WO2017212815A1 - Trickle charging power supply system - Google Patents
Trickle charging power supply system Download PDFInfo
- Publication number
- WO2017212815A1 WO2017212815A1 PCT/JP2017/016609 JP2017016609W WO2017212815A1 WO 2017212815 A1 WO2017212815 A1 WO 2017212815A1 JP 2017016609 W JP2017016609 W JP 2017016609W WO 2017212815 A1 WO2017212815 A1 WO 2017212815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage battery
- trickle
- charging
- power supply
- power
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/30—Nickel accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/24—Electrodes for alkaline accumulators
- H01M4/32—Nickel oxide or hydroxide electrodes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a technology that uses a storage battery (also called a secondary battery), and relates to a trickle charge of the storage battery, a power supply system, and the like.
- a storage battery also called a secondary battery
- SOC State Of Charge
- a power supply system that uses a storage battery to take measures in an emergency such as a power failure.
- This power supply system is called an emergency power supply system or a backup power supply system.
- a storage battery is electrically connected between a charging power supply connected to a commercial power system and a device as a load.
- This power supply system normally operates a device that is a load based on AC power from a commercial power system, while charging a storage battery from a power source for charging, and discharges from the storage battery to a device that is a load during a power failure. To supply power.
- the float charging method is a method in which a storage battery is charged at a constant voltage in a system in which a storage battery is electrically connected in parallel to a charger as a charging power source and a load. This charging power source is used for both power supply to the load and charging of the storage battery.
- the storage battery is always applied with a voltage even in a fully charged state, and a current flows through the storage battery in accordance with a decrease in the amount of charge due to self-discharge of the storage battery, so that the fully charged state is maintained.
- the trickle charging method is a method in which a storage battery is charged with a minute current in a system in which the storage battery is electrically connected between a charger as a charging power source and a load.
- a device as a load is operated from a charging power source based on AC power of a commercial power system.
- the storage battery is charged with a minute current from the charging power source in a state where the storage battery is electrically disconnected from the load.
- charging is continuously performed with a minute current of, for example, about 0.001 C to 0.1 C in order to compensate for the decrease in charging power from the fully charged state due to the self-discharge of the storage battery.
- Patent No. 5514594 (patent document 1) is mentioned as a prior art example regarding charge of a storage battery.
- Patent Document 1 describes that a float charge system for a nickel metal hydride battery performs float charge on the nickel metal hydride battery, and particularly determines that a float charge current value is determined according to the storage battery state.
- trickle charging systems that perform trickle charging of lead-acid batteries and emergency power supply systems that use lead-acid batteries are common.
- an inexpensive lead storage battery can be used, but the discharge of the lead storage battery has a low output and a large current discharge cannot be realized. Therefore, the system may not be able to supply sufficient power to the load during a power failure. That is, the trickle charge system and power supply system of the prior art have problems with respect to trickle charge and discharge output of the storage battery.
- a representative embodiment of the present invention is a trickle charge power supply system that is a power supply system including a trickle charge system, and has the following configuration.
- a trickle charge power supply system includes a storage battery unit including a nickel-zinc battery as a storage battery, a commercial power system, a load, and a charging power source connected to the storage battery unit.
- the storage battery is not connected to the load, and based on the AC power of the commercial power system, trickle charging is performed on the storage battery of the storage battery unit by DC power from the charging power source.
- the storage battery of the storage battery unit is connected to the load, and DC power is supplied from the storage battery of the storage battery unit to the load, and the storage battery is fully charged.
- the trickle charge voltage of the trickle charge is 1
- the maximum current trickle charge current is 1C.
- a power supply system that performs trickle charging using a storage battery
- power supply to a load can be realized by discharging the storage battery with as high output and large current as possible at the time of a power failure.
- a discharge function is realized, and the life of the storage battery can be extended as long as possible while preventing overcharging, that is, the discharge function is maintained for a long period of time. it can.
- Lead acid batteries have advantages such as low cost and excellent stability compared to other batteries.
- the lead storage battery on the other hand, has disadvantages such as a small charge / discharge current, that is, low output.
- the lead-acid battery is suitable for long-time use, for example, an emergency power system for a specific load with a small load fluctuation amount. Since lead-acid batteries have a small discharge current, they are not suitable for applications that require a large current discharge. In order to realize a large current discharge using a lead storage battery, the required capacity becomes large. As a result, a large installation space is required, resulting in high cost.
- Nickel metal hydride batteries have advantages such as a larger charge / discharge current than lead acid batteries.
- nickel-metal hydride batteries have low energy density and large self-discharge.
- the cost per unit capacity (kwh) of a nickel metal hydride battery is higher than that of a lead battery. For this reason, in the case of installation of a large-capacity nickel metal hydride battery, the cost becomes great.
- nickel-metal hydride batteries are also required to prevent overdischarge and overcharge.
- a nickel zinc battery is known as a storage battery capable of discharging at a high output.
- the nickel zinc battery is an alkaline secondary battery in which the negative electrode material of the nickel metal hydride battery is changed to zinc.
- the nickel zinc battery can be charged and discharged at a higher current value than the lead acid battery.
- Nickel zinc batteries have high energy density and low self-discharge. Since the nickel zinc battery has a battery voltage about 0.4 V higher than that of the nickel metal hydride battery, the energy density per volume is 1.4 times larger.
- Nickel zinc batteries are superior in cost to nickel hydrogen batteries.
- the nickel-zinc battery is highly safe because a water-based electrolyte is used in the same manner as lead-acid batteries and nickel-metal hydride batteries.
- Zinc of the negative electrode of the nickel-zinc battery is excellent in environmental compatibility and material cost, so that a small, lightweight, and inexpensive system can be configured. Further, similarly to the nickel-metal hydride battery, the nickel-zinc battery can absorb oxygen generated from the positive electrode by overcharging at the negative electrode.
- Nickel-zinc batteries have been slow to spread as storage batteries because they have faded in terms of cycle life due to dendrites. Recently, research and development of nickel-zinc batteries with a long cycle life with reduced dendrites is underway.
- the float charge system like patent document 1 uses a nickel metal hydride battery, compared with a lead storage battery, the energy density per volume is twice as large and can comprise a small and lightweight system.
- the cost becomes high as described above.
- alkaline storage batteries using nickel electrodes such as nickel-zinc batteries
- have a problem in terms of charging efficiency because charging reaction and oxygen generation reaction occur in a trickle charge.
- the problem is particularly remarkable in the case of trickle charging at a high temperature.
- the high temperature is a temperature higher than room temperature of about 30 to 60 ° C.
- the adoption of the trickle charging method is as follows.
- an emergency power supply system or the like when the storage battery is kept in a fully charged state for a long period of time, the amount of power stored in the storage battery is reduced due to the self-discharge of the storage battery, and the SOC value is lowered. Therefore, when using the discharge of the storage battery in the event of an emergency such as a power failure after a long period of time, the rated performance may not be exhibited and may not be used. Therefore, it is preferable to perform trickle charging in order to compensate for the power reduction due to the self-discharge of the storage battery and keep the storage battery in a fully charged state.
- trickle charging when the SOC of the storage battery approaches a fully charged state, the trickle charging current naturally decreases. Therefore, the trickle charging method is effective in preventing overcharge of the storage battery.
- the trickle charge power supply system of the embodiment is configured.
- a nickel zinc battery is newly applied as a storage battery, and the trickle charge for the storage battery is performed.
- the trickle charge power supply system according to the embodiment has a configuration in which suitable trickle charge control, control conditions, and the like are designed so that the preferred trickle charge of the nickel zinc battery can be performed.
- the trickle charge power supply system of the embodiment realizes higher output and higher current discharge than the conventional system, and maximizes the life of the nickel zinc battery.
- CA is a unit representing the charge / discharge characteristics of a storage battery.
- C in CA is a unit representing the discharge rate of the storage battery, and A represents a unit such as an ampere representing a current value.
- the discharge rate is a relative ratio of current during discharge to battery capacity.
- the battery capacity indicates the amount of electricity that can be discharged and taken out before the end of discharge, and its unit is Ah (ampere hour) or the like.
- 1C indicates a current value at which discharge of a single cell having a capacity of a nominal capacity value is constant-current discharged and discharge is completed in one hour.
- 1CA indicates a current value that actually flows in the case of 1C.
- trickle charging charging is performed over a long period of time, so the effect of the charging voltage value on the life is large, so it is necessary to pay attention to the charging voltage value.
- the charging characteristics are affected by temperature, it is necessary to pay attention to the temperatures of the storage battery and the charger unit.
- the type and capacity of the storage battery need to be designed according to the time of power failure, that is, the time of discharge and the power consumption of the load.
- FIG. 1 shows a configuration of a trickle charge power supply system according to an embodiment.
- the trickle charge power supply system of the embodiment is a system connected to a commercial power system and a load 2 and includes a trickle charge system 10, a power failure detection relay unit 4, a switch 5, and the like.
- the trickle charging system 10 is a system that performs trickle charging, and includes a charging power source 1 and a storage battery unit 3.
- the load 2 is a device or system that becomes an electrical load.
- the trickle charging system 10 is normally in a standby state, that is, in a state where trickle charging is performed from the charging power source 1 to the storage battery 30 in order to prepare for a power failure or the like.
- the charging power source 1 is a charger unit, and the input side is connected to the terminal unit 6 of the commercial power system through an AC electric wire 71.
- the output side of the charging power source 1 is connected to the load 2 through the DC electric wire 72.
- the charging power source 1 is connected to the storage battery unit 3 through a DC electric wire 73.
- the terminal unit 6 inputs AC power from the commercial power system and outputs it to the charging power source 1.
- the power failure detection relay unit 4 is connected to the AC wire 71 through the wire 75.
- the power failure detection relay unit 4 includes a relay circuit and detects a power failure state as a supply state of AC power of the commercial power system.
- the power failure detection relay unit 4 is connected to the switch 5 through a signal line, and switches the switch 5 between an on state and an off state by a control signal 81 to be output.
- the power failure detection relay unit 4 gives an off signal for turning off the switch 5 as the control signal 81 in the normal state, that is, the time during which the non-power failure state is detected.
- the power failure detection relay unit 4 gives an ON signal for turning on the switch 5 as the control signal 81 during the time when the power failure state is detected.
- the charging power source 1 includes an inverter that is a conversion circuit that converts AC power from a commercial power system into DC power. Further, the charging power source 1 includes a control circuit for performing trickle charging of the storage battery 30 of the storage battery unit 3.
- a DC electric wire 74 from the storage battery unit 3 is connected to the DC electric wire 72 between the charging power source 1 and the load 2.
- the DC power 103 from the charging power source 1 and the storage battery unit 3 is input to the load 2 as a load input through the DC wire 72 and the DC wire 73.
- DC power is normally supplied from the charging power source 1 to the storage battery 30 of the storage battery unit 3. That is, charging 101 for the storage battery 30 of the storage battery unit 3 is performed by the DC current of the DC power.
- the DC power line 74 outputs DC power from the storage battery 30 of the storage battery unit 3 at the time of a power failure. That is, the discharge 102 from the storage battery 30 is performed by the direct current of the direct-current power. The electric power of the discharge 102 is supplied as DC power 103 to the load 2 through the DC electric wire 74.
- a switch 5 is provided in the middle of the DC electric wire 74.
- the switch 5 is switched between an on state and an off state based on a control signal 81 input to the control terminal. Normally, when the switch 5 is in the OFF state, the DC electric wire 74 is not connected to the DC electric wire 72, so that the discharge 102 from the storage battery 30 is not performed. At the time of the power failure, during the time when the switch 5 is on, the DC electric wire 74 is connected to the DC electric wire 72, so that the discharge 102 from the storage battery 30 is performed.
- the storage battery unit 3 includes a storage battery 30.
- the storage battery 30 is constituted by a nickel zinc battery.
- the storage battery unit 3 receives charge 101 which is trickle charge from the charging power source 1 at normal times, and discharges 102 to the load 2 at power failure.
- the storage battery 30 is disconnected from the load 2 device, that is, the switch 5 is turned off. Then, the storage battery 30 of the storage battery unit 3 is charged 101 from the charging power source 1 with a small current, for example, 0.001 to 0.1 C as a trickle charging current. By this trickle charge, the storage battery 30 is held in a fully charged state.
- the trickle charge power supply system detects a power failure by the power failure detection relay unit 4 and turns on the switch 5 so that the storage battery 30 is connected to the load 2. Then, discharging 102 is performed from the storage battery 30 of the storage battery unit 3, and the electric power is supplied to the load 2 as DC power 103. As a result, supply of the DC power 103 with a sufficient amount of discharged power from the storage battery 30 is realized, and the operation of the device that is the load 2 is continued during a power failure.
- the trickle charge power supply system according to the embodiment realizes high output and large current discharge as compared with a trickle charge power supply system using a conventional lead storage battery.
- the trickle charge power supply system of the embodiment prevents overcharge of the storage battery 30 and maximizes the life of the storage battery 30 by the trickle charge method.
- the trickle charge power supply system according to the embodiment realizes an inexpensive system as compared with a system using a conventional nickel metal hydride battery or the like.
- the trickle charge power supply system of the embodiment realizes a system that is safer and more environmentally friendly than a system using a conventional nickel metal hydride battery or the like.
- FIG. 2 shows a configuration of the storage battery unit 3 in the embodiment.
- the storage battery unit 3 has a configuration in which nickel zinc batteries that are a plurality of storage batteries 30 are connected in series.
- a plurality of single cells are connected in series, whereby an assembled battery is configured.
- a DC electric wire 73 and a DC electric wire 74 are connected to a plurality of storage batteries 30 through a storage battery control unit 31.
- a positive electrode terminal is provided on the uppermost potential side of the battery pack of the storage battery 30 and is electrically connected to the DC electric wire 73 and the DC electric wire 74.
- a negative electrode terminal is provided on the lowest potential side of the assembled battery and is connected to the ground.
- the storage battery control unit 31 adjusts and controls states of currents and voltages of the plurality of storage batteries 30.
- a storage battery state detection unit 32 is connected to a plurality of storage batteries 30 through a storage battery control unit 31.
- the storage battery state detection unit 32 measures and detects states such as current, voltage, and temperature of the plurality of storage batteries 30. Further, the storage battery state detection unit 32 may detect the SOC value of the storage battery 30 of the storage battery unit 3 by calculation based on the current, voltage, temperature, and the like of the plurality of storage batteries 30.
- the trickle charging system 10 may determine normality / abnormality of the storage battery 30 using the detection value of the storage battery state detection unit 32 of the storage battery unit 3.
- Trickle charging system 10 may determine the fully charged state of storage battery 30 using the SOC value of the detected value, and execute control according to the state. Examples of the control include control for stopping the charging 101 and the discharging 102 according to the SOC value.
- the storage battery unit 3 is not limited to a configuration in which the plurality of storage batteries 30 are connected in series, but may be configured in a parallel connection of the plurality of storage batteries 30.
- the storage battery unit 3 may have both a series connection and a parallel connection, that is, a structure in which a plurality of assembled batteries are connected in parallel. Any form is possible, and what is necessary is just to select according to designs, such as required storage battery capacity.
