。
  2.  前記第1電極層形成工程では、前記第1電極層として、金属又は金属合金を含む膜、又は、金属又は金属合金を含み、ネットワーク構造を有する導電層を形成する、請求項1に記載の有機デバイスの製造方法。
  3.  前記第2電極層形成工程では、前記第1電極層の2倍以上の光吸収率を有する前記第2電極層を形成する、請求項1又は2に記載の有機デバイスの製造方法。
  4.  前記第1電極層形成工程では、前記レーザーに対して90%以上の反射率を示す領域を有する前記第1電極層を形成する、請求項1~3のいずれか一項に記載の有機デバイスの製造方法。
  5.  前記第1電極層形成工程では、銀を含む前記第1電極層を形成する、請求項1~4のいずれか一項に記載の有機デバイスの製造方法。
  6.  前記第2電極層形成工程では、アルミニウムを含む前記第2電極層を形成する、請求項1~5のいずれか一項に記載の有機デバイスの製造方法。
PCT/JP2017/018689 2016-06-06 2017-05-18 有機デバイスの製造方法 WO2017212890A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017002835.3T DE112017002835T5 (de) 2016-06-06 2017-05-18 Verfahren zum Herstellen eines organischen Bauelements
JP2018522397A JPWO2017212890A1 (ja) 2016-06-06 2017-05-18 有機デバイスの製造方法
KR1020187037988A KR20190012219A (ko) 2016-06-06 2017-05-18 유기 디바이스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-112694 2016-06-06
JP2016112694 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017212890A1 true WO2017212890A1 (ja) 2017-12-14

Family

ID=60577796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018689 WO2017212890A1 (ja) 2016-06-06 2017-05-18 有機デバイスの製造方法

Country Status (4)

Country Link
JP (1) JPWO2017212890A1 (ja)
KR (1) KR20190012219A (ja)
DE (1) DE112017002835T5 (ja)
WO (1) WO2017212890A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020657A1 (ja) * 2010-08-12 2012-02-16 富士フイルム株式会社 透明導電フィルム及びその製造方法並びに有機電子デバイス及び有機薄膜太陽電池
WO2013103093A1 (ja) * 2012-01-05 2013-07-11 株式会社カネカ 有機el装置及びその製造方法
JP2013191454A (ja) * 2012-03-14 2013-09-26 Kaneka Corp 発光デバイスおよび発光デバイスの製造方法
WO2014038625A1 (ja) * 2012-09-10 2014-03-13 株式会社カネカ 有機el装置及びその製造方法
JP2015511771A (ja) * 2012-03-16 2015-04-20 ケンブリッジ ディスプレイ テクノロジー リミテッド 光電装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556990B2 (ja) * 1995-02-13 2004-08-25 出光興産株式会社 有機エレクトロルミネッセンス素子の微細パターン化方法及びそれより得られた素子
JPH09320760A (ja) 1996-05-24 1997-12-12 Matsushita Electric Ind Co Ltd 有機薄膜エレクトロルミネッセンス素子のパターニング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020657A1 (ja) * 2010-08-12 2012-02-16 富士フイルム株式会社 透明導電フィルム及びその製造方法並びに有機電子デバイス及び有機薄膜太陽電池
WO2013103093A1 (ja) * 2012-01-05 2013-07-11 株式会社カネカ 有機el装置及びその製造方法
JP2013191454A (ja) * 2012-03-14 2013-09-26 Kaneka Corp 発光デバイスおよび発光デバイスの製造方法
JP2015511771A (ja) * 2012-03-16 2015-04-20 ケンブリッジ ディスプレイ テクノロジー リミテッド 光電装置
WO2014038625A1 (ja) * 2012-09-10 2014-03-13 株式会社カネカ 有機el装置及びその製造方法

Also Published As

Publication number Publication date
KR20190012219A (ko) 2019-02-08
DE112017002835T5 (de) 2019-02-21
JPWO2017212890A1 (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2015107604A1 (ja) 発光装置、及び発光装置の製造方法
JP6284670B1 (ja) 有機デバイスの製造方法
JP6393362B1 (ja) 有機デバイスの製造方法
WO2017212890A1 (ja) 有機デバイスの製造方法
JP6559758B2 (ja) 電子デバイスの製造方法
JP6647237B2 (ja) 有機el素子及び有機el素子の製造方法
JP6375016B1 (ja) 電極付き基板、積層基板及び有機デバイスの製造方法
JP6129938B1 (ja) 有機デバイスの製造方法及び有機デバイス用基板
JP6836908B2 (ja) 有機デバイスの製造方法
WO2017130955A1 (ja) 有機el素子
WO2017119178A1 (ja) マザー基板及び照明装置の製造方法
JP6097369B1 (ja) パターンの製造方法
WO2018235594A1 (ja) 透明電極の製造方法及び電子デバイスの製造方法
JP6722992B2 (ja) 有機電子デバイスの製造方法及び封止部材の製造方法
WO2017130600A1 (ja) 発光装置
JP2017162770A (ja) 有機el照明の製造方法及び検査パネル
WO2017119322A1 (ja) 有機デバイスの製造方法およびロール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018522397

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037988

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17810071

Country of ref document: EP

Kind code of ref document: A1