WO2017212879A1 - Al alloy sputtering target - Google Patents

Al alloy sputtering target Download PDF

Info

Publication number
WO2017212879A1
WO2017212879A1 PCT/JP2017/018333 JP2017018333W WO2017212879A1 WO 2017212879 A1 WO2017212879 A1 WO 2017212879A1 JP 2017018333 W JP2017018333 W JP 2017018333W WO 2017212879 A1 WO2017212879 A1 WO 2017212879A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
atomic
thin film
sputtering target
film formation
Prior art date
Application number
PCT/JP2017/018333
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 ▲吉▼田
博行 奥野
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Priority to CN201780033719.7A priority Critical patent/CN109312448A/en
Priority to KR1020187035126A priority patent/KR20190003743A/en
Publication of WO2017212879A1 publication Critical patent/WO2017212879A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode

Definitions

  • the present invention relates to a sputtering target (hereinafter also referred to as a “target”) used for forming an electrode or an insulating film, and more specifically, a display device such as a liquid crystal display or an organic EL (OEL: Organic Electro-Luminescence) display. Or it is related with the sputtering target used for electrode formation used for input devices, such as a touch panel.
  • a sputtering target hereinafter also referred to as a “target”
  • a display device such as a liquid crystal display or an organic EL (OEL: Organic Electro-Luminescence) display.
  • OEL Organic Electro-Luminescence
  • Al alloys are widely used in the field of display devices such as liquid crystal displays because of their low electrical resistivity and ease of processing, and are used as materials for wiring films, electrode films, or reflective electrode films. Yes.
  • an active matrix type liquid crystal display includes a thin film transistor (TFT: Thin Film Transistor) that is a switching element, and the wiring material generally includes various Al alloy thin films such as a pure Al thin film or an Al—Nd alloy. It is used.
  • TFT Thin Film Transistor
  • Al alloy thin films such as a pure Al thin film or an Al—Nd alloy. It is used.
  • a sputtering method using a sputtering target is generally employed.
  • the sputtering method has an advantage that a thin film having the same composition as the target can be formed.
  • an Al alloy thin film formed by sputtering can dissolve an alloy element that does not dissolve in an equilibrium state, and exhibits excellent performance as a thin film. Yes, development of a sputtering target as a raw material is underway.
  • Patent Document 1 discloses a sputtering target which is made of Al or an Al alloy and has a (111) crystal orientation content of 20% or more measured by X-ray diffraction method on the sputtering surface.
  • Patent Document 1 it is verified that the film formation rate is improved by setting the crystal orientation to the (111) plane in an Al—Si based alloy in which Si is added to Al.
  • Patent Document 2 discloses an Al-based alloy sputtering target characterized by containing Ta.
  • the example of Patent Document 2 shows an Al—Ta alloy in which 1.5 atomic% of Ta is added to Al, and the film formation rate is 1.6 times or more of the pure Al ratio.
  • an object of the present invention is to provide an Al alloy sputtering target that contributes to an improvement in film formation rate and is excellent in target productivity.
  • the present inventors have proposed that the Al alloy sputtering target to which Cu is added in a high addition amount of more than 6 atomic% and not more than 17 atomic% is Ta. It has been found that it has a high film formation rate as compared with the Al alloy sputtering target contained, and also has excellent manufacturability, and has completed the present invention.
  • the present invention relates to the following [1] to [9].
  • the Al alloy thin film according to [4] which is an aluminum nitride thin film or an aluminum oxide thin film formed by reactive sputtering.
  • a display device comprising the Al alloy thin film according to [4].
  • a display device comprising the Al alloy thin film according to [5].
  • An input device comprising the Al alloy thin film according to [4].
  • An input device comprising the Al alloy thin film according to [5].
  • the Al alloy sputtering target of the present invention contains more than 6 atomic% and 17 atomic% or less of Cu, the film forming rate can be improved and the productivity is excellent as compared with the Al—Ta alloy.
  • the Al alloy sputtering target of the present invention is an Al alloy sputtering target for forming an Al alloy thin film by sputtering, contains Cu in an amount of more than 6 atomic% and 17 atomic% or less, and the balance is made of Al and inevitable impurities. It is characterized by.
  • the Al alloy sputtering target is a sputtering target mainly composed of Al containing pure Al and an alloy element.
  • the Cu content in the Al alloy sputtering target of the present invention is more than 6 atomic%, preferably 7 atomic% or more. By making Cu content more than 6 atomic%, it is excellent in productivity and a high film-forming rate can be obtained.
  • the Cu content is 17 atomic% or less, and is preferably 12 atomic% or less in order to further suppress the decrease in the crack limit rolling reduction.
  • the yield in the SF (Spray forming or spray forming) process and the reduction in the crack limit rolling reduction in the forging process are suppressed, and the target productivity is drastically decreased. Can be prevented.
  • the inevitable impurities include, for example, elements inevitably mixed in the manufacturing process, for example, Fe, Si, and the like, and the content of these is preferably 0.03% by mass or less in total. More preferably, the content is 0.01% by mass or less.
  • the Al alloy sputtering target of the present invention is excellent in manufacturability by adding a small amount of rare earth element as a second additive element to make an Al—Cu—X alloy (X: rare earth element), and when no rare earth element is added. Thus, the film formation rate can be further improved.
  • the content of rare earth elements is preferably 0.1 atomic% or more, more preferably 2 atomic% or more. By setting the content of the rare earth element to 0.1 atomic% or more, the effect of the second additive element described above can be obtained.
  • the rare earth element content is preferably 5.5 atomic percent or less, and more preferably 3.7 atomic percent or less. By setting the rare earth element content to 5.5 atomic% or less, it is possible to suppress a decrease in the yield of the SF process and a decrease in the crack limit rolling reduction, and to prevent the target productivity from deteriorating.
