JP6228631B1 - Al alloy sputtering target - Google Patents

Al alloy sputtering target Download PDF

Info

Publication number
JP6228631B1
JP6228631B1 JP2016113609A JP2016113609A JP6228631B1 JP 6228631 B1 JP6228631 B1 JP 6228631B1 JP 2016113609 A JP2016113609 A JP 2016113609A JP 2016113609 A JP2016113609 A JP 2016113609A JP 6228631 B1 JP6228631 B1 JP 6228631B1
Authority
JP
Japan
Prior art keywords
atomic
alloy
sputtering target
film
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016113609A
Other languages
Japanese (ja)
Other versions
JP2017218627A (en
Inventor
慎太郎 ▲吉▼田
慎太郎 ▲吉▼田
博行 奥野
博行 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2016113609A priority Critical patent/JP6228631B1/en
Priority to KR1020187035126A priority patent/KR20190003743A/en
Priority to PCT/JP2017/018333 priority patent/WO2017212879A1/en
Priority to CN201780033719.7A priority patent/CN109312448A/en
Priority to TW106117806A priority patent/TWI632248B/en
Application granted granted Critical
Publication of JP6228631B1 publication Critical patent/JP6228631B1/en
Publication of JP2017218627A publication Critical patent/JP2017218627A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Abstract

【課題】成膜レートの向上に寄与し、且つターゲットの製造性に優れるAl合金スパッタリングターゲットの提供。【解決手段】Cuを6原子%超17原子%以下含有し、残部がAlと0.1〜5.5原子%のNd、La、Y、Sc、Gd、Dy、Lu、Ce、Pr及びTbから選択される少なくとも1種の希土類元素と不可避不純物とから成るAl合金スパッタリングターゲット。反応性スパッタリングで成膜された、窒化アルミニウム薄膜又は酸化アルミニウム薄膜【選択図】なしThe present invention provides an Al alloy sputtering target that contributes to an improvement in film formation rate and is excellent in target productivity. Cu is contained more than 6 atomic% and 17 atomic% or less, and the balance is Al and 0.1 to 5.5 atomic% of Nd, La, Y, Sc, Gd, Dy, Lu, Ce, Pr and Tb. An Al alloy sputtering target comprising at least one rare earth element selected from the following and inevitable impurities. Aluminum nitride thin film or aluminum oxide thin film formed by reactive sputtering [selection] None

Description

本発明は、電極または絶縁膜などの形成に用いられるスパッタリングターゲット(以下、ターゲットともいう)に関するものであり、詳細には液晶ディスプレイ、有機ELディスプレイなどの表示装置またはタッチパネルなどの入力装置に用いられる電極形成に用いられるスパッタリングターゲットに関する。   The present invention relates to a sputtering target (hereinafter also referred to as a target) used for forming an electrode or an insulating film, and is used in detail for a display device such as a liquid crystal display or an organic EL display or an input device such as a touch panel. The present invention relates to a sputtering target used for electrode formation.

Al合金は、電気抵抗率が低く、加工が容易であるなどの理由により、液晶ディスプレイなどの表示装置の分野で汎用されており、配線膜、電極膜または反射電極膜などの材料に利用されている。   Al alloys are widely used in the field of display devices such as liquid crystal displays because of their low electrical resistivity and ease of processing, and are used as materials for wiring films, electrode films, or reflective electrode films. Yes.

例えば、アクティブマトリクス型の液晶ディスプレイは、スイッチング素子である薄膜トランジスタ(TFT)を備えており、その配線材料には、一般に、純Al薄膜またはAl−Nd合金などの各種Al合金薄膜が用いられている。   For example, an active matrix type liquid crystal display includes a thin film transistor (TFT) as a switching element, and various Al alloy thin films such as a pure Al thin film or an Al—Nd alloy are generally used as the wiring material. .

Al合金薄膜の形成には、一般にスパッタリングターゲットを用いたスパッタリング法が採用されている。   For the formation of the Al alloy thin film, a sputtering method using a sputtering target is generally employed.

スパッタリング法は、ターゲットと同じ組成の薄膜を形成できるというメリットを有している。特に、スパッタリング法で成膜されたAl合金薄膜は、平衡状態では固溶しない合金元素を固溶させることができ、薄膜として優れた性能を発揮することから、工業的に有効な薄膜作製方法であり、その原料となるスパッタリングターゲットの開発が進められている。   The sputtering method has an advantage that a thin film having the same composition as the target can be formed. In particular, an Al alloy thin film formed by sputtering can dissolve an alloy element that does not dissolve in an equilibrium state, and exhibits excellent performance as a thin film. Yes, development of a sputtering target as a raw material is underway.

