JP2012115103A - Dc power supply and voltage non-equalization suppressing method of capacitor module - Google Patents

Dc power supply and voltage non-equalization suppressing method of capacitor module Download PDF

Info

Publication number
JP2012115103A
JP2012115103A JP2010264233A JP2010264233A JP2012115103A JP 2012115103 A JP2012115103 A JP 2012115103A JP 2010264233 A JP2010264233 A JP 2010264233A JP 2010264233 A JP2010264233 A JP 2010264233A JP 2012115103 A JP2012115103 A JP 2012115103A
Authority
JP
Japan
Prior art keywords
voltage
capacitors
capacitor module
capacitor
normally open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010264233A
Other languages
Japanese (ja)
Inventor
Keizo Yamada
惠造 山田
Yukio Iida
幸雄 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2010264233A priority Critical patent/JP2012115103A/en
Publication of JP2012115103A publication Critical patent/JP2012115103A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC power supply with less power consumption and small variation in inter-terminal voltage of a capacitor module.SOLUTION: A voltage non-equalization suppressing circuit 9 is arranged in a capacitor module 5. The voltage non-equalization suppressing circuit 9 includes: a plurality of series circuits 11 composed of normally open switches SW1 to SW5 and resistors R1 to R5, which are connected in parallel to a plurality of capacitors C1 to C5; and a switch control circuit 13. The switch control circuit 13 sets all the normally open switches SW1 to SW5 to a closed state when the capacitor module 5 is charged, and sets the normally open switch of the series circuit connected in parallel to the capacitor having inter-terminal voltage whose differential voltage of the inter-terminal voltage of the capacitor becomes larger than a previously decided allowable range, to the closed state when power is not supplied to a load from the capacitor module 5 to set the differential voltage to be within the allowable range.

Description

本発明は、複数個のキャパシタを直列に接続したキャパシタモジュールを備えた直流電源装置及びキャパシタモジュールの電圧不均等化抑制方法に関するものである。   The present invention relates to a DC power supply device including a capacitor module in which a plurality of capacitors are connected in series, and a method for suppressing voltage non-uniformity of the capacitor module.

UPS、非常灯、非常放送設備、電話交換機、通信機器基地局など、非常時のバックアップを想定した機器が各種あり、必要とされる特性に応じてニッカド電池やニッケル水素電池、鉛電池など各種蓄電デバイスが利用されている。火災時や停電時に点灯する非常用照明の電源は、一般にニッカド電池やニッケル水素電池、その他の比較的大容量の設備では鉛電池が使用されている。これらの蓄電デバイスは、非常時に建物から人が避難する時間、または公衆電源の一時的な停電の時間だけ給電すればよいので、補償時間1分〜30分程度の短時間放電を想定して設計される。   There are various types of equipment that can be used for emergency backup, such as UPS, emergency lights, emergency broadcasting equipment, telephone exchanges, and communication equipment base stations. Depending on the required characteristics, various types of power storage such as NiCd, NiMH, and lead batteries The device is being used. As a power source for emergency lighting that is turned on in the event of a fire or power failure, a nickel cadmium battery or a nickel metal hydride battery is generally used, and a lead battery is used in other relatively large capacity facilities. These power storage devices are designed for short-term discharge with a compensation time of about 1 to 30 minutes because it is sufficient to supply power only during the time when people evacuate from the building in the event of an emergency, or during the time of a temporary power failure of the public power supply. Is done.

近年、これらのバックアップ用途にキャパシタが電池に代わり適用されつつある。なぜなら、リチウムイオンキャパシタに代表されるようなエネルギ密度の高いキャパシタが開発されてきたため、電池では活物質利用率が極端に低下する短時間放電の条件で、エネルギ密度のキャパシタに対する電池の優位性が明確で無くなりつつある上、キャパシタは電池より長寿命で定期交換の間隔を長くできる利点があるからである。   In recent years, capacitors are being used instead of batteries for these backup applications. This is because, since a capacitor having a high energy density such as a lithium ion capacitor has been developed, the battery has an advantage over an energy density capacitor under a short-time discharge condition in which the active material utilization rate is extremely reduced. This is because the capacitor has an advantage that it has a longer life than a battery and can be provided with a longer interval between regular replacements.

これらの用途での電池充電方法は、基本的に定電流定電圧充電であり、負荷への給電と蓄電デバイスへの充電を別にするか、同一の電源に負荷と蓄電デバイスを接続するかで、トリクル充電とフロート充電に分けられる。   The battery charging method in these applications is basically constant-current / constant-voltage charging, and whether to supply power to the load and charge the power storage device separately or by connecting the load and power storage device to the same power source, It can be divided into trickle charge and float charge.

キャパシタを使用する際には漏れ電流によるセル間のばらつきが大きくなって特定のキャパシタが過充電または過放電になることが懸念される。これを避けるため、一般に、セル(キャパシタ)電圧不均等化抑制回路を搭載するか、セル(キャパシタ)数を増やす設計を採用する。鉛電池やニッカド電池などでもセル(キャパシタ)間の電圧のばらつきは発生するが、一般に問題とならない。なぜなら、通常の使い方では満充電近くまで充電するタイミングが存在し、これらの電池では、そのタイミングで充電状態の高いセルほど副反応であるガス発生に電流が消費され充電電流効率が落ち、結果的にセル間の充電状態が均一化するからである。   When using a capacitor, there is a concern that variation between cells due to leakage current becomes large, and a specific capacitor is overcharged or overdischarged. In order to avoid this, in general, a design in which a cell (capacitor) voltage non-uniformity suppression circuit is mounted or the number of cells (capacitors) is increased is adopted. Even in a lead battery, a nickel cadmium battery, etc., variations in voltage between cells (capacitors) occur, but generally there is no problem. This is because there is a timing to charge to near full charge in normal usage, and in these batteries, the higher the charged state of the cell, the more current is consumed in the side reaction gas generation and the charging current efficiency is reduced, resulting in This is because the state of charge between cells becomes uniform.

電圧不均等化抑制回路はいくつか提案されているが、抵抗やダイオードを各セルに並列に接続する方法が最も簡単である(特許文献1から3)。放置中の放電を抑制するため放置中は各セルに並列に接続された抵抗をスイッチで切り離すことも提案されている。この場合、通常はトリクル充電やフロート充電などの定電圧充電が行われる。また、キャパシタ直並列切替回路を設置したキャパシタモジュールに間欠充電を行い、充電停止中に各セルを並列接続することでも、均等化することができる(特許文献4)。特許文献4では、間欠充電の充電開始タイミングと放電開始タイミングはクロックで規定される。間欠充電は充電時間の割合をなるべく短くすることで電池の劣化を抑制することができる。充電時間を短くする制御としては、たとえば、間欠充電の充電開始タイミングを、満充電後に放置中に所定電圧に下がったときとする技術(特許文献5)などがある。   Several voltage non-uniformity suppression circuits have been proposed, but the simplest method is to connect resistors and diodes to each cell in parallel (Patent Documents 1 to 3). In order to suppress discharge during standing, it has also been proposed to disconnect a resistor connected in parallel to each cell with a switch during standing. In this case, constant voltage charging such as trickle charging or float charging is usually performed. Moreover, it can also equalize by performing intermittent charge to the capacitor module in which the capacitor series / parallel switching circuit is installed, and connecting the cells in parallel while charging is stopped (Patent Document 4). In Patent Document 4, the charge start timing and the discharge start timing of intermittent charging are defined by a clock. In intermittent charging, the deterioration of the battery can be suppressed by shortening the rate of charging time as much as possible. As control for shortening the charging time, for example, there is a technique (Patent Document 5) in which the charging start timing of intermittent charging is lowered to a predetermined voltage while being left after being fully charged.