  • the rare earth element means an element group in which Sc (scandium) and Y (yttrium) are added to a lanthanoid element (a total of 15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table). .
  • a lanthanoid element a total of 15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table.
  • Nd, La, Y, Sc, Gd, Dy, Lu, Ce, Pr, and Tb are preferable and Nd is more preferable from the viewpoint of improving the film forming rate. Of these, one or more can be used in any combination.
  • the Al alloy thin film of the present invention is preferably formed by a sputtering method using the above-described sputtering target of the present invention. This is because according to the sputtering method, a thin film having excellent in-plane uniformity of components or film thickness can be easily formed.
  • Cu is contained more than 6 atomic% and 17 atomic% or less, and the balance is composed of Al and inevitable impurities.
  • the Al alloy thin film formed by the reactive sputtering method include an aluminum nitride thin film and an aluminum oxide thin film.
  • the conditions of the reactive sputtering method may be appropriately controlled according to, for example, the type of the Al alloy to be used, but are preferably controlled as follows.
  • -Substrate temperature room temperature to 400 ° C
  • Sputtering power 100-500W
  • -Ultimate vacuum 1 x 10-5 Torr or less
  • the shape of the target includes those processed into an arbitrary shape (for example, a square plate shape, a circular plate shape, a donut plate shape, etc.) according to the shape or structure of the sputtering apparatus.
  • an arbitrary shape for example, a square plate shape, a circular plate shape, a donut plate shape, etc.
  • Examples of the method for producing the target include a method obtained by producing an ingot made of an Al-based alloy by a melt casting method, a powder sintering method, a spray forming method, and a preform (final dense body) made of an Al-based alloy. And a method obtained by densifying the preform by a densifying means after the intermediate) is obtained.
  • the present invention includes a display device and an input device provided with the Al alloy thin film.
  • the display device include a display device in which the Al alloy film is used for a source-drain electrode and a signal line of a thin film transistor, and the drain electrode is directly connected to a transparent conductive film.
  • the input device provided with the input means in the display apparatus like a touch panel etc. is mentioned, for example.
  • SF yield preform weight / melting raw material (110 kg) x 100 (%) ⁇ : 40% or more ⁇ : Over 30% to less than 40% ⁇ : 30% or less
  • the crack limit rolling reduction was evaluated according to the following criteria. ⁇ : 50% or more ⁇ : Over 30% to less than 50% ⁇ : 30% or less
  • Example 1 the deposition rate ratio was determined by dividing the Al alloy average deposition rate by the pure Al average deposition rate.
  • the film formation rate ratio film formation rate: pure Al ratio
  • the film formation rate ratio exceeds 1.50, which is the film formation rate ratio of Al-1 atomic% Ta, was set as a range in which the effect of improving the film formation rate by alloying was recognized.
  • the average film formation rate of the Al-7 atomic% Cu-rare earth alloy was divided by the Al alloy containing 7 atomic% of Cu to obtain the film formation rate ratio.
  • the comprehensive judgment was evaluated according to the following criteria.
  • The film formation rate ratio is 1.50 or more, and at least one of the SF yield and the crack limit rolling reduction is ⁇ .
  • delta The film-forming rate ratio is 1.50 or more, and neither SF yield nor crack limit rolling reduction is (circle).
  • X The film formation rate ratio is 1.50 or more, but at least one of SF yield and crack limit rolling reduction is x, or the film formation rate ratio is 1.50 or less.
  • Example 1 An Al film having the composition shown in Table 1 was formed, and the film formation rate and manufacturability were evaluated. The results are shown in Table 1.
  • Table 1 Examples 1 to 4 are Examples, and Examples 5 to 8 are Comparative Examples.
  • the pure Al and Al-1 atomic% Cu to Al-17 atomic% Cu of Examples 1 to 7 were confirmed to improve the film formation rate as the amount of Cu added increased. With 17 atomic% Cu, the pure Al ratio was improved to 2.12 times.
  • Example 4 when the Cu content exceeds 12 atomic%, the crack limit rolling reduction decreases, so by setting the Cu content to 12 atomic% or less, the crack critical rolling reduction is decreased. It was found that can be suppressed. It is considered that as a factor that the crack limit rolling reduction decreased with the increase in the Cu content, the metal hardness in the target increased with the increase in the added elements, so that the target hardness increased and as a result cracking occurred.
  • Example 8 it was found that, in the range where the amount of Cu added is larger than that of Al-17 atomic% Cu, cracks frequently occur in the processing step during target production, resulting in poor productivity. From this result, it was found that the productivity of the target can be improved by setting the Cu content to 17 atomic% or less.
  • Example 2 By adding a rare earth element, which has been confirmed to improve the film formation rate in a small amount, to the Al—Cu alloy extracted in Example 1, an Al—Cu—X alloy (X: rare earth element) can be further added. The effect of improving the deposition rate was confirmed.
  • Table 2 shows the results of evaluating the film formation rate and manufacturability.
  • Examples 9 to 24 are Examples, and Examples 25 and 26 are Comparative Examples.
  • Example 25 since the addition amount of the rare earth element was too small, 0.05 atomic%, the film forming rate improving effect by the second additive element was not confirmed. In addition, in Example 26, the amount of rare earth element added was too large at 6 atomic%, so that the critical crack reduction did not reach the standard.
  • the film formation rate of the Al alloy sputtering target can be improved by adding 0.1 to 5.5 atomic% of a rare earth element as the second additive element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to an Al alloy sputtering target comprising greater than 6 at.% to less than or equal to 17 at.% Cu, with the remainder comprising Al and inevitable impurities. The invention can provide an Al alloy sputtering target that contributes to an improvement in film formation rate and has excellent target manufacturability.