近年、Al合金薄膜の生産性向上を目的として、成膜レートを従来よりも高速化することが検討されており、例えば、特許文献1および2の方法が提案されている。特許文献1では、Al又はAl合金から成り、そのスパッタ面においてX線回折法で測定された(111)結晶方位含有率が20%以上であることを特徴とするスパッタリングターゲットが開示されている。特許文献1の実施例では、AlにSiを添加したAl−Si系合金において、結晶方位を(111)面にすることで、成膜レートの向上が検証されている。   In recent years, for the purpose of improving the productivity of an Al alloy thin film, it has been studied to increase the film forming rate as compared with the prior art. For example, methods of Patent Documents 1 and 2 have been proposed. Patent Document 1 discloses a sputtering target which is made of Al or an Al alloy and has a (111) crystal orientation content of 20% or more measured by X-ray diffraction method on the sputtering surface. In the example of Patent Document 1, it is verified that the film-forming rate is improved by setting the crystal orientation to the (111) plane in an Al—Si based alloy in which Si is added to Al.

また、特許文献2では、Taを含有することを特徴とするAl基合金スパッタリングターゲットが開示されている。特許文献2の実施例では、AlにTaを1.5原子%添加し、成膜レートを純Al比1.6倍以上とするAl−Ta合金が示されている。   Further, Patent Document 2 discloses an Al-based alloy sputtering target characterized by containing Ta. The example of Patent Document 2 shows an Al—Ta alloy in which 1.5 atomic% of Ta is added to Al and the film formation rate is 1.6 times or more the pure Al ratio.

特開平6−128737号公報JP-A-6-128737 特開2012−224942号公報JP 2012-224742 A

しかしながら、特許文献1に記載のAl又はAl合金において(111)結晶方位含有率を20%以上にする方法については、生産性の観点から成膜レートをより改善することが求められる。   However, with respect to the method of setting the (111) crystal orientation content in Al or Al alloy described in Patent Document 1 to 20% or more, it is required to further improve the film formation rate from the viewpoint of productivity.

また、特許文献2に記載のTaを含有するAl合金スパッタリングターゲットについては、Taを1原子%以上添加するとスプレイフォーミングの際にノズルの閉塞を招き、ターゲット製造性が落ちることが懸念される。そのため、ターゲットの製造性を考慮すると成膜レートのさらなる向上は難しくなる。   Moreover, about the Al alloy sputtering target containing Ta of patent document 2, when Ta adds 1 atomic% or more, there exists a concern that a nozzle will be obstruct | occluded at the time of spray forming, and target productivity will fall. For this reason, considering the manufacturability of the target, it is difficult to further improve the film formation rate.

したがって、本発明は成膜レートの向上に寄与し、且つターゲットの製造性に優れるAl合金スパッタリングターゲットを提供することを目的とする。   Accordingly, an object of the present invention is to provide an Al alloy sputtering target that contributes to an improvement in the deposition rate and is excellent in target productivity.

従来、Cuの成膜レートに対する向上作用については注目されていなかったが、本発明者らは、Cuを6原子%超17原子%以下と高い添加量で添加したAl合金スパッタリングターゲットは、Taを含有するAl合金スパッタリングターゲットと比較して高い成膜レートを有するとともに、優れた製造性を併せ持つことを見出し、本発明を完成するに至った。   Conventionally, attention has not been paid to the effect of improving the Cu film formation rate, but the present inventors have proposed that the Al alloy sputtering target to which Cu is added in a high addition amount of more than 6 atomic% and not more than 17 atomic% is Ta. It has been found that it has a high film formation rate as compared with the Al alloy sputtering target contained, and also has excellent manufacturability, and has completed the present invention.

すなわち、本発明は以下の[1]〜[]に係るものである。
[1]Cuを6原子%超17原子%以下、および希土類元素としてNdおよびYよりなる群から選択される少なくとも1種を0.1〜5.5原子%(ただし、Ndについては2.4〜4.0原子%の範囲を、Yについては2.4〜3.0原子%の範囲を除く。)含有し、残部がAlと不可避不純物とから成るAl合金スパッタリングターゲット。
[2]Cuを6原子%超17原子%以下、および希土類元素としてLa、Sc、Gd、Dy、Lu、Ce、PrおよびTbよりなる群から選択される少なくとも1種を0.1〜5.5原子%含有し、残部がAlと不可避不純物とから成るAl合金スパッタリングターゲット。
That is, the present invention relates to the following [1] to [ 2 ].
[1] More than 6 atomic% and 17 atomic% or less of Cu , and at least one selected from the group consisting of Nd and Y as a rare earth element is 0.1 to 5.5 atomic% (however, Nd is 2.4) Al alloy sputtering target containing ~ 4.0 atomic%, excluding the range of 2.4-3.0 atomic% for Y) , the balance being Al and inevitable impurities.
[2] More than 6 atomic% and 17 atomic% or less of Cu, and at least one selected from the group consisting of La, Sc, Gd, Dy, Lu, Ce, Pr and Tb as rare earth elements is 0.1 to 5. An Al alloy sputtering target containing 5 atomic% and the balance being Al and inevitable impurities.