- the detailed configuration example of the nickel zinc battery used as the storage battery 30 is as follows.
- the nickel-zinc battery has nickel (Ni) at one electrode of the positive electrode or the negative electrode, zinc (Zn) at the other electrode of the positive electrode or the negative electrode, and an electrolytic solution made of an alkaline aqueous solution.
- the nickel electrode includes, as a component and a manufacturing method, an additive, a binder, and the like with respect to an active material mainly composed of nickel hydroxide particles.
- the nickel hydroxide particles may be solid-solved with cobalt, zinc, cadmium, or the like, or the surface may be coated with a cobalt compound.
- the additive in addition to cobalt oxide, cobalt compounds such as metal cobalt and cobalt hydroxide, rare earth compounds such as zinc compounds such as metal zinc, zinc oxide, and zinc hydroxide can be used.
- As the binder a hydrophilic or hydrophobic polymer or the like can be used.
- the binder may be at least one selected from hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose (CMC), and sodium polyacrylate (SPA).
- HPMC hydroxypropyl methylcellulose
- CMC carboxymethylcellulose
- SPA sodium polyacrylate
- the binder is preferably 0.01 parts by mass or more and 0.5 parts by mass or less with respect to 100 parts by mass of the positive electrode active material particles, for example.
- the zinc electrode includes at least zinc oxide, zinc, polytetrafluoroethylene, and the like as constituent elements and manufacturing methods.
- Examples of the alkaline aqueous solution include an aqueous potassium hydroxide solution.
- a hydrophilic microporous membrane is used as the separator between the positive electrode and the negative electrode.
- the nickel zinc battery is a single cell, for example, having a nominal voltage of 1.65V and a full charge voltage of 1.9V.
- FIG. 2 shows a trickle charge voltage V1 and a trickle charge current I1 when trickle charging the storage battery 30.
- the trickle charge voltage refers to a voltage per nickel zinc battery that is the storage battery 30, that is, a voltage per unit cell.
- Trickle charge voltage V1 is set to an appropriate value so that overcharge of storage battery 30 can be prevented.
- the trickle charge voltage V1 is set to a constant voltage value in the range of 1.82 V or more and 1.86 V or less as the trickle charge characteristics and control conditions (Test Examples 1 to 5 described later). See).
- the trickle charge voltage V1 is preferably a constant voltage value in the range of 1.84 V to 1.86 V from the viewpoint of battery life and performance (see Test Examples 3 to 5 described later). ).
- the trickle charge voltage V1 is further set to 1.85 V as a preferable value from the range (see Test Example 4 described later).
- a current limiting circuit or the like may be provided in the trickle charging system 10 to limit the trickle charging current I1 with a predetermined upper limit value. Thereby, the life shortening of the storage battery 30 due to an excessive current is prevented.
- the current value of the trickle charge current I1 is set to 1 C or less as a preferable condition.
- 1C is a current value at which discharge of a nickel-zinc battery cell having a nominal capacity is constant-current discharged and the discharge is completed in one hour.
- the current value of the trickle charging current I1 is more preferably 0.5C, and still more preferably 0.2C.
- the SOC range is preferably in the range of 80% to 100% with the fully charged state being 100%.
- the SOC of the nickel-zinc battery that is the storage battery 30 is set to 95% to 100% as the SOC range. That is, in the SOC range, the upper limit is 100%, which is a fully charged state, and the lower limit is 95%, which is a state close to that.
- the trickle charging system 10 performs control so that the SOC value of the storage battery 30 is within the SOC range during normal operation.
- the SOC range for example, a range of 80% to 95%).
- Control of trickle charging from the charging power source 1 to the storage battery unit 3 in the trickle charging system 10 and its control conditions are as follows.
- the trickle charge power supply system of the embodiment is designed based on an example of a trickle charge test described below regarding control of trickle charge.
- FIG. 3 shows a table summarizing the control conditions and results in the test example and the comparative example in the trickle charge power supply system of the embodiment.
- Test Examples 1 to 5 are shown.
- Comparative Examples 1 and 2 are shown for Test Examples 1 to 5.
- Examples 1 to 5 are configured based on Test Examples 1 to 5.
- test temperature [° C.], trickle charge voltage [V], initial capacity [%], third capacity retention rate [%], and sixth capacity retention rate are arranged in order as columns. [%] Shows the results.
- Initial capacity or the like is represented by the SOC value of the storage battery.
- third capacity maintenance rate represents, for example, a rate at which the capacity of the storage battery is maintained from the initial capacity after about six months after the third trickle charge cycle.
- the “sixth capacity retention rate” represents a similar rate after about one year, for example, after the sixth trickle charge cycle.
- the values in the “Result” column are the evaluation values of the test examples and comparative examples of each trickle charge characteristic, and in particular, the evaluation values for the value of the “sixth capacity retention rate”.
- This result value indicates that the double circle ( ⁇ ) was 70% or more as its value.
- a circle ( ⁇ ) indicates 60% or more and less than 70%
- a triangle ( ⁇ ) indicates 50% or more and less than 60%
- a cross (x) indicates less than 50%.
- a nickel zinc battery of 8 Ah-1.65 V (nominal voltage value) was used as a storage battery.
- nickel hydroxide was used for the positive electrode and zinc oxide was used for the negative electrode.
- the capacity ratio (N / P) between the negative electrode and the positive electrode was 2.5.
- a separator between the positive electrode and the negative electrode a hydrophilized polypropylene nonwoven fabric and PP / PE were used.
- KOH (5M) was used as the electrolytic solution.
- the storage battery configured in the test example was subjected to chemical conversion treatment at room temperature of 25 ° C.
- chemical formation conditions after charging for about 1.5 hours at 1 C as a charging current, an operation of discharging at 1 C and 1.9 V as a cutoff voltage was performed. After this operation, the result of measuring the internal resistance of the storage battery with a milliohm meter was 0.0016 ⁇ (1.6 m ⁇ ).
- the nickel zinc battery thus obtained was charged at a constant voltage until the charging current reached 1 C, the charging voltage 1.90 V, and the cut-off current 0.05 C. As a result, the nickel zinc battery was fully charged, that is, the SOC value was 100%.
- each of the nickel-zinc batteries that were in a fully charged state as an initial capacity was subjected to a test of trickle charging for a plurality of cycles using a charge / discharge test apparatus.
- the test temperature was 45 ° C., which was a high temperature.
- constant voltage charging with 60 days as one cycle, that is, trickle charging was performed during that period so as to be held at a constant voltage value in the vicinity of the set trickle charging voltage. All were carried out as a constant current discharge under the conditions of a discharge current value of 0.25 C and a cut-off voltage of 1.1 V for 6 cycles, that is, about one year.
- Example 1 (Test Example 1)
- the trickle charge voltage was set to 1.82 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery.
- One cycle of constant voltage charging was performed while the trickle charging voltage was 1.82V.
- the constant current discharge cycle was performed 6 times under the above conditions.
- Example 2 (Test Example 2)
- the trickle charge voltage was set to 1.83 V and the maximum trickle charge current was set to 0.2 C for the nickel zinc battery.
- the constant voltage charge of 1 cycle was performed with the trickle charge voltage kept at 1.83V.
- the constant current discharge cycle was performed 6 times under the above conditions.
- Example 3 (Test Example 3)
- the trickle charge voltage was set to 1.84 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery.
- the constant voltage charge of 1 cycle was performed with the trickle charge voltage being 1.84V.
- the constant current discharge cycle was performed 6 times under the above conditions.
- Example 4 (Test Example 4)
- the trickle charge voltage was set to 1.85 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery.
- One cycle of constant voltage charging was performed while the trickle charging voltage was 1.85V.
- the constant current discharge cycle was performed 6 times under the above conditions.
- Example 5 (Test Example 5)
- the trickle charge voltage was set to 1.86 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery.
- the constant voltage charge of 1 cycle was performed with the trickle charge voltage being 1.86V.
- the constant current discharge cycle was performed 6 times under the above conditions.
- Comparative Example 1 In Comparative Example 1, for the nickel zinc battery, the trickle charge voltage was set to 1.81 V, and the maximum current of the trickle charge current was set to 0.2 C. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.81V. The constant current discharge cycle was performed 6 times under the above conditions.
- Comparative Example 2 In Comparative Example 2, for the nickel zinc battery, the trickle charge voltage was set to 1.87 V, and the maximum current of the trickle charge current was set to 0.2 C. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.87V.
- results of evaluation of the trickle charge characteristics of the test example and the comparative example are as shown in the “Result” column of the table of FIG.
- a value such as “sixth capacity retention rate” corresponds to a value of the discharge capacity, which is the capacity of the storage battery after constant-current discharge under the above conditions (0.25 C) after constant-voltage charging in each cycle.
- the discharge capacity before the trickle charge test is taken as 100% as the initial capacity, and the values of the third and sixth discharge capacities are shown.
- Test Example 1 constant voltage charging was performed at 45 ° C. for about one year, but the discharge capacity was maintained at 50% or more. The sixth capacity retention rate was 51%.
- Test Example 2 constant voltage charging was performed for about one year in the same manner, but the discharge capacity was maintained at 50% or more.
- the sixth capacity retention rate was 58%.
- the current value was charged with a small current of about 0.0125 C. As a result, it has been clarified that the capacity of the nickel zinc battery can be maintained.
- Test Example 3 constant voltage charging was performed for about one year in the same manner, but the discharge capacity was maintained at 60% or more.
- the sixth capacity retention rate was 68%.
- the current value was charged with a current of about 0.0140 C, which is a small value. As a result, it has been clarified that the capacity of the nickel zinc battery can be maintained.
- Test Example 4 constant voltage charging was performed for about one year in the same manner, but the discharge capacity was maintained at 70% or more. The sixth capacity retention rate was 72%. In this test, by controlling to a charging voltage of 1.85 V, the current value was charged with a small current of about 0.0165 C. As a result, it has been clarified that the capacity of the nickel zinc battery can be maintained.
- Test Example 5 constant voltage charging was similarly performed for about one year, but the discharge capacity was maintained at 60% or more.
- the sixth capacity retention rate was 65%.
- the current value was charged with a current of about 0.0178 C which is a small value. As a result, it has been clarified that the capacity of the nickel zinc battery can be maintained.
- the battery life of the test example is estimated by simple calculation as follows. That is, in Test Example 1, it is one year. In Test Example 2, it is one year and two months. In Test Example 3, it is one year and seven months. In Test Example 4, it is 1 year and 10 months. In Test Example 5, it is 1 year and 6 months. In Test Examples 1 to 5, trickle charging can be performed during each battery life.
- this test was a trickle life test at a high temperature of 45 ° C. If it is defined that the rate of battery deterioration due to a temperature of 10 ° C. is doubled, the battery life at room temperature of 25 ° C. can be estimated as follows. That is, in Test Example 1, it is 4 years. In Test Example 2, it is 4 years and 8 months. In Test Example 3, it is 6 years and 4 months. In Test Example 4, it is 7 years and 4 months. In Test Example 5, it is 6 years. In Test Examples 1 to 5, trickle charging can be performed during each battery life.
- Test Example 4 As shown in the table, in Test Example 4, the capacity retention rate at the sixth time in about one year was 72%, which is 70% or more, so the result value was a double circle ( ⁇ ), the most suitable. Evaluated that there was. Test Example 4 is adopted as the most preferred embodiment. In Test Example 3 and Test Example 5, since the sixth capacity retention rate was 60% or more and less than 70%, the value of the result was a circle ( ⁇ ), and it was evaluated that it was suitable. Test Example 3 and Test Example 5 are employed as preferred embodiments. In Test Example 1 and Test Example 2, since the sixth capacity retention rate was 50% or more and less than 60%, the value of the result was set as a triangle ( ⁇ ) and evaluated as possible. Although Test Example 1 and Test Example 2 are less effective than Test Examples 3, 4, and 5, they have sufficient effects and are employed as embodiments.
- Comparative Example 1 and Comparative Example 2 since the 6th capacity retention rate was less than 50% (particularly less than 40%) or measurement was impossible, the result value was evaluated as “unsatisfactory” ( ⁇ ). Since Comparative Example 1 and Comparative Example 2 have low effects, they are not adopted as the embodiments.
- the inventors have examined from Examples 1 to 5 corresponding to Test Examples 1 to 5, and the trickle charge voltage V1 in the trickle charge power supply system of the embodiment ranges from 1.82 V to 1. 86V was obtained.
- the sixth capacity retention rate was particularly less than 40% or could not be measured, but within this range, 50% or more, particularly 70% in Example 4. That's it. That is, within the range of the trickle charge voltage V1, a significantly superior effect and a more preferable effect were obtained as compared with outside the range.
- the trickle charge power supply system of the embodiment set to the trickle charge voltage V1 within the range of Examples 1 to 5 has a sufficient capacity maintenance rate of the storage battery 30 after performing trickle charge and discharge for a long time. The effect is high and the battery life is long.
- the trickle charge power supply system of the embodiment it is possible to supply power to a load by discharging a high output and a large current from a storage battery at the time of a power failure, compared to a power supply system using a conventional lead storage battery or the like.
- a certain discharge function can be realized.
- such a discharge function can be realized and the life of the storage battery can be made as long as possible while preventing overcharge of the storage battery, that is, the discharge function can be maintained for a long period of time.
- the embodiment while realizing such a discharge function, it is possible to realize that the environment is clean with lower cost, space saving, and higher safety than in the past.
- the trickle charge power supply system of the embodiment is a system in which a trickle charge system for nickel zinc batteries is combined with an emergency power supply system. According to the embodiment, it is possible to provide a suitable emergency power supply system capable of realizing sufficient discharge power supply from a storage battery to a load device during a power failure.
- the trickle charge power supply system of the embodiment is preferably applied to an emergency power supply system, it can also be applied to other uses.
- the trickle charge power supply system of the embodiment can be applied to ground storage facilities such as a hybrid system and an uninterruptible power supply (UPS).
- UPS uninterruptible power supply
- SYMBOLS 1 Power supply for charge, 2 ... Load, 3 ... Storage battery part, 4 ... Power failure detection relay part, 5 ... Switch, 6 ... Terminal part, 30 ... Storage battery, 71 ... AC electric wire, 72, 73, 74 ... DC electric wire, 81 ...Control signal.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
The present invention relates to a trickle charging system, a power supply system and the like, and provides a technology that can realize a higher output and a larger current discharge from a storage battery during an electrical outage than were previously possible. Provided is a trickle charging power supply system that comprises: a storage battery unit 3 that includes a nickel-zinc battery as a storage battery 30; a commercial power network; a load 2; and a charging power supply 1 that is connected to the storage battery unit 3. The trickle charging power supply system trickle charges the storage battery 30 from the charging power supply 1 as a state where the storage battery 30 is not connected to the load 2 during a normal time, and supplies direct-current power to the load 2 via a discharge from the storage battery 30 as a state in which the storage battery 30 is connected to the load 2 during a power outage. The storage battery 30 operates in an SOC range of 95-100% in the case where a fully charged state is 100%. A trickle charging voltage of trickle charging is a constant voltage within a range of 1.82-1.86 V. A maximum current of a trickle charging current is 1C.