Description

Al合金スパッタリングターゲットAl alloy sputtering target
 本発明は、電極または絶縁膜などの形成に用いられるスパッタリングターゲット(以下「ターゲット」ともいう)に関するものであり、詳細には液晶ディスプレイ、有機EL(OEL:Organic Electro-Luminescence)ディスプレイなどの表示装置またはタッチパネルなどの入力装置に用いられる電極形成に用いられるスパッタリングターゲットに関する。 The present invention relates to a sputtering target (hereinafter also referred to as a “target”) used for forming an electrode or an insulating film, and more specifically, a display device such as a liquid crystal display or an organic EL (OEL: Organic Electro-Luminescence) display. Or it is related with the sputtering target used for electrode formation used for input devices, such as a touch panel.
 Al合金は、電気抵抗率が低く、加工が容易であるなどの理由により、液晶ディスプレイなどの表示装置の分野で汎用されており、配線膜、電極膜または反射電極膜などの材料に利用されている。 Al alloys are widely used in the field of display devices such as liquid crystal displays because of their low electrical resistivity and ease of processing, and are used as materials for wiring films, electrode films, or reflective electrode films. Yes.
 例えば、アクティブマトリクス型の液晶ディスプレイは、スイッチング素子である薄膜トランジスタ(TFT:Thin Film Transistor)を備えており、その配線材料には、一般に、純Al薄膜またはAl-Nd合金などの各種Al合金薄膜が用いられている。 For example, an active matrix type liquid crystal display includes a thin film transistor (TFT: Thin Film Transistor) that is a switching element, and the wiring material generally includes various Al alloy thin films such as a pure Al thin film or an Al—Nd alloy. It is used.
 Al合金薄膜の形成には、一般にスパッタリングターゲットを用いたスパッタリング法が採用されている。 In forming an Al alloy thin film, a sputtering method using a sputtering target is generally employed.
 スパッタリング法は、ターゲットと同じ組成の薄膜を形成できるというメリットを有している。特に、スパッタリング法で成膜されたAl合金薄膜は、平衡状態では固溶しない合金元素を固溶させることができ、薄膜として優れた性能を発揮することから、工業的に有効な薄膜作製方法であり、その原料となるスパッタリングターゲットの開発が進められている。 The sputtering method has an advantage that a thin film having the same composition as the target can be formed. In particular, an Al alloy thin film formed by sputtering can dissolve an alloy element that does not dissolve in an equilibrium state, and exhibits excellent performance as a thin film. Yes, development of a sputtering target as a raw material is underway.
 近年、Al合金薄膜の生産性向上を目的として、成膜レートを従来よりも高速化することが検討されており、例えば、特許文献1および2の方法が提案されている。特許文献1では、Al又はAl合金から成り、そのスパッタ面においてX線回折法で測定された(111)結晶方位含有率が20%以上であることを特徴とするスパッタリングターゲットが開示されている。特許文献1の実施例では、AlにSiを添加したAl-Si系合金において、結晶方位を(111)面にすることで、成膜レートの向上が検証されている。 In recent years, for the purpose of improving the productivity of Al alloy thin films, it has been studied to increase the film forming rate as compared with the prior art. For example, methods of Patent Documents 1 and 2 have been proposed. Patent Document 1 discloses a sputtering target which is made of Al or an Al alloy and has a (111) crystal orientation content of 20% or more measured by X-ray diffraction method on the sputtering surface. In the example of Patent Document 1, it is verified that the film formation rate is improved by setting the crystal orientation to the (111) plane in an Al—Si based alloy in which Si is added to Al.
 また、特許文献2では、Taを含有することを特徴とするAl基合金スパッタリングターゲットが開示されている。特許文献2の実施例では、AlにTaを1.5原子%添加し、成膜レートを純Al比1.6倍以上とするAl-Ta合金が示されている。 Further, Patent Document 2 discloses an Al-based alloy sputtering target characterized by containing Ta. The example of Patent Document 2 shows an Al—Ta alloy in which 1.5 atomic% of Ta is added to Al, and the film formation rate is 1.6 times or more of the pure Al ratio.
日本国特開平6-128737号公報Japanese Unexamined Patent Publication No. 6-128737 日本国特開2012-224942号公報Japanese Unexamined Patent Publication No. 2012-224944
 しかしながら、特許文献1に記載のAl又はAl合金において(111)結晶方位含有率を20%以上にする方法については、生産性の観点から成膜レートをより改善することが求められる。 However, in the method of setting the (111) crystal orientation content in Al or Al alloy described in Patent Document 1 to 20% or more, it is required to further improve the film formation rate from the viewpoint of productivity.
 また、特許文献2に記載のTaを含有するAl合金スパッタリングターゲットについては、Taを1原子%以上添加するとスプレイフォーミングの際にノズルの閉塞を招き、ターゲット製造性が落ちることが懸念される。そのため、ターゲットの製造性を考慮すると成膜レートのさらなる向上は難しくなる。 Also, with respect to the Al alloy sputtering target containing Ta described in Patent Document 2, if Ta is added in an amount of 1 atomic% or more, there is a concern that the nozzle may be clogged at the time of spray forming, resulting in a decrease in target productivity. For this reason, considering the manufacturability of the target, it is difficult to further improve the film formation rate.
 したがって、本発明は成膜レートの向上に寄与し、且つターゲットの製造性に優れるAl合金スパッタリングターゲットを提供することを目的とする。 Therefore, an object of the present invention is to provide an Al alloy sputtering target that contributes to an improvement in film formation rate and is excellent in target productivity.
 従来、Cuの成膜レートに対する向上作用については注目されていなかったが、本発明者らは、Cuを6原子%超17原子%以下と高い添加量で添加したAl合金スパッタリングターゲットは、Taを含有するAl合金スパッタリングターゲットと比較して高い成膜レートを有するとともに、優れた製造性を併せ持つことを見出し、本発明を完成するに至った。 Conventionally, attention has not been paid to the effect of improving the Cu film formation rate, but the present inventors have proposed that the Al alloy sputtering target to which Cu is added in a high addition amount of more than 6 atomic% and not more than 17 atomic% is Ta. It has been found that it has a high film formation rate as compared with the Al alloy sputtering target contained, and also has excellent manufacturability, and has completed the present invention.
 すなわち、本発明は以下の[1]~[9]に係るものである。
[1]Cuを6原子%超17原子%以下含有し、残部がAlと不可避不純物とから成るAl合金スパッタリングターゲット。
[2]さらに希土類元素を0.1~5.5原子%含有する[1]に記載のAl合金スパッタリングターゲット。
[3]前記希土類元素がNd、La、Y、Sc、Gd、Dy、Lu、Ce、PrおよびTbよりなる群から選択される少なくとも1種である[2]に記載のAl合金スパッタリングターゲット。
[4][1]~[3]のいずれか1に記載のAl合金スパッタリングターゲットを用い、成膜されたAl合金薄膜。
[5]反応性スパッタリングで成膜された、窒化アルミニウム薄膜または酸化アルミニウム薄膜である[4]に記載のAl合金薄膜。
[6][4]に記載のAl合金薄膜を備えた表示装置。
[7][5]に記載のAl合金薄膜を備えた表示装置。
[8][4]に記載のAl合金薄膜を備えた入力装置。
[9][5]に記載のAl合金薄膜を備えた入力装置。
That is, the present invention relates to the following [1] to [9].
[1] An Al alloy sputtering target containing Cu in an amount of more than 6 atomic% and not more than 17 atomic%, with the balance being Al and inevitable impurities.
[2] The Al alloy sputtering target according to [1], further containing 0.1 to 5.5 atomic% of a rare earth element.
[3] The Al alloy sputtering target according to [2], wherein the rare earth element is at least one selected from the group consisting of Nd, La, Y, Sc, Gd, Dy, Lu, Ce, Pr, and Tb.