本発明のAl合金スパッタリングターゲットは、Cuを6原子%超17原子%以下含有しているため、Al−Ta合金と比較して、成膜レートを向上できるとともに製造性においても優れている。   Since the Al alloy sputtering target of the present invention contains more than 6 atomic% and 17 atomic% or less of Cu, the film forming rate can be improved and the manufacturability is also improved as compared with the Al-Ta alloy.

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。また、「原子%」と「at%」とは同義である。   Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. “Atom%” and “at%” are synonymous.

本発明のAl合金スパッタリングターゲットは、Al合金薄膜をスパッタリング成膜するためのAl合金スパッタリングターゲットであって、Cuを6原子%超17原子%以下含有し、残部がAlと不可避不純物とから成ることを特徴とする。   The Al alloy sputtering target of the present invention is an Al alloy sputtering target for forming an Al alloy thin film by sputtering, contains Cu in an amount of more than 6 atomic% and 17 atomic% or less, and the balance is made of Al and inevitable impurities. It is characterized by.

Al合金スパッタリングターゲットとは、純Alおよび合金元素を含むAlを主体とするスパッタリングターゲットである。本発明のAl合金スパッタリングターゲットにおけるCuの含有量は、6原子%超であり、好ましくは7原子%以上である。Cuの含有量を6原子%超とすることにより、製造性に優れ、高い成膜レートを得ることができる。   The Al alloy sputtering target is a sputtering target mainly composed of Al containing pure Al and an alloy element. The Cu content in the Al alloy sputtering target of the present invention is more than 6 atomic%, preferably 7 atomic% or more. By making Cu content more than 6 atomic%, it is excellent in productivity and a high film-forming rate can be obtained.

また、Cuの含有量は17原子%以下であり、割れ限界圧下率の低下をさらに抑制するためには好ましくは12原子%以下である。Cuの含有量を17原子%以下とすることにより、SF(スプレイフォーミング)工程での歩留まり、および鍛造工程での割れ限界圧下率の低下を抑制し、ターゲット製造性が急激に低下するのを防ぐことができる。   Further, the Cu content is 17 atomic% or less, and is preferably 12 atomic% or less in order to further suppress the decrease in the crack limit rolling reduction. By setting the Cu content to 17 atomic% or less, the yield in the SF (spray forming) process and the crack limit reduction rate in the forging process are suppressed, and the target productivity is prevented from abruptly decreasing. be able to.

不可避不純物としては、例えば、製造過程などで不可避的に混入する元素、例えば、Fe、Siなどがあり、これらの含有量は合計量で典型的には0.03質量%以下であることが好ましく、より好ましくは0.01質量%以下であることが好ましい。   The inevitable impurities include, for example, elements inevitably mixed in the manufacturing process, for example, Fe, Si, and the like, and the content of these is preferably 0.03% by mass or less in total. More preferably, the content is 0.01% by mass or less.

本発明のAl合金スパッタリングターゲットは、さらに第二添加元素として希土類元素を少量添加しAl−Cu−X合金(X:希土類元素)とすることで、製造性に優れるとともに、希土類元素を添加しない場合よりも成膜レートをさらに向上させることができる。   The Al alloy sputtering target of the present invention is excellent in manufacturability by adding a small amount of rare earth element as a second additive element to make an Al-Cu-X alloy (X: rare earth element), and when no rare earth element is added Thus, the film formation rate can be further improved.

希土類元素の含有量は、0.1原子%以上であることが好ましく、より好ましくは2原子%以上である。希土類元素の含有量を0.1原子%以上とすることにより、上記した第二添加元素による効果を得ることができる。また、希土類元素の含有量は、5.5原子%以下であることが好ましく、より好ましくは3.7原子%以下である。希土類元素の含有量を5.5原子%以下とすることにより、SF工程の歩留まりの低下および割れ限界圧下率の低下を抑制し、ターゲットの製造性が悪化するのを防ぐことができる。   The rare earth element content is preferably 0.1 atomic% or more, more preferably 2 atomic% or more. By setting the content of the rare earth element to 0.1 atomic% or more, the effect of the second additive element described above can be obtained. The rare earth element content is preferably 5.5 atomic percent or less, and more preferably 3.7 atomic percent or less. By setting the rare earth element content to 5.5 atomic% or less, it is possible to suppress a decrease in the yield of the SF process and a decrease in the crack limit rolling reduction, and to prevent the target productivity from deteriorating.