Description
本発明は、蓄電池(二次電池とも呼ばれる)を利用する技術に関し、蓄電池のトリクル充電、及び電源システム等の技術に関する。
The present invention relates to a technology that uses a storage battery (also called a secondary battery), and relates to a trickle charge of the storage battery, a power supply system, and the like.
蓄電池として、鉛蓄電池、ニッケル水素電池、ニッケル亜鉛電池、等の各種の蓄電池が存在する。蓄電池は、満充電状態にされてから放置された場合、自己放電によって充電電力量が減少する。言い換えると、蓄電池の充電状態(SOC:State Of Charge)の値が、100%よりも低い値の状態になる。
There are various types of storage batteries such as lead storage batteries, nickel metal hydride batteries, and nickel zinc batteries. When the storage battery is left after being fully charged, the amount of charge power is reduced by self-discharge. In other words, the state of charge of the storage battery (SOC: State Of Charge) is in a state of a value lower than 100%.
蓄電池を利用するシステムとして、例えば、停電時等の非常時に対策するために蓄電池を利用する電源システムがある。この電源システムは、非常用電源システムやバックアップ電源システム等と呼ばれる。この電源システムは、商用電力系統に接続されている充電用電源と負荷である機器との間に蓄電池が電気的に接続されている。この電源システムは、通常時には、商用電力系統からの交流電力に基づいて負荷である機器を稼動させる一方で、充電用電源から蓄電池に充電しておき、停電時には、蓄電池から負荷である機器へ放電により電力を供給する。
As a system that uses a storage battery, for example, there is a power supply system that uses a storage battery to take measures in an emergency such as a power failure. This power supply system is called an emergency power supply system or a backup power supply system. In this power supply system, a storage battery is electrically connected between a charging power supply connected to a commercial power system and a device as a load. This power supply system normally operates a device that is a load based on AC power from a commercial power system, while charging a storage battery from a power source for charging, and discharges from the storage battery to a device that is a load during a power failure. To supply power.
蓄電池を充電する方式として、フロート充電方式やトリクル充電方式が挙げられる。フロート充電方式は、充電用電源である充電器と負荷に対して蓄電池が並列に電気的に接続されたシステムにおいて、蓄電池に一定電圧で充電を行う方式である。この充電用電源は、負荷への電力供給と、蓄電池への充電との両方に使用される。この蓄電池には、満充電状態でも常に電圧がかかっており、蓄電池の自己放電による充電量の減少に応じて蓄電池に電流が流れて充電されるので、満充電状態が維持される。
As a method for charging a storage battery, a float charging method or a trickle charging method can be given. The float charging method is a method in which a storage battery is charged at a constant voltage in a system in which a storage battery is electrically connected in parallel to a charger as a charging power source and a load. This charging power source is used for both power supply to the load and charging of the storage battery. The storage battery is always applied with a voltage even in a fully charged state, and a current flows through the storage battery in accordance with a decrease in the amount of charge due to self-discharge of the storage battery, so that the fully charged state is maintained.
トリクル充電方式は、充電用電源である充電器と負荷との間に蓄電池が電気的に接続されたシステムにおいて、蓄電池に微小電流で充電を行う方式である。このシステムでは、通常時には、充電用電源から、商用電力系統の交流電力に基づいて負荷である機器を稼動させる。その一方、蓄電池を負荷から電気的に切り離された状態として、充電用電源から蓄電池を微小電流で充電を行う。その際、トリクル充電方式では、蓄電池の自己放電分による満充電状態からの充電電力減少分を補うために、例えば0.001C~0.1C程度の微小電流で連続的に充電を行う。これにより、蓄電池の満充電状態が保持される。このシステムでは、停電時、即ち商用電力系統からの交流電力供給が途絶えた場合には、蓄電池を負荷に接続された状態として、蓄電池からの放電による電力を負荷へ供給する。これにより、停電時に負荷である機器の稼動を継続させ、システム運用継続を図る。なお、このようなトリクル充電方式、例えば鉛蓄電池に対するトリクル充電を行うトリクル充電システム等の構成については公知である。
The trickle charging method is a method in which a storage battery is charged with a minute current in a system in which the storage battery is electrically connected between a charger as a charging power source and a load. In this system, normally, a device as a load is operated from a charging power source based on AC power of a commercial power system. On the other hand, the storage battery is charged with a minute current from the charging power source in a state where the storage battery is electrically disconnected from the load. At this time, in the trickle charging method, charging is continuously performed with a minute current of, for example, about 0.001 C to 0.1 C in order to compensate for the decrease in charging power from the fully charged state due to the self-discharge of the storage battery. Thereby, the fully charged state of the storage battery is maintained. In this system, at the time of a power failure, that is, when the AC power supply from the commercial power system is interrupted, the storage battery is connected to the load, and the power from the discharge from the storage battery is supplied to the load. As a result, the operation of the equipment that is a load at the time of a power failure is continued and the system operation is continued. The configuration of such a trickle charging system, for example, a trickle charging system that performs trickle charging for a lead-acid battery, is well known.
蓄電池の充電に関する先行技術例として、特許第5514594号公報(特許文献1)が挙げられる。特許文献1には、ニッケル水素電池のフロート充電システムとして、ニッケル水素電池に対するフロート充電を行う旨、特に、フロート充電電流値を蓄電池状態に応じて決める旨が記載されている。
Patent No. 5514594 (patent document 1) is mentioned as a prior art example regarding charge of a storage battery. Patent Document 1 describes that a float charge system for a nickel metal hydride battery performs float charge on the nickel metal hydride battery, and particularly determines that a float charge current value is determined according to the storage battery state.
上記蓄電池の自己放電による充電電力量の減少の結果、その蓄電池から必要な時に充分な放電電力を取り出すことができない場合がある。例えば、上記電源システムにおいて、停電時等の非常時に、蓄電池の充電電力量、SOCが低い状態である場合、蓄電池から、負荷が必要としている充分な電力を放電により供給することができない可能性がある。その可能性を低くするためには、その電源システム等において蓄電池を満充電状態に保持することが望ましい。そのためには、電源システム等において蓄電池を好適に充電して満充電状態を保持させる仕組みが必要である。その仕組みとして、電源システム等においてトリクル充電方式等を適用することが挙げられる。
As a result of the reduction in the amount of charge power due to the self-discharge of the storage battery, there may be a case where sufficient discharge power cannot be taken out from the storage battery when necessary. For example, in the above power supply system, in the event of an emergency such as a power failure, when the storage battery charge power amount and SOC are low, there is a possibility that sufficient power required by the load cannot be supplied from the storage battery by discharging. is there. In order to reduce the possibility, it is desirable to keep the storage battery fully charged in the power supply system or the like. For this purpose, a mechanism for suitably charging the storage battery and maintaining a fully charged state in a power supply system or the like is necessary. As the mechanism, a trickle charging method or the like is applied in a power supply system or the like.
従来、鉛蓄電池に対するトリクル充電を行うトリクル充電システムや、鉛蓄電池を用いた非常用電源システムは一般的である。しかしながら、そのトリクル充電システムを含んだ非常用電源システムでは、安価な鉛蓄電池を利用できるものの、鉛蓄電池の放電が低出力であり、大電流の放電は実現できない。そのため、そのシステムでは、停電時に負荷へ充分な電力を供給できない可能性がある。即ち、従来技術のトリクル充電システム及び電源システムは、蓄電池のトリクル充電及び放電出力に関して課題がある。
Conventionally, trickle charging systems that perform trickle charging of lead-acid batteries and emergency power supply systems that use lead-acid batteries are common. However, in an emergency power supply system including the trickle charging system, an inexpensive lead storage battery can be used, but the discharge of the lead storage battery has a low output and a large current discharge cannot be realized. Therefore, the system may not be able to supply sufficient power to the load during a power failure. That is, the trickle charge system and power supply system of the prior art have problems with respect to trickle charge and discharge output of the storage battery.
本発明の目的は、蓄電池を含むトリクル充電システム及び電源システム等に関して、停電時に蓄電池から従来よりも高出力及び大電流の放電が実現できる技術を提供することである。本発明の他の目的は、そのような放電機能を実現し、過充電等を防止しつつ、蓄電池の寿命をなるべく長くできること、即ち長期間、その放電機能を維持できる技術を提供することである。本発明の他の目的は、そのような放電機能を実現しつつ、従来よりも低コスト、省スペース、高い安全性で、環境にクリーンであることを実現できる技術を提供することである。
An object of the present invention is to provide a technology capable of realizing a higher output and higher current discharge from a storage battery at the time of a power failure with respect to a trickle charging system including a storage battery and a power supply system. Another object of the present invention is to provide a technique capable of realizing such a discharge function and preventing the overcharge or the like while extending the life of the storage battery as much as possible, that is, maintaining the discharge function for a long period of time. . Another object of the present invention is to provide a technique capable of realizing cleanness in the environment at a lower cost, space saving and higher safety than the conventional one while realizing such a discharge function.
本発明のうち代表的な実施の形態は、トリクル充電システムを含んだ電源システムであるトリクル充電電源システムであって、以下に示す構成を有することを特徴とする。
A representative embodiment of the present invention is a trickle charge power supply system that is a power supply system including a trickle charge system, and has the following configuration.
一実施の形態のトリクル充電電源システムは、蓄電池としてニッケル亜鉛電池を含む蓄電池部と、商用電力系統、負荷、及び前記蓄電池部に接続される充電用電源と、を備え、通常時には、前記蓄電池部の前記蓄電池を前記負荷に接続されていない状態として、前記商用電力系統の交流電力に基づいて、前記充電用電源から直流電力によって前記蓄電池部の前記蓄電池に対するトリクル充電を行い、前記商用電力系統の交流電力が途絶えた停電時には、前記蓄電池部の前記蓄電池を前記負荷に接続された状態として、前記蓄電池部の前記蓄電池から放電による直流電力を前記負荷へ供給し、前記蓄電池は、満充電状態が100%である場合に、95%以上100%以下のSOC範囲で運用され、前記トリクル充電のトリクル充電電圧は、1.82V以上1.86V以内の範囲内の一定電圧であり、トリクル充電電流の最大電流は1Cである。
A trickle charge power supply system according to an embodiment includes a storage battery unit including a nickel-zinc battery as a storage battery, a commercial power system, a load, and a charging power source connected to the storage battery unit. The storage battery is not connected to the load, and based on the AC power of the commercial power system, trickle charging is performed on the storage battery of the storage battery unit by DC power from the charging power source. At the time of a power failure when AC power is interrupted, the storage battery of the storage battery unit is connected to the load, and DC power is supplied from the storage battery of the storage battery unit to the load, and the storage battery is fully charged. When it is 100%, it is operated in the SOC range of 95% or more and 100% or less, and the trickle charge voltage of the trickle charge is 1 A constant voltage in the range of up to 1.86V or 82V, the maximum current trickle charge current is 1C.
本発明のうち代表的な実施の形態によれば、蓄電池を利用してトリクル充電を行う電源システム等に関して、停電時に蓄電池からなるべく高出力及び大電流の放電で負荷への電力供給が実現できる。また、本発明のうち代表的な実施の形態によれば、そのような放電機能を実現し、過充電等を防止しつつ、蓄電池の寿命をなるべく長くできること、即ち長期間、その放電機能を維持できる。また、本発明のうち代表的な実施の形態によれば、そのような放電機能を実現しつつ、なるべく低コスト、省スペース、高い安全性で、環境にクリーンであることを実現できる。
According to a typical embodiment of the present invention, regarding a power supply system that performs trickle charging using a storage battery, power supply to a load can be realized by discharging the storage battery with as high output and large current as possible at the time of a power failure. In addition, according to a typical embodiment of the present invention, such a discharge function is realized, and the life of the storage battery can be extended as long as possible while preventing overcharging, that is, the discharge function is maintained for a long period of time. it can. In addition, according to a typical embodiment of the present invention, it is possible to realize cleanness in the environment with as low cost, space saving and high safety as possible while realizing such a discharge function.
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において同一部には原則として同一符号を付し、その繰り返しの説明は省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
[課題等]
前述の課題等について補足説明する。トリクル充電電源システムに採用する候補となる蓄電池として、鉛蓄電池、ニッケル水素電池、等の各種の蓄電池がある。各種の蓄電池には、それぞれの利点や不利点等を含む特性がある。 [Issues]
A supplementary explanation of the above-described problems will be given. There are various storage batteries such as a lead storage battery and a nickel metal hydride battery as candidate storage batteries for use in the trickle charge power supply system. Various storage batteries have characteristics including advantages and disadvantages.
前述の課題等について補足説明する。トリクル充電電源システムに採用する候補となる蓄電池として、鉛蓄電池、ニッケル水素電池、等の各種の蓄電池がある。各種の蓄電池には、それぞれの利点や不利点等を含む特性がある。 [Issues]
A supplementary explanation of the above-described problems will be given. There are various storage batteries such as a lead storage battery and a nickel metal hydride battery as candidate storage batteries for use in the trickle charge power supply system. Various storage batteries have characteristics including advantages and disadvantages.
従来、トリクル充電やフロート充電に使用可能である蓄電池は、鉛蓄電池等にほぼ限られていた。その理由としては以下である。鉛蓄電池は、充電が進むと内部抵抗が増加する。このことから、鉛蓄電池は、満充電状態において一定電圧で充電され続けたとしても、その鉛蓄電池へ電流が殆ど流れない。トリクル充電方式の場合には前述のように微小電流しか流れない。よって、その鉛蓄電池は、過充電による電池寿命低下の影響が小さく、長期間で満充電状態を保持することができる。
Conventionally, storage batteries that can be used for trickle charging and float charging have been almost limited to lead storage batteries and the like. The reason is as follows. As lead-acid batteries are charged, the internal resistance increases. From this, even if a lead storage battery continues to be charged at a constant voltage in a fully charged state, almost no current flows to the lead storage battery. In the trickle charging method, only a minute current flows as described above. Therefore, the lead storage battery is less affected by the decrease in battery life due to overcharging, and can be fully charged for a long period of time.
鉛蓄電池は、他の蓄電池と比較して、安価、安定性に優れる、等の利点がある。鉛蓄電池は、その反面、充放電の電流が小さい、即ち低出力である、等の不利点がある。鉛蓄電池は、長時間運転の用途、例えば負荷変動量が小さい特定の負荷の非常用電源システム等には適している。鉛蓄電池は、放電電流が小さいため、大電流の放電が求められる用途には適していない。鉛蓄電池を用いて大電流の放電を実現するためには、必要容量が大きくなり、その結果、広大な設置スペースが必要になり、高コストとなる。
Lead acid batteries have advantages such as low cost and excellent stability compared to other batteries. The lead storage battery, on the other hand, has disadvantages such as a small charge / discharge current, that is, low output. The lead-acid battery is suitable for long-time use, for example, an emergency power system for a specific load with a small load fluctuation amount. Since lead-acid batteries have a small discharge current, they are not suitable for applications that require a large current discharge. In order to realize a large current discharge using a lead storage battery, the required capacity becomes large. As a result, a large installation space is required, resulting in high cost.