[4] An Al alloy thin film formed using the Al alloy sputtering target according to any one of [1] to [3].
[5] The Al alloy thin film according to [4], which is an aluminum nitride thin film or an aluminum oxide thin film formed by reactive sputtering.
[6] A display device comprising the Al alloy thin film according to [4].
[7] A display device comprising the Al alloy thin film according to [5].
[8] An input device comprising the Al alloy thin film according to [4].
[9] An input device comprising the Al alloy thin film according to [5].
 本発明のAl合金スパッタリングターゲットは、Cuを6原子%超17原子%以下含有しているため、Al-Ta合金と比較して、成膜レートを向上できるとともに製造性においても優れている。 Since the Al alloy sputtering target of the present invention contains more than 6 atomic% and 17 atomic% or less of Cu, the film forming rate can be improved and the productivity is excellent as compared with the Al—Ta alloy.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。また、「原子%」と「at%」とは同義である。 Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. “Atom%” and “at%” are synonymous.
 本発明のAl合金スパッタリングターゲットは、Al合金薄膜をスパッタリング成膜するためのAl合金スパッタリングターゲットであって、Cuを6原子%超17原子%以下含有し、残部がAlと不可避不純物とから成ることを特徴とする。 The Al alloy sputtering target of the present invention is an Al alloy sputtering target for forming an Al alloy thin film by sputtering, contains Cu in an amount of more than 6 atomic% and 17 atomic% or less, and the balance is made of Al and inevitable impurities. It is characterized by.
 Al合金スパッタリングターゲットとは、純Alおよび合金元素を含むAlを主体とするスパッタリングターゲットである。本発明のAl合金スパッタリングターゲットにおけるCuの含有量は、6原子%超であり、好ましくは7原子%以上である。Cuの含有量を6原子%超とすることにより、製造性に優れ、高い成膜レートを得ることができる。 The Al alloy sputtering target is a sputtering target mainly composed of Al containing pure Al and an alloy element. The Cu content in the Al alloy sputtering target of the present invention is more than 6 atomic%, preferably 7 atomic% or more. By making Cu content more than 6 atomic%, it is excellent in productivity and a high film-forming rate can be obtained.
 また、Cuの含有量は17原子%以下であり、割れ限界圧下率の低下をさらに抑制するためには好ましくは12原子%以下である。Cuの含有量を17原子%以下とすることにより、SF(Spray forming又はスプレイフォーミング)工程での歩留まり、および鍛造工程での割れ限界圧下率の低下を抑制し、ターゲット製造性が急激に低下するのを防ぐことができる。 Further, the Cu content is 17 atomic% or less, and is preferably 12 atomic% or less in order to further suppress the decrease in the crack limit rolling reduction. By setting the Cu content to 17 atomic% or less, the yield in the SF (Spray forming or spray forming) process and the reduction in the crack limit rolling reduction in the forging process are suppressed, and the target productivity is drastically decreased. Can be prevented.
 不可避不純物としては、例えば、製造過程などで不可避的に混入する元素、例えば、Fe、Siなどがあり、これらの含有量は合計量で典型的には0.03質量%以下であることが好ましく、より好ましくは0.01質量%以下であることが好ましい。 The inevitable impurities include, for example, elements inevitably mixed in the manufacturing process, for example, Fe, Si, and the like, and the content of these is preferably 0.03% by mass or less in total. More preferably, the content is 0.01% by mass or less.
 本発明のAl合金スパッタリングターゲットは、さらに第二添加元素として希土類元素を少量添加しAl-Cu-X合金(X:希土類元素)とすることで、製造性に優れるとともに、希土類元素を添加しない場合よりも成膜レートをさらに向上させることができる。 The Al alloy sputtering target of the present invention is excellent in manufacturability by adding a small amount of rare earth element as a second additive element to make an Al—Cu—X alloy (X: rare earth element), and when no rare earth element is added. Thus, the film formation rate can be further improved.
 希土類元素の含有量は、0.1原子%以上であることが好ましく、より好ましくは2原子%以上である。希土類元素の含有量を0.1原子%以上とすることにより、上記した第二添加元素による効果を得ることができる。また、希土類元素の含有量は、5.5原子%以下であることが好ましく、より好ましくは3.7原子%以下である。希土類元素の含有量を5.5原子%以下とすることにより、SF工程の歩留まりの低下および割れ限界圧下率の低下を抑制し、ターゲットの製造性が悪化するのを防ぐことができる。 The content of rare earth elements is preferably 0.1 atomic% or more, more preferably 2 atomic% or more. By setting the content of the rare earth element to 0.1 atomic% or more, the effect of the second additive element described above can be obtained. The rare earth element content is preferably 5.5 atomic percent or less, and more preferably 3.7 atomic percent or less. By setting the rare earth element content to 5.5 atomic% or less, it is possible to suppress a decrease in the yield of the SF process and a decrease in the crack limit rolling reduction, and to prevent the target productivity from deteriorating.
 希土類元素とは、ランタノイド元素(周期律表において、原子番号57のLaから原子番号71のLuまでの合計15元素)に、Sc(スカンジウム)とY(イットリウム)とを加えた元素群を意味する。希土類元素の中でも、成膜レートを向上させる観点から、Nd、La、Y、Sc、Gd、Dy、Lu、Ce、PrおよびTbが好ましく、より好ましくはNdである。これらのうち1種または2種以上を任意の組み合わせで用いることができる。 The rare earth element means an element group in which Sc (scandium) and Y (yttrium) are added to a lanthanoid element (a total of 15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table). . Among the rare earth elements, Nd, La, Y, Sc, Gd, Dy, Lu, Ce, Pr, and Tb are preferable and Nd is more preferable from the viewpoint of improving the film forming rate. Of these, one or more can be used in any combination.
 本発明のAl合金薄膜は、上記した本発明のスパッタリングターゲットを用いてスパッタリング法にて形成することが好ましい。スパッタリング法によれば、成分または膜厚の膜面内均一性に優れた薄膜を容易に形成できるからである。 The Al alloy thin film of the present invention is preferably formed by a sputtering method using the above-described sputtering target of the present invention. This is because according to the sputtering method, a thin film having excellent in-plane uniformity of components or film thickness can be easily formed.
 スパッタリング法でAl合金薄膜を形成する方法としては、例えば、上記ターゲットとして、Cuを6原子%超17原子%以下含有し、残部がAlと不可避不純物とから成るものであって、所望の合金薄膜と同一の組成のAl合金スパッタリングターゲットを用いてマグネトロンスパッタリング法により形成する方法、および該ターゲットを用いて反応性スパッタリング法により形成する方法等が挙げられる。 As a method for forming an Al alloy thin film by sputtering, for example, as the above target, Cu is contained more than 6 atomic% and 17 atomic% or less, and the balance is composed of Al and inevitable impurities. The method of forming by the magnetron sputtering method using the Al alloy sputtering target of the same composition as the above, the method of forming by the reactive sputtering method using the target, and the like.
 生産性および膜質制御などの観点を考慮すると、反応性スパッタリング法を採用することが好ましい。反応性スパッタリング法により成膜されたAl合金薄膜としては、例えば、窒化アルミニウム薄膜および酸化アルミニウム薄膜が挙げられる。 In view of productivity and film quality control, it is preferable to employ a reactive sputtering method. Examples of the Al alloy thin film formed by the reactive sputtering method include an aluminum nitride thin film and an aluminum oxide thin film.