希土類元素とは、ランタノイド元素(周期律表において、原子番号57のLaから原子番号71のLuまでの合計15元素)に、Sc(スカンジウム)とY(イットリウム)とを加えた元素群を意味する。希土類元素の中でも、成膜レートを向上させる観点から、Nd、La、Y、Sc、Gd、Dy、Lu、Ce、PrおよびTbが好ましく、より好ましくはNdである。これらのうち1種または2種以上を任意の組み合わせで用いることができる。   The rare earth element means an element group in which Sc (scandium) and Y (yttrium) are added to a lanthanoid element (a total of 15 elements from La with atomic number 57 to Lu with atomic number 71 in the periodic table). . Among the rare earth elements, Nd, La, Y, Sc, Gd, Dy, Lu, Ce, Pr, and Tb are preferable and Nd is more preferable from the viewpoint of improving the film forming rate. Of these, one or more can be used in any combination.

本発明のAl合金薄膜は、上記した本発明のスパッタリングターゲットを用いてスパッタリング法にて形成することが好ましい。スパッタリング法によれば、成分または膜厚の膜面内均一性に優れた薄膜を容易に形成できるからである。   The Al alloy thin film of the present invention is preferably formed by a sputtering method using the above-described sputtering target of the present invention. This is because according to the sputtering method, a thin film having excellent in-plane uniformity of components or film thickness can be easily formed.

スパッタリング法でAl合金薄膜を形成する方法としては、例えば、上記ターゲットとして、Cuを6原子%超17原子%以下含有し、残部がAlと不可避不純物とから成るものであって、所望の合金薄膜と同一の組成のAl合金スパッタリングターゲットを用いてマグネトロンスパッタリング法により形成する方法、および該ターゲットを用いて反応性スパッタリング法により形成する方法等が挙げられる。   As a method for forming an Al alloy thin film by sputtering, for example, as the above target, Cu is contained more than 6 atomic% and 17 atomic% or less, and the balance is composed of Al and inevitable impurities. The method of forming by the magnetron sputtering method using the Al alloy sputtering target of the same composition as the above, the method of forming by the reactive sputtering method using the target, and the like.

生産性および膜質制御などの観点を考慮すると、反応性スパッタリング法を採用することが好ましい。反応性スパッタリング法により成膜されたAl合金薄膜としては、例えば、窒化アルミニウム薄膜および酸化アルミニウム薄膜が挙げられる。   In view of productivity and film quality control, it is preferable to employ a reactive sputtering method. Examples of the Al alloy thin film formed by the reactive sputtering method include an aluminum nitride thin film and an aluminum oxide thin film.

反応性スパッタリング法の条件は、具体的には例えば、使用するAl合金の種類などに応じて適切に制御すればよいが、以下のように制御することが好ましい。
・基板温度:室温〜400℃
・スパッタパワー:100〜500W
・到達真空度:1×10−5Torr以下
Specifically, the conditions of the reactive sputtering method may be appropriately controlled according to, for example, the type of the Al alloy to be used, but are preferably controlled as follows.
-Substrate temperature: room temperature to 400 ° C
・ Sputtering power: 100-500W
-Ultimate vacuum: 1 x 10-5 Torr or less

上記ターゲットの形状は、スパッタリング装置の形状または構造に応じて任意の形状(例えば、角型プレート状、円形プレート状およびドーナツプレート状など)に加工したものが含まれる。   The shape of the target includes those processed into an arbitrary shape (for example, a square plate shape, a circular plate shape, a donut plate shape, etc.) according to the shape or structure of the sputtering apparatus.

上記ターゲットの製造方法としては、例えば、溶解鋳造法、粉末焼結法、スプレイフォーミング法でAl基合金からなるインゴットを製造して得る方法、およびAl基合金からなるプリフォーム(最終的な緻密体を得る前の中間体)を製造した後に該プリフォームを緻密化手段により緻密化して得られる方法が挙げられる。   Examples of the method for producing the target include a method obtained by producing an ingot made of an Al-based alloy by a melt casting method, a powder sintering method, a spray forming method, and a preform (final dense body) made of an Al-based alloy. And a method obtained by densifying the preform by a densifying means after the intermediate) is obtained.

本発明は、上記Al合金薄膜を備えた表示装置および入力装置も含むものである。表示装置の態様として、例えば、前記Al合金膜が、薄膜トランジスタのソース−ドレイン電極並びに信号線に用いられ、ドレイン電極が透明導電膜に直接接続されている表示装置が挙げられる。また、入力装置の態様としては、例えば、タッチパネルなどのように表示装置に入力手段を備えた入力装置が挙げられる。   The present invention also includes a display device and an input device provided with the Al alloy thin film. Examples of the display device include a display device in which the Al alloy film is used for a source-drain electrode and a signal line of a thin film transistor, and the drain electrode is directly connected to a transparent conductive film. Moreover, as an aspect of an input device, the input device provided with the input means in the display apparatus like a touch panel etc. is mentioned, for example.