ニッケル水素電池は、鉛蓄電池よりも充放電の電流が大きい等の利点がある。しかし、ニッケル水素電池は、エネルギー密度が低く自己放電が大きい。また、ニッケル水素電池は、鉛電池と比べて単位容量(kwh)当たりのコストが割高である。このため、大容量のニッケル水素電池の設置の場合、コストが多大となる。また、ニッケル水素電池は、過放電や過充電の防止も求められる。
Nickel metal hydride batteries have advantages such as a larger charge / discharge current than lead acid batteries. However, nickel-metal hydride batteries have low energy density and large self-discharge. Moreover, the cost per unit capacity (kwh) of a nickel metal hydride battery is higher than that of a lead battery. For this reason, in the case of installation of a large-capacity nickel metal hydride battery, the cost becomes great. In addition, nickel-metal hydride batteries are also required to prevent overdischarge and overcharge.
一方、高出力の放電が可能である蓄電池として、ニッケル亜鉛電池が知られている。ニッケル亜鉛電池は、ニッケル水素電池の負極材料を亜鉛に変更したアルカリ二次電池である。ニッケル亜鉛電池は、鉛蓄電池よりも高い電流値での充放電が可能である。ニッケル亜鉛電池は、エネルギー密度が高く自己放電が小さい。ニッケル亜鉛電池は、ニッケル水素電池と比べて電池電圧が0.4V程度高いため、体積あたりのエネルギー密度が1.4倍大きい。ニッケル亜鉛電池は、ニッケル水素電池よりもコストの点で優位である。ニッケル亜鉛電池は、鉛蓄電池やニッケル水素電池と同様に、水系の電解液が用いられることから、安全性も高い。ニッケル亜鉛電池の負極の亜鉛は、環境適合性、材料コストの面も優れることから、小型、軽量、安価なシステムを構成可能である。また、ニッケル亜鉛電池は、ニッケル水素電池と同様に、過充電により正極から発生した酸素を負極で吸収できるので、密閉構造とすることにより、メンテナンスフリーにできる利点もある。
On the other hand, a nickel zinc battery is known as a storage battery capable of discharging at a high output. The nickel zinc battery is an alkaline secondary battery in which the negative electrode material of the nickel metal hydride battery is changed to zinc. The nickel zinc battery can be charged and discharged at a higher current value than the lead acid battery. Nickel zinc batteries have high energy density and low self-discharge. Since the nickel zinc battery has a battery voltage about 0.4 V higher than that of the nickel metal hydride battery, the energy density per volume is 1.4 times larger. Nickel zinc batteries are superior in cost to nickel hydrogen batteries. The nickel-zinc battery is highly safe because a water-based electrolyte is used in the same manner as lead-acid batteries and nickel-metal hydride batteries. Zinc of the negative electrode of the nickel-zinc battery is excellent in environmental compatibility and material cost, so that a small, lightweight, and inexpensive system can be configured. Further, similarly to the nickel-metal hydride battery, the nickel-zinc battery can absorb oxygen generated from the positive electrode by overcharging at the negative electrode.
ニッケル亜鉛電池は、デンドライトによりサイクル寿命の点で遜色する等の理由から、蓄電池としての普及が遅れていた。近時では、デンドライトを抑えて高サイクル寿命のニッケル亜鉛電池の研究開発が進められている。
Nickel-zinc batteries have been slow to spread as storage batteries because they have faded in terms of cycle life due to dendrites. Recently, research and development of nickel-zinc batteries with a long cycle life with reduced dendrites is underway.
なお、特許文献1のようなフロート充電システムは、ニッケル水素電池を用いているので、鉛蓄電池と比べて、体積あたりのエネルギー密度が2倍も大きく、小型及び軽量なシステムを構成できる。しかし、ニッケル水素電池を用いてトリクル充電を行うシステムを構成する場合、前述のように高コストとなってしまう。
In addition, since the float charge system like patent document 1 uses a nickel metal hydride battery, compared with a lead storage battery, the energy density per volume is twice as large and can comprise a small and lightweight system. However, when a trickle charge system using a nickel metal hydride battery is configured, the cost becomes high as described above.
なお、ニッケル亜鉛電池等、ニッケル極を用いたアルカリ蓄電池は、トリクル充電を行う場合、充電反応と酸素発生反応とが競争して生じるため、充電効率の点で課題がある。その課題は、高温でのトリクル充電の場合には特に顕著である。ここでの高温とは、30~60℃程度の常温よりも高い温度である。蓄電池は、過充電による酸素発生反応が多く生じると、電解液が減少し、内部抵抗が増加し、最終的に放電が不可能となる。
Note that alkaline storage batteries using nickel electrodes, such as nickel-zinc batteries, have a problem in terms of charging efficiency because charging reaction and oxygen generation reaction occur in a trickle charge. The problem is particularly remarkable in the case of trickle charging at a high temperature. Here, the high temperature is a temperature higher than room temperature of about 30 to 60 ° C. When a large amount of oxygen generation reaction due to overcharging occurs in the storage battery, the electrolytic solution decreases, the internal resistance increases, and finally discharge becomes impossible.
トリクル充電方式の採用については以下である。非常用電源システム等において、蓄電池が満充電状態で長期間保持される場合、蓄電池の自己放電により、蓄電池に蓄えられている電力量が減少し、SOC値が低くなっている。そのため、長期間経過後、停電等の非常時に、その蓄電池の放電を利用する際には、定格の性能が発揮できず、利用できない場合がある。そこで、蓄電池の自己放電による電力減少分を補って蓄電池を満充電状態に保持するために、トリクル充電を行うことが好ましい。トリクル充電では、蓄電池のSOCが満充電状態に近付くと、自然にトリクル充電電流が減少する。よって、トリクル充電方式では、蓄電池の過充電を防止できる効果がある。
The adoption of the trickle charging method is as follows. In an emergency power supply system or the like, when the storage battery is kept in a fully charged state for a long period of time, the amount of power stored in the storage battery is reduced due to the self-discharge of the storage battery, and the SOC value is lowered. Therefore, when using the discharge of the storage battery in the event of an emergency such as a power failure after a long period of time, the rated performance may not be exhibited and may not be used. Therefore, it is preferable to perform trickle charging in order to compensate for the power reduction due to the self-discharge of the storage battery and keep the storage battery in a fully charged state. In trickle charging, when the SOC of the storage battery approaches a fully charged state, the trickle charging current naturally decreases. Therefore, the trickle charging method is effective in preventing overcharge of the storage battery.
上記課題等に基づいて、実施の形態のトリクル充電電源システムを構成している。実施の形態のトリクル充電電源システムでは、蓄電池として新たにニッケル亜鉛電池を適用し、その蓄電池に対するトリクル充電を行う。実施の形態のトリクル充電電源システムは、ニッケル亜鉛電池の好適なトリクル充電ができるように、好適なトリクル充電の制御及び制御条件等を設計した構成を有する。これにより、実施の形態のトリクル充電電源システムは、従来のシステムよりも高出力及び大電流の放電を実現し、ニッケル亜鉛電池の寿命を最大限に発揮させる。
Based on the above-mentioned problems and the like, the trickle charge power supply system of the embodiment is configured. In the trickle charge power supply system of the embodiment, a nickel zinc battery is newly applied as a storage battery, and the trickle charge for the storage battery is performed. The trickle charge power supply system according to the embodiment has a configuration in which suitable trickle charge control, control conditions, and the like are designed so that the preferred trickle charge of the nickel zinc battery can be performed. Thereby, the trickle charge power supply system of the embodiment realizes higher output and higher current discharge than the conventional system, and maximizes the life of the nickel zinc battery.
[用語]
なお、用語として以下である。CAは、蓄電池の充放電の特性を表す単位である。CAにおけるCは、蓄電池の放電率を表す単位であり、Aは電流値を表すアンペア等の単位を示す。放電率は、電池容量に対する放電時の電流の相対的な比率である。電池容量は、放電させて放電終止までに取り出せる電気量を示し、単位はAh(アンペアアワー)等である。1Cは、公称容量値の容量を持つ単電池を定電流放電して、1時間で放電終了となる電流値を指す。1CAは、1Cの場合に実際に流れる電流値を示す。 [the term]
The terms are as follows. CA is a unit representing the charge / discharge characteristics of a storage battery. C in CA is a unit representing the discharge rate of the storage battery, and A represents a unit such as an ampere representing a current value. The discharge rate is a relative ratio of current during discharge to battery capacity. The battery capacity indicates the amount of electricity that can be discharged and taken out before the end of discharge, and its unit is Ah (ampere hour) or the like. 1C indicates a current value at which discharge of a single cell having a capacity of a nominal capacity value is constant-current discharged and discharge is completed in one hour. 1CA indicates a current value that actually flows in the case of 1C.
なお、用語として以下である。CAは、蓄電池の充放電の特性を表す単位である。CAにおけるCは、蓄電池の放電率を表す単位であり、Aは電流値を表すアンペア等の単位を示す。放電率は、電池容量に対する放電時の電流の相対的な比率である。電池容量は、放電させて放電終止までに取り出せる電気量を示し、単位はAh(アンペアアワー)等である。1Cは、公称容量値の容量を持つ単電池を定電流放電して、1時間で放電終了となる電流値を指す。1CAは、1Cの場合に実際に流れる電流値を示す。 [the term]
The terms are as follows. CA is a unit representing the charge / discharge characteristics of a storage battery. C in CA is a unit representing the discharge rate of the storage battery, and A represents a unit such as an ampere representing a current value. The discharge rate is a relative ratio of current during discharge to battery capacity. The battery capacity indicates the amount of electricity that can be discharged and taken out before the end of discharge, and its unit is Ah (ampere hour) or the like. 1C indicates a current value at which discharge of a single cell having a capacity of a nominal capacity value is constant-current discharged and discharge is completed in one hour. 1CA indicates a current value that actually flows in the case of 1C.
[トリクル充電特性]
一般的なトリクル充電の充電特性について、より詳しくは以下である。トリクル充電の際、最初の短い期間(例えば1時間)では、定電流充電として、例えば0.2C等の一定電流値を維持するように、電圧値を例えば1V等の電圧値から徐々に上昇させるように制御される。そして、電圧値が、過充電防止のために1.86V等の一定電圧値に達したら、その後の長い期間では、定電圧充電として、電圧値をその一定電圧値の付近の範囲内に維持するように制御される。その期間では、電流値が最初の一定電流値から減衰し、例えば0.001C等の微小電流となり、その微小電流で充電が継続される。 [Trickle charge characteristics]
The charging characteristics of general trickle charging will be described in detail below. During trickle charging, in the first short period (for example, 1 hour), as constant current charging, the voltage value is gradually increased from a voltage value such as 1 V so as to maintain a constant current value such as 0.2 C, for example. To be controlled. When the voltage value reaches a constant voltage value such as 1.86 V in order to prevent overcharging, the voltage value is maintained within a range near the constant voltage value as constant voltage charging for a long period thereafter. To be controlled. During that period, the current value decays from the initial constant current value, for example, becomes a minute current such as 0.001 C, and charging is continued with the minute current.
一般的なトリクル充電の充電特性について、より詳しくは以下である。トリクル充電の際、最初の短い期間(例えば1時間)では、定電流充電として、例えば0.2C等の一定電流値を維持するように、電圧値を例えば1V等の電圧値から徐々に上昇させるように制御される。そして、電圧値が、過充電防止のために1.86V等の一定電圧値に達したら、その後の長い期間では、定電圧充電として、電圧値をその一定電圧値の付近の範囲内に維持するように制御される。その期間では、電流値が最初の一定電流値から減衰し、例えば0.001C等の微小電流となり、その微小電流で充電が継続される。 [Trickle charge characteristics]
The charging characteristics of general trickle charging will be described in detail below. During trickle charging, in the first short period (for example, 1 hour), as constant current charging, the voltage value is gradually increased from a voltage value such as 1 V so as to maintain a constant current value such as 0.2 C, for example. To be controlled. When the voltage value reaches a constant voltage value such as 1.86 V in order to prevent overcharging, the voltage value is maintained within a range near the constant voltage value as constant voltage charging for a long period thereafter. To be controlled. During that period, the current value decays from the initial constant current value, for example, becomes a minute current such as 0.001 C, and charging is continued with the minute current.
トリクル充電方式では、長期間で充電が行われるので、充電電圧値による寿命への影響が大きいため、充電電圧値に注意する必要がある。また、温度による充電特性への影響があるので、蓄電池及び充電器部の温度に注意する必要がある。蓄電池の種類及び容量は、停電時、即ち放電時の時間及び負荷の消費電力等に応じて設計する必要がある。
In trickle charging, charging is performed over a long period of time, so the effect of the charging voltage value on the life is large, so it is necessary to pay attention to the charging voltage value. In addition, since the charging characteristics are affected by temperature, it is necessary to pay attention to the temperatures of the storage battery and the charger unit. The type and capacity of the storage battery need to be designed according to the time of power failure, that is, the time of discharge and the power consumption of the load.
(実施の形態1)
図1~図3を用いて、本発明の実施の形態のトリクル充電電源システムについて説明する。 (Embodiment 1)
A trickle charge power supply system according to an embodiment of the present invention will be described with reference to FIGS.
図1~図3を用いて、本発明の実施の形態のトリクル充電電源システムについて説明する。 (Embodiment 1)
A trickle charge power supply system according to an embodiment of the present invention will be described with reference to FIGS.
[トリクル充電電源システム]
図1は、実施の形態のトリクル充電電源システムの構成を示す。実施の形態のトリクル充電電源システムは、商用電力系統及び負荷2に接続されるシステムであり、トリクル充電システム10、停電検出リレー部4、及びスイッチ5等を備えている。トリクル充電システム10は、トリクル充電を行うシステムであり、充電用電源1と、蓄電池部3とを含む。負荷2は、電気的な負荷となる機器やシステム等である。 [Trickle charge power supply system]
FIG. 1 shows a configuration of a trickle charge power supply system according to an embodiment. The trickle charge power supply system of the embodiment is a system connected to a commercial power system and aload 2 and includes a trickle charge system 10, a power failure detection relay unit 4, a switch 5, and the like. The trickle charging system 10 is a system that performs trickle charging, and includes a charging power source 1 and a storage battery unit 3. The load 2 is a device or system that becomes an electrical load.
図1は、実施の形態のトリクル充電電源システムの構成を示す。実施の形態のトリクル充電電源システムは、商用電力系統及び負荷2に接続されるシステムであり、トリクル充電システム10、停電検出リレー部4、及びスイッチ5等を備えている。トリクル充電システム10は、トリクル充電を行うシステムであり、充電用電源1と、蓄電池部3とを含む。負荷2は、電気的な負荷となる機器やシステム等である。 [Trickle charge power supply system]
FIG. 1 shows a configuration of a trickle charge power supply system according to an embodiment. The trickle charge power supply system of the embodiment is a system connected to a commercial power system and a
トリクル充電システム10は、通常時にはスタンバイ状態であり、即ち停電等に準備するために充電用電源1から蓄電池30にトリクル充電を行う状態である。
The trickle charging system 10 is normally in a standby state, that is, in a state where trickle charging is performed from the charging power source 1 to the storage battery 30 in order to prepare for a power failure or the like.