 反応性スパッタリング法の条件は、具体的には例えば、使用するAl合金の種類などに応じて適切に制御すればよいが、以下のように制御することが好ましい。
 ・基板温度:室温~400℃
 ・スパッタパワー:100~500W
 ・到達真空度:1×10-5Torr以下
Specifically, the conditions of the reactive sputtering method may be appropriately controlled according to, for example, the type of the Al alloy to be used, but are preferably controlled as follows.
-Substrate temperature: room temperature to 400 ° C
・ Sputtering power: 100-500W
-Ultimate vacuum: 1 x 10-5 Torr or less
 上記ターゲットの形状は、スパッタリング装置の形状または構造に応じて任意の形状(例えば、角型プレート状、円形プレート状およびドーナツプレート状など)に加工したものが含まれる。 The shape of the target includes those processed into an arbitrary shape (for example, a square plate shape, a circular plate shape, a donut plate shape, etc.) according to the shape or structure of the sputtering apparatus.
 上記ターゲットの製造方法としては、例えば、溶解鋳造法、粉末焼結法、スプレイフォーミング法でAl基合金からなるインゴットを製造して得る方法、およびAl基合金からなるプリフォーム(最終的な緻密体を得る前の中間体)を製造した後に該プリフォームを緻密化手段により緻密化して得られる方法が挙げられる。 Examples of the method for producing the target include a method obtained by producing an ingot made of an Al-based alloy by a melt casting method, a powder sintering method, a spray forming method, and a preform (final dense body) made of an Al-based alloy. And a method obtained by densifying the preform by a densifying means after the intermediate) is obtained.
 本発明は、上記Al合金薄膜を備えた表示装置および入力装置も含むものである。表示装置の態様として、例えば、前記Al合金膜が、薄膜トランジスタのソース-ドレイン電極並びに信号線に用いられ、ドレイン電極が透明導電膜に直接接続されている表示装置が挙げられる。また、入力装置の態様としては、例えば、タッチパネルなどのように表示装置に入力手段を備えた入力装置が挙げられる。 The present invention includes a display device and an input device provided with the Al alloy thin film. Examples of the display device include a display device in which the Al alloy film is used for a source-drain electrode and a signal line of a thin film transistor, and the drain electrode is directly connected to a transparent conductive film. Moreover, as an aspect of an input device, the input device provided with the input means in the display apparatus like a touch panel etc. is mentioned, for example.
 以下に実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではなく、その趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 The present invention will be described more specifically with reference to the following examples and comparative examples. However, the present invention is not limited to these examples, and is implemented with modifications within a range that can be adapted to the gist thereof. All of which are within the scope of the present invention.
(1)スパッタリングターゲットの作製
 スプレイフォーミングにて、溶解原料であるAl合金110kgを溶解し、Al合金プリフォームを得た後、プリフォーム重量を重量計により測定し、スプレイフォーミング時での歩留まり(SF歩留まり)を算出した。得られたプリフォームをカプセルに封入し脱気して、熱間等方圧加圧(HIP:Hot Isostatic Press)装置で緻密化した。そして450℃にて加熱を施した後、鍛造工程にて下記式を用いて圧下率を算出した。
     圧下率:(L-L)/L×100 (%)
     初期サンプル長さ:L、圧下後サンプル長さ:L
 また圧下時に目視によりサンプルの割れを確認し、割れが確認された直前の圧下率を割れ限界圧下率とした。
(1) Production of sputtering target After melting 110 kg of the Al alloy as a melting raw material by spray forming to obtain an Al alloy preform, the weight of the preform is measured with a weigh scale, and the yield at the time of spray forming (SF Yield) was calculated. The obtained preform was sealed in a capsule, degassed, and densified with a hot isostatic press (HIP) apparatus. And after heating at 450 degreeC, the rolling reduction was computed using the following formula at the forge process.
Reduction ratio: (L 0 -L 1 ) / L 0 × 100 (%)
Initial sample length: L 0 , sample length after reduction: L 1
Moreover, the crack of the sample was visually confirmed at the time of rolling, and the rolling reduction just before the cracking was confirmed was made into the cracking critical rolling reduction.
 SF歩留まりについては、下記基準により評価した。
SF歩留まり = プリフォーム重量/溶解原料(110kg)×100 (%)
○:40%以上
△:30%超~40%未満
×:30%以下
The SF yield was evaluated according to the following criteria.
SF yield = preform weight / melting raw material (110 kg) x 100 (%)
○: 40% or more Δ: Over 30% to less than 40% ×: 30% or less
 割れ限界圧下率については、下記基準により評価した。
○:50%以上
△:30%超~50%未満
×:30%以下
The crack limit rolling reduction was evaluated according to the following criteria.
○: 50% or more Δ: Over 30% to less than 50% ×: 30% or less
(2)成膜
 透明基板として無アルカリ硝子板(板厚0.7mm、直径4インチ)を用い、その表面に、DC(Direct Current)マグネトロンスパッタリング法により、表1に示すAl合金を成膜した。成膜に当たっては、成膜前にチャンバー内の雰囲気を一旦、到達真空度:3×10-6Torrに調整してから、上記金属膜と同一の成分組成を有する直径4インチの円盤型スパッタリングターゲットを用い、下記条件でスパッタリングを行った。
(2) Film formation Using an alkali-free glass plate (plate thickness: 0.7 mm, diameter: 4 inches) as a transparent substrate, an Al alloy shown in Table 1 was formed on the surface by DC (Direct Current) magnetron sputtering. . Before film formation, the atmosphere in the chamber is once adjusted to an ultimate vacuum of 3 × 10 −6 Torr, and then a disk-type sputtering target having a diameter of 4 inches and the same component composition as the metal film. Sputtering was performed under the following conditions.
(スパッタリング条件)
・Arガス圧:2mTorr
・Arガス流量:19sccm
・スパッタパワー:500W
・基板温度:室温
・成膜温度:室温
・成膜時間:10分間
(Sputtering conditions)
Ar gas pressure: 2 mTorr
Ar gas flow rate: 19 sccm
・ Sputtering power: 500W
-Substrate temperature: Room temperature-Film formation temperature: Room temperature-Film formation time: 10 minutes
(3)成膜レートの算出
 作製した薄膜の膜厚を触針段差計(NTS製 Alpha Step250)によって測定した。膜厚の測定は薄膜中心部から、半径方向に3点測定しその平均値を膜厚(Å)とした。このようにして得られた膜厚をスパッタリング時間(s)で除して、平均成膜速度(Å/s)を算出した。
(3) Calculation of film-forming rate The film thickness of the produced thin film was measured with a stylus step meter (Alpha Step 250 manufactured by NTS). The film thickness was measured at three points in the radial direction from the center of the thin film, and the average value was defined as the film thickness (Å). The film thickness thus obtained was divided by the sputtering time (s) to calculate the average film formation rate (Å / s).