以下に実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではなく、その趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples and comparative examples. However, the present invention is not limited to these examples, and is implemented with modifications within a range that can be adapted to the gist thereof. All of which are within the scope of the present invention.

(1)スパッタリングターゲットの作製
スプレイフォーミングにて110kgを溶解し、Al合金プリフォームを得た後、プリフォーム重量を重量計により測定し、スプレイフォーミング時での歩留まり(SF歩留まり)を算出した。得られたプリフォームをカプセルに封入し脱気して、HIP装置で緻密化した。そして450℃にて加熱を施した後、鍛造工程にて下記式を用いて圧下率を算出した。
圧下率:(L−L)/L×100 (%)
初期サンプル長さ:L、圧下後サンプル長さ:L
また圧下時に目視によりサンプルの割れを確認し、割れが確認された直前の圧下率を割れ限界圧下率とした。
(1) Production of sputtering target After 110 kg was melted by spray forming to obtain an Al alloy preform, the weight of the preform was measured with a weigh scale, and the yield at the time of spray forming (SF yield) was calculated. The obtained preform was enclosed in a capsule, degassed, and densified with a HIP apparatus. And after heating at 450 degreeC, the rolling reduction was computed using the following formula at the forge process.
Reduction ratio: (L 0 -L 1 ) / L 0 × 100 (%)
Initial sample length: L 0 , sample length after reduction: L 1
Moreover, the crack of the sample was visually confirmed at the time of rolling, and the rolling reduction just before the cracking was confirmed was made into the cracking critical rolling reduction.

SF歩留まりについては、下記基準により評価した。
SF歩留まり = プリフォーム重量/溶解原料(110kg)×100 (%)
○:40%以上
△:30%超〜40%未満
×:30%以下
The SF yield was evaluated according to the following criteria.
SF yield = preform weight / melting raw material (110 kg) x 100 (%)
○: 40% or more Δ: more than 30% to less than 40% ×: 30% or less

割れ限界圧下率については、下記基準により評価した。
○:50%以上
△:30%超〜50%未満
×:30%以下
The crack limit rolling reduction was evaluated according to the following criteria.
○: 50% or more Δ: more than 30% to less than 50% ×: 30% or less

(2)成膜
透明基板として無アルカリ硝子板(板厚0.7mm、直径4インチ)を用い、その表面に、DCマグネトロンスパッタリング法により、表1に示すAl合金を成膜した。成膜に当たっては、成膜前にチャンバー内の雰囲気を一旦、到達真空度:3×10−6Torrに調整してから、上記金属膜と同一の成分組成を有する直径4インチの円盤型スパッタリングターゲットを用い、下記条件でスパッタリングを行った。
(2) Film formation Using an alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) as a transparent substrate, an Al alloy shown in Table 1 was formed on the surface by DC magnetron sputtering. In film formation, the atmosphere in the chamber is once adjusted to an ultimate vacuum of 3 × 10 −6 Torr before film formation, and then a disk-type sputtering target having a diameter of 4 inches having the same composition as that of the metal film. Sputtering was performed under the following conditions.

(スパッタリング条件)
・Arガス圧:2mTorr
・Arガス流量:19sccm
・スパッタパワー:500W
・基板温度:室温
・成膜温度:室温
・成膜時間:10分間
(Sputtering conditions)
Ar gas pressure: 2 mTorr
Ar gas flow rate: 19 sccm
・ Sputtering power: 500W
-Substrate temperature: Room temperature-Film formation temperature: Room temperature-Film formation time: 10 minutes

(3)成膜レートの算出
作製した薄膜の膜厚を触針段差計(NTS製 Alpha Step250)によって測定した。膜厚の測定は薄膜中心部から、半径方向に3点測定しその平均値を膜厚(Å)とした。このようにして得られた膜厚をスパッタリング時間(s)で除して、平均成膜速度(Å/s)を算出した。
(3) Calculation of film-forming rate The film thickness of the produced thin film was measured with a stylus step meter (Alpha Step 250 manufactured by NTS). The film thickness was measured at three points in the radial direction from the center of the thin film, and the average value was defined as the film thickness (Å). The film thickness thus obtained was divided by the sputtering time (s) to calculate the average film formation rate (Å / s).