特公昭62−4848号公報(請求項1)Japanese Examined Patent Publication No. 62-4848 (Claim 1) 特開平06−302474号公報(請求項1)JP 06-302474 A (Claim 1) 実開平05−023527号公報(請求項1)Japanese Utility Model Laid-Open No. 05-023527 (Claim 1) 特許第3728622号公報(請求項1)Japanese Patent No. 3728622 (Claim 1) 特開平9−117074号公報(請求項1)JP-A-9-117074 (Claim 1)

キャパシタモジュールを用いる場合に、従来のトリクル充電、フロート充電を用いると、常時電流が流れ、無駄に電力を消費する問題がある。間欠充電を行う場合には消費電力は低減する。しかし間欠充電では、充電時間が短いため、各キャパシタに並列に均等化回路として抵抗を接続し、充電中だけ接続した抵抗をスイッチで切り離すようにした場合には、キャパシタ間の電圧のばらつきが大きくなって、一部のキャパシタが過放電状態となりキャパシタの寿命が低下する問題がある。   In the case of using a capacitor module, if conventional trickle charging or float charging is used, there is a problem that current constantly flows and power is consumed wastefully. When intermittent charging is performed, power consumption is reduced. However, in intermittent charging, since the charging time is short, when a resistor is connected in parallel to each capacitor as an equalization circuit, and the resistor connected only during charging is disconnected by a switch, the voltage variation between the capacitors is large. Accordingly, there is a problem that some capacitors are overdischarged and the lifetime of the capacitors is reduced.

本発明の目的は、上記問題を解決し、消費電力が少なく、かつ、キャパシタの端子間電圧のバラツキが小さい直流電源装置を提供することにある。   An object of the present invention is to provide a DC power supply apparatus that solves the above-described problems, consumes less power, and has a small variation in voltage between terminals of a capacitor.

本発明の直流電源装置は、複数個のキャパシタを直列に接続したキャパシタモジュールと、負荷に電力を供給する電源と、電源とキャパシタモジュールとの間に配置されてキャパシタモジュールを間欠的に充電し且つ電源から負荷への電力の供給が停止すると、キャパシタモジュールから負荷へ電荷を放電して電力を供給する充放電回路と、複数のキャパシタの端子間電圧の差を予め定めた許容範囲内のものとする電圧不均等化抑制回路とを備えている。キャパシタモジュールは、例えばバックアップ用電源として用いられる。充放電回路によるキャパシタモジュールの間欠的な充電の態様は任意である。キャパシタモジュールの電圧が予め定めた電圧以下になったときに充電を行うようにしてもよく、また定期的に充電動作を行うようにしてもよい。   A direct current power supply device according to the present invention includes a capacitor module in which a plurality of capacitors are connected in series, a power supply that supplies power to a load, and is disposed between the power supply and the capacitor module to intermittently charge the capacitor module; When the supply of power from the power supply to the load is stopped, a charge / discharge circuit that discharges electric charge from the capacitor module to the load and supplies power, and a voltage difference between terminals of a plurality of capacitors within a predetermined allowable range And a voltage non-equalization suppression circuit. The capacitor module is used as a backup power source, for example. The mode of intermittent charging of the capacitor module by the charge / discharge circuit is arbitrary. Charging may be performed when the voltage of the capacitor module falls below a predetermined voltage, or charging operation may be performed periodically.

特に本発明では、電圧不均等化抑制回路が、複数個のキャパシタにそれぞれ並列接続された常開スイッチと抵抗体とからなる複数の直列回路と、スイッチ制御回路とからなる。スイッチ制御回路は、キャパシタモジュールを充電しているときに、複数個のキャパシタのうち端子間電圧が他のキャパシタの端子間電圧よりも予め定めた許容範囲以上高くなっている1以上のキャパシタに並列接続された直列回路の常開スイッチを閉状態にし、閉状態にした前記常開スイッチを前記1以上のキャパシタの端子間電圧と前記他のキャパシタの端子間電圧との差電圧が前記許容範囲内の電圧になると開状態とし、前記キャパシタモジュールが非充電状態にあるときには、すべての常開スイッチを開状態に制御する。本発明によれば、充電を行っているときに、他のキャパシタの端子間電圧と比べて端子間電圧が許容範囲を越えて高くなっているキャパシタに対して設けられた直列回路の常開スイッチを閉じて抵抗体をキャパシタに並列接続する。充電中に、抵抗体がキャパシタに並列接続されると、そのキャパシタの端子間電圧の上昇割合は、抵抗体が並列接続されていない他のキャパシタの端子間電圧の上昇割合よりも小さくなる。その結果、本発明によれば、間欠的にキャパシタモジュールを充電する場合であっても、短い時間で複数のキャパシタの端子間電圧のバラツキを小さくすることができる。また、一部のキャパシタが過放電状態になるような事態が発生することがなく、キャパシタの寿命の低下を防止できる。   In particular, in the present invention, the voltage non-uniformity suppression circuit includes a plurality of series circuits including normally open switches and resistors respectively connected in parallel to a plurality of capacitors, and a switch control circuit. The switch control circuit is connected in parallel to one or more capacitors whose inter-terminal voltage is higher than the inter-terminal voltage of other capacitors by a predetermined allowable range or more when charging the capacitor module. The normally open switch of the connected series circuit is closed, and the normally open switch in the closed state has a difference voltage between the terminal voltage of the one or more capacitors and the terminal voltage of the other capacitor within the allowable range. When the capacitor module is in an uncharged state, all normally open switches are controlled to be open. According to the present invention, a normally-open switch of a series circuit provided for a capacitor whose inter-terminal voltage is higher than an allowable range when compared with the inter-terminal voltage of another capacitor during charging. Is closed and the resistor is connected in parallel to the capacitor. When a resistor is connected in parallel to a capacitor during charging, the rate of increase in voltage between terminals of the capacitor is smaller than the rate of increase in voltage between terminals of other capacitors that are not connected in parallel. As a result, according to the present invention, even when the capacitor module is intermittently charged, variations in the voltage between the terminals of the plurality of capacitors can be reduced in a short time. In addition, a situation in which some capacitors are in an overdischarged state does not occur, and a reduction in the lifetime of the capacitors can be prevented.

なお本発明においては、充電中以外では直列回路の常開スイッチが閉じられることはない。したがって非充電時間中にキャパシタの電荷が抵抗体を通して自己放電することはないまた放電中においても、抵抗体を通してキャパシタの電荷が放電されることがない。なお常開スイッチは、電磁スイッチでも、また半導体スイッチでもよい。   In the present invention, the normally open switch of the series circuit is not closed except during charging. Accordingly, the charge of the capacitor is not self-discharged through the resistor during the non-charging time, and the charge of the capacitor is not discharged through the resistor even during the discharge. The normally open switch may be an electromagnetic switch or a semiconductor switch.