 後述する実施例1では、Al合金平均成膜速度を純Al平均成膜速度にて除して成膜レート比を求めた。表1に示していないが、Al-1原子%Taの成膜レート比(成膜レート:純Al比)は1.5倍であった。したがって、成膜レート比が、Al-1原子%Taの成膜レート比である1.50を超える場合を、合金化による成膜レートの向上効果が認められる範囲とした。また、実施例2では、Al-7原子%Cu-希土類合金の平均成膜速度を、Cuを7原子%含有するAl合金にて除して成膜レート比を求めた。 In Example 1 described later, the deposition rate ratio was determined by dividing the Al alloy average deposition rate by the pure Al average deposition rate. Although not shown in Table 1, the film formation rate ratio (film formation rate: pure Al ratio) of Al-1 atomic% Ta was 1.5 times. Therefore, the case where the film formation rate ratio exceeds 1.50, which is the film formation rate ratio of Al-1 atomic% Ta, was set as a range in which the effect of improving the film formation rate by alloying was recognized. In Example 2, the average film formation rate of the Al-7 atomic% Cu-rare earth alloy was divided by the Al alloy containing 7 atomic% of Cu to obtain the film formation rate ratio.
(4)総合判定
 総合判定については、下記基準により評価した。
○:成膜レート比が1.50以上であり、SF歩留まりおよび割れ限界圧下率の少なくとも一方が○である。△:成膜レート比が1.50以上であり、SF歩留まりおよび割れ限界圧下率がいずれも○ではない。×:成膜レート比が1.50以上であるがSF歩留まりおよび割れ限界圧下率の少なくとも一方が×である、または成膜レート比が1.50以下である。
(4) Comprehensive judgment The comprehensive judgment was evaluated according to the following criteria.
◯: The film formation rate ratio is 1.50 or more, and at least one of the SF yield and the crack limit rolling reduction is ◯. (Triangle | delta): The film-forming rate ratio is 1.50 or more, and neither SF yield nor crack limit rolling reduction is (circle). X: The film formation rate ratio is 1.50 or more, but at least one of SF yield and crack limit rolling reduction is x, or the film formation rate ratio is 1.50 or less.
<実施例1>
 表1に示す組成のAl膜を成膜し、成膜レートおよび製造性について評価した。結果を表1に示す。表1において、例1~4は実施例、例5~8は比較例である。
<Example 1>
An Al film having the composition shown in Table 1 was formed, and the film formation rate and manufacturability were evaluated. The results are shown in Table 1. In Table 1, Examples 1 to 4 are Examples, and Examples 5 to 8 are Comparative Examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように例1~7の純Al、Al-1原子%Cu~Al-17原子%CuではCu添加量の増大に伴い、成膜レートの向上が確認され、例4のAl-17原子%Cuでは純Al比2.12倍まで向上した。 As shown in Table 1, the pure Al and Al-1 atomic% Cu to Al-17 atomic% Cu of Examples 1 to 7 were confirmed to improve the film formation rate as the amount of Cu added increased. With 17 atomic% Cu, the pure Al ratio was improved to 2.12 times.
 例1~4のAl-6.1原子%Cu~Al-17原子%CuではAl-1原子%Ta(1.50倍)より速い成膜速度が確認されたが、成膜レートが向上した。一方、例5~8に示す純Al、Al-1原子%CuおよびAl-5原子%Cuの成膜レート比はAl-1原子%Taと同等程度以下であり、成膜レートが向上しなかった。この結果から、Al合金スパッタリングターゲットにおけるCuの含有量を6原子%超とすることにより、成膜レートが向上することがわかった。 In Examples 1 to 4, Al-6.1 at% Cu to Al-17 at% Cu showed a higher deposition rate than Al-1 at% Ta (1.50 times), but improved the deposition rate. . On the other hand, the film formation rate ratio of pure Al, Al-1 atomic% Cu and Al-5 atomic% Cu shown in Examples 5 to 8 is less than or equal to that of Al-1 atomic% Ta, and the film formation rate does not improve. It was. From this result, it was found that the film formation rate was improved by setting the Cu content in the Al alloy sputtering target to be more than 6 atomic%.
 また、例4に示すように、Cuの含有量が12原子%を超えると割れ限界圧下率が低下することから、Cuの含有量を12原子%以下とすることにより、割れ限界圧下率の低下を抑制できることがわかった。Cuの含有量の増加に伴い割れ限界圧下率が低下した要因として、添加元素の増大に伴い、ターゲット中の金属化合物が増大したため、ターゲット硬度が増加し、結果割れが発生したと考えられる。 Moreover, as shown in Example 4, when the Cu content exceeds 12 atomic%, the crack limit rolling reduction decreases, so by setting the Cu content to 12 atomic% or less, the crack critical rolling reduction is decreased. It was found that can be suppressed. It is considered that as a factor that the crack limit rolling reduction decreased with the increase in the Cu content, the metal hardness in the target increased with the increase in the added elements, so that the target hardness increased and as a result cracking occurred.
 また、例8に示すように、Al-17原子%CuよりCu添加量が多い範囲では、ターゲット製造時の加工工程に割れが頻発し、生産性が悪くなることがわかった。この結果から、Cuの含有量を17原子%以下とすることにより、ターゲットの生産性を向上できることがわかった。 Further, as shown in Example 8, it was found that, in the range where the amount of Cu added is larger than that of Al-17 atomic% Cu, cracks frequently occur in the processing step during target production, resulting in poor productivity. From this result, it was found that the productivity of the target can be improved by setting the Cu content to 17 atomic% or less.
<実施例2>
 実施例1で抽出したAl-Cu合金に、少量で成膜レートの向上作用が確認されている、希土類元素を添加し、Al-Cu-X合金(X:希土類元素)とすることで、さらなる成膜レートの向上作用を確認した。成膜レートおよび製造性を評価した結果を表2に示す。表2において、例9~24は実施例、例25および26は比較例である。
<Example 2>
By adding a rare earth element, which has been confirmed to improve the film formation rate in a small amount, to the Al—Cu alloy extracted in Example 1, an Al—Cu—X alloy (X: rare earth element) can be further added. The effect of improving the deposition rate was confirmed. Table 2 shows the results of evaluating the film formation rate and manufacturability. In Table 2, Examples 9 to 24 are Examples, and Examples 25 and 26 are Comparative Examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、例9~24のAl-7原子%Cu-希土類合金では、Al-7原子%Cu合金に対する成膜レート比が1.01~1.78であり、成膜レートの向上作用が確認された。これに対して、例25では希土類元素の添加量が0.05原子%と少なすぎるため、第二添加元素による成膜レート向上作用は確認されなかった。また、例26は、希土類元素の添加量が6原子%と多すぎるため、割れ限界圧下率が基準に達しなかった。 As shown in Table 2, in the Al-7 atom% Cu-rare earth alloys of Examples 9 to 24, the film formation rate ratio with respect to the Al-7 atom% Cu alloy was 1.01 to 1.78, and the film formation rate was Improvement effect was confirmed. On the other hand, in Example 25, since the addition amount of the rare earth element was too small, 0.05 atomic%, the film forming rate improving effect by the second additive element was not confirmed. In addition, in Example 26, the amount of rare earth element added was too large at 6 atomic%, so that the critical crack reduction did not reach the standard.
 この結果から、さらに第二添加元素として、0.1~5.5原子%の希土類元素を添加することにより、Al合金スパッタリングターゲットの成膜レートを向上できることがわかった。 From this result, it was found that the film formation rate of the Al alloy sputtering target can be improved by adding 0.1 to 5.5 atomic% of a rare earth element as the second additive element.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2016年6月7日付けで出願された日本特許出願(特願2016-113609)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The present application is based on a Japanese patent application (Japanese Patent Application No. 2016-113609) filed on June 7, 2016, and is incorporated by reference in its entirety.