充電用電源1は、言い換えると充電器部であり、入力側が、商用電力系統の端子部6に交流電線71を通じて接続されている。充電用電源1は、出力側が、直流電線72を通じて負荷2と接続されている。また、充電用電源1は、直流電線73を通じて、蓄電池部3と接続されている。
In other words, the charging power source 1 is a charger unit, and the input side is connected to the terminal unit 6 of the commercial power system through an AC electric wire 71. The output side of the charging power source 1 is connected to the load 2 through the DC electric wire 72. Further, the charging power source 1 is connected to the storage battery unit 3 through a DC electric wire 73.
端子部6は、商用電力系統から交流電力を入力して充電用電源1へ出力している。交流電線71には、電線75を通じて、停電検出リレー部4が接続されている。停電検出リレー部4は、リレー回路を含み、商用電力系統の交流電力の供給状態として停電状態を検出する。停電検出リレー部4は、信号線を通じてスイッチ5と接続されており、出力する制御信号81により、スイッチ5のオン状態とオフ状態とを切り替える。停電検出リレー部4は、通常状態、即ち非停電状態を検出している時間では、制御信号81として、スイッチ5をオフ状態にするオフ信号を与える。停電検出リレー部4は、停電状態を検出している時間では、制御信号81として、スイッチ5をオン状態にするオン信号を与える。
The terminal unit 6 inputs AC power from the commercial power system and outputs it to the charging power source 1. The power failure detection relay unit 4 is connected to the AC wire 71 through the wire 75. The power failure detection relay unit 4 includes a relay circuit and detects a power failure state as a supply state of AC power of the commercial power system. The power failure detection relay unit 4 is connected to the switch 5 through a signal line, and switches the switch 5 between an on state and an off state by a control signal 81 to be output. The power failure detection relay unit 4 gives an off signal for turning off the switch 5 as the control signal 81 in the normal state, that is, the time during which the non-power failure state is detected. The power failure detection relay unit 4 gives an ON signal for turning on the switch 5 as the control signal 81 during the time when the power failure state is detected.
充電用電源1は、商用電力系統からの交流電力を直流電力へ変換する変換回路であるインバータ等を含んでいる。また、充電用電源1は、蓄電池部3の蓄電池30に対するトリクル充電を行うための制御回路等を含んでいる。
The charging power source 1 includes an inverter that is a conversion circuit that converts AC power from a commercial power system into DC power. Further, the charging power source 1 includes a control circuit for performing trickle charging of the storage battery 30 of the storage battery unit 3.
充電用電源1と負荷2との間の直流電線72には、蓄電池部3からの直流電線74が接続されている。直流電線72及び直流電線73を通じて、負荷2には、充電用電源1及び蓄電池部3からの直流電力103が、負荷入力として入力される。
A DC electric wire 74 from the storage battery unit 3 is connected to the DC electric wire 72 between the charging power source 1 and the load 2. The DC power 103 from the charging power source 1 and the storage battery unit 3 is input to the load 2 as a load input through the DC wire 72 and the DC wire 73.
充電用電源1と蓄電池部3との間の直流電線73では、通常時、充電用電源1から蓄電池部3の蓄電池30へ直流電力が供給される。即ち、その直流電力の直流電流により、蓄電池部3の蓄電池30に対する充電101が行われる。
In the DC electric wire 73 between the charging power source 1 and the storage battery unit 3, DC power is normally supplied from the charging power source 1 to the storage battery 30 of the storage battery unit 3. That is, charging 101 for the storage battery 30 of the storage battery unit 3 is performed by the DC current of the DC power.
直流電線74では、停電時、蓄電池部3の蓄電池30からの直流電力が出力される。即ち、その直流電力の直流電流により、蓄電池30からの放電102が行われる。放電102の電力は、直流電線74を通じて、負荷2へ直流電力103として供給される。
The DC power line 74 outputs DC power from the storage battery 30 of the storage battery unit 3 at the time of a power failure. That is, the discharge 102 from the storage battery 30 is performed by the direct current of the direct-current power. The electric power of the discharge 102 is supplied as DC power 103 to the load 2 through the DC electric wire 74.
直流電線74の途中にはスイッチ5が設けられている。スイッチ5は、制御端子に入力される制御信号81に基づいて、オン状態とオフ状態とが切り替えられる。通常時、スイッチ5がオフ状態の時間では、直流電線74が直流電線72に接続されていない開状態となるので、蓄電池30からの放電102が行われない。停電時、スイッチ5がオン状態の時間では、直流電線74が直流電線72に接続された閉状態となるので、蓄電池30からの放電102が行われる。
A switch 5 is provided in the middle of the DC electric wire 74. The switch 5 is switched between an on state and an off state based on a control signal 81 input to the control terminal. Normally, when the switch 5 is in the OFF state, the DC electric wire 74 is not connected to the DC electric wire 72, so that the discharge 102 from the storage battery 30 is not performed. At the time of the power failure, during the time when the switch 5 is on, the DC electric wire 74 is connected to the DC electric wire 72, so that the discharge 102 from the storage battery 30 is performed.
蓄電池部3は、蓄電池30を含む。蓄電池30は、ニッケル亜鉛電池により構成される。蓄電池部3は、通常時には充電用電源1からのトリクル充電である充電101を受け、停電時には負荷2へ放電102を行う。
The storage battery unit 3 includes a storage battery 30. The storage battery 30 is constituted by a nickel zinc battery. The storage battery unit 3 receives charge 101 which is trickle charge from the charging power source 1 at normal times, and discharges 102 to the load 2 at power failure.
トリクル充電電源システムは、通常時には、蓄電池30を負荷2である機器から切り離した状態、即ちスイッチ5をオフ状態とする。そして、充電用電源1から蓄電池部3の蓄電池30を、トリクル充電電流として微小電流、例えば0.001~0.1Cで充電101を行う。このトリクル充電により、蓄電池30を満充電状態に保持させる。トリクル充電電源システムは、商用電力系統からの電力供給が途絶えた停電時には、停電検出リレー部4により停電を検出してスイッチ5をオン状態として、蓄電池30を負荷2に接続された状態とする。そして、蓄電池部3の蓄電池30から放電102を行い、その電力を直流電力103として負荷2へ供給する。これにより、蓄電池30から充分な放電電力量による直流電力103の供給を実現し、停電時に負荷2である機器の稼動を継続させる。
In the trickle charge power supply system, normally, the storage battery 30 is disconnected from the load 2 device, that is, the switch 5 is turned off. Then, the storage battery 30 of the storage battery unit 3 is charged 101 from the charging power source 1 with a small current, for example, 0.001 to 0.1 C as a trickle charging current. By this trickle charge, the storage battery 30 is held in a fully charged state. When a power failure from the commercial power system is interrupted, the trickle charge power supply system detects a power failure by the power failure detection relay unit 4 and turns on the switch 5 so that the storage battery 30 is connected to the load 2. Then, discharging 102 is performed from the storage battery 30 of the storage battery unit 3, and the electric power is supplied to the load 2 as DC power 103. As a result, supply of the DC power 103 with a sufficient amount of discharged power from the storage battery 30 is realized, and the operation of the device that is the load 2 is continued during a power failure.
これにより、実施の形態のトリクル充電電源システムは、従来の鉛蓄電池を用いたトリクル充電電源システム等に比べて、高出力及び大電流の放電を実現する。また、実施の形態のトリクル充電電源システムは、トリクル充電方式により、蓄電池30の過充電を防止し、蓄電池30の寿命を最大限に発揮させる。また、実施の形態のトリクル充電電源システムは、従来のニッケル水素電池等を用いたシステムに比べて、安価なシステムを実現する。また、実施の形態のトリクル充電電源システムは、従来のニッケル水素電池等を用いたシステムに比べて、安全性が高く、環境にクリーンなシステムを実現する。
Thereby, the trickle charge power supply system according to the embodiment realizes high output and large current discharge as compared with a trickle charge power supply system using a conventional lead storage battery. In addition, the trickle charge power supply system of the embodiment prevents overcharge of the storage battery 30 and maximizes the life of the storage battery 30 by the trickle charge method. Further, the trickle charge power supply system according to the embodiment realizes an inexpensive system as compared with a system using a conventional nickel metal hydride battery or the like. In addition, the trickle charge power supply system of the embodiment realizes a system that is safer and more environmentally friendly than a system using a conventional nickel metal hydride battery or the like.
[蓄電池部]
図2は、実施の形態における蓄電池部3の構成を示す。蓄電池部3は、複数の蓄電池30であるニッケル亜鉛電池の直列接続の構成を有する。蓄電池部3は、複数の単電池が直列に接続されており、これにより組電池が構成されている。蓄電池部3は、複数の蓄電池30に対して、蓄電池制御部31を通じて、直流電線73及び直流電線74が接続されている。蓄電池30の組電池の最上位電位側には正極端子が設けられており、直流電線73及び直流電線74に対して電気的に接続されている。組電池の最下位電位側には負極端子が設けられており、グランドに接続されている。 [Storage battery section]
FIG. 2 shows a configuration of thestorage battery unit 3 in the embodiment. The storage battery unit 3 has a configuration in which nickel zinc batteries that are a plurality of storage batteries 30 are connected in series. In the storage battery unit 3, a plurality of single cells are connected in series, whereby an assembled battery is configured. In the storage battery unit 3, a DC electric wire 73 and a DC electric wire 74 are connected to a plurality of storage batteries 30 through a storage battery control unit 31. A positive electrode terminal is provided on the uppermost potential side of the battery pack of the storage battery 30 and is electrically connected to the DC electric wire 73 and the DC electric wire 74. A negative electrode terminal is provided on the lowest potential side of the assembled battery and is connected to the ground.
図2は、実施の形態における蓄電池部3の構成を示す。蓄電池部3は、複数の蓄電池30であるニッケル亜鉛電池の直列接続の構成を有する。蓄電池部3は、複数の単電池が直列に接続されており、これにより組電池が構成されている。蓄電池部3は、複数の蓄電池30に対して、蓄電池制御部31を通じて、直流電線73及び直流電線74が接続されている。蓄電池30の組電池の最上位電位側には正極端子が設けられており、直流電線73及び直流電線74に対して電気的に接続されている。組電池の最下位電位側には負極端子が設けられており、グランドに接続されている。 [Storage battery section]
FIG. 2 shows a configuration of the
蓄電池制御部31は、複数の蓄電池30の電流や電圧等の状態を調整、制御する。
The storage battery control unit 31 adjusts and controls states of currents and voltages of the plurality of storage batteries 30.
また、複数の蓄電池30に対して、蓄電池制御部31を通じて、蓄電池状態検出部32が接続されている。蓄電池状態検出部32は、複数の蓄電池30の電流、電圧、及び温度等の状態を計測、検出する。また、蓄電池状態検出部32は、複数の蓄電池30の電流、電圧、及び温度等の状態に基づいて、蓄電池部3の蓄電池30のSOC値を計算により検出してもよい。トリクル充電システム10は、蓄電池部3の蓄電池状態検出部32の検出値を用いて、蓄電池30の正常/異常等を判定してもよい。トリクル充電システム10は、その検出値のSOC値を用いて、蓄電池30の満充電状態等を判断して、その状態に応じた制御を実行してもよい。その制御の例は、SOC値に応じて充電101や放電102を停止させる制御等が挙げられる。
Further, a storage battery state detection unit 32 is connected to a plurality of storage batteries 30 through a storage battery control unit 31. The storage battery state detection unit 32 measures and detects states such as current, voltage, and temperature of the plurality of storage batteries 30. Further, the storage battery state detection unit 32 may detect the SOC value of the storage battery 30 of the storage battery unit 3 by calculation based on the current, voltage, temperature, and the like of the plurality of storage batteries 30. The trickle charging system 10 may determine normality / abnormality of the storage battery 30 using the detection value of the storage battery state detection unit 32 of the storage battery unit 3. Trickle charging system 10 may determine the fully charged state of storage battery 30 using the SOC value of the detected value, and execute control according to the state. Examples of the control include control for stopping the charging 101 and the discharging 102 according to the SOC value.
[蓄電池部の変形例]
なお、変形例として、蓄電池部3は、複数の蓄電池30の直列接続の構成に限らず、複数の蓄電池30の並列接続の構成としてもよい。また、蓄電池部3は、直列接続及び並列接続の両方の構成、即ち、複数の組電池が並列に接続された構成としてもよい。いずれの形態も可能であり、必要な蓄電池容量等の設計に応じて選択すればよい。 [Modification of storage battery section]
As a modification, thestorage battery unit 3 is not limited to a configuration in which the plurality of storage batteries 30 are connected in series, but may be configured in a parallel connection of the plurality of storage batteries 30. In addition, the storage battery unit 3 may have both a series connection and a parallel connection, that is, a structure in which a plurality of assembled batteries are connected in parallel. Any form is possible, and what is necessary is just to select according to designs, such as required storage battery capacity.
なお、変形例として、蓄電池部3は、複数の蓄電池30の直列接続の構成に限らず、複数の蓄電池30の並列接続の構成としてもよい。また、蓄電池部3は、直列接続及び並列接続の両方の構成、即ち、複数の組電池が並列に接続された構成としてもよい。いずれの形態も可能であり、必要な蓄電池容量等の設計に応じて選択すればよい。 [Modification of storage battery section]
As a modification, the
[ニッケル亜鉛電池]
蓄電池30として用いるニッケル亜鉛電池の詳細構成例については以下である。ニッケル亜鉛電池は、正極または負極の一方の極にニッケル(Ni)を有し、正極または負極の他方の極に亜鉛(Zn)を有し、アルカリ水溶液から成る電解液を有する。 [Nickel zinc battery]
The detailed configuration example of the nickel zinc battery used as thestorage battery 30 is as follows. The nickel-zinc battery has nickel (Ni) at one electrode of the positive electrode or the negative electrode, zinc (Zn) at the other electrode of the positive electrode or the negative electrode, and an electrolytic solution made of an alkaline aqueous solution.
蓄電池30として用いるニッケル亜鉛電池の詳細構成例については以下である。ニッケル亜鉛電池は、正極または負極の一方の極にニッケル(Ni)を有し、正極または負極の他方の極に亜鉛(Zn)を有し、アルカリ水溶液から成る電解液を有する。 [Nickel zinc battery]
The detailed configuration example of the nickel zinc battery used as the
ニッケル極は、構成要素及び製造方法としては、水酸化ニッケル粒子を主成分とする活物質に対して、添加剤、結着剤等を含む。水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等が固溶されていてもよく、あるいは、コバルト化合物で表面が被覆されていてもよい。添加剤は、酸化コバルトの他に、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物等の希土類化合物、等を用いることができる。結着剤は、親水性または疎水性のポリマー等を用いることができる。より具体的には、結着剤は、ヒドロキシプロピルメチルセルロース(HPMC)、カルボキシメチルセルロース(CMC)、ポリアクリル酸ナトリウム(SPA)から選択される1種以上を使用することができる。結着剤は、例えば正極活物質粒子100質量部に対して、0.01質量部以上0.5質量部以下となることが好ましい。
The nickel electrode includes, as a component and a manufacturing method, an additive, a binder, and the like with respect to an active material mainly composed of nickel hydroxide particles. The nickel hydroxide particles may be solid-solved with cobalt, zinc, cadmium, or the like, or the surface may be coated with a cobalt compound. As the additive, in addition to cobalt oxide, cobalt compounds such as metal cobalt and cobalt hydroxide, rare earth compounds such as zinc compounds such as metal zinc, zinc oxide, and zinc hydroxide can be used. As the binder, a hydrophilic or hydrophobic polymer or the like can be used. More specifically, the binder may be at least one selected from hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose (CMC), and sodium polyacrylate (SPA). The binder is preferably 0.01 parts by mass or more and 0.5 parts by mass or less with respect to 100 parts by mass of the positive electrode active material particles, for example.