具体的なスイッチ制御回路としては、複数のキャパシタの隣り合う二つのキャパシタのそれぞれの端子間電圧の差電圧を求め、差電圧が許容範囲を越えていることを判定すると、端子間電圧が高いほうのキャパシタに並列接続されている直列回路の常開スイッチを閉状態にする信号を出力し、差電圧が許容範囲内になると常開スイッチを開状態にする信号を出力する判定回路を備えているものを用いることができる。このような判定回路があれば、キャパシタの数が多くなっても、複雑な回路構成を用いることなく、電圧の不均等化を抑制することができる。   As a specific switch control circuit, the difference voltage between the terminals of two adjacent capacitors of a plurality of capacitors is obtained, and when it is determined that the difference voltage exceeds the allowable range, the higher voltage between the terminals is determined. A determination circuit that outputs a signal that closes the normally open switch of the series circuit connected in parallel to the capacitor of the capacitor and outputs a signal that opens the normally open switch when the differential voltage is within an allowable range. Things can be used. With such a determination circuit, voltage non-uniformity can be suppressed without using a complicated circuit configuration even when the number of capacitors increases.

なおスイッチ制御回路は、複数のキャパシタ中の隣り合う二つのキャパシタに対して1つずつ判定回路を備えていてもよい。また複数のキャパシタに1つの判定回路を設け、この1つの判定回路と複数のキャパシタの隣り合う二つのキャパシタとを選択的に接続する選択接続回路を設けてもよい。このような構成にすると、判定回路の数を最小にすることができる。   The switch control circuit may include a determination circuit for each of two adjacent capacitors in the plurality of capacitors. Further, one determination circuit may be provided for a plurality of capacitors, and a selection connection circuit for selectively connecting the one determination circuit and two adjacent capacitors of the plurality of capacitors may be provided. With this configuration, the number of determination circuits can be minimized.

抵抗体の値は、キャパシタの特性及び容量等を考慮して定めることになる。キャパシタがリチウムイオンキャパシタの場合には、抵抗体の抵抗値を、10±5Ωの値とするのが好ましい。   The value of the resistor is determined in consideration of the characteristics and capacitance of the capacitor. When the capacitor is a lithium ion capacitor, the resistance value of the resistor is preferably 10 ± 5Ω.

本発明の直流電源装置の負荷は、直流を交流に変換するインバータであってもよい。この場合には、負荷を含めて見ると、交流電源となる。また本発明の直流電源装置で使用する電源は、直流発電機は勿論のこと、商用電源や交流発電機の出力を整流して直流電力を出力するタイプの電源でもよい。   The load of the direct current power supply device of the present invention may be an inverter that converts direct current into alternating current. In this case, when the load is included, it becomes an AC power source. The power source used in the DC power supply device of the present invention may be a DC power generator or a power source that rectifies the output of a commercial power source or an AC generator and outputs DC power.

見方を変えると、本発明は、複数個のキャパシタを直列に接続したキャパシタモジュールと負荷に電力を供給する電源との間に配置されてキャパシタモジュールを間欠的に充電し且つ電源から負荷への電力の供給が停止すると、キャパシタモジュールから負荷へ電荷を放電して電力を供給する直流電源装置のキャパシタモジュールに含まれる複数個のキャパシタの端子間電圧のバラツキを抑制するキャパシタモジュールの電圧不均等化抑制方法として把握することができる。本発明の方法では、複数個のキャパシタに、常開スイッチと抵抗体とからなる複数の直列回路をそれぞれ並列接続する。そしてキャパシタモジュールを充電しているときに、複数個のキャパシタのうち端子間電圧が他のキャパシタの端子間電圧よりも予め定めた許容範囲以上高くなっている1以上のキャパシタに並列接続された直列回路の常開スイッチを閉状態にする。その後1以上のキャパシタの端子間電圧と他のキャパシタの端子間電圧との差電圧が許容範囲内の電圧になると常開スイッチを開状態とし、非充電状態ではすべての常開スイッチを開常態にする。   In other words, the present invention is arranged between a capacitor module in which a plurality of capacitors are connected in series and a power source that supplies power to the load, and intermittently charges the capacitor module and power from the power source to the load. When the supply of power is stopped, voltage unevenness of the capacitor module is suppressed, which suppresses variations in voltage between terminals of a plurality of capacitors included in the capacitor module of the DC power supply device that discharges charges from the capacitor module to the load and supplies power It can be grasped as a method. In the method of the present invention, a plurality of series circuits each including a normally open switch and a resistor are connected in parallel to a plurality of capacitors. When the capacitor module is charged, a series connected in parallel to one or more capacitors of which the inter-terminal voltage is higher than the inter-terminal voltage of other capacitors by a predetermined allowable range or more among the plurality of capacitors. Close the normally open switch of the circuit. After that, when the voltage difference between the terminal voltage of one or more capacitors and the voltage between terminals of other capacitors is within the allowable range, the normally open switch is opened, and in the non-charged state, all normally open switches are opened. To do.

本発明を車両用の直流電源装置に適用した場合の構成例を示す図である。It is a figure which shows the structural example at the time of applying this invention to the DC power supply device for vehicles. (A)及び(B)は、スイッチ切換回路で用いる判定回路の一例を示す図である。(A) And (B) is a figure which shows an example of the determination circuit used with a switch switching circuit. 本発明を交流負荷用無停電電源に適用する場合の電源システムの構成例を示す図である。It is a figure which shows the structural example of the power supply system in the case of applying this invention to the uninterruptible power supply for alternating current loads. 図3の実施の形態のタイミングチャートを示す図である。It is a figure which shows the timing chart of embodiment of FIG.

図1は、本発明を、プラグイン走行機能を持たない通常の車両用電源として用いられる直流電源装置1に適用した場合の構成例である。この直流電源装置1では、商用交流電源が使用できないため直流発電機3が、キャパシタモジュール5の充電器及び負荷Lに電力を供給する電源として利用される。直流発電機3は燃料でエンジンを動かして発電するエンジン発電機の出力を整流して出力する構造を有している。また直流発電機3としては、エンジン発電機のブレーキ回生エネルギを利用して発電するものを用いることができる。   FIG. 1 shows a configuration example in the case where the present invention is applied to a DC power supply device 1 used as a normal vehicle power supply having no plug-in travel function. In this DC power supply device 1, since a commercial AC power supply cannot be used, the DC generator 3 is used as a power supply for supplying power to the charger of the capacitor module 5 and the load L. The DC generator 3 has a structure in which the output of an engine generator that generates power by moving the engine with fuel is rectified and output. As the DC generator 3, one that generates electric power using the brake regenerative energy of the engine generator can be used.