Claims (9)

  1.  Cuを6原子%超17原子%以下含有し、残部がAlと不可避不純物とから成るAl合金スパッタリングターゲット。 An Al alloy sputtering target containing Cu in excess of 6 atomic% and 17 atomic% or less with the balance being Al and inevitable impurities.
  2.  さらに希土類元素を0.1~5.5原子%含有する請求項1に記載のAl合金スパッタリングターゲット。 The Al alloy sputtering target according to claim 1, further comprising 0.1 to 5.5 atomic% of a rare earth element.
  3.  前記希土類元素がNd、La、Y、Sc、Gd、Dy、Lu、Ce、PrおよびTbよりなる群から選択される少なくとも1種である請求項2に記載のAl合金スパッタリングターゲット。 The Al alloy sputtering target according to claim 2, wherein the rare earth element is at least one selected from the group consisting of Nd, La, Y, Sc, Gd, Dy, Lu, Ce, Pr and Tb.
  4.  請求項1~3のいずれか1項に記載のAl合金スパッタリングターゲットを用い、成膜されたAl合金薄膜。 An Al alloy thin film formed using the Al alloy sputtering target according to any one of claims 1 to 3.
  5.  反応性スパッタリングで成膜された、窒化アルミニウム薄膜または酸化アルミニウム薄膜である請求項4に記載のAl合金薄膜。 The Al alloy thin film according to claim 4, which is an aluminum nitride thin film or an aluminum oxide thin film formed by reactive sputtering.
  6.  請求項4に記載のAl合金薄膜を備えた表示装置。 A display device comprising the Al alloy thin film according to claim 4.
  7.  請求項5に記載のAl合金薄膜を備えた表示装置。 A display device comprising the Al alloy thin film according to claim 5.
  8.  請求項4に記載のAl合金薄膜を備えた入力装置。 An input device comprising the Al alloy thin film according to claim 4.
  9.  請求項5に記載のAl合金薄膜を備えた入力装置。 An input device comprising the Al alloy thin film according to claim 5.
PCT/JP2017/018333 2016-06-07 2017-05-16 Al alloy sputtering target WO2017212879A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780033719.7A CN109312448A (en) 2016-06-07 2017-05-16 Aluminum alloy sputtering target material
KR1020187035126A KR20190003743A (en) 2016-06-07 2017-05-16 Al alloy sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016113609A JP6228631B1 (en) 2016-06-07 2016-06-07 Al alloy sputtering target
JP2016-113609 2016-06-07