亜鉛極は、構成要素及び製造方法としては、少なくとも、酸化亜鉛、亜鉛、ポリテトラフロロエチレン、等を含む。アルカリ水溶液は、例えば水酸化カリウム水溶液が挙げられる。正極と負極とのセパレータとしては、親水性微多孔膜が用いられる。
The zinc electrode includes at least zinc oxide, zinc, polytetrafluoroethylene, and the like as constituent elements and manufacturing methods. Examples of the alkaline aqueous solution include an aqueous potassium hydroxide solution. A hydrophilic microporous membrane is used as the separator between the positive electrode and the negative electrode.
ニッケル亜鉛電池は、単電池において、例えば公称電圧が1.65V、満充電電圧が1.9Vである。
The nickel zinc battery is a single cell, for example, having a nominal voltage of 1.65V and a full charge voltage of 1.9V.
なお、ニッケル亜鉛電池の充放電のサイクル寿命を延ばすためには、例えば、負極の形態変化、凝集、デンドライトの抑制、負極の導電性の向上、等が必要である。そのための有効な対策手段としては、例えば以下が挙げられる。即ち、負極活物質として、カルシウム、水酸化物、フッ化物、リン酸を添加すること。電解液に、リン酸、フッ化物、炭酸塩を添加すること。セパレータに、ポリオレフィン微多孔膜を使用すること。負極活物質として、ビスマス、鉛、カーボン等を添加すること。
In order to extend the charge / discharge cycle life of the nickel-zinc battery, for example, it is necessary to change the shape of the negative electrode, aggregate, suppress dendrite, improve the conductivity of the negative electrode, and the like. Examples of effective countermeasures for this purpose include the following. That is, calcium, hydroxide, fluoride, and phosphoric acid are added as the negative electrode active material. Add phosphoric acid, fluoride, and carbonate to the electrolyte. Use a polyolefin microporous membrane for the separator. Add bismuth, lead, carbon, etc. as the negative electrode active material.
[トリクル充電電圧及びトリクル充電電流]
図2中には、蓄電池30に対するトリクル充電の際のトリクル充電電圧V1、トリクル充電電流I1を示す。なお、実施の形態では、定義として、トリクル充電電圧とは、蓄電池30であるニッケル亜鉛電池の1個あたり、即ち単電池あたりの電圧を指す。 [Trickle charge voltage and trickle charge current]
FIG. 2 shows a trickle charge voltage V1 and a trickle charge current I1 when trickle charging thestorage battery 30. In the embodiment, as a definition, the trickle charge voltage refers to a voltage per nickel zinc battery that is the storage battery 30, that is, a voltage per unit cell.
図2中には、蓄電池30に対するトリクル充電の際のトリクル充電電圧V1、トリクル充電電流I1を示す。なお、実施の形態では、定義として、トリクル充電電圧とは、蓄電池30であるニッケル亜鉛電池の1個あたり、即ち単電池あたりの電圧を指す。 [Trickle charge voltage and trickle charge current]
FIG. 2 shows a trickle charge voltage V1 and a trickle charge current I1 when trickle charging the
トリクル充電電圧V1は、蓄電池30の過充電を防止できるように適切な値に設定される。実施の形態では、トリクル充電の特性及び制御条件として、トリクル充電電圧V1について、1.82V以上1.86V以下の範囲内にある一定電圧値に設定される(後述の試験例1~試験例5を参照)。このトリクル充電電圧V1は、電池寿命及び性能の観点から、より好ましい範囲としては、1.84V~1.86Vの範囲内にある一定電圧値とする(後述の試験例3~試験例5を参照)。このトリクル充電電圧V1は、更に、その範囲内から好ましい値としては、1.85Vとする(後述の試験例4を参照)。
Trickle charge voltage V1 is set to an appropriate value so that overcharge of storage battery 30 can be prevented. In the embodiment, the trickle charge voltage V1 is set to a constant voltage value in the range of 1.82 V or more and 1.86 V or less as the trickle charge characteristics and control conditions (Test Examples 1 to 5 described later). See). The trickle charge voltage V1 is preferably a constant voltage value in the range of 1.84 V to 1.86 V from the viewpoint of battery life and performance (see Test Examples 3 to 5 described later). ). The trickle charge voltage V1 is further set to 1.85 V as a preferable value from the range (see Test Example 4 described later).
なお、変形例として、トリクル充電システム10内に、電流制限回路等を設け、トリクル充電電流I1に関して、所定の上限値で制限するようにしてもよい。これにより、過大電流による蓄電池30の寿命短縮を防止する。
As a modification, a current limiting circuit or the like may be provided in the trickle charging system 10 to limit the trickle charging current I1 with a predetermined upper limit value. Thereby, the life shortening of the storage battery 30 due to an excessive current is prevented.
実施の形態では、トリクル充電電流I1の電流値としては、好ましい条件として、1C以下とする。なお、ここでの1Cとは、公称容量値の容量を持つニッケル亜鉛電池の単電池を、定電流放電して1時間で放電終了となる電流値である。トリクル充電電流I1の電流値は、より好ましくは、0.5Cとし、更に好ましくは、0.2Cとする。
In the embodiment, the current value of the trickle charge current I1 is set to 1 C or less as a preferable condition. Here, 1C is a current value at which discharge of a nickel-zinc battery cell having a nominal capacity is constant-current discharged and the discharge is completed in one hour. The current value of the trickle charging current I1 is more preferably 0.5C, and still more preferably 0.2C.
[SOC管理]
ニッケル亜鉛電池のトリクル充電を行う際、電池寿命及び性能の観点からは、SOCの範囲として、満充電状態を100%として、80%以上100%以下の範囲が好ましい。実施の形態のトリクル充電電源システムでは、蓄電池30であるニッケル亜鉛電池のSOCの管理としては、SOCの範囲として95%以上100%以下とする。即ち、そのSOCの範囲は、上限を満充電状態である100%とし、下限をそれに近い状態である95%とする。トリクル充電システム10は、通常時、蓄電池30のSOC値がそのSOC範囲内に収まるように制御する。 [SOC management]
When performing trickle charging of a nickel zinc battery, from the viewpoint of battery life and performance, the SOC range is preferably in the range of 80% to 100% with the fully charged state being 100%. In the trickle charge power supply system of the embodiment, the SOC of the nickel-zinc battery that is thestorage battery 30 is set to 95% to 100% as the SOC range. That is, in the SOC range, the upper limit is 100%, which is a fully charged state, and the lower limit is 95%, which is a state close to that. The trickle charging system 10 performs control so that the SOC value of the storage battery 30 is within the SOC range during normal operation.
ニッケル亜鉛電池のトリクル充電を行う際、電池寿命及び性能の観点からは、SOCの範囲として、満充電状態を100%として、80%以上100%以下の範囲が好ましい。実施の形態のトリクル充電電源システムでは、蓄電池30であるニッケル亜鉛電池のSOCの管理としては、SOCの範囲として95%以上100%以下とする。即ち、そのSOCの範囲は、上限を満充電状態である100%とし、下限をそれに近い状態である95%とする。トリクル充電システム10は、通常時、蓄電池30のSOC値がそのSOC範囲内に収まるように制御する。 [SOC management]
When performing trickle charging of a nickel zinc battery, from the viewpoint of battery life and performance, the SOC range is preferably in the range of 80% to 100% with the fully charged state being 100%. In the trickle charge power supply system of the embodiment, the SOC of the nickel-zinc battery that is the
なお、変形例としては、上記SOC範囲以外の範囲(例えば80%~95%の範囲)で管理するようにしてもよい。
As a modification, it may be managed in a range other than the SOC range (for example, a range of 80% to 95%).
[トリクル充電の制御及び制御条件-実施例]
トリクル充電システム10における充電用電源1から蓄電池部3に対するトリクル充電の制御及びその制御条件については以下である。実施の形態のトリクル充電電源システムは、トリクル充電の制御に関する、以下に示すトリクル充電試験の実施例に基づいて、設計されている。 [Control of Trickle Charging and Control Conditions-Examples]
Control of trickle charging from the chargingpower source 1 to the storage battery unit 3 in the trickle charging system 10 and its control conditions are as follows. The trickle charge power supply system of the embodiment is designed based on an example of a trickle charge test described below regarding control of trickle charge.
トリクル充電システム10における充電用電源1から蓄電池部3に対するトリクル充電の制御及びその制御条件については以下である。実施の形態のトリクル充電電源システムは、トリクル充電の制御に関する、以下に示すトリクル充電試験の実施例に基づいて、設計されている。 [Control of Trickle Charging and Control Conditions-Examples]
Control of trickle charging from the charging
図3は、実施の形態のトリクル充電電源システムで、試験例及び比較例における制御条件や結果をまとめた表を示す。トリクル充電試験として、試験例1~5を示す。また、試験例1~5に対して、比較例1,2を示す。実施の形態では、試験例1~5に基づいて実施例1~5を構成した。
FIG. 3 shows a table summarizing the control conditions and results in the test example and the comparative example in the trickle charge power supply system of the embodiment. As trickle charge tests, Test Examples 1 to 5 are shown. Further, Comparative Examples 1 and 2 are shown for Test Examples 1 to 5. In the embodiment, Examples 1 to 5 are configured based on Test Examples 1 to 5.
表では、列として、順に、試験例及び比較例の識別名称、試験温度[℃]、トリクル充電電圧[V]、初期容量[%]、3回目容量維持率[%]、6回目容量維持率[%]、結果を示す。「初期容量」等は蓄電池のSOC値で表される。「3回目容量維持率」は、例えば3回目のトリクル充電のサイクル後である約半年後に蓄電池の容量が初期容量から維持されている率を表す。「6回目容量維持率」は、例えば6回目のトリクル充電のサイクル後である約1年後における同様の率を表す。「結果」列の値は、各トリクル充電特性の試験例及び比較例の評価値であり、特に「6回目容量維持率」の値についての評価値である。この結果値は、二重丸(◎)は、その値として70%以上であったことを示す。同様に、丸(○)は60%以上で70%未満を示し、三角(△)は50%以上で60%未満を示し、バツ(×)は50%未満を示す。
In the table, the identification names of the test example and the comparative example, test temperature [° C.], trickle charge voltage [V], initial capacity [%], third capacity retention rate [%], and sixth capacity retention rate are arranged in order as columns. [%] Shows the results. “Initial capacity” or the like is represented by the SOC value of the storage battery. The “third capacity maintenance rate” represents, for example, a rate at which the capacity of the storage battery is maintained from the initial capacity after about six months after the third trickle charge cycle. The “sixth capacity retention rate” represents a similar rate after about one year, for example, after the sixth trickle charge cycle. The values in the “Result” column are the evaluation values of the test examples and comparative examples of each trickle charge characteristic, and in particular, the evaluation values for the value of the “sixth capacity retention rate”. This result value indicates that the double circle (◎) was 70% or more as its value. Similarly, a circle (◯) indicates 60% or more and less than 70%, a triangle (Δ) indicates 50% or more and less than 60%, and a cross (x) indicates less than 50%.
試験例では、蓄電池として、8Ah-1.65V(公称電圧値)のニッケル亜鉛電池を用いた。そのニッケル亜鉛電池における正極は水酸化ニッケル、負極は酸化亜鉛を用いた。負極と正極の容量比(N/P)は2.5とした。正極と負極とのセパレータとしては、親水化処理ポリプロピレン不織布とPP/PEを用いた。電解液としては、KOH(5M)を用いた。
In the test example, a nickel zinc battery of 8 Ah-1.65 V (nominal voltage value) was used as a storage battery. In the nickel-zinc battery, nickel hydroxide was used for the positive electrode and zinc oxide was used for the negative electrode. The capacity ratio (N / P) between the negative electrode and the positive electrode was 2.5. As a separator between the positive electrode and the negative electrode, a hydrophilized polypropylene nonwoven fabric and PP / PE were used. As the electrolytic solution, KOH (5M) was used.
試験例で構成した蓄電池は、室温25℃において化成処理を行った。化成条件としては、充電電流として1Cで1.5時間ほど充電した後に、1C及びカットオフ電圧として1.9Vの条件で放電する操作を施した。この操作の後、ミリオームメータにおいて蓄電池の内部抵抗を測定した結果は0.0016Ω(1.6mΩ)であった。次に、このようにして得たニッケル亜鉛電池を、充電電流として1C、充電電圧として1.90V、カットオフ電流として0.05Cとなるまで、定電圧充電を行った。これによって、ニッケル亜鉛電池を、満充電状態、即ちSOC値として100%にした。
The storage battery configured in the test example was subjected to chemical conversion treatment at room temperature of 25 ° C. As chemical formation conditions, after charging for about 1.5 hours at 1 C as a charging current, an operation of discharging at 1 C and 1.9 V as a cutoff voltage was performed. After this operation, the result of measuring the internal resistance of the storage battery with a milliohm meter was 0.0016Ω (1.6 mΩ). Next, the nickel zinc battery thus obtained was charged at a constant voltage until the charging current reached 1 C, the charging voltage 1.90 V, and the cut-off current 0.05 C. As a result, the nickel zinc battery was fully charged, that is, the SOC value was 100%.
各試験例及び比較例では、初期容量として上記満充電状態としたニッケル亜鉛電池のそれぞれを、充放電試験装置を用いて、複数回のサイクルのトリクル充電を行う試験を行った。いずれも、試験温度は、45℃とし高温とした。また、いずれも、60日間を1サイクルとした定電圧充電、即ち設定されたトリクル充電電圧の付近の範囲内の一定電圧値に保持されるようにしてその期間でトリクル充電を行った。また、いずれも、定電流放電として、放電電流値を0.25Cとし、カットオフ電圧を1.1Vとした条件で、6回のサイクル、即ち約1年間、実施した。
In each test example and comparative example, each of the nickel-zinc batteries that were in a fully charged state as an initial capacity was subjected to a test of trickle charging for a plurality of cycles using a charge / discharge test apparatus. In either case, the test temperature was 45 ° C., which was a high temperature. In either case, constant voltage charging with 60 days as one cycle, that is, trickle charging was performed during that period so as to be held at a constant voltage value in the vicinity of the set trickle charging voltage. All were carried out as a constant current discharge under the conditions of a discharge current value of 0.25 C and a cut-off voltage of 1.1 V for 6 cycles, that is, about one year.
[実施例1(試験例1)]
試験例1である実施例1では、表に示すように、上記ニッケル亜鉛電池について、トリクル充電電圧を1.82Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧を1.82Vとしたまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 1 (Test Example 1)]
In Example 1, which is Test Example 1, as shown in the table, the trickle charge voltage was set to 1.82 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.82V. The constant current discharge cycle was performed 6 times under the above conditions.