キャパシタモジュール5は、複数個のキャパシタC1〜C5を直列に接続した構造を有している。本実施の形態では、キャパシタモジュール5はバックアップ用電源として用いられる。キャパシタの数は必要な電圧に応じて任意に定められる。直流発電機3とキャパシタモジュールとの間には、キャパシタモジュール5のキャパシタC1〜C5を間欠的に充電し且つ直流発電機3から負荷Lへの電力の供給が停止すると、キャパシタモジュール5から負荷Lへ電荷を放電して電力を供給する充放電回路7が配置されている。充放電回路7によるキャパシタモジュール5の間欠的な充電の態様は任意である。本実施の形態では、キャパシタモジュール5の端子間電圧が、予め定めた電圧以下になったときに、充電を開始し、キャパシタモジュール5の端子間電圧が予め定めた上限電圧に達すると充電を停止する、充電モードで充電を行うように充放電回路7が構成されている。ここで予め定めた電圧とは、キャパシタモジュール5をバックアップ電源として使用することを考慮して定められることになる。例えばキャパシタモジュール5の定格電圧の80%の電圧を、予め定めた電圧とすることができる。また上限電圧は、定格電圧の100%の電圧と定めることができる。   The capacitor module 5 has a structure in which a plurality of capacitors C1 to C5 are connected in series. In the present embodiment, the capacitor module 5 is used as a backup power source. The number of capacitors is arbitrarily determined according to the required voltage. When the capacitors C1 to C5 of the capacitor module 5 are intermittently charged between the DC generator 3 and the capacitor module and the supply of power from the DC generator 3 to the load L is stopped, the capacitor module 5 receives the load L A charge / discharge circuit 7 for discharging electric charges to supply electric power is disposed. The mode of intermittent charging of the capacitor module 5 by the charge / discharge circuit 7 is arbitrary. In the present embodiment, charging starts when the inter-terminal voltage of the capacitor module 5 becomes equal to or lower than a predetermined voltage, and stops charging when the inter-terminal voltage of the capacitor module 5 reaches a predetermined upper limit voltage. The charging / discharging circuit 7 is configured to perform charging in the charging mode. Here, the predetermined voltage is determined in consideration of using the capacitor module 5 as a backup power source. For example, 80% of the rated voltage of the capacitor module 5 can be set to a predetermined voltage. The upper limit voltage can be determined as a voltage that is 100% of the rated voltage.

キャパシタモジュール5の端子間電圧の低下は、充放電回路7の内部に設けた図示しない電圧検出器により検出する。図示しない電圧検出器は、キャパシタモジュール5の両端電圧を基準電圧及び上限電圧と比較することにより、電圧低下と充電完了とを検出する。   The decrease in the voltage between the terminals of the capacitor module 5 is detected by a voltage detector (not shown) provided inside the charge / discharge circuit 7. A voltage detector (not shown) detects a voltage drop and charging completion by comparing the voltage across the capacitor module 5 with a reference voltage and an upper limit voltage.

また本実施の形態では、充電中における複数のキャパシタC1〜C5の端子間電圧のバラツキの発生を抑制するための電圧不均等化抑制回路9を備えている。電圧不均等化抑制回路9は、複数個のキャパシタC1〜C5にそれぞれ並列接続された常開スイッチSW1〜SW5と抵抗体R1〜R5とからなる複数の直列回路11と、スイッチ制御回路13とから構成される。スイッチ制御回路13は、充放電回路7によりキャパシタモジュール5のキャパシタC1〜C5を充電するときには、複数個のキャパシタのうち端子間電圧が他のキャパシタの端子間電力よりも予め定めた許容範囲以上高くなっている1以上のキャパシタに並列接続された直列回路11の常開スイッチを閉状態にする。すなわち充電を行っているときに、他のキャパシタの端子間電圧と比べて端子間電圧が比較的高いキャパシタに対して設けられた直列回路の常開スイッチ(SW1〜SW5)を閉じて抵抗体(R1〜R5)をキャパシタC1〜C5に並列接続する。常開スイッチ(SW1〜SW5)が閉状態になると、抵抗体がキャパシタに並列接続されて、抵抗体が並列接続されたキャパシタへの充電量が減少する。そのため抵抗体が並列接続されたキャパシタの端子間電圧の上昇速度は、抵抗体が接続されていない他のキャパシタの端子間電圧の上昇速度よりも遅くなる。その結果、充電中において、端子間電圧のバラツキが抑制される。スイッチ制御回路13は、1以上のキャパシタの端子間電圧と他のキャパシタの端子間電圧との差電圧が許容範囲内の電圧になると、閉状態にした常開スイッチを開状態とする。その結果、充電途中において、端子間電圧のバラツキが抑制されると、キャパシタから抵抗体が切り離され、以後は他のキャパシタと同様の充電量(電圧上昇速度)でキャパシタが充電される。そのため本実施の形態によれば、間欠的にキャパシタモジュールを充電する場合であっても、短い時間で複数のキャパシタの端子間電圧のバラツキを小さくすることができる。その結果、一部のキャパシタが過放電状態になるような事態が発生することがなく、キャパシタの寿命の低下を防止できる。   Moreover, in this Embodiment, the voltage non-equalization suppression circuit 9 for suppressing generation | occurrence | production of the variation in the voltage between the terminals of the some capacitors C1-C5 during charge is provided. The voltage non-uniformity suppression circuit 9 includes a plurality of series circuits 11 including normally open switches SW1 to SW5 and resistors R1 to R5 connected in parallel to a plurality of capacitors C1 to C5, respectively, and a switch control circuit 13. Composed. When the charge / discharge circuit 7 charges the capacitors C <b> 1 to C <b> 5 of the capacitor module 5, the switch control circuit 13 has a terminal voltage among the plurality of capacitors higher than a predetermined allowable range than the power between terminals of other capacitors. The normally open switch of the series circuit 11 connected in parallel to the one or more capacitors is closed. That is, during charging, the normally open switches (SW1 to SW5) of the series circuit provided for the capacitor having a relatively high inter-terminal voltage as compared with the inter-terminal voltage of other capacitors are closed, and the resistor ( R1-R5) are connected in parallel to capacitors C1-C5. When the normally open switches (SW1 to SW5) are closed, the resistor is connected in parallel to the capacitor, and the amount of charge to the capacitor to which the resistor is connected in parallel decreases. Therefore, the rising speed of the inter-terminal voltage of the capacitor having the resistor connected in parallel is slower than the rising speed of the inter-terminal voltage of the other capacitor not connected to the resistor. As a result, variation in the voltage between terminals is suppressed during charging. When the difference voltage between the terminal voltage of one or more capacitors and the voltage between the terminals of other capacitors becomes a voltage within an allowable range, the switch control circuit 13 opens the normally open switch that is closed. As a result, when the variation in the voltage between the terminals is suppressed during charging, the resistor is disconnected from the capacitor, and thereafter the capacitor is charged with the same charge amount (voltage increase rate) as other capacitors. Therefore, according to the present embodiment, even when the capacitor module is intermittently charged, the variation in the voltage between the terminals of the plurality of capacitors can be reduced in a short time. As a result, a situation in which some of the capacitors are in an overdischarge state does not occur, and a reduction in the lifetime of the capacitors can be prevented.

なお他のキャパシタの端子間電圧よりも予め定めた許容範囲以上端子間電圧が高くなっているキャパシタを検出する方法は、任意である。   Note that a method for detecting a capacitor whose terminal voltage is higher than a predetermined allowable range than the terminal voltage of other capacitors is arbitrary.

本実施の形態においては、充電時以外において、常開スイッチSW1〜SW5が閉状態となることはない。   In the present embodiment, the normally open switches SW1 to SW5 are not closed except during charging.

具体的に、本実施の形態では、スイッチ制御回路13は、キャパシタモジュール5から負荷Lに電力を供給していないときには、複数のキャパシタC1〜C5の端子間電圧の差電圧を検出して、差電圧が予め定めた許容範囲より大きくなる端子間電圧を持つキャパシタに並列接続された直列回路11の常開スイッチ(SW1〜SW5)を閉状態として差電圧を許容範囲内のものとする。本実施の形態では、複数個のキャパシタC1〜C5のうち隣り合う二つのキャパシタ(C1とC2,C2とC3,・・・C4とC5)の端子間電圧の差電圧を検知する。そして、差電圧が予め定めた許容範囲外になる端子間電圧を持つキャパシタに並列接続された直列回路の常開スイッチ(SW1〜SW5)を閉状態にして、複数個のキャパシタC1〜C5の端子間電圧の差電圧を予め定めた許容範囲内のものとする。差電圧が許容範囲になると、閉状態にあった常開スイッチ(SW1〜SW5)は開状態となる。本実施の形態では、基準となるキャパシタ(差電圧を求める二つのキャパシタの一方のキャパシタ)の端子間電圧の±1%の電圧範囲を許容範囲としている。   Specifically, in the present embodiment, when the switch control circuit 13 is not supplying power from the capacitor module 5 to the load L, the switch control circuit 13 detects the voltage difference between the terminals of the plurality of capacitors C1 to C5 and detects the difference. The normally open switches (SW1 to SW5) of the series circuit 11 connected in parallel to a capacitor having a voltage between terminals whose voltage is greater than a predetermined allowable range are closed, and the differential voltage is within the allowable range. In the present embodiment, a voltage difference between terminals of two adjacent capacitors (C1, C2, C2, C3,... C4 and C5) among a plurality of capacitors C1 to C5 is detected. Then, the normally open switches (SW1 to SW5) of the series circuit connected in parallel to the capacitors having the inter-terminal voltage whose differential voltage is outside the predetermined allowable range are closed, and the terminals of the plurality of capacitors C1 to C5 are closed. The voltage difference between the voltages is within a predetermined allowable range. When the differential voltage is within the allowable range, the normally open switches (SW1 to SW5) that are in the closed state are opened. In the present embodiment, the allowable range is a voltage range of ± 1% of the inter-terminal voltage of a reference capacitor (one capacitor of two capacitors for which a differential voltage is obtained).

図2(A)及び(B)は、スイッチ制御回路13内に配置されて、キャパシタC1及びC2の端子間電圧の差電圧が予め定めた許容範囲(±1%)外にある場合には、端子間電圧が高いほうのキャパシタに対して並列接続されている常開スイッチSW1またはSW2を閉じるための導通信号を出力し、差電圧が許容範囲内になると閉状態にある常開スイッチSW1またはSW2を開状態にする機能を有する判定回路の一例を示している。図2(A)の判定回路では、抵抗r1と抵抗r2とが、r2=0.99×r1の関係になるように抵抗値が設定されている。また図2(B)の判定回路では、r2=1.01×r1の関係になるように抵抗値が設定されている。これにより前述の許容範囲±1%が設定される。図2(A)の判定回路では、キャパシタC1の端子間電圧(V2−V1)が、キャパシタC2の端子間電圧(V3−V2)よりも0.01%以上高い場合に、スイッチSW1に導通信号が出力される。この導通信号は、キャパシタC1の端子間電圧(V2−V1)とキャパシタC2の端子間電圧(V3−V2)との差電圧が、0.01%より小さくなるまで出力され続ける。その結果、抵抗体R1がキャパシタC1に充電されるはずであった電荷の一部が放電して、二つのキャパシタC1及びC2の電圧の均等化(端子間電圧のバラツキの抑制)が図られる。また図2(B)の判定回路では、キャパシタC2の端子間電圧(V3−V2)が、キャパシタC1の端子間電圧(V2−V1)よりも0.01%以上高い場合に、スイッチSW2に導通信号(スイッチオン信号)が出力される。この導通信号は、キャパシタC2の端子間電圧(V3−V2)とキャパシタC1の端子間電圧(V2−V1)との差電圧が、0.01%より小さくなるまで出力され続ける。そして抵抗体R2が存在することにより、キャパシタC2の充電量が制限されて、キャパシタC2の端子間電圧と他のキャパシタとの端子間電圧の均等化(端子間電圧のバラツキの抑制)が図られる。図2(A)及び(B)の判定回路は、差電圧が許容範囲内になると、導通信号の出力を停止し(常開スイッチを閉状態にするスイッチオフ信号を出力している状態となり)、閉状態にある常開スイッチSW1またはSW2を開状態にする。   2A and 2B are arranged in the switch control circuit 13, and when the voltage difference between the terminals of the capacitors C1 and C2 is outside a predetermined allowable range (± 1%), A conduction signal for closing the normally open switch SW1 or SW2 connected in parallel to the capacitor having a higher voltage between the terminals is output, and the normally open switch SW1 or SW2 that is in a closed state when the differential voltage falls within an allowable range. 3 shows an example of a determination circuit having a function of opening the. In the determination circuit of FIG. 2A, the resistance value is set so that the resistance r1 and the resistance r2 have a relationship of r2 = 0.99 × r1. In the determination circuit of FIG. 2B, the resistance value is set so as to satisfy the relationship r2 = 1.01 × r1. As a result, the aforementioned allowable range ± 1% is set. In the determination circuit of FIG. 2A, when the voltage (V2-V1) between terminals of the capacitor C1 is 0.01% or more higher than the voltage (V3-V2) between terminals of the capacitor C2, a conduction signal is supplied to the switch SW1. Is output. This conduction signal continues to be output until the voltage difference between the terminal voltage (V2-V1) of the capacitor C1 and the terminal voltage (V3-V2) of the capacitor C2 becomes smaller than 0.01%. As a result, a part of the charge that the resistor R1 was supposed to be charged in the capacitor C1 is discharged, and the voltages of the two capacitors C1 and C2 are equalized (inhibition of variations in the voltage between terminals). Further, in the determination circuit of FIG. 2B, when the voltage (V3-V2) between terminals of the capacitor C2 is 0.01% or more higher than the voltage (V2-V1) between terminals of the capacitor C1, the switch SW2 is turned on. A signal (switch-on signal) is output. This conduction signal continues to be output until the voltage difference between the terminal voltage (V3-V2) of the capacitor C2 and the terminal voltage (V2-V1) of the capacitor C1 becomes smaller than 0.01%. The presence of the resistor R2 limits the amount of charge of the capacitor C2, and equalizes the voltage between the terminals of the capacitor C2 and the voltage between other terminals of the capacitor C2 (suppresses variation in the voltage between the terminals). . 2A and 2B stops the output of the continuity signal when the differential voltage is within the allowable range (the switch off signal is output to close the normally open switch). The normally open switch SW1 or SW2 in the closed state is opened.

スイッチ制御回路13内には、隣り合う二つのキャパシタに対して図2(A)及び(B)に示した判定回路と同じ回路が含まれている。なお図2の判定回路は、一例であって、他の回路構成の判定回路を用いることができるのは勿論である。例えば、複数のキャパシタに対して1つの判定回路を設け、この1つの判定回路と複数のキャパシタの隣り合う二つのキャパシタとを選択的に接続する選択接続回路を設けてもよい。このような構成にすると、判定回路の数を最小にすることができる。   The switch control circuit 13 includes the same circuit as the determination circuit shown in FIGS. 2A and 2B for two adjacent capacitors. The determination circuit in FIG. 2 is an example, and it is needless to say that a determination circuit having another circuit configuration can be used. For example, one determination circuit may be provided for a plurality of capacitors, and a selective connection circuit that selectively connects the one determination circuit and two adjacent capacitors of the plurality of capacitors may be provided. With this configuration, the number of determination circuits can be minimized.

上記実施の形態のように、キャパシタモジュール5を直流電源装置に適用した場合には、暗電流のバックアップ用に電池を別途搭載することが望ましい。この場合、充電用の発電機は、充電対象をキャパシタと電池のいずれか一方を選択できるように切り替え可能とするか、キャパシタと電池を並列接続して充電可能とすることで、電池専用の充電器の設置によるコストアップや装置の大型化を避けることができる。   When the capacitor module 5 is applied to a DC power supply device as in the above embodiment, it is desirable to separately install a battery for dark current backup. In this case, the generator for charging can be switched so that either the capacitor or the battery can be selected, or the capacitor and the battery can be connected in parallel to enable charging. Cost increase and equipment enlargement due to the installation of the vessel can be avoided.

本発明の直流電源装置は、直流負荷用無停電電源に適用してもよい。この場合には、無停電電源であるため、公衆交流電源とAC−DCコンバータを充電器として利用する。また直流電源装置は、交流負荷用無停電電源にも適用することができる。この場合は、図1に示したコンデンサモジュールと負荷Lとの間にインバータを配置すればよい。一般にインバータは変換効率が90%程度と低いため、負荷が公衆交流電源で使えるものならば、非常時以外はインバータを介さずに、公衆交流電源と負荷とを直接つなぐ構成としても良い。   The DC power supply device of the present invention may be applied to an uninterruptible power supply for DC loads. In this case, since it is an uninterruptible power supply, a public AC power supply and an AC-DC converter are used as a charger. The DC power supply device can also be applied to an uninterruptible power supply for AC loads. In this case, an inverter may be disposed between the capacitor module shown in FIG. In general, since the inverter has a low conversion efficiency of about 90%, if the load can be used with a public AC power supply, the public AC power supply and the load may be directly connected without using the inverter except in an emergency.

本発明の直流電源装置を、プラグイン走行機能を有する車両の電源に適用した場合には、プラグイン走行機能に加え回生充電機能も付加するのが好ましい。回生充電機能も付加うるためには、インバータとして回生電流を電源側に回生できる回生機能付きコンバータを用いればよい。   When the DC power supply device of the present invention is applied to a power source of a vehicle having a plug-in travel function, it is preferable to add a regenerative charging function in addition to the plug-in travel function. In order to add a regenerative charging function, a converter with a regenerative function that can regenerate a regenerative current to the power source side may be used as an inverter.

本実施の形態のように、電圧不均等化抑制回路9が使用される場合には、電圧不均等化抑制回路9で消費する電力も問題となることがあるので、電圧不均等化抑制回路9を停止させる機能を設けることが望ましい。図1の実施の形態では、スイッチ制御回路13における前述の許容範囲(±1%)を広げることにより、電圧不均等化抑制回路9の感度を下げることにより、電圧不均等化抑制回路9における消費電力を低下させることができる。   When the voltage non-equalization suppression circuit 9 is used as in the present embodiment, the power consumed by the voltage non-equalization suppression circuit 9 may also be a problem. It is desirable to provide a function for stopping the operation. In the embodiment of FIG. 1, the consumption in the voltage non-uniformity suppression circuit 9 is reduced by reducing the sensitivity of the voltage non-equalization suppression circuit 9 by widening the above-described allowable range (± 1%) in the switch control circuit 13. Electric power can be reduced.

以下無停電電源装置(UPS)に本発明の他の実施の形態の具体例について、図3を用いて説明する。この実施の形態でも、図1の実施の形態と同様に、充電開始時において、複数のキャパシタCの端子間電圧のバラツキが大きい場合には、端子間電圧が他のキャパシタの端子間電圧よりも許容範囲以上に大きくなった電圧不均等化抑制回路29中のキャパシタの常開スイッチSWを閉じて、均等化処理をする。この実施の形態では、負荷Lとして12V直流電源用の負荷を想定した。作製した無停電直流電源装置のキャパシタモジュール25には定格3.7V1000Fリチウムイオンキャパシタ単セルを4セル直列に接続したものを使用した。商標電源ACを直流に変換するAC−DCコンバータ23には、電圧13.8V、電流10Aのものを使用した。   A specific example of another embodiment of the present invention for an uninterruptible power supply (UPS) will be described below with reference to FIG. Also in this embodiment, as in the embodiment of FIG. 1, when the variation in the voltage between terminals of the plurality of capacitors C is large at the start of charging, the voltage between the terminals is higher than the voltage between the terminals of other capacitors. The normally open switch SW of the capacitor in the voltage non-equalization suppression circuit 29 that has become larger than the allowable range is closed, and equalization processing is performed. In this embodiment, a load for a 12V DC power source is assumed as the load L. As the capacitor module 25 of the produced uninterruptible DC power supply, a single cell having a rated 3.7V1000F lithium ion capacitor connected in series was used. As the AC-DC converter 23 for converting the trademark power supply AC into a direct current, one having a voltage of 13.8 V and a current of 10 A was used.

そしてキャパシタモジュール25の両端電圧が14.8V値以下になること、または、4つのキャパシタCの端子間電圧が予め定めた許容範囲を越えるバラツキが発生することを、電圧不均等化抑制回路29を起動する条件とした。そして電圧不均等化抑制回路29内のスイッチ制御回路33は、各キャパシタCの端子間電圧の最大値−最小値≧0.05Vであることを検出すると、10A、14.8V定電流定電圧充電の条件で充電を開始する指令を充放電回路27に出力し、各キャパシタCの端子間電圧の最大値−最小値<0.05Vの状態で、14.8Vを3時間維持した後、充電を終了する指令を充放電回路27に出力する。
この場合のタイミングチャートを図4に示す。充電停止中及び放電は常開スイッチSWが開状態になっていることより電圧不均等化抑制回路29が切り離され、その間は自己放電電流のセル間バラツキによりキャパシタCの端子間電圧にバラツキが拡大する。図4において、間欠充電が開始されると複数のキャパシタCには充電電流が流れる。そしてキャパシタモジュール25の端子間電圧(モジュール電圧)は上昇し始める。このとき複数のキャパシタCの端子間電圧にバラツキがあり、複数のキャパシタCの中で端子間電圧が許容範囲以上に高くなっているキャパシタCに対しては、スイッチ制御回路33から対応する常開スイッチSWを閉状態にする導通信号が出力される。図4中の「スイッチオン信号」は、スイッチ制御回路33から常開スイッチSWに出力される導通信号を示している。モジュール電圧が、上限電圧に達して所定時間経過すると、充電が停止される。図4ではスイッチオフの期間が充電が停止されている期間である。この期間では、常開スイッチSWは開状態にあり、キャパシタモジュール25は自己放電を行って、モジュール電圧は低下する。モジュール電圧が予め定めた基準電圧まで低下すると、再び間欠充電が開始される。
When the voltage across the capacitor module 25 becomes 14.8V or less, or when the voltage across the terminals of the four capacitors C exceeds a predetermined allowable range, the voltage non-uniformity suppression circuit 29 is It was set as a condition to start. When the switch control circuit 33 in the voltage non-uniformity suppression circuit 29 detects that the maximum value−minimum value ≧ 0.05 V of the voltage across the terminals of each capacitor C, 10 A, 14.8 V constant current constant voltage charging is performed. A command to start charging under the condition of is output to the charging / discharging circuit 27, and 14.8V is maintained for 3 hours in a state where the maximum value-minimum value <0.05V between the terminals of each capacitor C, A command to end is output to the charge / discharge circuit 27.
A timing chart in this case is shown in FIG. During charging stop and discharging, the normally-open switch SW is in the open state, so that the voltage non-uniformity suppression circuit 29 is disconnected, and during that time, the variation between the terminals of the capacitor C is expanded due to the self-discharge current variation between cells. To do. In FIG. 4, when intermittent charging is started, charging current flows through the plurality of capacitors C. The terminal voltage (module voltage) of the capacitor module 25 begins to rise. At this time, the voltage between the terminals of the plurality of capacitors C varies, and the capacitor C whose terminal voltage is higher than the allowable range among the plurality of capacitors C is correspondingly opened from the switch control circuit 33. A conduction signal for closing the switch SW is output. A “switch-on signal” in FIG. 4 indicates a conduction signal output from the switch control circuit 33 to the normally open switch SW. When the module voltage reaches the upper limit voltage and a predetermined time elapses, charging is stopped. In FIG. 4, the switch-off period is a period during which charging is stopped. During this period, the normally open switch SW is in an open state, the capacitor module 25 performs self-discharge, and the module voltage decreases. When the module voltage drops to a predetermined reference voltage, intermittent charging is started again.