Publications (1)

Publication Number Publication Date
WO2017212879A1 true WO2017212879A1 (en) 2017-12-14

Family

ID=60265857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018333 WO2017212879A1 (en) 2016-06-07 2017-05-16 Al alloy sputtering target

Country Status (5)

Country Link
JP (1) JP6228631B1 (en)
KR (1) KR20190003743A (en)
CN (1) CN109312448A (en)
TW (1) TWI632248B (en)
WO (1) WO2017212879A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592406A (en) * 2019-10-10 2019-12-20 新疆众和股份有限公司 Preparation method of high-purity aluminum-copper alloy target blank for sputtering
CN110714142A (en) * 2019-11-06 2020-01-21 长沙迅洋新材料科技有限公司 Al-Sc-X multi-element alloy target and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322528A (en) * 2001-04-24 2002-11-08 Mitsubishi Chemicals Corp Electrode wiring material and production method therefor
JP2011059401A (en) * 2009-09-10 2011-03-24 Kobe Steel Ltd Al ALLOY REFLECTIVE FILM EXCELLENT IN HOT WATER RESISTANCE, AND SPUTTERING TARGET
CN104141107A (en) * 2013-05-10 2014-11-12 中国科学院宁波材料技术与工程研究所 Al-Cu-N wear-resistant hard coating and preparation method thereof
JP2015165563A (en) * 2014-02-07 2015-09-17 株式会社神戸製鋼所 Wiring film for flat panel displays, and aluminium alloy sputtering target
JP2016166392A (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Optical absorption conductive film, and sputtering target for forming optical absorption conductive film
JP2017043806A (en) * 2015-08-26 2017-03-02 株式会社神戸製鋼所 Light absorption thin film and low reflective conductive film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112019A1 (en) * 2003-10-30 2005-05-26 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Aluminum-alloy reflection film for optical information-recording, optical information-recording medium, and aluminum-alloy sputtering target for formation of the aluminum-alloy reflection film for optical information-recording
US20110198602A1 (en) * 2008-11-05 2011-08-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy film for display device, display device, and sputtering target
JP5548396B2 (en) * 2009-06-12 2014-07-16 三菱マテリアル株式会社 Wiring layer structure for thin film transistor and manufacturing method thereof
JP5179604B2 (en) * 2010-02-16 2013-04-10 株式会社神戸製鋼所 Al alloy film for display devices
JP5681368B2 (en) * 2010-02-26 2015-03-04 株式会社神戸製鋼所 Al-based alloy sputtering target
WO2014080933A1 (en) * 2012-11-21 2014-05-30 株式会社コベルコ科研 Electrode used in display device or input device, and sputtering target for use in electrode formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322528A (en) * 2001-04-24 2002-11-08 Mitsubishi Chemicals Corp Electrode wiring material and production method therefor
JP2011059401A (en) * 2009-09-10 2011-03-24 Kobe Steel Ltd Al ALLOY REFLECTIVE FILM EXCELLENT IN HOT WATER RESISTANCE, AND SPUTTERING TARGET
CN104141107A (en) * 2013-05-10 2014-11-12 中国科学院宁波材料技术与工程研究所 Al-Cu-N wear-resistant hard coating and preparation method thereof
JP2015165563A (en) * 2014-02-07 2015-09-17 株式会社神戸製鋼所 Wiring film for flat panel displays, and aluminium alloy sputtering target
JP2016166392A (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Optical absorption conductive film, and sputtering target for forming optical absorption conductive film
JP2017043806A (en) * 2015-08-26 2017-03-02 株式会社神戸製鋼所 Light absorption thin film and low reflective conductive film

Also Published As

Publication number Publication date
CN109312448A (en) 2019-02-05
JP2017218627A (en) 2017-12-14
TWI632248B (en) 2018-08-11
KR20190003743A (en) 2019-01-09
TW201742941A (en) 2017-12-16
JP6228631B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
KR102118816B1 (en) Sputtering target for forming wiring film of flat panel display
WO2013104295A1 (en) Molybdenum-niobium alloy plate target material processing technique
JP2010103331A (en) Sputtering target for forming wiring film for thin-film transistor
TWI452161B (en) Method for producing oxygen-containing copper alloy film
KR20100135957A (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
JP4237479B2 (en) Sputtering target, Al alloy film and electronic parts
CN101691656B (en) Al-ni-la-cu alloy sputtering target and manufacturing method thereof
JP4415303B2 (en) Sputtering target for thin film formation
KR20210029744A (en) Copper alloy sputtering target and manufacturing method of copper alloy sputtering target
WO2023208249A1 (en) Preparation method for molybdenum alloy tube target material, molybdenum alloy tube target material, and application
JP2010074017A (en) Wiring film for thin-film transistor having excellent adhesion and sputtering target for forming the same
JP6228631B1 (en) Al alloy sputtering target
JP3634208B2 (en) Electrode / wiring material for liquid crystal display and sputtering target
KR20080110657A (en) Ternary aluminum alloy films and targets
JP4743645B2 (en) Metal thin film wiring
JPWO2014148424A1 (en) Ti-Al alloy sputtering target
JP2019065383A (en) MoNb target material
CN114892134B (en) Molybdenum alloy tube target material and preparation method and application thereof
US9518320B2 (en) Copper alloy sputtering target
TW201631168A (en) Copper-based alloy sputtering target
KR20240088706A (en) Manufacturing method of molybdenum alloy tube target material, molybdenum alloy tube target material and uses
JP5077695B2 (en) Sputtering target for forming wiring film for flat panel display
JP2010222616A (en) Cu ALLOY FILM FOR WIRING FILM, AND SPUTTERING TARGET MATERIAL FOR FORMING WIRING FILM
JP2001011554A (en) Al ALLOY WIRING AND Al ALLOY TARGET

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035126

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810060

Country of ref document: EP

Kind code of ref document: A1