試験例1である実施例1では、表に示すように、上記ニッケル亜鉛電池について、トリクル充電電圧を1.82Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧を1.82Vとしたまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 1 (Test Example 1)]
In Example 1, which is Test Example 1, as shown in the table, the trickle charge voltage was set to 1.82 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.82V. The constant current discharge cycle was performed 6 times under the above conditions.
[実施例2(試験例2)]
試験例2である実施例2では、上記ニッケル亜鉛電池について、トリクル充電電圧を1.83Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.83Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 2 (Test Example 2)]
In Example 2, which is Test Example 2, the trickle charge voltage was set to 1.83 V and the maximum trickle charge current was set to 0.2 C for the nickel zinc battery. The constant voltage charge of 1 cycle was performed with the trickle charge voltage kept at 1.83V. The constant current discharge cycle was performed 6 times under the above conditions.
試験例2である実施例2では、上記ニッケル亜鉛電池について、トリクル充電電圧を1.83Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.83Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 2 (Test Example 2)]
In Example 2, which is Test Example 2, the trickle charge voltage was set to 1.83 V and the maximum trickle charge current was set to 0.2 C for the nickel zinc battery. The constant voltage charge of 1 cycle was performed with the trickle charge voltage kept at 1.83V. The constant current discharge cycle was performed 6 times under the above conditions.
[実施例3(試験例3)]
試験例3である実施例3では、上記ニッケル亜鉛電池について、トリクル充電電圧を1.84Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.84Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 3 (Test Example 3)]
In Example 3 as Test Example 3, the trickle charge voltage was set to 1.84 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery. The constant voltage charge of 1 cycle was performed with the trickle charge voltage being 1.84V. The constant current discharge cycle was performed 6 times under the above conditions.
試験例3である実施例3では、上記ニッケル亜鉛電池について、トリクル充電電圧を1.84Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.84Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 3 (Test Example 3)]
In Example 3 as Test Example 3, the trickle charge voltage was set to 1.84 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery. The constant voltage charge of 1 cycle was performed with the trickle charge voltage being 1.84V. The constant current discharge cycle was performed 6 times under the above conditions.
[実施例4(試験例4)]
試験例4である実施例4では、上記ニッケル亜鉛電池について、トリクル充電電圧を1.85Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.85Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 4 (Test Example 4)]
In Example 4 which is Test Example 4, the trickle charge voltage was set to 1.85 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.85V. The constant current discharge cycle was performed 6 times under the above conditions.
試験例4である実施例4では、上記ニッケル亜鉛電池について、トリクル充電電圧を1.85Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.85Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 4 (Test Example 4)]
In Example 4 which is Test Example 4, the trickle charge voltage was set to 1.85 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.85V. The constant current discharge cycle was performed 6 times under the above conditions.
[実施例5(試験例5)]
試験例5である実施例5では、上記ニッケル亜鉛電池について、トリクル充電電圧を1.86Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.86Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 5 (Test Example 5)]
In Example 5 which is Test Example 5, the trickle charge voltage was set to 1.86 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery. The constant voltage charge of 1 cycle was performed with the trickle charge voltage being 1.86V. The constant current discharge cycle was performed 6 times under the above conditions.
試験例5である実施例5では、上記ニッケル亜鉛電池について、トリクル充電電圧を1.86Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.86Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Example 5 (Test Example 5)]
In Example 5 which is Test Example 5, the trickle charge voltage was set to 1.86 V and the maximum current of the trickle charge current was set to 0.2 C for the nickel zinc battery. The constant voltage charge of 1 cycle was performed with the trickle charge voltage being 1.86V. The constant current discharge cycle was performed 6 times under the above conditions.
[比較例1]
比較例1は、上記ニッケル亜鉛電池について、トリクル充電電圧を1.81Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.81Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Comparative Example 1]
In Comparative Example 1, for the nickel zinc battery, the trickle charge voltage was set to 1.81 V, and the maximum current of the trickle charge current was set to 0.2 C. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.81V. The constant current discharge cycle was performed 6 times under the above conditions.
比較例1は、上記ニッケル亜鉛電池について、トリクル充電電圧を1.81Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.81Vのまま、1サイクルの定電圧充電を行った。上記条件で定電流放電のサイクルを6回実施した。 [Comparative Example 1]
In Comparative Example 1, for the nickel zinc battery, the trickle charge voltage was set to 1.81 V, and the maximum current of the trickle charge current was set to 0.2 C. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.81V. The constant current discharge cycle was performed 6 times under the above conditions.
[比較例2]
比較例2は、上記ニッケル亜鉛電池について、トリクル充電電圧を1.87Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.87Vのまま、1サイクルの定電圧充電を行った。 [Comparative Example 2]
In Comparative Example 2, for the nickel zinc battery, the trickle charge voltage was set to 1.87 V, and the maximum current of the trickle charge current was set to 0.2 C. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.87V.
比較例2は、上記ニッケル亜鉛電池について、トリクル充電電圧を1.87Vとし、トリクル充電電流の最大電流を0.2Cと設定した。トリクル充電電圧として1.87Vのまま、1サイクルの定電圧充電を行った。 [Comparative Example 2]
In Comparative Example 2, for the nickel zinc battery, the trickle charge voltage was set to 1.87 V, and the maximum current of the trickle charge current was set to 0.2 C. One cycle of constant voltage charging was performed while the trickle charging voltage was 1.87V.
[結果(トリクル充電特性の評価)]
上記試験例及び比較例のトリクル充電特性の評価の結果は、図3の表の「結果」列に示す通りである。「6回目容量維持率」等の値は、各サイクルで定電圧充電後に上記条件(0.25C)で定電流放電した後の蓄電池の容量である放電容量の値に相当する。特に、トリクル充電の試験を行う前の放電容量を初期容量として100%とし、3回目、6回目の放電容量の値を示している。 [Result (Evaluation of trickle charge characteristics)]
The results of evaluation of the trickle charge characteristics of the test example and the comparative example are as shown in the “Result” column of the table of FIG. A value such as “sixth capacity retention rate” corresponds to a value of the discharge capacity, which is the capacity of the storage battery after constant-current discharge under the above conditions (0.25 C) after constant-voltage charging in each cycle. In particular, the discharge capacity before the trickle charge test is taken as 100% as the initial capacity, and the values of the third and sixth discharge capacities are shown.
上記試験例及び比較例のトリクル充電特性の評価の結果は、図3の表の「結果」列に示す通りである。「6回目容量維持率」等の値は、各サイクルで定電圧充電後に上記条件(0.25C)で定電流放電した後の蓄電池の容量である放電容量の値に相当する。特に、トリクル充電の試験を行う前の放電容量を初期容量として100%とし、3回目、6回目の放電容量の値を示している。 [Result (Evaluation of trickle charge characteristics)]
The results of evaluation of the trickle charge characteristics of the test example and the comparative example are as shown in the “Result” column of the table of FIG. A value such as “sixth capacity retention rate” corresponds to a value of the discharge capacity, which is the capacity of the storage battery after constant-current discharge under the above conditions (0.25 C) after constant-voltage charging in each cycle. In particular, the discharge capacity before the trickle charge test is taken as 100% as the initial capacity, and the values of the third and sixth discharge capacities are shown.
試験例1では、45℃で約1年間の定電圧充電を行ったが、放電容量は、50%以上が維持された。6回目容量維持率は51%であった。このニッケル亜鉛電池のトリクル充電の試験において、1.82Vの充電電圧(=トリクル充電電圧)に制御することで、電流値は小さい値である0.0100C程度の電流で充電されていた。これによって、ニッケル亜鉛電池が過充電や充電不足になることなく、容量を維持できることが明らかとなった。
In Test Example 1, constant voltage charging was performed at 45 ° C. for about one year, but the discharge capacity was maintained at 50% or more. The sixth capacity retention rate was 51%. In the trickle charge test of this nickel zinc battery, the current value was charged with a small current of about 0.0100 C by controlling the charge voltage to 1.82 V (= tricle charge voltage). As a result, it became clear that the nickel-zinc battery can maintain its capacity without being overcharged or insufficiently charged.
試験例2では、同様に約1年間の定電圧充電を行ったが、放電容量は、50%以上が維持された。6回目容量維持率は58%であった。1.83Vの充電電圧に制御することで、電流値は小さい値である0.0125C程度の電流で充電されていた。これによって、同様に、ニッケル亜鉛電池の容量を維持できることが明らかとなった。
In Test Example 2, constant voltage charging was performed for about one year in the same manner, but the discharge capacity was maintained at 50% or more. The sixth capacity retention rate was 58%. By controlling to a charging voltage of 1.83 V, the current value was charged with a small current of about 0.0125 C. As a result, it has been clarified that the capacity of the nickel zinc battery can be maintained.
試験例3では、同様に約1年間の定電圧充電を行ったが、放電容量は、60%以上が維持された。6回目容量維持率は68%であった。1.84Vの充電電圧に制御することで、電流値は小さい値である0.0140C程度の電流で充電されていた。これによって、同様に、ニッケル亜鉛電池の容量を維持できることが明らかとなった。
In Test Example 3, constant voltage charging was performed for about one year in the same manner, but the discharge capacity was maintained at 60% or more. The sixth capacity retention rate was 68%. By controlling to a charging voltage of 1.84 V, the current value was charged with a current of about 0.0140 C, which is a small value. As a result, it has been clarified that the capacity of the nickel zinc battery can be maintained.
試験例4では、同様に約1年間の定電圧充電を行ったが、放電容量は、70%以上が維持された。6回目容量維持率は72%であった。この試験において、1.85Vの充電電圧に制御することで、電流値は小さい値である0.0165C程度の電流で充電されていた。これによって、同様に、ニッケル亜鉛電池の容量を維持できることが明らかとなった。
In Test Example 4, constant voltage charging was performed for about one year in the same manner, but the discharge capacity was maintained at 70% or more. The sixth capacity retention rate was 72%. In this test, by controlling to a charging voltage of 1.85 V, the current value was charged with a small current of about 0.0165 C. As a result, it has been clarified that the capacity of the nickel zinc battery can be maintained.
試験例5では、同様に約1年間の定電圧充電を行ったが、放電容量は、60%以上が維持された。6回目容量維持率は65%であった。この試験において、1.86Vの充電電圧に制御することで、電流値は小さい値である0.0178C程度の電流で充電されていた。これによって、同様に、ニッケル亜鉛電池の容量を維持できることが明らかとなった。
In Test Example 5, constant voltage charging was similarly performed for about one year, but the discharge capacity was maintained at 60% or more. The sixth capacity retention rate was 65%. In this test, by controlling to a charging voltage of 1.86 V, the current value was charged with a current of about 0.0178 C which is a small value. As a result, it has been clarified that the capacity of the nickel zinc battery can be maintained.
比較例1では、同様に約1年間の定電圧充電を行ったが、放電容量は、50%以下となった。6回目容量維持率は38%であった。この試験において、1.81Vの充電電圧に制御することで、電流値は小さい値である0.0090C程度の電流で充電されていた。しかし、充電不足により、ニッケル亜鉛電池の容量が維持できないことが明らかとなった。
In Comparative Example 1, constant voltage charging was similarly performed for about one year, but the discharge capacity was 50% or less. The sixth capacity retention rate was 38%. In this test, by controlling to a charging voltage of 1.81 V, the current value was charged with a small current of about 0.0090C. However, it became clear that the capacity of the nickel zinc battery could not be maintained due to insufficient charging.
比較例2では、同様に約1年間の定電圧充電を行ったが、約1年経過後の蓄電池の電圧が0.3V付近まで低下したことから、放電容量の測定ができなかった。1.87Vの充電電圧に制御することで、電流値は大きな電流である0.051C程度の電流が流れ続けたため、過充電により蓄電池の容量が維持できないことが明らかとなった。
In Comparative Example 2, constant voltage charging was similarly performed for about one year. However, since the voltage of the storage battery decreased to about 0.3 V after about one year, the discharge capacity could not be measured. By controlling to a charging voltage of 1.87 V, a current of about 0.051 C, which is a large current value, continued to flow, and it became clear that the capacity of the storage battery could not be maintained due to overcharging.
仮に公称容量の50%を電池寿命と定義する。その場合、比較例1では、電池寿命が9ヶ月になる。比較例2では、電池寿命は、放電容量が測定可能であった8ヶ月になる。
Suppose 50% of the nominal capacity is defined as the battery life. In that case, in Comparative Example 1, the battery life is 9 months. In Comparative Example 2, the battery life is 8 months when the discharge capacity was measurable.
試験例の電池寿命を単純計算によって見積もると以下である。即ち、試験例1では1年である。試験例2では、1年と2ヶ月である。試験例3では、1年と7ヶ月である。試験例4では、1年と10ヶ月である。試験例5では、1年と6ヶ月である。試験例1~5は、それぞれの電池寿命の期間でのトリクル充電が可能である。
The battery life of the test example is estimated by simple calculation as follows. That is, in Test Example 1, it is one year. In Test Example 2, it is one year and two months. In Test Example 3, it is one year and seven months. In Test Example 4, it is 1 year and 10 months. In Test Example 5, it is 1 year and 6 months. In Test Examples 1 to 5, trickle charging can be performed during each battery life.
また、今回の試験は、45℃という高温でのトリクル寿命試験とした。仮に温度10℃分による蓄電池劣化の速度が2倍となると定義する場合、室温25℃での電池寿命は以下のように見積もることができる。即ち、試験例1では、4年である。試験例2では、4年と8ヶ月である。試験例3では、6年と4ヶ月である。試験例4では、7年と4ヶ月である。試験例5では、6年である。試験例1~5は、それぞれの電池寿命の期間でのトリクル充電が可能である。
In addition, this test was a trickle life test at a high temperature of 45 ° C. If it is defined that the rate of battery deterioration due to a temperature of 10 ° C. is doubled, the battery life at room temperature of 25 ° C. can be estimated as follows. That is, in Test Example 1, it is 4 years. In Test Example 2, it is 4 years and 8 months. In Test Example 3, it is 6 years and 4 months. In Test Example 4, it is 7 years and 4 months. In Test Example 5, it is 6 years. In Test Examples 1 to 5, trickle charging can be performed during each battery life.
表に示すように、試験例4では、6回目、約1年での容量維持率が70%以上である72%となったので、結果の値を二重丸(◎)とし、最も好適であると評価した。試験例4は最も好適な実施の形態として採用される。試験例3及び試験例5では、6回目容量維持率が60%以上70%未満となったので、結果の値を丸(○)とし、好適であると評価した。試験例3及び試験例5は、好適な実施の形態として採用される。試験例1及び試験例2では、6回目容量維持率が50%以上60%未満となったので、結果の値を三角(△)とし、可能と評価した。試験例1及び試験例2は、試験例3,4,5に比べると効果が低いものの、充分な効果があるので、実施の形態として採用される。
As shown in the table, in Test Example 4, the capacity retention rate at the sixth time in about one year was 72%, which is 70% or more, so the result value was a double circle (◎), the most suitable. Evaluated that there was. Test Example 4 is adopted as the most preferred embodiment. In Test Example 3 and Test Example 5, since the sixth capacity retention rate was 60% or more and less than 70%, the value of the result was a circle (◯), and it was evaluated that it was suitable. Test Example 3 and Test Example 5 are employed as preferred embodiments. In Test Example 1 and Test Example 2, since the sixth capacity retention rate was 50% or more and less than 60%, the value of the result was set as a triangle (Δ) and evaluated as possible. Although Test Example 1 and Test Example 2 are less effective than Test Examples 3, 4, and 5, they have sufficient effects and are employed as embodiments.