図4中において、電流がマイナス方向に流れている期間が放電期間であり、この期間の電流が放電電流である。放電電流が流れると、モジュール電圧が低下するため、放電終了と共に間欠充電が開始される。   In FIG. 4, the period during which the current flows in the negative direction is the discharge period, and the current during this period is the discharge current. When the discharge current flows, the module voltage decreases, so that intermittent charging is started as soon as the discharge ends.

本発明によれば、スイッチ制御回路が、充放電回路により間欠的にキャパシタモジュールを充電する場合において、複数のキャパシタの端子間電圧のバラツキを小さくすることができる。その結果、一部のキャパシタが過放電状態になるような事態が発生することがなく、キャパシタの寿命の低下を防止できる利点が得られる。   ADVANTAGE OF THE INVENTION According to this invention, when the switch control circuit charges a capacitor module intermittently with a charging / discharging circuit, the dispersion | variation in the voltage between the terminals of a some capacitor can be made small. As a result, a situation in which a part of the capacitors is in an overdischarged state does not occur, and an advantage that a reduction in the lifetime of the capacitors can be prevented can be obtained.

1 直流電源装置
3 直流発電機
5,25 キャパシタモジュール
7,27 充放電回路
9,29 電圧不均等化抑制回路
11 直列回路
13,33 スイッチ制御回路
L 負荷
C,C1〜C5 キャパシタ
SW,SW1〜SW5 常開スイッチ
R,R1〜R5 抵抗体
DESCRIPTION OF SYMBOLS 1 DC power supply device 3 DC generator 5,25 Capacitor module 7,27 Charge / discharge circuit 9,29 Voltage non-equalization suppression circuit 11 Series circuit 13,33 Switch control circuit L Load C, C1-C5 Capacitor SW, SW1-SW5 Normally open switch R, R1-R5 resistor

Claims (5)

複数個のキャパシタを直列に接続したキャパシタモジュールと、
負荷に電力を供給する電源と、
前記電源と前記キャパシタモジュールとの間に配置されて前記キャパシタモジュールを間欠的に充電し且つ前記電源から前記負荷への電力の供給が停止すると、前記キャパシタモジュールから前記負荷へ電荷を放電して電力を供給する充放電回路と、
前記複数のキャパシタの端子間電圧のバラツキを抑制するための電圧不均等化抑制回路とを備え、
前記電圧不均等化抑制回路は、
前記複数個のキャパシタにそれぞれ並列接続された常開スイッチと抵抗体とからなる複数の直列回路と、
前記キャパシタモジュールを充電しているときには、前記複数個のキャパシタのうち端子間電圧が他のキャパシタの端子間電圧よりも予め定めた許容範囲以上高くなっている1以上の前記キャパシタに並列接続された前記直列回路の前記常開スイッチを閉状態にし、閉状態にした前記常開スイッチを前記1以上のキャパシタの端子間電圧と前記他のキャパシタの端子間電圧との差電圧が前記許容範囲内の電圧になると開状態とし、前記キャパシタモジュールが非充電状態にあるときには、すべての前記常開スイッチを開状態にするスイッチ制御回路とからなることを特徴とする直流電源装置。
A capacitor module in which a plurality of capacitors are connected in series;
A power source for supplying power to the load;
When the capacitor module is intermittently charged between the power supply and the capacitor module and the supply of power from the power supply to the load is stopped, the charge is discharged from the capacitor module to the load. A charge / discharge circuit for supplying
A voltage non-uniformity suppressing circuit for suppressing variations in voltage between terminals of the plurality of capacitors,
The voltage non-equalization suppression circuit is
A plurality of series circuits each including a normally open switch and a resistor connected in parallel to the plurality of capacitors;
When charging the capacitor module, among the plurality of capacitors, the inter-terminal voltage is connected in parallel to one or more of the capacitors whose terminal voltage is higher than a predetermined allowable range than the inter-terminal voltage of the other capacitors. The normally open switch of the series circuit is closed, and the normally open switch in the closed state has a voltage difference between the terminal voltage of the one or more capacitors and the terminal voltage of the other capacitor within the allowable range. A DC power supply device comprising: a switch control circuit that is opened when a voltage is reached and that opens all the normally open switches when the capacitor module is in a non-charged state.
前記スイッチ制御回路は、前記複数のキャパシタの隣り合う二つの前記キャパシタのそれぞれの端子間電圧の差電圧を求め、前記差電圧が前記許容範囲を越えていることを判定すると、前記端子間電圧が高いほうの前記キャパシタに並列接続されている前記直列回路の前記常開スイッチを閉状態にする信号を出力し、
前記差電圧が前記許容範囲内になると前記常開スイッチを開状態にする信号を出力する判定回路を備えている請求項1に記載の直流電源装置。
The switch control circuit obtains a voltage difference between terminals of two adjacent capacitors of the plurality of capacitors, and determines that the voltage difference exceeds the allowable range. Outputting a signal to close the normally open switch of the series circuit connected in parallel to the higher capacitor;
2. The DC power supply device according to claim 1, further comprising a determination circuit that outputs a signal for opening the normally open switch when the difference voltage falls within the allowable range.
前記スイッチ制御回路は、前記複数のキャパシタ中の隣り合う二つの前記キャパシタに対して1つずつ前記判定回路を備えている請求項2に記載の直流電源装置。   The DC power supply device according to claim 2, wherein the switch control circuit includes the determination circuit for each of two adjacent capacitors in the plurality of capacitors. 前記キャパシタがリチウムイオンキャパシタであり、前記抵抗体の抵抗値が、10±5Ωの範囲内の値である請求項1に記載の直流電源装置。   The DC power supply device according to claim 1, wherein the capacitor is a lithium ion capacitor, and the resistance value of the resistor is a value within a range of 10 ± 5Ω. 複数個のキャパシタを直列に接続したキャパシタモジュールと負荷に電力を供給する電源との間に配置されて前記キャパシタモジュールを間欠的に充電し且つ前記電源から前記負荷への電力の供給が停止すると、前記キャパシタモジュールから前記負荷へ電荷を放電して電力を供給する直流電源装置の前記キャパシタモジュールに含まれる複数個のキャパシタの端子間電圧のバラツキを抑制するキャパシタモジュールの電圧不均等化抑制方法であって、
前記複数個のキャパシタに、常開スイッチと抵抗体とからなる複数の直列回路をそれぞれ並列接続し、
前記キャパシタモジュールを充電しているときに、前記複数個のキャパシタのうち端子間電圧が他のキャパシタの端子間電圧よりも予め定めた許容範囲以上高くなっている1以上の前記キャパシタに並列接続された前記直列回路の前記常開スイッチを閉状態にし、その後前記1以上のキャパシタの端子間電圧と前記他のキャパシタの端子間電圧との差電圧が前記許容範囲内の電圧になると前記常開スイッチを開状態とし、非充電状態ではすべての前記常開スイッチを開常態にすることを特徴とするキャパシタモジュールの電圧不均等化抑制方法。
When the capacitor module is arranged between a capacitor module in which a plurality of capacitors are connected in series and a power source for supplying power to the load to intermittently charge the capacitor module and the supply of power from the power source to the load is stopped, A method for suppressing voltage non-uniformity of a capacitor module that suppresses variations in voltage between terminals of a plurality of capacitors included in the capacitor module of a DC power supply device that supplies electric power by discharging electric charge from the capacitor module to the load. And
A plurality of series circuits composed of normally open switches and resistors are connected in parallel to the plurality of capacitors,
When charging the capacitor module, the terminals are connected in parallel to one or more of the plurality of capacitors whose terminal voltage is higher than the terminal voltage of other capacitors by a predetermined allowable range or more. When the normally open switch of the series circuit is closed, and then the voltage difference between the terminals of the one or more capacitors and the terminals of the other capacitors becomes a voltage within the allowable range, the normally open switch A method for suppressing voltage non-uniformization of a capacitor module, characterized in that, in a non-charged state, all the normally open switches are opened.
JP2010264233A 2010-11-26 2010-11-26 Dc power supply and voltage non-equalization suppressing method of capacitor module Pending JP2012115103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010264233A JP2012115103A (en) 2010-11-26 2010-11-26 Dc power supply and voltage non-equalization suppressing method of capacitor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264233A JP2012115103A (en) 2010-11-26 2010-11-26 Dc power supply and voltage non-equalization suppressing method of capacitor module