後述する実施例1では、Al合金平均成膜速度を純Al平均成膜速度にて除して成膜レート比を求めた。表1に示していないが、Al−1原子%Taの成膜レート比(成膜レート:純Al比)は1.5倍であった。したがって、成膜レート比が、Al−1原子%Taの成膜レート比である1.50を超える場合を、合金化による成膜レートの向上効果が認められる範囲とした。また、実施例2では、Al−7原子%Cu−希土類合金の平均成膜速度を、Cuを7原子%含有するAl合金にて除して成膜レート比を求めた。   In Example 1 described later, the deposition rate ratio was determined by dividing the Al alloy average deposition rate by the pure Al average deposition rate. Although not shown in Table 1, the film formation rate ratio (film formation rate: pure Al ratio) of Al-1 atomic% Ta was 1.5 times. Therefore, the case where the film formation rate ratio exceeds 1.50, which is the film formation rate ratio of Al-1 atomic% Ta, was set as a range in which the effect of improving the film formation rate by alloying was recognized. In Example 2, the film formation rate ratio was determined by dividing the average film formation rate of the Al-7 atomic% Cu-rare earth alloy by the Al alloy containing 7 atomic% of Cu.

(4)総合判定
総合判定については、下記基準により評価した。
○:成膜レート比が1.50以上であり、SF歩留まりおよび割れ限界圧下率の少なくとも一方が○である。
△:成膜レート比が1.50以上であり、SF歩留まりおよび割れ限界圧下率がいずれも○ではない。
×:成膜レート比が1.50以上であるがSF歩留まりおよび割れ限界圧下率の少なくとも一方が×である、または成膜レート比が1.50以下である。
(4) Comprehensive judgment The comprehensive judgment was evaluated according to the following criteria.
◯: The film formation rate ratio is 1.50 or more, and at least one of the SF yield and the crack limit rolling reduction is ◯.
(Triangle | delta): The film-forming rate ratio is 1.50 or more, and neither SF yield nor crack limit rolling reduction is (circle).
X: The film formation rate ratio is 1.50 or more, but at least one of SF yield and crack limit rolling reduction is x, or the film formation rate ratio is 1.50 or less.

<実施例1>
表1に示す組成のAl膜を成膜し、成膜レートおよび製造性について評価した。結果を表1に示す。表1において、例1〜4は実施例、例5〜8は比較例である。
<Example 1>
An Al film having the composition shown in Table 1 was formed, and the film formation rate and manufacturability were evaluated. The results are shown in Table 1. In Table 1, Examples 1 to 4 are examples, and Examples 5 to 8 are comparative examples.

Figure 0006228631
Figure 0006228631

表1に示すように例1〜7の純Al、Al−1原子%Cu〜Al−17原子%CuではCu添加量の増大に伴い、成膜レートの向上が確認され、例4のAl−17原子%Cuでは純Al比2.12倍まで向上した。   As shown in Table 1, in pure Al of Examples 1 to 7, Al-1 atomic% Cu to Al-17 atomic% Cu, an improvement in the film formation rate was confirmed as the amount of Cu added increased. With 17 atomic% Cu, the pure Al ratio was improved to 2.12 times.

例1〜4のAl−6.1原子%Cu〜Al−17原子%CuではAl−1原子%Ta(1.50倍)より速い成膜速度が確認されたが、成膜レートが向上した。一方、例5〜8に示す純Al、Al−1原子%CuおよびAl−5原子%Cuの成膜レート比はAl−1原子%Taと同等程度以下であり、成膜レートが向上しなかった。この結果から、Al合金スパッタリングターゲットにおけるCuの含有量を6原子%超とすることにより、成膜レートが向上することがわかった。   In Examples 1-4, Al-6.1 atomic% Cu to Al-17 atomic% Cu were confirmed to have a higher film forming speed than Al-1 atomic% Ta (1.50 times), but the film forming rate was improved. . On the other hand, the film formation rate ratios of pure Al, Al-1 atomic% Cu and Al-5 atomic% Cu shown in Examples 5 to 8 are less than or equal to Al-1 atomic% Ta, and the film formation rate does not improve. It was. From this result, it was found that the film formation rate was improved by setting the Cu content in the Al alloy sputtering target to be more than 6 atomic%.

また、例4に示すように、Cuの含有量が12原子%を超えると割れ限界圧下率が低下することから、Cuの含有量を12原子%以下とすることにより、割れ限界圧下率の低下を抑制できることがわかった。Cuの含有量の増加に伴い割れ限界圧下率が低下した要因として、添加元素の増大に伴い、ターゲット中の金属化合物が増大したため、ターゲット硬度が増加し、結果割れが発生したと考えられる。   Moreover, as shown in Example 4, when the Cu content exceeds 12 atomic%, the crack limit rolling reduction decreases, so by setting the Cu content to 12 atomic% or less, the crack critical rolling reduction is decreased. It was found that can be suppressed. It is considered that as a factor that the crack limit rolling reduction decreased with the increase in the Cu content, the metal hardness in the target increased with the increase in the added elements, so that the target hardness increased and as a result cracking occurred.