比較例1及び比較例2では、6回目容量維持率が50%未満(特に40%未満)または測定不能となったので、結果の値をバツ(×)とし、不適と評価とした。比較例1及び比較例2は、効果が低いので、実施の形態として採用しない。
In Comparative Example 1 and Comparative Example 2, since the 6th capacity retention rate was less than 50% (particularly less than 40%) or measurement was impossible, the result value was evaluated as “unsatisfactory” (×). Since Comparative Example 1 and Comparative Example 2 have low effects, they are not adopted as the embodiments.
本発明者の検討により、上記試験の結果、試験例1~5に対応する実施例1~5から、実施の形態のトリクル充電電源システムにおけるトリクル充電電圧V1の範囲として、1.82V~1.86Vを得た。比較例のように、このトリクル充電電圧V1の範囲外では、6回目容量維持率が特に40%未満または測定不能となったが、この範囲内では、50%以上、特に実施例4では70%以上となった。即ち、このトリクル充電電圧V1の範囲内では、範囲外に比べて、顕著に優れた効果、及びより好ましい効果が得られた。即ち、この実施例1~5の範囲内のトリクル充電電圧V1に設定した実施の形態のトリクル充電電源システムは、長期間のトリクル充電及び放電を行った後の蓄電池30の容量維持率が充分に高く、電池寿命が長いという効果が得られる。
As a result of the above-described test, the inventors have examined from Examples 1 to 5 corresponding to Test Examples 1 to 5, and the trickle charge voltage V1 in the trickle charge power supply system of the embodiment ranges from 1.82 V to 1. 86V was obtained. As in the comparative example, outside the range of the trickle charge voltage V1, the sixth capacity retention rate was particularly less than 40% or could not be measured, but within this range, 50% or more, particularly 70% in Example 4. That's it. That is, within the range of the trickle charge voltage V1, a significantly superior effect and a more preferable effect were obtained as compared with outside the range. That is, the trickle charge power supply system of the embodiment set to the trickle charge voltage V1 within the range of Examples 1 to 5 has a sufficient capacity maintenance rate of the storage battery 30 after performing trickle charge and discharge for a long time. The effect is high and the battery life is long.
[効果等]
上記のように、実施の形態のトリクル充電電源システムによれば、従来の鉛蓄電池等を用いた電源システムよりも、停電時に蓄電池から高出力及び大電流の放電によって負荷への電力供給が可能である放電機能を実現できる。また、実施の形態によれば、そのような放電機能を実現し、蓄電池の過充電等を防止しつつ、蓄電池の寿命をなるべく長くでき、即ち長期間、その放電機能を維持できる。また、実施の形態によれば、そのような放電機能を実現しつつ、従来よりも低コスト、省スペース、高い安全性で、環境にクリーンであることを実現できる。 [Effects]
As described above, according to the trickle charge power supply system of the embodiment, it is possible to supply power to a load by discharging a high output and a large current from a storage battery at the time of a power failure, compared to a power supply system using a conventional lead storage battery or the like. A certain discharge function can be realized. In addition, according to the embodiment, such a discharge function can be realized and the life of the storage battery can be made as long as possible while preventing overcharge of the storage battery, that is, the discharge function can be maintained for a long period of time. Further, according to the embodiment, while realizing such a discharge function, it is possible to realize that the environment is clean with lower cost, space saving, and higher safety than in the past.
上記のように、実施の形態のトリクル充電電源システムによれば、従来の鉛蓄電池等を用いた電源システムよりも、停電時に蓄電池から高出力及び大電流の放電によって負荷への電力供給が可能である放電機能を実現できる。また、実施の形態によれば、そのような放電機能を実現し、蓄電池の過充電等を防止しつつ、蓄電池の寿命をなるべく長くでき、即ち長期間、その放電機能を維持できる。また、実施の形態によれば、そのような放電機能を実現しつつ、従来よりも低コスト、省スペース、高い安全性で、環境にクリーンであることを実現できる。 [Effects]
As described above, according to the trickle charge power supply system of the embodiment, it is possible to supply power to a load by discharging a high output and a large current from a storage battery at the time of a power failure, compared to a power supply system using a conventional lead storage battery or the like. A certain discharge function can be realized. In addition, according to the embodiment, such a discharge function can be realized and the life of the storage battery can be made as long as possible while preventing overcharge of the storage battery, that is, the discharge function can be maintained for a long period of time. Further, according to the embodiment, while realizing such a discharge function, it is possible to realize that the environment is clean with lower cost, space saving, and higher safety than in the past.
実施の形態のトリクル充電電源システムは、特に、非常用電源システムに、ニッケル亜鉛電池のトリクル充電システムを組み合わせて適用したシステムである。実施の形態によれば、停電時に蓄電池から負荷である機器への充分な放電電力供給を実現できる、好適な非常用電源システムを提供できる。なお、実施の形態のトリクル充電電源システムは、非常用電源システムに適用することが好ましいが、他の用途にも適用可能である。実施の形態のトリクル充電電源システムは、ハイブリッドシステムや無停電電源装置(UPS)等の地上蓄電設備等に適用可能である。
The trickle charge power supply system of the embodiment is a system in which a trickle charge system for nickel zinc batteries is combined with an emergency power supply system. According to the embodiment, it is possible to provide a suitable emergency power supply system capable of realizing sufficient discharge power supply from a storage battery to a load device during a power failure. Although the trickle charge power supply system of the embodiment is preferably applied to an emergency power supply system, it can also be applied to other uses. The trickle charge power supply system of the embodiment can be applied to ground storage facilities such as a hybrid system and an uninterruptible power supply (UPS).
以上、本発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されず、その要旨を逸脱しない範囲で種々変更可能である。
The present invention has been specifically described above based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
1…充電用電源、2…負荷、3…蓄電池部、4…停電検出リレー部、5…スイッチ、6…端子部、30…蓄電池、71…交流電線、72,73,74…直流電線、81…制御信号。
DESCRIPTION OF SYMBOLS 1 ... Power supply for charge, 2 ... Load, 3 ... Storage battery part, 4 ... Power failure detection relay part, 5 ... Switch, 6 ... Terminal part, 30 ... Storage battery, 71 ... AC electric wire, 72, 73, 74 ... DC electric wire, 81 …Control signal.
Claims (4)
- 蓄電池としてニッケル亜鉛電池を含む蓄電池部と、
商用電力系統、負荷、及び前記蓄電池部に接続される充電用電源と、
を備え、
通常時には、前記蓄電池部の前記蓄電池を前記負荷に接続されていない状態として、前記商用電力系統の交流電力に基づいて、前記充電用電源から直流電力によって前記蓄電池部の前記蓄電池に対するトリクル充電を行い、
前記商用電力系統の交流電力が途絶えた停電時には、前記蓄電池部の前記蓄電池を前記負荷に接続された状態として、前記蓄電池部の前記蓄電池から放電による直流電力を前記負荷へ供給し、
前記蓄電池は、満充電状態が100%である場合に、95%以上100%以下のSOC範囲で運用され、
前記トリクル充電のトリクル充電電圧は、1.82V以上1.86V以内の範囲内の一定電圧であり、トリクル充電電流の最大電流は1Cである、
トリクル充電電源システム。 A storage battery unit including a nickel zinc battery as a storage battery;
A commercial power system, a load, and a charging power source connected to the storage battery unit;
With
In a normal state, the storage battery of the storage battery unit is not connected to the load, and trickle charging is performed on the storage battery of the storage battery unit with DC power from the charging power source based on AC power of the commercial power system. ,
At the time of a power failure when the AC power of the commercial power system is interrupted, the storage battery of the storage battery unit is connected to the load, and DC power by discharge is supplied from the storage battery of the storage battery unit to the load.
When the fully charged state is 100%, the storage battery is operated in the SOC range of 95% or more and 100% or less,
The trickle charge voltage of the trickle charge is a constant voltage within a range of 1.82V to 1.86V, and the maximum current of the trickle charge current is 1C.
Trickle charging power system. - 請求項1記載のトリクル充電電源システムにおいて、
前記ニッケル亜鉛電池は、
水酸化ニッケルまたは酸化ニッケルを正極活物質とする正極と、
酸化亜鉛または亜鉛を負極活物質とする負極と、
アルカリ水溶液から成る電解液と、
を有する、
トリクル充電電源システム。 In the trickle charge power supply system according to claim 1,
The nickel zinc battery is
A positive electrode using nickel hydroxide or nickel oxide as a positive electrode active material;
A negative electrode using zinc oxide or zinc as a negative electrode active material;
An electrolyte comprising an alkaline aqueous solution;
Having
Trickle charging power system. - 請求項1記載のトリクル充電電源システムにおいて、
前記蓄電池部は、前記ニッケル亜鉛電池として複数のニッケル亜鉛電池が直列接続されている、
トリクル充電電源システム。 In the trickle charge power supply system according to claim 1,
The storage battery unit has a plurality of nickel zinc batteries connected in series as the nickel zinc battery,
Trickle charging power system. - 請求項1記載のトリクル充電電源システムにおいて、
前記蓄電池部は、前記ニッケル亜鉛電池として複数のニッケル亜鉛電池が並列接続されている、
トリクル充電電源システム。 In the trickle charge power supply system according to claim 1,
The storage battery unit has a plurality of nickel zinc batteries connected in parallel as the nickel zinc battery,
Trickle charging power system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016112361A JP6690414B2 (en) | 2016-06-06 | 2016-06-06 | Trickle charging power system |
JP2016-112361 | 2016-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017212815A1 true WO2017212815A1 (en) | 2017-12-14 |
Family
ID=60577760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016609 WO2017212815A1 (en) | 2016-06-06 | 2017-04-26 | Trickle charging power supply system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6690414B2 (en) |
TW (1) | TW201743497A (en) |
WO (1) | WO2017212815A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110601341A (en) * | 2018-06-12 | 2019-12-20 | 硕天科技股份有限公司 | Uninterruptible power system |
CN110611124A (en) * | 2018-06-14 | 2019-12-24 | 深圳市比克动力电池有限公司 | Micro-electricity pre-charging activation method of lithium ion battery |
JP2023530297A (en) * | 2020-11-25 | 2023-07-14 | エルジー エナジー ソリューション リミテッド | Battery management device and method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6955217B2 (en) * | 2018-01-19 | 2021-10-27 | ダイキン工業株式会社 | Fluid system |
EP3767778B1 (en) * | 2018-03-15 | 2023-10-04 | Yamaha Hatsudoki Kabushiki Kaisha | Battery control system for nickel-metal hydride battery |
JPWO2020230204A1 (en) * | 2019-05-10 | 2021-12-23 | 昭和電工マテリアルズ株式会社 | Nickel-zinc battery |
CN111030228B (en) * | 2019-12-23 | 2021-10-08 | 靳普 | Multi-mode charging method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53154324U (en) * | 1977-05-11 | 1978-12-05 | ||
JPH0564377A (en) * | 1991-02-08 | 1993-03-12 | Honda Motor Co Ltd | Set battery charger |
JP2013099204A (en) * | 2011-11-04 | 2013-05-20 | Maspro Denkoh Corp | Uninterruptible power supply |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61114479A (en) * | 1984-11-08 | 1986-06-02 | Sanyo Electric Co Ltd | System of charging alkali-zinc storage battery |
JP5557385B2 (en) * | 2010-05-28 | 2014-07-23 | 独立行政法人産業技術総合研究所 | Energy storage device with proton as insertion species |
-
2016
- 2016-06-06 JP JP2016112361A patent/JP6690414B2/en not_active Expired - Fee Related
-
2017
- 2017-04-26 WO PCT/JP2017/016609 patent/WO2017212815A1/en active Application Filing
- 2017-05-31 TW TW106117852A patent/TW201743497A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53154324U (en) * | 1977-05-11 | 1978-12-05 | ||
JPH0564377A (en) * | 1991-02-08 | 1993-03-12 | Honda Motor Co Ltd | Set battery charger |
JP2013099204A (en) * | 2011-11-04 | 2013-05-20 | Maspro Denkoh Corp | Uninterruptible power supply |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110601341A (en) * | 2018-06-12 | 2019-12-20 | 硕天科技股份有限公司 | Uninterruptible power system |
CN110611124A (en) * | 2018-06-14 | 2019-12-24 | 深圳市比克动力电池有限公司 | Micro-electricity pre-charging activation method of lithium ion battery |
JP2023530297A (en) * | 2020-11-25 | 2023-07-14 | エルジー エナジー ソリューション リミテッド | Battery management device and method |
JP7517661B2 (en) | 2020-11-25 | 2024-07-17 | エルジー エナジー ソリューション リミテッド | Battery management device and method |
Also Published As
Publication number | Publication date |
---|---|
TW201743497A (en) | 2017-12-16 |
JP2017220993A (en) | 2017-12-14 |
JP6690414B2 (en) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017212815A1 (en) | Trickle charging power supply system | |
JP7212650B2 (en) | Systems and methods for series battery charging and formation | |
US20130187466A1 (en) | Power management system | |
US11670954B2 (en) | Hybrid battery system | |
DK2926403T3 (en) | METAL AIR BATTERY WITH A DEVICE TO CONTROL THE POTENTIAL OF THE NEGATIVE ELECTRODE | |
CA2897054A1 (en) | Methods and systems for recharging a battery | |
CN101582517A (en) | Charging and discharging battery pack and control method thereof | |
CN111164824A (en) | Management device of battery pack and battery pack system | |
JP2013160582A (en) | Battery pack system and management method of battery pack system | |
KR101566864B1 (en) | Power Supply Apparatus | |
CN111181224A (en) | Charging system for multi-section series battery pack and charging method thereof | |
CN111092471B (en) | Using method of overcharge and overdischarge protection circuit for energy storage battery pack | |
JP2012115103A (en) | Dc power supply and voltage non-equalization suppressing method of capacitor module | |
CN104124460A (en) | Single-flow battery management system | |
JP6055246B2 (en) | Power supply | |
CN214707295U (en) | Intelligent power storage device and electronic toll collection equipment without stopping | |
CN211701533U (en) | Charging system for multi-section series battery pack | |
KR101599962B1 (en) | Energe storage system | |
CN203398833U (en) | Battery charging/discharging circuit of uninterruptible power supply | |
JP2015197946A (en) | Power storage system | |
CN218769703U (en) | Lithium battery | |
JP5840093B2 (en) | Power supply | |
CN203351706U (en) | Accumulator with balanced charging and discharging | |
CN113511108B (en) | Control circuit, method and system | |
JP5626756B2 (en) | Lithium ion battery management method and management apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17809997 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17809997 Country of ref document: EP Kind code of ref document: A1 |