Publications (1)

Publication Number Publication Date
JP2012115103A true JP2012115103A (en) 2012-06-14

Family

ID=46498671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264233A Pending JP2012115103A (en) 2010-11-26 2010-11-26 Dc power supply and voltage non-equalization suppressing method of capacitor module

Country Status (1)

Country Link
JP (1) JP2012115103A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981788B2 (en) 2013-08-07 2015-03-17 Taiyo Yuden Co., Ltd. Capacitor power supply, voltage monitoring device, method of monitoring voltage, and method of manufacturing capacitor power supply
JP2015133817A (en) * 2014-01-10 2015-07-23 萩原電気株式会社 Backup power supply device
JP2018509872A (en) * 2015-02-24 2018-04-05 ベイジン セイムヴォルト カンパニー リミテッドBeijing Samevolt Co.,Ltd. Smart battery, electric energy distribution bus system, battery charge / discharge method, and electric energy distribution method
CN113812031A (en) * 2019-05-31 2021-12-17 松下知识产权经营株式会社 Electricity storage system
WO2023054604A1 (en) * 2021-09-30 2023-04-06 ミネベアミツミ株式会社 Power supply device and method for controlling power supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252543A (en) * 1995-10-04 1997-09-22 Motorola Inc Power balancing method and structure for it
JP2003189486A (en) * 2001-12-13 2003-07-04 Honda Motor Co Ltd Residual capacity equalizer of power storage unit
JP2004129439A (en) * 2002-10-04 2004-04-22 Mitsubishi Heavy Ind Ltd Voltage equalization device for backup power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09252543A (en) * 1995-10-04 1997-09-22 Motorola Inc Power balancing method and structure for it
JP2003189486A (en) * 2001-12-13 2003-07-04 Honda Motor Co Ltd Residual capacity equalizer of power storage unit
JP2004129439A (en) * 2002-10-04 2004-04-22 Mitsubishi Heavy Ind Ltd Voltage equalization device for backup power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981788B2 (en) 2013-08-07 2015-03-17 Taiyo Yuden Co., Ltd. Capacitor power supply, voltage monitoring device, method of monitoring voltage, and method of manufacturing capacitor power supply
JP2015133817A (en) * 2014-01-10 2015-07-23 萩原電気株式会社 Backup power supply device
JP2018509872A (en) * 2015-02-24 2018-04-05 ベイジン セイムヴォルト カンパニー リミテッドBeijing Samevolt Co.,Ltd. Smart battery, electric energy distribution bus system, battery charge / discharge method, and electric energy distribution method
CN113812031A (en) * 2019-05-31 2021-12-17 松下知识产权经营株式会社 Electricity storage system
WO2023054604A1 (en) * 2021-09-30 2023-04-06 ミネベアミツミ株式会社 Power supply device and method for controlling power supply device

Similar Documents

Publication Publication Date Title
US7550873B2 (en) Uninterruptible power supply for home/office networking and communication system
Moo et al. Parallel operation of battery power modules
US11128152B2 (en) Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
US8581557B2 (en) Direct-current power source apparatus
JP5812025B2 (en) Power storage system for stationary use and control method
US7764043B2 (en) Battery charger with internal battery
JP2017531983A (en) System and method for series battery charging and forming
US11670954B2 (en) Hybrid battery system
JP6690414B2 (en) Trickle charging power system
CN101809803A (en) Power supply system and cell assembly control method
CN105210256A (en) Power supply apparatus
JP2012115103A (en) Dc power supply and voltage non-equalization suppressing method of capacitor module
JP2012182857A (en) Dc power supply
JP2009148110A (en) Charger/discharger and power supply device using the same
JP6214131B2 (en) Battery pack charging system and battery pack charging method
Hurley et al. Self-equalization of cell voltages to prolong the life of VRLA batteries in standby applications
JP5488085B2 (en) DC power supply
US20170077720A1 (en) Systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection
JP4724726B2 (en) DC power supply system and charging method thereof
JP5059674B2 (en) Power supply system and charging method
CN111092471B (en) Using method of overcharge and overdischarge protection circuit for energy storage battery pack
JP2004304931A (en) Charging method and charging device for electric storage device
US11784508B1 (en) Uninterruptible power supply systems and methods
EP3961846A1 (en) Battery for an emergency lighting unit
JP2004288537A (en) Battery pack, secondary battery charging device, and secondary battery charging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007