また、例8に示すように、Al−17原子%CuよりCu添加量が多い範囲では、ターゲット製造時の加工工程に割れが頻発し、生産性が悪くなることがわかった。この結果から、Cuの含有量を17原子%以下とすることにより、ターゲットの生産性を向上できることがわかった。   Further, as shown in Example 8, it was found that, in the range where the amount of Cu added is larger than that of Al-17 atomic% Cu, cracks frequently occur in the processing step during target production, resulting in poor productivity. From this result, it was found that the productivity of the target can be improved by setting the Cu content to 17 atomic% or less.

<実施例2>
実施例1で抽出したAl−Cu合金に、少量で成膜レートの向上作用が確認されている、希土類元素を添加し、Al−Cu−X合金(X:希土類元素)とすることで、さらなる成膜レートの向上作用を確認した。成膜レートおよび製造性を評価した結果を表2に示す。表2において、例9〜24は実施例、例25および26は比較例である。
<Example 2>
By adding a rare earth element, which has been confirmed to improve the film formation rate in a small amount, to the Al—Cu alloy extracted in Example 1, an Al—Cu—X alloy (X: rare earth element) can be further added. The effect of improving the deposition rate was confirmed. Table 2 shows the results of evaluating the film formation rate and manufacturability. In Table 2, Examples 9 to 24 are Examples, and Examples 25 and 26 are Comparative Examples.

Figure 0006228631
Figure 0006228631

表2に示すように、例9〜24のAl−7原子%Cu−希土類合金では、Al−7原子%Cu合金に対する成膜レート比が1.01〜1.78であり、成膜レートの向上作用が確認された。これに対して、例25では希土類元素の添加量が0.05原子%と少なすぎるため、第二添加元素による成膜レート向上作用は確認されなかった。また、例26は、希土類元素の添加量が6原子%と多すぎるため、割れ限界圧下率が基準に達しなかった。   As shown in Table 2, in the Al-7 atom% Cu-rare earth alloys of Examples 9 to 24, the film formation rate ratio with respect to the Al-7 atom% Cu alloy is 1.01 to 1.78. Improvement effect was confirmed. On the other hand, in Example 25, since the addition amount of the rare earth element was too small, 0.05 atomic%, the film forming rate improving effect by the second additive element was not confirmed. In addition, in Example 26, the amount of rare earth element added was too large at 6 atomic%, so that the critical crack reduction did not reach the standard.

この結果から、さらに第二添加元素として、0.1〜5.5原子%の希土類元素を添加することにより、Al合金スパッタリングターゲットの成膜レートを向上できることがわかった。   From this result, it was found that the film formation rate of the Al alloy sputtering target can be improved by adding 0.1 to 5.5 atomic% of a rare earth element as the second additive element.

Claims (2)

Cuを6原子%超17原子%以下、および希土類元素としてNdおよびYよりなる群から選択される少なくとも1種を0.1〜5.5原子%(ただし、Ndについては2.4〜4.0原子%の範囲を、Yについては2.4〜3.0原子%の範囲を除く。)含有し、残部がAlと不可避不純物とから成るAl合金スパッタリングターゲット。 More than 6 atomic% and 17 atomic% or less of Cu , and at least one selected from the group consisting of Nd and Y as a rare earth element is 0.1 to 5.5 atomic% (however, Nd is 2.4 to 4. An Al alloy sputtering target containing 0 atomic%, excluding the range of 2.4 to 3.0 atomic% for Y), and the balance consisting of Al and inevitable impurities. Cuを6原子%超17原子%以下、および希土類元素としてLa、Sc、Gd、Dy、Lu、Ce、PrおよびTbよりなる群から選択される少なくとも1種を0.1〜5.5原子%含有し、残部がAlと不可避不純物とから成るAl合金スパッタリングターゲット。0.1 to 5.5 atomic percent of Cu at least 6 atomic percent and 17 atomic percent or less, and at least one selected from the group consisting of La, Sc, Gd, Dy, Lu, Ce, Pr and Tb as rare earth elements An Al alloy sputtering target that contains Al and inevitable impurities.
JP2016113609A 2016-06-07 2016-06-07 Al alloy sputtering target Expired - Fee Related JP6228631B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016113609A JP6228631B1 (en) 2016-06-07 2016-06-07 Al alloy sputtering target
KR1020187035126A KR20190003743A (en) 2016-06-07 2017-05-16 Al alloy sputtering target
PCT/JP2017/018333 WO2017212879A1 (en) 2016-06-07 2017-05-16 Al alloy sputtering target
CN201780033719.7A CN109312448A (en) 2016-06-07 2017-05-16 Aluminum alloy sputtering target material
TW106117806A TWI632248B (en) 2016-06-07 2017-05-31 Aluminum alloy sputtering target, aluminum alloy film, display device and input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113609A JP6228631B1 (en) 2016-06-07 2016-06-07 Al alloy sputtering target

Publications (2)

Publication Number Publication Date
JP6228631B1 true JP6228631B1 (en) 2017-11-08
JP2017218627A JP2017218627A (en) 2017-12-14

Family

ID=60265857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113609A Expired - Fee Related JP6228631B1 (en) 2016-06-07 2016-06-07 Al alloy sputtering target

Country Status (5)

Country Link
JP (1) JP6228631B1 (en)
KR (1) KR20190003743A (en)
CN (1) CN109312448A (en)
TW (1) TWI632248B (en)
WO (1) WO2017212879A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592406A (en) * 2019-10-10 2019-12-20 新疆众和股份有限公司 Preparation method of high-purity aluminum-copper alloy target blank for sputtering
CN110714142A (en) * 2019-11-06 2020-01-21 长沙迅洋新材料科技有限公司 Al-Sc-X multi-element alloy target and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322528A (en) * 2001-04-24 2002-11-08 Mitsubishi Chemicals Corp Electrode wiring material and production method therefor
US20050112019A1 (en) * 2003-10-30 2005-05-26 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Aluminum-alloy reflection film for optical information-recording, optical information-recording medium, and aluminum-alloy sputtering target for formation of the aluminum-alloy reflection film for optical information-recording
US20110198602A1 (en) * 2008-11-05 2011-08-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy film for display device, display device, and sputtering target
JP5260452B2 (en) * 2009-09-10 2013-08-14 株式会社神戸製鋼所 Al alloy reflective film with excellent hot water resistance and sputtering target
JP5548396B2 (en) * 2009-06-12 2014-07-16 三菱マテリアル株式会社 Wiring layer structure for thin film transistor and manufacturing method thereof
JP5179604B2 (en) * 2010-02-16 2013-04-10 株式会社神戸製鋼所 Al alloy film for display devices
JP5681368B2 (en) * 2010-02-26 2015-03-04 株式会社神戸製鋼所 Al-based alloy sputtering target
WO2014080933A1 (en) * 2012-11-21 2014-05-30 株式会社コベルコ科研 Electrode used in display device or input device, and sputtering target for use in electrode formation
CN104141107B (en) * 2013-05-10 2016-06-08 中国科学院宁波材料技术与工程研究所 A kind of Al-Cu-N abrasion-resistant hardcoat and its preparation method
US20160345425A1 (en) * 2014-02-07 2016-11-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wiring film for flat panel display
JP6445901B2 (en) * 2015-03-10 2018-12-26 株式会社神戸製鋼所 Light absorbing conductive film and sputtering target for forming light absorbing conductive film
JP2017043806A (en) * 2015-08-26 2017-03-02 株式会社神戸製鋼所 Light absorption thin film and low reflective conductive film

Also Published As

Publication number Publication date
WO2017212879A1 (en) 2017-12-14
JP2017218627A (en) 2017-12-14
TW201742941A (en) 2017-12-16
KR20190003743A (en) 2019-01-09
TWI632248B (en) 2018-08-11
CN109312448A (en) 2019-02-05

Similar Documents

Publication Publication Date Title
KR102118816B1 (en) Sputtering target for forming wiring film of flat panel display
TWI245806B (en) Thin film aluminum alloy and sputtering target to form the same
JP5541651B2 (en) Sputtering target for wiring film formation for thin film transistors
WO2013104295A1 (en) Molybdenum-niobium alloy plate target material processing technique
TWI452161B (en) Method for producing oxygen-containing copper alloy film
CN101691656B (en) Al-ni-la-cu alloy sputtering target and manufacturing method thereof
KR20100135957A (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
KR20210029744A (en) Copper alloy sputtering target and manufacturing method of copper alloy sputtering target
JP2012224942A (en) Al-BASED ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
JP2004204284A (en) Sputtering target, al alloy film, and electronic component
JP2010074017A (en) Wiring film for thin-film transistor having excellent adhesion and sputtering target for forming the same
JP6228631B1 (en) Al alloy sputtering target
JP3634208B2 (en) Electrode / wiring material for liquid crystal display and sputtering target
TW201606099A (en) Silver-alloy based sputtering target
JP4743645B2 (en) Metal thin film wiring
JP6033493B1 (en) Copper-based alloy sputtering target
CN114892134B (en) Molybdenum alloy tube target material and preparation method and application thereof
US9518320B2 (en) Copper alloy sputtering target
JP2013147738A (en) Ta-CONTAINING ALUMINUM OXIDE THIN FILM
JP5077695B2 (en) Sputtering target for forming wiring film for flat panel display
JP2010222616A (en) Cu ALLOY FILM FOR WIRING FILM, AND SPUTTERING TARGET MATERIAL FOR FORMING WIRING FILM
JP2001011554A (en) Al ALLOY WIRING AND Al ALLOY TARGET

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171013

R150 Certificate of patent or registration of utility model

Ref document number: 6228631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees